IVOD_ID |
154345 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/154345 |
日期 |
2024-06-27 |
會議資料.會議代碼 |
委員會-11-1-19-17 |
會議資料.會議代碼:str |
第11屆第1會期經濟委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第1會期經濟委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-06-27T09:55:47+08:00 |
結束時間 |
2024-06-27T10:05:18+08:00 |
影片長度 |
00:09:31 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/767b6a9d27b3726cc1cb8bdaeb2ce10f21a3f23b3ad13ea2b8981cfbc017771bbee16801113b211b5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鄭天財Sra Kacaw |
委員發言時間 |
09:55:47 - 10:05:18 |
會議時間 |
2024-06-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期經濟委員會第17次全體委員會議(事由:邀請農業部部長就「農業移工政策改善措施」進行報告,並備質詢。【6月26日及6月27日兩天一次會】) |
gazette.lineno |
319 |
gazette.blocks[0][0] |
鄭天財Sra Kacaw委員:(9時56分)主席、各位委員。請部長。 |
gazette.blocks[1][0] |
主席:我們再請陳部長。 |
gazette.blocks[2][0] |
鄭天財Sra Kacaw委員:部長好。 |
gazette.blocks[3][0] |
陳部長駿季:委員早。 |
gazette.blocks[4][0] |
鄭天財Sra Kacaw委員:辛苦了。今天的主題非常重要,你們的報告指出近5年農林漁牧就業人口遞減,這是一個事實。112年我國農林漁牧業就業人口計50.9萬人,比111年減少2.1萬人,如果跟108年相比的話,更是減少了5萬人,這真的是一個非常嚴重的數字,而且從年齡層來講,都是中高齡者,並且不斷呈高齡化,這是事實,其他的勞工也是一樣。這和我們臺灣的人口結構也有關係,第一個就是大家年齡增加了,然後又因為很嚴重的少子女化,我們面臨的這些問題從這個圖表裡面可以看得非常、非常清楚。如果從你們書面報告當中的近5年(106年到111年)常僱及臨時員工短缺情形來看,也可以瞭解實際的狀況。另外,根據勞動部的報告,截至113年5月底,在臺農業移工計7,529名,其中以從事農林牧或養殖漁業工作最多。 |
gazette.blocks[4][1] |
現在在臺灣,除了農業的部分,其實其他一般的勞工包括製造業、營造業各方面也都缺工,所以部長,你們在行政院到底有沒有跨部會討論過這方面的問題? |
gazette.blocks[5][0] |
陳部長駿季:跟委員報告,其實缺工的現象除了農業以外,其他的行業也有普遍缺工的情形,所以缺工是一個滿嚴肅的議題,我們其實都有在做跨部會的討論,特別是跟勞動部,有一部分是在爭取,就是當本國勞力不足的時候,怎麼樣適當引進一些外籍移工來做輔助,這個部分我們都有在做跨部會的討論。 |
gazette.blocks[6][0] |
鄭天財Sra Kacaw委員:其實我在第9屆的時候就建議行政院應該要成立一個少子女化辦公室,但是他們不理不睬,完全沒有!因為這是臺灣很重要的問題啊!現在不是只有農林漁牧跟一般營造業等各方面的勞工缺工,未來我們的軍人也是,以後都要用外籍軍人啊!現在願意去當兵的人越來越少,薪水又很低,所以這是一個非常嚴重的問題,我就不知道為什麼行政院一直不成立少子女化辦公室,來推動、解決這方面的問題。當然這個很多責任都是在衛福部跟行政院,這是一個很嚴肅、很重大的問題,在這裡也很難跟你要求,當然這是農民的問題,也是需要解決的部分。 |
gazette.blocks[6][1] |
好,接下來要談雞蛋的問題,我是第一次談超思進口蛋,當這個事件發生的時候,真的是不可思議,作為農委會,以前叫農委會,依照畜牧法第二十五條成立的財團法人中央畜產會這樣一個單位,他們進口蛋,然後農業部要補助,但補助都要審核啊!一億七千多萬,補助要審核啊!我這個外行的想也知道,一個超思這麼小的資本額,然後它要進口,它哪知道巴西有蛋呢?部長,巴西進口多少蛋? |
gazette.blocks[7][0] |
陳部長駿季:應該是五千多萬顆,總計是一億五千多萬顆,而巴西的部分是五千多萬顆。 |
gazette.blocks[8][0] |
鄭天財Sra Kacaw委員:巴西多遠啊?巴西離臺灣多遠? |
gazette.blocks[9][0] |
陳部長駿季:多遠啊?我現在沒辦法給你…… |
gazette.blocks[10][0] |
鄭天財Sra Kacaw委員:蛋當然是沒有辦法保存,一定是壞蛋嘛! |
gazette.blocks[11][0] |
陳部長駿季:沒有,沒有,不能這樣講,因為整個…… |
gazette.blocks[12][0] |
鄭天財Sra Kacaw委員:事實上,部長不要替他們說話…… |
gazette.blocks[13][0] |
陳部長駿季:不是,不是,你說巴西進來的…… |
gazette.blocks[14][0] |
鄭天財Sra Kacaw委員:我不要讓你牽扯…… |
gazette.blocks[15][0] |
陳部長駿季:都是壞蛋,因為整個雞蛋進口有冷鏈系統,經過海運部分,而不是說那麼遠以後進來的都是壞蛋,這個我覺得要澄清。 |
gazette.blocks[16][0] |
鄭天財Sra Kacaw委員:喔!你沒有實際調查,你不寫調查報告,又拿不到他們正確的……按照你們的說明,我都看了啊!你們的說明說你們沒有調查權,也沒有去調查,所以不要…… |
gazette.blocks[17][0] |
陳部長駿季:沒有,我是針對蛋的部分。 |
gazette.blocks[18][0] |
鄭天財Sra Kacaw委員:沒有錯,它那個船到底設備是不是很完整,我是懷疑啦!最主要的是,在這麼短的時間,他怎麼知道巴西有蛋,對不對?絕對是全部從中央畜產會來的,我不講說你們農業部有怎麼樣勾結,從中央畜產會到外交部到什麼、什麼,全部是一條鏈啦!不然它怎麼知道?誰知道巴西有蛋?對不對?這個想也知道嘛! |
gazette.blocks[19][0] |
陳部長駿季:巴西是全世界供應雞蛋大宗的一個國家。 |
gazette.blocks[20][0] |
鄭天財Sra Kacaw委員:至少……你一定要強辯嗎?那就把調查報告給我們啊! |
gazette.blocks[21][0] |
陳部長駿季:不是,不是,我現在講的是巴西本身的蛋…… |
gazette.blocks[22][0] |
鄭天財Sra Kacaw委員:那你就給我調查啊! |
gazette.blocks[23][0] |
陳部長駿季:因為巴西這個國家是出口蛋的。 |
gazette.blocks[24][0] |
鄭天財Sra Kacaw委員:現在你不好好調查,又說你無權調查,它是依畜牧法設置的單位,主管機關是你,這個都還沒有改,要改啊!主管機關是農業部,對不對? |
gazette.blocks[25][0] |
陳部長駿季:是。 |
gazette.blocks[26][0] |
鄭天財Sra Kacaw委員:然後是你們捐助成立的,經費都是你們的,相關的這些制度都在,你當然有調查權,怎麼會沒有呢?對不對?好,這個要調查,你說你沒有調查權,是不是交給…… |
gazette.blocks[27][0] |
陳部長駿季:不是,我要跟委員澄清一件事情,就是我們在行政調查部分,針對畜產會都有做內部調查,這沒問題,我們是說我們本身行政權沒有辦法觸及的部分,因為有一些委員質疑貿易商之間的貿易關係到底是什麼樣的關係,因為基本上他們是私法人關係,以農業部的部分,是沒有辦法直接觸及的…… |
gazette.blocks[28][0] |
鄭天財Sra Kacaw委員:好,時間關係…… |
gazette.blocks[29][0] |
陳部長駿季:這兩個是不一樣的,畜產會我們一定會督導。 |
gazette.blocks[30][0] |
鄭天財Sra Kacaw委員:你們已經有調查的,就認為是你們職權範圍內…… |
gazette.blocks[31][0] |
陳部長駿季:對,在我們職權範圍內我們會調查。 |
gazette.blocks[32][0] |
鄭天財Sra Kacaw委員:所調查的,可以提供調查的資料嗎?就是就你們認為的職權範圍內的調查結果啊! |
gazette.blocks[33][0] |
陳部長駿季:之前在歷次相關雞蛋的答詢中,我就一直強調…… |
gazette.blocks[34][0] |
鄭天財Sra Kacaw委員:不是…… |
gazette.blocks[35][0] |
陳部長駿季:從我們的調查裡面…… |
gazette.blocks[36][0] |
鄭天財Sra Kacaw委員:我現在是需要你提供書面資料。 |
gazette.blocks[37][0] |
陳部長駿季:可以,我可以提供書面資料。 |
gazette.blocks[38][0] |
鄭天財Sra Kacaw委員:好,提供書面資料。 |
gazette.blocks[38][1] |
最後,財團法人法制定之後,你們這些都要依據財團法人法相關機制配合修正,以前是沒有法,所以就根據這個設置辦法,現在已經有財團法人法了,去請教法務部應該怎麼修,好不好? |
gazette.blocks[39][0] |
陳部長駿季:好,謝謝委員提醒,我們會來檢視。 |
gazette.blocks[40][0] |
鄭天財Sra Kacaw委員:已經很多年了,財團法人法。 |
gazette.blocks[41][0] |
陳部長駿季:好,非常謝謝,謝謝。 |
gazette.blocks[42][0] |
鄭天財Sra Kacaw委員:好,謝謝。 |
gazette.blocks[43][0] |
主席:好,謝謝。 |
gazette.blocks[44][0] |
主席(鄭天財Sra Kacaw委員代):接下來我們請楊瓊瓔召委質詢。 |
gazette.agenda.page_end |
302 |
gazette.agenda.meet_id |
委員會-11-1-19-17 |
gazette.agenda.speakers[0] |
楊瓊瓔 |
gazette.agenda.speakers[1] |
林岱樺 |
gazette.agenda.speakers[2] |
邱議瑩 |
gazette.agenda.speakers[3] |
黃國昌 |
gazette.agenda.speakers[4] |
鄭正鈐 |
gazette.agenda.speakers[5] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[6] |
謝衣鳯 |
gazette.agenda.speakers[7] |
呂玉玲 |
gazette.agenda.speakers[8] |
陳超明 |
gazette.agenda.speakers[9] |
賴瑞隆 |
gazette.agenda.speakers[10] |
賴惠員 |
gazette.agenda.speakers[11] |
蔡易餘 |
gazette.agenda.speakers[12] |
鍾佳濱 |
gazette.agenda.speakers[13] |
張嘉郡 |
gazette.agenda.speakers[14] |
張啓楷 |
gazette.agenda.speakers[15] |
黃仁 |
gazette.agenda.speakers[16] |
黃珊珊 |
gazette.agenda.speakers[17] |
洪孟楷 |
gazette.agenda.speakers[18] |
洪申翰 |
gazette.agenda.speakers[19] |
葉元之 |
gazette.agenda.speakers[20] |
邱志偉 |
gazette.agenda.speakers[21] |
陳亭妃 |
gazette.agenda.speakers[22] |
陳冠廷 |
gazette.agenda.page_start |
235 |
gazette.agenda.meetingDate[0] |
2024-06-27 |
gazette.agenda.gazette_id |
1136701 |
gazette.agenda.agenda_lcidc_ids[0] |
1136701_00006 |
gazette.agenda.meet_name |
立法院第11屆第1會期經濟委員會第17次全體委員會議紀錄 |
gazette.agenda.content |
邀請農業部部長就「農業移工政策改善措施」進行報告,並備質詢 |
gazette.agenda.agenda_id |
1136701_00005 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
3.01784375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
14.64471875 |
transcript.pyannote[1].end |
16.72034375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
17.46284375 |
transcript.pyannote[2].end |
18.52596875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
25.24221875 |
transcript.pyannote[3].end |
27.16596875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
25.56284375 |
transcript.pyannote[4].end |
25.96784375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
28.11096875 |
transcript.pyannote[5].end |
31.35096875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
32.12721875 |
transcript.pyannote[6].end |
32.95409375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
33.10596875 |
transcript.pyannote[7].end |
34.87784375 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
35.60346875 |
transcript.pyannote[8].end |
40.22721875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
40.81784375 |
transcript.pyannote[9].end |
45.40784375 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
45.77909375 |
transcript.pyannote[10].end |
46.99409375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
47.50034375 |
transcript.pyannote[11].end |
49.91346875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
50.65596875 |
transcript.pyannote[12].end |
54.08159375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
54.62159375 |
transcript.pyannote[13].end |
57.59159375 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
57.86159375 |
transcript.pyannote[14].end |
59.88659375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
60.44346875 |
transcript.pyannote[15].end |
63.09284375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
63.61596875 |
transcript.pyannote[16].end |
74.70284375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
75.14159375 |
transcript.pyannote[17].end |
77.80784375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
78.29721875 |
transcript.pyannote[18].end |
79.88346875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
80.42346875 |
transcript.pyannote[19].end |
81.60471875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
82.27971875 |
transcript.pyannote[20].end |
84.57471875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
85.09784375 |
transcript.pyannote[21].end |
87.59534375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
88.10159375 |
transcript.pyannote[22].end |
90.02534375 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
90.61596875 |
transcript.pyannote[23].end |
91.54409375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
92.18534375 |
transcript.pyannote[24].end |
94.91909375 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
95.27346875 |
transcript.pyannote[25].end |
101.98971875 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
102.85034375 |
transcript.pyannote[26].end |
104.50409375 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
104.89221875 |
transcript.pyannote[27].end |
109.11096875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
109.48221875 |
transcript.pyannote[28].end |
110.20784375 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
111.32159375 |
transcript.pyannote[29].end |
116.46846875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
116.70471875 |
transcript.pyannote[30].end |
118.51034375 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
118.76346875 |
transcript.pyannote[31].end |
123.55596875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
124.21409375 |
transcript.pyannote[32].end |
125.41221875 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
126.34034375 |
transcript.pyannote[33].end |
129.83346875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
130.42409375 |
transcript.pyannote[34].end |
132.09471875 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
132.66846875 |
transcript.pyannote[35].end |
137.84909375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
138.42284375 |
transcript.pyannote[36].end |
142.74284375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
143.99159375 |
transcript.pyannote[37].end |
145.34159375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
146.96159375 |
transcript.pyannote[38].end |
147.80534375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
148.80096875 |
transcript.pyannote[39].end |
149.96534375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
150.26909375 |
transcript.pyannote[40].end |
150.85971875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
151.07909375 |
transcript.pyannote[41].end |
152.10846875 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
152.88471875 |
transcript.pyannote[42].end |
154.16721875 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
154.90971875 |
transcript.pyannote[43].end |
156.17534375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
156.42846875 |
transcript.pyannote[44].end |
158.85846875 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
159.49971875 |
transcript.pyannote[45].end |
160.14096875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
161.17034375 |
transcript.pyannote[46].end |
161.84534375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
162.72284375 |
transcript.pyannote[47].end |
163.19534375 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
164.34284375 |
transcript.pyannote[48].end |
167.38034375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
167.93721875 |
transcript.pyannote[49].end |
170.01284375 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
171.36284375 |
transcript.pyannote[50].end |
172.83096875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
173.42159375 |
transcript.pyannote[51].end |
188.15346875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
188.45721875 |
transcript.pyannote[52].end |
194.12721875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
195.24096875 |
transcript.pyannote[53].end |
196.99596875 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
198.22784375 |
transcript.pyannote[54].end |
199.83096875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
200.48909375 |
transcript.pyannote[55].end |
202.15971875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
202.86846875 |
transcript.pyannote[56].end |
205.07909375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
205.92284375 |
transcript.pyannote[57].end |
207.50909375 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
207.89721875 |
transcript.pyannote[58].end |
211.52534375 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
212.14971875 |
transcript.pyannote[59].end |
212.45346875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
212.75721875 |
transcript.pyannote[60].end |
215.64284375 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
216.57096875 |
transcript.pyannote[61].end |
219.01784375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
219.15284375 |
transcript.pyannote[62].end |
220.48596875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
221.19471875 |
transcript.pyannote[63].end |
222.52784375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
223.57409375 |
transcript.pyannote[64].end |
224.56971875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
225.56534375 |
transcript.pyannote[65].end |
228.72096875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
230.10471875 |
transcript.pyannote[66].end |
230.30721875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
230.54346875 |
transcript.pyannote[67].end |
234.22221875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
234.86346875 |
transcript.pyannote[68].end |
236.02784375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
236.39909375 |
transcript.pyannote[69].end |
239.90909375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
240.48284375 |
transcript.pyannote[70].end |
242.79471875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
243.45284375 |
transcript.pyannote[71].end |
244.43159375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
244.76909375 |
transcript.pyannote[72].end |
246.42284375 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
246.97971875 |
transcript.pyannote[73].end |
250.45596875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
250.96221875 |
transcript.pyannote[74].end |
254.13471875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
254.45534375 |
transcript.pyannote[75].end |
256.53096875 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
256.54784375 |
transcript.pyannote[76].end |
259.75409375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
260.26034375 |
transcript.pyannote[77].end |
261.47534375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
262.13346875 |
transcript.pyannote[78].end |
263.65221875 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
263.98971875 |
transcript.pyannote[79].end |
267.78659375 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
268.24221875 |
transcript.pyannote[80].end |
276.46034375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
277.11846875 |
transcript.pyannote[81].end |
278.31659375 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
279.16034375 |
transcript.pyannote[82].end |
280.96596875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
281.52284375 |
transcript.pyannote[83].end |
283.39596875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
284.30721875 |
transcript.pyannote[84].end |
285.45471875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
286.58534375 |
transcript.pyannote[85].end |
291.32721875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
292.37346875 |
transcript.pyannote[86].end |
293.60534375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
295.20846875 |
transcript.pyannote[87].end |
296.44034375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
297.38534375 |
transcript.pyannote[88].end |
298.88721875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
299.49471875 |
transcript.pyannote[89].end |
299.83221875 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
300.28784375 |
transcript.pyannote[90].end |
300.96284375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
301.35096875 |
transcript.pyannote[91].end |
302.68409375 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
302.92034375 |
transcript.pyannote[92].end |
306.80159375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
306.98721875 |
transcript.pyannote[93].end |
308.48909375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
308.84346875 |
transcript.pyannote[94].end |
309.13034375 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
309.56909375 |
transcript.pyannote[95].end |
310.76721875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
311.22284375 |
transcript.pyannote[96].end |
314.80034375 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
315.47534375 |
transcript.pyannote[97].end |
317.23034375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
317.85471875 |
transcript.pyannote[98].end |
319.40721875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
320.18346875 |
transcript.pyannote[99].end |
323.38971875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
323.81159375 |
transcript.pyannote[100].end |
324.77346875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
326.12346875 |
transcript.pyannote[101].end |
326.64659375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
326.98409375 |
transcript.pyannote[102].end |
327.79409375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
329.24534375 |
transcript.pyannote[103].end |
330.76409375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
331.62471875 |
transcript.pyannote[104].end |
334.52721875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
335.67471875 |
transcript.pyannote[105].end |
336.19784375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
337.07534375 |
transcript.pyannote[106].end |
338.03721875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
338.03721875 |
transcript.pyannote[107].end |
338.30721875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
339.96096875 |
transcript.pyannote[108].end |
341.31096875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
341.85096875 |
transcript.pyannote[109].end |
345.81659375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
344.56784375 |
transcript.pyannote[110].end |
345.44534375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
346.17096875 |
transcript.pyannote[111].end |
348.41534375 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
346.81221875 |
transcript.pyannote[112].end |
350.74409375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
350.74409375 |
transcript.pyannote[113].end |
351.01409375 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
351.01409375 |
transcript.pyannote[114].end |
351.03096875 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
351.03096875 |
transcript.pyannote[115].end |
351.08159375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
351.08159375 |
transcript.pyannote[116].end |
351.14909375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
351.43596875 |
transcript.pyannote[117].end |
351.73971875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
352.33034375 |
transcript.pyannote[118].end |
354.03471875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
352.63409375 |
transcript.pyannote[119].end |
356.14409375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
356.66721875 |
transcript.pyannote[120].end |
360.56534375 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
359.63721875 |
transcript.pyannote[121].end |
360.48096875 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
361.08846875 |
transcript.pyannote[122].end |
363.21471875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
363.33284375 |
transcript.pyannote[123].end |
374.84159375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
364.05846875 |
transcript.pyannote[124].end |
365.18909375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
374.84159375 |
transcript.pyannote[125].end |
374.95971875 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
375.21284375 |
transcript.pyannote[126].end |
375.26346875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
375.26346875 |
transcript.pyannote[127].end |
375.73596875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
375.73596875 |
transcript.pyannote[128].end |
375.85409375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
376.17471875 |
transcript.pyannote[129].end |
382.45221875 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
382.92471875 |
transcript.pyannote[130].end |
392.08784375 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
391.37909375 |
transcript.pyannote[131].end |
393.11721875 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
393.38721875 |
transcript.pyannote[132].end |
396.59346875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
397.09971875 |
transcript.pyannote[133].end |
399.05721875 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
399.93471875 |
transcript.pyannote[134].end |
402.19596875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
402.95534375 |
transcript.pyannote[135].end |
404.17034375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
404.52471875 |
transcript.pyannote[136].end |
405.38534375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
406.61721875 |
transcript.pyannote[137].end |
407.03909375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
407.56221875 |
transcript.pyannote[138].end |
409.23284375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
409.50284375 |
transcript.pyannote[139].end |
409.94159375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
409.97534375 |
transcript.pyannote[140].end |
410.00909375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
410.17784375 |
transcript.pyannote[141].end |
411.62909375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
412.01721875 |
transcript.pyannote[142].end |
419.29034375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
419.93159375 |
transcript.pyannote[143].end |
421.02846875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
421.65284375 |
transcript.pyannote[144].end |
422.37846875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
423.44159375 |
transcript.pyannote[145].end |
423.74534375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
424.33596875 |
transcript.pyannote[146].end |
425.23034375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
426.09096875 |
transcript.pyannote[147].end |
427.37346875 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
428.38596875 |
transcript.pyannote[148].end |
432.65534375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
430.64721875 |
transcript.pyannote[149].end |
435.79409375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
438.32534375 |
transcript.pyannote[150].end |
443.16846875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
441.02534375 |
transcript.pyannote[151].end |
446.86409375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
443.40471875 |
transcript.pyannote[152].end |
449.85096875 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
450.42471875 |
transcript.pyannote[153].end |
452.38221875 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
453.39471875 |
transcript.pyannote[154].end |
454.28909375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
455.09909375 |
transcript.pyannote[155].end |
456.60096875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
456.80346875 |
transcript.pyannote[156].end |
458.96346875 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
459.40221875 |
transcript.pyannote[157].end |
459.70596875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
460.39784375 |
transcript.pyannote[158].end |
462.35534375 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
462.52409375 |
transcript.pyannote[159].end |
462.92909375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
462.96284375 |
transcript.pyannote[160].end |
463.55346875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
464.24534375 |
transcript.pyannote[161].end |
467.46846875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
468.24471875 |
transcript.pyannote[162].end |
468.58221875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
469.12221875 |
transcript.pyannote[163].end |
471.18096875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
471.92346875 |
transcript.pyannote[164].end |
473.17221875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
473.59409375 |
transcript.pyannote[165].end |
475.06221875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
475.55159375 |
transcript.pyannote[166].end |
476.02409375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
476.90159375 |
transcript.pyannote[167].end |
477.22221875 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
477.88034375 |
transcript.pyannote[168].end |
481.27221875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
481.57596875 |
transcript.pyannote[169].end |
493.03409375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
493.20284375 |
transcript.pyannote[170].end |
504.45846875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
502.50096875 |
transcript.pyannote[171].end |
504.40784375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
504.45846875 |
transcript.pyannote[172].end |
504.84659375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
504.84659375 |
transcript.pyannote[173].end |
508.33971875 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
506.02784375 |
transcript.pyannote[174].end |
506.88846875 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
508.12034375 |
transcript.pyannote[175].end |
517.08096875 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
513.28409375 |
transcript.pyannote[176].end |
515.73096875 |
transcript.pyannote[177].speaker |
SPEAKER_01 |
transcript.pyannote[177].start |
518.56596875 |
transcript.pyannote[177].end |
519.03846875 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
519.81471875 |
transcript.pyannote[178].end |
520.75971875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
521.08034375 |
transcript.pyannote[179].end |
523.52721875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
523.29096875 |
transcript.pyannote[180].end |
530.96909375 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
529.75409375 |
transcript.pyannote[181].end |
535.18784375 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
532.18409375 |
transcript.pyannote[182].end |
532.58909375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
533.44971875 |
transcript.pyannote[183].end |
533.97284375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
534.64784375 |
transcript.pyannote[184].end |
535.12034375 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
535.32284375 |
transcript.pyannote[185].end |
536.01471875 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
537.60096875 |
transcript.pyannote[186].end |
539.13659375 |
transcript.pyannote[187].speaker |
SPEAKER_01 |
transcript.pyannote[187].start |
540.08159375 |
transcript.pyannote[187].end |
540.63846875 |
transcript.pyannote[188].speaker |
SPEAKER_01 |
transcript.pyannote[188].start |
541.33034375 |
transcript.pyannote[188].end |
542.47784375 |
transcript.pyannote[189].speaker |
SPEAKER_01 |
transcript.pyannote[189].start |
543.52409375 |
transcript.pyannote[189].end |
544.36784375 |
transcript.pyannote[190].speaker |
SPEAKER_01 |
transcript.pyannote[190].start |
545.32971875 |
transcript.pyannote[190].end |
546.79784375 |
transcript.pyannote[191].speaker |
SPEAKER_01 |
transcript.pyannote[191].start |
547.42221875 |
transcript.pyannote[191].end |
547.72596875 |
transcript.pyannote[192].speaker |
SPEAKER_01 |
transcript.pyannote[192].start |
547.86096875 |
transcript.pyannote[192].end |
548.58659375 |
transcript.pyannote[193].speaker |
SPEAKER_01 |
transcript.pyannote[193].start |
549.19409375 |
transcript.pyannote[193].end |
549.51471875 |
transcript.pyannote[194].speaker |
SPEAKER_01 |
transcript.pyannote[194].start |
549.86909375 |
transcript.pyannote[194].end |
551.99534375 |
transcript.pyannote[195].speaker |
SPEAKER_01 |
transcript.pyannote[195].start |
552.38346875 |
transcript.pyannote[195].end |
557.07471875 |
transcript.pyannote[196].speaker |
SPEAKER_01 |
transcript.pyannote[196].start |
557.59784375 |
transcript.pyannote[196].end |
569.57909375 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
567.72284375 |
transcript.pyannote[197].end |
567.82409375 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
568.02659375 |
transcript.pyannote[198].end |
569.59596875 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
569.59596875 |
transcript.pyannote[199].end |
569.61284375 |
transcript.pyannote[200].speaker |
SPEAKER_01 |
transcript.pyannote[200].start |
571.82346875 |
transcript.pyannote[200].end |
572.04284375 |
transcript.whisperx[0].start |
0.089 |
transcript.whisperx[0].end |
26.925 |
transcript.whisperx[0].text |
接下來我們請鄭天財委員請做詢問。主席、各位委員、請部長。我們再請陳部長。部長、委員長。辛苦了。 |
transcript.whisperx[1].start |
28.952 |
transcript.whisperx[1].end |
44.268 |
transcript.whisperx[1].text |
今天的主題非常重要從你們的報告裡面近5年農林移牧就業人口遞減這是一個事實 112年我國農林移牧就業人口50.9萬人 |
transcript.whisperx[2].start |
50.68 |
transcript.whisperx[2].end |
79.43 |
transcript.whisperx[2].text |
比111年減少2.1萬如果跟108年來比的話更是減少了5萬人真的是一個非常嚴重的數字這個顯示農業人口而且從年齡層來講這個都是高齡者中高齡者而且不斷的會成高齡化這是事實其他的勞工也是一樣當然跟我們的 |
transcript.whisperx[3].start |
81.17 |
transcript.whisperx[3].end |
104.16 |
transcript.whisperx[3].text |
臺灣的這個人口結構也有關係第一個是大家年齡增加了然後又是因為很嚴重的這個少子女化都是一個面臨的一個問題所以從這個圖表裡面你可以看得非常非常的清楚那這個整個從106到111如果我們從這個 |
transcript.whisperx[4].start |
111.397 |
transcript.whisperx[4].end |
121.78 |
transcript.whisperx[4].text |
近5年常顧及臨時員工短缺的情形來看就可以從你們的報告裏面可以怎麼樣去了解實際的一個狀況那這個整個到113年5月底 |
transcript.whisperx[5].start |
130.492 |
transcript.whisperx[5].end |
159.936 |
transcript.whisperx[5].text |
根據勞動部的報告在臺農業移工7529名從事農林移牧及養殖移業工作最多現在在臺灣除了我們的農業的部分其實其他的一般的勞工製造業營造業各方面也都切 |
transcript.whisperx[6].start |
161.229 |
transcript.whisperx[6].end |
168.562 |
transcript.whisperx[6].text |
所以這個部長啊你們在這個行政院到底有沒有跨部會的討論過這方面的問題? |
transcript.whisperx[7].start |
171.411 |
transcript.whisperx[7].end |
171.631 |
transcript.whisperx[7].text |
這個我在 |
transcript.whisperx[8].start |
198.637 |
transcript.whisperx[8].end |
223.78 |
transcript.whisperx[8].text |
應該是上上一屆第9屆現在是第11屆其實我在第9屆的時候就建議建議行政院應該要成立一個少子女化辦公室但是他們不理不睬完全沒有因為這是臺灣很重要的問題現在不是只有農林螢幕跟一般營造各方面的勞工未來 |
transcript.whisperx[9].start |
225.615 |
transcript.whisperx[9].end |
250.009 |
transcript.whisperx[9].text |
未來我們的軍人也是以後都要外籍軍人了現在願意去當兵的越來越少那薪水又很低所以這個部分這是一個非常嚴重的問題我就不知道為什麼這個行政院一直不成立這個少子女化辦公室的一個推動怎麼樣去解決這方面的問題 |
transcript.whisperx[10].start |
251.235 |
transcript.whisperx[10].end |
268.704 |
transcript.whisperx[10].text |
所以當然很多責任都是在衛福部跟行政院這個部分是一個很嚴肅很重大的一個問題所以這裡也很難跟你要求這是我們農民的一個問題這個是要去解決的部分接下來還是要談 |
transcript.whisperx[11].start |
281.567 |
transcript.whisperx[11].end |
295.983 |
transcript.whisperx[11].text |
我第一次談超市淡超市進口淡當這個事件發生的時候真的是不可不可思議了作為一個以前叫農委會 |
transcript.whisperx[12].start |
297.621 |
transcript.whisperx[12].end |
324.577 |
transcript.whisperx[12].text |
農委會依照稀木法第25條成立財團法人中央續產會然後進口這個農業部要補助你要補助補助都是要審核一億七千多萬補助要審核我這個外行的想也知道 |
transcript.whisperx[13].start |
326.175 |
transcript.whisperx[13].end |
341.106 |
transcript.whisperx[13].text |
第一個超市這麼小的資本額然後他要進口他哪知道巴西有蛋啊部長巴西進口多少蛋應該是巴應該是 |
transcript.whisperx[14].start |
341.892 |
transcript.whisperx[14].end |
355.981 |
transcript.whisperx[14].text |
五千多萬顆因為總計是一億五千多萬顆那巴西的部分巴西五千多萬顆巴西離臺灣多遠啊多遠啊那個蛋蛋是沒有辦法保存嘛一定是壞蛋嘛 |
transcript.whisperx[15].start |
356.704 |
transcript.whisperx[15].end |
374.349 |
transcript.whisperx[15].text |
沒有沒有我跟委員這樣不能這樣講喔因為整個事實上部長不要替他們說話不是不是你說巴西進來的都是壞蛋因為整個雞蛋進口他有冷鏈的系統他經過海運的部分不是說那麼遠以後進來都是壞蛋喔這個我覺得要澄清喔這個 |
transcript.whisperx[16].start |
376.289 |
transcript.whisperx[16].end |
405.129 |
transcript.whisperx[16].text |
你沒有實際調查你又不寫調查報告你又拿不到他很正確的按照你們的說明我都看了你們的說明說你們也沒有調查前你們去調查所以不要沒有我是針對蛋的部分沒有到底他那個船到底有沒有完成那個設備是不是都很完整我是懷疑這麼短的時間最主要他怎麼知道巴西有蛋 |
transcript.whisperx[17].start |
406.647 |
transcript.whisperx[17].end |
408.408 |
transcript.whisperx[17].text |
巴西是全世界供應雞蛋的一個大宗的國家 |
transcript.whisperx[18].start |
438.379 |
transcript.whisperx[18].end |
467.207 |
transcript.whisperx[18].text |
你一定要搶變嗎?那就把調查報告給我嗎?不是不是,我說我現在講就是說巴西本身的蛋因為巴西的國家是出口蛋的現在你又不好好調查你又說你沒有無錢調查他是依矽目法設置的主管機關是你這個都還沒改啊要改啊主管機關是你農業部是對不對然後你建築成立的經費都是你的 |
transcript.whisperx[19].start |
468.291 |
transcript.whisperx[19].end |
474.201 |
transcript.whisperx[19].text |
啊相關的這些制度都在你當然有調查權啊怎麼會沒有呢對不對 |
transcript.whisperx[20].start |
476.923 |
transcript.whisperx[20].end |
504.222 |
transcript.whisperx[20].text |
好 這個是要調查 你說你沒有調查錢就交給不是 我要跟委員澄清一件事情就是說我們在行政調查的部分我們針對續展會都有做內部的調查 這沒問題我們說我們本身行政權沒有辦法去觸及的就是因為有些委員認為就是說貿易商之間的貿易的關係到底是什麼樣的關係那他們基本上是司法人的關係那以農業部的部分是沒有辦法直接觸及的所以 |
transcript.whisperx[21].start |
505.603 |
transcript.whisperx[21].end |
506.224 |
transcript.whisperx[21].text |
對,是在我們的職權範圍內我們會調查。 |
transcript.whisperx[22].start |
519.821 |
transcript.whisperx[22].end |
522.662 |
transcript.whisperx[22].text |
最後財團法人法制定之後你們這些就要配合修正了 |
transcript.whisperx[23].start |
547.475 |
transcript.whisperx[23].end |
549.256 |
transcript.whisperx[23].text |
好,謝謝委員提醒,我們會來檢視。 |