iVOD / 156497

Field Value
IVOD_ID 156497
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/156497
日期 2024-11-05
會議資料.會議代碼 院會-11-2-7
會議資料.會議代碼:str 第11屆第2會期第7次會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 7
會議資料.種類 院會
會議資料.標題 第11屆第2會期第7次會議
影片種類 Clip
開始時間 2024-11-05T09:33:33+08:00
結束時間 2024-11-05T09:49:27+08:00
影片長度 00:15:54
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/31e775e5ad017d41268a1ffb9b5ba05ee3fd33acf0e4cf8b21acfac236e8b07d6459bee0242884af5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 09:33:33 - 09:49:27
會議時間 2024-11-05T09:00:00+08:00
會議名稱 第11屆第2會期第7次會議(事由:一、行政院院長、主計長、財政部部長、國家發展委員會主任委員及相關部會首長列席報告「114年度中央政府總預算案」及「中央政府前瞻基礎建設計畫第5期特別預算案」編製經過並備質詢。二、上午9時至10時為國是論壇時間。)
transcript.pyannote[0].speaker SPEAKER_06
transcript.pyannote[0].start 7.70909375
transcript.pyannote[0].end 15.15096875
transcript.pyannote[1].speaker SPEAKER_06
transcript.pyannote[1].start 15.80909375
transcript.pyannote[1].end 18.82971875
transcript.pyannote[2].speaker SPEAKER_06
transcript.pyannote[2].start 19.48784375
transcript.pyannote[2].end 24.65159375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 19.62284375
transcript.pyannote[3].end 19.63971875
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 19.63971875
transcript.pyannote[4].end 20.07846875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 20.07846875
transcript.pyannote[5].end 20.14596875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 21.17534375
transcript.pyannote[6].end 21.42846875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 24.65159375
transcript.pyannote[7].end 26.03534375
transcript.pyannote[8].speaker SPEAKER_06
transcript.pyannote[8].start 26.03534375
transcript.pyannote[8].end 26.06909375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 26.06909375
transcript.pyannote[9].end 26.11971875
transcript.pyannote[10].speaker SPEAKER_06
transcript.pyannote[10].start 26.11971875
transcript.pyannote[10].end 26.81159375
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 26.81159375
transcript.pyannote[11].end 26.82846875
transcript.pyannote[12].speaker SPEAKER_05
transcript.pyannote[12].start 32.07659375
transcript.pyannote[12].end 32.27909375
transcript.pyannote[13].speaker SPEAKER_06
transcript.pyannote[13].start 32.27909375
transcript.pyannote[13].end 32.39721875
transcript.pyannote[14].speaker SPEAKER_05
transcript.pyannote[14].start 32.39721875
transcript.pyannote[14].end 32.70096875
transcript.pyannote[15].speaker SPEAKER_06
transcript.pyannote[15].start 34.00034375
transcript.pyannote[15].end 34.69221875
transcript.pyannote[16].speaker SPEAKER_06
transcript.pyannote[16].start 35.13096875
transcript.pyannote[16].end 36.02534375
transcript.pyannote[17].speaker SPEAKER_06
transcript.pyannote[17].start 36.88596875
transcript.pyannote[17].end 37.30784375
transcript.pyannote[18].speaker SPEAKER_06
transcript.pyannote[18].start 38.16846875
transcript.pyannote[18].end 40.69971875
transcript.pyannote[19].speaker SPEAKER_06
transcript.pyannote[19].start 41.32409375
transcript.pyannote[19].end 42.28596875
transcript.pyannote[20].speaker SPEAKER_06
transcript.pyannote[20].start 43.33221875
transcript.pyannote[20].end 47.83784375
transcript.pyannote[21].speaker SPEAKER_06
transcript.pyannote[21].start 48.88409375
transcript.pyannote[21].end 49.08659375
transcript.pyannote[22].speaker SPEAKER_05
transcript.pyannote[22].start 49.08659375
transcript.pyannote[22].end 50.03159375
transcript.pyannote[23].speaker SPEAKER_06
transcript.pyannote[23].start 50.03159375
transcript.pyannote[23].end 52.83284375
transcript.pyannote[24].speaker SPEAKER_06
transcript.pyannote[24].start 53.40659375
transcript.pyannote[24].end 54.04784375
transcript.pyannote[25].speaker SPEAKER_06
transcript.pyannote[25].start 54.31784375
transcript.pyannote[25].end 55.00971875
transcript.pyannote[26].speaker SPEAKER_06
transcript.pyannote[26].start 55.76909375
transcript.pyannote[26].end 60.47721875
transcript.pyannote[27].speaker SPEAKER_06
transcript.pyannote[27].start 60.79784375
transcript.pyannote[27].end 63.02534375
transcript.pyannote[28].speaker SPEAKER_06
transcript.pyannote[28].start 63.24471875
transcript.pyannote[28].end 66.38346875
transcript.pyannote[29].speaker SPEAKER_06
transcript.pyannote[29].start 67.15971875
transcript.pyannote[29].end 68.76284375
transcript.pyannote[30].speaker SPEAKER_06
transcript.pyannote[30].start 68.91471875
transcript.pyannote[30].end 71.51346875
transcript.pyannote[31].speaker SPEAKER_06
transcript.pyannote[31].start 72.57659375
transcript.pyannote[31].end 75.46221875
transcript.pyannote[32].speaker SPEAKER_06
transcript.pyannote[32].start 75.69846875
transcript.pyannote[32].end 78.07784375
transcript.pyannote[33].speaker SPEAKER_06
transcript.pyannote[33].start 78.17909375
transcript.pyannote[33].end 79.20846875
transcript.pyannote[34].speaker SPEAKER_06
transcript.pyannote[34].start 79.83284375
transcript.pyannote[34].end 80.82846875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 81.14909375
transcript.pyannote[35].end 83.19096875
transcript.pyannote[36].speaker SPEAKER_06
transcript.pyannote[36].start 82.14471875
transcript.pyannote[36].end 82.48221875
transcript.pyannote[37].speaker SPEAKER_06
transcript.pyannote[37].start 83.32596875
transcript.pyannote[37].end 85.35096875
transcript.pyannote[38].speaker SPEAKER_06
transcript.pyannote[38].start 85.60409375
transcript.pyannote[38].end 87.78096875
transcript.pyannote[39].speaker SPEAKER_06
transcript.pyannote[39].start 88.16909375
transcript.pyannote[39].end 89.36721875
transcript.pyannote[40].speaker SPEAKER_06
transcript.pyannote[40].start 90.21096875
transcript.pyannote[40].end 90.61596875
transcript.pyannote[41].speaker SPEAKER_06
transcript.pyannote[41].start 90.78471875
transcript.pyannote[41].end 91.49346875
transcript.pyannote[42].speaker SPEAKER_06
transcript.pyannote[42].start 91.71284375
transcript.pyannote[42].end 94.49721875
transcript.pyannote[43].speaker SPEAKER_06
transcript.pyannote[43].start 95.03721875
transcript.pyannote[43].end 98.49659375
transcript.pyannote[44].speaker SPEAKER_06
transcript.pyannote[44].start 98.91846875
transcript.pyannote[44].end 103.79534375
transcript.pyannote[45].speaker SPEAKER_06
transcript.pyannote[45].start 104.13284375
transcript.pyannote[45].end 107.37284375
transcript.pyannote[46].speaker SPEAKER_06
transcript.pyannote[46].start 107.49096875
transcript.pyannote[46].end 108.52034375
transcript.pyannote[47].speaker SPEAKER_06
transcript.pyannote[47].start 108.80721875
transcript.pyannote[47].end 112.97534375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 113.76846875
transcript.pyannote[48].end 124.18034375
transcript.pyannote[49].speaker SPEAKER_06
transcript.pyannote[49].start 124.07909375
transcript.pyannote[49].end 128.36534375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 128.46659375
transcript.pyannote[50].end 137.07284375
transcript.pyannote[51].speaker SPEAKER_06
transcript.pyannote[51].start 133.29284375
transcript.pyannote[51].end 136.24596875
transcript.pyannote[52].speaker SPEAKER_06
transcript.pyannote[52].start 136.48221875
transcript.pyannote[52].end 145.57784375
transcript.pyannote[53].speaker SPEAKER_06
transcript.pyannote[53].start 145.71284375
transcript.pyannote[53].end 157.01909375
transcript.pyannote[54].speaker SPEAKER_05
transcript.pyannote[54].start 157.01909375
transcript.pyannote[54].end 157.03596875
transcript.pyannote[55].speaker SPEAKER_06
transcript.pyannote[55].start 157.67721875
transcript.pyannote[55].end 157.96409375
transcript.pyannote[56].speaker SPEAKER_05
transcript.pyannote[56].start 157.96409375
transcript.pyannote[56].end 159.24659375
transcript.pyannote[57].speaker SPEAKER_05
transcript.pyannote[57].start 159.33096875
transcript.pyannote[57].end 163.04346875
transcript.pyannote[58].speaker SPEAKER_05
transcript.pyannote[58].start 163.60034375
transcript.pyannote[58].end 166.50284375
transcript.pyannote[59].speaker SPEAKER_05
transcript.pyannote[59].start 166.90784375
transcript.pyannote[59].end 178.02846875
transcript.pyannote[60].speaker SPEAKER_06
transcript.pyannote[60].start 178.02846875
transcript.pyannote[60].end 178.61909375
transcript.pyannote[61].speaker SPEAKER_05
transcript.pyannote[61].start 179.09159375
transcript.pyannote[61].end 179.10846875
transcript.pyannote[62].speaker SPEAKER_06
transcript.pyannote[62].start 179.10846875
transcript.pyannote[62].end 182.68596875
transcript.pyannote[63].speaker SPEAKER_06
transcript.pyannote[63].start 183.05721875
transcript.pyannote[63].end 184.28909375
transcript.pyannote[64].speaker SPEAKER_06
transcript.pyannote[64].start 184.69409375
transcript.pyannote[64].end 186.71909375
transcript.pyannote[65].speaker SPEAKER_06
transcript.pyannote[65].start 186.97221875
transcript.pyannote[65].end 189.14909375
transcript.pyannote[66].speaker SPEAKER_06
transcript.pyannote[66].start 189.58784375
transcript.pyannote[66].end 193.63784375
transcript.pyannote[67].speaker SPEAKER_06
transcript.pyannote[67].start 193.84034375
transcript.pyannote[67].end 196.16909375
transcript.pyannote[68].speaker SPEAKER_06
transcript.pyannote[68].start 196.43909375
transcript.pyannote[68].end 211.93034375
transcript.pyannote[69].speaker SPEAKER_05
transcript.pyannote[69].start 212.63909375
transcript.pyannote[69].end 214.57971875
transcript.pyannote[70].speaker SPEAKER_05
transcript.pyannote[70].start 214.73159375
transcript.pyannote[70].end 220.60409375
transcript.pyannote[71].speaker SPEAKER_06
transcript.pyannote[71].start 219.50721875
transcript.pyannote[71].end 220.94159375
transcript.pyannote[72].speaker SPEAKER_06
transcript.pyannote[72].start 221.66721875
transcript.pyannote[72].end 221.95409375
transcript.pyannote[73].speaker SPEAKER_06
transcript.pyannote[73].start 222.88221875
transcript.pyannote[73].end 226.32471875
transcript.pyannote[74].speaker SPEAKER_06
transcript.pyannote[74].start 226.74659375
transcript.pyannote[74].end 228.77159375
transcript.pyannote[75].speaker SPEAKER_06
transcript.pyannote[75].start 229.09221875
transcript.pyannote[75].end 235.90971875
transcript.pyannote[76].speaker SPEAKER_06
transcript.pyannote[76].start 236.23034375
transcript.pyannote[76].end 238.37346875
transcript.pyannote[77].speaker SPEAKER_06
transcript.pyannote[77].start 238.64346875
transcript.pyannote[77].end 240.38159375
