iVOD / 154923

Field Value
IVOD_ID 154923
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/154923
日期 2024-09-27
會議資料.會議代碼 院會-11-2-2
會議資料.會議代碼:str 第11屆第2會期第2次會議
會議資料.屆 11
會議資料.會期 2
會議資料.會次 2
會議資料.種類 院會
會議資料.標題 第11屆第2會期第2次會議
影片種類 Clip
開始時間 2024-09-27T15:01:04+08:00
結束時間 2024-09-27T15:17:15+08:00
影片長度 00:16:11
支援功能[0] ai-transcript
支援功能[1] gazette
委員名稱 鍾佳濱
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/7581ac2c05948052439f6035955f719ab4afc9d995ccd4a261c9e792f45ff22574376f4625cb93f75ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 3.91221875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 12.67034375
transcript.pyannote[1].end 23.33534375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 16.63596875
transcript.pyannote[2].end 16.65284375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 16.65284375
transcript.pyannote[3].end 16.97346875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 22.17096875
transcript.pyannote[4].end 22.23846875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 22.23846875
transcript.pyannote[5].end 22.27221875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 22.27221875
transcript.pyannote[6].end 22.30596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 22.30596875
transcript.pyannote[7].end 22.77846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 22.77846875
transcript.pyannote[8].end 26.18721875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 26.50784375
transcript.pyannote[9].end 27.52034375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 26.57534375
transcript.pyannote[10].end 26.59221875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 26.59221875
transcript.pyannote[11].end 27.16596875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 27.16596875
transcript.pyannote[12].end 27.19971875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 32.04284375
transcript.pyannote[13].end 32.76846875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 33.20721875
transcript.pyannote[14].end 36.76784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 36.95346875
transcript.pyannote[15].end 37.74659375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 38.38784375
transcript.pyannote[16].end 40.59846875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 40.81784375
transcript.pyannote[17].end 42.38721875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 42.75846875
transcript.pyannote[18].end 46.94346875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 47.34846875
transcript.pyannote[19].end 48.64784375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 47.41596875
transcript.pyannote[20].end 48.09096875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 49.17096875
transcript.pyannote[21].end 49.77846875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 49.74471875
transcript.pyannote[22].end 52.10721875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 52.37721875
transcript.pyannote[23].end 56.89971875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 56.89971875
transcript.pyannote[24].end 65.05034375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 57.62534375
transcript.pyannote[25].end 59.97096875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 59.97096875
transcript.pyannote[26].end 60.32534375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 60.32534375
transcript.pyannote[27].end 60.47721875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 60.47721875
transcript.pyannote[28].end 60.51096875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 65.47221875
transcript.pyannote[29].end 71.98596875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 72.40784375
transcript.pyannote[30].end 74.17971875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 74.43284375
transcript.pyannote[31].end 76.93034375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 77.35221875
transcript.pyannote[32].end 78.56721875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 79.10721875
transcript.pyannote[33].end 79.71471875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 79.95096875
transcript.pyannote[34].end 82.29659375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 83.05596875
transcript.pyannote[35].end 84.76034375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 85.40159375
transcript.pyannote[36].end 88.20284375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 88.62471875
transcript.pyannote[37].end 92.70846875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 93.46784375
transcript.pyannote[38].end 96.11721875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 96.65721875
transcript.pyannote[39].end 98.90159375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 99.44159375
transcript.pyannote[40].end 102.00659375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 102.37784375
transcript.pyannote[41].end 103.42409375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 103.67721875
transcript.pyannote[42].end 106.49534375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 106.49534375
transcript.pyannote[43].end 108.13221875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 106.51221875
transcript.pyannote[44].end 106.52909375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 108.33471875
transcript.pyannote[45].end 109.70159375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 110.03909375
transcript.pyannote[46].end 112.53659375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 112.68846875
transcript.pyannote[47].end 115.45596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 115.77659375
transcript.pyannote[48].end 117.41346875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 118.03784375
transcript.pyannote[49].end 120.09659375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 120.72096875
transcript.pyannote[50].end 124.34909375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 124.68659375
transcript.pyannote[51].end 125.02409375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 125.29409375
transcript.pyannote[52].end 128.63534375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 129.00659375
transcript.pyannote[53].end 132.09471875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 132.76971875
transcript.pyannote[54].end 135.70596875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 136.11096875
transcript.pyannote[55].end 140.38034375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 140.90346875
transcript.pyannote[56].end 141.94971875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 142.40534375
transcript.pyannote[57].end 142.91159375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 142.91159375
transcript.pyannote[58].end 144.44721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 144.85221875
transcript.pyannote[59].end 149.12159375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 149.52659375
transcript.pyannote[60].end 151.29846875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 151.56846875
transcript.pyannote[61].end 152.09159375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 152.56409375
transcript.pyannote[62].end 155.24721875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 155.73659375
transcript.pyannote[63].end 156.90096875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 157.17096875
transcript.pyannote[64].end 158.20034375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 158.55471875
transcript.pyannote[65].end 160.95096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 163.41471875
transcript.pyannote[66].end 164.42721875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 165.18659375
transcript.pyannote[67].end 168.32534375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 169.32096875
transcript.pyannote[68].end 170.13096875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 170.18159375
transcript.pyannote[69].end 173.48909375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 174.09659375
transcript.pyannote[70].end 174.51846875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 175.05846875
transcript.pyannote[71].end 175.09221875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 175.09221875
transcript.pyannote[72].end 176.32409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 176.57721875
transcript.pyannote[73].end 176.94846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 176.72909375
transcript.pyannote[74].end 176.81346875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 177.33659375
transcript.pyannote[75].end 178.92284375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 179.12534375
transcript.pyannote[76].end 181.87596875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 181.92659375
transcript.pyannote[77].end 182.55096875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 182.88846875
transcript.pyannote[78].end 184.22159375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 184.87971875
transcript.pyannote[79].end 185.67284375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 185.52096875
