影片長度 |
1878 |
gazette.lineno |
521 |
gazette.blocks[0][0] |
林委員國成:(10時30分)謝謝院長,請行政院卓院長、勞動部何部長。 |
gazette.blocks[1][0] |
主席:麻煩請卓院長、勞動部何部長備詢。 |
gazette.blocks[2][0] |
卓院長榮泰:林委員好。 |
gazette.blocks[3][0] |
林委員國成:院長,我看你每一次來到立法院都西裝筆挺,穿得端端正正,我非常欣賞。 |
gazette.blocks[4][0] |
卓院長榮泰:那是對院長的指示,還有對大院的尊敬。 |
gazette.blocks[5][0] |
林委員國成:我也要特別強調,在我們韓院長的響應之下,院長,你看一下我是打領帶又穿西裝,為什麼?一樣,立法委員尊重行政院,行政院尊重立法院,這是基本的為官之道、禮數。 |
gazette.blocks[6][0] |
卓院長榮泰:是。 |
gazette.blocks[7][0] |
林委員國成:所以本席還要再強調一次,台灣民眾黨理性、務實、科學,所以我在問政的時候絕對是以理性方式來探討,但是有一點,勞工出身雖然穿上西裝,但是我有一個個性,也就是當對我提的問題答非所問,不針對問題,我們勞工就會易怒,所以我還是要拜託院長,我提問題的時候,我們是共同探討,為了臺灣、為了所有的民眾,我們共同討論出行政院可以做的方法。院長,我想我這個拜託,你應該不會反對吧? |
gazette.blocks[8][0] |
卓院長榮泰:我會很誠實的也很忠實的反映委員的垂詢,我如果答得不夠完整,我會請部長來加強。 |
gazette.blocks[9][0] |
林委員國成:謝謝院長、謝謝部長。我很關心臺灣一千一百多萬勞工的問題,所以我的標題很清楚,也就是政府說得到要做得到,千萬勞工才會安心,其實從民進黨執政這兩年來,對於勞工勞保基金的處理方式,我個人覺得是負責跟滿意的。我要談的很簡單,就是勞保基金的問題,當然你們也有撥補,但是我今天要跟院長報告的是,過去勞保基金虧損連連,我希望所有執政過的政府都要概括承受,絕對不是勞工繳少的問題而造成,所以勞工是無辜的,這一點我相信院長應該很瞭解。因為你也從立法委員、從基層選舉出來,你可以瞭解,不敢講勞苦功高,但勞工對於整個社會是有幫助的,所以最後一塊勞保基金的棺材本一定要確實做到保障,這是我今天對院長、對部長的特別懇求,對於勞工這個部分,我們要有實質作為,確保勞工勞保基金對他的保障,這一點院長應該認同吧? |
gazette.blocks[10][0] |
卓院長榮泰:勞工是臺灣發展經濟最重要的資產,從過去歷任的政府到現在,對勞工的照顧從來不敢怠慢,也只有一步一步地更加強,包括勞保基金、各種勞工權益,以及現在我們持續提高的最低工資等等,我覺得都是一代一代的政府持續墊步上去的,我覺得也應該跟勞工朋友們能夠談一談,未來政府必須做更多、更好、更快的是什麼事情,我們願意來聆聽。 |
gazette.blocks[11][0] |
林委員國成:OK。院長,我常常講我個人對你是尊敬的。 |
gazette.blocks[12][0] |
卓院長榮泰:謝謝。 |
gazette.blocks[13][0] |
林委員國成:但是有些政策如果你違背的時候,當然我也是對你有所質疑啦!但是我們要替臺灣人做事,當然就針對問題來談問題,所以我還是要拜託院長,本席還有國民黨、民進黨都有同樣的共識,也就是現在勞保條例第六十六條撥補的部分是行政院長,也是你們決定自動撥補去挽救勞保基金。但是本席認為,既然你們這兩、三年來都有在撥補,撥補是危機的處理,但在法的立場完完全全是行政作為,所以本席率先跟我們院會裡面的同仁提議勞保條例第六十六條的修法,也就是把撥補常態化、撥補法制化。院長,讓這個撥補入法,我想聽聽你的意見、聽聽部長的意見。 |
gazette.blocks[14][0] |
何部長佩珊:謝謝委員垂詢,非常肯定委員一直支持我們撥補勞保基金,目前總統在520就進行宣示:只要政府在,勞保就不會倒。在這個總統的宣示底下,院長、我們也承諾在114年度的總預算裡面,就編列一千三百億的預算…… |
gazette.blocks[15][0] |
林委員國成:我知道、我知道。部長,你們現在有在做,剛才我也跟院長說明了,你們都有在做。 |
gazette.blocks[16][0] |
何部長佩珊:是。 |
gazette.blocks[17][0] |
林委員國成:我提第六十六條,只是把它法制化,也就是現在勞保條例第六十六條當中是沒有的,但是本席已經提了這個法,當然最後還是要行政機關……我認為立法院通過的東西只要行政機關不要,因為我很怕又要提釋憲,所以乾脆我們就講清楚,如果這個入法是對整個法制、對勞工是有保障的,倒不如你們就贊成,當然我們這個程序會繼續走下去。院長,我的意思是你們現在都有做,但是我建議把它入法。這個是第六十六條的撥補。 |
gazette.blocks[17][1] |
另外我還有同一個案,就是修改勞保條例第六十九條,第六十九條是什麼?在十年前勞工有一段時間,一天到晚恐嚇勞工勞保基金快要倒!勞保基金快要倒!其實,這對一千一百多萬有投保的勞工而言,心有多酸,心有多恐懼,所以我也希望把第六十九條入法,也就是不管是陳院長、不管是卓院長,甚至於許銘春部長跟何部長,你們都同聲的保證勞保不會倒、勞工一定領到他的棺材本,這一點我要給你們肯定,但本席還是要拜託。因為我提第六十九條是由政府最終給付,讓一千一百萬的勞工知道、也了解政府已經下了法定的政府最終給付,所以這一點我特別要讓卓院長、何部長了解,我提的這個案是你們現在都有在做的,所以這點我希望也不要再提釋憲。講清楚、說明白,我想都是為了勞工好,讓勞工安心,政府也盡心,讓其一團和氣,勞工的問題解決就等於解決社會二分之一的問題。卓院長,我剛才已經說明這麼清楚,對於入法,你的看法是怎麼樣? |
gazette.blocks[18][0] |
卓院長榮泰:一句話,就是我們對勞保這個基金,除了撥補之外,還有很多其他多元的配套可以來運用,所以現在只能跟委員說的是,政府不負責,沒有人可以負責。 |
gazette.blocks[19][0] |
林委員國成:好。 |
gazette.blocks[20][0] |
卓院長榮泰:所以剛剛部長講政府在,勞保不會倒,而且我們也會想辦法對勞工要更好。 |
gazette.blocks[21][0] |
林委員國成:好,謝謝卓院長,因為你也是接地氣,勞工要的不多,只要政府有作為,勞工自然就會放心,所以這一塊我要拜託卓院長、拜託何部長,當我們在立法院處理勞保條例第六十六條、第六十九條有關程序的時候,既然行政機關、院長也這麼講、也認同,我希望這個會很順利地來入法。這入法本來就是你們有在做的,讓勞工覺得本身得到卓院長跟何部長絕對肯定的安心,所以我希望政府盡心、勞工安心,這個政策能夠去做好,好不好?院長。 |
gazette.blocks[22][0] |
卓院長榮泰:我們會靈活地運用勞保基金,謝謝。 |
gazette.blocks[23][0] |
林委員國成:好,接下來我們請教育部鄭部長。何部長不要走。我現在要跟你談的這些範圍或許很大,但是這個是一個社會問題。卓院長,我剛才才在稱讚你接地氣,但是有些事情你沒有為官、沒有當行政院長的時候,你沒有辦法做,但是當你有機會當了中華民國的行政院長,就有辦法去做,這是什麼?政策的問題。我要跟你談的就是技職教育萎縮以後,臺灣產業真的是非常有危機,有些人跟我講:林國成,你是勞工出身,為什麼要談這個議題?這個議題很重要,產業倒勞工就倒,勞工倒產業就倒,所以息息相關。我要跟院長說明的、跟兩位部長說明的是,技職的重要性。好,接下來,我要考考試。賴清德總統在7月21號的開幕典禮,我要請教何部長,賴總統怎麼說? |
gazette.blocks[24][0] |
何部長佩珊:總統在當時就指示,他說臺灣未來的產業,其實也必須奠基在技職教育的發展之上,即便是高科技產業。 |
gazette.blocks[25][0] |
林委員國成:好,來,鄭部長、教育部長,技職教育跟你也有關,請問一下,你知不知道賴清德總統講這些話? |
gazette.blocks[26][0] |
鄭部長英耀:是,我想這一個總統…… |
gazette.blocks[27][0] |
林委員國成:你不要你想,總統怎麼講,好不好? |
gazette.blocks[28][0] |
鄭部長英耀:我跟委員報告,總統不只重視技職人才培育,而且他這一次還安排要比照奧運的選手,在總統府裡宴請參與國際技能競賽的所有代表,也接待這些所有的…… |
gazette.blocks[29][0] |
林委員國成:好,鄭部長…… |
gazette.blocks[30][0] |
鄭部長英耀:表示總統是非常重視的。 |
gazette.blocks[31][0] |
林委員國成:哎呀!你現在只有了解卓院長,你都還不了解賴總統,這樣不行啦!他在說技職教育非常重要,不是只有像你講的這種冠冕堂皇的官話。部長,我為什麼請你上來,就是讓你知道這技職教育已經失傳20年都沒有重視,所以非常重要。 |
gazette.blocks[32][0] |
鄭部長英耀:跟委員報告,事實上,我上來就特別提到一個…… |
gazette.blocks[33][0] |
林委員國成:對啦!我剛才已經講過,勞工出身很易怒…… |
gazette.blocks[34][0] |
鄭部長英耀:我想我們對技職人才…… |
gazette.blocks[35][0] |
林委員國成:聽了不爽快就會馬上發脾氣。來,卓院長,你同不同意總統講這些話? |
gazette.blocks[36][0] |
卓院長榮泰:當然同意,而且我們要把它化為政策來執行。 |
gazette.blocks[37][0] |
林委員國成:好,OK,院長,那我們就來繼續談下去。既然都同意了,那我們就來探討一個比較客觀的問題,技職能力,學生為什麼會不青睞?這叫做什麼?就是我們教育政策出問題,還有教育連貫性不實在,所以才會產生這個問題。我們就來看看這個問題在哪邊,我提供給卓院長去做政策的決策,才有辦法指示勞動部跟教育部,要把它連貫起來,因為教育跟技職是息息相關的。 |
gazette.blocks[37][1] |
說實在啦!我再度重申,技職教育是臺灣經濟奇蹟的締造者,這個締造者當然我們要去引導,不然的話,怎麼樣去締造?我在想不管從50年代開始,從重工業起家,到60年代人才的培育,到70年代高科技的培育,這個方向都是對的,可是有一點,50年代還OK,沒有問題,60年代在技職教育還好。據我個人所研究,吳京部長在這個部分跟行政院長報告、跟總統報告,是技職教育做得最好的一段,所以提供給部長去參考。那段時間,第一個,哪有什麼移工的問題啦!沒有,為什麼?畢業就是就業,為什麼?技職教育做得非常好,所以那段時間,50年代、60年代跟70年代,當然70年代開始從高科技產業去培養,可是技職教育連貫性是不足的,我特別要讓教育部鄭部長了解。雖然吳京部長已經卸任,但是他確實在技職教育部分做得非常到位、非常連結,跟產業是連結的。 |
gazette.blocks[37][2] |
接下來,我說實在,院長,沒有技職教育就沒有今天的台積電,院長,這句話,你同意吧? |
gazette.blocks[38][0] |
卓院長榮泰:同意。 |
gazette.blocks[39][0] |
林委員國成:好,所以台積電現在在世界各國是一個護國神山,這個是什麼?當初如果沒有政府正確方向去引導,哪有這些工程師?哪有今天的台積電?我為什麼會提這個?主要是給卓院長去做政策方向的決策,你如果沒有正確的方向,永遠都是在那邊搞。至於教改成不成功,我們都不要談,成不成功我相信我不用問院長,你也知道,為什麼要回復50年代、60年代做得非常好的技職教育?為什麼?就是未來……到現在為止,部長,你沒有發現到大家都要用移工嗎?你現在壓力很大的,不管是十萬個、二十萬個,現在的移工高達這麼多,不管是營造業,不管是旅館業,連開公車都需要外勞,連台電在修理電線都需要外勞,這是為什麼?就是我們技職教育失敗嘛!所以這二十年來完全是失敗的。卓院長,我語重心長,我們看到的是這些,根本就是教育連貫失敗,技職教育是很失敗的。我把這個時間給院長,對於我剛才跟你報告這些技職教育的事情,本席到現在為止提出來的,哪一點不符合實際?院長,來,你來幫我說。 |
gazette.blocks[40][0] |
卓院長榮泰:謝謝委員。委員能夠關心技職教育,就表示委員對很多問題深入地了解,現在已經指出問題。技職教育在過去幾年真的是呈現一個中空的狀態,不管是學生的人數、學校的設備都不足以因應現在產業的需求,我不願意從少子化這個角度來看,雖然它是一個事實,我願意說的是,我們整個產業結構能不能跟技職教育銜接在一起,其中兩項,一個就是技職教育能不能提供很好的誘因,讓希望學得一技之長的年輕朋友可以進到這個體系裡面;第二,技職教育的相關教學設備跟師資趕不趕得上時代,我知道很多學校所做的實驗到外面來是接不上的,表示我們在設備的更新上是慢了。另外,有沒有足夠的師資,如果專業的師資不夠,業師能不能請進來,並且增加量的部分,用經驗來傳承,我覺得這些都應該馬上下手去執行。 |
gazette.blocks[41][0] |
林委員國成:好,謝謝院長。 |
gazette.blocks[41][1] |
接下來,問題在這裡,重高中,輕技職,破解升學迷思,所以在這裡有一個數據提供給卓院長,學歷越高,失業越高,知道嗎?這就是技職教育的重要性,這部分我特別要提供給卓院長瞭解。 |
gazette.blocks[41][2] |
我現在要來考試一下,他山之石,臺灣要借鏡,人家好的地方,我們當然要借鏡。院長,我們舉例瑞士,它是一個獨立國家,它是一個很小的國家,可是你就從來沒有聽到有勞工抗爭的問題,也沒有聽到他們那邊有發生什麼重大罷工的問題,沒有!他們國家有沒有特色?當然有特色,其他我不談,就談勞工這個部分。院長,我問你,瑞士最出名的手工技藝,你知道是什麼嗎? |
gazette.blocks[42][0] |
卓院長榮泰:委員是說手錶嗎? |
gazette.blocks[43][0] |
林委員國成:對,瑞士就是手錶,你看看一個瑞士、很小的國家,你看它可以行銷勞力士也好、什麼錶也好,行銷到世界各國,可是他們的這些人才從來沒有中斷過,這個叫做什麼?他山之石,臺灣要去借鏡。 |
gazette.blocks[44][0] |
卓院長榮泰:是。 |
gazette.blocks[45][0] |
林委員國成:接下來,我們再看看德國,你看德國平常都沒有什麼聲音,但是它有一個好處,什麼好處?師徒一對一教導,一邊上課一邊工作,實習就有薪水,畢業即就業。我還要再請教卓院長,德國什麼東西做得最好? |
gazette.blocks[46][0] |
卓院長榮泰:汽車。 |
gazette.blocks[47][0] |
林委員國成:對嘛!雙B嘛!你看到現在世界各國有沒有缺乏這些人才?沒有耶!它是跟產業結合來做教育以及產業的發展,所以這個部分我們真的要借鏡。這個我們簡單講過,就是對岸,它的經濟、它的作法、政治,我們不談,但是它對於這些就業的事情做得非常到位。我比的就是一些西方國家、歐洲,以及跟臺灣比較接近的對岸,這些都值得我們參考,好的我們用、不好的我們不要用。這裡我們也不得不承認,我舉例,當然也有很多啦,你想一想,就算這麼多的人口也有辦法維繫整個就業市場,這個我們當然也要去研究。 |
gazette.blocks[47][1] |
接下來,這很明顯嘛!卓院長,我們技職教育的人才是真的不足,因為我們的政策不重視,就無法培養人才,所以我真的要拜託卓院長,你好好將這個部分成立,叫一個政務委員來負責,好好研究一下臺灣技職教育要不要重新改變。以現在的情況來講,都是紙上談兵、畫餅充飢,完全沒有到位,以及沒有跟產業結合、跟教育結合來真正達到技職人才的發酵。院長,我跟你報告,沒有。因為我們針對問題來談嘛。 |
gazette.blocks[48][0] |
卓院長榮泰:教育部有一些策略。 |
gazette.blocks[49][0] |
林委員國成:不要啦、我不要聽啦!我要聽卓院長的。 |
gazette.blocks[50][0] |
卓院長榮泰:私底下再跟委員報告,會後。 |
gazette.blocks[51][0] |
林委員國成:不是,鄭部長剛才回答我的,他那個就是你送一個書面給我,我有空讀一讀。你給我的答復就是在打官腔!你看看我跟你們談話都很溫和,我很柔情的人耶!但是他給我答話,你看我就馬上放炮他,為什麼?不符合基層的需求。 |
gazette.blocks[51][1] |
因為二十年來技職教育已經失敗再失敗,所以我為什麼要提出這個問題問卓院長?因為我也期待卓院長把臺灣技職教育恢復回來,這不是哪一個執政的問題,這是歷史遺業,因為技職教育對於產業如何發展是息息相關的!今天經濟部長不需要上來,最起碼我要讓卓院長知道這個觀念,你才有辦法去指導他們如何改變技職教育。 |
gazette.blocks[51][2] |
好啦,最主要幾個問題我也提供給院長,資源投入大小眼,這個你們回去檢討,所以鄭部長不要跟我講說你們有多雄偉的雄心抱負,你都不要跟我說那個啦!現在的問題就很簡單,我們談民進黨執政這八年裡面技職教育根本就是失敗!我們期待在賴總統跟卓院長的領導之下,技職方面有另外一番不一樣的做法跟不一樣的感覺,所以在資源投入大小眼這個部分,我希望你們趕快改進;不符合企業、產學合一完全落空,這個我也要提供給卓院長,好好地針對這個問題來商討;過去雖然我們輕技職,但是針對傳統的觀念,我也希望卓院長能夠在這個地方著墨一下。 |
gazette.blocks[51][3] |
如何再出發?我提供幾個拙見,我認為迫切需要的就是什麼?就是技職教育真的要跟教育連貫,會讀書的讀大學、不太想讀書但是他有技能的就在技職,這樣合而為一、唯才適用!這樣的話,臺灣的技職教育跟人才的培育才會成功。以下幾點給院長參考,也就是一、因應未來的趨勢,創造良好的就業環境,這個部長應該也有在做,我也看到;另外就是補充教育人才,鄭部長不好意思,拜託你做給我看!下一次我就會讓你好好講,到現在為止……我也知道你剛接,可是我對以前的部長極度不滿意,為什麼?聽不進去基層需求的聲音,只有聽政策,那政策又失敗,當然這個問題就會失敗,我希望到立法院來是要聽立法委員語重心長給你的良善建議,所以這個部分我希望卓院長……最後一個就是增加技職的教育經費,今年所送來的預算我有去翻一翻,在這個部分還是一樣;最後,我要拜託勞動部跟教育部跨部會合作,與企業共同。 |
gazette.blocks[51][4] |
我要拜託卓院長,我提出這些是良善的建議,我希望卓院長重視這個,卓院長,以上這些我給你建議,以及用實例給你比較,我要聽聽卓院長最後要如何指示他們去做?院長,可不可以告訴我? |
gazette.blocks[52][0] |
卓院長榮泰:謝謝委員。幾項當中我現在特別要瞭解的是,有關技職教育經費跟過去的比較,我們有沒有呈現什麼樣經費上的不同或者內容上的不同,但重要的是我要請教育部在作法上要有不同,即使是同樣的預算,作法也要有不同…… |
gazette.blocks[53][0] |
林委員國成:沒有啦!院長,我要聽你的說法,因為鄭部長…… |
gazette.blocks[54][0] |
卓院長榮泰:我會請他跟過去的作法要不同,即使在差不多的預算經費底下,我現在查一下預算經費到底有沒有增加多少,作法要有不同。 |
gazette.blocks[55][0] |
林委員國成:沒有啦!院長,剩幾分鐘了,我只拜託你,今天聽完我這些建議,你認不認同我們技職教育要加強? |
gazette.blocks[56][0] |
卓院長榮泰:完全認同! |
gazette.blocks[57][0] |
林委員國成:那你同不同意…… |
gazette.blocks[58][0] |
卓院長榮泰:我們也在加強中,謝謝委員的建議,非常好! |
gazette.blocks[59][0] |
林委員國成:對,所有三個……要改變臺灣人才方,就是要從這裡著手,不是今年做,明年就有成果,或許是要三年、五年才會看到,我希望讓老百姓覺得卓榮泰院長做這個政策,還好有他做這個政策,就像李國鼎一樣啊!聯電跟台積電如果不是他去做政策的決定,怎麼會有今天?所以我希望你做這個技職的教育能讓人家覺得還好有卓榮泰院長,所以我希望院長責成這些,做一個專案,然後來做一個統籌、來研究,如果能夠提供的,我們儘量來提供,反正為臺灣人民做事情,是不分黨派的。 |
gazette.blocks[60][0] |
卓院長榮泰:一定努力,謝謝。 |
gazette.blocks[61][0] |
林委員國成:我希望院長也有這個觀念,好不好? |
gazette.blocks[62][0] |
卓院長榮泰:謝謝。 |
gazette.blocks[63][0] |
主席:謝謝林國成委員的質詢、謝謝卓院長的備詢。 |
gazette.blocks[63][1] |
接下來我們請陳瑩委員質詢。 |
gazette.agenda.page_end |
322 |
gazette.agenda.meet_id |
院會-11-2-1 |
gazette.agenda.speakers[0] |
韓國瑜 |
gazette.agenda.speakers[1] |
張啓楷 |
gazette.agenda.speakers[2] |
陳培瑜 |
gazette.agenda.speakers[3] |
羅智強 |
gazette.agenda.speakers[4] |
林國成 |
gazette.agenda.speakers[5] |
陳瑩 |
gazette.agenda.speakers[6] |
洪孟楷 |
gazette.agenda.speakers[7] |
黃秀芳 |
gazette.agenda.speakers[8] |
謝龍介 |
gazette.agenda.speakers[9] |
李柏毅 |
gazette.agenda.speakers[10] |
賴士葆 |
gazette.agenda.speakers[11] |
許智傑 |
gazette.agenda.speakers[12] |
黃健豪 |
gazette.agenda.speakers[13] |
陳素月 |
gazette.agenda.page_start |
233 |
gazette.agenda.meetingDate[0] |
2024-09-24 |
gazette.agenda.gazette_id |
1137501 |
gazette.agenda.agenda_lcidc_ids[0] |
1137501_00003 |
gazette.agenda.agenda_lcidc_ids[1] |
1137501_00004 |
gazette.agenda.meet_name |
立法院第11屆第2會期第1次會議紀錄 |
gazette.agenda.content |
施政質詢
行政院院長施政報告並備質詢─ 繼續質詢─ |
gazette.agenda.agenda_id |
1137501_00010 |
委員名稱 |
林國成 |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/dfdc7d5d95287b89ac1f5a1b12030e08b9fd6e84e674c262f96f22d889c8458c7074d07a482e87785ea18f28b6918d91.mp4/playlist.m3u8 |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
31.11471875 |
transcript.pyannote[0].end |
32.38034375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
33.10596875 |
transcript.pyannote[1].end |
35.01284375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
35.53596875 |
transcript.pyannote[2].end |
38.23596875 |
transcript.pyannote[3].speaker |
SPEAKER_02 |
transcript.pyannote[3].start |
35.97471875 |
transcript.pyannote[3].end |
36.98721875 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
38.75909375 |
transcript.pyannote[4].end |
40.63221875 |
transcript.pyannote[5].speaker |
SPEAKER_02 |
transcript.pyannote[5].start |
40.63221875 |
transcript.pyannote[5].end |
40.64909375 |
transcript.pyannote[6].speaker |
SPEAKER_02 |
transcript.pyannote[6].start |
49.33971875 |
transcript.pyannote[6].end |
49.35659375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
49.35659375 |
transcript.pyannote[7].end |
49.96409375 |
transcript.pyannote[8].speaker |
SPEAKER_02 |
transcript.pyannote[8].start |
49.96409375 |
transcript.pyannote[8].end |
49.98096875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
51.04409375 |
transcript.pyannote[9].end |
51.49971875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
52.34346875 |
transcript.pyannote[10].end |
52.86659375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
53.96346875 |
transcript.pyannote[11].end |
57.03471875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
57.40596875 |
transcript.pyannote[12].end |
62.09721875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
63.86909375 |
transcript.pyannote[13].end |
64.54409375 |
transcript.pyannote[14].speaker |
SPEAKER_02 |
transcript.pyannote[14].start |
65.10096875 |
transcript.pyannote[14].end |
65.82659375 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
66.09659375 |