transcript.pyannote[78].speaker SPEAKER_06
transcript.pyannote[78].start 241.42784375
transcript.pyannote[78].end 241.84971875
transcript.pyannote[79].speaker SPEAKER_06
transcript.pyannote[79].start 242.17034375
transcript.pyannote[79].end 248.04284375
transcript.pyannote[80].speaker SPEAKER_06
transcript.pyannote[80].start 249.07221875
transcript.pyannote[80].end 249.08909375
transcript.pyannote[81].speaker SPEAKER_05
transcript.pyannote[81].start 249.08909375
transcript.pyannote[81].end 249.22409375
transcript.pyannote[82].speaker SPEAKER_06
transcript.pyannote[82].start 249.22409375
transcript.pyannote[82].end 249.61221875
transcript.pyannote[83].speaker SPEAKER_05
transcript.pyannote[83].start 249.61221875
transcript.pyannote[83].end 249.66284375
transcript.pyannote[84].speaker SPEAKER_06
transcript.pyannote[84].start 249.66284375
transcript.pyannote[84].end 249.71346875
transcript.pyannote[85].speaker SPEAKER_06
transcript.pyannote[85].start 249.93284375
transcript.pyannote[85].end 252.75096875
transcript.pyannote[86].speaker SPEAKER_06
transcript.pyannote[86].start 253.08846875
transcript.pyannote[86].end 254.23596875
transcript.pyannote[87].speaker SPEAKER_06
transcript.pyannote[87].start 254.64096875
transcript.pyannote[87].end 256.34534375
transcript.pyannote[88].speaker SPEAKER_06
transcript.pyannote[88].start 256.58159375
transcript.pyannote[88].end 259.28159375
transcript.pyannote[89].speaker SPEAKER_06
transcript.pyannote[89].start 259.75409375
transcript.pyannote[89].end 262.72409375
transcript.pyannote[90].speaker SPEAKER_06
transcript.pyannote[90].start 263.12909375
transcript.pyannote[90].end 266.50409375
transcript.pyannote[91].speaker SPEAKER_06
transcript.pyannote[91].start 266.85846875
transcript.pyannote[91].end 269.17034375
transcript.pyannote[92].speaker SPEAKER_06
transcript.pyannote[92].start 269.40659375
transcript.pyannote[92].end 273.06846875
transcript.pyannote[93].speaker SPEAKER_06
transcript.pyannote[93].start 273.40596875
transcript.pyannote[93].end 273.91221875
transcript.pyannote[94].speaker SPEAKER_06
transcript.pyannote[94].start 274.46909375
transcript.pyannote[94].end 277.62471875
transcript.pyannote[95].speaker SPEAKER_06
transcript.pyannote[95].start 277.94534375
transcript.pyannote[95].end 279.16034375
transcript.pyannote[96].speaker SPEAKER_06
transcript.pyannote[96].start 279.39659375
transcript.pyannote[96].end 281.96159375
transcript.pyannote[97].speaker SPEAKER_06
transcript.pyannote[97].start 282.75471875
transcript.pyannote[97].end 283.64909375
transcript.pyannote[98].speaker SPEAKER_06
transcript.pyannote[98].start 284.07096875
transcript.pyannote[98].end 286.56846875
transcript.pyannote[99].speaker SPEAKER_06
transcript.pyannote[99].start 286.87221875
transcript.pyannote[99].end 288.42471875
transcript.pyannote[100].speaker SPEAKER_06
transcript.pyannote[100].start 288.47534375
transcript.pyannote[100].end 290.50034375
transcript.pyannote[101].speaker SPEAKER_06
transcript.pyannote[101].start 290.75346875
transcript.pyannote[101].end 291.76596875
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 292.86284375
transcript.pyannote[102].end 293.68971875
transcript.pyannote[103].speaker SPEAKER_04
transcript.pyannote[103].start 293.84159375
transcript.pyannote[103].end 296.72721875
transcript.pyannote[104].speaker SPEAKER_06
transcript.pyannote[104].start 295.19159375
transcript.pyannote[104].end 296.94659375
transcript.pyannote[105].speaker SPEAKER_06
transcript.pyannote[105].start 297.01409375
transcript.pyannote[105].end 297.41909375
transcript.pyannote[106].speaker SPEAKER_06
transcript.pyannote[106].start 298.11096875
transcript.pyannote[106].end 298.54971875
transcript.pyannote[107].speaker SPEAKER_06
transcript.pyannote[107].start 298.70159375
transcript.pyannote[107].end 299.41034375
transcript.pyannote[108].speaker SPEAKER_06
transcript.pyannote[108].start 300.40596875
transcript.pyannote[108].end 302.88659375
transcript.pyannote[109].speaker SPEAKER_05
transcript.pyannote[109].start 304.94534375
transcript.pyannote[109].end 305.83971875
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 306.02534375
transcript.pyannote[110].end 306.98721875
transcript.pyannote[111].speaker SPEAKER_06
transcript.pyannote[111].start 306.05909375
transcript.pyannote[111].end 306.64971875
transcript.pyannote[112].speaker SPEAKER_06
transcript.pyannote[112].start 306.98721875
transcript.pyannote[112].end 310.04159375
transcript.pyannote[113].speaker SPEAKER_05
transcript.pyannote[113].start 309.33284375
transcript.pyannote[113].end 310.32846875
transcript.pyannote[114].speaker SPEAKER_06
transcript.pyannote[114].start 310.32846875
transcript.pyannote[114].end 314.31096875
transcript.pyannote[115].speaker SPEAKER_06
transcript.pyannote[115].start 315.05346875
transcript.pyannote[115].end 318.59721875
transcript.pyannote[116].speaker SPEAKER_06
transcript.pyannote[116].start 319.13721875
transcript.pyannote[116].end 323.40659375
transcript.pyannote[117].speaker SPEAKER_06
transcript.pyannote[117].start 323.71034375
transcript.pyannote[117].end 324.45284375
transcript.pyannote[118].speaker SPEAKER_06
transcript.pyannote[118].start 324.95909375
transcript.pyannote[118].end 326.12346875
transcript.pyannote[119].speaker SPEAKER_06
transcript.pyannote[119].start 326.30909375
transcript.pyannote[119].end 327.30471875
transcript.pyannote[120].speaker SPEAKER_06
transcript.pyannote[120].start 327.54096875
transcript.pyannote[120].end 329.63346875
transcript.pyannote[121].speaker SPEAKER_06
transcript.pyannote[121].start 331.42221875
transcript.pyannote[121].end 332.08034375
transcript.pyannote[122].speaker SPEAKER_06
transcript.pyannote[122].start 332.11409375
transcript.pyannote[122].end 333.09284375
transcript.pyannote[123].speaker SPEAKER_06
transcript.pyannote[123].start 333.16034375
transcript.pyannote[123].end 340.24784375
transcript.pyannote[124].speaker SPEAKER_06
transcript.pyannote[124].start 340.63596875
transcript.pyannote[124].end 341.71596875
transcript.pyannote[125].speaker SPEAKER_06
transcript.pyannote[125].start 342.03659375
transcript.pyannote[125].end 346.67721875
transcript.pyannote[126].speaker SPEAKER_06
transcript.pyannote[126].start 347.30159375
transcript.pyannote[126].end 352.97159375
transcript.pyannote[127].speaker SPEAKER_06
transcript.pyannote[127].start 353.62971875
transcript.pyannote[127].end 354.35534375
transcript.pyannote[128].speaker SPEAKER_06
transcript.pyannote[128].start 354.76034375
transcript.pyannote[128].end 356.31284375
transcript.pyannote[129].speaker SPEAKER_06
transcript.pyannote[129].start 356.86971875
transcript.pyannote[129].end 357.67971875
transcript.pyannote[130].speaker SPEAKER_06
transcript.pyannote[130].start 358.11846875
transcript.pyannote[130].end 360.75096875
transcript.pyannote[131].speaker SPEAKER_04
transcript.pyannote[131].start 362.28659375
transcript.pyannote[131].end 371.02784375
transcript.pyannote[132].speaker SPEAKER_06
transcript.pyannote[132].start 371.02784375
transcript.pyannote[132].end 373.32284375
transcript.pyannote[133].speaker SPEAKER_06
transcript.pyannote[133].start 373.60971875
transcript.pyannote[133].end 377.35596875
transcript.pyannote[134].speaker SPEAKER_06
transcript.pyannote[134].start 378.13221875
transcript.pyannote[134].end 381.77721875
transcript.pyannote[135].speaker SPEAKER_06
transcript.pyannote[135].start 382.08096875
transcript.pyannote[135].end 388.37534375
transcript.pyannote[136].speaker SPEAKER_06
transcript.pyannote[136].start 388.91534375
transcript.pyannote[136].end 390.11346875
transcript.pyannote[137].speaker SPEAKER_06
transcript.pyannote[137].start 390.34971875
transcript.pyannote[137].end 392.23971875
transcript.pyannote[138].speaker SPEAKER_06
transcript.pyannote[138].start 392.30721875
transcript.pyannote[138].end 393.45471875
transcript.pyannote[139].speaker SPEAKER_06
transcript.pyannote[139].start 393.75846875
transcript.pyannote[139].end 395.00721875
transcript.pyannote[140].speaker SPEAKER_06
transcript.pyannote[140].start 395.31096875
transcript.pyannote[140].end 396.52596875
transcript.pyannote[141].speaker SPEAKER_06
transcript.pyannote[141].start 396.76221875
transcript.pyannote[141].end 398.04471875
transcript.pyannote[142].speaker SPEAKER_06
transcript.pyannote[142].start 398.36534375
transcript.pyannote[142].end 399.17534375
transcript.pyannote[143].speaker SPEAKER_05
transcript.pyannote[143].start 400.89659375
transcript.pyannote[143].end 401.41971875
transcript.pyannote[144].speaker SPEAKER_05
transcript.pyannote[144].start 401.87534375
transcript.pyannote[144].end 405.68909375
transcript.pyannote[145].speaker SPEAKER_04
transcript.pyannote[145].start 403.63034375
transcript.pyannote[145].end 403.64721875
transcript.pyannote[146].speaker SPEAKER_06
transcript.pyannote[146].start 403.64721875
transcript.pyannote[146].end 404.45721875
transcript.pyannote[147].speaker SPEAKER_05
transcript.pyannote[147].start 406.12784375
transcript.pyannote[147].end 411.03846875
transcript.pyannote[148].speaker SPEAKER_06
transcript.pyannote[148].start 411.03846875
transcript.pyannote[148].end 412.06784375
transcript.pyannote[149].speaker SPEAKER_06
transcript.pyannote[149].start 412.82721875
transcript.pyannote[149].end 416.08409375
transcript.pyannote[150].speaker SPEAKER_06
transcript.pyannote[150].start 416.62409375
transcript.pyannote[150].end 417.43409375
transcript.pyannote[151].speaker SPEAKER_06
transcript.pyannote[151].start 417.72096875
transcript.pyannote[151].end 427.42409375
transcript.pyannote[152].speaker SPEAKER_06
transcript.pyannote[152].start 427.82909375
transcript.pyannote[152].end 428.95971875
transcript.pyannote[153].speaker SPEAKER_06
transcript.pyannote[153].start 429.38159375
transcript.pyannote[153].end 432.03096875
transcript.pyannote[154].speaker SPEAKER_06
transcript.pyannote[154].start 432.04784375
transcript.pyannote[154].end 434.07284375
transcript.pyannote[155].speaker SPEAKER_06
transcript.pyannote[155].start 434.69721875
transcript.pyannote[155].end 435.06846875
transcript.pyannote[156].speaker SPEAKER_06
transcript.pyannote[156].start 435.43971875
transcript.pyannote[156].end 436.84034375
transcript.pyannote[157].speaker SPEAKER_06
transcript.pyannote[157].start 437.80221875
transcript.pyannote[157].end 438.27471875