transcript.pyannote[80].end 187.69784375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 188.00159375
transcript.pyannote[81].end 188.10284375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 188.10284375
transcript.pyannote[82].end 189.13221875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 189.21659375
transcript.pyannote[83].end 190.29659375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 190.29659375
transcript.pyannote[84].end 192.96284375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 193.09784375
transcript.pyannote[85].end 193.84034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 194.09346875
transcript.pyannote[86].end 197.18159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 198.59909375
transcript.pyannote[87].end 199.83096875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 199.91534375
transcript.pyannote[88].end 199.94909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 199.94909375
transcript.pyannote[89].end 199.96596875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 199.96596875
transcript.pyannote[90].end 200.05034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 200.05034375
transcript.pyannote[91].end 200.99534375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 200.99534375
transcript.pyannote[92].end 201.02909375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 201.02909375
transcript.pyannote[93].end 201.14721875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 201.14721875
transcript.pyannote[94].end 201.36659375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 201.36659375
transcript.pyannote[95].end 201.40034375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 201.40034375
transcript.pyannote[96].end 201.45096875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 201.45096875
transcript.pyannote[97].end 201.46784375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 201.46784375
transcript.pyannote[98].end 202.54784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 201.51846875
transcript.pyannote[99].end 201.61971875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 201.72096875
transcript.pyannote[100].end 202.83471875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 202.83471875
transcript.pyannote[101].end 202.85159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 202.85159375
transcript.pyannote[102].end 202.86846875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 202.86846875
transcript.pyannote[103].end 207.49221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 207.57659375
transcript.pyannote[104].end 208.69034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 208.89284375
transcript.pyannote[105].end 209.23034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 209.70284375
transcript.pyannote[106].end 211.60971875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 212.38596875
transcript.pyannote[107].end 212.74034375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 212.85846875
transcript.pyannote[108].end 213.56721875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 213.88784375
transcript.pyannote[109].end 217.31346875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 217.71846875
transcript.pyannote[110].end 220.03034375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 220.30034375
transcript.pyannote[111].end 221.92034375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 222.20721875
transcript.pyannote[112].end 222.88221875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 223.06784375
transcript.pyannote[113].end 224.78909375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 225.58221875
transcript.pyannote[114].end 228.83909375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 229.19346875
transcript.pyannote[115].end 232.09596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 232.61909375
transcript.pyannote[116].end 233.91846875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 233.96909375
transcript.pyannote[117].end 234.55971875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 234.17159375
transcript.pyannote[118].end 234.40784375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 234.55971875
transcript.pyannote[119].end 234.98159375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 234.98159375
transcript.pyannote[120].end 237.49596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 237.63096875
transcript.pyannote[121].end 238.40721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 237.68159375
transcript.pyannote[122].end 238.89659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 238.99784375
transcript.pyannote[123].end 240.02721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 239.09909375
transcript.pyannote[124].end 239.89221875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 240.43221875
transcript.pyannote[125].end 243.18284375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 243.18284375
transcript.pyannote[126].end 243.28409375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 243.41909375
transcript.pyannote[127].end 245.08971875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 245.37659375
transcript.pyannote[128].end 247.40159375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 247.80659375
transcript.pyannote[129].end 248.14409375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 248.97096875
transcript.pyannote[130].end 250.84409375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 251.06346875
transcript.pyannote[131].end 253.34159375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 253.76346875
transcript.pyannote[132].end 255.60284375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 255.99096875
transcript.pyannote[133].end 259.55159375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 260.05784375
transcript.pyannote[134].end 260.47971875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 260.86784375
transcript.pyannote[135].end 263.16284375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 263.83784375
transcript.pyannote[136].end 264.61409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 265.06971875
transcript.pyannote[137].end 266.26784375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 267.07784375
transcript.pyannote[138].end 269.01846875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 269.87909375
transcript.pyannote[139].end 271.97159375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 272.57909375
transcript.pyannote[140].end 274.70534375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 275.12721875
transcript.pyannote[141].end 277.35471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 278.24909375
transcript.pyannote[142].end 280.12221875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 280.74659375
transcript.pyannote[143].end 281.82659375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 282.28221875
transcript.pyannote[144].end 282.88971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 283.10909375
transcript.pyannote[145].end 286.70346875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 287.05784375
transcript.pyannote[146].end 291.19221875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 291.90096875
transcript.pyannote[147].end 292.71096875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 293.08221875
transcript.pyannote[148].end 294.21284375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 295.86659375
transcript.pyannote[149].end 298.34721875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 298.92096875
transcript.pyannote[150].end 299.54534375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 299.81534375
transcript.pyannote[151].end 300.52409375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 300.87846875
transcript.pyannote[152].end 301.89096875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 301.89096875
transcript.pyannote[153].end 304.03409375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 304.75971875
transcript.pyannote[154].end 305.63721875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 305.63721875
transcript.pyannote[155].end 305.99159375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 305.99159375
transcript.pyannote[156].end 306.85221875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 307.78034375
transcript.pyannote[157].end 308.97846875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 309.50159375
transcript.pyannote[158].end 312.03284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 312.42096875
transcript.pyannote[159].end 314.05784375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 315.27284375
transcript.pyannote[160].end 317.46659375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 317.61846875
transcript.pyannote[161].end 319.57596875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 319.57596875
transcript.pyannote[162].end 329.29596875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 321.36471875
transcript.pyannote[163].end 321.73596875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 327.18659375
transcript.pyannote[164].end 328.13159375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 329.29596875