transcript.pyannote[15].end |
68.25659375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
68.99909375 |
transcript.pyannote[16].end |
70.36596875 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
71.93534375 |
transcript.pyannote[17].end |
73.48784375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
74.46659375 |
transcript.pyannote[18].end |
76.25534375 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
77.30159375 |
transcript.pyannote[19].end |
78.78659375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
79.17471875 |
transcript.pyannote[20].end |
81.40221875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
82.06034375 |
transcript.pyannote[21].end |
82.70159375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
82.98846875 |
transcript.pyannote[22].end |
83.62971875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
84.32159375 |
transcript.pyannote[23].end |
88.42221875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
88.74284375 |
transcript.pyannote[24].end |
91.66221875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
91.83096875 |
transcript.pyannote[25].end |
94.19346875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
94.63221875 |
transcript.pyannote[26].end |
94.95284375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
94.95284375 |
transcript.pyannote[27].end |
98.12534375 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
98.91846875 |
transcript.pyannote[28].end |
99.94784375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
100.55534375 |
transcript.pyannote[29].end |
104.52096875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
104.89221875 |
transcript.pyannote[30].end |
109.68471875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
109.81971875 |
transcript.pyannote[31].end |
110.83221875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
111.28784375 |
transcript.pyannote[32].end |
117.37971875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
117.66659375 |
transcript.pyannote[33].end |
122.98221875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
123.70784375 |
transcript.pyannote[34].end |
126.00284375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
126.20534375 |
transcript.pyannote[35].end |
128.78721875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
129.10784375 |
transcript.pyannote[36].end |
136.46534375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
137.79846875 |
transcript.pyannote[37].end |
140.59971875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
140.97096875 |
transcript.pyannote[38].end |
143.13096875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
143.72159375 |
transcript.pyannote[39].end |
144.14346875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
144.64971875 |
transcript.pyannote[40].end |
145.13909375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
145.45971875 |
transcript.pyannote[41].end |
146.43846875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
146.84346875 |
transcript.pyannote[42].end |
148.05846875 |
transcript.pyannote[43].speaker |
SPEAKER_02 |
transcript.pyannote[43].start |
148.61534375 |
transcript.pyannote[43].end |
149.23971875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
149.67846875 |
transcript.pyannote[44].end |
151.70346875 |
transcript.pyannote[45].speaker |
SPEAKER_02 |
transcript.pyannote[45].start |
152.14221875 |
transcript.pyannote[45].end |
152.68221875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
153.17159375 |
transcript.pyannote[46].end |
155.90534375 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
156.29346875 |
transcript.pyannote[47].end |
157.28909375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
158.16659375 |
transcript.pyannote[48].end |
159.02721875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
159.02721875 |
transcript.pyannote[49].end |
159.53346875 |
transcript.pyannote[50].speaker |
SPEAKER_02 |
transcript.pyannote[50].start |
159.98909375 |
transcript.pyannote[50].end |
160.00596875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
160.00596875 |
transcript.pyannote[51].end |
161.52471875 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
162.03096875 |
transcript.pyannote[52].end |
163.29659375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
163.90409375 |
transcript.pyannote[53].end |
166.19909375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
166.92471875 |
transcript.pyannote[54].end |
169.18596875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
169.62471875 |
transcript.pyannote[55].end |
170.43471875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
171.16034375 |
transcript.pyannote[56].end |
172.02096875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
172.56096875 |
transcript.pyannote[57].end |
174.56909375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
175.14284375 |
transcript.pyannote[58].end |
177.62346875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
178.21409375 |
transcript.pyannote[59].end |
178.88909375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
179.66534375 |
transcript.pyannote[60].end |
180.20534375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
181.21784375 |
transcript.pyannote[61].end |
183.81659375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
184.28909375 |
transcript.pyannote[62].end |
186.48284375 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
186.98909375 |
transcript.pyannote[63].end |
190.38096875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
190.81971875 |
transcript.pyannote[64].end |
191.42721875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
191.95034375 |
transcript.pyannote[65].end |
194.90346875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
196.11846875 |
transcript.pyannote[66].end |
202.05846875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
202.37909375 |
transcript.pyannote[67].end |
204.21846875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
204.35346875 |
transcript.pyannote[68].end |
205.29846875 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
205.55159375 |
transcript.pyannote[69].end |
215.05221875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
215.99721875 |
transcript.pyannote[70].end |
220.58721875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
220.89096875 |
transcript.pyannote[71].end |
225.24471875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
225.70034375 |
transcript.pyannote[72].end |
232.16346875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
232.28159375 |
transcript.pyannote[73].end |
235.33596875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
235.62284375 |
transcript.pyannote[74].end |
239.48721875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
239.92596875 |
transcript.pyannote[75].end |
245.19096875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
245.56221875 |
transcript.pyannote[76].end |
251.08034375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
251.40096875 |
transcript.pyannote[77].end |
271.97159375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
272.41034375 |
transcript.pyannote[78].end |
272.95034375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
273.52409375 |
transcript.pyannote[79].end |
273.96284375 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
273.96284375 |
transcript.pyannote[80].end |
274.62096875 |
transcript.pyannote[81].speaker |
SPEAKER_02 |
transcript.pyannote[81].start |
275.00909375 |
transcript.pyannote[81].end |
277.65846875 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
278.09721875 |
transcript.pyannote[82].end |
282.75471875 |
transcript.pyannote[83].speaker |
SPEAKER_02 |
transcript.pyannote[83].start |
283.36221875 |
transcript.pyannote[83].end |
285.33659375 |
transcript.pyannote[84].speaker |
SPEAKER_02 |
transcript.pyannote[84].start |
285.89346875 |
transcript.pyannote[84].end |
288.34034375 |
transcript.pyannote[85].speaker |
SPEAKER_02 |
transcript.pyannote[85].start |
288.79596875 |
transcript.pyannote[85].end |
291.69846875 |
transcript.pyannote[86].speaker |
SPEAKER_02 |
transcript.pyannote[86].start |
291.95159375 |
transcript.pyannote[86].end |
294.97221875 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
295.34346875 |
transcript.pyannote[87].end |
296.25471875 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
296.59221875 |
transcript.pyannote[88].end |
298.49909375 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
298.75221875 |
transcript.pyannote[89].end |
305.55284375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
304.54034375 |
transcript.pyannote[90].end |
305.06346875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
305.78909375 |
transcript.pyannote[91].end |
306.29534375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
306.46409375 |
transcript.pyannote[92].end |
307.03784375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
307.96596875 |
transcript.pyannote[93].end |
308.96159375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
309.40034375 |
transcript.pyannote[94].end |
311.22284375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
311.44221875 |
transcript.pyannote[95].end |
311.76284375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
311.61096875 |
transcript.pyannote[96].end |
318.15846875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
318.36096875 |
transcript.pyannote[97].end |
323.81159375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
324.08159375 |
transcript.pyannote[98].end |
326.07284375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
326.69721875 |
transcript.pyannote[99].end |
327.50721875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
327.69284375 |
transcript.pyannote[100].end |
328.36784375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
329.09346875 |
transcript.pyannote[101].end |
347.43659375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
347.60534375 |
transcript.pyannote[102].end |
353.34284375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
353.56221875 |
transcript.pyannote[103].end |
362.99534375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
363.26534375 |
transcript.pyannote[104].end |
364.41284375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
364.81784375 |
transcript.pyannote[105].end |
368.98596875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
369.44159375 |
transcript.pyannote[106].end |
379.54971875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
380.07284375 |
transcript.pyannote[107].end |
381.03471875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
381.47346875 |
transcript.pyannote[108].end |
382.57034375 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
383.07659375 |
transcript.pyannote[109].end |
386.29971875 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
387.10971875 |
transcript.pyannote[110].end |
387.32909375 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
388.12221875 |
transcript.pyannote[111].end |
388.35846875 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
390.04596875 |
transcript.pyannote[112].end |
390.88971875 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
391.05846875 |
transcript.pyannote[113].end |
397.45409375 |
transcript.pyannote[114].speaker |
SPEAKER_03 |
transcript.pyannote[114].start |
397.87596875 |
transcript.pyannote[114].end |
407.86596875 |
transcript.pyannote[115].speaker |
SPEAKER_03 |
transcript.pyannote[115].start |
407.91659375 |
transcript.pyannote[115].end |
420.31971875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
417.67034375 |
transcript.pyannote[116].end |
449.26034375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
424.70721875 |
transcript.pyannote[117].end |
424.94346875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
449.68221875 |
transcript.pyannote[118].end |
461.35971875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
461.62971875 |
transcript.pyannote[119].end |
