iVOD / 154221

Field Value
IVOD_ID 154221
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/154221
日期 2024-06-26
會議資料.會議代碼 委員會-11-1-19-17
會議資料.會議代碼:str 第11屆第1會期經濟委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第17次全體委員會議
影片種類 Clip
開始時間 2024-06-26T09:57:36+08:00
結束時間 2024-06-26T10:05:39+08:00
影片長度 00:08:03
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0ea7781078621bd1d525fcf10059452ec258fa09de8d0f30ee23585586e40b3a0f6f0629efd936265ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 09:57:36 - 10:05:39
會議時間 2024-06-26T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第17次全體委員會議(事由:邀請經濟部部長就「面對國營事業未來10年人力嚴重斷層之因應作為」進行報告,並備質詢。【6月26日及6月27日兩天一次會】)
gazette.lineno 337
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(9時57分)主席、各位委員,有請次長。
gazette.blocks[1][0] 主席:我們再請連次長。
gazette.blocks[2][0] 連次長錦漳:委員好。
gazette.blocks[3][0] 鄭天財Sra Kacaw委員:次長好,恭喜你,你在經濟部所屬的工業局、標檢局,還有產發署都待過,很適合擔任常務次長,我很多年前也當過中央原民會的常務副主委,這個常務次長肩負很重要的任務,怎麼樣把公務人員的心聲,尤其各業務讓政務官能夠瞭解,這個是很重要的,所以這部分也特別給予勉勵。
gazette.blocks[3][1] 今天這一個非常好的主題,關於國營事業員額合理化管理作業規定都有這樣的機制,希望能夠朝這個方向去完備。我們看今天經濟部的報告提到,經濟部所屬事業在103年到112年曾面臨人力斷層危機,其中有三點分析,針對第二點,60歲延至65歲列為一個原因,要看台電、台水、台糖各個不太一樣的工作環境,像台電他常常會……
gazette.blocks[4][0] 連次長錦漳:對,常常要爬上爬下……
gazette.blocks[5][0] 鄭天財Sra Kacaw委員:爬上爬下,還要上山,所以這部分也會有所不同,但是這個未來也是會面臨少子化等問題,所以這部分該怎麼樣去因應,都要多多去看。
gazette.blocks[5][1] 我們來看台電、中油、台糖、台水各年齡分布的情形,誠如我剛剛講的,台電61到65歲的比例就相對比較低,所以就算勞基法改了,他一樣要退啊,因為這個工作比較吃重,要上山、要上上下下,但如果從24歲以下的比例來看,其實經濟部所屬的這4個公司都要加強,我們還是需要年輕人進來,所以這部分是要加強的地方。
gazette.blocks[5][2] 就以台電公司你們的報告裡面提到的,目前面臨中高年齡結構老化的問題,經過你們改善、改進的精進方案之後,確實有比較好了,如果從台電的工作性質來看,相對於其他3個公司來講,基本上35歲到54歲的中階人力接近五成,當然經驗也很重要,所以這是各個公司都要去談的部分。
gazette.blocks[5][3] 然後,我們再看未來10年員工退休的情形,你們也做了預估,誠如我剛剛講的,怎麼樣讓年輕人能夠進來,是一個很重要的途徑;當然還有另外一個途徑,這就是我的重點了,另外一個途徑就是原住民的進用,我們看經濟部所屬事業機構的新進職員,針對原住民報考的人數,105年有207人,錄取人數只有5位,這個人數比例很低,一直到112年新進職員甄試,原住民報考人數有287人,進用只有8人,這個比例真的是很低,要請台電、台水、台糖,包括各個事業機構,各方面都應該去……
gazette.blocks[5][4] 我們就舉台電的例子,台電一直是我們原住民族很嚮往的一個國營事業,但是從原住民報考人數來看,105年共407人報考,錄取人數只有10個,這個比例真的很低;112年共383人報考,有成長一些些,因為這幾年我一直請我們各個國營事業看怎麼樣能夠讓我們原住民有機會,事實上很多地方都是在我們的偏鄉,像是花東或是原鄉,很多地方都需要,而且一般人也不會願意去,可能分發去了之後1年就離開了,甚至半年就離開了,那何不如讓我們在那邊長期擁有工作機會?台水公司也是一樣,原住民族進用人數的比例真的都是非常非常的低,台糖也是一樣,無論是職員、工員,約聘僱就更難了,因為約聘僱很多都是廠長進用。當然,考試的部分最起碼看怎麼樣能多進用我們原住民,請次長協助各個公司來進用原住民,可以嗎?