transcript.pyannote[165].end 333.04221875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 331.48971875
transcript.pyannote[166].end 331.89471875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 333.04221875
transcript.pyannote[167].end 333.44721875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 333.44721875
transcript.pyannote[168].end 338.98221875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 339.52221875
transcript.pyannote[169].end 345.88409375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 343.90971875
transcript.pyannote[170].end 344.80409375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 346.87971875
transcript.pyannote[171].end 347.94284375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 348.92159375
transcript.pyannote[172].end 349.51221875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 350.28846875
transcript.pyannote[173].end 351.04784375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 351.04784375
transcript.pyannote[174].end 351.06471875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 351.57096875
transcript.pyannote[175].end 352.33034375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 352.76909375
transcript.pyannote[176].end 357.35909375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 353.52846875
transcript.pyannote[177].end 354.32159375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 357.64596875
transcript.pyannote[178].end 358.75971875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 358.87784375
transcript.pyannote[179].end 362.38784375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 362.40471875
transcript.pyannote[180].end 365.76284375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 364.51409375
transcript.pyannote[181].end 365.22284375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 365.76284375
transcript.pyannote[182].end 365.77971875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 366.48846875
transcript.pyannote[183].end 366.97784375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 366.97784375
transcript.pyannote[184].end 367.18034375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 367.53471875
transcript.pyannote[185].end 368.61471875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 368.76659375
transcript.pyannote[186].end 369.93096875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 370.30221875
transcript.pyannote[187].end 372.90096875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 373.17096875
transcript.pyannote[188].end 379.04346875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 379.66784375
transcript.pyannote[189].end 381.03471875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 381.43971875
transcript.pyannote[190].end 382.06409375
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 382.21596875
transcript.pyannote[191].end 383.19471875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 383.68409375
transcript.pyannote[192].end 385.65846875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 386.29971875
transcript.pyannote[193].end 386.85659375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 387.19409375
transcript.pyannote[194].end 389.94471875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 389.96159375
transcript.pyannote[195].end 392.40846875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 392.91471875
transcript.pyannote[196].end 398.48346875
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 398.90534375
transcript.pyannote[197].end 401.03159375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 401.11596875
transcript.pyannote[198].end 406.95471875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 407.74784375
transcript.pyannote[199].end 408.16971875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 408.59159375
transcript.pyannote[200].end 409.68846875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 410.41409375
transcript.pyannote[201].end 410.78534375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 411.10596875
transcript.pyannote[202].end 418.27784375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 418.64909375
transcript.pyannote[203].end 421.93971875
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 420.52221875
transcript.pyannote[204].end 430.00596875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 430.00596875
transcript.pyannote[205].end 430.07346875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 430.07346875
transcript.pyannote[206].end 432.35159375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 432.92534375
transcript.pyannote[207].end 435.42284375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 434.25846875
transcript.pyannote[208].end 437.44784375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 435.89534375
transcript.pyannote[209].end 437.43096875
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 437.44784375
transcript.pyannote[210].end 437.46471875
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 437.78534375
transcript.pyannote[211].end 441.48096875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 441.68346875
transcript.pyannote[212].end 443.79284375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 446.12159375
transcript.pyannote[213].end 446.89784375
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 446.89784375
transcript.pyannote[214].end 449.41221875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 449.47971875
transcript.pyannote[215].end 450.76221875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 451.09971875
transcript.pyannote[216].end 456.75284375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 456.97221875
transcript.pyannote[217].end 457.88346875
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 458.76096875
transcript.pyannote[218].end 459.58784375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 460.27971875
transcript.pyannote[219].end 460.70159375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 460.90409375
transcript.pyannote[220].end 462.40596875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 463.18221875
transcript.pyannote[221].end 471.29909375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 471.68721875
transcript.pyannote[222].end 474.80909375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 475.41659375
transcript.pyannote[223].end 478.31909375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 478.62284375
transcript.pyannote[224].end 485.45721875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 485.81159375
transcript.pyannote[225].end 487.58346875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 488.47784375
transcript.pyannote[226].end 491.31284375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 491.41409375
transcript.pyannote[227].end 492.59534375
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 492.12284375
transcript.pyannote[228].end 492.47721875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 493.05096875
transcript.pyannote[229].end 494.26596875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 494.68784375
transcript.pyannote[230].end 498.90659375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 499.22721875
transcript.pyannote[231].end 501.42096875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 503.95221875
transcript.pyannote[232].end 507.68159375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 506.38221875
transcript.pyannote[233].end 507.73221875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 507.73221875
transcript.pyannote[234].end 508.59284375
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 508.01909375
transcript.pyannote[235].end 513.36846875
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 513.60471875
transcript.pyannote[236].end 515.39346875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 516.18659375
transcript.pyannote[237].end 517.23284375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 517.72221875
transcript.pyannote[238].end 519.86534375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 519.96659375
transcript.pyannote[239].end 522.51471875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 522.90284375
transcript.pyannote[240].end 526.96971875
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 527.37471875
transcript.pyannote[241].end 535.13721875
transcript.pyannote[242].speaker SPEAKER_02
transcript.pyannote[242].start 535.64346875
transcript.pyannote[242].end 536.55471875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 536.82471875
transcript.pyannote[243].end 539.86221875
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 537.22971875
transcript.pyannote[244].end 537.80346875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 540.16596875
transcript.pyannote[245].end 554.56034375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 554.96534375
transcript.pyannote[246].end 558.67784375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 558.94784375
transcript.pyannote[247].end 566.72721875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 567.08159375