467.68784375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
466.47284375 |
transcript.pyannote[120].end |
467.38409375 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
467.68784375 |
transcript.pyannote[121].end |
467.82284375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
467.95784375 |
transcript.pyannote[122].end |
470.25284375 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
470.79284375 |
transcript.pyannote[123].end |
478.53846875 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
478.99409375 |
transcript.pyannote[124].end |
486.60471875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
487.07721875 |
transcript.pyannote[125].end |
489.03471875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
489.25409375 |
transcript.pyannote[126].end |
503.76659375 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
503.95221875 |
transcript.pyannote[127].end |
504.55971875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
504.91409375 |
transcript.pyannote[128].end |
508.72784375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
508.76159375 |
transcript.pyannote[129].end |
509.63909375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
509.95971875 |
transcript.pyannote[130].end |
510.66846875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
511.00596875 |
transcript.pyannote[131].end |
517.68846875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
518.26221875 |
transcript.pyannote[132].end |
526.95284375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
527.20596875 |
transcript.pyannote[133].end |
529.60221875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
530.31096875 |
transcript.pyannote[134].end |
553.02471875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
553.15971875 |
transcript.pyannote[135].end |
558.86346875 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
559.03221875 |
transcript.pyannote[136].end |
560.63534375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
561.12471875 |
transcript.pyannote[137].end |
578.43846875 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
578.77596875 |
transcript.pyannote[138].end |
580.05846875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
580.91909375 |
transcript.pyannote[139].end |
584.73284375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
584.83409375 |
transcript.pyannote[140].end |
586.16721875 |
transcript.pyannote[141].speaker |
SPEAKER_02 |
transcript.pyannote[141].start |
586.74096875 |
transcript.pyannote[141].end |
588.39471875 |
transcript.pyannote[142].speaker |
SPEAKER_02 |
transcript.pyannote[142].start |
588.66471875 |
transcript.pyannote[142].end |
591.55034375 |
transcript.pyannote[143].speaker |
SPEAKER_02 |
transcript.pyannote[143].start |
591.73596875 |
transcript.pyannote[143].end |
594.23346875 |
transcript.pyannote[144].speaker |
SPEAKER_02 |
transcript.pyannote[144].start |
594.52034375 |
transcript.pyannote[144].end |
595.33034375 |
transcript.pyannote[145].speaker |
SPEAKER_02 |
transcript.pyannote[145].start |
595.87034375 |
transcript.pyannote[145].end |
596.41034375 |
transcript.pyannote[146].speaker |
SPEAKER_02 |
transcript.pyannote[146].start |
596.69721875 |
transcript.pyannote[146].end |
598.87409375 |
transcript.pyannote[147].speaker |
SPEAKER_02 |
transcript.pyannote[147].start |
599.36346875 |
transcript.pyannote[147].end |
601.32096875 |
transcript.pyannote[148].speaker |
SPEAKER_02 |
transcript.pyannote[148].start |
601.65846875 |
transcript.pyannote[148].end |
603.00846875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
603.29534375 |
transcript.pyannote[149].end |
603.46409375 |
transcript.pyannote[150].speaker |
SPEAKER_02 |
transcript.pyannote[150].start |
603.46409375 |
transcript.pyannote[150].end |
609.03284375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
603.48096875 |
transcript.pyannote[151].end |
603.70034375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
609.03284375 |
transcript.pyannote[152].end |
610.39971875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
610.88909375 |
transcript.pyannote[153].end |
612.27284375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
612.66096875 |
transcript.pyannote[154].end |
614.23034375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
614.55096875 |
transcript.pyannote[155].end |
616.03596875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
616.27221875 |
transcript.pyannote[156].end |
640.80846875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
641.50034375 |
transcript.pyannote[157].end |
647.79471875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
648.36846875 |
transcript.pyannote[158].end |
649.83659375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
650.07284375 |
transcript.pyannote[159].end |
655.00034375 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
654.13971875 |
transcript.pyannote[160].end |
654.98346875 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
655.00034375 |
transcript.pyannote[161].end |
656.02971875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
656.02971875 |
transcript.pyannote[162].end |
658.42596875 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
656.72159375 |
transcript.pyannote[163].end |
656.95784375 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
658.84784375 |
transcript.pyannote[164].end |
659.75909375 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
660.11346875 |
transcript.pyannote[165].end |
662.08784375 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
666.91409375 |
transcript.pyannote[166].end |
667.69034375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
668.36534375 |
transcript.pyannote[167].end |
669.90096875 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
670.45784375 |
transcript.pyannote[168].end |
670.99784375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
671.74034375 |
transcript.pyannote[169].end |
673.90034375 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
675.09846875 |
transcript.pyannote[170].end |
676.34721875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
677.17409375 |
transcript.pyannote[171].end |
677.88284375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
678.79409375 |
transcript.pyannote[172].end |
679.92471875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
681.13971875 |
transcript.pyannote[173].end |
683.23221875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
683.95784375 |
transcript.pyannote[174].end |
684.46409375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
684.86909375 |
transcript.pyannote[175].end |
686.15159375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
686.62409375 |
transcript.pyannote[176].end |
687.51846875 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
688.27784375 |
transcript.pyannote[177].end |
689.49284375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
690.04971875 |
transcript.pyannote[178].end |
695.07846875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
695.70284375 |
transcript.pyannote[179].end |
698.50409375 |
transcript.pyannote[180].speaker |
SPEAKER_01 |
transcript.pyannote[180].start |
699.29721875 |
transcript.pyannote[180].end |
704.08971875 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
704.44409375 |
transcript.pyannote[181].end |
705.65909375 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
705.96284375 |
transcript.pyannote[182].end |
706.31721875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
707.95409375 |
transcript.pyannote[183].end |
710.97471875 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
711.39659375 |
transcript.pyannote[184].end |
712.69596875 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
713.37096875 |
transcript.pyannote[185].end |
717.13409375 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
717.74159375 |
transcript.pyannote[186].end |
732.00096875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
720.03659375 |
transcript.pyannote[187].end |
720.74534375 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
732.28784375 |
transcript.pyannote[188].end |
736.13534375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
736.96221875 |
transcript.pyannote[189].end |
739.79721875 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
742.14284375 |
transcript.pyannote[190].end |
742.49721875 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
742.88534375 |
transcript.pyannote[191].end |
744.30284375 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
744.60659375 |
transcript.pyannote[192].end |
745.55159375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
746.20971875 |
transcript.pyannote[193].end |
747.86346875 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
748.33596875 |
transcript.pyannote[194].end |
750.20909375 |
transcript.pyannote[195].speaker |
SPEAKER_01 |
transcript.pyannote[195].start |
750.73221875 |
transcript.pyannote[195].end |
753.38159375 |
transcript.pyannote[196].speaker |
SPEAKER_01 |
transcript.pyannote[196].start |
753.71909375 |
transcript.pyannote[196].end |
755.18721875 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
756.52034375 |
transcript.pyannote[197].end |
757.78596875 |
transcript.pyannote[198].speaker |
SPEAKER_01 |
transcript.pyannote[198].start |
758.32596875 |
transcript.pyannote[198].end |
759.59159375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
759.97971875 |
transcript.pyannote[199].end |
760.51971875 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
761.86971875 |
transcript.pyannote[200].end |
762.89909375 |
transcript.pyannote[201].speaker |
SPEAKER_03 |
transcript.pyannote[201].start |
764.24909375 |
transcript.pyannote[201].end |
764.51909375 |
transcript.pyannote[202].speaker |
SPEAKER_03 |
transcript.pyannote[202].start |
764.70471875 |
transcript.pyannote[202].end |
768.67034375 |
transcript.pyannote[203].speaker |
SPEAKER_03 |
transcript.pyannote[203].start |
768.97409375 |
transcript.pyannote[203].end |
772.12971875 |
transcript.pyannote[204].speaker |
SPEAKER_03 |
transcript.pyannote[204].start |
772.45034375 |
transcript.pyannote[204].end |
772.72034375 |
transcript.pyannote[205].speaker |
SPEAKER_03 |
transcript.pyannote[205].start |
772.90596875 |
transcript.pyannote[205].end |
775.84221875 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
774.34034375 |
transcript.pyannote[206].end |
775.33596875 |
transcript.pyannote[207].speaker |
SPEAKER_01 |
transcript.pyannote[207].start |
776.16284375 |
transcript.pyannote[207].end |
777.20909375 |
transcript.pyannote[208].speaker |
SPEAKER_01 |
transcript.pyannote[208].start |
778.00221875 |
transcript.pyannote[208].end |
784.14471875 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
785.25846875 |
transcript.pyannote[209].end |
787.78971875 |
transcript.pyannote[210].speaker |
SPEAKER_01 |
transcript.pyannote[210].start |
787.06409375 |
transcript.pyannote[210].end |
787.95846875 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
788.68409375 |
transcript.pyannote[211].end |
789.10596875 |
transcript.pyannote[212].speaker |
SPEAKER_01 |
transcript.pyannote[212].start |
789.10596875 |
transcript.pyannote[212].end |
791.50221875 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
789.12284375 |
transcript.pyannote[213].end |
814.67159375 |
transcript.pyannote[214].speaker |
SPEAKER_01 |
transcript.pyannote[214].start |
811.27971875 |
transcript.pyannote[214].end |
811.44846875 |
transcript.pyannote[215].speaker |
SPEAKER_01 |
transcript.pyannote[215].start |
812.15721875 |
transcript.pyannote[215].end |
812.74784375 |
transcript.pyannote[216].speaker |
SPEAKER_01 |
transcript.pyannote[216].start |
814.89096875 |
transcript.pyannote[216].end |
821.94471875 |
transcript.pyannote[217].speaker |
SPEAKER_01 |
transcript.pyannote[217].start |
822.28221875 |
transcript.pyannote[217].end |
824.96534375 |
transcript.pyannote[218].speaker |
SPEAKER_01 |
transcript.pyannote[218].start |
825.67409375 |
transcript.pyannote[218].end |
