iVOD / 154867

Field Value
影片長度 1878
gazette.lineno 521
gazette.blocks[0][0] 林委員國成:(10時30分)謝謝院長,請行政院卓院長、勞動部何部長。
gazette.blocks[1][0] 主席:麻煩請卓院長、勞動部何部長備詢。
gazette.blocks[2][0] 卓院長榮泰:林委員好。
gazette.blocks[3][0] 林委員國成:院長,我看你每一次來到立法院都西裝筆挺,穿得端端正正,我非常欣賞。
gazette.blocks[4][0] 卓院長榮泰:那是對院長的指示,還有對大院的尊敬。
gazette.blocks[5][0] 林委員國成:我也要特別強調,在我們韓院長的響應之下,院長,你看一下我是打領帶又穿西裝,為什麼?一樣,立法委員尊重行政院,行政院尊重立法院,這是基本的為官之道、禮數。
gazette.blocks[6][0] 卓院長榮泰:是。
gazette.blocks[7][0] 林委員國成:所以本席還要再強調一次,台灣民眾黨理性、務實、科學,所以我在問政的時候絕對是以理性方式來探討,但是有一點,勞工出身雖然穿上西裝,但是我有一個個性,也就是當對我提的問題答非所問,不針對問題,我們勞工就會易怒,所以我還是要拜託院長,我提問題的時候,我們是共同探討,為了臺灣、為了所有的民眾,我們共同討論出行政院可以做的方法。院長,我想我這個拜託,你應該不會反對吧?
gazette.blocks[8][0] 卓院長榮泰:我會很誠實的也很忠實的反映委員的垂詢,我如果答得不夠完整,我會請部長來加強。
gazette.blocks[9][0] 林委員國成:謝謝院長、謝謝部長。我很關心臺灣一千一百多萬勞工的問題,所以我的標題很清楚,也就是政府說得到要做得到,千萬勞工才會安心,其實從民進黨執政這兩年來,對於勞工勞保基金的處理方式,我個人覺得是負責跟滿意的。我要談的很簡單,就是勞保基金的問題,當然你們也有撥補,但是我今天要跟院長報告的是,過去勞保基金虧損連連,我希望所有執政過的政府都要概括承受,絕對不是勞工繳少的問題而造成,所以勞工是無辜的,這一點我相信院長應該很瞭解。因為你也從立法委員、從基層選舉出來,你可以瞭解,不敢講勞苦功高,但勞工對於整個社會是有幫助的,所以最後一塊勞保基金的棺材本一定要確實做到保障,這是我今天對院長、對部長的特別懇求,對於勞工這個部分,我們要有實質作為,確保勞工勞保基金對他的保障,這一點院長應該認同吧?
gazette.blocks[10][0] 卓院長榮泰:勞工是臺灣發展經濟最重要的資產,從過去歷任的政府到現在,對勞工的照顧從來不敢怠慢,也只有一步一步地更加強,包括勞保基金、各種勞工權益,以及現在我們持續提高的最低工資等等,我覺得都是一代一代的政府持續墊步上去的,我覺得也應該跟勞工朋友們能夠談一談,未來政府必須做更多、更好、更快的是什麼事情,我們願意來聆聽。
gazette.blocks[11][0] 林委員國成:OK。院長,我常常講我個人對你是尊敬的。
gazette.blocks[12][0] 卓院長榮泰:謝謝。
gazette.blocks[13][0] 林委員國成:但是有些政策如果你違背的時候,當然我也是對你有所質疑啦!但是我們要替臺灣人做事,當然就針對問題來談問題,所以我還是要拜託院長,本席還有國民黨、民進黨都有同樣的共識,也就是現在勞保條例第六十六條撥補的部分是行政院長,也是你們決定自動撥補去挽救勞保基金。但是本席認為,既然你們這兩、三年來都有在撥補,撥補是危機的處理,但在法的立場完完全全是行政作為,所以本席率先跟我們院會裡面的同仁提議勞保條例第六十六條的修法,也就是把撥補常態化、撥補法制化。院長,讓這個撥補入法,我想聽聽你的意見、聽聽部長的意見。
gazette.blocks[14][0] 何部長佩珊:謝謝委員垂詢,非常肯定委員一直支持我們撥補勞保基金,目前總統在520就進行宣示:只要政府在,勞保就不會倒。在這個總統的宣示底下,院長、我們也承諾在114年度的總預算裡面,就編列一千三百億的預算……
gazette.blocks[15][0] 林委員國成:我知道、我知道。部長,你們現在有在做,剛才我也跟院長說明了,你們都有在做。
gazette.blocks[16][0] 何部長佩珊:是。
gazette.blocks[17][0] 林委員國成:我提第六十六條,只是把它法制化,也就是現在勞保條例第六十六條當中是沒有的,但是本席已經提了這個法,當然最後還是要行政機關……我認為立法院通過的東西只要行政機關不要,因為我很怕又要提釋憲,所以乾脆我們就講清楚,如果這個入法是對整個法制、對勞工是有保障的,倒不如你們就贊成,當然我們這個程序會繼續走下去。院長,我的意思是你們現在都有做,但是我建議把它入法。這個是第六十六條的撥補。
gazette.blocks[17][1] 另外我還有同一個案,就是修改勞保條例第六十九條,第六十九條是什麼?在十年前勞工有一段時間,一天到晚恐嚇勞工勞保基金快要倒!勞保基金快要倒!其實,這對一千一百多萬有投保的勞工而言,心有多酸,心有多恐懼,所以我也希望把第六十九條入法,也就是不管是陳院長、不管是卓院長,甚至於許銘春部長跟何部長,你們都同聲的保證勞保不會倒、勞工一定領到他的棺材本,這一點我要給你們肯定,但本席還是要拜託。因為我提第六十九條是由政府最終給付,讓一千一百萬的勞工知道、也了解政府已經下了法定的政府最終給付,所以這一點我特別要讓卓院長、何部長了解,我提的這個案是你們現在都有在做的,所以這點我希望也不要再提釋憲。講清楚、說明白,我想都是為了勞工好,讓勞工安心,政府也盡心,讓其一團和氣,勞工的問題解決就等於解決社會二分之一的問題。卓院長,我剛才已經說明這麼清楚,對於入法,你的看法是怎麼樣?
gazette.blocks[18][0] 卓院長榮泰:一句話,就是我們對勞保這個基金,除了撥補之外,還有很多其他多元的配套可以來運用,所以現在只能跟委員說的是,政府不負責,沒有人可以負責。
gazette.blocks[19][0] 林委員國成:好。
gazette.blocks[20][0] 卓院長榮泰:所以剛剛部長講政府在,勞保不會倒,而且我們也會想辦法對勞工要更好。
gazette.blocks[21][0] 林委員國成:好,謝謝卓院長,因為你也是接地氣,勞工要的不多,只要政府有作為,勞工自然就會放心,所以這一塊我要拜託卓院長、拜託何部長,當我們在立法院處理勞保條例第六十六條、第六十九條有關程序的時候,既然行政機關、院長也這麼講、也認同,我希望這個會很順利地來入法。這入法本來就是你們有在做的,讓勞工覺得本身得到卓院長跟何部長絕對肯定的安心,所以我希望政府盡心、勞工安心,這個政策能夠去做好,好不好?院長。
gazette.blocks[22][0] 卓院長榮泰:我們會靈活地運用勞保基金,謝謝。
gazette.blocks[23][0] 林委員國成:好,接下來我們請教育部鄭部長。何部長不要走。我現在要跟你談的這些範圍或許很大,但是這個是一個社會問題。卓院長,我剛才才在稱讚你接地氣,但是有些事情你沒有為官、沒有當行政院長的時候,你沒有辦法做,但是當你有機會當了中華民國的行政院長,就有辦法去做,這是什麼?政策的問題。我要跟你談的就是技職教育萎縮以後,臺灣產業真的是非常有危機,有些人跟我講:林國成,你是勞工出身,為什麼要談這個議題?這個議題很重要,產業倒勞工就倒,勞工倒產業就倒,所以息息相關。我要跟院長說明的、跟兩位部長說明的是,技職的重要性。好,接下來,我要考考試。賴清德總統在7月21號的開幕典禮,我要請教何部長,賴總統怎麼說?
gazette.blocks[24][0] 何部長佩珊:總統在當時就指示,他說臺灣未來的產業,其實也必須奠基在技職教育的發展之上,即便是高科技產業。
gazette.blocks[25][0] 林委員國成:好,來,鄭部長、教育部長,技職教育跟你也有關,請問一下,你知不知道賴清德總統講這些話?
gazette.blocks[26][0] 鄭部長英耀:是,我想這一個總統……
gazette.blocks[27][0] 林委員國成:你不要你想,總統怎麼講,好不好?
gazette.blocks[28][0] 鄭部長英耀:我跟委員報告,總統不只重視技職人才培育,而且他這一次還安排要比照奧運的選手,在總統府裡宴請參與國際技能競賽的所有代表,也接待這些所有的……
gazette.blocks[29][0] 林委員國成:好,鄭部長……
gazette.blocks[30][0] 鄭部長英耀:表示總統是非常重視的。
gazette.blocks[31][0] 林委員國成:哎呀!你現在只有了解卓院長,你都還不了解賴總統,這樣不行啦!他在說技職教育非常重要,不是只有像你講的這種冠冕堂皇的官話。部長,我為什麼請你上來,就是讓你知道這技職教育已經失傳20年都沒有重視,所以非常重要。
gazette.blocks[32][0] 鄭部長英耀:跟委員報告,事實上,我上來就特別提到一個……
gazette.blocks[33][0] 林委員國成:對啦!我剛才已經講過,勞工出身很易怒……
gazette.blocks[34][0] 鄭部長英耀:我想我們對技職人才……
gazette.blocks[35][0] 林委員國成:聽了不爽快就會馬上發脾氣。來,卓院長,你同不同意總統講這些話?
gazette.blocks[36][0] 卓院長榮泰:當然同意,而且我們要把它化為政策來執行。
gazette.blocks[37][0] 林委員國成:好,OK,院長,那我們就來繼續談下去。既然都同意了,那我們就來探討一個比較客觀的問題,技職能力,學生為什麼會不青睞?這叫做什麼?就是我們教育政策出問題,還有教育連貫性不實在,所以才會產生這個問題。我們就來看看這個問題在哪邊,我提供給卓院長去做政策的決策,才有辦法指示勞動部跟教育部,要把它連貫起來,因為教育跟技職是息息相關的。
gazette.blocks[37][1] 說實在啦!我再度重申,技職教育是臺灣經濟奇蹟的締造者,這個締造者當然我們要去引導,不然的話,怎麼樣去締造?我在想不管從50年代開始,從重工業起家,到60年代人才的培育,到70年代高科技的培育,這個方向都是對的,可是有一點,50年代還OK,沒有問題,60年代在技職教育還好。據我個人所研究,吳京部長在這個部分跟行政院長報告、跟總統報告,是技職教育做得最好的一段,所以提供給部長去參考。那段時間,第一個,哪有什麼移工的問題啦!沒有,為什麼?畢業就是就業,為什麼?技職教育做得非常好,所以那段時間,50年代、60年代跟70年代,當然70年代開始從高科技產業去培養,可是技職教育連貫性是不足的,我特別要讓教育部鄭部長了解。雖然吳京部長已經卸任,但是他確實在技職教育部分做得非常到位、非常連結,跟產業是連結的。
gazette.blocks[37][2] 接下來,我說實在,院長,沒有技職教育就沒有今天的台積電,院長,這句話,你同意吧?
gazette.blocks[38][0] 卓院長榮泰:同意。
gazette.blocks[39][0] 林委員國成:好,所以台積電現在在世界各國是一個護國神山,這個是什麼?當初如果沒有政府正確方向去引導,哪有這些工程師?哪有今天的台積電?我為什麼會提這個?主要是給卓院長去做政策方向的決策,你如果沒有正確的方向,永遠都是在那邊搞。至於教改成不成功,我們都不要談,成不成功我相信我不用問院長,你也知道,為什麼要回復50年代、60年代做得非常好的技職教育?為什麼?就是未來……到現在為止,部長,你沒有發現到大家都要用移工嗎?你現在壓力很大的,不管是十萬個、二十萬個,現在的移工高達這麼多,不管是營造業,不管是旅館業,連開公車都需要外勞,連台電在修理電線都需要外勞,這是為什麼?就是我們技職教育失敗嘛!所以這二十年來完全是失敗的。卓院長,我語重心長,我們看到的是這些,根本就是教育連貫失敗,技職教育是很失敗的。我把這個時間給院長,對於我剛才跟你報告這些技職教育的事情,本席到現在為止提出來的,哪一點不符合實際?院長,來,你來幫我說。
gazette.blocks[40][0] 卓院長榮泰:謝謝委員。委員能夠關心技職教育,就表示委員對很多問題深入地了解,現在已經指出問題。技職教育在過去幾年真的是呈現一個中空的狀態,不管是學生的人數、學校的設備都不足以因應現在產業的需求,我不願意從少子化這個角度來看,雖然它是一個事實,我願意說的是,我們整個產業結構能不能跟技職教育銜接在一起,其中兩項,一個就是技職教育能不能提供很好的誘因,讓希望學得一技之長的年輕朋友可以進到這個體系裡面;第二,技職教育的相關教學設備跟師資趕不趕得上時代,我知道很多學校所做的實驗到外面來是接不上的,表示我們在設備的更新上是慢了。另外,有沒有足夠的師資,如果專業的師資不夠,業師能不能請進來,並且增加量的部分,用經驗來傳承,我覺得這些都應該馬上下手去執行。
gazette.blocks[41][0] 林委員國成:好,謝謝院長。
gazette.blocks[41][1] 接下來,問題在這裡,重高中,輕技職,破解升學迷思,所以在這裡有一個數據提供給卓院長,學歷越高,失業越高,知道嗎?這就是技職教育的重要性,這部分我特別要提供給卓院長瞭解。
gazette.blocks[41][2] 我現在要來考試一下,他山之石,臺灣要借鏡,人家好的地方,我們當然要借鏡。院長,我們舉例瑞士,它是一個獨立國家,它是一個很小的國家,可是你就從來沒有聽到有勞工抗爭的問題,也沒有聽到他們那邊有發生什麼重大罷工的問題,沒有!他們國家有沒有特色?當然有特色,其他我不談,就談勞工這個部分。院長,我問你,瑞士最出名的手工技藝,你知道是什麼嗎?