transcript.pyannote[248].end 570.69284375
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 570.99659375
transcript.pyannote[249].end 572.93721875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 573.22409375
transcript.pyannote[250].end 574.27034375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 574.47284375
transcript.pyannote[251].end 575.06346875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 575.35034375
transcript.pyannote[252].end 577.15596875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 577.83096875
transcript.pyannote[253].end 578.38784375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 579.40034375
transcript.pyannote[254].end 582.42096875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 582.82596875
transcript.pyannote[255].end 589.15409375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 589.27221875
transcript.pyannote[256].end 591.87096875
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 592.14096875
transcript.pyannote[257].end 599.93721875
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 600.22409375
transcript.pyannote[258].end 600.64596875
transcript.pyannote[259].speaker SPEAKER_02
transcript.pyannote[259].start 601.06784375
transcript.pyannote[259].end 607.86846875
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 607.86846875
transcript.pyannote[260].end 625.14846875
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 624.96284375
transcript.pyannote[261].end 628.20284375
transcript.pyannote[262].speaker SPEAKER_02
transcript.pyannote[262].start 628.38846875
transcript.pyannote[262].end 631.76346875
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 631.99971875
transcript.pyannote[263].end 633.34971875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 633.77159375
transcript.pyannote[264].end 636.06659375
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 635.69534375
transcript.pyannote[265].end 638.83409375
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 638.17596875
transcript.pyannote[266].end 641.31471875
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 641.92221875
transcript.pyannote[267].end 642.27659375
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 644.11596875
transcript.pyannote[268].end 644.52096875
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 644.79096875
transcript.pyannote[269].end 645.76971875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 646.10721875
transcript.pyannote[270].end 648.45284375
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 648.72284375
transcript.pyannote[271].end 651.01784375
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 652.75596875
transcript.pyannote[272].end 657.86909375
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 657.95346875
transcript.pyannote[273].end 661.12596875
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 661.21034375
transcript.pyannote[274].end 662.98221875
transcript.pyannote[275].speaker SPEAKER_02
transcript.pyannote[275].start 663.47159375
transcript.pyannote[275].end 666.37409375
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 666.82971875
transcript.pyannote[276].end 671.47034375
transcript.pyannote[277].speaker SPEAKER_02
transcript.pyannote[277].start 671.58846875
transcript.pyannote[277].end 674.10284375
transcript.pyannote[278].speaker SPEAKER_02
transcript.pyannote[278].start 674.64284375
transcript.pyannote[278].end 676.49909375
transcript.pyannote[279].speaker SPEAKER_02
transcript.pyannote[279].start 677.17409375
transcript.pyannote[279].end 678.62534375
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 678.89534375
transcript.pyannote[280].end 679.78971875
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 680.70096875
transcript.pyannote[281].end 681.15659375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 681.71346875
transcript.pyannote[282].end 682.97909375
transcript.pyannote[283].speaker SPEAKER_02
transcript.pyannote[283].start 683.65409375
transcript.pyannote[283].end 687.78846875
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 688.15971875
transcript.pyannote[284].end 689.76284375
transcript.pyannote[285].speaker SPEAKER_02
transcript.pyannote[285].start 689.93159375
transcript.pyannote[285].end 693.25596875
transcript.pyannote[286].speaker SPEAKER_02
transcript.pyannote[286].start 693.89721875
transcript.pyannote[286].end 694.58909375
transcript.pyannote[287].speaker SPEAKER_02
transcript.pyannote[287].start 695.38221875
transcript.pyannote[287].end 697.00221875
transcript.pyannote[288].speaker SPEAKER_02
transcript.pyannote[288].start 697.40721875
transcript.pyannote[288].end 698.85846875
transcript.pyannote[289].speaker SPEAKER_02
transcript.pyannote[289].start 699.49971875
transcript.pyannote[289].end 702.65534375
transcript.pyannote[290].speaker SPEAKER_02
transcript.pyannote[290].start 702.99284375
transcript.pyannote[290].end 704.07284375
transcript.pyannote[291].speaker SPEAKER_02
transcript.pyannote[291].start 704.73096875
transcript.pyannote[291].end 706.13159375
transcript.pyannote[292].speaker SPEAKER_02
transcript.pyannote[292].start 707.19471875
transcript.pyannote[292].end 708.03846875
transcript.pyannote[293].speaker SPEAKER_00
transcript.pyannote[293].start 708.03846875
transcript.pyannote[293].end 708.15659375
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 708.61221875
transcript.pyannote[294].end 718.01159375
transcript.pyannote[295].speaker SPEAKER_01
transcript.pyannote[295].start 712.99971875
transcript.pyannote[295].end 713.03346875
transcript.pyannote[296].speaker SPEAKER_02
transcript.pyannote[296].start 713.03346875
transcript.pyannote[296].end 713.59034375
transcript.pyannote[297].speaker SPEAKER_02
transcript.pyannote[297].start 714.97409375
transcript.pyannote[297].end 715.86846875
transcript.pyannote[298].speaker SPEAKER_02
transcript.pyannote[298].start 717.64034375
transcript.pyannote[298].end 717.74159375
transcript.pyannote[299].speaker SPEAKER_02
transcript.pyannote[299].start 717.75846875
transcript.pyannote[299].end 726.76971875
transcript.pyannote[300].speaker SPEAKER_02
transcript.pyannote[300].start 727.10721875
transcript.pyannote[300].end 728.08596875
transcript.pyannote[301].speaker SPEAKER_02
transcript.pyannote[301].start 728.47409375
transcript.pyannote[301].end 728.49096875
transcript.pyannote[302].speaker SPEAKER_00
transcript.pyannote[302].start 728.49096875
transcript.pyannote[302].end 729.19971875
transcript.pyannote[303].speaker SPEAKER_00
transcript.pyannote[303].start 729.43596875
transcript.pyannote[303].end 731.93346875
transcript.pyannote[304].speaker SPEAKER_00
transcript.pyannote[304].start 732.28784375
transcript.pyannote[304].end 736.81034375
transcript.pyannote[305].speaker SPEAKER_00
transcript.pyannote[305].start 737.18159375
transcript.pyannote[305].end 738.64971875
transcript.pyannote[306].speaker SPEAKER_02
transcript.pyannote[306].start 738.64971875
transcript.pyannote[306].end 738.70034375
transcript.pyannote[307].speaker SPEAKER_00
transcript.pyannote[307].start 738.70034375
transcript.pyannote[307].end 738.97034375
transcript.pyannote[308].speaker SPEAKER_02
transcript.pyannote[308].start 738.97034375
transcript.pyannote[308].end 751.98096875
transcript.pyannote[309].speaker SPEAKER_01
transcript.pyannote[309].start 751.30596875
transcript.pyannote[309].end 751.42409375
transcript.pyannote[310].speaker SPEAKER_00
transcript.pyannote[310].start 751.42409375
transcript.pyannote[310].end 751.89659375
transcript.pyannote[311].speaker SPEAKER_02
transcript.pyannote[311].start 752.60534375
transcript.pyannote[311].end 758.59596875
transcript.pyannote[312].speaker SPEAKER_00
transcript.pyannote[312].start 754.52909375
transcript.pyannote[312].end 754.95096875
transcript.pyannote[313].speaker SPEAKER_02
transcript.pyannote[313].start 759.13596875
transcript.pyannote[313].end 761.98784375
transcript.pyannote[314].speaker SPEAKER_03
transcript.pyannote[314].start 760.41846875
transcript.pyannote[314].end 761.34659375
transcript.pyannote[315].speaker SPEAKER_03
transcript.pyannote[315].start 761.66721875
transcript.pyannote[315].end 765.66659375
transcript.pyannote[316].speaker SPEAKER_02
transcript.pyannote[316].start 762.27471875
transcript.pyannote[316].end 762.73034375
transcript.pyannote[317].speaker SPEAKER_02
transcript.pyannote[317].start 763.54034375
transcript.pyannote[317].end 764.92409375
transcript.pyannote[318].speaker SPEAKER_02
transcript.pyannote[318].start 765.90284375
transcript.pyannote[318].end 767.01659375
transcript.pyannote[319].speaker SPEAKER_03
transcript.pyannote[319].start 766.32471875
transcript.pyannote[319].end 766.49346875
transcript.pyannote[320].speaker SPEAKER_03
transcript.pyannote[320].start 767.01659375
transcript.pyannote[320].end 767.53971875
transcript.pyannote[321].speaker SPEAKER_02
transcript.pyannote[321].start 767.97846875
transcript.pyannote[321].end 772.18034375
transcript.pyannote[322].speaker SPEAKER_02
transcript.pyannote[322].start 772.60221875