829.40346875 |
transcript.pyannote[219].speaker |
SPEAKER_01 |
transcript.pyannote[219].start |
830.16284375 |
transcript.pyannote[219].end |
830.56784375 |
transcript.pyannote[220].speaker |
SPEAKER_01 |
transcript.pyannote[220].start |
831.34409375 |
transcript.pyannote[220].end |
831.83346875 |
transcript.pyannote[221].speaker |
SPEAKER_01 |
transcript.pyannote[221].start |
832.42409375 |
transcript.pyannote[221].end |
842.49846875 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
842.76846875 |
transcript.pyannote[222].end |
848.15159375 |
transcript.pyannote[223].speaker |
SPEAKER_01 |
transcript.pyannote[223].start |
846.14346875 |
transcript.pyannote[223].end |
849.50159375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
848.38784375 |
transcript.pyannote[224].end |
850.63221875 |
transcript.pyannote[225].speaker |
SPEAKER_01 |
transcript.pyannote[225].start |
850.32846875 |
transcript.pyannote[225].end |
852.48846875 |
transcript.pyannote[226].speaker |
SPEAKER_01 |
transcript.pyannote[226].start |
852.82596875 |
transcript.pyannote[226].end |
853.56846875 |
transcript.pyannote[227].speaker |
SPEAKER_01 |
transcript.pyannote[227].start |
854.95221875 |
transcript.pyannote[227].end |
856.97721875 |
transcript.pyannote[228].speaker |
SPEAKER_02 |
transcript.pyannote[228].start |
856.97721875 |
transcript.pyannote[228].end |
857.09534375 |
transcript.pyannote[229].speaker |
SPEAKER_02 |
transcript.pyannote[229].start |
858.07409375 |
transcript.pyannote[229].end |
861.07784375 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
861.07784375 |
transcript.pyannote[230].end |
861.09471875 |
transcript.pyannote[231].speaker |
SPEAKER_02 |
transcript.pyannote[231].start |
861.63471875 |
transcript.pyannote[231].end |
862.27596875 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
862.27596875 |
transcript.pyannote[232].end |
862.29284375 |
transcript.pyannote[233].speaker |
SPEAKER_02 |
transcript.pyannote[233].start |
863.37284375 |
transcript.pyannote[233].end |
863.38971875 |
transcript.pyannote[234].speaker |
SPEAKER_01 |
transcript.pyannote[234].start |
863.38971875 |
transcript.pyannote[234].end |
863.82846875 |
transcript.pyannote[235].speaker |
SPEAKER_01 |
transcript.pyannote[235].start |
863.99721875 |
transcript.pyannote[235].end |
866.42721875 |
transcript.pyannote[236].speaker |
SPEAKER_01 |
transcript.pyannote[236].start |
869.22846875 |
transcript.pyannote[236].end |
869.58284375 |
transcript.pyannote[237].speaker |
SPEAKER_01 |
transcript.pyannote[237].start |
869.66721875 |
transcript.pyannote[237].end |
870.74721875 |
transcript.pyannote[238].speaker |
SPEAKER_01 |
transcript.pyannote[238].start |
871.33784375 |
transcript.pyannote[238].end |
875.11784375 |
transcript.pyannote[239].speaker |
SPEAKER_01 |
transcript.pyannote[239].start |
877.46346875 |
transcript.pyannote[239].end |
878.69534375 |
transcript.pyannote[240].speaker |
SPEAKER_01 |
transcript.pyannote[240].start |
879.03284375 |
transcript.pyannote[240].end |
879.55596875 |
transcript.pyannote[241].speaker |
SPEAKER_01 |
transcript.pyannote[241].start |
880.48409375 |
transcript.pyannote[241].end |
882.42471875 |
transcript.pyannote[242].speaker |
SPEAKER_01 |
transcript.pyannote[242].start |
883.67346875 |
transcript.pyannote[242].end |
887.36909375 |
transcript.pyannote[243].speaker |
SPEAKER_01 |
transcript.pyannote[243].start |
888.14534375 |
transcript.pyannote[243].end |
891.87471875 |
transcript.pyannote[244].speaker |
SPEAKER_01 |
transcript.pyannote[244].start |
892.33034375 |
transcript.pyannote[244].end |
894.01784375 |
transcript.pyannote[245].speaker |
SPEAKER_01 |
transcript.pyannote[245].start |
894.40596875 |
transcript.pyannote[245].end |
898.57409375 |
transcript.pyannote[246].speaker |
SPEAKER_01 |
transcript.pyannote[246].start |
899.02971875 |
transcript.pyannote[246].end |
903.46784375 |
transcript.pyannote[247].speaker |
SPEAKER_01 |
transcript.pyannote[247].start |
903.61971875 |
transcript.pyannote[247].end |
904.73346875 |
transcript.pyannote[248].speaker |
SPEAKER_01 |
transcript.pyannote[248].start |
904.96971875 |
transcript.pyannote[248].end |
916.05659375 |
transcript.pyannote[249].speaker |
SPEAKER_01 |
transcript.pyannote[249].start |
918.19971875 |
transcript.pyannote[249].end |
923.43096875 |
transcript.pyannote[250].speaker |
SPEAKER_01 |
transcript.pyannote[250].start |
923.76846875 |
transcript.pyannote[250].end |
924.78096875 |
transcript.pyannote[251].speaker |
SPEAKER_01 |
transcript.pyannote[251].start |
925.38846875 |
transcript.pyannote[251].end |
931.12596875 |
transcript.pyannote[252].speaker |
SPEAKER_01 |
transcript.pyannote[252].start |
931.31159375 |
transcript.pyannote[252].end |
932.83034375 |
transcript.pyannote[253].speaker |
SPEAKER_01 |
transcript.pyannote[253].start |
933.15096875 |
transcript.pyannote[253].end |
934.19721875 |
transcript.pyannote[254].speaker |
SPEAKER_01 |
transcript.pyannote[254].start |
934.55159375 |
transcript.pyannote[254].end |
936.47534375 |
transcript.pyannote[255].speaker |
SPEAKER_01 |
transcript.pyannote[255].start |
937.11659375 |
transcript.pyannote[255].end |
939.73221875 |
transcript.pyannote[256].speaker |
SPEAKER_01 |
transcript.pyannote[256].start |
940.17096875 |
transcript.pyannote[256].end |
948.60846875 |
transcript.pyannote[257].speaker |
SPEAKER_01 |
transcript.pyannote[257].start |
948.89534375 |
transcript.pyannote[257].end |
957.38346875 |
transcript.pyannote[258].speaker |
SPEAKER_01 |
transcript.pyannote[258].start |
957.77159375 |
transcript.pyannote[258].end |
959.74596875 |
transcript.pyannote[259].speaker |
SPEAKER_01 |
transcript.pyannote[259].start |
960.03284375 |
transcript.pyannote[259].end |
960.89346875 |
transcript.pyannote[260].speaker |
SPEAKER_01 |
transcript.pyannote[260].start |
962.15909375 |
transcript.pyannote[260].end |
977.98784375 |
transcript.pyannote[261].speaker |
SPEAKER_01 |
transcript.pyannote[261].start |
978.67971875 |
transcript.pyannote[261].end |
983.99534375 |
transcript.pyannote[262].speaker |
SPEAKER_01 |
transcript.pyannote[262].start |
984.73784375 |
transcript.pyannote[262].end |
985.36221875 |
transcript.pyannote[263].speaker |
SPEAKER_01 |
transcript.pyannote[263].start |
985.63221875 |
transcript.pyannote[263].end |
986.52659375 |
transcript.pyannote[264].speaker |
SPEAKER_01 |
transcript.pyannote[264].start |
986.94846875 |
transcript.pyannote[264].end |
999.99284375 |
transcript.pyannote[265].speaker |
SPEAKER_01 |
transcript.pyannote[265].start |
1000.22909375 |
transcript.pyannote[265].end |
1000.87034375 |
transcript.pyannote[266].speaker |
SPEAKER_01 |
transcript.pyannote[266].start |
1001.47784375 |
transcript.pyannote[266].end |
1002.47346875 |
transcript.pyannote[267].speaker |
SPEAKER_01 |
transcript.pyannote[267].start |
1003.03034375 |
transcript.pyannote[267].end |
1004.09346875 |
transcript.pyannote[268].speaker |
SPEAKER_01 |
transcript.pyannote[268].start |
1004.58284375 |
transcript.pyannote[268].end |
1007.35034375 |
transcript.pyannote[269].speaker |
SPEAKER_01 |
transcript.pyannote[269].start |
1007.48534375 |
transcript.pyannote[269].end |
1012.85159375 |
transcript.pyannote[270].speaker |
SPEAKER_01 |
transcript.pyannote[270].start |
1013.20596875 |
transcript.pyannote[270].end |
1015.92284375 |
transcript.pyannote[271].speaker |
SPEAKER_01 |
transcript.pyannote[271].start |
1016.73284375 |
transcript.pyannote[271].end |
1024.29284375 |
transcript.pyannote[272].speaker |
SPEAKER_01 |
transcript.pyannote[272].start |
1024.61346875 |
transcript.pyannote[272].end |
1026.14909375 |
transcript.pyannote[273].speaker |
SPEAKER_01 |
transcript.pyannote[273].start |
1026.25034375 |
transcript.pyannote[273].end |
1028.19096875 |
transcript.pyannote[274].speaker |
SPEAKER_01 |
transcript.pyannote[274].start |
1028.39346875 |
transcript.pyannote[274].end |
1029.01784375 |
transcript.pyannote[275].speaker |
SPEAKER_01 |
transcript.pyannote[275].start |
1031.09346875 |
transcript.pyannote[275].end |
1031.61659375 |
transcript.pyannote[276].speaker |
SPEAKER_01 |
transcript.pyannote[276].start |
1032.57846875 |
transcript.pyannote[276].end |
1032.84846875 |
transcript.pyannote[277].speaker |
SPEAKER_01 |
transcript.pyannote[277].start |
1033.74284375 |
transcript.pyannote[277].end |
1034.67096875 |
transcript.pyannote[278].speaker |
SPEAKER_01 |
transcript.pyannote[278].start |
1035.09284375 |
transcript.pyannote[278].end |
1035.56534375 |
transcript.pyannote[279].speaker |
SPEAKER_01 |
transcript.pyannote[279].start |
1035.95346875 |
transcript.pyannote[279].end |
1037.33721875 |
transcript.pyannote[280].speaker |
SPEAKER_01 |
transcript.pyannote[280].start |
1038.06284375 |
transcript.pyannote[280].end |
1038.88971875 |
transcript.pyannote[281].speaker |
SPEAKER_01 |
transcript.pyannote[281].start |
1039.41284375 |
transcript.pyannote[281].end |
1040.59409375 |
transcript.pyannote[282].speaker |
SPEAKER_01 |
transcript.pyannote[282].start |
1041.11721875 |
transcript.pyannote[282].end |
1041.58971875 |
transcript.pyannote[283].speaker |
SPEAKER_01 |
transcript.pyannote[283].start |
1041.74159375 |
transcript.pyannote[283].end |
1042.92284375 |
transcript.pyannote[284].speaker |
SPEAKER_02 |
transcript.pyannote[284].start |
1043.95221875 |
transcript.pyannote[284].end |
1044.27284375 |
transcript.pyannote[285].speaker |
SPEAKER_01 |
transcript.pyannote[285].start |
1044.27284375 |
transcript.pyannote[285].end |
1046.68596875 |
transcript.pyannote[286].speaker |
SPEAKER_01 |
transcript.pyannote[286].start |
1047.04034375 |
transcript.pyannote[286].end |
1048.69409375 |
transcript.pyannote[287].speaker |
SPEAKER_01 |
transcript.pyannote[287].start |
1049.36909375 |
transcript.pyannote[287].end |
1051.27596875 |
transcript.pyannote[288].speaker |
SPEAKER_01 |
transcript.pyannote[288].start |
1051.56284375 |
transcript.pyannote[288].end |
1052.54159375 |
transcript.pyannote[289].speaker |
SPEAKER_01 |
transcript.pyannote[289].start |
1052.79471875 |
transcript.pyannote[289].end |
1065.41721875 |
transcript.pyannote[290].speaker |
SPEAKER_01 |
transcript.pyannote[290].start |
1065.99096875 |
transcript.pyannote[290].end |
1070.41221875 |
transcript.pyannote[291].speaker |
SPEAKER_01 |
transcript.pyannote[291].start |
1070.93534375 |
transcript.pyannote[291].end |
1074.85034375 |
transcript.pyannote[292].speaker |
SPEAKER_01 |
transcript.pyannote[292].start |
1075.39034375 |
transcript.pyannote[292].end |
1075.96409375 |
transcript.pyannote[293].speaker |
SPEAKER_01 |
transcript.pyannote[293].start |
1076.84159375 |
transcript.pyannote[293].end |
1079.62596875 |
transcript.pyannote[294].speaker |
SPEAKER_01 |
transcript.pyannote[294].start |
1079.94659375 |
transcript.pyannote[294].end |
1092.99096875 |
transcript.pyannote[295].speaker |
SPEAKER_01 |
transcript.pyannote[295].start |
1093.46346875 |
transcript.pyannote[295].end |
1095.97784375 |
transcript.pyannote[296].speaker |
SPEAKER_01 |
transcript.pyannote[296].start |
1097.07471875 |
transcript.pyannote[296].end |
1097.58096875 |
transcript.pyannote[297].speaker |
SPEAKER_01 |
transcript.pyannote[297].start |
1098.08721875 |
transcript.pyannote[297].end |
1099.67346875 |
transcript.pyannote[298].speaker |
SPEAKER_01 |
transcript.pyannote[298].start |
1099.97721875 |
transcript.pyannote[298].end |
1101.85034375 |
transcript.pyannote[299].speaker |
SPEAKER_01 |
transcript.pyannote[299].start |
1101.95159375 |
transcript.pyannote[299].end |
1115.60346875 |
transcript.pyannote[300].speaker |
SPEAKER_01 |
transcript.pyannote[300].start |
1115.92409375 |
transcript.pyannote[300].end |
1117.47659375 |
transcript.pyannote[301].speaker |
SPEAKER_01 |
transcript.pyannote[301].start |
1118.33721875 |
transcript.pyannote[301].end |
1121.37471875 |
transcript.pyannote[302].speaker |
SPEAKER_01 |
transcript.pyannote[302].start |
1121.72909375 |
transcript.pyannote[302].end |
1130.23409375 |