transcript.pyannote[158].speaker SPEAKER_05
transcript.pyannote[158].start 438.27471875
transcript.pyannote[158].end 438.30846875
transcript.pyannote[159].speaker SPEAKER_06
transcript.pyannote[159].start 438.30846875
transcript.pyannote[159].end 438.37596875
transcript.pyannote[160].speaker SPEAKER_05
transcript.pyannote[160].start 438.37596875
transcript.pyannote[160].end 441.83534375
transcript.pyannote[161].speaker SPEAKER_06
transcript.pyannote[161].start 439.33784375
transcript.pyannote[161].end 441.88596875
transcript.pyannote[162].speaker SPEAKER_06
transcript.pyannote[162].start 442.74659375
transcript.pyannote[162].end 443.48909375
transcript.pyannote[163].speaker SPEAKER_06
transcript.pyannote[163].start 443.82659375
transcript.pyannote[163].end 444.94034375
transcript.pyannote[164].speaker SPEAKER_06
transcript.pyannote[164].start 445.42971875
transcript.pyannote[164].end 447.03284375
transcript.pyannote[165].speaker SPEAKER_06
transcript.pyannote[165].start 447.64034375
transcript.pyannote[165].end 449.26034375
transcript.pyannote[166].speaker SPEAKER_06
transcript.pyannote[166].start 449.34471875
transcript.pyannote[166].end 449.85096875
transcript.pyannote[167].speaker SPEAKER_06
transcript.pyannote[167].start 450.27284375
transcript.pyannote[167].end 451.62284375
transcript.pyannote[168].speaker SPEAKER_06
transcript.pyannote[168].start 452.68596875
transcript.pyannote[168].end 454.37346875
transcript.pyannote[169].speaker SPEAKER_06
transcript.pyannote[169].start 454.42409375
transcript.pyannote[169].end 455.87534375
transcript.pyannote[170].speaker SPEAKER_04
transcript.pyannote[170].start 456.14534375
transcript.pyannote[170].end 459.30096875
transcript.pyannote[171].speaker SPEAKER_06
transcript.pyannote[171].start 459.30096875
transcript.pyannote[171].end 461.88284375
transcript.pyannote[172].speaker SPEAKER_06
transcript.pyannote[172].start 462.33846875
transcript.pyannote[172].end 467.99159375
transcript.pyannote[173].speaker SPEAKER_05
transcript.pyannote[173].start 469.00409375
transcript.pyannote[173].end 471.61971875
transcript.pyannote[174].speaker SPEAKER_06
transcript.pyannote[174].start 470.65784375
transcript.pyannote[174].end 471.88971875
transcript.pyannote[175].speaker SPEAKER_06
transcript.pyannote[175].start 472.05846875
transcript.pyannote[175].end 474.55596875
transcript.pyannote[176].speaker SPEAKER_06
transcript.pyannote[176].start 475.23096875
transcript.pyannote[176].end 476.05784375
transcript.pyannote[177].speaker SPEAKER_06
transcript.pyannote[177].start 476.44596875
transcript.pyannote[177].end 477.50909375
transcript.pyannote[178].speaker SPEAKER_06
transcript.pyannote[178].start 477.84659375
transcript.pyannote[178].end 479.53409375
transcript.pyannote[179].speaker SPEAKER_06
transcript.pyannote[179].start 480.00659375
transcript.pyannote[179].end 481.89659375
transcript.pyannote[180].speaker SPEAKER_06
transcript.pyannote[180].start 482.26784375
transcript.pyannote[180].end 483.90471875
transcript.pyannote[181].speaker SPEAKER_06
transcript.pyannote[181].start 484.59659375
transcript.pyannote[181].end 485.60909375
transcript.pyannote[182].speaker SPEAKER_06
transcript.pyannote[182].start 486.09846875
transcript.pyannote[182].end 487.98846875
transcript.pyannote[183].speaker SPEAKER_06
transcript.pyannote[183].start 488.46096875
transcript.pyannote[183].end 491.31284375
transcript.pyannote[184].speaker SPEAKER_06
transcript.pyannote[184].start 491.41409375
transcript.pyannote[184].end 495.22784375
transcript.pyannote[185].speaker SPEAKER_06
transcript.pyannote[185].start 495.86909375
transcript.pyannote[185].end 496.67909375
transcript.pyannote[186].speaker SPEAKER_05
transcript.pyannote[186].start 496.84784375
transcript.pyannote[186].end 497.16846875
transcript.pyannote[187].speaker SPEAKER_06
transcript.pyannote[187].start 497.97846875
transcript.pyannote[187].end 501.48846875
transcript.pyannote[188].speaker SPEAKER_06
transcript.pyannote[188].start 501.75846875
transcript.pyannote[188].end 502.39971875
transcript.pyannote[189].speaker SPEAKER_06
transcript.pyannote[189].start 502.78784375
transcript.pyannote[189].end 504.10409375
transcript.pyannote[190].speaker SPEAKER_06
transcript.pyannote[190].start 504.96471875
transcript.pyannote[190].end 506.71971875
transcript.pyannote[191].speaker SPEAKER_06
transcript.pyannote[191].start 507.04034375
transcript.pyannote[191].end 508.54221875
transcript.pyannote[192].speaker SPEAKER_06
transcript.pyannote[192].start 508.89659375
transcript.pyannote[192].end 510.29721875
transcript.pyannote[193].speaker SPEAKER_06
transcript.pyannote[193].start 510.61784375
transcript.pyannote[193].end 510.88784375
transcript.pyannote[194].speaker SPEAKER_06
transcript.pyannote[194].start 511.05659375
transcript.pyannote[194].end 511.93409375
transcript.pyannote[195].speaker SPEAKER_06
transcript.pyannote[195].start 512.27159375
transcript.pyannote[195].end 514.71846875
transcript.pyannote[196].speaker SPEAKER_06
transcript.pyannote[196].start 515.12346875
transcript.pyannote[196].end 515.51159375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 515.74784375
transcript.pyannote[197].end 515.98409375
transcript.pyannote[198].speaker SPEAKER_06
transcript.pyannote[198].start 516.03471875
transcript.pyannote[198].end 517.89096875
transcript.pyannote[199].speaker SPEAKER_06
transcript.pyannote[199].start 518.11034375
transcript.pyannote[199].end 519.24096875
transcript.pyannote[200].speaker SPEAKER_04
transcript.pyannote[200].start 520.18596875
transcript.pyannote[200].end 523.98284375
transcript.pyannote[201].speaker SPEAKER_06
transcript.pyannote[201].start 522.78471875
transcript.pyannote[201].end 524.03346875
transcript.pyannote[202].speaker SPEAKER_06
transcript.pyannote[202].start 524.25284375
transcript.pyannote[202].end 526.19346875
transcript.pyannote[203].speaker SPEAKER_06
transcript.pyannote[203].start 526.54784375
transcript.pyannote[203].end 529.36596875
transcript.pyannote[204].speaker SPEAKER_06
transcript.pyannote[204].start 529.97346875
transcript.pyannote[204].end 531.81284375
transcript.pyannote[205].speaker SPEAKER_05
transcript.pyannote[205].start 531.99846875
transcript.pyannote[205].end 533.04471875
transcript.pyannote[206].speaker SPEAKER_06
transcript.pyannote[206].start 533.04471875
transcript.pyannote[206].end 533.21346875
transcript.pyannote[207].speaker SPEAKER_04
transcript.pyannote[207].start 533.17971875
transcript.pyannote[207].end 540.03096875
transcript.pyannote[208].speaker SPEAKER_05
transcript.pyannote[208].start 533.21346875
transcript.pyannote[208].end 533.23034375
transcript.pyannote[209].speaker SPEAKER_06
transcript.pyannote[209].start 533.23034375
transcript.pyannote[209].end 534.02346875
transcript.pyannote[210].speaker SPEAKER_05
transcript.pyannote[210].start 534.02346875
transcript.pyannote[210].end 534.61409375
transcript.pyannote[211].speaker SPEAKER_06
transcript.pyannote[211].start 540.03096875
transcript.pyannote[211].end 544.70534375
transcript.pyannote[212].speaker SPEAKER_06
transcript.pyannote[212].start 545.02596875
transcript.pyannote[212].end 549.10971875
transcript.pyannote[213].speaker SPEAKER_06
transcript.pyannote[213].start 549.29534375
transcript.pyannote[213].end 555.84284375
transcript.pyannote[214].speaker SPEAKER_06
transcript.pyannote[214].start 556.39971875
transcript.pyannote[214].end 558.25596875
transcript.pyannote[215].speaker SPEAKER_06
transcript.pyannote[215].start 558.96471875
transcript.pyannote[215].end 562.33971875
transcript.pyannote[216].speaker SPEAKER_06
transcript.pyannote[216].start 562.72784375
transcript.pyannote[216].end 564.36471875
transcript.pyannote[217].speaker SPEAKER_06
transcript.pyannote[217].start 564.73596875
transcript.pyannote[217].end 566.55846875
transcript.pyannote[218].speaker SPEAKER_06
transcript.pyannote[218].start 566.99721875
transcript.pyannote[218].end 567.94221875
transcript.pyannote[219].speaker SPEAKER_06
transcript.pyannote[219].start 568.44846875
transcript.pyannote[219].end 569.64659375
transcript.pyannote[220].speaker SPEAKER_06
transcript.pyannote[220].start 569.95034375
transcript.pyannote[220].end 570.96284375
transcript.pyannote[221].speaker SPEAKER_06
transcript.pyannote[221].start 571.28346875
transcript.pyannote[221].end 574.40534375
transcript.pyannote[222].speaker SPEAKER_04
transcript.pyannote[222].start 574.40534375
transcript.pyannote[222].end 574.42221875
transcript.pyannote[223].speaker SPEAKER_06
transcript.pyannote[223].start 575.14784375
transcript.pyannote[223].end 575.97471875
transcript.pyannote[224].speaker SPEAKER_04
transcript.pyannote[224].start 575.97471875
transcript.pyannote[224].end 578.59034375
transcript.pyannote[225].speaker SPEAKER_04
transcript.pyannote[225].start 579.01221875
transcript.pyannote[225].end 582.03284375
transcript.pyannote[226].speaker SPEAKER_06
transcript.pyannote[226].start 582.25221875
transcript.pyannote[226].end 587.33159375
transcript.pyannote[227].speaker SPEAKER_06
transcript.pyannote[227].start 587.98971875
transcript.pyannote[227].end 590.43659375
transcript.pyannote[228].speaker SPEAKER_06
transcript.pyannote[228].start 590.92596875
transcript.pyannote[228].end 592.83284375
transcript.pyannote[229].speaker SPEAKER_06
transcript.pyannote[229].start 592.95096875
transcript.pyannote[229].end 594.90846875
transcript.pyannote[230].speaker SPEAKER_06
transcript.pyannote[230].start 595.21221875
transcript.pyannote[230].end 595.65096875
transcript.pyannote[231].speaker SPEAKER_06
transcript.pyannote[231].start 595.87034375
transcript.pyannote[231].end 597.18659375
transcript.pyannote[232].speaker SPEAKER_05
transcript.pyannote[232].start 598.63784375
transcript.pyannote[232].end 598.87409375
transcript.pyannote[233].speaker SPEAKER_05
transcript.pyannote[233].start 598.99221875
transcript.pyannote[233].end 599.56596875
transcript.pyannote[234].speaker SPEAKER_05
transcript.pyannote[234].start 599.80221875
transcript.pyannote[234].end 601.81034375
transcript.pyannote[235].speaker SPEAKER_06
transcript.pyannote[235].start 601.55721875
transcript.pyannote[235].end 605.18534375
transcript.pyannote[236].speaker SPEAKER_06
transcript.pyannote[236].start 605.38784375
transcript.pyannote[236].end 606.60284375
transcript.pyannote[237].speaker SPEAKER_06
transcript.pyannote[237].start 606.78846875