gazette.blocks[42][0] 卓院長榮泰:委員是說手錶嗎?
gazette.blocks[43][0] 林委員國成:對,瑞士就是手錶,你看看一個瑞士、很小的國家,你看它可以行銷勞力士也好、什麼錶也好,行銷到世界各國,可是他們的這些人才從來沒有中斷過,這個叫做什麼?他山之石,臺灣要去借鏡。
gazette.blocks[44][0] 卓院長榮泰:是。
gazette.blocks[45][0] 林委員國成:接下來,我們再看看德國,你看德國平常都沒有什麼聲音,但是它有一個好處,什麼好處?師徒一對一教導,一邊上課一邊工作,實習就有薪水,畢業即就業。我還要再請教卓院長,德國什麼東西做得最好?
gazette.blocks[46][0] 卓院長榮泰:汽車。
gazette.blocks[47][0] 林委員國成:對嘛!雙B嘛!你看到現在世界各國有沒有缺乏這些人才?沒有耶!它是跟產業結合來做教育以及產業的發展,所以這個部分我們真的要借鏡。這個我們簡單講過,就是對岸,它的經濟、它的作法、政治,我們不談,但是它對於這些就業的事情做得非常到位。我比的就是一些西方國家、歐洲,以及跟臺灣比較接近的對岸,這些都值得我們參考,好的我們用、不好的我們不要用。這裡我們也不得不承認,我舉例,當然也有很多啦,你想一想,就算這麼多的人口也有辦法維繫整個就業市場,這個我們當然也要去研究。
gazette.blocks[47][1] 接下來,這很明顯嘛!卓院長,我們技職教育的人才是真的不足,因為我們的政策不重視,就無法培養人才,所以我真的要拜託卓院長,你好好將這個部分成立,叫一個政務委員來負責,好好研究一下臺灣技職教育要不要重新改變。以現在的情況來講,都是紙上談兵、畫餅充飢,完全沒有到位,以及沒有跟產業結合、跟教育結合來真正達到技職人才的發酵。院長,我跟你報告,沒有。因為我們針對問題來談嘛。
gazette.blocks[48][0] 卓院長榮泰:教育部有一些策略。
gazette.blocks[49][0] 林委員國成:不要啦、我不要聽啦!我要聽卓院長的。
gazette.blocks[50][0] 卓院長榮泰:私底下再跟委員報告,會後。
gazette.blocks[51][0] 林委員國成:不是,鄭部長剛才回答我的,他那個就是你送一個書面給我,我有空讀一讀。你給我的答復就是在打官腔!你看看我跟你們談話都很溫和,我很柔情的人耶!但是他給我答話,你看我就馬上放炮他,為什麼?不符合基層的需求。
gazette.blocks[51][1] 因為二十年來技職教育已經失敗再失敗,所以我為什麼要提出這個問題問卓院長?因為我也期待卓院長把臺灣技職教育恢復回來,這不是哪一個執政的問題,這是歷史遺業,因為技職教育對於產業如何發展是息息相關的!今天經濟部長不需要上來,最起碼我要讓卓院長知道這個觀念,你才有辦法去指導他們如何改變技職教育。
gazette.blocks[51][2] 好啦,最主要幾個問題我也提供給院長,資源投入大小眼,這個你們回去檢討,所以鄭部長不要跟我講說你們有多雄偉的雄心抱負,你都不要跟我說那個啦!現在的問題就很簡單,我們談民進黨執政這八年裡面技職教育根本就是失敗!我們期待在賴總統跟卓院長的領導之下,技職方面有另外一番不一樣的做法跟不一樣的感覺,所以在資源投入大小眼這個部分,我希望你們趕快改進;不符合企業、產學合一完全落空,這個我也要提供給卓院長,好好地針對這個問題來商討;過去雖然我們輕技職,但是針對傳統的觀念,我也希望卓院長能夠在這個地方著墨一下。
gazette.blocks[51][3] 如何再出發?我提供幾個拙見,我認為迫切需要的就是什麼?就是技職教育真的要跟教育連貫,會讀書的讀大學、不太想讀書但是他有技能的就在技職,這樣合而為一、唯才適用!這樣的話,臺灣的技職教育跟人才的培育才會成功。以下幾點給院長參考,也就是一、因應未來的趨勢,創造良好的就業環境,這個部長應該也有在做,我也看到;另外就是補充教育人才,鄭部長不好意思,拜託你做給我看!下一次我就會讓你好好講,到現在為止……我也知道你剛接,可是我對以前的部長極度不滿意,為什麼?聽不進去基層需求的聲音,只有聽政策,那政策又失敗,當然這個問題就會失敗,我希望到立法院來是要聽立法委員語重心長給你的良善建議,所以這個部分我希望卓院長……最後一個就是增加技職的教育經費,今年所送來的預算我有去翻一翻,在這個部分還是一樣;最後,我要拜託勞動部跟教育部跨部會合作,與企業共同。
gazette.blocks[51][4] 我要拜託卓院長,我提出這些是良善的建議,我希望卓院長重視這個,卓院長,以上這些我給你建議,以及用實例給你比較,我要聽聽卓院長最後要如何指示他們去做?院長,可不可以告訴我?
gazette.blocks[52][0] 卓院長榮泰:謝謝委員。幾項當中我現在特別要瞭解的是,有關技職教育經費跟過去的比較,我們有沒有呈現什麼樣經費上的不同或者內容上的不同,但重要的是我要請教育部在作法上要有不同,即使是同樣的預算,作法也要有不同……
gazette.blocks[53][0] 林委員國成:沒有啦!院長,我要聽你的說法,因為鄭部長……
gazette.blocks[54][0] 卓院長榮泰:我會請他跟過去的作法要不同,即使在差不多的預算經費底下,我現在查一下預算經費到底有沒有增加多少,作法要有不同。
gazette.blocks[55][0] 林委員國成:沒有啦!院長,剩幾分鐘了,我只拜託你,今天聽完我這些建議,你認不認同我們技職教育要加強?
gazette.blocks[56][0] 卓院長榮泰:完全認同!
gazette.blocks[57][0] 林委員國成:那你同不同意……
gazette.blocks[58][0] 卓院長榮泰:我們也在加強中,謝謝委員的建議,非常好!
gazette.blocks[59][0] 林委員國成:對,所有三個……要改變臺灣人才方,就是要從這裡著手,不是今年做,明年就有成果,或許是要三年、五年才會看到,我希望讓老百姓覺得卓榮泰院長做這個政策,還好有他做這個政策,就像李國鼎一樣啊!聯電跟台積電如果不是他去做政策的決定,怎麼會有今天?所以我希望你做這個技職的教育能讓人家覺得還好有卓榮泰院長,所以我希望院長責成這些,做一個專案,然後來做一個統籌、來研究,如果能夠提供的,我們儘量來提供,反正為臺灣人民做事情,是不分黨派的。
gazette.blocks[60][0] 卓院長榮泰:一定努力,謝謝。
gazette.blocks[61][0] 林委員國成:我希望院長也有這個觀念,好不好?
gazette.blocks[62][0] 卓院長榮泰:謝謝。
gazette.blocks[63][0] 主席:謝謝林國成委員的質詢、謝謝卓院長的備詢。
gazette.blocks[63][1] 接下來我們請陳瑩委員質詢。
gazette.agenda.page_end 322
gazette.agenda.meet_id 院會-11-2-1
gazette.agenda.speakers[0] 韓國瑜
gazette.agenda.speakers[1] 張啓楷
gazette.agenda.speakers[2] 陳培瑜
gazette.agenda.speakers[3] 羅智強
gazette.agenda.speakers[4] 林國成
gazette.agenda.speakers[5] 陳瑩
gazette.agenda.speakers[6] 洪孟楷
gazette.agenda.speakers[7] 黃秀芳
gazette.agenda.speakers[8] 謝龍介
gazette.agenda.speakers[9] 李柏毅
gazette.agenda.speakers[10] 賴士葆
gazette.agenda.speakers[11] 許智傑
gazette.agenda.speakers[12] 黃健豪
gazette.agenda.speakers[13] 陳素月
gazette.agenda.page_start 233
gazette.agenda.meetingDate[0] 2024-09-24
gazette.agenda.gazette_id 1137501
gazette.agenda.agenda_lcidc_ids[0] 1137501_00003
gazette.agenda.agenda_lcidc_ids[1] 1137501_00004
gazette.agenda.meet_name 立法院第11屆第2會期第1次會議紀錄
gazette.agenda.content 施政質詢 行政院院長施政報告並備質詢─ 繼續質詢─
gazette.agenda.agenda_id 1137501_00010
委員名稱 林國成
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdc7d5d95287b89ac1f5a1b12030e08b9fd6e84e674c262f96f22d889c8458c7074d07a482e87785ea18f28b6918d91.mp4/playlist.m3u8
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 31.11471875
transcript.pyannote[0].end 32.38034375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 33.10596875
transcript.pyannote[1].end 35.01284375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 35.53596875
transcript.pyannote[2].end 38.23596875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 35.97471875
transcript.pyannote[3].end 36.98721875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 38.75909375
transcript.pyannote[4].end 40.63221875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 40.63221875
transcript.pyannote[5].end 40.64909375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 49.33971875
transcript.pyannote[6].end 49.35659375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 49.35659375
transcript.pyannote[7].end 49.96409375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 49.96409375
transcript.pyannote[8].end 49.98096875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 51.04409375
transcript.pyannote[9].end 51.49971875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 52.34346875
transcript.pyannote[10].end 52.86659375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 53.96346875
transcript.pyannote[11].end 57.03471875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 57.40596875
transcript.pyannote[12].end 62.09721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 63.86909375
transcript.pyannote[13].end 64.54409375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 65.10096875
transcript.pyannote[14].end 65.82659375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 66.09659375
transcript.pyannote[15].end 68.25659375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 68.99909375
transcript.pyannote[16].end 70.36596875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 71.93534375
transcript.pyannote[17].end 73.48784375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 74.46659375
transcript.pyannote[18].end 76.25534375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 77.30159375
transcript.pyannote[19].end 78.78659375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 79.17471875
transcript.pyannote[20].end 81.40221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 82.06034375
transcript.pyannote[21].end 82.70159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 82.98846875
transcript.pyannote[22].end 83.62971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 84.32159375
transcript.pyannote[23].end 88.42221875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 88.74284375
transcript.pyannote[24].end 91.66221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 91.83096875
transcript.pyannote[25].end 94.19346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 94.63221875
transcript.pyannote[26].end 94.95284375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 94.95284375
transcript.pyannote[27].end 98.12534375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 98.91846875
transcript.pyannote[28].end 99.94784375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 100.55534375
transcript.pyannote[29].end 104.52096875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 104.89221875
transcript.pyannote[30].end 109.68471875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 109.81971875
transcript.pyannote[31].end 110.83221875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 111.28784375
transcript.pyannote[32].end 117.37971875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 117.66659375
transcript.pyannote[33].end 122.98221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 123.70784375
transcript.pyannote[34].end 126.00284375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 126.20534375
transcript.pyannote[35].end 128.78721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 129.10784375
transcript.pyannote[36].end 136.46534375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 137.79846875
transcript.pyannote[37].end 140.59971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 140.97096875
transcript.pyannote[38].end 143.13096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 143.72159375
transcript.pyannote[39].end 144.14346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 144.64971875
transcript.pyannote[40].end 145.13909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 145.45971875
transcript.pyannote[41].end 146.43846875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 146.84346875
transcript.pyannote[42].end 148.05846875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 148.61534375
transcript.pyannote[43].end 149.23971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 149.67846875
transcript.pyannote[44].end 151.70346875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 152.14221875
transcript.pyannote[45].end 152.68221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 153.17159375
transcript.pyannote[46].end 155.90534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 156.29346875
transcript.pyannote[47].end 157.28909375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 158.16659375
transcript.pyannote[48].end 159.02721875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 159.02721875
transcript.pyannote[49].end 159.53346875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 159.98909375
transcript.pyannote[50].end 160.00596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 160.00596875
transcript.pyannote[51].end 161.52471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 162.03096875
transcript.pyannote[52].end 163.29659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 163.90409375
transcript.pyannote[53].end 166.19909375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 166.92471875
transcript.pyannote[54].end 169.18596875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 169.62471875
transcript.pyannote[55].end 170.43471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 171.16034375
transcript.pyannote[56].end 172.02096875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 172.56096875
transcript.pyannote[57].end 174.56909375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 175.14284375
transcript.pyannote[58].end 177.62346875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 178.21409375
transcript.pyannote[59].end 178.88909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 179.66534375
transcript.pyannote[60].end 180.20534375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 181.21784375
transcript.pyannote[61].end 183.81659375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 184.28909375
transcript.pyannote[62].end 186.48284375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 186.98909375
transcript.pyannote[63].end 190.38096875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 190.81971875
transcript.pyannote[64].end 191.42721875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 191.95034375
transcript.pyannote[65].end 194.90346875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 196.11846875
transcript.pyannote[66].end 202.05846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 202.37909375
transcript.pyannote[67].end 204.21846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 204.35346875
transcript.pyannote[68].end 205.29846875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 205.55159375
transcript.pyannote[69].end 215.05221875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 215.99721875
transcript.pyannote[70].end 220.58721875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 220.89096875
transcript.pyannote[71].end 225.24471875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 225.70034375
transcript.pyannote[72].end 232.16346875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 232.28159375
transcript.pyannote[73].end 235.33596875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 235.62284375
transcript.pyannote[74].end 239.48721875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 239.92596875
transcript.pyannote[75].end 245.19096875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 245.56221875
transcript.pyannote[76].end 251.08034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 251.40096875
transcript.pyannote[77].end 271.97159375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 272.41034375