transcript.pyannote[303].speaker |
SPEAKER_01 |
transcript.pyannote[303].start |
1131.09471875 |
transcript.pyannote[303].end |
1141.47284375 |
transcript.pyannote[304].speaker |
SPEAKER_01 |
transcript.pyannote[304].start |
1141.91159375 |
transcript.pyannote[304].end |
1157.03159375 |
transcript.pyannote[305].speaker |
SPEAKER_02 |
transcript.pyannote[305].start |
1157.26784375 |
transcript.pyannote[305].end |
1157.31846875 |
transcript.pyannote[306].speaker |
SPEAKER_01 |
transcript.pyannote[306].start |
1157.31846875 |
transcript.pyannote[306].end |
1157.95971875 |
transcript.pyannote[307].speaker |
SPEAKER_02 |
transcript.pyannote[307].start |
1157.52096875 |
transcript.pyannote[307].end |
1162.58346875 |
transcript.pyannote[308].speaker |
SPEAKER_02 |
transcript.pyannote[308].start |
1162.97159375 |
transcript.pyannote[308].end |
1164.76034375 |
transcript.pyannote[309].speaker |
SPEAKER_02 |
transcript.pyannote[309].start |
1165.14846875 |
transcript.pyannote[309].end |
1165.45221875 |
transcript.pyannote[310].speaker |
SPEAKER_02 |
transcript.pyannote[310].start |
1165.68846875 |
transcript.pyannote[310].end |
1169.56971875 |
transcript.pyannote[311].speaker |
SPEAKER_02 |
transcript.pyannote[311].start |
1170.12659375 |
transcript.pyannote[311].end |
1174.58159375 |
transcript.pyannote[312].speaker |
SPEAKER_02 |
transcript.pyannote[312].start |
1174.95284375 |
transcript.pyannote[312].end |
1176.04971875 |
transcript.pyannote[313].speaker |
SPEAKER_02 |
transcript.pyannote[313].start |
1176.31971875 |
transcript.pyannote[313].end |
1178.17596875 |
transcript.pyannote[314].speaker |
SPEAKER_02 |
transcript.pyannote[314].start |
1178.29409375 |
transcript.pyannote[314].end |
1179.40784375 |
transcript.pyannote[315].speaker |
SPEAKER_02 |
transcript.pyannote[315].start |
1179.76221875 |
transcript.pyannote[315].end |
1180.69034375 |
transcript.pyannote[316].speaker |
SPEAKER_02 |
transcript.pyannote[316].start |
1181.28096875 |
transcript.pyannote[316].end |
1185.87096875 |
transcript.pyannote[317].speaker |
SPEAKER_02 |
transcript.pyannote[317].start |
1186.29284375 |
transcript.pyannote[317].end |
1188.45284375 |
transcript.pyannote[318].speaker |
SPEAKER_02 |
transcript.pyannote[318].start |
1188.65534375 |
transcript.pyannote[318].end |
1189.98846875 |
transcript.pyannote[319].speaker |
SPEAKER_02 |
transcript.pyannote[319].start |
1190.27534375 |
transcript.pyannote[319].end |
1192.72221875 |
transcript.pyannote[320].speaker |
SPEAKER_02 |
transcript.pyannote[320].start |
1192.87409375 |
transcript.pyannote[320].end |
1196.08034375 |
transcript.pyannote[321].speaker |
SPEAKER_02 |
transcript.pyannote[321].start |
1196.51909375 |
transcript.pyannote[321].end |
1199.75909375 |
transcript.pyannote[322].speaker |
SPEAKER_02 |
transcript.pyannote[322].start |
1200.16409375 |
transcript.pyannote[322].end |
1205.29409375 |
transcript.pyannote[323].speaker |
SPEAKER_02 |
transcript.pyannote[323].start |
1205.51346875 |
transcript.pyannote[323].end |
1206.55971875 |
transcript.pyannote[324].speaker |
SPEAKER_02 |
transcript.pyannote[324].start |
1206.84659375 |
transcript.pyannote[324].end |
1208.29784375 |
transcript.pyannote[325].speaker |
SPEAKER_02 |
transcript.pyannote[325].start |
1208.70284375 |
transcript.pyannote[325].end |
1211.55471875 |
transcript.pyannote[326].speaker |
SPEAKER_02 |
transcript.pyannote[326].start |
1211.70659375 |
transcript.pyannote[326].end |
1218.62534375 |
transcript.pyannote[327].speaker |
SPEAKER_01 |
transcript.pyannote[327].start |
1217.88284375 |
transcript.pyannote[327].end |
1217.95034375 |
transcript.pyannote[328].speaker |
SPEAKER_02 |
transcript.pyannote[328].start |
1219.24971875 |
transcript.pyannote[328].end |
1219.73909375 |
transcript.pyannote[329].speaker |
SPEAKER_02 |
transcript.pyannote[329].start |
1220.16096875 |
transcript.pyannote[329].end |
1221.10596875 |
transcript.pyannote[330].speaker |
SPEAKER_01 |
transcript.pyannote[330].start |
1221.10596875 |
transcript.pyannote[330].end |
1221.71346875 |
transcript.pyannote[331].speaker |
SPEAKER_01 |
transcript.pyannote[331].start |
1222.47284375 |
transcript.pyannote[331].end |
1222.94534375 |
transcript.pyannote[332].speaker |
SPEAKER_01 |
transcript.pyannote[332].start |
1225.54409375 |
transcript.pyannote[332].end |
1226.03346875 |
transcript.pyannote[333].speaker |
SPEAKER_01 |
transcript.pyannote[333].start |
1227.06284375 |
transcript.pyannote[333].end |
1227.90659375 |
transcript.pyannote[334].speaker |
SPEAKER_01 |
transcript.pyannote[334].start |
1229.02034375 |
transcript.pyannote[334].end |
1230.79221875 |
transcript.pyannote[335].speaker |
SPEAKER_01 |
transcript.pyannote[335].start |
1232.07471875 |
transcript.pyannote[335].end |
1233.44159375 |
transcript.pyannote[336].speaker |
SPEAKER_01 |
transcript.pyannote[336].start |
1234.01534375 |
transcript.pyannote[336].end |
1237.52534375 |
transcript.pyannote[337].speaker |
SPEAKER_01 |
transcript.pyannote[337].start |
1239.02721875 |
transcript.pyannote[337].end |
1240.93409375 |
transcript.pyannote[338].speaker |
SPEAKER_01 |
transcript.pyannote[338].start |
1241.99721875 |
transcript.pyannote[338].end |
1249.40534375 |
transcript.pyannote[339].speaker |
SPEAKER_01 |
transcript.pyannote[339].start |
1250.97471875 |
transcript.pyannote[339].end |
1254.41721875 |
transcript.pyannote[340].speaker |
SPEAKER_01 |
transcript.pyannote[340].start |
1255.63221875 |
transcript.pyannote[340].end |
1256.88096875 |
transcript.pyannote[341].speaker |
SPEAKER_01 |
transcript.pyannote[341].start |
1257.42096875 |
transcript.pyannote[341].end |
1259.85096875 |
transcript.pyannote[342].speaker |
SPEAKER_01 |
transcript.pyannote[342].start |
1260.10409375 |
transcript.pyannote[342].end |
1262.06159375 |
transcript.pyannote[343].speaker |
SPEAKER_01 |
transcript.pyannote[343].start |
1262.56784375 |
transcript.pyannote[343].end |
1263.41159375 |
transcript.pyannote[344].speaker |
SPEAKER_01 |
transcript.pyannote[344].start |
1263.71534375 |
transcript.pyannote[344].end |
1265.14971875 |
transcript.pyannote[345].speaker |
SPEAKER_01 |
transcript.pyannote[345].start |
1265.20034375 |
transcript.pyannote[345].end |
1266.11159375 |
transcript.pyannote[346].speaker |
SPEAKER_01 |
transcript.pyannote[346].start |
1267.09034375 |
transcript.pyannote[346].end |
1280.84346875 |
transcript.pyannote[347].speaker |
SPEAKER_01 |
transcript.pyannote[347].start |
1281.73784375 |
transcript.pyannote[347].end |
1282.88534375 |
transcript.pyannote[348].speaker |
SPEAKER_01 |
transcript.pyannote[348].start |
1283.56034375 |
transcript.pyannote[348].end |
1286.07471875 |
transcript.pyannote[349].speaker |
SPEAKER_01 |
transcript.pyannote[349].start |
1286.71596875 |
transcript.pyannote[349].end |
1289.26409375 |
transcript.pyannote[350].speaker |
SPEAKER_01 |
transcript.pyannote[350].start |
1290.09096875 |
transcript.pyannote[350].end |
1290.58034375 |
transcript.pyannote[351].speaker |
SPEAKER_01 |
transcript.pyannote[351].start |
1290.93471875 |
transcript.pyannote[351].end |
1291.93034375 |
transcript.pyannote[352].speaker |
SPEAKER_01 |
transcript.pyannote[352].start |
1292.53784375 |
transcript.pyannote[352].end |
1293.34784375 |
transcript.pyannote[353].speaker |
SPEAKER_01 |
transcript.pyannote[353].start |
1294.00596875 |
transcript.pyannote[353].end |
1295.11971875 |
transcript.pyannote[354].speaker |
SPEAKER_01 |
transcript.pyannote[354].start |
1295.65971875 |
transcript.pyannote[354].end |
1296.16596875 |
transcript.pyannote[355].speaker |
SPEAKER_01 |
transcript.pyannote[355].start |
1296.65534375 |
transcript.pyannote[355].end |
1297.71846875 |
transcript.pyannote[356].speaker |
SPEAKER_01 |
transcript.pyannote[356].start |
1298.14034375 |
transcript.pyannote[356].end |
1299.18659375 |
transcript.pyannote[357].speaker |
SPEAKER_02 |
transcript.pyannote[357].start |
1299.92909375 |
transcript.pyannote[357].end |
1299.94596875 |
transcript.pyannote[358].speaker |
SPEAKER_01 |
transcript.pyannote[358].start |
1299.94596875 |
transcript.pyannote[358].end |
1299.96284375 |
transcript.pyannote[359].speaker |
SPEAKER_02 |
transcript.pyannote[359].start |
1299.96284375 |
transcript.pyannote[359].end |
1300.03034375 |
transcript.pyannote[360].speaker |
SPEAKER_01 |
transcript.pyannote[360].start |
1300.03034375 |
transcript.pyannote[360].end |
1300.95846875 |
transcript.pyannote[361].speaker |
SPEAKER_02 |
transcript.pyannote[361].start |
1301.49846875 |
transcript.pyannote[361].end |
1301.75159375 |
transcript.pyannote[362].speaker |
SPEAKER_01 |
transcript.pyannote[362].start |
1302.30846875 |
transcript.pyannote[362].end |
1303.42221875 |
transcript.pyannote[363].speaker |
SPEAKER_01 |
transcript.pyannote[363].start |
1303.62471875 |
transcript.pyannote[363].end |
1316.95596875 |
transcript.pyannote[364].speaker |
SPEAKER_01 |
transcript.pyannote[364].start |
1317.59721875 |
transcript.pyannote[364].end |
1320.34784375 |
transcript.pyannote[365].speaker |
SPEAKER_01 |
transcript.pyannote[365].start |
1320.36471875 |
transcript.pyannote[365].end |
1321.86659375 |
transcript.pyannote[366].speaker |
SPEAKER_02 |
transcript.pyannote[366].start |
1322.49096875 |
transcript.pyannote[366].end |
1322.74409375 |
transcript.pyannote[367].speaker |
SPEAKER_01 |
transcript.pyannote[367].start |
1323.01409375 |
transcript.pyannote[367].end |
1325.14034375 |
transcript.pyannote[368].speaker |
SPEAKER_01 |
transcript.pyannote[368].start |
1326.81096875 |
transcript.pyannote[368].end |
1327.65471875 |
transcript.pyannote[369].speaker |
SPEAKER_01 |
transcript.pyannote[369].start |
1328.11034375 |
transcript.pyannote[369].end |
1328.65034375 |
transcript.pyannote[370].speaker |
SPEAKER_01 |
transcript.pyannote[370].start |
1329.62909375 |
transcript.pyannote[370].end |
1331.94096875 |
transcript.pyannote[371].speaker |
SPEAKER_01 |
transcript.pyannote[371].start |
1332.48096875 |
transcript.pyannote[371].end |
1333.02096875 |
transcript.pyannote[372].speaker |
SPEAKER_01 |
transcript.pyannote[372].start |
1333.42596875 |
transcript.pyannote[372].end |
1334.80971875 |
transcript.pyannote[373].speaker |
SPEAKER_01 |
transcript.pyannote[373].start |
1335.85596875 |
transcript.pyannote[373].end |
1341.27284375 |
transcript.pyannote[374].speaker |
SPEAKER_01 |
transcript.pyannote[374].start |
1342.06596875 |
transcript.pyannote[374].end |
1343.75346875 |
transcript.pyannote[375].speaker |
SPEAKER_01 |
transcript.pyannote[375].start |
1345.01909375 |
transcript.pyannote[375].end |
1345.60971875 |
transcript.pyannote[376].speaker |
SPEAKER_01 |
transcript.pyannote[376].start |
1346.36909375 |
transcript.pyannote[376].end |
1347.04409375 |
transcript.pyannote[377].speaker |
SPEAKER_01 |
transcript.pyannote[377].start |
1347.87096875 |
transcript.pyannote[377].end |
1348.49534375 |
transcript.pyannote[378].speaker |
SPEAKER_01 |
transcript.pyannote[378].start |
1348.90034375 |
transcript.pyannote[378].end |
1349.99721875 |
transcript.pyannote[379].speaker |
SPEAKER_01 |
transcript.pyannote[379].start |
1350.23346875 |
transcript.pyannote[379].end |
1351.09409375 |
transcript.pyannote[380].speaker |
SPEAKER_01 |
transcript.pyannote[380].start |
1351.81971875 |
transcript.pyannote[380].end |
1352.32596875 |
transcript.pyannote[381].speaker |
SPEAKER_01 |
transcript.pyannote[381].start |
1353.59159375 |
transcript.pyannote[381].end |
1354.92471875 |
transcript.pyannote[382].speaker |
SPEAKER_01 |
transcript.pyannote[382].start |
1355.66721875 |
transcript.pyannote[382].end |
1356.34221875 |
transcript.pyannote[383].speaker |
SPEAKER_01 |
transcript.pyannote[383].start |
1356.47721875 |
transcript.pyannote[383].end |
1364.15534375 |
transcript.pyannote[384].speaker |
SPEAKER_00 |
transcript.pyannote[384].start |
1361.48909375 |
transcript.pyannote[384].end |
1362.78846875 |
transcript.pyannote[385].speaker |
SPEAKER_00 |
transcript.pyannote[385].start |