gazette.blocks[6][0] 連次長錦漳:好,我再找我們四大國營事業公司來討論一下,看怎麼來多多進用我們原住民同胞。
gazette.blocks[7][0] 鄭天財Sra Kacaw委員:好,謝謝。
gazette.blocks[8][0] 連次長錦漳:謝謝。
gazette.blocks[9][0] 主席:謝謝。接下來請呂玉玲委員詢答。
gazette.agenda.page_end 234
gazette.agenda.meet_id 委員會-11-1-19-17
gazette.agenda.speakers[0] 楊瓊瓔
gazette.agenda.speakers[1] 林岱樺
gazette.agenda.speakers[2] 邱議瑩
gazette.agenda.speakers[3] 張啓楷
gazette.agenda.speakers[4] 張嘉郡
gazette.agenda.speakers[5] 鄭正鈐
gazette.agenda.speakers[6] 鄭天財Sra Kacaw
gazette.agenda.speakers[7] 呂玉玲
gazette.agenda.speakers[8] 陳亭妃
gazette.agenda.speakers[9] 邱志偉
gazette.agenda.speakers[10] 陳超明
gazette.agenda.speakers[11] 賴瑞隆
gazette.agenda.speakers[12] 牛煦庭
gazette.agenda.speakers[13] 陳培瑜
gazette.agenda.speakers[14] 黃珊珊
gazette.agenda.speakers[15] 蔡易餘
gazette.agenda.speakers[16] 葉元之
gazette.agenda.speakers[17] 吳春城
gazette.agenda.speakers[18] 鍾佳濱
gazette.agenda.speakers[19] 謝衣鳯
gazette.agenda.speakers[20] 林俊憲
gazette.agenda.page_start 177
gazette.agenda.meetingDate[0] 2024-06-26
gazette.agenda.gazette_id 1136701
gazette.agenda.agenda_lcidc_ids[0] 1136701_00005
gazette.agenda.meet_name 立法院第11屆第1會期經濟委員會第17次全體委員會議紀錄
gazette.agenda.content 邀請經濟部部長就「面對國營事業未來10年人力嚴重斷層之因應作為」進行報告,並備質詢
gazette.agenda.agenda_id 1136701_00004
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.45284375
transcript.pyannote[0].end 2.51159375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 15.16784375
transcript.pyannote[1].end 17.59784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 17.73284375
transcript.pyannote[2].end 18.84659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 26.15346875
transcript.pyannote[3].end 27.30096875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 26.20409375
transcript.pyannote[4].end 26.62596875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 27.52034375
transcript.pyannote[5].end 28.70159375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 29.42721875
transcript.pyannote[6].end 30.13596875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 30.76034375
transcript.pyannote[7].end 34.08471875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 34.70909375
transcript.pyannote[8].end 35.51909375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 35.77221875
transcript.pyannote[9].end 37.42596875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 38.10096875
transcript.pyannote[10].end 39.26534375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 39.36659375
transcript.pyannote[11].end 43.38284375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 43.78784375
transcript.pyannote[12].end 45.01971875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 45.89721875
transcript.pyannote[13].end 49.84596875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 50.36909375
transcript.pyannote[14].end 51.75284375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 52.46159375
transcript.pyannote[15].end 53.92971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 54.16596875
transcript.pyannote[16].end 54.92534375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 55.66784375
transcript.pyannote[17].end 57.32159375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 57.76034375
transcript.pyannote[18].end 58.72221875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 58.99221875
transcript.pyannote[19].end 60.34221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 60.66284375
transcript.pyannote[20].end 61.97909375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 62.72159375
transcript.pyannote[21].end 64.32471875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 65.52284375
transcript.pyannote[22].end 65.87721875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 67.07534375
transcript.pyannote[23].end 69.62346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 69.91034375
transcript.pyannote[24].end 71.58096875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 71.66534375
transcript.pyannote[25].end 73.89284375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 74.36534375
transcript.pyannote[26].end 77.35221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 78.11159375
transcript.pyannote[27].end 80.62596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 81.48659375
transcript.pyannote[28].end 85.55346875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 86.11034375
transcript.pyannote[29].end 91.30784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 91.52721875
transcript.pyannote[30].end 93.68721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 93.85596875
transcript.pyannote[31].end 99.23909375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 100.11659375
transcript.pyannote[32].end 102.64784375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 103.12034375
transcript.pyannote[33].end 105.22971875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 106.02284375
transcript.pyannote[34].end 106.32659375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 107.22096875
transcript.pyannote[35].end 111.50721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 112.06409375
transcript.pyannote[36].end 113.19471875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 113.38034375
transcript.pyannote[37].end 115.69221875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 116.11409375
transcript.pyannote[38].end 118.07159375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 118.88159375
transcript.pyannote[39].end 125.34471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 125.88471875
transcript.pyannote[40].end 126.91409375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 128.17971875
transcript.pyannote[41].end 129.34409375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 129.69846875
transcript.pyannote[42].end 130.33971875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 130.99784375
transcript.pyannote[43].end 132.19596875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 132.83721875
transcript.pyannote[44].end 144.22784375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 137.73096875
transcript.pyannote[45].end 139.40159375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 139.92471875
transcript.pyannote[46].end 140.17784375
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 141.22409375
transcript.pyannote[47].end 141.29159375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 141.30846875
transcript.pyannote[48].end 141.32534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 141.37596875
transcript.pyannote[49].end 141.44346875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 144.59909375
transcript.pyannote[50].end 146.60721875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 147.13034375
transcript.pyannote[51].end 149.52659375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 150.21846875
transcript.pyannote[52].end 152.46284375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 152.88471875
transcript.pyannote[53].end 155.73659375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 156.05721875
transcript.pyannote[54].end 159.04409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 159.33096875
transcript.pyannote[55].end 160.24221875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 160.78221875
transcript.pyannote[56].end 161.65971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 161.98034375
transcript.pyannote[57].end 162.53721875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 163.36409375
transcript.pyannote[58].end 164.52846875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 165.57471875
transcript.pyannote[59].end 167.81909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 168.35909375
transcript.pyannote[60].end 168.84846875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 169.64159375
transcript.pyannote[61].end 170.56971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 170.85659375
transcript.pyannote[62].end 171.98721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 172.10534375
transcript.pyannote[63].end 174.21471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 175.10909375
transcript.pyannote[64].end 179.71596875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 180.07034375
transcript.pyannote[65].end 181.01534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 181.26846875
transcript.pyannote[66].end 182.68596875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 183.14159375
transcript.pyannote[67].end 184.30596875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 184.40721875
transcript.pyannote[68].end 185.06534375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 185.70659375
transcript.pyannote[69].end 186.71909375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 187.57971875
transcript.pyannote[70].end 188.30534375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 188.47409375
transcript.pyannote[71].end 190.71846875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 191.03909375
transcript.pyannote[72].end 193.23284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 193.23284375
transcript.pyannote[73].end 193.78971875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 193.48596875
transcript.pyannote[74].end 195.96659375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 196.13534375
transcript.pyannote[75].end 197.85659375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 198.24471875
transcript.pyannote[76].end 199.78034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 200.65784375
transcript.pyannote[77].end 200.97846875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 202.02471875
transcript.pyannote[78].end 205.11284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 206.26034375
transcript.pyannote[79].end 209.28096875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 206.54721875
transcript.pyannote[80].end 206.85096875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 209.65221875
transcript.pyannote[81].end 211.06971875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 211.76159375
transcript.pyannote[82].end 216.18284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 216.87471875
transcript.pyannote[83].end 222.91596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 223.50659375
transcript.pyannote[84].end 226.49346875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 226.96596875
transcript.pyannote[85].end 229.83471875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 230.39159375
transcript.pyannote[86].end 232.70346875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 232.99034375
transcript.pyannote[87].end 237.66471875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 237.86721875
transcript.pyannote[88].end 239.08221875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 239.79096875
transcript.pyannote[89].end 242.71034375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 243.13221875
transcript.pyannote[90].end 247.92471875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 248.14409375
transcript.pyannote[91].end 248.63346875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 249.13971875
transcript.pyannote[92].end 251.85659375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 252.07596875
transcript.pyannote[93].end 261.89721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 262.23471875
transcript.pyannote[94].end 265.94721875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 266.52096875
transcript.pyannote[95].end 270.43596875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 270.82409375
transcript.pyannote[96].end 271.81971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 272.41034375
transcript.pyannote[97].end 273.82784375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 274.35096875
transcript.pyannote[98].end 278.28284375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 278.89034375
transcript.pyannote[99].end 282.53534375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 283.17659375
transcript.pyannote[100].end 288.99846875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 289.74096875
transcript.pyannote[101].end 291.05721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 291.58034375
transcript.pyannote[102].end 291.76596875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 291.95159375
transcript.pyannote[103].end 293.43659375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 294.43221875
transcript.pyannote[104].end 296.15346875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 296.40659375
transcript.pyannote[105].end 297.04784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 297.63846875
transcript.pyannote[106].end 298.88721875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 299.42721875
transcript.pyannote[107].end 300.81096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 301.11471875
transcript.pyannote[108].end 303.27471875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 304.30409375
transcript.pyannote[109].end 305.55284375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 305.99159375
transcript.pyannote[110].end 306.68346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 307.39221875
transcript.pyannote[111].end 312.42096875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 312.87659375
transcript.pyannote[112].end 316.30221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 316.82534375
transcript.pyannote[113].end 319.06971875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 319.55909375
transcript.pyannote[114].end 320.25096875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 320.52096875
transcript.pyannote[115].end 322.15784375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 323.03534375
transcript.pyannote[116].end 325.16159375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 325.70159375
transcript.pyannote[117].end 327.52409375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 328.06409375
transcript.pyannote[118].end 329.70096875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 330.57846875
transcript.pyannote[119].end 335.87721875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 336.14721875
transcript.pyannote[120].end 337.86846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 338.52659375
transcript.pyannote[121].end 340.66971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 341.32784375
transcript.pyannote[122].end 342.45846875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 343.13346875
transcript.pyannote[123].end 345.20909375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 345.69846875
transcript.pyannote[124].end 348.24659375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 348.90471875
transcript.pyannote[125].end 354.08534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 355.57034375
transcript.pyannote[126].end 358.01721875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 358.69221875
transcript.pyannote[127].end 360.26159375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 360.41346875
transcript.pyannote[128].end 361.03784375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 360.71721875
transcript.pyannote[129].end 360.86909375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 362.21909375
transcript.pyannote[130].end 364.17659375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 364.34534375
transcript.pyannote[131].end 365.56034375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 366.26909375
transcript.pyannote[132].end 368.69909375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 369.64409375
transcript.pyannote[133].end 371.09534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 371.38221875
transcript.pyannote[134].end 373.08659375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 373.87971875
transcript.pyannote[135].end 374.33534375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 374.87534375
transcript.pyannote[136].end 378.62159375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 379.09409375
transcript.pyannote[137].end 380.20784375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 380.93346875
transcript.pyannote[138].end 384.67971875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 385.21971875
transcript.pyannote[139].end 392.15534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 392.47596875
transcript.pyannote[140].end 393.65721875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 394.63596875
transcript.pyannote[141].end 396.59346875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 397.09971875
transcript.pyannote[142].end 412.54034375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 413.06346875
transcript.pyannote[143].end 414.64971875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 415.29096875
transcript.pyannote[144].end 417.78846875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 418.14284375
transcript.pyannote[145].end 425.50034375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 425.88846875
transcript.pyannote[146].end 427.45784375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 427.72784375
transcript.pyannote[147].end 428.50409375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 428.87534375
transcript.pyannote[148].end 431.96346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 432.45284375
transcript.pyannote[149].end 434.61284375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 435.00096875
transcript.pyannote[150].end 437.38034375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 437.78534375
transcript.pyannote[151].end 439.65846875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 440.08034375
transcript.pyannote[152].end 441.80159375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 442.57784375
transcript.pyannote[153].end 446.32409375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 446.74596875
transcript.pyannote[154].end 451.18409375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 451.26846875
transcript.pyannote[155].end 452.90534375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 453.10784375
transcript.pyannote[156].end 454.35659375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 454.66034375
transcript.pyannote[157].end 457.05659375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 457.41096875
transcript.pyannote[158].end 458.54159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 458.82846875
transcript.pyannote[159].end 458.86221875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 458.86221875
transcript.pyannote[160].end 459.01409375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 459.01409375
transcript.pyannote[161].end 459.09846875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 459.19971875
transcript.pyannote[162].end 459.89159375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 461.29221875
transcript.pyannote[163].end 461.39346875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 461.73096875
transcript.pyannote[164].end 464.05971875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 464.44784375
transcript.pyannote[165].end 466.38846875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 467.53596875
transcript.pyannote[166].end 473.99909375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 474.20159375
transcript.pyannote[167].end 477.94784375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 479.41596875
transcript.pyannote[168].end 480.29346875
transcript.whisperx[0].start 0.809
transcript.whisperx[0].end 28.461
transcript.whisperx[0].text 鄭天財委員請做詢答主席會委員有請次長我們再請連次長次長好這個恭喜你這個
transcript.whisperx[1].start 30.836
transcript.whisperx[1].end 59.864
transcript.whisperx[1].text 在經濟部的首署的相關的工業局、標檢局還有什麼國產發署都待過這個很適合擔任這個常務次長這個我也很多年前也當過中央人民會的常務副主委所以這個常務這個次長這個肩負很重要的一個
transcript.whisperx[2].start 60.734
transcript.whisperx[2].end 60.954
transcript.whisperx[2].text 主席
transcript.whisperx[3].start 81.513
transcript.whisperx[3].end 103.922
transcript.whisperx[3].text 好,我們這個今天的這個非常好的一個主題那國營事業嚴格合理化管理作業規定都有一個這樣的一個機制希望能夠朝這個方向去來完備那我們看今天經濟部的報告裡面提到這個這裡面
transcript.whisperx[4].start 107.805
transcript.whisperx[4].end 122.218
transcript.whisperx[4].text 這個經濟部所屬4月103到112年曾面臨人力斷層的危機有三點的一個分析那其中這個第二點60歲源自65歲有一個原因當然要看這個
transcript.whisperx[5].start 128.203
transcript.whisperx[5].end 149.04
transcript.whisperx[5].text 台電、台水、台糖每個不太一樣的工作環境像台電它常常會爬上爬下還要上山所以這個部分也會有所不同但是這個也是會面臨我們未來
transcript.whisperx[6].start 150.253
transcript.whisperx[6].end 173.748
transcript.whisperx[6].text 我還面臨這個少子女化的很多的問題所以這個部分這個都是要去怎麼樣去因應都要去多多的去看那我們看這個這個台電中友台糖台水這個年齡各年齡分布的情形來看的話
transcript.whisperx[7].start 175.148
transcript.whisperx[7].end 198.843
transcript.whisperx[7].text 我們就像我剛剛講的61到65歲台電的比例就相對的比較低了所以他自然他就算你這個勞基法改了他一樣要退啊因為這個工作比較吃重嘛要上上下下所以各方面他會有但是如果我們從這個
transcript.whisperx[8].start 202.076
transcript.whisperx[8].end 203.357
transcript.whisperx[8].text 臺電公司報告提到的整個
transcript.whisperx[9].start 230.704
transcript.whisperx[9].end 238.049
transcript.whisperx[9].text 面臨所謂的中高年齡解剖老化問題然後經過你們的一個整個整個運
transcript.whisperx[10].start 240.164
transcript.whisperx[10].end 265.647
transcript.whisperx[10].text 這個改善改進經濟的方案之後確實有有比較好啦確實有如果從台電這個最他工作性質比相對跟其他的四個公司三個公司的話來講基本上這個35歲到54歲中間人力接近五成這個部分當然因為這個是一個經驗也很重要很重要
transcript.whisperx[11].start 266.627
transcript.whisperx[11].end 295.986
transcript.whisperx[11].text 所以這個部分是一個需要各個公司都要去談的部分然後我們看你未來10年員工退休的情形你們也做了一估這個部分怎麼樣就成為我剛剛講的這個年輕人怎麼樣讓他能夠進來是一個途徑很重要的途徑當然另外一個途徑這個就是我的重點另外一個途徑是原住民
transcript.whisperx[12].start 296.485
transcript.whisperx[12].end 308.348
transcript.whisperx[12].text 的禁用嚴重的禁用我們看這個經濟部首屬事業機構這個新進職員嚴重於報考的人數我們從105年207人然後這個入企人數只有5個5位這個人數的比例很低一直到112年
transcript.whisperx[13].start 323.526
transcript.whisperx[13].end 336.178
transcript.whisperx[13].text 新晉執言偵視,原住民報考人數287人,禁用只有8人。所以這個比例真的是很低。要請我們所有的臺電、臺水、臺堂
transcript.whisperx[14].start 346.294
transcript.whisperx[14].end 368.46
transcript.whisperx[14].text 包括各個事業機構海棠各方面都應該去我們就舉這個例子台電台電一直是我們原住民族一直很嚮往要去的一個國營事業但是如果我們從這個來原住民報考的人數這個105年是107人報考
transcript.whisperx[15].start 375.424
transcript.whisperx[15].end 393.221
transcript.whisperx[15].text 這個入企人數只有10個這個比例真的很低這個112年383人去報告這個有成長一些些因為這幾年我一直在請我們各個國營事業的那個去
transcript.whisperx[16].start 394.65
transcript.whisperx[16].end 394.83
transcript.whisperx[16].text 委員會主席
transcript.whisperx[17].start 415.613
transcript.whisperx[17].end 440.394
transcript.whisperx[17].text 一年就離開了,甚至半年就離開了那何不如讓我們在那邊長期的來去做這樣的一個工作機會台水公司也是一樣這個顏族民族禁用的人數的比例真的都是非常非常的低我們看這個台糖也是一樣這個無論是職研、公研、業務
transcript.whisperx[18].start 442.645
transcript.whisperx[18].end 445.447
transcript.whisperx[18].text 要請次長協助我們的各個公司來禁用原住民,可以嗎?
transcript.whisperx[19].start 467.571
transcript.whisperx[19].end 475.602
transcript.whisperx[19].text 好,我再來找我們四大國營事業公司來討論一下怎麼來多多敬略我們原住民的同胞這樣子好,謝謝