transcript.pyannote[78].end 272.95034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 273.52409375
transcript.pyannote[79].end 273.96284375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 273.96284375
transcript.pyannote[80].end 274.62096875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 275.00909375
transcript.pyannote[81].end 277.65846875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 278.09721875
transcript.pyannote[82].end 282.75471875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 283.36221875
transcript.pyannote[83].end 285.33659375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 285.89346875
transcript.pyannote[84].end 288.34034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 288.79596875
transcript.pyannote[85].end 291.69846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 291.95159375
transcript.pyannote[86].end 294.97221875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 295.34346875
transcript.pyannote[87].end 296.25471875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 296.59221875
transcript.pyannote[88].end 298.49909375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 298.75221875
transcript.pyannote[89].end 305.55284375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 304.54034375
transcript.pyannote[90].end 305.06346875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 305.78909375
transcript.pyannote[91].end 306.29534375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 306.46409375
transcript.pyannote[92].end 307.03784375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 307.96596875
transcript.pyannote[93].end 308.96159375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 309.40034375
transcript.pyannote[94].end 311.22284375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 311.44221875
transcript.pyannote[95].end 311.76284375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 311.61096875
transcript.pyannote[96].end 318.15846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 318.36096875
transcript.pyannote[97].end 323.81159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 324.08159375
transcript.pyannote[98].end 326.07284375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 326.69721875
transcript.pyannote[99].end 327.50721875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 327.69284375
transcript.pyannote[100].end 328.36784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 329.09346875
transcript.pyannote[101].end 347.43659375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 347.60534375
transcript.pyannote[102].end 353.34284375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 353.56221875
transcript.pyannote[103].end 362.99534375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 363.26534375
transcript.pyannote[104].end 364.41284375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 364.81784375
transcript.pyannote[105].end 368.98596875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 369.44159375
transcript.pyannote[106].end 379.54971875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 380.07284375
transcript.pyannote[107].end 381.03471875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 381.47346875
transcript.pyannote[108].end 382.57034375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 383.07659375
transcript.pyannote[109].end 386.29971875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 387.10971875
transcript.pyannote[110].end 387.32909375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 388.12221875
transcript.pyannote[111].end 388.35846875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 390.04596875
transcript.pyannote[112].end 390.88971875
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 391.05846875
transcript.pyannote[113].end 397.45409375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 397.87596875
transcript.pyannote[114].end 407.86596875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 407.91659375
transcript.pyannote[115].end 420.31971875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 417.67034375
transcript.pyannote[116].end 449.26034375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 424.70721875
transcript.pyannote[117].end 424.94346875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 449.68221875
transcript.pyannote[118].end 461.35971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 461.62971875
transcript.pyannote[119].end 467.68784375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 466.47284375
transcript.pyannote[120].end 467.38409375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 467.68784375
transcript.pyannote[121].end 467.82284375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 467.95784375
transcript.pyannote[122].end 470.25284375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 470.79284375
transcript.pyannote[123].end 478.53846875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 478.99409375
transcript.pyannote[124].end 486.60471875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 487.07721875
transcript.pyannote[125].end 489.03471875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 489.25409375
transcript.pyannote[126].end 503.76659375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 503.95221875
transcript.pyannote[127].end 504.55971875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 504.91409375
transcript.pyannote[128].end 508.72784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 508.76159375
transcript.pyannote[129].end 509.63909375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 509.95971875
transcript.pyannote[130].end 510.66846875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 511.00596875
transcript.pyannote[131].end 517.68846875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 518.26221875
transcript.pyannote[132].end 526.95284375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 527.20596875
transcript.pyannote[133].end 529.60221875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 530.31096875
transcript.pyannote[134].end 553.02471875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 553.15971875
transcript.pyannote[135].end 558.86346875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 559.03221875
transcript.pyannote[136].end 560.63534375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 561.12471875
transcript.pyannote[137].end 578.43846875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 578.77596875
transcript.pyannote[138].end 580.05846875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 580.91909375
transcript.pyannote[139].end 584.73284375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 584.83409375
transcript.pyannote[140].end 586.16721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 586.74096875
transcript.pyannote[141].end 588.39471875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 588.66471875
transcript.pyannote[142].end 591.55034375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 591.73596875
transcript.pyannote[143].end 594.23346875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 594.52034375
transcript.pyannote[144].end 595.33034375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 595.87034375
transcript.pyannote[145].end 596.41034375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 596.69721875
transcript.pyannote[146].end 598.87409375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 599.36346875
transcript.pyannote[147].end 601.32096875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 601.65846875
transcript.pyannote[148].end 603.00846875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 603.29534375
transcript.pyannote[149].end 603.46409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 603.46409375
transcript.pyannote[150].end 609.03284375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 603.48096875
transcript.pyannote[151].end 603.70034375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 609.03284375
transcript.pyannote[152].end 610.39971875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 610.88909375
transcript.pyannote[153].end 612.27284375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 612.66096875
transcript.pyannote[154].end 614.23034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 614.55096875
transcript.pyannote[155].end 616.03596875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 616.27221875
transcript.pyannote[156].end 640.80846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 641.50034375
transcript.pyannote[157].end 647.79471875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 648.36846875
transcript.pyannote[158].end 649.83659375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 650.07284375
transcript.pyannote[159].end 655.00034375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 654.13971875
transcript.pyannote[160].end 654.98346875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 655.00034375
transcript.pyannote[161].end 656.02971875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 656.02971875
transcript.pyannote[162].end 658.42596875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 656.72159375
transcript.pyannote[163].end 656.95784375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 658.84784375
transcript.pyannote[164].end 659.75909375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 660.11346875
transcript.pyannote[165].end 662.08784375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 666.91409375
transcript.pyannote[166].end 667.69034375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 668.36534375
transcript.pyannote[167].end 669.90096875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 670.45784375
transcript.pyannote[168].end 670.99784375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 671.74034375
transcript.pyannote[169].end 673.90034375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 675.09846875
transcript.pyannote[170].end 676.34721875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 677.17409375
transcript.pyannote[171].end 677.88284375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 678.79409375
transcript.pyannote[172].end 679.92471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 681.13971875
transcript.pyannote[173].end 683.23221875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 683.95784375
transcript.pyannote[174].end 684.46409375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 684.86909375
transcript.pyannote[175].end 686.15159375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 686.62409375
transcript.pyannote[176].end 687.51846875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 688.27784375
transcript.pyannote[177].end 689.49284375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 690.04971875
transcript.pyannote[178].end 695.07846875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 695.70284375
transcript.pyannote[179].end 698.50409375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 699.29721875
transcript.pyannote[180].end 704.08971875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 704.44409375
transcript.pyannote[181].end 705.65909375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 705.96284375
transcript.pyannote[182].end 706.31721875
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 707.95409375
transcript.pyannote[183].end 710.97471875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 711.39659375
transcript.pyannote[184].end 712.69596875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 713.37096875
transcript.pyannote[185].end 717.13409375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 717.74159375
transcript.pyannote[186].end 732.00096875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 720.03659375
transcript.pyannote[187].end 720.74534375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 732.28784375
transcript.pyannote[188].end 736.13534375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 736.96221875
transcript.pyannote[189].end 739.79721875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 742.14284375
transcript.pyannote[190].end 742.49721875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 742.88534375
transcript.pyannote[191].end 744.30284375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 744.60659375
transcript.pyannote[192].end 745.55159375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 746.20971875
transcript.pyannote[193].end 747.86346875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 748.33596875
transcript.pyannote[194].end 750.20909375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 750.73221875
transcript.pyannote[195].end 753.38159375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 753.71909375
transcript.pyannote[196].end 755.18721875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 756.52034375
transcript.pyannote[197].end 757.78596875
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 758.32596875
transcript.pyannote[198].end 759.59159375
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 759.97971875
transcript.pyannote[199].end 760.51971875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 761.86971875
transcript.pyannote[200].end 762.89909375
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 764.24909375
transcript.pyannote[201].end 764.51909375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 764.70471875
transcript.pyannote[202].end 768.67034375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 768.97409375
transcript.pyannote[203].end 772.12971875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 772.45034375
transcript.pyannote[204].end 772.72034375
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 772.90596875
transcript.pyannote[205].end 775.84221875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 774.34034375
transcript.pyannote[206].end 775.33596875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 776.16284375
transcript.pyannote[207].end 777.20909375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 778.00221875
transcript.pyannote[208].end 784.14471875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 785.25846875
transcript.pyannote[209].end 787.78971875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 787.06409375
transcript.pyannote[210].end 787.95846875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 788.68409375
transcript.pyannote[211].end 789.10596875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 789.10596875
transcript.pyannote[212].end 791.50221875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 789.12284375
transcript.pyannote[213].end 814.67159375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 811.27971875
transcript.pyannote[214].end 811.44846875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 812.15721875
transcript.pyannote[215].end 812.74784375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 814.89096875
transcript.pyannote[216].end 821.94471875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 822.28221875
transcript.pyannote[217].end 824.96534375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 825.67409375
transcript.pyannote[218].end 829.40346875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 830.16284375
transcript.pyannote[219].end 830.56784375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 831.34409375
transcript.pyannote[220].end 831.83346875
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 832.42409375
transcript.pyannote[221].end 842.49846875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 842.76846875
transcript.pyannote[222].end 848.15159375
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 846.14346875
transcript.pyannote[223].end 849.50159375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 848.38784375
transcript.pyannote[224].end 850.63221875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 850.32846875
transcript.pyannote[225].end 852.48846875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 852.82596875
transcript.pyannote[226].end 853.56846875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 854.95221875
transcript.pyannote[227].end 856.97721875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 856.97721875
transcript.pyannote[228].end 857.09534375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 858.07409375
transcript.pyannote[229].end 861.07784375
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 861.07784375
transcript.pyannote[230].end 861.09471875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 861.63471875
transcript.pyannote[231].end 862.27596875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 862.27596875
transcript.pyannote[232].end 862.29284375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 863.37284375
transcript.pyannote[233].end 863.38971875
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 863.38971875
transcript.pyannote[234].end 863.82846875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 863.99721875
transcript.pyannote[235].end 866.42721875
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 869.22846875
transcript.pyannote[236].end 869.58284375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 869.66721875
transcript.pyannote[237].end 870.74721875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 871.33784375
transcript.pyannote[238].end 875.11784375
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 877.46346875
transcript.pyannote[239].end 878.69534375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 879.03284375
transcript.pyannote[240].end 879.55596875
transcript.pyannote[241].speaker SPEAKER_01
transcript.pyannote[241].start 880.48409375
transcript.pyannote[241].end 882.42471875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 883.67346875
transcript.pyannote[242].end 887.36909375
transcript.pyannote[243].speaker SPEAKER_01
transcript.pyannote[243].start 888.14534375
transcript.pyannote[243].end 891.87471875
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 892.33034375
transcript.pyannote[244].end 894.01784375
transcript.pyannote[245].speaker SPEAKER_01
transcript.pyannote[245].start 894.40596875
transcript.pyannote[245].end 898.57409375
transcript.pyannote[246].speaker SPEAKER_01
transcript.pyannote[246].start 899.02971875
transcript.pyannote[246].end 903.46784375
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 903.61971875
transcript.pyannote[247].end 904.73346875
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 904.96971875
transcript.pyannote[248].end 916.05659375
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 918.19971875
transcript.pyannote[249].end 923.43096875
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 923.76846875
transcript.pyannote[250].end 924.78096875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 925.38846875
transcript.pyannote[251].end 931.12596875
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 931.31159375
transcript.pyannote[252].end 932.83034375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 933.15096875
transcript.pyannote[253].end 934.19721875
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 934.55159375
transcript.pyannote[254].end 936.47534375
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 937.11659375
transcript.pyannote[255].end 939.73221875
transcript.pyannote[256].speaker SPEAKER_01
transcript.pyannote[256].start 940.17096875
transcript.pyannote[256].end 948.60846875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 948.89534375
transcript.pyannote[257].end 957.38346875
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 957.77159375
transcript.pyannote[258].end 959.74596875
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 960.03284375
transcript.pyannote[259].end 960.89346875
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 962.15909375
transcript.pyannote[260].end 977.98784375
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 978.67971875
transcript.pyannote[261].end 983.99534375
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 984.73784375
transcript.pyannote[262].end 985.36221875
transcript.pyannote[263].speaker SPEAKER_01
transcript.pyannote[263].start 985.63221875
transcript.pyannote[263].end 986.52659375
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 986.94846875
transcript.pyannote[264].end 999.99284375
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 1000.22909375
transcript.pyannote[265].end 1000.87034375
transcript.pyannote[266].speaker SPEAKER_01
transcript.pyannote[266].start 1001.47784375
transcript.pyannote[266].end 1002.47346875
transcript.pyannote[267].speaker SPEAKER_01
transcript.pyannote[267].start 1003.03034375
transcript.pyannote[267].end 1004.09346875
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 1004.58284375
transcript.pyannote[268].end 1007.35034375
transcript.pyannote[269].speaker SPEAKER_01
transcript.pyannote[269].start 1007.48534375
transcript.pyannote[269].end 1012.85159375
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 1013.20596875
transcript.pyannote[270].end 1015.92284375
transcript.pyannote[271].speaker SPEAKER_01
transcript.pyannote[271].start 1016.73284375
transcript.pyannote[271].end 1024.29284375
transcript.pyannote[272].speaker SPEAKER_01
transcript.pyannote[272].start 1024.61346875
transcript.pyannote[272].end 1026.14909375
transcript.pyannote[273].speaker SPEAKER_01
transcript.pyannote[273].start 1026.25034375
transcript.pyannote[273].end 1028.19096875
transcript.pyannote[274].speaker SPEAKER_01
transcript.pyannote[274].start 1028.39346875
transcript.pyannote[274].end 1029.01784375
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 1031.09346875
transcript.pyannote[275].end 1031.61659375
transcript.pyannote[276].speaker SPEAKER_01
transcript.pyannote[276].start 1032.57846875
transcript.pyannote[276].end 1032.84846875
transcript.pyannote[277].speaker SPEAKER_01
transcript.pyannote[277].start 1033.74284375
transcript.pyannote[277].end 1034.67096875
transcript.pyannote[278].speaker SPEAKER_01
transcript.pyannote[278].start 1035.09284375
transcript.pyannote[278].end 1035.56534375
transcript.pyannote[279].speaker SPEAKER_01
transcript.pyannote[279].start 1035.95346875
transcript.pyannote[279].end 1037.33721875
transcript.pyannote[280].speaker SPEAKER_01
transcript.pyannote[280].start 1038.06284375
transcript.pyannote[280].end 1038.88971875
transcript.pyannote[281].speaker SPEAKER_01
transcript.pyannote[281].start 1039.41284375
transcript.pyannote[281].end 1040.59409375
transcript.pyannote[282].speaker SPEAKER_01
transcript.pyannote[282].start 1041.11721875
transcript.pyannote[282].end 1041.58971875
transcript.pyannote[283].speaker SPEAKER_01
transcript.pyannote[283].start 1041.74159375
transcript.pyannote[283].end 1042.92284375
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 1043.95221875
transcript.pyannote[284].end 1044.27284375
transcript.pyannote[285].speaker SPEAKER_01
transcript.pyannote[285].start 1044.27284375
transcript.pyannote[285].end 1046.68596875
transcript.pyannote[286].speaker SPEAKER_01
transcript.pyannote[286].start 1047.04034375
transcript.pyannote[286].end 1048.69409375
transcript.pyannote[287].speaker SPEAKER_01
transcript.pyannote[287].start 1049.36909375
transcript.pyannote[287].end 1051.27596875
transcript.pyannote[288].speaker SPEAKER_01
transcript.pyannote[288].start 1051.56284375
transcript.pyannote[288].end 1052.54159375
transcript.pyannote[289].speaker SPEAKER_01
transcript.pyannote[289].start 1052.79471875
transcript.pyannote[289].end 1065.41721875
transcript.pyannote[290].speaker SPEAKER_01
transcript.pyannote[290].start 1065.99096875
transcript.pyannote[290].end 1070.41221875
transcript.pyannote[291].speaker SPEAKER_01
transcript.pyannote[291].start 1070.93534375
transcript.pyannote[291].end 1074.85034375
transcript.pyannote[292].speaker SPEAKER_01
transcript.pyannote[292].start 1075.39034375
transcript.pyannote[292].end 1075.96409375
transcript.pyannote[293].speaker SPEAKER_01
transcript.pyannote[293].start 1076.84159375
transcript.pyannote[293].end 1079.62596875
transcript.pyannote[294].speaker SPEAKER_01
transcript.pyannote[294].start 1079.94659375
transcript.pyannote[294].end 1092.99096875
transcript.pyannote[295].speaker SPEAKER_01
transcript.pyannote[295].start 1093.46346875
transcript.pyannote[295].end 1095.97784375
transcript.pyannote[296].speaker SPEAKER_01
transcript.pyannote[296].start 1097.07471875
transcript.pyannote[296].end 1097.58096875
transcript.pyannote[297].speaker SPEAKER_01
transcript.pyannote[297].start 1098.08721875
transcript.pyannote[297].end 1099.67346875
transcript.pyannote[298].speaker SPEAKER_01
transcript.pyannote[298].start 1099.97721875
transcript.pyannote[298].end 1101.85034375
transcript.pyannote[299].speaker SPEAKER_01
transcript.pyannote[299].start 1101.95159375
transcript.pyannote[299].end 1115.60346875
transcript.pyannote[300].speaker SPEAKER_01
transcript.pyannote[300].start 1115.92409375
transcript.pyannote[300].end 1117.47659375
transcript.pyannote[301].speaker SPEAKER_01
transcript.pyannote[301].start 1118.33721875
transcript.pyannote[301].end 1121.37471875
transcript.pyannote[302].speaker SPEAKER_01
transcript.pyannote[302].start 1121.72909375
transcript.pyannote[302].end 1130.23409375
transcript.pyannote[303].speaker SPEAKER_01
transcript.pyannote[303].start 1131.09471875
transcript.pyannote[303].end 1141.47284375
transcript.pyannote[304].speaker SPEAKER_01
transcript.pyannote[304].start 1141.91159375
transcript.pyannote[304].end 1157.03159375
transcript.pyannote[305].speaker SPEAKER_02
transcript.pyannote[305].start 1157.26784375
transcript.pyannote[305].end 1157.31846875
transcript.pyannote[306].speaker SPEAKER_01
transcript.pyannote[306].start 1157.31846875
transcript.pyannote[306].end 1157.95971875
transcript.pyannote[307].speaker SPEAKER_02
transcript.pyannote[307].start 1157.52096875
transcript.pyannote[307].end 1162.58346875
transcript.pyannote[308].speaker SPEAKER_02
transcript.pyannote[308].start 1162.97159375
transcript.pyannote[308].end 1164.76034375
transcript.pyannote[309].speaker SPEAKER_02
transcript.pyannote[309].start 1165.14846875
transcript.pyannote[309].end 1165.45221875
transcript.pyannote[310].speaker SPEAKER_02
transcript.pyannote[310].start 1165.68846875
transcript.pyannote[310].end 1169.56971875
transcript.pyannote[311].speaker SPEAKER_02
transcript.pyannote[311].start 1170.12659375
transcript.pyannote[311].end 1174.58159375
transcript.pyannote[312].speaker SPEAKER_02
transcript.pyannote[312].start 1174.95284375
transcript.pyannote[312].end 1176.04971875
transcript.pyannote[313].speaker SPEAKER_02
transcript.pyannote[313].start 1176.31971875
transcript.pyannote[313].end 1178.17596875
transcript.pyannote[314].speaker SPEAKER_02
transcript.pyannote[314].start 1178.29409375
transcript.pyannote[314].end 1179.40784375
transcript.pyannote[315].speaker SPEAKER_02
transcript.pyannote[315].start 1179.76221875
transcript.pyannote[315].end 1180.69034375
transcript.pyannote[316].speaker SPEAKER_02
transcript.pyannote[316].start 1181.28096875
transcript.pyannote[316].end 1185.87096875
transcript.pyannote[317].speaker SPEAKER_02
transcript.pyannote[317].start 1186.29284375
transcript.pyannote[317].end 1188.45284375
transcript.pyannote[318].speaker SPEAKER_02
transcript.pyannote[318].start 1188.65534375
transcript.pyannote[318].end 1189.98846875
transcript.pyannote[319].speaker SPEAKER_02
transcript.pyannote[319].start 1190.27534375
transcript.pyannote[319].end 1192.72221875
transcript.pyannote[320].speaker SPEAKER_02
transcript.pyannote[320].start 1192.87409375
transcript.pyannote[320].end 1196.08034375
transcript.pyannote[321].speaker SPEAKER_02
transcript.pyannote[321].start 1196.51909375
transcript.pyannote[321].end 1199.75909375
transcript.pyannote[322].speaker SPEAKER_02
transcript.pyannote[322].start 1200.16409375
transcript.pyannote[322].end 1205.29409375
transcript.pyannote[323].speaker SPEAKER_02
transcript.pyannote[323].start 1205.51346875
transcript.pyannote[323].end 1206.55971875
transcript.pyannote[324].speaker SPEAKER_02
transcript.pyannote[324].start 1206.84659375
transcript.pyannote[324].end 1208.29784375
transcript.pyannote[325].speaker SPEAKER_02
transcript.pyannote[325].start 1208.70284375
transcript.pyannote[325].end 1211.55471875
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 1211.70659375
transcript.pyannote[326].end 1218.62534375
transcript.pyannote[327].speaker SPEAKER_01
transcript.pyannote[327].start 1217.88284375
transcript.pyannote[327].end 1217.95034375
transcript.pyannote[328].speaker SPEAKER_02
transcript.pyannote[328].start 1219.24971875
transcript.pyannote[328].end 1219.73909375
transcript.pyannote[329].speaker SPEAKER_02
transcript.pyannote[329].start 1220.16096875
transcript.pyannote[329].end 1221.10596875
transcript.pyannote[330].speaker SPEAKER_01
transcript.pyannote[330].start 1221.10596875
transcript.pyannote[330].end 1221.71346875
transcript.pyannote[331].speaker SPEAKER_01
transcript.pyannote[331].start 1222.47284375
transcript.pyannote[331].end 1222.94534375
transcript.pyannote[332].speaker SPEAKER_01
transcript.pyannote[332].start 1225.54409375
transcript.pyannote[332].end 1226.03346875
transcript.pyannote[333].speaker SPEAKER_01
transcript.pyannote[333].start 1227.06284375
transcript.pyannote[333].end 1227.90659375
transcript.pyannote[334].speaker SPEAKER_01
transcript.pyannote[334].start 1229.02034375
transcript.pyannote[334].end 1230.79221875
transcript.pyannote[335].speaker SPEAKER_01
transcript.pyannote[335].start 1232.07471875
transcript.pyannote[335].end 1233.44159375
transcript.pyannote[336].speaker SPEAKER_01
transcript.pyannote[336].start 1234.01534375
transcript.pyannote[336].end 1237.52534375
transcript.pyannote[337].speaker SPEAKER_01
transcript.pyannote[337].start 1239.02721875
transcript.pyannote[337].end 1240.93409375
transcript.pyannote[338].speaker SPEAKER_01
transcript.pyannote[338].start 1241.99721875
transcript.pyannote[338].end 1249.40534375
transcript.pyannote[339].speaker SPEAKER_01
transcript.pyannote[339].start 1250.97471875
transcript.pyannote[339].end 1254.41721875
transcript.pyannote[340].speaker SPEAKER_01
transcript.pyannote[340].start 1255.63221875
transcript.pyannote[340].end 1256.88096875
transcript.pyannote[341].speaker SPEAKER_01
transcript.pyannote[341].start 1257.42096875
transcript.pyannote[341].end 1259.85096875
transcript.pyannote[342].speaker SPEAKER_01
transcript.pyannote[342].start 1260.10409375
transcript.pyannote[342].end 1262.06159375
transcript.pyannote[343].speaker SPEAKER_01
transcript.pyannote[343].start 1262.56784375
transcript.pyannote[343].end 1263.41159375
transcript.pyannote[344].speaker SPEAKER_01
transcript.pyannote[344].start 1263.71534375
transcript.pyannote[344].end 1265.14971875
transcript.pyannote[345].speaker SPEAKER_01
transcript.pyannote[345].start 1265.20034375
transcript.pyannote[345].end 1266.11159375
transcript.pyannote[346].speaker SPEAKER_01
transcript.pyannote[346].start 1267.09034375
transcript.pyannote[346].end 1280.84346875
transcript.pyannote[347].speaker SPEAKER_01
transcript.pyannote[347].start 1281.73784375
transcript.pyannote[347].end 1282.88534375
transcript.pyannote[348].speaker SPEAKER_01
transcript.pyannote[348].start 1283.56034375
transcript.pyannote[348].end 1286.07471875
transcript.pyannote[349].speaker SPEAKER_01
transcript.pyannote[349].start 1286.71596875
transcript.pyannote[349].end 1289.26409375
transcript.pyannote[350].speaker SPEAKER_01
transcript.pyannote[350].start 1290.09096875
transcript.pyannote[350].end 1290.58034375
transcript.pyannote[351].speaker SPEAKER_01
transcript.pyannote[351].start 1290.93471875
transcript.pyannote[351].end 1291.93034375
transcript.pyannote[352].speaker SPEAKER_01
transcript.pyannote[352].start 1292.53784375
transcript.pyannote[352].end 1293.34784375
transcript.pyannote[353].speaker SPEAKER_01
transcript.pyannote[353].start 1294.00596875
transcript.pyannote[353].end 1295.11971875
transcript.pyannote[354].speaker SPEAKER_01
transcript.pyannote[354].start 1295.65971875
transcript.pyannote[354].end 1296.16596875
transcript.pyannote[355].speaker SPEAKER_01
transcript.pyannote[355].start 1296.65534375
transcript.pyannote[355].end 1297.71846875
transcript.pyannote[356].speaker SPEAKER_01
transcript.pyannote[356].start 1298.14034375
transcript.pyannote[356].end 1299.18659375
transcript.pyannote[357].speaker SPEAKER_02
transcript.pyannote[357].start 1299.92909375
transcript.pyannote[357].end 1299.94596875
transcript.pyannote[358].speaker SPEAKER_01
transcript.pyannote[358].start 1299.94596875
transcript.pyannote[358].end 1299.96284375
transcript.pyannote[359].speaker SPEAKER_02
transcript.pyannote[359].start 1299.96284375
transcript.pyannote[359].end 1300.03034375
transcript.pyannote[360].speaker SPEAKER_01
transcript.pyannote[360].start 1300.03034375
transcript.pyannote[360].end 1300.95846875
transcript.pyannote[361].speaker SPEAKER_02
transcript.pyannote[361].start 1301.49846875
transcript.pyannote[361].end 1301.75159375
transcript.pyannote[362].speaker SPEAKER_01
transcript.pyannote[362].start 1302.30846875
transcript.pyannote[362].end 1303.42221875
transcript.pyannote[363].speaker SPEAKER_01
transcript.pyannote[363].start 1303.62471875
transcript.pyannote[363].end 1316.95596875
transcript.pyannote[364].speaker SPEAKER_01
transcript.pyannote[364].start 1317.59721875
transcript.pyannote[364].end 1320.34784375
transcript.pyannote[365].speaker SPEAKER_01
transcript.pyannote[365].start 1320.36471875
transcript.pyannote[365].end 1321.86659375
transcript.pyannote[366].speaker SPEAKER_02
transcript.pyannote[366].start 1322.49096875
transcript.pyannote[366].end 1322.74409375
transcript.pyannote[367].speaker SPEAKER_01
transcript.pyannote[367].start 1323.01409375
transcript.pyannote[367].end 1325.14034375
transcript.pyannote[368].speaker SPEAKER_01
transcript.pyannote[368].start 1326.81096875
transcript.pyannote[368].end 1327.65471875
transcript.pyannote[369].speaker SPEAKER_01
transcript.pyannote[369].start 1328.11034375
transcript.pyannote[369].end 1328.65034375
transcript.pyannote[370].speaker SPEAKER_01
transcript.pyannote[370].start 1329.62909375
transcript.pyannote[370].end 1331.94096875
transcript.pyannote[371].speaker SPEAKER_01
transcript.pyannote[371].start 1332.48096875
transcript.pyannote[371].end 1333.02096875
transcript.pyannote[372].speaker SPEAKER_01
transcript.pyannote[372].start 1333.42596875
transcript.pyannote[372].end 1334.80971875
transcript.pyannote[373].speaker SPEAKER_01
transcript.pyannote[373].start 1335.85596875
transcript.pyannote[373].end 1341.27284375
transcript.pyannote[374].speaker SPEAKER_01
transcript.pyannote[374].start 1342.06596875
transcript.pyannote[374].end 1343.75346875
transcript.pyannote[375].speaker SPEAKER_01
transcript.pyannote[375].start 1345.01909375
transcript.pyannote[375].end 1345.60971875
transcript.pyannote[376].speaker SPEAKER_01
transcript.pyannote[376].start 1346.36909375
transcript.pyannote[376].end 1347.04409375
transcript.pyannote[377].speaker SPEAKER_01
transcript.pyannote[377].start 1347.87096875
transcript.pyannote[377].end 1348.49534375
transcript.pyannote[378].speaker SPEAKER_01
transcript.pyannote[378].start 1348.90034375
transcript.pyannote[378].end 1349.99721875
transcript.pyannote[379].speaker SPEAKER_01
transcript.pyannote[379].start 1350.23346875
transcript.pyannote[379].end 1351.09409375
transcript.pyannote[380].speaker SPEAKER_01
transcript.pyannote[380].start 1351.81971875
transcript.pyannote[380].end 1352.32596875
transcript.pyannote[381].speaker SPEAKER_01
transcript.pyannote[381].start 1353.59159375
transcript.pyannote[381].end 1354.92471875
transcript.pyannote[382].speaker SPEAKER_01
transcript.pyannote[382].start 1355.66721875
transcript.pyannote[382].end 1356.34221875
transcript.pyannote[383].speaker SPEAKER_01
transcript.pyannote[383].start 1356.47721875
transcript.pyannote[383].end 1364.15534375
transcript.pyannote[384].speaker SPEAKER_00
transcript.pyannote[384].start 1361.48909375
transcript.pyannote[384].end 1362.78846875
transcript.pyannote[385].speaker SPEAKER_00
transcript.pyannote[385].start 1362.82221875
transcript.pyannote[385].end 1362.85596875
transcript.pyannote[386].speaker SPEAKER_00
transcript.pyannote[386].start 1363.00784375
transcript.pyannote[386].end 1363.76721875
transcript.pyannote[387].speaker SPEAKER_01
transcript.pyannote[387].start 1364.47596875
transcript.pyannote[387].end 1373.18346875
transcript.pyannote[388].speaker SPEAKER_01
transcript.pyannote[388].start 1373.85846875
transcript.pyannote[388].end 1376.94659375
transcript.pyannote[389].speaker SPEAKER_01
transcript.pyannote[389].start 1378.38096875
transcript.pyannote[389].end 1379.07284375
transcript.pyannote[390].speaker SPEAKER_01
transcript.pyannote[390].start 1379.61284375
transcript.pyannote[390].end 1381.94159375
transcript.pyannote[391].speaker SPEAKER_01
transcript.pyannote[391].start 1382.14409375
transcript.pyannote[391].end 1383.47721875
transcript.pyannote[392].speaker SPEAKER_01
transcript.pyannote[392].start 1384.08471875
transcript.pyannote[392].end 1388.50596875
transcript.pyannote[393].speaker SPEAKER_01
transcript.pyannote[393].start 1388.92784375
transcript.pyannote[393].end 1390.75034375
transcript.pyannote[394].speaker SPEAKER_01
transcript.pyannote[394].start 1391.39159375
transcript.pyannote[394].end 1396.65659375
transcript.pyannote[395].speaker SPEAKER_01
transcript.pyannote[395].start 1396.90971875
transcript.pyannote[395].end 1400.50409375
transcript.pyannote[396].speaker SPEAKER_01
transcript.pyannote[396].start 1400.85846875
transcript.pyannote[396].end 1404.26721875
transcript.pyannote[397].speaker SPEAKER_01
transcript.pyannote[397].start 1404.77346875
transcript.pyannote[397].end 1406.27534375
transcript.pyannote[398].speaker SPEAKER_01
transcript.pyannote[398].start 1406.71409375
transcript.pyannote[398].end 1411.59096875
transcript.pyannote[399].speaker SPEAKER_01
transcript.pyannote[399].start 1411.87784375
transcript.pyannote[399].end 1424.88846875
transcript.pyannote[400].speaker SPEAKER_01
transcript.pyannote[400].start 1426.37346875
transcript.pyannote[400].end 1428.65159375
transcript.pyannote[401].speaker SPEAKER_01
transcript.pyannote[401].start 1429.17471875
transcript.pyannote[401].end 1440.75096875
transcript.pyannote[402].speaker SPEAKER_01
transcript.pyannote[402].start 1441.07159375
transcript.pyannote[402].end 1451.31471875
transcript.pyannote[403].speaker SPEAKER_01
transcript.pyannote[403].start 1452.05721875
transcript.pyannote[403].end 1453.71096875
transcript.pyannote[404].speaker SPEAKER_01
transcript.pyannote[404].start 1454.53784375
transcript.pyannote[404].end 1456.44471875
transcript.pyannote[405].speaker SPEAKER_01
transcript.pyannote[405].start 1457.13659375
transcript.pyannote[405].end 1458.11534375
transcript.pyannote[406].speaker SPEAKER_01
transcript.pyannote[406].start 1458.45284375
transcript.pyannote[406].end 1460.57909375
transcript.pyannote[407].speaker SPEAKER_01
transcript.pyannote[407].start 1461.03471875
transcript.pyannote[407].end 1462.75596875
transcript.pyannote[408].speaker SPEAKER_01
transcript.pyannote[408].start 1462.97534375
transcript.pyannote[408].end 1473.74159375
transcript.pyannote[409].speaker SPEAKER_01
transcript.pyannote[409].start 1473.85971875
transcript.pyannote[409].end 1474.24784375
transcript.pyannote[410].speaker SPEAKER_01
transcript.pyannote[410].start 1475.14221875
transcript.pyannote[410].end 1477.08284375
transcript.pyannote[411].speaker SPEAKER_01
transcript.pyannote[411].start 1477.55534375
transcript.pyannote[411].end 1479.47909375
transcript.pyannote[412].speaker SPEAKER_02
transcript.pyannote[412].start 1479.47909375
transcript.pyannote[412].end 1481.04846875
transcript.pyannote[413].speaker SPEAKER_01
transcript.pyannote[413].start 1481.04846875
transcript.pyannote[413].end 1482.29721875
transcript.pyannote[414].speaker SPEAKER_01
transcript.pyannote[414].start 1482.87096875
transcript.pyannote[414].end 1484.10284375
transcript.pyannote[415].speaker SPEAKER_02
transcript.pyannote[415].start 1484.10284375
transcript.pyannote[415].end 1485.62159375
transcript.pyannote[416].speaker SPEAKER_01
transcript.pyannote[416].start 1485.19971875
transcript.pyannote[416].end 1486.00971875
transcript.pyannote[417].speaker SPEAKER_01
transcript.pyannote[417].start 1486.22909375
transcript.pyannote[417].end 1488.27096875
transcript.pyannote[418].speaker SPEAKER_01
transcript.pyannote[418].start 1488.52409375
transcript.pyannote[418].end 1500.91034375
transcript.pyannote[419].speaker SPEAKER_01
transcript.pyannote[419].start 1501.48409375
transcript.pyannote[419].end 1506.25971875
transcript.pyannote[420].speaker SPEAKER_01
transcript.pyannote[420].start 1506.73221875
transcript.pyannote[420].end 1509.31409375
transcript.pyannote[421].speaker SPEAKER_01
transcript.pyannote[421].start 1510.25909375
transcript.pyannote[421].end 1528.77096875
transcript.pyannote[422].speaker SPEAKER_01
transcript.pyannote[422].start 1528.99034375
transcript.pyannote[422].end 1536.07784375
transcript.pyannote[423].speaker SPEAKER_01
transcript.pyannote[423].start 1536.88784375
transcript.pyannote[423].end 1551.19784375
transcript.pyannote[424].speaker SPEAKER_01
transcript.pyannote[424].start 1552.49721875
transcript.pyannote[424].end 1555.41659375
transcript.pyannote[425].speaker SPEAKER_01
transcript.pyannote[425].start 1555.87221875
transcript.pyannote[425].end 1557.30659375
transcript.pyannote[426].speaker SPEAKER_01
transcript.pyannote[426].start 1557.79596875
transcript.pyannote[426].end 1558.90971875
transcript.pyannote[427].speaker SPEAKER_01
transcript.pyannote[427].start 1559.34846875
transcript.pyannote[427].end 1561.01909375
transcript.pyannote[428].speaker SPEAKER_01
transcript.pyannote[428].start 1561.23846875
transcript.pyannote[428].end 1570.65471875
transcript.pyannote[429].speaker SPEAKER_01
transcript.pyannote[429].start 1571.59971875
transcript.pyannote[429].end 1575.56534375
transcript.pyannote[430].speaker SPEAKER_01
transcript.pyannote[430].start 1576.03784375
transcript.pyannote[430].end 1580.64471875
transcript.pyannote[431].speaker SPEAKER_01
transcript.pyannote[431].start 1581.16784375
transcript.pyannote[431].end 1593.28409375
transcript.pyannote[432].speaker SPEAKER_01
transcript.pyannote[432].start 1594.76909375
transcript.pyannote[432].end 1595.93346875
transcript.pyannote[433].speaker SPEAKER_01
transcript.pyannote[433].start 1596.22034375
transcript.pyannote[433].end 1600.45596875
transcript.pyannote[434].speaker SPEAKER_01
transcript.pyannote[434].start 1600.70909375
transcript.pyannote[434].end 1601.62034375
transcript.pyannote[435].speaker SPEAKER_01
transcript.pyannote[435].start 1601.94096875
transcript.pyannote[435].end 1607.18909375
transcript.pyannote[436].speaker SPEAKER_01
transcript.pyannote[436].start 1607.86409375
transcript.pyannote[436].end 1608.38721875
transcript.pyannote[437].speaker SPEAKER_01
transcript.pyannote[437].start 1609.87221875
transcript.pyannote[437].end 1613.38221875
transcript.pyannote[438].speaker SPEAKER_01
transcript.pyannote[438].start 1613.97284375
transcript.pyannote[438].end 1618.51221875
transcript.pyannote[439].speaker SPEAKER_01
transcript.pyannote[439].start 1619.82846875
transcript.pyannote[439].end 1624.31721875
transcript.pyannote[440].speaker SPEAKER_01
transcript.pyannote[440].start 1624.40159375
transcript.pyannote[440].end 1629.17721875
transcript.pyannote[441].speaker SPEAKER_01
transcript.pyannote[441].start 1631.77596875
transcript.pyannote[441].end 1632.46784375
transcript.pyannote[442].speaker SPEAKER_01
transcript.pyannote[442].start 1632.87284375
transcript.pyannote[442].end 1636.38284375
transcript.pyannote[443].speaker SPEAKER_01
transcript.pyannote[443].start 1636.82159375
transcript.pyannote[443].end 1638.76221875
transcript.pyannote[444].speaker SPEAKER_01
transcript.pyannote[444].start 1639.36971875
transcript.pyannote[444].end 1640.16284375
transcript.pyannote[445].speaker SPEAKER_01
transcript.pyannote[445].start 1640.53409375
transcript.pyannote[445].end 1644.95534375
transcript.pyannote[446].speaker SPEAKER_01
transcript.pyannote[446].start 1645.42784375
transcript.pyannote[446].end 1646.37284375
transcript.pyannote[447].speaker SPEAKER_01
transcript.pyannote[447].start 1647.16596875
transcript.pyannote[447].end 1647.82409375
transcript.pyannote[448].speaker SPEAKER_01
transcript.pyannote[448].start 1648.90409375
transcript.pyannote[448].end 1651.77284375
transcript.pyannote[449].speaker SPEAKER_01
transcript.pyannote[449].start 1651.87409375
transcript.pyannote[449].end 1652.92034375
transcript.pyannote[450].speaker SPEAKER_01
transcript.pyannote[450].start 1653.39284375
transcript.pyannote[450].end 1655.46846875
transcript.pyannote[451].speaker SPEAKER_01
transcript.pyannote[451].start 1656.07596875
transcript.pyannote[451].end 1657.52721875
transcript.pyannote[452].speaker SPEAKER_01
transcript.pyannote[452].start 1657.78034375
transcript.pyannote[452].end 1658.77596875
transcript.pyannote[453].speaker SPEAKER_01
transcript.pyannote[453].start 1659.09659375
transcript.pyannote[453].end 1661.02034375
transcript.pyannote[454].speaker SPEAKER_01
transcript.pyannote[454].start 1661.42534375
transcript.pyannote[454].end 1664.41221875
transcript.pyannote[455].speaker SPEAKER_01
transcript.pyannote[455].start 1664.63159375
transcript.pyannote[455].end 1665.93096875
transcript.pyannote[456].speaker SPEAKER_01
transcript.pyannote[456].start 1666.42034375
transcript.pyannote[456].end 1666.82534375
transcript.pyannote[457].speaker SPEAKER_01
transcript.pyannote[457].start 1667.23034375
transcript.pyannote[457].end 1669.72784375
transcript.pyannote[458].speaker SPEAKER_01
transcript.pyannote[458].start 1670.04846875
transcript.pyannote[458].end 1671.16221875
transcript.pyannote[459].speaker SPEAKER_01
transcript.pyannote[459].start 1671.83721875
transcript.pyannote[459].end 1673.35596875
transcript.pyannote[460].speaker SPEAKER_01
transcript.pyannote[460].start 1674.11534375
transcript.pyannote[460].end 1680.74721875
transcript.pyannote[461].speaker SPEAKER_01
transcript.pyannote[461].start 1680.81471875
transcript.pyannote[461].end 1683.12659375
transcript.pyannote[462].speaker SPEAKER_01
transcript.pyannote[462].start 1683.54846875
transcript.pyannote[462].end 1686.53534375
transcript.pyannote[463].speaker SPEAKER_01
transcript.pyannote[463].start 1687.21034375
transcript.pyannote[463].end 1700.91284375
transcript.pyannote[464].speaker SPEAKER_01
transcript.pyannote[464].start 1701.13221875
transcript.pyannote[464].end 1701.92534375
transcript.pyannote[465].speaker SPEAKER_01
transcript.pyannote[465].start 1702.61721875
transcript.pyannote[465].end 1713.36659375
transcript.pyannote[466].speaker SPEAKER_00
transcript.pyannote[466].start 1703.44409375
transcript.pyannote[466].end 1703.98409375
transcript.pyannote[467].speaker SPEAKER_00
transcript.pyannote[467].start 1707.42659375
transcript.pyannote[467].end 1708.05096875
transcript.pyannote[468].speaker SPEAKER_01
transcript.pyannote[468].start 1713.82221875
transcript.pyannote[468].end 1714.32846875
transcript.pyannote[469].speaker SPEAKER_01
transcript.pyannote[469].start 1714.85159375
transcript.pyannote[469].end 1716.91034375
transcript.pyannote[470].speaker SPEAKER_01
transcript.pyannote[470].start 1716.97784375
transcript.pyannote[470].end 1724.57159375
transcript.pyannote[471].speaker SPEAKER_01
transcript.pyannote[471].start 1725.26346875
transcript.pyannote[471].end 1734.10596875
transcript.pyannote[472].speaker SPEAKER_01
transcript.pyannote[472].start 1734.44346875
transcript.pyannote[472].end 1738.78034375
transcript.pyannote[473].speaker SPEAKER_01
transcript.pyannote[473].start 1739.21909375
transcript.pyannote[473].end 1742.79659375
transcript.pyannote[474].speaker SPEAKER_01
transcript.pyannote[474].start 1743.38721875
transcript.pyannote[474].end 1747.20096875
transcript.pyannote[475].speaker SPEAKER_01
transcript.pyannote[475].start 1747.47096875
transcript.pyannote[475].end 1748.28096875
transcript.pyannote[476].speaker SPEAKER_01
transcript.pyannote[476].start 1748.43284375
transcript.pyannote[476].end 1750.15409375
transcript.pyannote[477].speaker SPEAKER_01
transcript.pyannote[477].start 1750.67721875
transcript.pyannote[477].end 1751.14971875
transcript.pyannote[478].speaker SPEAKER_01
transcript.pyannote[478].start 1751.65596875
transcript.pyannote[478].end 1758.55784375
transcript.pyannote[479].speaker SPEAKER_01
transcript.pyannote[479].start 1759.13159375
transcript.pyannote[479].end 1764.80159375
transcript.pyannote[480].speaker SPEAKER_02
transcript.pyannote[480].start 1765.29096875
transcript.pyannote[480].end 1766.16846875
transcript.pyannote[481].speaker SPEAKER_01
transcript.pyannote[481].start 1766.16846875
transcript.pyannote[481].end 1766.18534375
transcript.pyannote[482].speaker SPEAKER_01
transcript.pyannote[482].start 1766.50596875
transcript.pyannote[482].end 1766.53971875
transcript.pyannote[483].speaker SPEAKER_02
transcript.pyannote[483].start 1766.53971875
transcript.pyannote[483].end 1767.48471875
transcript.pyannote[484].speaker SPEAKER_02
transcript.pyannote[484].start 1767.80534375
transcript.pyannote[484].end 1771.78784375
transcript.pyannote[485].speaker SPEAKER_02
transcript.pyannote[485].start 1772.14221875
transcript.pyannote[485].end 1773.15471875
transcript.pyannote[486].speaker SPEAKER_02
transcript.pyannote[486].start 1773.50909375
transcript.pyannote[486].end 1775.53409375
transcript.pyannote[487].speaker SPEAKER_02
transcript.pyannote[487].start 1776.00659375
transcript.pyannote[487].end 1777.98096875
transcript.pyannote[488].speaker SPEAKER_02
transcript.pyannote[488].start 1778.21721875
transcript.pyannote[488].end 1779.36471875
transcript.pyannote[489].speaker SPEAKER_02
transcript.pyannote[489].start 1779.75284375
transcript.pyannote[489].end 1781.69346875
transcript.pyannote[490].speaker SPEAKER_02
transcript.pyannote[490].start 1782.52034375
transcript.pyannote[490].end 1785.77721875
transcript.pyannote[491].speaker SPEAKER_01
transcript.pyannote[491].start 1782.63846875
transcript.pyannote[491].end 1783.09409375
transcript.pyannote[492].speaker SPEAKER_01
transcript.pyannote[492].start 1785.00096875
transcript.pyannote[492].end 1786.57034375
transcript.pyannote[493].speaker SPEAKER_01
transcript.pyannote[493].start 1787.27909375
transcript.pyannote[493].end 1788.71346875
transcript.pyannote[494].speaker SPEAKER_02
transcript.pyannote[494].start 1788.83159375
transcript.pyannote[494].end 1789.67534375
transcript.pyannote[495].speaker SPEAKER_02
transcript.pyannote[495].start 1790.31659375
transcript.pyannote[495].end 1792.03784375
transcript.pyannote[496].speaker SPEAKER_02
transcript.pyannote[496].start 1792.49346875
transcript.pyannote[496].end 1796.13846875
transcript.pyannote[497].speaker SPEAKER_02
transcript.pyannote[497].start 1796.62784375
transcript.pyannote[497].end 1797.45471875
transcript.pyannote[498].speaker SPEAKER_01
transcript.pyannote[498].start 1797.45471875
transcript.pyannote[498].end 1797.64034375
transcript.pyannote[499].speaker SPEAKER_02
transcript.pyannote[499].start 1797.64034375
transcript.pyannote[499].end 1797.67409375
transcript.pyannote[500].speaker SPEAKER_01
transcript.pyannote[500].start 1797.67409375
transcript.pyannote[500].end 1797.92721875
transcript.pyannote[501].speaker SPEAKER_02
transcript.pyannote[501].start 1797.92721875
transcript.pyannote[501].end 1797.96096875
transcript.pyannote[502].speaker SPEAKER_01
transcript.pyannote[502].start 1797.96096875
transcript.pyannote[502].end 1798.21409375
transcript.pyannote[503].speaker SPEAKER_01
transcript.pyannote[503].start 1798.33221875
transcript.pyannote[503].end 1799.59784375
transcript.pyannote[504].speaker SPEAKER_01
transcript.pyannote[504].start 1800.39096875
transcript.pyannote[504].end 1801.18409375
transcript.pyannote[505].speaker SPEAKER_01
transcript.pyannote[505].start 1801.50471875
transcript.pyannote[505].end 1804.45784375
transcript.pyannote[506].speaker SPEAKER_01
transcript.pyannote[506].start 1805.03159375
transcript.pyannote[506].end 1808.28846875
transcript.pyannote[507].speaker SPEAKER_01
transcript.pyannote[507].start 1808.65971875
transcript.pyannote[507].end 1808.72721875
transcript.pyannote[508].speaker SPEAKER_02
transcript.pyannote[508].start 1808.72721875
transcript.pyannote[508].end 1808.81159375
transcript.pyannote[509].speaker SPEAKER_01
transcript.pyannote[509].start 1808.81159375
transcript.pyannote[509].end 1808.87909375
transcript.pyannote[510].speaker SPEAKER_02
transcript.pyannote[510].start 1808.87909375
transcript.pyannote[510].end 1808.89596875
transcript.pyannote[511].speaker SPEAKER_01
transcript.pyannote[511].start 1808.89596875
transcript.pyannote[511].end 1808.96346875
transcript.pyannote[512].speaker SPEAKER_02
transcript.pyannote[512].start 1808.96346875
transcript.pyannote[512].end 1809.13221875
transcript.pyannote[513].speaker SPEAKER_01
transcript.pyannote[513].start 1809.13221875
transcript.pyannote[513].end 1809.25034375
transcript.pyannote[514].speaker SPEAKER_02
transcript.pyannote[514].start 1809.25034375
transcript.pyannote[514].end 1809.30096875
transcript.pyannote[515].speaker SPEAKER_01
transcript.pyannote[515].start 1809.30096875
transcript.pyannote[515].end 1812.22034375
transcript.pyannote[516].speaker SPEAKER_02
transcript.pyannote[516].start 1809.87471875
transcript.pyannote[516].end 1812.30471875
transcript.pyannote[517].speaker SPEAKER_01
transcript.pyannote[517].start 1812.30471875
transcript.pyannote[517].end 1812.79409375
transcript.pyannote[518].speaker SPEAKER_02
transcript.pyannote[518].start 1812.32159375
transcript.pyannote[518].end 1812.82784375
transcript.pyannote[519].speaker SPEAKER_01
transcript.pyannote[519].start 1812.82784375
transcript.pyannote[519].end 1827.22221875
transcript.pyannote[520].speaker SPEAKER_02
transcript.pyannote[520].start 1814.51534375
transcript.pyannote[520].end 1814.92034375
transcript.pyannote[521].speaker SPEAKER_01
transcript.pyannote[521].start 1827.34034375
transcript.pyannote[521].end 1830.36096875
transcript.pyannote[522].speaker SPEAKER_01
transcript.pyannote[522].start 1830.68159375
transcript.pyannote[522].end 1837.21221875
transcript.pyannote[523].speaker SPEAKER_01
transcript.pyannote[523].start 1838.15721875
transcript.pyannote[523].end 1846.35846875
transcript.pyannote[524].speaker SPEAKER_01
transcript.pyannote[524].start 1846.91534375
transcript.pyannote[524].end 1852.04534375
transcript.pyannote[525].speaker SPEAKER_01
transcript.pyannote[525].start 1852.29846875
transcript.pyannote[525].end 1855.20096875
transcript.pyannote[526].speaker SPEAKER_00
transcript.pyannote[526].start 1852.51784375
transcript.pyannote[526].end 1853.10846875
transcript.pyannote[527].speaker SPEAKER_01
transcript.pyannote[527].start 1855.36971875
transcript.pyannote[527].end 1856.11221875
transcript.pyannote[528].speaker SPEAKER_01
transcript.pyannote[528].start 1863.46971875
transcript.pyannote[528].end 1863.82409375
transcript.pyannote[529].speaker SPEAKER_01
transcript.pyannote[529].start 1863.97596875
transcript.pyannote[529].end 1864.02659375
transcript.pyannote[530].speaker SPEAKER_02
transcript.pyannote[530].start 1869.54471875
transcript.pyannote[530].end 1873.20659375
transcript.pyannote[531].speaker SPEAKER_02
transcript.pyannote[531].start 1875.29909375
transcript.pyannote[531].end 1878.97784375
transcript.whisperx[0].start 31.138
transcript.whisperx[0].end 37.02
transcript.whisperx[0].text 好謝謝院長請行政院卓院長勞動部我們何部長請勞動部何部長備詢議員好好院長
transcript.whisperx[1].start 53.988
transcript.whisperx[1].end 80.921
transcript.whisperx[1].text 我看你每一次來到立法院西裝必挺然後穿得端端正正非常欣賞那是對院長的指示還有對大院的尊敬我也要特別強調在我們韓院長阿他的響應之下院長你看一下我是打領帶又穿西裝
transcript.whisperx[2].start 82.29
transcript.whisperx[2].end 93.365
transcript.whisperx[2].text 為什麼 一樣立法委員尊重行政院 行政院尊重立法院這是基本的為官之道的禮數
transcript.whisperx[3].start 95.089
transcript.whisperx[3].end 121.525
transcript.whisperx[3].text 所以本席還要再強調一次臺灣民眾黨理性務實科學所以我在問政的時候我絕對是以理性方式來探討但是有一點勞工出身雖然穿上西裝但是我有一個個性也就是當我提問題答非所問不針對問題
transcript.whisperx[4].start 123.749
transcript.whisperx[4].end 147.882
transcript.whisperx[4].text 我們這個勞工就會硬怒所以我還是要拜託院長我提問題的時候我們是共同來探討為了台灣為了所有的民眾我們共同來討論出一個行政院可以做的方法院長我想我這個拜託應該你不會反對吧
transcript.whisperx[5].start 148.632
transcript.whisperx[5].end 177.214
transcript.whisperx[5].text 我會很誠實的很忠實的反映委員的詢詢我如果答得不夠完整我會請部長來加強好 謝謝院長 謝謝部長當然我很關心就是台灣一千一百多萬勞工的問題所以我的標題很清楚也就是政府說得到要做得到千萬勞工才會安心
transcript.whisperx[6].start 178.294
transcript.whisperx[6].end 194.894
transcript.whisperx[6].text 其實從民進黨執政這兩年來我對他對於勞工的勞保基金的處理方式個人覺得是負責跟滿意的
transcript.whisperx[7].start 196.312
transcript.whisperx[7].end 197.033
transcript.whisperx[7].text 老保基金虧損連連
transcript.whisperx[8].start 216.072
transcript.whisperx[8].end 239.207
transcript.whisperx[8].text 我都希望所有執政過的政府都要概括承受絕對不是勞工繳勺的問題而造成所以勞工是無辜的這一點我希望院長應該是很了解因為你也從立法委員從基層選舉出來你可以了解
transcript.whisperx[9].start 240.087
transcript.whisperx[9].end 258.946
transcript.whisperx[9].text 老虎功高不敢講勞工對於整個社會是有幫助的所以最後一塊的勞保基金的棺材本一定要切實去做到一個保障這是我今天對的院長對的部長
transcript.whisperx[10].start 259.807
transcript.whisperx[10].end 282.543
transcript.whisperx[10].text 特別懇求對於勞工這個部分我們要實質的作為確保勞工勞保基金對他的保障這一點 院長你應該認同吧勞工是台灣發展經濟最重要的資產從過去歷任的政府到現在對勞工的照顧從來不敢怠慢
transcript.whisperx[11].start 283.356
transcript.whisperx[11].end 283.696
transcript.whisperx[11].text 所以 院長
transcript.whisperx[12].start 307.998
transcript.whisperx[12].end 322.754
transcript.whisperx[12].text 我常講過我個人對你是尊敬的但是有些政策你如果違背的時候當然我也是對你有所質疑但是我們要替台灣人做事當然就針對問題來談問題所以我還是要拜託院長
transcript.whisperx[13].start 326.755
transcript.whisperx[13].end 345.424
transcript.whisperx[13].text 本席還有我們國民黨民進黨都有同樣的共識也就是現在勞保條例66條撥補的部分是行政院長也是你們決定自動撥補去挽救勞保基金
transcript.whisperx[14].start 347.725
transcript.whisperx[14].end 368.439
transcript.whisperx[14].text 但是本席認為 既然你們這兩三年來都有在撥普那撥普是危機的處理 但是在法的立場 完完全全是行政作為所以本席率先跟我們宴會裡面的同仁 我就提一個
transcript.whisperx[15].start 369.52
transcript.whisperx[15].end 384.538
transcript.whisperx[15].text 老保條例66條的修法也就是把撥補常態化 撥補法制化所以 院長 這個撥補讓他入法我想聽聽你的意見 聽聽部長的意見
transcript.whisperx[16].start 391.904
transcript.whisperx[16].end 407.555
transcript.whisperx[16].text 謝謝委員垂詢非常肯定委員一直支持我們撥補勞保基金那麼因為是在這個我們目前總統在520就進行了宣誓只要政府在勞保就不會倒
transcript.whisperx[17].start 409.416
transcript.whisperx[17].end 427.252
transcript.whisperx[17].text 總統宣誓底下,我們也承諾在今年的114年度的總預算裡面,我們就編列了1300億的預算你們現在有在做,剛才我也跟院長說明了,你們都有在做,那我的提這個66條,只是把它
transcript.whisperx[18].start 430.294
transcript.whisperx[18].end 431.035
transcript.whisperx[18].text 法制化
transcript.whisperx[19].start 460.694
transcript.whisperx[19].end 461.034
transcript.whisperx[19].text 老保條例69條是什麼
transcript.whisperx[20].start 487.402
transcript.whisperx[20].end 508.425
transcript.whisperx[20].text 勞工有一段時間在10年前一天到晚恐嚇勞工勞保基金快要倒 勞保基金快要倒其實這對1100多萬有頭保的勞工他心有多傷 他心有多恐懼所以69條的部分我也希望把它入法
transcript.whisperx[21].start 508.985
transcript.whisperx[21].end 529.086
transcript.whisperx[21].text 也就是 院長 不管是陳院長 不管是卓院長甚至乙民村部長跟何部長你們都同聲的保證勞保不會倒勞保勞工一定領到他的棺材本這一點我要跟你們肯定但是本席還是要拜託
transcript.whisperx[22].start 530.367
transcript.whisperx[22].end 545.159
transcript.whisperx[22].text 因為我提69條是把他政府最終給付讓1100萬的勞工他知道他也了解政府已經下了法定的政府最終給付所以這一點
transcript.whisperx[23].start 546.4
transcript.whisperx[23].end 566.211
transcript.whisperx[23].text 我特別要跟卓院長要跟何部長讓你們了解我提這個案的當中是你們現在都有在做所以這點我希望也不要再提視線講清楚說明白我想都是為了勞工好讓勞工安心政府也盡心
transcript.whisperx[24].start 571.973
transcript.whisperx[24].end 598.699
transcript.whisperx[24].text 讓這樣一團和氣勞工的問題解決就等於解決社會二分之一的問題所以總院長我剛才已經說明這麼清楚你對已入法你的看法是怎麼樣一句話就是我們對勞保這個基金除了撥補之外還有很多其他的多元的配套可以來運用所以現在只能跟委員說的是
transcript.whisperx[25].start 599.42
transcript.whisperx[25].end 615.565
transcript.whisperx[25].text 政府不負責沒有人可以負責所以剛剛副部長講政府在勞保不會倒而且我們會想辦法對勞工要更好謝謝卓院長因為你也是接地氣勞工要的不多只要政府有作為
transcript.whisperx[26].start 616.565
transcript.whisperx[26].end 640.432
transcript.whisperx[26].text 勞工自然就會放心所以這一塊我要拜託卓院長拜託何部長當我們在我們立法院有關程序勞保條例66條69條的時候我希望行政機關院長也在那邊講也認同我希望這個會很順利的來入華這入華本來就是你們有在做讓勞工覺得他自己本身得到
transcript.whisperx[27].start 641.51
transcript.whisperx[27].end 641.59
transcript.whisperx[27].text 教育部長
transcript.whisperx[28].start 666.94
transcript.whisperx[28].end 687.123
transcript.whisperx[28].text 好 院長那個何部長你也不要走來來來因為我現在要跟你談的齁我現在要跟你談的或許啊這些範圍很大但是這個是一個社會問題左院長我剛才在跟你討論你接地氣
transcript.whisperx[29].start 688.325
transcript.whisperx[29].end 716.664
transcript.whisperx[29].text 但是有些事情你沒有為官沒有當行政院長的時候你沒有辦法做但是當你有機會當了中華民國的行政院長的時候你就有辦法去做這是什麼政策的問題我要跟你談的就是技職教育萎縮以後臺灣產業真的是非常危機
transcript.whisperx[30].start 717.793
transcript.whisperx[30].end 718.113
transcript.whisperx[30].text 好 接下來
transcript.whisperx[31].start 742.142
transcript.whisperx[31].end 752.55
transcript.whisperx[31].text 好 我要考考事啦 我要考考事我們賴清德總統在7月21號的時候他在開幕等你的時候我要請教何部長賴總統怎麼說總統在當時就指示他說台灣未來的產業
transcript.whisperx[32].start 769.353
transcript.whisperx[32].end 770.333
transcript.whisperx[32].text 賴清德總統講這些話你不要你想
transcript.whisperx[33].start 788.74
transcript.whisperx[33].end 789.12
transcript.whisperx[33].text 總統怎麼講?總統怎麼講?
transcript.whisperx[34].start 814.969
transcript.whisperx[34].end 815.33
transcript.whisperx[34].text 主席
transcript.whisperx[35].start 831.357
transcript.whisperx[35].end 832.678
transcript.whisperx[35].text 你同不同意總統講這些話
transcript.whisperx[36].start 858.237
transcript.whisperx[36].end 886.722
transcript.whisperx[36].text 當然同意 我寫我們要把它化為政策來執行好 OK一定 那我們就來繼續談下去 來下一張好 既然都同意了那我們就來探討一個比較客觀的問題 來下一張即時能力 真的學生為什麼會不青睞這叫做什麼 我們教育政策出問題
transcript.whisperx[37].start 888.443
transcript.whisperx[37].end 915.743
transcript.whisperx[37].text 還有教育連貫性不實在所以才會產生這個問題所以我們就來看看這個問題在哪邊所以我提供給我們卓院長去做政策的決策才有辦法指令我們勞動部跟我們教育部要把它連貫起來因為教育跟技職是息息相關的好 下一張
transcript.whisperx[38].start 918.601
transcript.whisperx[38].end 921.528
transcript.whisperx[38].text 說實在啦我再度再重申計止教育是臺灣經濟奇蹟的締造者
transcript.whisperx[39].start 925.458
transcript.whisperx[39].end 948.373
transcript.whisperx[39].text 那這個締造者當然我們要去引導不然的話怎麼樣去締造者所以我在想我們從不管從50年代50年代開始從重工業開始起基在60年代這個人才的培育到70年代高科技的培育
transcript.whisperx[40].start 949.294
transcript.whisperx[40].end 960.551
transcript.whisperx[40].text 這個方向都是對可是有一點從50年代還OK沒有問題60年代在計職教育還好在這個部分據我個人所研究
transcript.whisperx[41].start 962.593
transcript.whisperx[41].end 981.609
transcript.whisperx[41].text 吳京部長在這個部分他是做了跟行政院長報告跟總統報告計職教育做了最好的一段所以提供給部長去做參考那段時間第一個哪有什麼這個移工的問題沒有 為什麼
transcript.whisperx[42].start 984.735
transcript.whisperx[42].end 985.015
transcript.whisperx[42].text 李卓人議員
transcript.whisperx[43].start 1001.531
transcript.whisperx[43].end 1028.672
transcript.whisperx[43].text 在這個部分我們的技職教育連貫性是不足的這我特別教育部正部長我要讓你了解要你了解所以我的簡單雖然吳京部長已經卸任但是他確實在技職教育部分是做得非常到位非常連結跟產業是連結的接下來
transcript.whisperx[44].start 1031.158
transcript.whisperx[44].end 1042.759
transcript.whisperx[44].text 下一張好我說實在的阿 院長沒有計職教育阿就沒有今天的台積電阿 院長這句話你同意吧
transcript.whisperx[45].start 1045.149
transcript.whisperx[45].end 1064.966
transcript.whisperx[45].text 所以這個台積電現在世界各國是一個護國神山那這個是什麼當初如果沒有政府正確方向去引導哪有這些工程書哪有今天的台積電所以我為什麼會提這個是只要給
transcript.whisperx[46].start 1066.027
transcript.whisperx[46].end 1075.732
transcript.whisperx[46].text 左院長你去做政策的方向決策你如果沒有正確的方向那永遠都是在那邊搞至於
transcript.whisperx[47].start 1076.929
transcript.whisperx[47].end 1095.754
transcript.whisperx[47].text 我們的教改成不成功我們都不要談成不成功我相信我不要問院長你也知道為什麼要恢復50年代做得非常好的60年代做得非常好的技職教育為什麼就是未來到現在為止
transcript.whisperx[48].start 1097.128
transcript.whisperx[48].end 1116.036
transcript.whisperx[48].text 副長你沒有發現到大家都要用移工嗎你現在壓力很大的不管是10萬個20萬個我們現在的移工高達這麼多不管是營造業不管是旅館業連開公車的都希望外勞連我們台電
transcript.whisperx[49].start 1118.377
transcript.whisperx[49].end 1129.805
transcript.whisperx[49].text 在修理電線的都需要外勞這是為什麼就是我們技職教育 失敗嘛所以這20年來完全是失敗的欸 卓院長
transcript.whisperx[50].start 1131.158
transcript.whisperx[50].end 1155.166
transcript.whisperx[50].text 我以重心長我們看到的是這些根本就是教育連貫失敗的計職教育是很失敗的耶 議長這樣啦 我用這個時間給議長因為我剛才跟你報告這些事情議長來 你對於計職教育本席到現在為止提出來哪一點不符合實際議長 來
transcript.whisperx[51].start 1158.068
transcript.whisperx[51].end 1180.563
transcript.whisperx[51].text 謝謝委員 委員能夠關心即時教育就表示委員對很多問題深入的了解現在已經指出問題即時教育在過去幾年真的是呈現一個中空的狀態不管是學生的人數 學家的設備都不足以因應現在產業的需求那我不願意從這個什麼少子化這個角度來看雖然它是一個事實 我願意說的是
transcript.whisperx[52].start 1181.303
transcript.whisperx[52].end 1208.203
transcript.whisperx[52].text 我們整個產業的結構能不能跟計職教育能夠銜接在一起其中兩項一個就是我們計職教育能不能提供很好的誘因讓希望學的以及整個年輕朋友可以進到這個體系裡面來第二我們的計職教育裡面的相關的教學設備設備跟師資趕不趕得上時代我知道很多的學校他裡面做的實驗到外面來是接不上的表示我們在設備的更新上是慢了
transcript.whisperx[53].start 1208.763
transcript.whisperx[53].end 1237.151
transcript.whisperx[53].text 那有沒有足夠的師資﹖如果專業的師資不夠﹖業師能不能請進來﹖也增加他的量﹖用經驗來傳承﹖我覺得這都應該馬上下手出去續資好 謝謝院長那在這裡來接下來下一張好問題在這裡重高中輕技資破身一定要生血所以在這裡有一個數據提供給卓院長
transcript.whisperx[54].start 1239.133
transcript.whisperx[54].end 1265.861
transcript.whisperx[54].text 學歷越高 失業越高知道嗎 這個就是技職教育的重要性這個我特別要提供給卓院長 下一張我現在就是要來 大概來考試一下啦他山之石 台灣要接近啦人家好的 我們當然要接近啊好 我們幾例 院長 我們幾例 瑞士
transcript.whisperx[55].start 1267.113
transcript.whisperx[55].end 1295.956
transcript.whisperx[55].text 他是一個獨立國家他是一個很小的國家可是你就從來沒有聽聽到有勞工抗爭的問題也沒有聽到說喔他們那邊發生什麼重大罷工的問題沒有但是我在這裡他國家有沒有特色當然有特色其他我不談就談勞工這個部分一定這個我問你一個瑞士他最出名的他的
transcript.whisperx[56].start 1296.804
transcript.whisperx[56].end 1298.204
transcript.whisperx[56].text 臺灣要去借鏡下一張
transcript.whisperx[57].start 1326.872
transcript.whisperx[57].end 1354.412
transcript.whisperx[57].text 我們看看德國德國你看看平常都沒有什麼聲音但是他有一個好處他什麼好處呢師徒一對一的教導一邊上課一邊工作實習就有薪水畢業就就業他這裡我還要再請教我們卓院長德國什麼東西做得最好
transcript.whisperx[58].start 1356.761
transcript.whisperx[58].end 1373.099
transcript.whisperx[58].text 對嘛雙B嘛你看到現在是最夠格可是這些人才他有沒有缺乏沒有欸他是跟產業結合來做教育還有做產業的發展所以這個部分我們真的要借鏡好下一張好啦這個我們簡單講過啦反正對岸啦
transcript.whisperx[59].start 1378.707
transcript.whisperx[59].end 1400.269
transcript.whisperx[59].text 雖然他的經濟他的做法政治我們不談但是他對於這些就業的事情他是做得非常到位的所以我比的就是一些西方國家歐洲然後台灣比較接近的對岸
transcript.whisperx[60].start 1400.956
transcript.whisperx[60].end 1401.096
transcript.whisperx[60].text 來 下一張
transcript.whisperx[61].start 1426.448
transcript.whisperx[61].end 1453.288
transcript.whisperx[61].text 所以這很明顯嘛 卓院長我們技職教育的人才是真的不足的啦因為我們政策不重視就不會培養人才所以在這個部分 真的我要拜託卓院長你好好啊 給他升職 叫這個政府委員一個來負責好好研究一個台灣技職教育要不要重新的改變
transcript.whisperx[62].start 1454.588
transcript.whisperx[62].end 1474.131
transcript.whisperx[62].text 以現在的情況來講 都是什麼 紙上談兵 畫餅充雞完全沒有到位以及跟產業結合 教育結合來達到真正既知人才的這些花效 沒有
transcript.whisperx[63].start 1475.179
transcript.whisperx[63].end 1477.66
transcript.whisperx[63].text 我跟你們談話都很溫和我很柔情的人
transcript.whisperx[64].start 1501.508
transcript.whisperx[64].end 1509.157
transcript.whisperx[64].text 但是他給我答話 你看我就馬上放炮他為什麼 不符合我們基層的需求
transcript.whisperx[65].start 1510.773
transcript.whisperx[65].end 1535.917
transcript.whisperx[65].text 因為我們已經20年來 計職教育已經失敗在失敗所以我為什麼提出這個問題讓卓院長 因為卓院長我也期待你有所對台灣計職教育 把它恢復回來這不是哪一個執政的問題 這是歷史遺業也就是對於計職教育 對於我們產業如何去發展 是息息相關的
transcript.whisperx[66].start 1536.94
transcript.whisperx[66].end 1550.942
transcript.whisperx[66].text 好 息息相關所以今天那個經濟部長不需要上來最起碼我要讓卓院長知道這個觀念你才有辦法去指導他們如何去把這個計職教育去把它改變好 下一張
transcript.whisperx[67].start 1552.551
transcript.whisperx[67].end 1570.007
transcript.whisperx[67].text 好啦最主要幾個問題我也提供給我們院長啦齁直言投入啊大小眼齁大小眼這個你們回去檢討所以鄭部長你不要跟我講阿你們有多雄偉的這種雄心抱負你都不要跟我講啦問題現在就很簡單啦
transcript.whisperx[68].start 1571.656
transcript.whisperx[68].end 1591.937
transcript.whisperx[68].text 我們談民進黨執政這8年裡面 技職教育根本就是失敗的我希望我們期待賴總統跟卓院長 領導之下在技職方面有另外一番不一樣的做法跟不一樣的感覺所以在這個部分 資源投入大小園我希望你們趕快改進來下一張
transcript.whisperx[69].start 1594.807
transcript.whisperx[69].end 1604.515
transcript.whisperx[69].text 不符合企業產協合一完全落功這個我也要提供給卓院長好好的去針對這個問題我們大家來商討來 下一張這個重新一樣過去雖然我們對這個協數的
transcript.whisperx[70].start 1619.861
transcript.whisperx[70].end 1620.261
transcript.whisperx[70].text 會讀書的讀大學
transcript.whisperx[71].start 1648.956
transcript.whisperx[71].end 1672.23
transcript.whisperx[71].text 不太想讀書但是他有技能的就在記職這樣何而為一啊為才是用這樣的話臺灣的記職教育跟人才的培育才會去成功的所以以上幾點給這個院長去做參考也就是因應未來的趨勢
transcript.whisperx[72].start 1675.042
transcript.whisperx[72].end 1701.441
transcript.whisperx[72].text 創造良好的就業防信這個應該部長你們也有在做我也看到那另外就是補充啊真的這個教育人才所謂鄭部長抱歉拜託你做法看下一次我就會讓你好好講到現在為止我也知道你剛接可是以前的部長我對他極度不滿意為什麼聽不進去基層需求的聲音只有聽
transcript.whisperx[73].start 1702.677
transcript.whisperx[73].end 1724.273
transcript.whisperx[73].text 政策又失敗當然這個問題就會失敗我希望到立法院來是要聽立法委員以重心長給你的良善建議所以這個部分我希望卓院長那最後一個就是增加記者的教育經費從今年所送來的預算
transcript.whisperx[74].start 1725.305
transcript.whisperx[74].end 1727.346
transcript.whisperx[74].text 最後我要拜託勞動部跟教育部要跨部會的合作
transcript.whisperx[75].start 1739.301
transcript.whisperx[75].end 1739.741
transcript.whisperx[75].text 主席
transcript.whisperx[76].start 1759.087
transcript.whisperx[76].end 1759.267
transcript.whisperx[76].text 主席
transcript.whisperx[77].start 1782.577
transcript.whisperx[77].end 1782.998
transcript.whisperx[77].text 主席主席主席
transcript.whisperx[78].start 1800.461
transcript.whisperx[78].end 1829.661
transcript.whisperx[78].text 我只拜託你今天聽完我這些建議你認不認同我們技職教育要加強完全認同而且我們也在加強當中謝謝我們的建議非常好所有三個要改變台灣人才方就是要從這裡走手不是今年做明年就有成果或許是要三年五年你就會看到我希望讓老百姓覺得說
transcript.whisperx[79].start 1830.781
transcript.whisperx[79].end 1831.222
transcript.whisperx[79].text 一定努力
transcript.whisperx[80].start 1870.129
transcript.whisperx[80].end 1871.39
transcript.whisperx[80].text 謝謝林國成委員的質詢 謝謝卓院長的備詢
會議時間 2024-09-24T09:00:00+08:00
委員發言時間 10:30:19 - 11:01:37
會議名稱 第11屆第2會期第1次會議(事由:行政院院長施政報告並備質詢)
IVOD_ID 154867
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/154867
日期 2024-09-24
會議資料.會議代碼 院會-11-2-1
會議資料.屆 11
會議資料.會期 2
會議資料.會次 1
會議資料.種類 院會
會議資料.標題 第11屆第2會期第1次會議
影片種類 Clip
開始時間 2024-09-24T10:30:19+08:00
結束時間 2024-09-24T11:01:37+08:00
支援功能[0] ai-transcript
支援功能[1] gazette