1362.82221875 |
transcript.pyannote[385].end |
1362.85596875 |
transcript.pyannote[386].speaker |
SPEAKER_00 |
transcript.pyannote[386].start |
1363.00784375 |
transcript.pyannote[386].end |
1363.76721875 |
transcript.pyannote[387].speaker |
SPEAKER_01 |
transcript.pyannote[387].start |
1364.47596875 |
transcript.pyannote[387].end |
1373.18346875 |
transcript.pyannote[388].speaker |
SPEAKER_01 |
transcript.pyannote[388].start |
1373.85846875 |
transcript.pyannote[388].end |
1376.94659375 |
transcript.pyannote[389].speaker |
SPEAKER_01 |
transcript.pyannote[389].start |
1378.38096875 |
transcript.pyannote[389].end |
1379.07284375 |
transcript.pyannote[390].speaker |
SPEAKER_01 |
transcript.pyannote[390].start |
1379.61284375 |
transcript.pyannote[390].end |
1381.94159375 |
transcript.pyannote[391].speaker |
SPEAKER_01 |
transcript.pyannote[391].start |
1382.14409375 |
transcript.pyannote[391].end |
1383.47721875 |
transcript.pyannote[392].speaker |
SPEAKER_01 |
transcript.pyannote[392].start |
1384.08471875 |
transcript.pyannote[392].end |
1388.50596875 |
transcript.pyannote[393].speaker |
SPEAKER_01 |
transcript.pyannote[393].start |
1388.92784375 |
transcript.pyannote[393].end |
1390.75034375 |
transcript.pyannote[394].speaker |
SPEAKER_01 |
transcript.pyannote[394].start |
1391.39159375 |
transcript.pyannote[394].end |
1396.65659375 |
transcript.pyannote[395].speaker |
SPEAKER_01 |
transcript.pyannote[395].start |
1396.90971875 |
transcript.pyannote[395].end |
1400.50409375 |
transcript.pyannote[396].speaker |
SPEAKER_01 |
transcript.pyannote[396].start |
1400.85846875 |
transcript.pyannote[396].end |
1404.26721875 |
transcript.pyannote[397].speaker |
SPEAKER_01 |
transcript.pyannote[397].start |
1404.77346875 |
transcript.pyannote[397].end |
1406.27534375 |
transcript.pyannote[398].speaker |
SPEAKER_01 |
transcript.pyannote[398].start |
1406.71409375 |
transcript.pyannote[398].end |
1411.59096875 |
transcript.pyannote[399].speaker |
SPEAKER_01 |
transcript.pyannote[399].start |
1411.87784375 |
transcript.pyannote[399].end |
1424.88846875 |
transcript.pyannote[400].speaker |
SPEAKER_01 |
transcript.pyannote[400].start |
1426.37346875 |
transcript.pyannote[400].end |
1428.65159375 |
transcript.pyannote[401].speaker |
SPEAKER_01 |
transcript.pyannote[401].start |
1429.17471875 |
transcript.pyannote[401].end |
1440.75096875 |
transcript.pyannote[402].speaker |
SPEAKER_01 |
transcript.pyannote[402].start |
1441.07159375 |
transcript.pyannote[402].end |
1451.31471875 |
transcript.pyannote[403].speaker |
SPEAKER_01 |
transcript.pyannote[403].start |
1452.05721875 |
transcript.pyannote[403].end |
1453.71096875 |
transcript.pyannote[404].speaker |
SPEAKER_01 |
transcript.pyannote[404].start |
1454.53784375 |
transcript.pyannote[404].end |
1456.44471875 |
transcript.pyannote[405].speaker |
SPEAKER_01 |
transcript.pyannote[405].start |
1457.13659375 |
transcript.pyannote[405].end |
1458.11534375 |
transcript.pyannote[406].speaker |
SPEAKER_01 |
transcript.pyannote[406].start |
1458.45284375 |
transcript.pyannote[406].end |
1460.57909375 |
transcript.pyannote[407].speaker |
SPEAKER_01 |
transcript.pyannote[407].start |
1461.03471875 |
transcript.pyannote[407].end |
1462.75596875 |
transcript.pyannote[408].speaker |
SPEAKER_01 |
transcript.pyannote[408].start |
1462.97534375 |
transcript.pyannote[408].end |
1473.74159375 |
transcript.pyannote[409].speaker |
SPEAKER_01 |
transcript.pyannote[409].start |
1473.85971875 |
transcript.pyannote[409].end |
1474.24784375 |
transcript.pyannote[410].speaker |
SPEAKER_01 |
transcript.pyannote[410].start |
1475.14221875 |
transcript.pyannote[410].end |
1477.08284375 |
transcript.pyannote[411].speaker |
SPEAKER_01 |
transcript.pyannote[411].start |
1477.55534375 |
transcript.pyannote[411].end |
1479.47909375 |
transcript.pyannote[412].speaker |
SPEAKER_02 |
transcript.pyannote[412].start |
1479.47909375 |
transcript.pyannote[412].end |
1481.04846875 |
transcript.pyannote[413].speaker |
SPEAKER_01 |
transcript.pyannote[413].start |
1481.04846875 |
transcript.pyannote[413].end |
1482.29721875 |
transcript.pyannote[414].speaker |
SPEAKER_01 |
transcript.pyannote[414].start |
1482.87096875 |
transcript.pyannote[414].end |
1484.10284375 |
transcript.pyannote[415].speaker |
SPEAKER_02 |
transcript.pyannote[415].start |
1484.10284375 |
transcript.pyannote[415].end |
1485.62159375 |
transcript.pyannote[416].speaker |
SPEAKER_01 |
transcript.pyannote[416].start |
1485.19971875 |
transcript.pyannote[416].end |
1486.00971875 |
transcript.pyannote[417].speaker |
SPEAKER_01 |
transcript.pyannote[417].start |
1486.22909375 |
transcript.pyannote[417].end |
1488.27096875 |
transcript.pyannote[418].speaker |
SPEAKER_01 |
transcript.pyannote[418].start |
1488.52409375 |
transcript.pyannote[418].end |
1500.91034375 |
transcript.pyannote[419].speaker |
SPEAKER_01 |
transcript.pyannote[419].start |
1501.48409375 |
transcript.pyannote[419].end |
1506.25971875 |
transcript.pyannote[420].speaker |
SPEAKER_01 |
transcript.pyannote[420].start |
1506.73221875 |
transcript.pyannote[420].end |
1509.31409375 |
transcript.pyannote[421].speaker |
SPEAKER_01 |
transcript.pyannote[421].start |
1510.25909375 |
transcript.pyannote[421].end |
1528.77096875 |
transcript.pyannote[422].speaker |
SPEAKER_01 |
transcript.pyannote[422].start |
1528.99034375 |
transcript.pyannote[422].end |
1536.07784375 |
transcript.pyannote[423].speaker |
SPEAKER_01 |
transcript.pyannote[423].start |
1536.88784375 |
transcript.pyannote[423].end |
1551.19784375 |
transcript.pyannote[424].speaker |
SPEAKER_01 |
transcript.pyannote[424].start |
1552.49721875 |
transcript.pyannote[424].end |
1555.41659375 |
transcript.pyannote[425].speaker |
SPEAKER_01 |
transcript.pyannote[425].start |
1555.87221875 |
transcript.pyannote[425].end |
1557.30659375 |
transcript.pyannote[426].speaker |
SPEAKER_01 |
transcript.pyannote[426].start |
1557.79596875 |
transcript.pyannote[426].end |
1558.90971875 |
transcript.pyannote[427].speaker |
SPEAKER_01 |
transcript.pyannote[427].start |
1559.34846875 |
transcript.pyannote[427].end |
1561.01909375 |
transcript.pyannote[428].speaker |
SPEAKER_01 |
transcript.pyannote[428].start |
1561.23846875 |
transcript.pyannote[428].end |
1570.65471875 |
transcript.pyannote[429].speaker |
SPEAKER_01 |
transcript.pyannote[429].start |
1571.59971875 |
transcript.pyannote[429].end |
1575.56534375 |
transcript.pyannote[430].speaker |
SPEAKER_01 |
transcript.pyannote[430].start |
1576.03784375 |
transcript.pyannote[430].end |
1580.64471875 |
transcript.pyannote[431].speaker |
SPEAKER_01 |
transcript.pyannote[431].start |
1581.16784375 |
transcript.pyannote[431].end |
1593.28409375 |
transcript.pyannote[432].speaker |
SPEAKER_01 |
transcript.pyannote[432].start |
1594.76909375 |
transcript.pyannote[432].end |
1595.93346875 |
transcript.pyannote[433].speaker |
SPEAKER_01 |
transcript.pyannote[433].start |
1596.22034375 |
transcript.pyannote[433].end |
1600.45596875 |
transcript.pyannote[434].speaker |
SPEAKER_01 |
transcript.pyannote[434].start |
1600.70909375 |
transcript.pyannote[434].end |
1601.62034375 |
transcript.pyannote[435].speaker |
SPEAKER_01 |
transcript.pyannote[435].start |
1601.94096875 |
transcript.pyannote[435].end |
1607.18909375 |
transcript.pyannote[436].speaker |
SPEAKER_01 |
transcript.pyannote[436].start |
1607.86409375 |
transcript.pyannote[436].end |
1608.38721875 |
transcript.pyannote[437].speaker |
SPEAKER_01 |
transcript.pyannote[437].start |
1609.87221875 |
transcript.pyannote[437].end |
1613.38221875 |
transcript.pyannote[438].speaker |
SPEAKER_01 |
transcript.pyannote[438].start |
1613.97284375 |
transcript.pyannote[438].end |
1618.51221875 |
transcript.pyannote[439].speaker |
SPEAKER_01 |
transcript.pyannote[439].start |
1619.82846875 |
transcript.pyannote[439].end |
1624.31721875 |
transcript.pyannote[440].speaker |
SPEAKER_01 |
transcript.pyannote[440].start |
1624.40159375 |
transcript.pyannote[440].end |
1629.17721875 |
transcript.pyannote[441].speaker |
SPEAKER_01 |
transcript.pyannote[441].start |
1631.77596875 |
transcript.pyannote[441].end |
1632.46784375 |
transcript.pyannote[442].speaker |
SPEAKER_01 |
transcript.pyannote[442].start |
1632.87284375 |
transcript.pyannote[442].end |
1636.38284375 |
transcript.pyannote[443].speaker |
SPEAKER_01 |
transcript.pyannote[443].start |
1636.82159375 |
transcript.pyannote[443].end |
1638.76221875 |
transcript.pyannote[444].speaker |
SPEAKER_01 |
transcript.pyannote[444].start |
1639.36971875 |
transcript.pyannote[444].end |
1640.16284375 |
transcript.pyannote[445].speaker |
SPEAKER_01 |
transcript.pyannote[445].start |
1640.53409375 |
transcript.pyannote[445].end |
1644.95534375 |
transcript.pyannote[446].speaker |
SPEAKER_01 |
transcript.pyannote[446].start |
1645.42784375 |
transcript.pyannote[446].end |
1646.37284375 |
transcript.pyannote[447].speaker |
SPEAKER_01 |
transcript.pyannote[447].start |
1647.16596875 |
transcript.pyannote[447].end |
1647.82409375 |
transcript.pyannote[448].speaker |
SPEAKER_01 |
transcript.pyannote[448].start |
1648.90409375 |
transcript.pyannote[448].end |
1651.77284375 |
transcript.pyannote[449].speaker |
SPEAKER_01 |
transcript.pyannote[449].start |
1651.87409375 |
transcript.pyannote[449].end |
1652.92034375 |
transcript.pyannote[450].speaker |
SPEAKER_01 |
transcript.pyannote[450].start |
1653.39284375 |
transcript.pyannote[450].end |
1655.46846875 |
transcript.pyannote[451].speaker |
SPEAKER_01 |
transcript.pyannote[451].start |
1656.07596875 |
transcript.pyannote[451].end |
1657.52721875 |
transcript.pyannote[452].speaker |
SPEAKER_01 |
transcript.pyannote[452].start |
1657.78034375 |
transcript.pyannote[452].end |
1658.77596875 |
transcript.pyannote[453].speaker |
SPEAKER_01 |
transcript.pyannote[453].start |
1659.09659375 |
transcript.pyannote[453].end |
1661.02034375 |
transcript.pyannote[454].speaker |
SPEAKER_01 |
transcript.pyannote[454].start |
1661.42534375 |
transcript.pyannote[454].end |
1664.41221875 |
transcript.pyannote[455].speaker |
SPEAKER_01 |
transcript.pyannote[455].start |
1664.63159375 |
transcript.pyannote[455].end |
1665.93096875 |
transcript.pyannote[456].speaker |
SPEAKER_01 |
transcript.pyannote[456].start |
1666.42034375 |
transcript.pyannote[456].end |
1666.82534375 |
transcript.pyannote[457].speaker |
SPEAKER_01 |
transcript.pyannote[457].start |
1667.23034375 |
transcript.pyannote[457].end |
1669.72784375 |
transcript.pyannote[458].speaker |
SPEAKER_01 |
transcript.pyannote[458].start |
1670.04846875 |
transcript.pyannote[458].end |
1671.16221875 |
transcript.pyannote[459].speaker |
SPEAKER_01 |
transcript.pyannote[459].start |
1671.83721875 |
transcript.pyannote[459].end |
1673.35596875 |
transcript.pyannote[460].speaker |
SPEAKER_01 |
transcript.pyannote[460].start |
1674.11534375 |
transcript.pyannote[460].end |
1680.74721875 |
transcript.pyannote[461].speaker |
SPEAKER_01 |
transcript.pyannote[461].start |
1680.81471875 |
transcript.pyannote[461].end |
1683.12659375 |
transcript.pyannote[462].speaker |
SPEAKER_01 |
transcript.pyannote[462].start |
1683.54846875 |
transcript.pyannote[462].end |
1686.53534375 |
transcript.pyannote[463].speaker |
SPEAKER_01 |
transcript.pyannote[463].start |
1687.21034375 |
transcript.pyannote[463].end |
1700.91284375 |
transcript.pyannote[464].speaker |
SPEAKER_01 |
transcript.pyannote[464].start |
1701.13221875 |
transcript.pyannote[464].end |
1701.92534375 |
transcript.pyannote[465].speaker |
SPEAKER_01 |
transcript.pyannote[465].start |
1702.61721875 |
transcript.pyannote[465].end |
1713.36659375 |
transcript.pyannote[466].speaker |
SPEAKER_00 |
transcript.pyannote[466].start |
1703.44409375 |
transcript.pyannote[466].end |
1703.98409375 |
transcript.pyannote[467].speaker |
SPEAKER_00 |
transcript.pyannote[467].start |
1707.42659375 |
transcript.pyannote[467].end |
1708.05096875 |
transcript.pyannote[468].speaker |