transcript.pyannote[322].end 773.02409375
transcript.pyannote[323].speaker SPEAKER_02
transcript.pyannote[323].start 773.36159375
transcript.pyannote[323].end 773.93534375
transcript.pyannote[324].speaker SPEAKER_02
transcript.pyannote[324].start 774.07034375
transcript.pyannote[324].end 775.69034375
transcript.pyannote[325].speaker SPEAKER_00
transcript.pyannote[325].start 776.97284375
transcript.pyannote[325].end 776.98971875
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 776.98971875
transcript.pyannote[326].end 778.49159375
transcript.pyannote[327].speaker SPEAKER_02
transcript.pyannote[327].start 779.41971875
transcript.pyannote[327].end 780.43221875
transcript.pyannote[328].speaker SPEAKER_02
transcript.pyannote[328].start 780.70221875
transcript.pyannote[328].end 786.64221875
transcript.pyannote[329].speaker SPEAKER_04
transcript.pyannote[329].start 786.89534375
transcript.pyannote[329].end 791.24909375
transcript.pyannote[330].speaker SPEAKER_04
transcript.pyannote[330].start 791.60346875
transcript.pyannote[330].end 792.10971875
transcript.pyannote[331].speaker SPEAKER_04
transcript.pyannote[331].start 792.41346875
transcript.pyannote[331].end 793.18971875
transcript.pyannote[332].speaker SPEAKER_04
transcript.pyannote[332].start 793.56096875
transcript.pyannote[332].end 798.47159375
transcript.pyannote[333].speaker SPEAKER_02
transcript.pyannote[333].start 798.99471875
transcript.pyannote[333].end 803.21346875
transcript.pyannote[334].speaker SPEAKER_00
transcript.pyannote[334].start 803.21346875
transcript.pyannote[334].end 803.88846875
transcript.pyannote[335].speaker SPEAKER_02
transcript.pyannote[335].start 803.29784375
transcript.pyannote[335].end 806.01471875
transcript.pyannote[336].speaker SPEAKER_02
transcript.pyannote[336].start 806.36909375
transcript.pyannote[336].end 810.26721875
transcript.pyannote[337].speaker SPEAKER_02
transcript.pyannote[337].start 810.58784375
transcript.pyannote[337].end 811.76909375
transcript.pyannote[338].speaker SPEAKER_02
transcript.pyannote[338].start 812.02221875
transcript.pyannote[338].end 815.76846875
transcript.pyannote[339].speaker SPEAKER_02
transcript.pyannote[339].start 816.29159375
transcript.pyannote[339].end 818.19846875
transcript.pyannote[340].speaker SPEAKER_03
transcript.pyannote[340].start 818.19846875
transcript.pyannote[340].end 818.21534375
transcript.pyannote[341].speaker SPEAKER_02
transcript.pyannote[341].start 818.48534375
transcript.pyannote[341].end 821.38784375
transcript.pyannote[342].speaker SPEAKER_02
transcript.pyannote[342].start 821.69159375
transcript.pyannote[342].end 822.75471875
transcript.pyannote[343].speaker SPEAKER_02
transcript.pyannote[343].start 823.29471875
transcript.pyannote[343].end 826.31534375
transcript.pyannote[344].speaker SPEAKER_04
transcript.pyannote[344].start 826.31534375
transcript.pyannote[344].end 826.34909375
transcript.pyannote[345].speaker SPEAKER_04
transcript.pyannote[345].start 827.22659375
transcript.pyannote[345].end 834.70221875
transcript.pyannote[346].speaker SPEAKER_02
transcript.pyannote[346].start 833.62221875
transcript.pyannote[346].end 834.88784375
transcript.pyannote[347].speaker SPEAKER_04
transcript.pyannote[347].start 834.88784375
transcript.pyannote[347].end 834.90471875
transcript.pyannote[348].speaker SPEAKER_02
transcript.pyannote[348].start 834.90471875
transcript.pyannote[348].end 834.95534375
transcript.pyannote[349].speaker SPEAKER_04
transcript.pyannote[349].start 834.95534375
transcript.pyannote[349].end 834.97221875
transcript.pyannote[350].speaker SPEAKER_02
transcript.pyannote[350].start 834.97221875
transcript.pyannote[350].end 838.48221875
transcript.pyannote[351].speaker SPEAKER_04
transcript.pyannote[351].start 836.25471875
transcript.pyannote[351].end 836.65971875
transcript.pyannote[352].speaker SPEAKER_02
transcript.pyannote[352].start 838.70159375
transcript.pyannote[352].end 841.03034375
transcript.pyannote[353].speaker SPEAKER_02
transcript.pyannote[353].start 841.50284375
transcript.pyannote[353].end 845.50221875
transcript.pyannote[354].speaker SPEAKER_02
transcript.pyannote[354].start 846.02534375
transcript.pyannote[354].end 849.80534375
transcript.pyannote[355].speaker SPEAKER_02
transcript.pyannote[355].start 849.85596875
transcript.pyannote[355].end 850.86846875
transcript.pyannote[356].speaker SPEAKER_02
transcript.pyannote[356].start 851.17221875
transcript.pyannote[356].end 851.89784375
transcript.pyannote[357].speaker SPEAKER_02
transcript.pyannote[357].start 852.37034375
transcript.pyannote[357].end 856.31909375
transcript.pyannote[358].speaker SPEAKER_02
transcript.pyannote[358].start 856.63971875
transcript.pyannote[358].end 858.25971875
transcript.pyannote[359].speaker SPEAKER_02
transcript.pyannote[359].start 858.69846875
transcript.pyannote[359].end 865.58346875
transcript.pyannote[360].speaker SPEAKER_02
transcript.pyannote[360].start 865.81971875
transcript.pyannote[360].end 866.69721875
transcript.pyannote[361].speaker SPEAKER_02
transcript.pyannote[361].start 867.38909375
transcript.pyannote[361].end 869.19471875
transcript.pyannote[362].speaker SPEAKER_02
transcript.pyannote[362].start 869.44784375
transcript.pyannote[362].end 871.32096875
transcript.pyannote[363].speaker SPEAKER_05
transcript.pyannote[363].start 871.89471875
transcript.pyannote[363].end 880.06221875
transcript.pyannote[364].speaker SPEAKER_04
transcript.pyannote[364].start 877.73346875
transcript.pyannote[364].end 894.05159375
transcript.pyannote[365].speaker SPEAKER_02
transcript.pyannote[365].start 889.93409375
transcript.pyannote[365].end 890.81159375
transcript.pyannote[366].speaker SPEAKER_00
transcript.pyannote[366].start 892.68471875
transcript.pyannote[366].end 892.73534375
transcript.pyannote[367].speaker SPEAKER_02
transcript.pyannote[367].start 892.73534375
transcript.pyannote[367].end 893.49471875
transcript.pyannote[368].speaker SPEAKER_00
transcript.pyannote[368].start 893.49471875
transcript.pyannote[368].end 893.54534375
transcript.pyannote[369].speaker SPEAKER_04
transcript.pyannote[369].start 894.99659375
transcript.pyannote[369].end 911.73659375
transcript.pyannote[370].speaker SPEAKER_02
transcript.pyannote[370].start 899.50221875
transcript.pyannote[370].end 900.00846875
transcript.pyannote[371].speaker SPEAKER_02
transcript.pyannote[371].start 910.28534375
transcript.pyannote[371].end 918.19971875
transcript.pyannote[372].speaker SPEAKER_02
transcript.pyannote[372].start 918.38534375
transcript.pyannote[372].end 921.11909375
transcript.pyannote[373].speaker SPEAKER_02
transcript.pyannote[373].start 921.55784375
transcript.pyannote[373].end 925.70909375
transcript.pyannote[374].speaker SPEAKER_02
transcript.pyannote[374].start 925.82721875
transcript.pyannote[374].end 933.94409375
transcript.pyannote[375].speaker SPEAKER_02
transcript.pyannote[375].start 934.07909375
transcript.pyannote[375].end 939.74909375
transcript.pyannote[376].speaker SPEAKER_05
transcript.pyannote[376].start 939.74909375
transcript.pyannote[376].end 939.76596875
transcript.pyannote[377].speaker SPEAKER_02
transcript.pyannote[377].start 939.76596875
transcript.pyannote[377].end 939.78284375
transcript.pyannote[378].speaker SPEAKER_02
transcript.pyannote[378].start 940.00221875
transcript.pyannote[378].end 940.01909375
transcript.pyannote[379].speaker SPEAKER_05
transcript.pyannote[379].start 940.01909375
transcript.pyannote[379].end 940.28909375
transcript.pyannote[380].speaker SPEAKER_05
transcript.pyannote[380].start 940.62659375
transcript.pyannote[380].end 944.71034375
transcript.pyannote[381].speaker SPEAKER_04
transcript.pyannote[381].start 943.73159375
transcript.pyannote[381].end 946.39784375
transcript.pyannote[382].speaker SPEAKER_04
transcript.pyannote[382].start 946.61721875
transcript.pyannote[382].end 962.27721875
transcript.pyannote[383].speaker SPEAKER_02
transcript.pyannote[383].start 961.50096875
transcript.pyannote[383].end 962.20971875
transcript.pyannote[384].speaker SPEAKER_03
transcript.pyannote[384].start 970.20846875
transcript.pyannote[384].end 970.66409375
transcript.pyannote[385].speaker SPEAKER_03
transcript.pyannote[385].start 970.95096875
transcript.pyannote[385].end 970.96784375
transcript.whisperx[0].start 0.109
transcript.whisperx[0].end 25.646
transcript.whisperx[0].text 接下來我們請登記第26號鍾嘉濱委員質詢特別跟院會報告鍾嘉濱委員剛剛手術完畢今天是負傷質詢這個質詢精神令人感佩祝福嘉濱委員早日身體康復謝謝請是可以脫外套嗎脫外套可以
transcript.whisperx[1].start 32.253
transcript.whisperx[1].end 42.879
transcript.whisperx[1].text 主席在堂列席的政府機關所長官員我們就有請卓院長還有交通部陳部長經濟部陳次長另外農業部跟環境部請伺機而動
transcript.whisperx[2].start 49.262
transcript.whisperx[2].end 52.765
transcript.whisperx[2].text 我想今天我們來進行114年施政報告我的對院長的總質詢大概就從我就任立委以來已經問過了59次的院會質詢今天是第60次
transcript.whisperx[3].start 79.164
transcript.whisperx[3].end 92.559
transcript.whisperx[3].text 其中呢 院會的施政總質詢有17次預算的總質詢有11次那麼特別預算專案質詢呢 有31次我整理了一下 我問過兩次以上的題目我要做這樣的圖
transcript.whisperx[4].start 93.49
transcript.whisperx[4].end 118.52
transcript.whisperx[4].text 我在對照我們卓院長您的施政報告我很欣慰的要跟院長報告說我這20項問過兩次以上的題目當中有16個題目都涵蓋在您的施政報告當中所以告訴我另外4項我再補上面就有那麼在這裡我特別的欣慰是提到說我過去關心青年的海外交流問了三次你打算在你的施政報告海外圓夢計畫你編了100億
transcript.whisperx[5].start 120.782
transcript.whisperx[5].end 140.101
transcript.whisperx[5].text 另外我關心屏東的農特產品我們的冷鏈物流我們蘇前院長手中推動了100億的冷鏈您在今年繼續明年要推動變了9億另外我也關心了我們的中小企業的發展您也要挹注116億在中小企業照顧我們中小企業
transcript.whisperx[6].start 140.97
transcript.whisperx[6].end 167.426
transcript.whisperx[6].text 院長我要謝謝你我也希望這些預算能夠得到不分朝野共同來支持嚴加審議畢竟我們預算審議合理我們地方建設人民才會受益這是我的第一個但你有沒有注意到院長我這裡面問最多的是哪一個題目你應該看得很清楚吧問最多的就是高鐵延伸屏東問了11次
transcript.whisperx[7].start 169.466
transcript.whisperx[7].end 196.866
transcript.whisperx[7].text 問了11次好所以呢我要請教您左邊的陳部長部長您到屏東嘛然後呢您能不能告訴我目前規劃的左營案是誰任內宣布的從新左營到屏東左營案對從新左營到屏東這條路線現行的規劃的應該是蘇院長對蘇政商院長在2019年宣布的那您知道左營案新左營案被批評什麼問題嗎左院長你知道嗎
transcript.whisperx[8].start 198.989
transcript.whisperx[8].end 224.294
transcript.whisperx[8].text 這車型的方向會造成乘車的不便所以有人說如果真的從新濁南到屏東 屏東一天沒有幾班啊因為單單是要你比個二 我不好意思說幾班好 但是呢 不久前我們高雄的立法委員也問了卓院長有人說要用一個高雄案通過高雄火車站您覺得你有聽到誰有不同的意見嗎
transcript.whisperx[9].start 225.706
transcript.whisperx[9].end 246.979
transcript.whisperx[9].text 我聽到最近有提到高雄這個方案對那你知道陳院長陳其邁市長怎麼說嗎他說不希望再挖10年工程的進行過程中再挖10年不要說挖啦再等個10年喔屏東鄉親也受不了啦所以呢身為屏東人我們對於高鐵延伸屏東
transcript.whisperx[10].start 249.008
transcript.whisperx[10].end 277.12
transcript.whisperx[10].text 不能延宕 這沒人商量 這沒商量的餘地 絕對不能延宕但是路線呢 可以討論所以除了左營案 除了高雄案 有人提出台南案我們卓院長跟陳部長都不是台南人嗎我們來看一下你們藏高鐵吧這個是目前的高鐵有個密碼他一字頭二字頭的是直達車三字頭跟六字頭的是蛙跳車還有五字頭跟八字頭的是站站體
transcript.whisperx[11].start 278.712
transcript.whisperx[11].end 293.81
transcript.whisperx[11].text 這當中阿 你們有沒有注意到所謂的六都 台北 桃園 板橋 台中 台南 跟左營其實呢 它都達到60班 46班以上 有沒有注意到好 那麼陳部長 你們告訴我
transcript.whisperx[12].start 295.899
transcript.whisperx[12].end 313.772
transcript.whisperx[12].text 哪些地方的停的站次最少次數最少是幾班的17的是不是包括了苗栗包括彰化包括雲林都跟非都高鐵停的班次數就不同院長您覺得這合理嗎
transcript.whisperx[13].start 315.302
transcript.whisperx[13].end 335.377
transcript.whisperx[13].text 高鐵因為他趕著就是時效效率應該有一些車是快速到達某一個地方的但是後來我們為了增加對國人增設了很多的站那這些站也根據他的服務的人口我們設定適當的班次那很坦白的你不要因為我是屏東人
transcript.whisperx[14].start 335.797
transcript.whisperx[14].end 350.866
transcript.whisperx[14].text 你覺得屏東在這幾個都市戰中如果有涉戰他是跟台北板橋台中左營同級數還是跟苗栗彰化雲林同級數我們的持平的講你覺得我屏東人
transcript.whisperx[15].start 351.741
transcript.whisperx[15].end 378.879
transcript.whisperx[15].text 當然在在評估包括高鐵南北延伸這兩個路段當中我們所評估的除了他靠站以及使用的效率之外我們還有更大的是一個全台灣整體軌道建設你不用要想要揣摩或討好我也很持平的說依照我們高鐵客觀的運量來說屏東如果加入高鐵營運初期大概跟我們的苗栗彰化跟雲林差不多的班次
transcript.whisperx[16].start 379.699
transcript.whisperx[16].end 407.839
transcript.whisperx[16].text 好了那現在問題有解了有人說為什麼要從台南如果今天增加一個九字頭的列車它的行駛方式直接從台南拉到屏東未來還有可能往台東跟花蓮去這一條也可能是暫暫停的一個環島或者往東的高鐵路線這樣子是不是就解決了新左營路線跟透過高雄火山路線一直遲遲不能決定的結果院長
transcript.whisperx[17].start 408.595
transcript.whisperx[17].end 409.435
transcript.whisperx[17].text 台鐵6塊住車站要遷移1.6公里,在特區的台鐵先告價可不可以?
transcript.whisperx[18].start 432.984
transcript.whisperx[18].end 433.665
transcript.whisperx[18].text 這是誰當院長的時候核定的?
transcript.whisperx[19].start 447.679
transcript.whisperx[19].end 474.73
transcript.whisperx[19].text 2018年賴清德院長賴院長現在總統了6年了好不容易今年9月環評通過有人說動工還有2年你會不會責成部長可不可以趕進度趕進度好不好院長請部長趕進度把東西第二項快速道路趕快做好不好環評通過了好部長這個他說已經在說在趕進度了好第三個我們屏東車站打從誕生開始就經常在漏雨
transcript.whisperx[20].start 475.47
transcript.whisperx[20].end 478.211
transcript.whisperx[20].text 你認為屏東科技園區、屏科和高鐵完工後在我們屏東可以創造多少的就業人口?
transcript.whisperx[21].start 504.131
transcript.whisperx[21].end 505.692
transcript.whisperx[21].text 當年2000年屏東加工出口區成立的時候從24年到現在
transcript.whisperx[22].start 516.206
transcript.whisperx[22].end 521.112
transcript.whisperx[22].text 中科10年如果增加2萬人台積電如果進駐了平科您覺得我們產業人口是不是會增加到上千上萬
transcript.whisperx[23].start 535.769
transcript.whisperx[23].end 540.653
transcript.whisperx[23].text 請看下一個圖目前屏東科技產業園區是24年前的道路規劃現在的高鐵特定區全區是307公頃第一期是158公頃當中可以用到科學園區跟產業園區的不到100公頃
transcript.whisperx[24].start 555.026
transcript.whisperx[24].end 578.243
transcript.whisperx[24].text 但是南邊既有的屏東科技產業園區120公頃對面的汽車專區是將近100公頃加上屏東線路去完成開發的將近20公頃總共有將近250公頃如果你覺得未來屏科我們屏東高鐵發展後哪邊的產業人口的增加不亞於新社的舊有的增加的幅度是不亞於新社的是不是這樣子
transcript.whisperx[25].start 579.451
transcript.whisperx[25].end 600.321
transcript.whisperx[25].text 就是我們南部的這邊我給你看下一個圖也就是說目前你看到的右上角的屏東科學園區我們行政院投入了60億做區段徵收跟工程經費編列60億但是不要忽略了未來的發展包括底下的汽車專業區既有的科技產業園區它也需要吸納這麼多的就業人口部長
transcript.whisperx[26].start 601.361
transcript.whisperx[26].end 624.989
transcript.whisperx[26].text 你願不願意多中央多投入把南區的聯外交通一併提升改善不要只停留在24年前的水準目前的規劃是台一線跟線道189作為主要但是現在縣政府他們現在正在辦一個可行性的研究是針對屏東科技園區的第二條聯外道路這個部分目前正在做可行性研究可行性研究出來之後交通部會協助他生活圈道路的部分
transcript.whisperx[27].start 625.309
transcript.whisperx[27].end 626.73
transcript.whisperx[27].text 前瞻基礎建設全台灣自來稅普及率最低
transcript.whisperx[28].start 652.813
transcript.whisperx[28].end 676.363
transcript.whisperx[28].text 市長也知道我問的一定是屏東委員會問的當然就是您最關心的地方屏東我們在105年的時候普及率不到50%兩戶就有一戶不是用自來水但是過去8年我們提升到了7成為什麼因為過去這8年自來水無自來水地區的改善計畫第三期第四期多虧有了前瞻特別預算的挹注總共提供了143億將近超過70億用在屏東
transcript.whisperx[29].start 680.768
transcript.whisperx[29].end 703.076
transcript.whisperx[29].text 院長 屏東很感謝中央前瞻的無自來水地區的改善計畫編了140幾億將近一半用在屏東讓我們的普及率從不到5成將近到7成謝謝中央但是接下來我們來看一下今年前瞻最後一期接下來自來水地區的改善計畫第5期編了75億這75億通通要給屏東嗎
transcript.whisperx[30].start 707.233
transcript.whisperx[30].end 736.442
transcript.whisperx[30].text 有沒有可能都給屏東無自來水地區的供水改善第5期在114到118年當中一共編列的是總數是106億106億我這邊的資料是75億那顯然是不夠的那106億可不可以給90億給屏東因為屏東要達到了九成達到全國平均還要90億有可能嗎這個五年的計畫還是要請經濟部透過水公司來衡量當然最需要的地方一定先到達
transcript.whisperx[31].start 737.222
transcript.whisperx[31].end 764.709
transcript.whisperx[31].text 好那所以院長跟市長可以承諾未來無自來水地區的自來水普及計畫我們的預算盡量的來支援屏東讓屏東不要說8年啦4年內能夠大幅的提升接近全國的水準院長可以承諾嗎我們努力達到這樣的好謝謝接下來我們請那個環境部彭部長跟農業部陳部長好來我現在考試一下兩位部長還沒到的時候交通部經濟部請回你聽過平地照理沒有
transcript.whisperx[32].start 765.95
transcript.whisperx[32].end 770.291
transcript.whisperx[32].text 當年的平地造林是因為我們加入WTO以後那針對一些比較地利比較
transcript.whisperx[33].start 799.016
transcript.whisperx[33].end 815.38
transcript.whisperx[33].text 所以很多人都誤會了平地造林不是為了水土保持甚至後來他是為了農地減量他當然有一些環境綠美化有些棲地保留的效果但是請問一下部長陳部長平地造林的投資效應你覺得值得延續嗎目前投入多少錢
transcript.whisperx[34].start 816.32
transcript.whisperx[34].end 845.347
transcript.whisperx[34].text 投入了103億對不對是那麼總共呢台塘的有將近10500公頃私有土地將近3000公頃你覺得繼續值得推嗎我想趙林的一些推動的政策是一定會一直持續的因為趙林後續平地趙林的政策一直推你確定嗎我告訴你平地趙林目前有什麼問題啊因為他趙林的目的他不知道做經濟林他只要存活率他種的很密根本不成材不具經濟效益
transcript.whisperx[35].start 846.067
transcript.whisperx[35].end 870.979
transcript.whisperx[35].text 另外因為疏於管理 造成林地的農地髒亂 排水堵塞 很多的問題所以平地造林退場之後 很多人就撤掉了畢業人員都撤走了那你覺得 院長你覺得一個花了20年 投入了100多億的平地造林退場之後就一無是處嗎 有沒有什麼想法來我們給黃部長一個提示你覺得可不可以來創造我們的碳匯
transcript.whisperx[36].start 872.143
transcript.whisperx[36].end 893.462
transcript.whisperx[36].text 第一個是剛剛委員寫的海面城市是一個很好的做法 如果我們經過一些設計你跳到下一題了 沒關係我想委員我先說明一下現在目前平地教練陸陸續續已經達到了一個可採拔的那我們分三類 一類是他具有生態棲地的這些生態棲地的我們保留這個部分我們會繼續保留有沒有可以回復農用的
transcript.whisperx[37].start 894.991
transcript.whisperx[37].end 895.771
transcript.whisperx[37].text 其實我們來思考一下氣候極端化
transcript.whisperx[38].start 924.628
transcript.whisperx[38].end 939.484
transcript.whisperx[38].text 最近豪大雨 很多都都淹水就算高雄市有那麼好的蓄洪池 地下水庫還是淹水為什麼 因為它需要更多的海綿城市有沒有可能評估這些平地造林在六都周圍的來做我們城市的蓄水池
transcript.whisperx[39].start 941.02
transcript.whisperx[39].end 961.916
transcript.whisperx[39].text 報告委員這個是一個調適的最好的做法那陳部長你接受嗎我想在地滯洪這個概念我們跟經濟部水利署已經研業了非常久然後針對都會區旁如果說一煙水但是旁邊如果剛好有平地照林的話是值得變成一個在地滯洪的一個處所好 最後你呢
會議時間 2024-09-27T09:00:00+08:00
委員發言時間 15:01:04 - 15:17:15
會議名稱 第11屆第2會期第2次會議(事由:對行政院院長施政報告繼續質詢)
gazette.lineno 182
gazette.blocks[0][0] 鍾委員佳濱:(15時1分)院長謝謝,請示可以脫外套嗎?
gazette.blocks[1][0] 主席:可以,可以,請。
gazette.blocks[2][0] 鍾委員佳濱:主席,在場列席的政府機關首長、官員,我們有請卓院長還有交通部陳部長、經濟部陳次長;另外農業部跟環境部麻煩請伺機而動。
gazette.blocks[3][0] 主席:請交通部跟經濟部備詢,其他部長等叫到再上來好了,因為這個畫面的問題。
gazette.blocks[4][0] 卓院長榮泰:鍾委員好,請你務必保重。
gazette.blocks[5][0] 鍾委員佳濱:好,院長好、部長好、次長好。
gazette.blocks[6][0] 卓院長榮泰:務必保重,注意你手上任何的承重,負擔不要太大。
gazette.blocks[7][0] 鍾委員佳濱:謝謝。今天我們來進行114年施政報告我對院長的總質詢,大概從我就任立委以來,已經問過了59次的院會質詢,今天是第60次,其中院會的施政總質詢有17次;預算的總質詢有11次;特別預算專案質詢有31次。我整理了一下,我問過兩次以上的題目把它做了這樣的圖,我再對照卓院長您的施政報告,我很欣慰的要跟院長報告,這20項問過兩次以上的題目當中,有16個題目都涵蓋在您的施政報告當中。
gazette.blocks[8][0] 卓院長榮泰:對,告訴我另外4項我再補。
gazette.blocks[9][0] 鍾委員佳濱:上面就有,好。在這裡我特別的欣慰有提到我過去關心青年的海外交流,問了3次,在你的施政報告中你打算在海外圓夢計畫編了100億。另外,我關心屏東的農特產品、我們的冷鏈物流,我們蘇前院長手中推動了100億的冷鏈,您在今年繼續,明年要推動編了9億。另外,我也關心我們中小企業的發展,你也要挹注116億在中小企業,照顧我們中小企業。院長,我要謝謝你……
gazette.blocks[10][0] 卓院長榮泰:謝謝委員。
gazette.blocks[11][0] 鍾委員佳濱:我也希望這些預算能夠得到不分朝野共同來支持、嚴加審議,畢竟我們預算審議合理,地方建設人民才會受益,這是第一個。但院長有沒有注意到,我這裡面問最多的是哪一個題目?你應該看得很清楚吧?問最多的就是高鐵延伸屏東,問了11次,問了11次。好,所以我要請教您左邊的陳部長,部長您到屏東,您能不能告訴我目前規劃的左營案是誰任內宣布的?從新左營到屏東。
gazette.blocks[12][0] 陳部長世凱:左營案?
gazette.blocks[13][0] 鍾委員佳濱:對,從新左營拉到屏東這條路線,現行規劃的……
gazette.blocks[14][0] 陳部長世凱:應該是蘇院長。
gazette.blocks[15][0] 鍾委員佳濱:對,蘇貞昌院長在2019年宣布的。那您知道左營案被批評什麼問題,卓院長知道嗎?
gazette.blocks[16][0] 卓院長榮泰:是車行的方向會造成乘車的不便。
gazette.blocks[17][0] 鍾委員佳濱:對,「倒退嚕」啊!所以有人說如果真的從新左營拉到屏東,屏東一天沒有幾班啦!
gazette.blocks[18][0] 陳部長世凱:對,車次會少。
gazette.blocks[19][0] 鍾委員佳濱:因為單單是要……好,你比個二,我不好意思說幾班!但是不久前,我們高雄的立法委員也問了卓院長,有人說要用一個「高雄案」通過高雄火車站,您覺得有聽到誰有不同的意見嗎?
gazette.blocks[20][0] 卓院長榮泰:我最近有聽到提到高雄這個方案。
gazette.blocks[21][0] 鍾委員佳濱:對,那你知道陳其邁市長怎麼說嗎?
gazette.blocks[22][0] 卓院長榮泰:他說不希望再……
gazette.blocks[23][0] 鍾委員佳濱:挖10年……
gazette.blocks[24][0] 卓院長榮泰:工程進行的過程中再挖10年……
gazette.blocks[25][0] 鍾委員佳濱:不要說挖啦,再等個10年,屏東鄉親也受不了。
gazette.blocks[26][0] 卓院長榮泰:是。
gazette.blocks[27][0] 鍾委員佳濱:身為屏東人,對於高鐵延伸屏東,不能延宕這沒得商量,這沒商量的餘地,絕對不能延宕,但是路線可以討論,除了左營案、除了高雄案,有人提出臺南案。卓院長跟陳部長都不是臺南人嘛!我們來看一下,你們常搭高鐵吧,目前高鐵有個密碼,1字頭、2字頭的是直達車,3字頭跟6字頭的是蛙跳車,還有5字頭跟8字頭是站站停,這當中你們有沒有注意到,所謂的六都,臺北、桃園、板橋、臺中、臺南跟左營,其實都達到60班、46班以上,有沒有注意到?好,陳部長能不能告訴我,哪些地方停的站次最少、次數最少?十幾班的?
gazette.blocks[28][0] 陳部長世凱:17的。
gazette.blocks[29][0] 鍾委員佳濱:17的,是不是包括了苗栗、彰化、雲林?
gazette.blocks[30][0] 陳部長世凱:對。
gazette.blocks[31][0] 鍾委員佳濱:都跟非都,高鐵停的班次數不同,院長,您覺得這合理嗎?
gazette.blocks[32][0] 卓院長榮泰:高鐵為了……
gazette.blocks[33][0] 鍾委員佳濱:根據它的服務人數來決定班次嘛!
gazette.blocks[34][0] 卓院長榮泰:高鐵因為趕著時效、效率,應該有一些車是快速到達某個地方的……
gazette.blocks[35][0] 鍾委員佳濱:對。
gazette.blocks[36][0] 卓院長榮泰:但是後來我們為了增加國人更多……
gazette.blocks[37][0] 鍾委員佳濱:服務範圍……
gazette.blocks[38][0] 卓院長榮泰:增設了很多站。
gazette.blocks[39][0] 鍾委員佳濱:這些站也根據服務人口設定適當的班次嘛!
gazette.blocks[40][0] 卓院長榮泰:是的。
gazette.blocks[41][0] 鍾委員佳濱:好,很坦白的,你不要因為我是屏東人,你覺得屏東如果在這幾個都市站中設站,它是跟臺北、板橋、臺中、左營同級數,還是跟苗栗、彰化、雲林同級數?我們持平的講。你覺得,屏東人,將近七十幾萬……
gazette.blocks[42][0] 卓院長榮泰:當然在評估高鐵南北延伸這兩個路段當中,我們評估的除了靠站以及使用效率之外,還有更大的是全臺灣整體的軌道建設。
gazette.blocks[43][0] 鍾委員佳濱:院長,你不用想要揣摩或討好,我也很持平的說,依照高鐵客觀的運量來說,屏東如果加入高鐵,營運初期大概跟苗栗、彰化、雲林差不多的班次。
gazette.blocks[44][0] 卓院長榮泰:對。
gazette.blocks[45][0] 鍾委員佳濱:好,那現在問題有解了,有人說:為什麼要從臺南?如果今天增加一個9字頭的列車,它的行駛方式直接從臺南拉到屏東,未來還有可能往臺東跟花蓮去,這一條也可能是站站停的環島或者往東的高鐵路線,這樣是不是就解決了新左營路線跟透過高雄火車站路線一直遲遲不能決定的結果?院長,思考一下可以嗎?
gazette.blocks[46][0] 卓院長榮泰:這個我要請部長再跟交通規劃的專家學者,好像在我們討論的過程當中,這個創意是沒有被討論過的。
gazette.blocks[47][0] 陳部長世凱:對,這之前沒有討論過。
gazette.blocks[48][0] 鍾委員佳濱:陳部長,可以研究一下。
gazette.blocks[48][1] 好,接下來三個小問題,陳部長你很快的、爽快答應就好了。臺鐵六塊厝車站要遷移1.6公里……
gazette.blocks[49][0] 陳部長世凱:對。
gazette.blocks[50][0] 鍾委員佳濱:在特區的臺鐵「先高架」可不可以?過去竹東到新竹、沙崙都是這樣做。
gazette.blocks[51][0] 陳部長世凱:這部分我們現在已經提早在辦理了。
gazette.blocks[52][0] 鍾委員佳濱:可以嘛!好,謝謝你。
gazette.blocks[52][1] 第二個,關於高屏東西向第二快速道路,卓院長,你知道嗎?這是誰當院長時核定的?
gazette.blocks[53][0] 卓院長榮泰:看照片是賴院長。
gazette.blocks[54][0] 鍾委員佳濱:2018年,賴清德院長,賴院長現在是總統了,6年了,好不容易今年9月環評通過,有人說動工要兩年,你可不可以責成部長,可不可以趕進度?趕進度好不好?院長,請部長趕進度,東西向第二條快速道路趕快做好不好?環評通過了。
gazette.blocks[55][0] 卓院長榮泰:好,部長說已經在趕進度了。
gazette.blocks[56][0] 鍾委員佳濱:好,第三個,屏東車站打從誕生開始就經常在漏雨,前不久的凱米颱風,真的漏得亂七八糟,目前我邀請臺鐵去會勘,所幸這10年的問題終於有解,要增加4,000萬,要增加風雨走廊,但是目前還是有些滴漏,部長可以承諾儘快完成,讓它不淹水,可以嗎?
gazette.blocks[57][0] 陳部長世凱:好,沒問題,我們來努力。
gazette.blocks[58][0] 鍾委員佳濱:好。接下來,我請教院長,你認為屏東科技園區(屏科)和高鐵完工後,在屏東可以創造多少的就業人口?
gazette.blocks[59][0] 卓院長榮泰:這個再請委員指教,因為我手上沒有……
gazette.blocks[60][0] 鍾委員佳濱:好,給你一個參考資料。
gazette.blocks[61][0] 卓院長榮泰:是。
gazette.blocks[62][0] 鍾委員佳濱:當年(2000年)屏東加工出口區成立時,那時候叫屏東加工出口區,到現在24年了,成長到4,000人,但是中科短短10年內從3萬2,000人成長到5萬3,000人,我們看到之前台積電兩個封裝廠就要3,000個就業機會,所以中科10年內增加了2萬人,如果台積電進駐了屏科,您覺得我們產業人口是不是會增加到上千上萬?你覺得有沒有把握?
gazette.blocks[63][0] 卓院長榮泰:應該有這個趨勢。
gazette.blocks[64][0] 鍾委員佳濱:好,請您看下一個圖,目前我們屏東科技產業園區它是24年前的道路規劃,你看看現在的高鐵特定區,全區是307公頃,第一期是158公頃,當中可以用到科學園區跟產業園區的不到100公頃,但是南邊既有的屏東科技產業園區有124公頃,對面的汽車專區則是有將近100公頃,加上屏東縣陸續完成開發的有將近20公頃,總共有將近250公頃。未來我們屏科、屏東高鐵發展後,哪邊的產業人口的增加不亞於新設的?舊有增加的幅度是不是不亞於新設的?是不是這樣子?我給你看下一個圖,也就是說,目前右上角的屏東科學園區,我們行政院投入了60億做區段徵收跟工程經費,這部分編列了60億,但是不要忽略了未來的發展,包括底下的汽車專業區,既有的科技產業園區,也是需要吸納這麼多的就業人口。部長,你願不願意中央多投入,把南區的聯外交通一併提升、改善,不要只停留在24年前的水準?
gazette.blocks[65][0] 陳部長世凱:目前的規劃是台1線跟縣道189號作為主要,但是現在縣政府他們正在辦一個可行性研究,是針對屏東科技園區的第二條聯外道路,這個部分目前正在做可行性研究,可行性研究出來之後,交通部會協助它生活圈道路的部分。
gazette.blocks[66][0] 鍾委員佳濱:好,所以院長請全力支持,不要只有台1線北邊,台1線南邊既有的產業園區,經濟部次長要點頭了,你們是不是也一樣中央繼續支持?次長,是不是這樣?
gazette.blocks[67][0] 陳次長正祺:是,我們也會支持,我們會擴增這個道路……
gazette.blocks[68][0] 鍾委員佳濱:會擴區,好。
gazette.blocks[68][1] 接下來再問一個,我們看一下前瞻基礎建設,院長,你知道全臺灣自來水普及率最低的是哪個地方嗎?想也知道,我問的一定是屏東。
gazette.blocks[69][0] 卓院長榮泰:委員會問的,當然就是您最關心的地方。
gazette.blocks[70][0] 鍾委員佳濱:我們屏東在105年的時候,普及率不到50%,兩戶就有一戶不是用自來水,但是過去這8年我們提升到了七成,為什麼?因為過去這8年有無自來水地區改善計畫第3期、第4期,多虧有了前瞻特別預算的挹注,總共提供了143億,將近、超過70億用在屏東。院長,屏東很感謝中央,前瞻的無自來水地區改善計畫,編了140幾億,將近一半用在屏東,讓我們的普及率從不到五成拉高到將近七成,謝謝中央!
gazette.blocks[70][1] 但是我們來看一下,今年是前瞻最後一期,接下來無自來水地區改善計畫第5期編了75億,這75億通通都要給屏東嗎?有沒有可能都給屏東?
gazette.blocks[71][0] 卓院長榮泰:無自來水地區供水改善計畫第5期,從114年到118年,編列的總數一共是106億。
gazette.blocks[72][0] 鍾委員佳濱:106億?我這邊的資料是75億,顯然這是不夠的。這106億當中,可不可以給屏東90億?因為屏東要達到九成、達到全國的平均,還要90億,有可能嗎?
gazette.blocks[73][0] 卓院長榮泰:這個5年的計畫還是要請經濟部透過水公司來衡量,當然最需要的地方一定先到達。
gazette.blocks[74][0] 鍾委員佳濱:好,所以院長跟次長可以承諾未來無自來水地區自來水普及計畫,我們的預算會儘量的來支援屏東,讓屏東不要說8年,在4年內能夠大幅的提升,接近全國的水準,院長可以承諾嗎?
gazette.blocks[75][0] 卓院長榮泰:我們努力達到這樣的標準。
gazette.blocks[76][0] 鍾委員佳濱:好,謝謝。
gazette.blocks[76][1] 接下來我們請環境部彭部長跟農業部陳部長。
gazette.blocks[76][2] 好,我來考試一下,在兩位部長還沒到的時候……
gazette.blocks[77][0] 主席:交通部跟經濟部請回,麻煩請環境部跟農業部備詢。
gazette.blocks[78][0] 鍾委員佳濱:院長,你有沒有聽過平地造林?
gazette.blocks[79][0] 卓院長榮泰:是。
gazette.blocks[80][0] 鍾委員佳濱:平地造林,有聽過。你認為平地造林它是要做水土保育還是做農業生產?
gazette.blocks[81][0] 卓院長榮泰:它保育的功能應該比較多吧!
gazette.blocks[82][0] 鍾委員佳濱:保育的部分比較多,答錯了!部長,請你告訴院長,當年的平地造林是為了什麼而來的?
gazette.blocks[83][0] 陳部長駿季:當年的平地造林是因為我們加入WTO以後,針對一些地力比較低的這些土地,我們用造林的方式去做某個程度的生態維護。
gazette.blocks[84][0] 鍾委員佳濱:所以很多人都誤會了,平地造林不是為了水土保持……
gazette.blocks[85][0] 卓院長榮泰:生態維護……
gazette.blocks[86][0] 鍾委員佳濱:甚至後來它是為了農地減量,它當然有一些環境綠美化、有一些棲地保留的效果。但是請問一下陳部長,平地造林的投資效益,你覺得值得延續嗎?目前投入多少錢?投入了103億,對不對?
gazette.blocks[87][0] 陳部長駿季:是。
gazette.blocks[88][0] 鍾委員佳濱:總共來看,台糖有將近1萬0,500公頃,私有土地有將近3,000公頃,你覺得值得繼續推動嗎?
gazette.blocks[89][0] 陳部長駿季:我想造林的一些推動的政策是一定會一直持續的,因為造林後續有一些……
gazette.blocks[90][0] 鍾委員佳濱:平地造林的政策會一直推,你確定嗎?我告訴你目前平地造林有什麼問題。因為造林的目的並不是要做經濟林,而是只要存活率,所以種得很密,根本不成材,不具經濟效益。另外,因為疏於管理,造成林地、農地髒亂,排水堵塞,有很多問題。所以平地造林退場之後,很多人就撤掉了,旁邊的人反對的就都撤掉了。院長,你覺得一個花了二十年、投入一百多億的平地造林,在退場之後就一無是處嗎?有沒有什麼想法?來,我們給彭部長一個提示,你覺得可不可以藉此創造碳匯?
gazette.blocks[91][0] 彭部長啓明:第一,剛剛委員寫的海綿城市是一個很好的作法,如果我們經過一些設計……
gazette.blocks[92][0] 鍾委員佳濱:你跳到下一題了!沒關係……
gazette.blocks[93][0] 陳部長駿季:委員,我想我先說明一下。目前平地造林已經陸陸續續達到可採伐的程度,我們分三類,一類是具有生態棲地的……
gazette.blocks[94][0] 鍾委員佳濱:生態棲地的保留。
gazette.blocks[95][0] 陳部長駿季:這部分我們會繼續保留,後續……
gazette.blocks[96][0] 鍾委員佳濱:有沒有可以恢復農用的?
gazette.blocks[97][0] 陳部長駿季:有一部分的私用林、大概七百公頃會恢復農用。
gazette.blocks[98][0] 鍾委員佳濱:有沒有可以做光電的?
gazette.blocks[99][0] 陳部長駿季:然後另外有一部分在持續養護後,可以成為生產林,這大概分三類,這三類我們後續……
gazette.blocks[100][0] 鍾委員佳濱:部長一直不敢鬆口啦!其實台糖那些地、那些林原來就是沒有的,砍掉種電也是差不多而已,但很多人忌諱,因為砍樹是不好的事。來,我要告訴彭部長,我們來思考一下氣候極端化的問題。最近豪大雨,很多都都淹水,就算高雄市有那麼好的蓄洪池、地下水庫,卻還是淹水。為什麼?因為需要更多的海綿城市!有沒有可能評估六都周圍的平地造林作為我們城市的蓄水池?
gazette.blocks[101][0] 彭部長啓明:報告委員,這是調適的最好作法……
gazette.blocks[102][0] 鍾委員佳濱:陳部長,你接受嗎?
gazette.blocks[103][0] 陳部長駿季:我想在地滯洪的概念我們跟經濟部水利署已經研議了非常久,有關都會區易淹水,而旁邊如果剛好有平地造林的話,是值得變成在地滯洪的處所,但不是全部,不是全部……
gazette.blocks[104][0] 鍾委員佳濱:最後一題與外送平台有關,我以書面質詢補上,再請院長酌參。謝謝。
gazette.blocks[105][0] 卓院長榮泰:謝謝。
gazette.blocks[106][0] 主席:謝謝鍾佳濱委員的質詢,也恭喜鍾佳濱委員,雖然受傷但還是中氣十足。
gazette.blocks[107][0] 委員鍾佳濱書面質詢:
gazette.blocks[107][1] 鑒於近日Uber Eats宣布併購foodpanda台灣外送事業,二大外送平台在台灣市占率高達八成,外界都擔心一旦公平會通過併購,在Uber Eats一家獨大下,消費者、合作商家及外送員權益將受影響。併購讓企業成本降低,反映給消費者能有較低收費與比較好品質,但壞處是會因市場集中度,少了競爭對手,帶來「限制競爭」效果,其他市場參與者遭到排擠,讓業者更有對消費者及商家的漲價能力,及對外送員勞動待遇苛刻。
gazette.blocks[107][2] 外送平台產業有自然獨佔的傾向,因外送平台大量使用公共基礎設施及進入門檻高,使政府有管制的基礎,應介入、訂定合理運費,以及揭露定型化契約保障外送員權益。據了解由行政院副院長主持的行政院消費者保護會第88次會議中,資訊安全及第三方支付之平台業務為數發部管理;而貨運業為交通部訂定之特許行業,故運費之合理計算由交通部訂定及管理,但尚無針對外送平台之主管機關達成共識。
gazette.blocks[107][3] 惟餐點具時效性,故外送員送餐有其服務地域範圍,目前以成立一間貨運公司管理全台所有近20萬外送員,此舉非常不合理,進而衍生出對外送員勞動環境及條件苛刻之問題。如客運業者營業區域,於營業申請時會先以生活區域訂定範圍,後依市場需求狀況提出路線申請;據此外送產業應於各區域皆應成立貨運公司並依各區域內道路及生活狀況調整外送員規範及制度,並回歸各地方政府道路主管機關監管。爰建請行政院評估依生活區域成立個別貨運公司,並各地方政府道路主管機關為各區域貨運公司之主管機關之可行性。
gazette.blocks[107][4] 不論公平交易委員會是否通過併購案,政府都應該對各方公平交易的市場秩序作出規劃。爰此,建請行政院盡速訂定外送平台之主管機關;另建請行政院評估由勞動部制定定型化契約全國一體適用,與各貨運公司根據使用道路之外送區域,回歸各地方政府道路主管機關監管,上述兩種方案擇一實施或雙軌並行更能保障外送員權益。
gazette.blocks[108][0] 主席:接下來我們請下一位登記第27號翁曉玲委員質詢。
gazette.agenda.page_end 104
gazette.agenda.meet_id 院會-11-2-2
gazette.agenda.speakers[0] 韓國瑜
gazette.agenda.speakers[1] 蔡其昌
gazette.agenda.speakers[2] 陳雪生
gazette.agenda.speakers[3] 吳春城
gazette.agenda.speakers[4] 林俊憲
gazette.agenda.speakers[5] 萬美玲
gazette.agenda.speakers[6] 鍾佳濱
gazette.agenda.speakers[7] 翁曉玲
gazette.agenda.speakers[8] 林月琴
gazette.agenda.speakers[9] 呂玉玲
gazette.agenda.speakers[10] 王正旭
gazette.agenda.speakers[11] 丁學忠
gazette.agenda.page_start 21
gazette.agenda.meetingDate[0] 2024-09-27
gazette.agenda.gazette_id 1137601
gazette.agenda.agenda_lcidc_ids[0] 1137601_00002
gazette.agenda.agenda_lcidc_ids[1] 1137601_00003
gazette.agenda.meet_name 立法院第11屆第2會期第2次會議紀錄
gazette.agenda.content 施政質詢 對行政院院長施政報告繼續質詢─ 繼續質詢─
gazette.agenda.agenda_id 1137601_00003