transcript.pyannote[237].end 607.69971875
transcript.pyannote[238].speaker SPEAKER_06
transcript.pyannote[238].start 608.18909375
transcript.pyannote[238].end 608.69534375
transcript.pyannote[239].speaker SPEAKER_06
transcript.pyannote[239].start 609.04971875
transcript.pyannote[239].end 609.70784375
transcript.pyannote[240].speaker SPEAKER_06
transcript.pyannote[240].start 609.97784375
transcript.pyannote[240].end 610.38284375
transcript.pyannote[241].speaker SPEAKER_06
transcript.pyannote[241].start 610.73721875
transcript.pyannote[241].end 612.74534375
transcript.pyannote[242].speaker SPEAKER_06
transcript.pyannote[242].start 612.99846875
transcript.pyannote[242].end 613.89284375
transcript.pyannote[243].speaker SPEAKER_06
transcript.pyannote[243].start 614.43284375
transcript.pyannote[243].end 614.90534375
transcript.pyannote[244].speaker SPEAKER_06
transcript.pyannote[244].start 615.15846875
transcript.pyannote[244].end 616.22159375
transcript.pyannote[245].speaker SPEAKER_06
transcript.pyannote[245].start 616.57596875
transcript.pyannote[245].end 618.92159375
transcript.pyannote[246].speaker SPEAKER_06
transcript.pyannote[246].start 619.27596875
transcript.pyannote[246].end 620.67659375
transcript.pyannote[247].speaker SPEAKER_06
transcript.pyannote[247].start 620.71034375
transcript.pyannote[247].end 621.58784375
transcript.pyannote[248].speaker SPEAKER_06
transcript.pyannote[248].start 621.99284375
transcript.pyannote[248].end 622.56659375
transcript.pyannote[249].speaker SPEAKER_06
transcript.pyannote[249].start 622.68471875
transcript.pyannote[249].end 624.50721875
transcript.pyannote[250].speaker SPEAKER_04
transcript.pyannote[250].start 625.30034375
transcript.pyannote[250].end 631.91534375
transcript.pyannote[251].speaker SPEAKER_06
transcript.pyannote[251].start 630.56534375
transcript.pyannote[251].end 631.93221875
transcript.pyannote[252].speaker SPEAKER_04
transcript.pyannote[252].start 631.93221875
transcript.pyannote[252].end 631.96596875
transcript.pyannote[253].speaker SPEAKER_06
transcript.pyannote[253].start 631.96596875
transcript.pyannote[253].end 631.98284375
transcript.pyannote[254].speaker SPEAKER_04
transcript.pyannote[254].start 632.20221875
transcript.pyannote[254].end 633.02909375
transcript.pyannote[255].speaker SPEAKER_06
transcript.pyannote[255].start 633.02909375
transcript.pyannote[255].end 636.72471875
transcript.pyannote[256].speaker SPEAKER_04
transcript.pyannote[256].start 633.67034375
transcript.pyannote[256].end 634.80096875
transcript.pyannote[257].speaker SPEAKER_04
transcript.pyannote[257].start 636.72471875
transcript.pyannote[257].end 637.04534375
transcript.pyannote[258].speaker SPEAKER_06
transcript.pyannote[258].start 637.33221875
transcript.pyannote[258].end 639.01971875
transcript.pyannote[259].speaker SPEAKER_06
transcript.pyannote[259].start 639.23909375
transcript.pyannote[259].end 642.07409375
transcript.pyannote[260].speaker SPEAKER_06
transcript.pyannote[260].start 642.25971875
transcript.pyannote[260].end 644.74034375
transcript.pyannote[261].speaker SPEAKER_06
transcript.pyannote[261].start 645.76971875
transcript.pyannote[261].end 648.09846875
transcript.pyannote[262].speaker SPEAKER_06
transcript.pyannote[262].start 648.41909375
transcript.pyannote[262].end 649.73534375
transcript.pyannote[263].speaker SPEAKER_06
transcript.pyannote[263].start 649.83659375
transcript.pyannote[263].end 654.10596875
transcript.pyannote[264].speaker SPEAKER_06
transcript.pyannote[264].start 654.30846875
transcript.pyannote[264].end 657.43034375
transcript.pyannote[265].speaker SPEAKER_06
transcript.pyannote[265].start 657.75096875
transcript.pyannote[265].end 661.15971875
transcript.pyannote[266].speaker SPEAKER_06
transcript.pyannote[266].start 661.29471875
transcript.pyannote[266].end 663.50534375
transcript.pyannote[267].speaker SPEAKER_05
transcript.pyannote[267].start 665.07471875
transcript.pyannote[267].end 665.41221875
transcript.pyannote[268].speaker SPEAKER_05
transcript.pyannote[268].start 665.95221875
transcript.pyannote[268].end 672.28034375
transcript.pyannote[269].speaker SPEAKER_06
transcript.pyannote[269].start 670.96409375
transcript.pyannote[269].end 676.83659375
transcript.pyannote[270].speaker SPEAKER_05
transcript.pyannote[270].start 672.61784375
transcript.pyannote[270].end 672.70221875
transcript.pyannote[271].speaker SPEAKER_05
transcript.pyannote[271].start 672.78659375
transcript.pyannote[271].end 673.03971875
transcript.pyannote[272].speaker SPEAKER_06
transcript.pyannote[272].start 676.90409375
transcript.pyannote[272].end 677.96721875
transcript.pyannote[273].speaker SPEAKER_06
transcript.pyannote[273].start 678.55784375
transcript.pyannote[273].end 684.63284375
transcript.pyannote[274].speaker SPEAKER_06
transcript.pyannote[274].start 685.40909375
transcript.pyannote[274].end 687.55221875
transcript.pyannote[275].speaker SPEAKER_02
transcript.pyannote[275].start 688.44659375
transcript.pyannote[275].end 696.93471875
transcript.pyannote[276].speaker SPEAKER_06
transcript.pyannote[276].start 692.61471875
transcript.pyannote[276].end 698.08221875
transcript.pyannote[277].speaker SPEAKER_06
transcript.pyannote[277].start 699.28034375
transcript.pyannote[277].end 699.75284375
transcript.pyannote[278].speaker SPEAKER_06
transcript.pyannote[278].start 700.68096875
transcript.pyannote[278].end 701.45721875
transcript.pyannote[279].speaker SPEAKER_06
transcript.pyannote[279].start 702.06471875
transcript.pyannote[279].end 702.25034375
transcript.pyannote[280].speaker SPEAKER_06
transcript.pyannote[280].start 702.48659375
transcript.pyannote[280].end 703.85346875
transcript.pyannote[281].speaker SPEAKER_06
transcript.pyannote[281].start 704.14034375
transcript.pyannote[281].end 707.54909375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 704.73096875
transcript.pyannote[282].end 705.15284375
transcript.pyannote[283].speaker SPEAKER_02
transcript.pyannote[283].start 706.03034375
transcript.pyannote[283].end 709.20284375
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 709.42221875
transcript.pyannote[284].end 710.97471875
transcript.pyannote[285].speaker SPEAKER_06
transcript.pyannote[285].start 710.92409375
transcript.pyannote[285].end 710.94096875
transcript.pyannote[286].speaker SPEAKER_06
transcript.pyannote[286].start 710.97471875
transcript.pyannote[286].end 711.58221875
transcript.pyannote[287].speaker SPEAKER_02
transcript.pyannote[287].start 710.99159375
transcript.pyannote[287].end 711.00846875
transcript.pyannote[288].speaker SPEAKER_02
transcript.pyannote[288].start 711.04221875
transcript.pyannote[288].end 711.07596875
transcript.pyannote[289].speaker SPEAKER_06
transcript.pyannote[289].start 712.05471875
transcript.pyannote[289].end 719.19284375
transcript.pyannote[290].speaker SPEAKER_06
transcript.pyannote[290].start 719.95221875
transcript.pyannote[290].end 721.23471875
transcript.pyannote[291].speaker SPEAKER_06
transcript.pyannote[291].start 721.52159375
transcript.pyannote[291].end 722.80409375
transcript.pyannote[292].speaker SPEAKER_06
transcript.pyannote[292].start 722.87159375
transcript.pyannote[292].end 724.03596875
transcript.pyannote[293].speaker SPEAKER_05
transcript.pyannote[293].start 724.03596875
transcript.pyannote[293].end 724.05284375
transcript.pyannote[294].speaker SPEAKER_06
transcript.pyannote[294].start 725.06534375
transcript.pyannote[294].end 725.08221875
transcript.pyannote[295].speaker SPEAKER_05
transcript.pyannote[295].start 725.08221875
transcript.pyannote[295].end 726.78659375
transcript.pyannote[296].speaker SPEAKER_05
transcript.pyannote[296].start 727.79909375
transcript.pyannote[296].end 731.61284375
transcript.pyannote[297].speaker SPEAKER_05
transcript.pyannote[297].start 732.38909375
transcript.pyannote[297].end 737.35034375
transcript.pyannote[298].speaker SPEAKER_05
transcript.pyannote[298].start 737.53596875
transcript.pyannote[298].end 739.03784375
transcript.pyannote[299].speaker SPEAKER_06
transcript.pyannote[299].start 739.03784375
transcript.pyannote[299].end 739.13909375
transcript.pyannote[300].speaker SPEAKER_05
transcript.pyannote[300].start 739.42596875
transcript.pyannote[300].end 739.45971875
transcript.pyannote[301].speaker SPEAKER_06
transcript.pyannote[301].start 739.45971875
transcript.pyannote[301].end 742.27784375
transcript.pyannote[302].speaker SPEAKER_06
transcript.pyannote[302].start 743.03721875
transcript.pyannote[302].end 743.89784375
transcript.pyannote[303].speaker SPEAKER_06
transcript.pyannote[303].start 744.28596875
transcript.pyannote[303].end 745.16346875
transcript.pyannote[304].speaker SPEAKER_06
transcript.pyannote[304].start 745.92284375
transcript.pyannote[304].end 746.22659375
transcript.pyannote[305].speaker SPEAKER_05
transcript.pyannote[305].start 746.85096875
transcript.pyannote[305].end 747.13784375
transcript.pyannote[306].speaker SPEAKER_06
transcript.pyannote[306].start 747.13784375
transcript.pyannote[306].end 751.50846875
transcript.pyannote[307].speaker SPEAKER_06
transcript.pyannote[307].start 751.81221875
transcript.pyannote[307].end 752.67284375
transcript.pyannote[308].speaker SPEAKER_06
transcript.pyannote[308].start 753.36471875
transcript.pyannote[308].end 754.22534375
transcript.pyannote[309].speaker SPEAKER_06
transcript.pyannote[309].start 754.95096875
transcript.pyannote[309].end 755.92971875
transcript.pyannote[310].speaker SPEAKER_06
transcript.pyannote[310].start 756.77346875
transcript.pyannote[310].end 758.29221875
transcript.pyannote[311].speaker SPEAKER_06
transcript.pyannote[311].start 758.96721875
transcript.pyannote[311].end 759.57471875
transcript.pyannote[312].speaker SPEAKER_06
transcript.pyannote[312].start 760.24971875
transcript.pyannote[312].end 760.58721875
transcript.pyannote[313].speaker SPEAKER_06
transcript.pyannote[313].start 760.72221875
transcript.pyannote[313].end 764.02971875
transcript.pyannote[314].speaker SPEAKER_01
transcript.pyannote[314].start 765.53159375
transcript.pyannote[314].end 768.41721875
transcript.pyannote[315].speaker SPEAKER_06
transcript.pyannote[315].start 766.91534375
transcript.pyannote[315].end 767.42159375
transcript.pyannote[316].speaker SPEAKER_06
transcript.pyannote[316].start 768.70409375
transcript.pyannote[316].end 770.17221875
transcript.pyannote[317].speaker SPEAKER_06
transcript.pyannote[317].start 770.37471875
transcript.pyannote[317].end 771.67409375
transcript.pyannote[318].speaker SPEAKER_06
transcript.pyannote[318].start 772.82159375
transcript.pyannote[318].end 773.95221875
transcript.pyannote[319].speaker SPEAKER_01
transcript.pyannote[319].start 772.97346875
transcript.pyannote[319].end 777.68159375
transcript.pyannote[320].speaker SPEAKER_01
transcript.pyannote[320].start 777.95159375
transcript.pyannote[320].end 778.98096875
transcript.pyannote[321].speaker SPEAKER_01
transcript.pyannote[321].start 779.25096875
transcript.pyannote[321].end 780.71909375
transcript.pyannote[322].speaker SPEAKER_01
transcript.pyannote[322].start 781.27596875
transcript.pyannote[322].end 785.89971875
transcript.pyannote[323].speaker SPEAKER_06
transcript.pyannote[323].start 785.89971875
transcript.pyannote[323].end 786.81096875
transcript.pyannote[324].speaker SPEAKER_01
transcript.pyannote[324].start 787.23284375
transcript.pyannote[324].end 787.30034375
transcript.pyannote[325].speaker SPEAKER_06
transcript.pyannote[325].start 787.30034375
transcript.pyannote[325].end 787.31721875
transcript.pyannote[326].speaker SPEAKER_01
transcript.pyannote[326].start 787.31721875
transcript.pyannote[326].end 787.60409375
transcript.pyannote[327].speaker SPEAKER_06
transcript.pyannote[327].start 787.60409375
transcript.pyannote[327].end 787.68846875
transcript.pyannote[328].speaker SPEAKER_01
transcript.pyannote[328].start 787.68846875
transcript.pyannote[328].end 787.87409375
transcript.pyannote[329].speaker SPEAKER_06
transcript.pyannote[329].start 787.87409375
transcript.pyannote[329].end 789.12284375
transcript.pyannote[330].speaker SPEAKER_01
transcript.pyannote[330].start 789.39284375
transcript.pyannote[330].end 789.42659375
transcript.pyannote[331].speaker SPEAKER_06
transcript.pyannote[331].start 789.42659375
transcript.pyannote[331].end 790.42221875
transcript.pyannote[332].speaker SPEAKER_06
transcript.pyannote[332].start 790.92846875
transcript.pyannote[332].end 793.49346875
transcript.pyannote[333].speaker SPEAKER_06
transcript.pyannote[333].start 793.86471875
transcript.pyannote[333].end 797.13846875
transcript.pyannote[334].speaker SPEAKER_06
transcript.pyannote[334].start 797.22284375
transcript.pyannote[334].end 798.89346875
transcript.pyannote[335].speaker SPEAKER_06
transcript.pyannote[335].start 799.04534375
transcript.pyannote[335].end 802.85909375
transcript.pyannote[336].speaker SPEAKER_06
transcript.pyannote[336].start 804.10784375
transcript.pyannote[336].end 805.13721875
transcript.pyannote[337].speaker SPEAKER_06
transcript.pyannote[337].start 805.62659375
transcript.pyannote[337].end 808.57971875
transcript.pyannote[338].speaker SPEAKER_06
transcript.pyannote[338].start 808.90034375
transcript.pyannote[338].end 809.57534375
transcript.pyannote[339].speaker SPEAKER_06
transcript.pyannote[339].start 810.14909375
transcript.pyannote[339].end 812.51159375
transcript.pyannote[340].speaker SPEAKER_06
transcript.pyannote[340].start 812.83221875
transcript.pyannote[340].end 817.52346875
transcript.pyannote[341].speaker SPEAKER_06
transcript.pyannote[341].start 818.26596875
transcript.pyannote[341].end 819.27846875
transcript.pyannote[342].speaker SPEAKER_06
transcript.pyannote[342].start 819.31221875
transcript.pyannote[342].end 820.25721875
transcript.pyannote[343].speaker SPEAKER_06
transcript.pyannote[343].start 820.76346875
transcript.pyannote[343].end 821.60721875
transcript.pyannote[344].speaker SPEAKER_06
transcript.pyannote[344].start 822.16409375
transcript.pyannote[344].end 822.56909375
transcript.pyannote[345].speaker SPEAKER_06
transcript.pyannote[345].start 823.00784375
transcript.pyannote[345].end 824.32409375
transcript.pyannote[346].speaker SPEAKER_06
transcript.pyannote[346].start 824.66159375
transcript.pyannote[346].end 825.62346875
transcript.pyannote[347].speaker SPEAKER_06
transcript.pyannote[347].start 826.14659375
transcript.pyannote[347].end 826.60221875
transcript.pyannote[348].speaker SPEAKER_06
transcript.pyannote[348].start 826.87221875
transcript.pyannote[348].end 829.99409375
transcript.pyannote[349].speaker SPEAKER_01
transcript.pyannote[349].start 830.65221875
transcript.pyannote[349].end 834.48284375
transcript.pyannote[350].speaker SPEAKER_01
transcript.pyannote[350].start 834.58409375
transcript.pyannote[350].end 839.22471875
transcript.pyannote[351].speaker SPEAKER_01
transcript.pyannote[351].start 839.69721875
transcript.pyannote[351].end 840.13596875
transcript.pyannote[352].speaker SPEAKER_01
transcript.pyannote[352].start 840.25409375
transcript.pyannote[352].end 843.27471875
transcript.pyannote[353].speaker SPEAKER_06
transcript.pyannote[353].start 844.03409375
transcript.pyannote[353].end 848.97846875
transcript.pyannote[354].speaker SPEAKER_06
transcript.pyannote[354].start 850.07534375
transcript.pyannote[354].end 851.91471875
transcript.pyannote[355].speaker SPEAKER_06
transcript.pyannote[355].start 852.58971875
transcript.pyannote[355].end 853.53471875
transcript.pyannote[356].speaker SPEAKER_06
transcript.pyannote[356].start 853.61909375
transcript.pyannote[356].end 855.82971875
transcript.pyannote[357].speaker SPEAKER_06
transcript.pyannote[357].start 855.96471875
transcript.pyannote[357].end 859.08659375
transcript.pyannote[358].speaker SPEAKER_06
transcript.pyannote[358].start 859.22159375
transcript.pyannote[358].end 863.05221875
transcript.pyannote[359].speaker SPEAKER_06
transcript.pyannote[359].start 863.18721875
transcript.pyannote[359].end 866.93346875
transcript.pyannote[360].speaker SPEAKER_06
transcript.pyannote[360].start 867.27096875
transcript.pyannote[360].end 868.77284375
transcript.pyannote[361].speaker SPEAKER_06
transcript.pyannote[361].start 868.97534375
transcript.pyannote[361].end 869.61659375
transcript.pyannote[362].speaker SPEAKER_06
transcript.pyannote[362].start 870.12284375
transcript.pyannote[362].end 871.06784375
transcript.pyannote[363].speaker SPEAKER_06
transcript.pyannote[363].start 871.42221875
transcript.pyannote[363].end 874.79721875
transcript.pyannote[364].speaker SPEAKER_06
transcript.pyannote[364].start 875.23596875
transcript.pyannote[364].end 876.73784375
transcript.pyannote[365].speaker SPEAKER_06
transcript.pyannote[365].start 877.15971875
transcript.pyannote[365].end 877.71659375
transcript.pyannote[366].speaker SPEAKER_06
transcript.pyannote[366].start 878.10471875
transcript.pyannote[366].end 879.57284375
transcript.pyannote[367].speaker SPEAKER_06
transcript.pyannote[367].start 879.99471875
transcript.pyannote[367].end 881.56409375
transcript.pyannote[368].speaker SPEAKER_06
transcript.pyannote[368].start 882.45846875
transcript.pyannote[368].end 886.25534375
transcript.pyannote[369].speaker SPEAKER_05
transcript.pyannote[369].start 883.87596875
transcript.pyannote[369].end 884.66909375
transcript.pyannote[370].speaker SPEAKER_05
transcript.pyannote[370].start 884.82096875
transcript.pyannote[370].end 885.04034375
transcript.pyannote[371].speaker SPEAKER_06
transcript.pyannote[371].start 886.49159375
transcript.pyannote[371].end 889.09034375
transcript.pyannote[372].speaker SPEAKER_06
transcript.pyannote[372].start 889.73159375
transcript.pyannote[372].end 891.41909375
transcript.pyannote[373].speaker SPEAKER_06
transcript.pyannote[373].start 891.60471875
transcript.pyannote[373].end 893.68034375
transcript.pyannote[374].speaker SPEAKER_06
transcript.pyannote[374].start 894.13596875
transcript.pyannote[374].end 896.04284375
transcript.pyannote[375].speaker SPEAKER_06
transcript.pyannote[375].start 896.56596875
transcript.pyannote[375].end 897.76409375
transcript.pyannote[376].speaker SPEAKER_06
transcript.pyannote[376].start 898.15221875
transcript.pyannote[376].end 899.36721875
transcript.pyannote[377].speaker SPEAKER_06
transcript.pyannote[377].start 899.82284375
transcript.pyannote[377].end 901.81409375
transcript.pyannote[378].speaker SPEAKER_06
transcript.pyannote[378].start 902.18534375
transcript.pyannote[378].end 903.87284375
transcript.pyannote[379].speaker SPEAKER_06
transcript.pyannote[379].start 904.19346875
transcript.pyannote[379].end 906.26909375
transcript.pyannote[380].speaker SPEAKER_06
transcript.pyannote[380].start 906.99471875
transcript.pyannote[380].end 908.86784375
transcript.pyannote[381].speaker SPEAKER_06
transcript.pyannote[381].start 909.47534375
transcript.pyannote[381].end 911.09534375
transcript.pyannote[382].speaker SPEAKER_06
transcript.pyannote[382].start 911.50034375
transcript.pyannote[382].end 913.55909375
transcript.pyannote[383].speaker SPEAKER_06
transcript.pyannote[383].start 913.74471875
transcript.pyannote[383].end 925.60784375
transcript.pyannote[384].speaker SPEAKER_05
transcript.pyannote[384].start 925.60784375
transcript.pyannote[384].end 925.86096875
transcript.pyannote[385].speaker SPEAKER_06
transcript.pyannote[385].start 925.86096875
transcript.pyannote[385].end 925.96221875
transcript.pyannote[386].speaker SPEAKER_05
transcript.pyannote[386].start 925.96221875
transcript.pyannote[386].end 927.54846875
transcript.pyannote[387].speaker SPEAKER_05
transcript.pyannote[387].start 927.64971875
transcript.pyannote[387].end 932.71221875
transcript.pyannote[388].speaker SPEAKER_05
transcript.pyannote[388].start 932.94846875
transcript.pyannote[388].end 934.01159375
transcript.pyannote[389].speaker SPEAKER_05
transcript.pyannote[389].start 934.21409375
transcript.pyannote[389].end 935.69909375
transcript.pyannote[390].speaker SPEAKER_03
transcript.pyannote[390].start 946.39784375
transcript.pyannote[390].end 946.93784375
transcript.pyannote[391].speaker SPEAKER_03
transcript.pyannote[391].start 947.34284375
transcript.pyannote[391].end 950.86971875
transcript.pyannote[392].speaker SPEAKER_03
transcript.pyannote[392].start 951.83159375
transcript.pyannote[392].end 954.36284375
transcript.whisperx[0].start 7.982
transcript.whisperx[0].end 26.657
transcript.whisperx[0].text 主席、在場委員、先進、列席政府總預算案官員、會長、工作夥伴、媒體、記者、女士先生有請卓院長以及財政部莊部長和農業部的陳部長然後請經濟部的郭部長以及教育部的鄭部長請準備第二輪我們請卓院長、相關部會首長備詢總委員好院長好兩位部長好院長
transcript.whisperx[1].start 38.186
transcript.whisperx[1].end 66.116
transcript.whisperx[1].text 昨晚10點你回官邸休息了嗎?幾點?10點10點我在家裡在家裡你知道旁邊的莊部長幾點才能回到家嗎?我知道那個時候還在立法院審財政收支劃分法你知道當我們財政收支劃分法在裁會審查的時候召委國民黨的陳昱珍委員他晚餐跑去喜來登吃大餐把所有的行政官員晾在那裡不知如何你知道嗎?
transcript.whisperx[2].start 67.336
transcript.whisperx[2].end 89
transcript.whisperx[2].text 我不是很清楚你知道後來官員離席之後省以很久的陳昭偉又跑出到議場來跑到委員會又要把官員召回來莊部長有沒有這樣子有沒有這樣被找回來包括本席我們折騰到超過12點還在委員會回到宿舍已經快1點
transcript.whisperx[3].start 90.25
transcript.whisperx[3].end 112.711
transcript.whisperx[3].text 部長、院長你覺得財政收支發分法在野黨要求增加的從多4千億到6千億不等撥給地方那當中央少了這4到6千億你覺得我們是要拿什麼錢去給地方是給國建國造陳將軍最關心的國建國造的錢嗎還是要什麼錢犧牲掉把這個錢撥給地方部長你覺得呢?莊部長
transcript.whisperx[4].start 114.2
transcript.whisperx[4].end 142.041
transcript.whisperx[4].text 跟委員報告,其實我們在那個中央統籌分配稅款跟一般性補助款跟計畫性補助款這幾年是一直成長已經到114年已經超過一兆所以我們把錢如果撥給地方我們中央少的錢來支付什麼?支付國防預算?如果說依照信行那個災難的版本最高有到7000多億7000多億好7000多億先停下來院長,如果中央少的7000多億什麼錢既然撥給地方了什麼費用我們也交給地方付
transcript.whisperx[5].start 142.481
transcript.whisperx[5].end 156.772
transcript.whisperx[5].text 是把老農津貼的預算支出交給地方來付?還是把中央對地方勞健保的補助款交給地方付?你覺得這樣可行嗎?我撥千億給你地方,那原來我幫你付的錢,老農津貼也好,勞健保補貼也好,我都交給你地方來支付,可以嗎?
transcript.whisperx[6].start 157.708
transcript.whisperx[6].end 158.609
transcript.whisperx[6].text 所以院長我們要請行政院團隊跟全國人民說清楚
transcript.whisperx[7].start 183.249
transcript.whisperx[7].end 211.365
transcript.whisperx[7].text 這些錢都是人民的,你要交給中央來執行,可以。你要多撥7千億給地方執行,可以。但是呢,就像過去精神之後啊,預算隨緣而一撥一樣。撥給你多少緣額,也多少預算給你。撥給你多少預算,多少支出也由你來付。這樣的說明,人民才理解,到底這7千億不是憑空掉下來的,是從他們原來向中央請領的老農津貼,向中央請領的勞健保的補助,現在向地方政府要。可以這樣去說明嗎?
transcript.whisperx[8].start 212.794
transcript.whisperx[8].end 228.319
transcript.whisperx[8].text 我們說明的裡面的重點有列出這一項,剛剛部長講過不是一個地方的,超過一兆零一百五十億,裡面就包含這些。好,謝謝,莊部長請回。好,議長、部長,我現在要來問的,就是灌白建設,來跟擁天保條顧農民,風災農順、好社中建、緊處理,請我們的政部長跟貴部長也請來準備,請請教議長跟部長,議長,是不是所有的農民都是中農?
transcript.whisperx[9].start 241.588
transcript.whisperx[9].end 245.696
transcript.whisperx[9].text 不是啦齁,意思是說,農民裡面是正中的那些,還是不是正中的那些?不是啦
transcript.whisperx[10].start 250
transcript.whisperx[10].end 264.608
transcript.whisperx[10].text 政調會不會再多?政調會不會再多,不然你看看,我們來看,農作物的民宅裡面,我們的豬米真的是占三成,我們的農戶裡面的豬籠也是差不多占三成,但是三成的民宅的生產價值就不夠是三成,這就是為什麼政調會不會賺錢,因為政調價值也是供牛收工的原因。
transcript.whisperx[11].start 274.514
transcript.whisperx[11].end 276.615
transcript.whisperx[11].text 議員,你認為多少正中外的中農可以交公牛?
transcript.whisperx[12].start 305.097
transcript.whisperx[12].end 327.137
transcript.whisperx[12].text 負合主計 負合主計 一直跟你講啦 差不多三成啦 三分之一啦 全國的 中央戰 全國農夫的三成 議長請對話 可以交公寓的 也差不多三分之一所以你要看 是最終可以交公寓 平時政府公寓稍更好處的 農民不夠一成請問你可不可以知道 對一個縣市 公寓交通費
transcript.whisperx[13].start 331.548
transcript.whisperx[13].end 358.62
transcript.whisperx[13].text 你知不知道,部長跟他講婚姻啊婚姻,婚姻到同時啦,我們來看婚姻到中華來比,他是專顧高工業超過一成半的但是中華,不管他的政策的面積,還是他的善良的比例,他都比婚姻多,給他1%、2%但是婚姻、收工的比例,超過中華地理名的10%所以你要知道,工業、收工在差的,經常人、教授人,部長、議長,議長你有同意嗎?
transcript.whisperx[14].start 362.478
transcript.whisperx[14].end 382.968
transcript.whisperx[14].text 我跟委員報告,就是說公牛的部分因為無綱的關係,它的生產的面積不一樣,但...所以說婚姻館的地位,當然要求公牛收工啦!國民黨全黨背後這婚姻館的在算啦!我們看看一年齁,公牛收工,好像介紹六十塊的,會發生什麼問題?我告訴你,馬英九的時代,公牛收工介紹,介3個、介2個加起來,從233個調到28個。
transcript.whisperx[15].start 388.951
transcript.whisperx[15].end 393.234
transcript.whisperx[15].text 這供需上會產生問題,他會可能跑到工糧收購,像我們長期推動的這些品牌。
transcript.whisperx[16].start 413.158
transcript.whisperx[16].end 415.86
transcript.whisperx[16].text 當然不願意看到...這種事情對公民真的有幫助嗎?
transcript.whisperx[17].start 442.796
transcript.whisperx[17].end 455.08
transcript.whisperx[17].text 沒有幫助嘛,所以我們來看,為了這次的供應收工,我們政府付出這麼大的代價多少?補償是不是146億?現在國民黨的主張是不是要開146億?都總含本來的供應收過大概176億左右。好,因為請補償,即時補償去查。過去到現在,現在未來,供應收工有特定職所人在哪好處嗎?去請知好不好?
transcript.whisperx[18].start 469.059
transcript.whisperx[18].end 492.008
transcript.whisperx[18].text 而且每年會增加九十億...要清雜啦!有人在公寓收工這地方好處嗎?這樣好不好?好!來!來!我們繼續看齁!但是農民的...你知不知道?農民所有農水樓的息息啊!我們的農水樓灌白呢!每年都在成長!每年都在成長要經營5億!農水樓改善、農田水利息息改善、配水的施設方便、農民的省產,就這樣開花!你們有同意嗎?是!
transcript.whisperx[19].start 498.015
transcript.whisperx[19].end 507.341
transcript.whisperx[19].text 所以你要看,我們的總預算,總預算全國有37萬公頃,這是有冠牌,全國有57萬的農田,有六成市,是有農田水利息息的服務,對不對?沒錯,平均沒有到六成,比全國平均那多?
transcript.whisperx[20].start 520.219
transcript.whisperx[20].end 547.58
transcript.whisperx[20].text 差不多五時三、五時四左右,比全國平均那幾天議長,現在這次都保證,農業設施的慣敗,便當加強好不好?讓我們能夠達到全國平均好不好?保證,農業部有需要的縣市要加強。針對有需要的這些縣市,我們會加強水路的一個設施。現在議長駁斥這個環節,便當不是什麼,便當是中央照顧受救,我們的所有的設施都比全國平均那麼弱,我繼續看。
transcript.whisperx[21].start 549.594
transcript.whisperx[21].end 563.026
transcript.whisperx[21].text 大陸這一位農民的鄉愁者,農民鄉愁的經濟部,經濟部長來齁,教育部長也來啦。我們的總副省啦,當地的啦,不是說電子,大家說齁,財政黨的團隊去電子,但是電子如果我們去過,農藥農民統計站,我們的一盒,用來給你用的電子,水車在排的電子,都是經濟部補助農民,農藥部長你說是不是?
transcript.whisperx[22].start 575.197
transcript.whisperx[22].end 593.687
transcript.whisperx[22].text 昨晚一開始是農業部自己編列預算,然後之前就是由台電來補貼。現在政府省為了要接受人們鄉下的供油收工制度,才要把我們的政府省給凍掉。結果我們每年度農民、農業營電的補貼發不出去,因為你有沒有希望這個事情發生?
transcript.whisperx[23].start 599.218
transcript.whisperx[23].end 611.241
transcript.whisperx[23].text 當然要照顧農民所以每一個農民都享受到農業用電的補貼為了接受人沒有辦法享受到我們來看繼續看來我們的農民用電差不多24億我們的土地農水農40億加起來100.9億農電水2.4億來補充這個三個方塊農村差不多多少錢
transcript.whisperx[24].start 625.356
transcript.whisperx[24].end 644.466
transcript.whisperx[24].text 那個楷米颱風最後的結算大概是44億然後山陀爾是6億這個是速報速報就差不多三十八億了對不對所以你看這三十八億加上農水路加上用電步走加起來都不用一百四十六億
transcript.whisperx[25].start 645.954
transcript.whisperx[25].end 658.53
transcript.whisperx[25].text 反對來說,這個公牛手槓就花一百四十六億,可以用來提升全國農民享受農水路的補助息息,可以讓全國農民享受到用電的補償,可以讓這個受損的、風態受損的農民去做補助,因為你們要加強來做這些的東西嗎?
transcript.whisperx[26].start 665.984
transcript.whisperx[26].end 681.38
transcript.whisperx[26].text 主要委員說農民需要用電的步驟,這應該是全部農民都可以感受到需要到的。政府把我們的稅金放在這個關鍵的地方,好不好?是。好,來,我們繼續看。來,不然這樣而已,風太大有什麼事順?來,請正部長起來,抱歉,不然給過部長講好了。這個風的所在有嚴重嗎?
transcript.whisperx[27].start 689.111
transcript.whisperx[27].end 689.292
transcript.whisperx[27].text 下一張
transcript.whisperx[28].start 700.711
transcript.whisperx[28].end 726.673
transcript.whisperx[28].text 你有去看過嗎?有你有去看過這個土盤,叫H港要弄一天多一天才有泡沫弄到對不對?H港要整個穿過那個廚房,那個鋼筋水泥的圍牆要拜託,公牛收工一百四十六億,用在大型電波廠、用在大型農水路排水、用在農民的農水路道村!我們起來讓我們的學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學生、學
transcript.whisperx[29].start 727.847
transcript.whisperx[29].end 749.574
transcript.whisperx[29].text 教育設施的受損是一定要趕快優先把它辦好,否則施生的安全慳慮,所以這個教育部會很積極地做好這件工作。好,請你把我們中央的學生不要讓教授去鄉修,要照顧全民好不好?照顧農民,照顧學生,好不好?當然,還要照顧民眾來,最後一項,這個已經過半天了,都要看你起來了,講到主來嘴,來,半天,全台灣啦,
transcript.whisperx[30].start 756.809
transcript.whisperx[30].end 783.637
transcript.whisperx[30].text 全台灣吃煮來水的齁,同桌人吃煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌人沒煮來水、同桌
transcript.whisperx[31].start 785.765
transcript.whisperx[31].end 800.558
transcript.whisperx[31].text 因為你們才聽得清楚,全國主來水的破紀律超過九成,屏東到近年才不用講到七成,都差兩成,你知道嗎?要看多年,屏東關的官民才享受到全國平均可以用主來水吃到主來水。
transcript.whisperx[32].start 804.141
transcript.whisperx[32].end 823.839
transcript.whisperx[32].text 你不知道我告訴你啦,要90億啦,上一張,要90億啦,上一張,要90億,變坤坪來搞年,每年要變10億,後來在中央有一個無自來水地區的風水改善計畫第5期變75億,一年要用10億的預算,啊你都要搞年,因為中,民眾人會擔心久不久,你有要加薪嗎?不然中,你們有辦法加薪給民眾人,那早晚能吃就煮來水嗎?
transcript.whisperx[33].start 831.094
transcript.whisperx[33].end 851.703
transcript.whisperx[33].text 跟這個委員報告,我們現在在專令來頒辦這個營工的這個作業,這個人工比較難吃啦。好,不管人工好吃、不好吃,我們有時候放進去,其他的部分我們提供來努力,好不好?我們來努力啦。好啊。一定。
transcript.whisperx[34].start 852.828
transcript.whisperx[34].end 880.76
transcript.whisperx[34].text 剛才說的公牛收工一百四十六億,可以開啟對所有農村農民的照顧,可以開啟對全部農業用電補貼農民的照顧,可以開啟對灌牌息息全部農民的照顧,還可以補助候群。還有一項,針對屏東,你可以給屏東的主來稅一年多一年多五億,我們可以提早三年,破紀律,對到全國的標準,拜託議長可以支持嗎?
transcript.whisperx[35].start 882.606
transcript.whisperx[35].end 908.076
transcript.whisperx[35].text 當然支持委員剛剛的建議。最後我希望說今天我在這裡特別向議員拜託。我們在國會典禮當中,民意代表都要為民來請署。但是請行政院要注意,我們這次開下去是多少人受邀。不要說114年度的開下去是抱分婚姻關、特定的農會、特定人士的地域。我們希望這114年度的開下去,
transcript.whisperx[36].start 909.542
transcript.whisperx[36].end 914.505
transcript.whisperx[36].text 好的,委員剛剛所說的,如果當中有不法的情形我們查出來,但是我也希望農業部在明年能夠針對一級二短生育
transcript.whisperx[37].start 946.468
transcript.whisperx[37].end 948.433
transcript.whisperx[37].text 謝謝。謝謝鍾佳濱委員質詢。謝謝左院長及部會首長的備詢。接下來請登記第18號羅志強委員
gazette.lineno 212
gazette.blocks[0][0] 鍾委員佳濱:(9時33分)主席、在場委員先進、列席的政府機關首長官員、會場工作夥伴、媒體記者女士先生。有請卓院長以及財政部莊部長和農業部陳部長,然後經濟部郭部長以及教育部鄭部長請準備第二輪。
gazette.blocks[1][0] 主席:請卓院長及相關部會首長備詢。
gazette.blocks[2][0] 卓院長榮泰:鍾委員好。
gazette.blocks[3][0] 鍾委員佳濱:院長好,兩位部長好。院長,昨晚10點你回官邸休息了嗎?
gazette.blocks[4][0] 卓院長榮泰:幾點?
gazette.blocks[5][0] 鍾委員佳濱:10點。
gazette.blocks[6][0] 卓院長榮泰:10點我在家裡。
gazette.blocks[7][0] 鍾委員佳濱:在家裡,你知道旁邊的莊部長幾點才能回到家嗎?
gazette.blocks[8][0] 卓院長榮泰:我知道那個時候還在……
gazette.blocks[9][0] 鍾委員佳濱:立法院審財政收支劃分法,你知道當我們財政收支劃分法在財委會審查的時候,召委──國民黨的陳玉珍委員,他晚餐跑去喜來登吃大餐,把所有的行政官員晾在那裡,不知如何,你知道嗎?
gazette.blocks[10][0] 卓院長榮泰:我不是很清楚。
gazette.blocks[11][0] 鍾委員佳濱:你知道後來官員離席之後,神隱很久的陳召委又跑到議場來、跑到委員會,又要把官員召回來,莊部長,有沒有這樣子?有沒有這樣被找回來?
gazette.blocks[12][0] 莊部長翠雲:是,我們又再回到議場。
gazette.blocks[13][0] 鍾委員佳濱:包括本席,我們折騰到超過12點還在委員會,回到宿舍已經快1點了。院長,你覺得財政收支劃分法,在野黨要求增加從4,000億到6,000億不等撥給地方,當中央少了這4,000億到6,000億,你覺得我們要拿什麼錢去給地方?是給陳將軍最關心的國艦國造錢嗎?還是要把什麼錢犧牲掉,然後把這個錢撥給地方?莊部長,你覺得呢?
gazette.blocks[14][0] 莊部長翠雲:跟委員報告,其實這幾年我們的中央統籌分配稅款跟一般性補助款跟計畫性補助款是一直在成長,到114年已經超過1兆……
gazette.blocks[15][0] 鍾委員佳濱:所以如果我們把錢撥給地方,中央少了錢來支付什麼?支付國防預算?
gazette.blocks[16][0] 莊部長翠雲:依照現行在野黨的版本,最高有到七千多億,是增加七千多億……
gazette.blocks[17][0] 鍾委員佳濱:好,七千多億,先停下來。院長,如果中央少了七千多億,既然什麼錢撥給地方了,那什麼費用我們也交給地方付,是把老農津貼預算的支出交給地方來付,還是把中央對地方勞健保的補助款交給地方來付?你覺得這樣可行嗎?我撥7,000億給你地方,原來我幫你付的錢,老農津貼也好,勞健保補貼也好,我都交給你地方來支付,可以嗎?
gazette.blocks[18][0] 卓院長榮泰:兩點跟委員報告,第一個,很可能會發生原來補助給地方的事務,相關的預算都會由地方來執行。但第二個問題是,地方執行的效果會如何,以及跨縣市、跨區域的計畫會如何執行?這個部分我們是比較沒有把握的。
gazette.blocks[19][0] 鍾委員佳濱:所以院長,我們要請行政院團隊跟全國人民說清楚,這些錢都是人民的,你要交給中央來執行,可以!你要多撥7,000億給地方來執行,可以!但是就像過去精省之後預算隨員額移撥一樣,撥給你多少員額,也撥多少預算給你;撥給你多少預算,多少支出也由你來付,這樣的說明人民才理解,這7,000億不是憑空掉下來的,是從他們原來向中央請領的老農津貼、向中央請領的勞健保補助而來,現在要向地方政府要,可以這樣去說明嗎?
gazette.blocks[20][0] 卓院長榮泰:我們說明的重點有列出這一項。
gazette.blocks[21][0] 鍾委員佳濱:很好。
gazette.blocks[22][0] 卓院長榮泰:剛剛部長講過,補助給地方的超過1兆150億,裡面就包含這些。
gazette.blocks[23][0] 鍾委員佳濱:好,謝謝,莊部長請回。
gazette.blocks[23][1] 院長、部長,我現在要問的就是「灌排建設用電補貼顧農民,風災農損校舍重建速處理」,也請鄭部長跟郭部長準備。
gazette.blocks[23][2] 先請教院長跟部長,院長,是不是所有的農民都是稻農?
gazette.blocks[24][0] 卓院長榮泰:不是。
gazette.blocks[25][0] 鍾委員佳濱:不是啦!意思就是,農民裡面是種稻的比較多,還是非種稻的比較多?
gazette.blocks[26][0] 卓院長榮泰:種稻的不會比較多。
gazette.blocks[27][0] 鍾委員佳濱:種稻的不會比較多。部長,我們來看,農作物的面積裡面,我們的稻米真的是占三成,農戶裡面稻農也是差不多占三成,但是三成的面積生產價值不到一成三,這就是為什麼種稻不會賺錢,因為稻米的生產價值低,也是要公糧收購的原因。所以既然種稻的農民不是多數,請部長跟院長說,是不是種稻的農民都可以繳公糧?有資格限制嗎?拿不到地跟國家租土地的農民,連土地也沒有的,沒有土地的農民種稻還有辦法繳公糧嗎?
gazette.blocks[28][0] 陳部長駿季:繳公糧有一定的規定,不是都可以繳。
gazette.blocks[29][0] 鍾委員佳濱:有資格限制嘛!院長,你認為有多少種稻的稻農可以繳公糧?
gazette.blocks[30][0] 卓院長榮泰:符合資格的。
gazette.blocks[31][0] 鍾委員佳濱:直接跟你說,差不多三成、三分之一啦!
gazette.blocks[32][0] 卓院長榮泰:三成裡面的三成。
gazette.blocks[33][0] 鍾委員佳濱:全國的稻農占全國農戶的三成,其中種稻可以繳公糧的也差不多是三分之一,所以你看,實際上享受到政府公糧收購這個好處的農民不到一成。請問你知道哪一個縣市公糧繳最多嗎?院長知道嗎?請部長跟院長說。
gazette.blocks[34][0] 卓院長榮泰:雲林。
gazette.blocks[35][0] 陳部長駿季:雲林。
gazette.blocks[36][0] 鍾委員佳濱:雲林繳最多啦!我們來看,雲林跟彰化來比,它是全國繳公糧有超過一成半的,但是彰化不管是種田面積還是產量比例都比雲林多,多了1%、2%,但是雲林收購的比例卻超過彰化第二名10%,所以你要知道在吵公糧收購的是特定人啦、少數人啦!院長,你同意嗎?
gazette.blocks[37][0] 陳部長駿季:我跟委員報告,公糧的部分,因為不同縣市的生產面積不一樣,但整體來講……
gazette.blocks[38][0] 鍾委員佳濱:所以雲林縣的立委都在要求公糧收購,然後國民黨全黨陪他們在雲林縣玩。我們看下一個,如果公糧收購價調得很高,會發生什麼問題?我跟你講,馬英九的時代,公糧收購價格多3塊、多2塊,加起來從23塊調到28塊,民糧收購掉到剩19塊,這會發生什麼問題?院長,你覺得是什麼問題?公糧的價格高、民間的價格低,會發生什麼事情?會產生弊案!
gazette.blocks[39][0] 卓院長榮泰:供需上會產生問題,民糧低,它可能會跑到公糧收購,我們長期推動的這些品牌……
gazette.blocks[40][0] 鍾委員佳濱:我們看馬英九時代有什麼弊案?第一、調包,公糧到期是不能打入、當作食品來賣的,是要碾碎後做飼料米,卻有人調包,把這些公糧拿去賣做營養午餐,把做飼料米的公糧拿去做營養午餐,不然就是盜賣,甚至在屏東有一個農會理事長拿人頭來收購公糧。院長,你願意讓這樣的事情發生嗎?
gazette.blocks[41][0] 卓院長榮泰:當然不願意看到過去歷史重演……
gazette.blocks[42][0] 鍾委員佳濱:這種事情對農民有幫助嗎?沒有幫助!為了這些公糧收購,政府付出很大的代價,多少?部長,是不是146億?照現在國民黨的主張,是不是要花146億?
gazette.blocks[43][0] 卓院長榮泰:總共含原來的公糧收購大概176億左右。
gazette.blocks[44][0] 鍾委員佳濱:請院長指示部長去查,過去到現在,甚至未來公糧收購是不是有特定、少數人得到好處?去清查,好不好?
gazette.blocks[45][0] 卓院長榮泰:而且每年會增加90億……
gazette.blocks[46][0] 鍾委員佳濱:要清查是不是有人從公糧收購得到好處,這樣好不好?好,我們繼續看,但是農民需要什麼?農民需要農水路的設施,農水路灌排經費每年都在成長,每年要成長將近5億,農水路改善、農田水利設施改善、配水的設施方便,農民生產就比較輕鬆,院長同意嗎?
gazette.blocks[47][0] 卓院長榮泰:是。
gazette.blocks[48][0] 鍾委員佳濱:所以你看總預算,全國有37萬公頃是有灌排的,全國有57萬的農田,六成四有農田水利設施的服務,對不對?
gazette.blocks[49][0] 陳部長駿季:對。
gazette.blocks[50][0] 鍾委員佳濱:部長,屏東是不是平均不到六成,比全國平均低?
gazette.blocks[51][0] 陳部長駿季:差不多五成三、五成四左右,確實比全國平均低。
gazette.blocks[52][0] 鍾委員佳濱:請院長指示農業部長,加強屏東農業設施的灌排,好不好?讓我們可以達到全國平均,好不好?
gazette.blocks[53][0] 卓院長榮泰:農業部針對有需要的縣市要加強。
gazette.blocks[54][0] 陳部長駿季:我們一定會針對有需要的這些縣市,加強水路設施。
gazette.blocks[55][0] 鍾委員佳濱:請院長保持這個原則,屏東不是窮,屏東是中央照顧太少,我們所有的設施都比全國平均弱。除了這個以外,農民可以享受什麼?請經濟部長來,請教育部長也來,總預算被擋住,不是大家說的在野黨反對漲電費,電費如果漲,農業、農民最悽慘!我們吃的蝦子,養殖戶用的電、水車運作用的電,都要靠經濟部補助農民,農業部長說是不是?
gazette.blocks[56][0] 陳部長駿季:從明年開始,是農業部自己編列預算。
gazette.blocks[57][0] 鍾委員佳濱:對。
gazette.blocks[58][0] 陳部長駿季:之前是由台電來補貼。
gazette.blocks[59][0] 鍾委員佳濱:現在為了少數人享受的公糧收購制度,在野黨把總預算擋住,結果明年度農民農業用電的補貼發不出去。院長,你希望這件事情發生嗎?
gazette.blocks[60][0] 卓院長榮泰:當然要照顧農民基礎的需要。
gazette.blocks[61][0] 鍾委員佳濱:每一個農民都享受得到的農業用電補貼,為了少數人,卻沒辦法享受到。農民用電補貼差不多24億,剛才提到的農水路補助46億,加起來109億,包括農田水利設施。部長,這次三個颱風的農損差不多多少錢?
gazette.blocks[62][0] 陳部長駿季:凱米颱風到最後的結算大概是44億、山陀兒是6億,這個是速報。
gazette.blocks[63][0] 鍾委員佳濱:速報就差不多38億了,對不對?
gazette.blocks[64][0] 陳部長駿季:是。
gazette.blocks[65][0] 鍾委員佳濱:你看這38億,加上農水路及用電補助,加起來都不到146億。反過來說,光是公糧收購就要花146億,可以用來提升全國農民享受的農水路設施補助,可以讓全國農民享受到用電的補貼,也可以讓這次颱風受損的農民得到補助。院長,你有要加強來做這些東西嗎?
gazette.blocks[66][0] 卓院長榮泰:當然,剛才委員所說的農民需要的用電補助,應該是全部農民都可以感受得到、需要的……
gazette.blocks[67][0] 鍾委員佳濱:所以我希望政府把我們的稅金用在這個關鍵的地方,好不好?
gazette.blocks[68][0] 卓院長榮泰:是。
gazette.blocks[69][0] 鍾委員佳濱:好,來,我們繼續看,不只是這樣,颱風還造成什麼受損?請鄭部長上台,抱歉,還沒讓郭部長講到話,這一次校園受災有嚴重嗎?
gazette.blocks[70][0] 鄭部長英耀:確實,山陀兒颱風在屏東這裡算很大的……
gazette.blocks[71][0] 鍾委員佳濱:是,你有親自去看,非常感謝……
gazette.blocks[72][0] 鄭部長英耀:我有去看幾間學校……
gazette.blocks[73][0] 鍾委員佳濱:你看看是不是下面這幾張照片?你有去看過嗎?
gazette.blocks[74][0] 鄭部長英耀:有。
gazette.blocks[75][0] 鍾委員佳濱:你有去看過這個廚房那一天被撞了一個很大的洞,好像炮彈炸到,對嗎?
gazette.blocks[76][0] 鄭部長英耀:整個穿過廚房的鋼筋水泥圍牆……
gazette.blocks[77][0] 鍾委員佳濱:是,院長,要跟你拜託,公糧收購146億剛才有說要用在用電補貼、用在農水路排水、用在農民農損還有剩,我們就拿來讓我們的學生讀書的校園趕快恢復,好不好?讓我們的校園趕快恢復,好不好?
gazette.blocks[78][0] 卓院長榮泰:教育設施的受損是一定要趕快優先把它辦好,否則師生的安全堪慮,所以這個教育部會很積極地做好這件工作。
gazette.blocks[79][0] 鍾委員佳濱:好,請你把我們中央的預算不要只讓少數人享受,要照顧全民,好嗎?照顧農民、照顧學生,好嗎?
gazette.blocks[80][0] 卓院長榮泰:這當然。
gazette.blocks[81][0] 鍾委員佳濱:重點是還要照顧屏東。來談最後一項,講到自來水,這時候要請郭部長上台了,部長,全臺灣飲用自來水,最少人使用但最多人沒有自來水可用的是哪一個縣市?
gazette.blocks[82][0] 郭部長智輝:接水、接管不太順利……
gazette.blocks[83][0] 鍾委員佳濱:接管的普及率是不是屏東最少?屏東最少嘛!
gazette.blocks[84][0] 郭部長智輝:現在屏東從106年50.83%提升到113年6月已經來到71.53%。
gazette.blocks[85][0] 鍾委員佳濱:是,請院長聽清楚,全國自來水的普及率超過九成,屏東到今年才勉強到七成,還差兩成,你知道要花多少年,屏東縣縣民才能享受並達到全國的平均值而可以使用自來水、飲用自來水?你不知道,我跟你說啦,要90億!要90億啦!平均在未來九年每年要編10億,幸好中央有一個無自來水地區供水改善計畫第五期編75億,一年要用10億的預算,這樣就要九年,院長,屏東人會不會等太久?你有要加強嗎?部長,你們有辦法加強讓屏東人早點可以飲用自來水嗎?
gazette.blocks[86][0] 郭部長智輝:跟委員報告,我們現在在全力來趕辦延管作業,但找人力比較困難。
gazette.blocks[87][0] 鍾委員佳濱:好,不管人力是否好找,我們把預算編下去,其他的部分讓我們地方來努力,好不好?我們來努力啦!
gazette.blocks[88][0] 郭部長智輝:好啊!
gazette.blocks[89][0] 鍾委員佳濱:院長,剛才說的公糧收購146億,可以花在所有農損及農民的照顧,可以花在對全部農業用電的補貼及農民的照顧,可以花在對灌排設施全部農民的照顧,還有可以補助校園,還有一項,針對屏東,你可以讓屏東的自來水一年不用花很多錢,只要一年多5億,我們可以提早三年讓普及率跟上全國的標準,拜託院長,可以來支持嗎?
gazette.blocks[90][0] 卓院長榮泰:當然支持委員剛剛的建議。
gazette.blocks[91][0] 鍾委員佳濱:好,謝謝。最後,我希望,今天我在這裡就要跟院長拜託,我們在國會殿堂當中,民意代表當然為民來爭取,但是請行政院要注意,我們這些錢花下去是多少人受益,不要讓這146億花下去是部分雲林縣特定的農會、特定人士在得利,我們希望這146億花下去,用電的農民得到補助,灌排設施的農民得到補助,我們的農損得到救助,我們的校園蓋得更快,還有屏東縣的自來水可以早一天達到全國平均九成,每年多編預算給屏東縣做自來水,你說,好不好?
gazette.blocks[92][0] 卓院長榮泰:好的,委員剛剛所說的,如果當中有不法的情形,我們查出來,但是我也希望農業部在明年針對「1集、2轉、3加3」這個部分能夠有新的作為,讓農民能夠感受到確實政府的政策是普遍照顧到所有的農民,應該提出新的制度。
gazette.blocks[93][0] 鍾委員佳濱:好,感謝院長、感謝部長。
gazette.blocks[94][0] 主席:謝謝,謝謝鍾佳濱委員質詢,謝謝卓院長及部會首長的備詢。
gazette.blocks[94][1] 接下來請登記第18號羅智強委員質詢。
gazette.agenda.page_end 226
gazette.agenda.meet_id 院會-11-2-7
gazette.agenda.speakers[0] 韓國瑜
gazette.agenda.speakers[1] 張智倫
gazette.agenda.speakers[2] 麥玉珍
gazette.agenda.speakers[3] 鍾佳濱
gazette.agenda.speakers[4] 羅智強
gazette.agenda.speakers[5] 王定宇
gazette.agenda.speakers[6] 牛煦庭
gazette.agenda.speakers[7] 劉建國
gazette.agenda.speakers[8] 羅廷瑋
gazette.agenda.speakers[9] 賴瑞隆
gazette.agenda.speakers[10] 賴士葆
gazette.agenda.speakers[11] 邱志偉
gazette.agenda.speakers[12] 徐欣瑩
gazette.agenda.speakers[13] 郭國文
gazette.agenda.speakers[14] 邱鎮軍
gazette.agenda.speakers[15] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[16] 謝衣鳯
gazette.agenda.speakers[17] 郭昱晴
gazette.agenda.speakers[18] 高金素梅
gazette.agenda.speakers[19] 賴惠員
gazette.agenda.speakers[20] 楊瓊瓔
gazette.agenda.speakers[21] 林楚茵
gazette.agenda.speakers[22] 王美惠
gazette.agenda.page_start 125
gazette.agenda.meetingDate[0] 2024-11-05
gazette.agenda.gazette_id 1138801
gazette.agenda.agenda_lcidc_ids[0] 1138801_00004
gazette.agenda.meet_name 立法院第11屆第2會期第7次會議紀錄
gazette.agenda.content 行政院院長、主計長、財政部部長、國家發展委員會主任委員及相關部會首長列席報告「114年 度中央政府總預算案」及「中央政府前瞻基礎建設計畫第5期特別預算案」編製經過並備質詢─ 詢答完畢─
gazette.agenda.agenda_id 1138801_00004