SPEAKER_01 |
transcript.pyannote[468].start |
1713.82221875 |
transcript.pyannote[468].end |
1714.32846875 |
transcript.pyannote[469].speaker |
SPEAKER_01 |
transcript.pyannote[469].start |
1714.85159375 |
transcript.pyannote[469].end |
1716.91034375 |
transcript.pyannote[470].speaker |
SPEAKER_01 |
transcript.pyannote[470].start |
1716.97784375 |
transcript.pyannote[470].end |
1724.57159375 |
transcript.pyannote[471].speaker |
SPEAKER_01 |
transcript.pyannote[471].start |
1725.26346875 |
transcript.pyannote[471].end |
1734.10596875 |
transcript.pyannote[472].speaker |
SPEAKER_01 |
transcript.pyannote[472].start |
1734.44346875 |
transcript.pyannote[472].end |
1738.78034375 |
transcript.pyannote[473].speaker |
SPEAKER_01 |
transcript.pyannote[473].start |
1739.21909375 |
transcript.pyannote[473].end |
1742.79659375 |
transcript.pyannote[474].speaker |
SPEAKER_01 |
transcript.pyannote[474].start |
1743.38721875 |
transcript.pyannote[474].end |
1747.20096875 |
transcript.pyannote[475].speaker |
SPEAKER_01 |
transcript.pyannote[475].start |
1747.47096875 |
transcript.pyannote[475].end |
1748.28096875 |
transcript.pyannote[476].speaker |
SPEAKER_01 |
transcript.pyannote[476].start |
1748.43284375 |
transcript.pyannote[476].end |
1750.15409375 |
transcript.pyannote[477].speaker |
SPEAKER_01 |
transcript.pyannote[477].start |
1750.67721875 |
transcript.pyannote[477].end |
1751.14971875 |
transcript.pyannote[478].speaker |
SPEAKER_01 |
transcript.pyannote[478].start |
1751.65596875 |
transcript.pyannote[478].end |
1758.55784375 |
transcript.pyannote[479].speaker |
SPEAKER_01 |
transcript.pyannote[479].start |
1759.13159375 |
transcript.pyannote[479].end |
1764.80159375 |
transcript.pyannote[480].speaker |
SPEAKER_02 |
transcript.pyannote[480].start |
1765.29096875 |
transcript.pyannote[480].end |
1766.16846875 |
transcript.pyannote[481].speaker |
SPEAKER_01 |
transcript.pyannote[481].start |
1766.16846875 |
transcript.pyannote[481].end |
1766.18534375 |
transcript.pyannote[482].speaker |
SPEAKER_01 |
transcript.pyannote[482].start |
1766.50596875 |
transcript.pyannote[482].end |
1766.53971875 |
transcript.pyannote[483].speaker |
SPEAKER_02 |
transcript.pyannote[483].start |
1766.53971875 |
transcript.pyannote[483].end |
1767.48471875 |
transcript.pyannote[484].speaker |
SPEAKER_02 |
transcript.pyannote[484].start |
1767.80534375 |
transcript.pyannote[484].end |
1771.78784375 |
transcript.pyannote[485].speaker |
SPEAKER_02 |
transcript.pyannote[485].start |
1772.14221875 |
transcript.pyannote[485].end |
1773.15471875 |
transcript.pyannote[486].speaker |
SPEAKER_02 |
transcript.pyannote[486].start |
1773.50909375 |
transcript.pyannote[486].end |
1775.53409375 |
transcript.pyannote[487].speaker |
SPEAKER_02 |
transcript.pyannote[487].start |
1776.00659375 |
transcript.pyannote[487].end |
1777.98096875 |
transcript.pyannote[488].speaker |
SPEAKER_02 |
transcript.pyannote[488].start |
1778.21721875 |
transcript.pyannote[488].end |
1779.36471875 |
transcript.pyannote[489].speaker |
SPEAKER_02 |
transcript.pyannote[489].start |
1779.75284375 |
transcript.pyannote[489].end |
1781.69346875 |
transcript.pyannote[490].speaker |
SPEAKER_02 |
transcript.pyannote[490].start |
1782.52034375 |
transcript.pyannote[490].end |
1785.77721875 |
transcript.pyannote[491].speaker |
SPEAKER_01 |
transcript.pyannote[491].start |
1782.63846875 |
transcript.pyannote[491].end |
1783.09409375 |
transcript.pyannote[492].speaker |
SPEAKER_01 |
transcript.pyannote[492].start |
1785.00096875 |
transcript.pyannote[492].end |
1786.57034375 |
transcript.pyannote[493].speaker |
SPEAKER_01 |
transcript.pyannote[493].start |
1787.27909375 |
transcript.pyannote[493].end |
1788.71346875 |
transcript.pyannote[494].speaker |
SPEAKER_02 |
transcript.pyannote[494].start |
1788.83159375 |
transcript.pyannote[494].end |
1789.67534375 |
transcript.pyannote[495].speaker |
SPEAKER_02 |
transcript.pyannote[495].start |
1790.31659375 |
transcript.pyannote[495].end |
1792.03784375 |
transcript.pyannote[496].speaker |
SPEAKER_02 |
transcript.pyannote[496].start |
1792.49346875 |
transcript.pyannote[496].end |
1796.13846875 |
transcript.pyannote[497].speaker |
SPEAKER_02 |
transcript.pyannote[497].start |
1796.62784375 |
transcript.pyannote[497].end |
1797.45471875 |
transcript.pyannote[498].speaker |
SPEAKER_01 |
transcript.pyannote[498].start |
1797.45471875 |
transcript.pyannote[498].end |
1797.64034375 |
transcript.pyannote[499].speaker |
SPEAKER_02 |
transcript.pyannote[499].start |
1797.64034375 |
transcript.pyannote[499].end |
1797.67409375 |
transcript.pyannote[500].speaker |
SPEAKER_01 |
transcript.pyannote[500].start |
1797.67409375 |
transcript.pyannote[500].end |
1797.92721875 |
transcript.pyannote[501].speaker |
SPEAKER_02 |
transcript.pyannote[501].start |
1797.92721875 |
transcript.pyannote[501].end |
1797.96096875 |
transcript.pyannote[502].speaker |
SPEAKER_01 |
transcript.pyannote[502].start |
1797.96096875 |
transcript.pyannote[502].end |
1798.21409375 |
transcript.pyannote[503].speaker |
SPEAKER_01 |
transcript.pyannote[503].start |
1798.33221875 |
transcript.pyannote[503].end |
1799.59784375 |
transcript.pyannote[504].speaker |
SPEAKER_01 |
transcript.pyannote[504].start |
1800.39096875 |
transcript.pyannote[504].end |
1801.18409375 |
transcript.pyannote[505].speaker |
SPEAKER_01 |
transcript.pyannote[505].start |
1801.50471875 |
transcript.pyannote[505].end |
1804.45784375 |
transcript.pyannote[506].speaker |
SPEAKER_01 |
transcript.pyannote[506].start |
1805.03159375 |
transcript.pyannote[506].end |
1808.28846875 |
transcript.pyannote[507].speaker |
SPEAKER_01 |
transcript.pyannote[507].start |
1808.65971875 |
transcript.pyannote[507].end |
1808.72721875 |
transcript.pyannote[508].speaker |
SPEAKER_02 |
transcript.pyannote[508].start |
1808.72721875 |
transcript.pyannote[508].end |
1808.81159375 |
transcript.pyannote[509].speaker |
SPEAKER_01 |
transcript.pyannote[509].start |
1808.81159375 |
transcript.pyannote[509].end |
1808.87909375 |
transcript.pyannote[510].speaker |
SPEAKER_02 |
transcript.pyannote[510].start |
1808.87909375 |
transcript.pyannote[510].end |
1808.89596875 |
transcript.pyannote[511].speaker |
SPEAKER_01 |
transcript.pyannote[511].start |
1808.89596875 |
transcript.pyannote[511].end |
1808.96346875 |
transcript.pyannote[512].speaker |
SPEAKER_02 |
transcript.pyannote[512].start |
1808.96346875 |
transcript.pyannote[512].end |
1809.13221875 |
transcript.pyannote[513].speaker |
SPEAKER_01 |
transcript.pyannote[513].start |
1809.13221875 |
transcript.pyannote[513].end |
1809.25034375 |
transcript.pyannote[514].speaker |
SPEAKER_02 |
transcript.pyannote[514].start |
1809.25034375 |
transcript.pyannote[514].end |
1809.30096875 |
transcript.pyannote[515].speaker |
SPEAKER_01 |
transcript.pyannote[515].start |
1809.30096875 |
transcript.pyannote[515].end |
1812.22034375 |
transcript.pyannote[516].speaker |
SPEAKER_02 |
transcript.pyannote[516].start |
1809.87471875 |
transcript.pyannote[516].end |
1812.30471875 |
transcript.pyannote[517].speaker |
SPEAKER_01 |
transcript.pyannote[517].start |
1812.30471875 |
transcript.pyannote[517].end |
1812.79409375 |
transcript.pyannote[518].speaker |
SPEAKER_02 |
transcript.pyannote[518].start |
1812.32159375 |
transcript.pyannote[518].end |
1812.82784375 |
transcript.pyannote[519].speaker |
SPEAKER_01 |
transcript.pyannote[519].start |
1812.82784375 |
transcript.pyannote[519].end |
1827.22221875 |
transcript.pyannote[520].speaker |
SPEAKER_02 |
transcript.pyannote[520].start |
1814.51534375 |
transcript.pyannote[520].end |
1814.92034375 |
transcript.pyannote[521].speaker |
SPEAKER_01 |
transcript.pyannote[521].start |
1827.34034375 |
transcript.pyannote[521].end |
1830.36096875 |
transcript.pyannote[522].speaker |
SPEAKER_01 |
transcript.pyannote[522].start |
1830.68159375 |
transcript.pyannote[522].end |
1837.21221875 |
transcript.pyannote[523].speaker |
SPEAKER_01 |
transcript.pyannote[523].start |
1838.15721875 |
transcript.pyannote[523].end |
1846.35846875 |
transcript.pyannote[524].speaker |
SPEAKER_01 |
transcript.pyannote[524].start |
1846.91534375 |
transcript.pyannote[524].end |
1852.04534375 |
transcript.pyannote[525].speaker |
SPEAKER_01 |
transcript.pyannote[525].start |
1852.29846875 |
transcript.pyannote[525].end |
1855.20096875 |
transcript.pyannote[526].speaker |
SPEAKER_00 |
transcript.pyannote[526].start |
1852.51784375 |
transcript.pyannote[526].end |
1853.10846875 |
transcript.pyannote[527].speaker |
SPEAKER_01 |
transcript.pyannote[527].start |
1855.36971875 |
transcript.pyannote[527].end |
1856.11221875 |
transcript.pyannote[528].speaker |
SPEAKER_01 |
transcript.pyannote[528].start |
1863.46971875 |
transcript.pyannote[528].end |
1863.82409375 |
transcript.pyannote[529].speaker |
SPEAKER_01 |
transcript.pyannote[529].start |
1863.97596875 |
transcript.pyannote[529].end |
1864.02659375 |
transcript.pyannote[530].speaker |
SPEAKER_02 |
transcript.pyannote[530].start |
1869.54471875 |
transcript.pyannote[530].end |
1873.20659375 |
transcript.pyannote[531].speaker |
SPEAKER_02 |
transcript.pyannote[531].start |
1875.29909375 |
transcript.pyannote[531].end |
1878.97784375 |
transcript.whisperx[0].start |
31.138 |
transcript.whisperx[0].end |
37.02 |
transcript.whisperx[0].text |
好謝謝院長請行政院卓院長勞動部我們何部長請勞動部何部長備詢議員好好院長 |
transcript.whisperx[1].start |
53.988 |
transcript.whisperx[1].end |
80.921 |
transcript.whisperx[1].text |
我看你每一次來到立法院西裝必挺然後穿得端端正正非常欣賞那是對院長的指示還有對大院的尊敬我也要特別強調在我們韓院長阿他的響應之下院長你看一下我是打領帶又穿西裝 |
transcript.whisperx[2].start |
82.29 |
transcript.whisperx[2].end |
93.365 |
transcript.whisperx[2].text |
為什麼 一樣立法委員尊重行政院 行政院尊重立法院這是基本的為官之道的禮數 |
transcript.whisperx[3].start |
95.089 |
transcript.whisperx[3].end |
121.525 |
transcript.whisperx[3].text |
所以本席還要再強調一次臺灣民眾黨理性務實科學所以我在問政的時候我絕對是以理性方式來探討但是有一點勞工出身雖然穿上西裝但是我有一個個性也就是當我提問題答非所問不針對問題 |
transcript.whisperx[4].start |
123.749 |
transcript.whisperx[4].end |
147.882 |
transcript.whisperx[4].text |
我們這個勞工就會硬怒所以我還是要拜託院長我提問題的時候我們是共同來探討為了台灣為了所有的民眾我們共同來討論出一個行政院可以做的方法院長我想我這個拜託應該你不會反對吧 |
transcript.whisperx[5].start |
148.632 |
transcript.whisperx[5].end |
177.214 |
transcript.whisperx[5].text |
我會很誠實的很忠實的反映委員的詢詢我如果答得不夠完整我會請部長來加強好 謝謝院長 謝謝部長當然我很關心就是台灣一千一百多萬勞工的問題所以我的標題很清楚也就是政府說得到要做得到千萬勞工才會安心 |
transcript.whisperx[6].start |
178.294 |
transcript.whisperx[6].end |
194.894 |
transcript.whisperx[6].text |
其實從民進黨執政這兩年來我對他對於勞工的勞保基金的處理方式個人覺得是負責跟滿意的 |
transcript.whisperx[7].start |
196.312 |
transcript.whisperx[7].end |
197.033 |
transcript.whisperx[7].text |
老保基金虧損連連 |
transcript.whisperx[8].start |
216.072 |
transcript.whisperx[8].end |
239.207 |
transcript.whisperx[8].text |
我都希望所有執政過的政府都要概括承受絕對不是勞工繳勺的問題而造成所以勞工是無辜的這一點我希望院長應該是很了解因為你也從立法委員從基層選舉出來你可以了解 |
transcript.whisperx[9].start |
240.087 |
transcript.whisperx[9].end |
258.946 |
transcript.whisperx[9].text |
老虎功高不敢講勞工對於整個社會是有幫助的所以最後一塊的勞保基金的棺材本一定要切實去做到一個保障這是我今天對的院長對的部長 |
transcript.whisperx[10].start |
259.807 |
transcript.whisperx[10].end |
282.543 |
transcript.whisperx[10].text |
特別懇求對於勞工這個部分我們要實質的作為確保勞工勞保基金對他的保障這一點 院長你應該認同吧勞工是台灣發展經濟最重要的資產從過去歷任的政府到現在對勞工的照顧從來不敢怠慢 |
transcript.whisperx[11].start |
283.356 |
transcript.whisperx[11].end |
283.696 |
transcript.whisperx[11].text |
所以 院長 |
transcript.whisperx[12].start |
307.998 |
transcript.whisperx[12].end |
322.754 |
transcript.whisperx[12].text |
我常講過我個人對你是尊敬的但是有些政策你如果違背的時候當然我也是對你有所質疑但是我們要替台灣人做事當然就針對問題來談問題所以我還是要拜託院長 |
transcript.whisperx[13].start |
326.755 |
transcript.whisperx[13].end |
345.424 |
transcript.whisperx[13].text |
本席還有我們國民黨民進黨都有同樣的共識也就是現在勞保條例66條撥補的部分是行政院長也是你們決定自動撥補去挽救勞保基金 |
transcript.whisperx[14].start |
347.725 |
transcript.whisperx[14].end |
368.439 |
transcript.whisperx[14].text |
但是本席認為 既然你們這兩三年來都有在撥普那撥普是危機的處理 但是在法的立場 完完全全是行政作為所以本席率先跟我們宴會裡面的同仁 我就提一個 |
transcript.whisperx[15].start |
369.52 |
transcript.whisperx[15].end |
384.538 |
transcript.whisperx[15].text |
老保條例66條的修法也就是把撥補常態化 撥補法制化所以 院長 這個撥補讓他入法我想聽聽你的意見 聽聽部長的意見 |
transcript.whisperx[16].start |
391.904 |
transcript.whisperx[16].end |
407.555 |
transcript.whisperx[16].text |
謝謝委員垂詢非常肯定委員一直支持我們撥補勞保基金那麼因為是在這個我們目前總統在520就進行了宣誓只要政府在勞保就不會倒 |
transcript.whisperx[17].start |
409.416 |
transcript.whisperx[17].end |
427.252 |
transcript.whisperx[17].text |
總統宣誓底下,我們也承諾在今年的114年度的總預算裡面,我們就編列了1300億的預算你們現在有在做,剛才我也跟院長說明了,你們都有在做,那我的提這個66條,只是把它 |
transcript.whisperx[18].start |
430.294 |
transcript.whisperx[18].end |
431.035 |
transcript.whisperx[18].text |
法制化 |
transcript.whisperx[19].start |
460.694 |
transcript.whisperx[19].end |
461.034 |
transcript.whisperx[19].text |
老保條例69條是什麼 |
transcript.whisperx[20].start |
487.402 |
transcript.whisperx[20].end |
508.425 |
transcript.whisperx[20].text |
勞工有一段時間在10年前一天到晚恐嚇勞工勞保基金快要倒 勞保基金快要倒其實這對1100多萬有頭保的勞工他心有多傷 他心有多恐懼所以69條的部分我也希望把它入法 |
transcript.whisperx[21].start |
508.985 |
transcript.whisperx[21].end |
529.086 |
transcript.whisperx[21].text |
也就是 院長 不管是陳院長 不管是卓院長甚至乙民村部長跟何部長你們都同聲的保證勞保不會倒勞保勞工一定領到他的棺材本這一點我要跟你們肯定但是本席還是要拜託 |
transcript.whisperx[22].start |
530.367 |
transcript.whisperx[22].end |
545.159 |
transcript.whisperx[22].text |
因為我提69條是把他政府最終給付讓1100萬的勞工他知道他也了解政府已經下了法定的政府最終給付所以這一點 |
transcript.whisperx[23].start |
546.4 |
transcript.whisperx[23].end |
566.211 |
transcript.whisperx[23].text |
我特別要跟卓院長要跟何部長讓你們了解我提這個案的當中是你們現在都有在做所以這點我希望也不要再提視線講清楚說明白我想都是為了勞工好讓勞工安心政府也盡心 |
transcript.whisperx[24].start |
571.973 |
transcript.whisperx[24].end |
598.699 |
transcript.whisperx[24].text |
讓這樣一團和氣勞工的問題解決就等於解決社會二分之一的問題所以總院長我剛才已經說明這麼清楚你對已入法你的看法是怎麼樣一句話就是我們對勞保這個基金除了撥補之外還有很多其他的多元的配套可以來運用所以現在只能跟委員說的是 |
transcript.whisperx[25].start |
599.42 |
transcript.whisperx[25].end |
615.565 |
transcript.whisperx[25].text |
政府不負責沒有人可以負責所以剛剛副部長講政府在勞保不會倒而且我們會想辦法對勞工要更好謝謝卓院長因為你也是接地氣勞工要的不多只要政府有作為 |
transcript.whisperx[26].start |
616.565 |
transcript.whisperx[26].end |
640.432 |
transcript.whisperx[26].text |
勞工自然就會放心所以這一塊我要拜託卓院長拜託何部長當我們在我們立法院有關程序勞保條例66條69條的時候我希望行政機關院長也在那邊講也認同我希望這個會很順利的來入華這入華本來就是你們有在做讓勞工覺得他自己本身得到 |
transcript.whisperx[27].start |
641.51 |
transcript.whisperx[27].end |
641.59 |
transcript.whisperx[27].text |
教育部長 |
transcript.whisperx[28].start |
666.94 |
transcript.whisperx[28].end |
687.123 |
transcript.whisperx[28].text |
好 院長那個何部長你也不要走來來來因為我現在要跟你談的齁我現在要跟你談的或許啊這些範圍很大但是這個是一個社會問題左院長我剛才在跟你討論你接地氣 |
transcript.whisperx[29].start |
688.325 |
transcript.whisperx[29].end |
716.664 |
transcript.whisperx[29].text |
但是有些事情你沒有為官沒有當行政院長的時候你沒有辦法做但是當你有機會當了中華民國的行政院長的時候你就有辦法去做這是什麼政策的問題我要跟你談的就是技職教育萎縮以後臺灣產業真的是非常危機 |
transcript.whisperx[30].start |
717.793 |
transcript.whisperx[30].end |
718.113 |
transcript.whisperx[30].text |
好 接下來 |
transcript.whisperx[31].start |
742.142 |
transcript.whisperx[31].end |
752.55 |
transcript.whisperx[31].text |
好 我要考考事啦 我要考考事我們賴清德總統在7月21號的時候他在開幕等你的時候我要請教何部長賴總統怎麼說總統在當時就指示他說台灣未來的產業 |
transcript.whisperx[32].start |
769.353 |
transcript.whisperx[32].end |
770.333 |
transcript.whisperx[32].text |
賴清德總統講這些話你不要你想 |
transcript.whisperx[33].start |
788.74 |
transcript.whisperx[33].end |
789.12 |
transcript.whisperx[33].text |
總統怎麼講?總統怎麼講? |
transcript.whisperx[34].start |
814.969 |
transcript.whisperx[34].end |
815.33 |
transcript.whisperx[34].text |
主席 |
transcript.whisperx[35].start |
831.357 |
transcript.whisperx[35].end |
832.678 |
transcript.whisperx[35].text |
你同不同意總統講這些話 |
transcript.whisperx[36].start |
858.237 |
transcript.whisperx[36].end |
886.722 |
transcript.whisperx[36].text |
當然同意 我寫我們要把它化為政策來執行好 OK一定 那我們就來繼續談下去 來下一張好 既然都同意了那我們就來探討一個比較客觀的問題 來下一張即時能力 真的學生為什麼會不青睞這叫做什麼 我們教育政策出問題 |
transcript.whisperx[37].start |
888.443 |
transcript.whisperx[37].end |
915.743 |
transcript.whisperx[37].text |
還有教育連貫性不實在所以才會產生這個問題所以我們就來看看這個問題在哪邊所以我提供給我們卓院長去做政策的決策才有辦法指令我們勞動部跟我們教育部要把它連貫起來因為教育跟技職是息息相關的好 下一張 |
transcript.whisperx[38].start |
918.601 |
transcript.whisperx[38].end |
921.528 |
transcript.whisperx[38].text |
說實在啦我再度再重申計止教育是臺灣經濟奇蹟的締造者 |
transcript.whisperx[39].start |
925.458 |
transcript.whisperx[39].end |
948.373 |
transcript.whisperx[39].text |
那這個締造者當然我們要去引導不然的話怎麼樣去締造者所以我在想我們從不管從50年代50年代開始從重工業開始起基在60年代這個人才的培育到70年代高科技的培育 |
transcript.whisperx[40].start |
949.294 |
transcript.whisperx[40].end |
960.551 |
transcript.whisperx[40].text |
這個方向都是對可是有一點從50年代還OK沒有問題60年代在計職教育還好在這個部分據我個人所研究 |
transcript.whisperx[41].start |
962.593 |
transcript.whisperx[41].end |
981.609 |
transcript.whisperx[41].text |
吳京部長在這個部分他是做了跟行政院長報告跟總統報告計職教育做了最好的一段所以提供給部長去做參考那段時間第一個哪有什麼這個移工的問題沒有 為什麼 |
transcript.whisperx[42].start |
984.735 |
transcript.whisperx[42].end |
985.015 |
transcript.whisperx[42].text |
李卓人議員 |
transcript.whisperx[43].start |
1001.531 |
transcript.whisperx[43].end |
1028.672 |
transcript.whisperx[43].text |
在這個部分我們的技職教育連貫性是不足的這我特別教育部正部長我要讓你了解要你了解所以我的簡單雖然吳京部長已經卸任但是他確實在技職教育部分是做得非常到位非常連結跟產業是連結的接下來 |
transcript.whisperx[44].start |
1031.158 |
transcript.whisperx[44].end |
1042.759 |
transcript.whisperx[44].text |
下一張好我說實在的阿 院長沒有計職教育阿就沒有今天的台積電阿 院長這句話你同意吧 |
transcript.whisperx[45].start |
1045.149 |
transcript.whisperx[45].end |
1064.966 |
transcript.whisperx[45].text |
所以這個台積電現在世界各國是一個護國神山那這個是什麼當初如果沒有政府正確方向去引導哪有這些工程書哪有今天的台積電所以我為什麼會提這個是只要給 |
transcript.whisperx[46].start |
1066.027 |
transcript.whisperx[46].end |
1075.732 |
transcript.whisperx[46].text |
左院長你去做政策的方向決策你如果沒有正確的方向那永遠都是在那邊搞至於 |
transcript.whisperx[47].start |
1076.929 |
transcript.whisperx[47].end |
1095.754 |
transcript.whisperx[47].text |
我們的教改成不成功我們都不要談成不成功我相信我不要問院長你也知道為什麼要恢復50年代做得非常好的60年代做得非常好的技職教育為什麼就是未來到現在為止 |
transcript.whisperx[48].start |
1097.128 |
transcript.whisperx[48].end |
1116.036 |
transcript.whisperx[48].text |
副長你沒有發現到大家都要用移工嗎你現在壓力很大的不管是10萬個20萬個我們現在的移工高達這麼多不管是營造業不管是旅館業連開公車的都希望外勞連我們台電 |
transcript.whisperx[49].start |
1118.377 |
transcript.whisperx[49].end |
1129.805 |
transcript.whisperx[49].text |
在修理電線的都需要外勞這是為什麼就是我們技職教育 失敗嘛所以這20年來完全是失敗的欸 卓院長 |
transcript.whisperx[50].start |
1131.158 |
transcript.whisperx[50].end |
1155.166 |
transcript.whisperx[50].text |
我以重心長我們看到的是這些根本就是教育連貫失敗的計職教育是很失敗的耶 議長這樣啦 我用這個時間給議長因為我剛才跟你報告這些事情議長來 你對於計職教育本席到現在為止提出來哪一點不符合實際議長 來 |
transcript.whisperx[51].start |
1158.068 |
transcript.whisperx[51].end |
1180.563 |
transcript.whisperx[51].text |
謝謝委員 委員能夠關心即時教育就表示委員對很多問題深入的了解現在已經指出問題即時教育在過去幾年真的是呈現一個中空的狀態不管是學生的人數 學家的設備都不足以因應現在產業的需求那我不願意從這個什麼少子化這個角度來看雖然它是一個事實 我願意說的是 |
transcript.whisperx[52].start |
1181.303 |
transcript.whisperx[52].end |
1208.203 |
transcript.whisperx[52].text |
我們整個產業的結構能不能跟計職教育能夠銜接在一起其中兩項一個就是我們計職教育能不能提供很好的誘因讓希望學的以及整個年輕朋友可以進到這個體系裡面來第二我們的計職教育裡面的相關的教學設備設備跟師資趕不趕得上時代我知道很多的學校他裡面做的實驗到外面來是接不上的表示我們在設備的更新上是慢了 |
transcript.whisperx[53].start |
1208.763 |
transcript.whisperx[53].end |
1237.151 |
transcript.whisperx[53].text |
那有沒有足夠的師資﹖如果專業的師資不夠﹖業師能不能請進來﹖也增加他的量﹖用經驗來傳承﹖我覺得這都應該馬上下手出去續資好 謝謝院長那在這裡來接下來下一張好問題在這裡重高中輕技資破身一定要生血所以在這裡有一個數據提供給卓院長 |
transcript.whisperx[54].start |
1239.133 |
transcript.whisperx[54].end |
1265.861 |
transcript.whisperx[54].text |
學歷越高 失業越高知道嗎 這個就是技職教育的重要性這個我特別要提供給卓院長 下一張我現在就是要來 大概來考試一下啦他山之石 台灣要接近啦人家好的 我們當然要接近啊好 我們幾例 院長 我們幾例 瑞士 |
transcript.whisperx[55].start |
1267.113 |
transcript.whisperx[55].end |
1295.956 |
transcript.whisperx[55].text |
他是一個獨立國家他是一個很小的國家可是你就從來沒有聽聽到有勞工抗爭的問題也沒有聽到說喔他們那邊發生什麼重大罷工的問題沒有但是我在這裡他國家有沒有特色當然有特色其他我不談就談勞工這個部分一定這個我問你一個瑞士他最出名的他的 |
transcript.whisperx[56].start |
1296.804 |
transcript.whisperx[56].end |
1298.204 |
transcript.whisperx[56].text |
臺灣要去借鏡下一張 |
transcript.whisperx[57].start |
1326.872 |
transcript.whisperx[57].end |
1354.412 |
transcript.whisperx[57].text |
我們看看德國德國你看看平常都沒有什麼聲音但是他有一個好處他什麼好處呢師徒一對一的教導一邊上課一邊工作實習就有薪水畢業就就業他這裡我還要再請教我們卓院長德國什麼東西做得最好 |
transcript.whisperx[58].start |
1356.761 |
transcript.whisperx[58].end |
1373.099 |
transcript.whisperx[58].text |
對嘛雙B嘛你看到現在是最夠格可是這些人才他有沒有缺乏沒有欸他是跟產業結合來做教育還有做產業的發展所以這個部分我們真的要借鏡好下一張好啦這個我們簡單講過啦反正對岸啦 |
transcript.whisperx[59].start |
1378.707 |
transcript.whisperx[59].end |
1400.269 |
transcript.whisperx[59].text |
雖然他的經濟他的做法政治我們不談但是他對於這些就業的事情他是做得非常到位的所以我比的就是一些西方國家歐洲然後台灣比較接近的對岸 |
transcript.whisperx[60].start |
1400.956 |
transcript.whisperx[60].end |
1401.096 |
transcript.whisperx[60].text |
來 下一張 |
transcript.whisperx[61].start |
1426.448 |
transcript.whisperx[61].end |
1453.288 |
transcript.whisperx[61].text |
所以這很明顯嘛 卓院長我們技職教育的人才是真的不足的啦因為我們政策不重視就不會培養人才所以在這個部分 真的我要拜託卓院長你好好啊 給他升職 叫這個政府委員一個來負責好好研究一個台灣技職教育要不要重新的改變 |
transcript.whisperx[62].start |
1454.588 |
transcript.whisperx[62].end |
1474.131 |
transcript.whisperx[62].text |
以現在的情況來講 都是什麼 紙上談兵 畫餅充雞完全沒有到位以及跟產業結合 教育結合來達到真正既知人才的這些花效 沒有 |
transcript.whisperx[63].start |
1475.179 |
transcript.whisperx[63].end |
1477.66 |
transcript.whisperx[63].text |
我跟你們談話都很溫和我很柔情的人 |
transcript.whisperx[64].start |
1501.508 |
transcript.whisperx[64].end |
1509.157 |
transcript.whisperx[64].text |
但是他給我答話 你看我就馬上放炮他為什麼 不符合我們基層的需求 |
transcript.whisperx[65].start |
1510.773 |
transcript.whisperx[65].end |
1535.917 |
transcript.whisperx[65].text |
因為我們已經20年來 計職教育已經失敗在失敗所以我為什麼提出這個問題讓卓院長 因為卓院長我也期待你有所對台灣計職教育 把它恢復回來這不是哪一個執政的問題 這是歷史遺業也就是對於計職教育 對於我們產業如何去發展 是息息相關的 |
transcript.whisperx[66].start |
1536.94 |
transcript.whisperx[66].end |
1550.942 |
transcript.whisperx[66].text |
好 息息相關所以今天那個經濟部長不需要上來最起碼我要讓卓院長知道這個觀念你才有辦法去指導他們如何去把這個計職教育去把它改變好 下一張 |
transcript.whisperx[67].start |
1552.551 |
transcript.whisperx[67].end |
1570.007 |
transcript.whisperx[67].text |
好啦最主要幾個問題我也提供給我們院長啦齁直言投入啊大小眼齁大小眼這個你們回去檢討所以鄭部長你不要跟我講阿你們有多雄偉的這種雄心抱負你都不要跟我講啦問題現在就很簡單啦 |
transcript.whisperx[68].start |
1571.656 |
transcript.whisperx[68].end |
1591.937 |
transcript.whisperx[68].text |
我們談民進黨執政這8年裡面 技職教育根本就是失敗的我希望我們期待賴總統跟卓院長 領導之下在技職方面有另外一番不一樣的做法跟不一樣的感覺所以在這個部分 資源投入大小園我希望你們趕快改進來下一張 |
transcript.whisperx[69].start |
1594.807 |
transcript.whisperx[69].end |
1604.515 |
transcript.whisperx[69].text |
不符合企業產協合一完全落功這個我也要提供給卓院長好好的去針對這個問題我們大家來商討來 下一張這個重新一樣過去雖然我們對這個協數的 |
transcript.whisperx[70].start |
1619.861 |
transcript.whisperx[70].end |
1620.261 |
transcript.whisperx[70].text |
會讀書的讀大學 |
transcript.whisperx[71].start |
1648.956 |
transcript.whisperx[71].end |
1672.23 |
transcript.whisperx[71].text |
不太想讀書但是他有技能的就在記職這樣何而為一啊為才是用這樣的話臺灣的記職教育跟人才的培育才會去成功的所以以上幾點給這個院長去做參考也就是因應未來的趨勢 |
transcript.whisperx[72].start |
1675.042 |
transcript.whisperx[72].end |
1701.441 |
transcript.whisperx[72].text |
創造良好的就業防信這個應該部長你們也有在做我也看到那另外就是補充啊真的這個教育人才所謂鄭部長抱歉拜託你做法看下一次我就會讓你好好講到現在為止我也知道你剛接可是以前的部長我對他極度不滿意為什麼聽不進去基層需求的聲音只有聽 |
transcript.whisperx[73].start |
1702.677 |
transcript.whisperx[73].end |
1724.273 |
transcript.whisperx[73].text |
政策又失敗當然這個問題就會失敗我希望到立法院來是要聽立法委員以重心長給你的良善建議所以這個部分我希望卓院長那最後一個就是增加記者的教育經費從今年所送來的預算 |
transcript.whisperx[74].start |
1725.305 |
transcript.whisperx[74].end |
1727.346 |
transcript.whisperx[74].text |
最後我要拜託勞動部跟教育部要跨部會的合作 |
transcript.whisperx[75].start |
1739.301 |
transcript.whisperx[75].end |
1739.741 |
transcript.whisperx[75].text |
主席 |
transcript.whisperx[76].start |
1759.087 |
transcript.whisperx[76].end |
1759.267 |
transcript.whisperx[76].text |
主席 |
transcript.whisperx[77].start |
1782.577 |
transcript.whisperx[77].end |
1782.998 |
transcript.whisperx[77].text |
主席主席主席 |
transcript.whisperx[78].start |
1800.461 |
transcript.whisperx[78].end |
1829.661 |
transcript.whisperx[78].text |
我只拜託你今天聽完我這些建議你認不認同我們技職教育要加強完全認同而且我們也在加強當中謝謝我們的建議非常好所有三個要改變台灣人才方就是要從這裡走手不是今年做明年就有成果或許是要三年五年你就會看到我希望讓老百姓覺得說 |
transcript.whisperx[79].start |
1830.781 |
transcript.whisperx[79].end |
1831.222 |
transcript.whisperx[79].text |
一定努力 |
transcript.whisperx[80].start |
1870.129 |
transcript.whisperx[80].end |
1871.39 |
transcript.whisperx[80].text |
謝謝林國成委員的質詢 謝謝卓院長的備詢 |
會議時間 |
2024-09-24T09:00:00+08:00 |
委員發言時間 |
10:30:19 - 11:01:37 |
會議名稱 |
第11屆第2會期第1次會議(事由:行政院院長施政報告並備質詢) |
IVOD_ID |
154867 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/154867 |
日期 |
2024-09-24 |
會議資料.會議代碼 |
院會-11-2-1 |
會議資料.屆 |
11 |
會議資料.會期 |
2 |
會議資料.會次 |
1 |
會議資料.種類 |
院會 |
會議資料.標題 |
第11屆第2會期第1次會議 |
影片種類 |
Clip |
開始時間 |
2024-09-24T10:30:19+08:00 |
結束時間 |
2024-09-24T11:01:37+08:00 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |