IVOD_ID |
154221 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/154221 |
日期 |
2024-06-26 |
會議資料.會議代碼 |
委員會-11-1-19-17 |
會議資料.會議代碼:str |
第11屆第1會期經濟委員會第17次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
17 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第1會期經濟委員會第17次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-06-26T09:57:36+08:00 |
結束時間 |
2024-06-26T10:05:39+08:00 |
影片長度 |
00:08:03 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0ea7781078621bd1d525fcf10059452ec258fa09de8d0f30ee23585586e40b3a0f6f0629efd936265ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鄭天財Sra Kacaw |
委員發言時間 |
09:57:36 - 10:05:39 |
會議時間 |
2024-06-26T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期經濟委員會第17次全體委員會議(事由:邀請經濟部部長就「面對國營事業未來10年人力嚴重斷層之因應作為」進行報告,並備質詢。【6月26日及6月27日兩天一次會】) |
gazette.lineno |
337 |
gazette.blocks[0][0] |
鄭天財Sra Kacaw委員:(9時57分)主席、各位委員,有請次長。 |
gazette.blocks[1][0] |
主席:我們再請連次長。 |
gazette.blocks[2][0] |
連次長錦漳:委員好。 |
gazette.blocks[3][0] |
鄭天財Sra Kacaw委員:次長好,恭喜你,你在經濟部所屬的工業局、標檢局,還有產發署都待過,很適合擔任常務次長,我很多年前也當過中央原民會的常務副主委,這個常務次長肩負很重要的任務,怎麼樣把公務人員的心聲,尤其各業務讓政務官能夠瞭解,這個是很重要的,所以這部分也特別給予勉勵。 |
gazette.blocks[3][1] |
今天這一個非常好的主題,關於國營事業員額合理化管理作業規定都有這樣的機制,希望能夠朝這個方向去完備。我們看今天經濟部的報告提到,經濟部所屬事業在103年到112年曾面臨人力斷層危機,其中有三點分析,針對第二點,60歲延至65歲列為一個原因,要看台電、台水、台糖各個不太一樣的工作環境,像台電他常常會…… |
gazette.blocks[4][0] |
連次長錦漳:對,常常要爬上爬下…… |
gazette.blocks[5][0] |
鄭天財Sra Kacaw委員:爬上爬下,還要上山,所以這部分也會有所不同,但是這個未來也是會面臨少子化等問題,所以這部分該怎麼樣去因應,都要多多去看。 |
gazette.blocks[5][1] |
我們來看台電、中油、台糖、台水各年齡分布的情形,誠如我剛剛講的,台電61到65歲的比例就相對比較低,所以就算勞基法改了,他一樣要退啊,因為這個工作比較吃重,要上山、要上上下下,但如果從24歲以下的比例來看,其實經濟部所屬的這4個公司都要加強,我們還是需要年輕人進來,所以這部分是要加強的地方。 |
gazette.blocks[5][2] |
就以台電公司你們的報告裡面提到的,目前面臨中高年齡結構老化的問題,經過你們改善、改進的精進方案之後,確實有比較好了,如果從台電的工作性質來看,相對於其他3個公司來講,基本上35歲到54歲的中階人力接近五成,當然經驗也很重要,所以這是各個公司都要去談的部分。 |
gazette.blocks[5][3] |
然後,我們再看未來10年員工退休的情形,你們也做了預估,誠如我剛剛講的,怎麼樣讓年輕人能夠進來,是一個很重要的途徑;當然還有另外一個途徑,這就是我的重點了,另外一個途徑就是原住民的進用,我們看經濟部所屬事業機構的新進職員,針對原住民報考的人數,105年有207人,錄取人數只有5位,這個人數比例很低,一直到112年新進職員甄試,原住民報考人數有287人,進用只有8人,這個比例真的是很低,要請台電、台水、台糖,包括各個事業機構,各方面都應該去…… |
gazette.blocks[5][4] |
我們就舉台電的例子,台電一直是我們原住民族很嚮往的一個國營事業,但是從原住民報考人數來看,105年共407人報考,錄取人數只有10個,這個比例真的很低;112年共383人報考,有成長一些些,因為這幾年我一直請我們各個國營事業看怎麼樣能夠讓我們原住民有機會,事實上很多地方都是在我們的偏鄉,像是花東或是原鄉,很多地方都需要,而且一般人也不會願意去,可能分發去了之後1年就離開了,甚至半年就離開了,那何不如讓我們在那邊長期擁有工作機會?台水公司也是一樣,原住民族進用人數的比例真的都是非常非常的低,台糖也是一樣,無論是職員、工員,約聘僱就更難了,因為約聘僱很多都是廠長進用。當然,考試的部分最起碼看怎麼樣能多進用我們原住民,請次長協助各個公司來進用原住民,可以嗎? |
gazette.blocks[6][0] |
連次長錦漳:好,我再找我們四大國營事業公司來討論一下,看怎麼來多多進用我們原住民同胞。 |
gazette.blocks[7][0] |
鄭天財Sra Kacaw委員:好,謝謝。 |
gazette.blocks[8][0] |
連次長錦漳:謝謝。 |
gazette.blocks[9][0] |
主席:謝謝。接下來請呂玉玲委員詢答。 |
gazette.agenda.page_end |
234 |
gazette.agenda.meet_id |
委員會-11-1-19-17 |
gazette.agenda.speakers[0] |
楊瓊瓔 |
gazette.agenda.speakers[1] |
林岱樺 |
gazette.agenda.speakers[2] |
邱議瑩 |
gazette.agenda.speakers[3] |
張啓楷 |
gazette.agenda.speakers[4] |
張嘉郡 |
gazette.agenda.speakers[5] |
鄭正鈐 |
gazette.agenda.speakers[6] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[7] |
呂玉玲 |
gazette.agenda.speakers[8] |
陳亭妃 |
gazette.agenda.speakers[9] |
邱志偉 |
gazette.agenda.speakers[10] |
陳超明 |
gazette.agenda.speakers[11] |
賴瑞隆 |
gazette.agenda.speakers[12] |
牛煦庭 |
gazette.agenda.speakers[13] |
陳培瑜 |
gazette.agenda.speakers[14] |
黃珊珊 |
gazette.agenda.speakers[15] |
蔡易餘 |
gazette.agenda.speakers[16] |
葉元之 |
gazette.agenda.speakers[17] |
吳春城 |
gazette.agenda.speakers[18] |
鍾佳濱 |
gazette.agenda.speakers[19] |
謝衣鳯 |
gazette.agenda.speakers[20] |
林俊憲 |
gazette.agenda.page_start |
177 |
gazette.agenda.meetingDate[0] |
2024-06-26 |
gazette.agenda.gazette_id |
1136701 |
gazette.agenda.agenda_lcidc_ids[0] |
1136701_00005 |
gazette.agenda.meet_name |
立法院第11屆第1會期經濟委員會第17次全體委員會議紀錄 |
gazette.agenda.content |
邀請經濟部部長就「面對國營事業未來10年人力嚴重斷層之因應作為」進行報告,並備質詢 |
gazette.agenda.agenda_id |
1136701_00004 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.45284375 |
transcript.pyannote[0].end |
2.51159375 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
15.16784375 |
transcript.pyannote[1].end |
17.59784375 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
17.73284375 |
transcript.pyannote[2].end |
18.84659375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
26.15346875 |
transcript.pyannote[3].end |
27.30096875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
26.20409375 |
transcript.pyannote[4].end |
26.62596875 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
27.52034375 |
transcript.pyannote[5].end |
28.70159375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
29.42721875 |
transcript.pyannote[6].end |
30.13596875 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
30.76034375 |
transcript.pyannote[7].end |
34.08471875 |
transcript.pyannote[8].speaker |
SPEAKER_01 |
transcript.pyannote[8].start |
34.70909375 |
transcript.pyannote[8].end |
35.51909375 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
35.77221875 |
transcript.pyannote[9].end |
37.42596875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
38.10096875 |
transcript.pyannote[10].end |
39.26534375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
39.36659375 |
transcript.pyannote[11].end |
43.38284375 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
43.78784375 |
transcript.pyannote[12].end |
45.01971875 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
45.89721875 |
transcript.pyannote[13].end |
49.84596875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
50.36909375 |
transcript.pyannote[14].end |
51.75284375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
52.46159375 |
transcript.pyannote[15].end |
53.92971875 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
54.16596875 |
transcript.pyannote[16].end |
54.92534375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
55.66784375 |
transcript.pyannote[17].end |
57.32159375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
57.76034375 |
transcript.pyannote[18].end |
58.72221875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
58.99221875 |
transcript.pyannote[19].end |
60.34221875 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
60.66284375 |
transcript.pyannote[20].end |
61.97909375 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
62.72159375 |
transcript.pyannote[21].end |
64.32471875 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
65.52284375 |
transcript.pyannote[22].end |
65.87721875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
67.07534375 |
transcript.pyannote[23].end |
69.62346875 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
69.91034375 |
transcript.pyannote[24].end |
71.58096875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
71.66534375 |
transcript.pyannote[25].end |
73.89284375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
74.36534375 |
transcript.pyannote[26].end |
77.35221875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
78.11159375 |
transcript.pyannote[27].end |
80.62596875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
81.48659375 |
transcript.pyannote[28].end |
85.55346875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
86.11034375 |
transcript.pyannote[29].end |
91.30784375 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
91.52721875 |
transcript.pyannote[30].end |
93.68721875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
93.85596875 |
transcript.pyannote[31].end |
99.23909375 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
100.11659375 |
transcript.pyannote[32].end |
102.64784375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
103.12034375 |
transcript.pyannote[33].end |
105.22971875 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
106.02284375 |
transcript.pyannote[34].end |
106.32659375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
107.22096875 |
transcript.pyannote[35].end |
111.50721875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
112.06409375 |
transcript.pyannote[36].end |
113.19471875 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
113.38034375 |
transcript.pyannote[37].end |
115.69221875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
116.11409375 |
transcript.pyannote[38].end |
118.07159375 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
118.88159375 |
transcript.pyannote[39].end |
125.34471875 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
125.88471875 |
transcript.pyannote[40].end |
126.91409375 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
128.17971875 |
transcript.pyannote[41].end |
129.34409375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
129.69846875 |
transcript.pyannote[42].end |
130.33971875 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
130.99784375 |
transcript.pyannote[43].end |
132.19596875 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
132.83721875 |
transcript.pyannote[44].end |
144.22784375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
137.73096875 |
transcript.pyannote[45].end |
139.40159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
139.92471875 |
transcript.pyannote[46].end |
140.17784375 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
141.22409375 |
transcript.pyannote[47].end |
141.29159375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
141.30846875 |
transcript.pyannote[48].end |
141.32534375 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
141.37596875 |
transcript.pyannote[49].end |
141.44346875 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
144.59909375 |
transcript.pyannote[50].end |
146.60721875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
147.13034375 |
transcript.pyannote[51].end |
149.52659375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
150.21846875 |
transcript.pyannote[52].end |
152.46284375 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
152.88471875 |
transcript.pyannote[53].end |
155.73659375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
156.05721875 |
transcript.pyannote[54].end |
159.04409375 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
159.33096875 |
transcript.pyannote[55].end |
160.24221875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
160.78221875 |
transcript.pyannote[56].end |
161.65971875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
161.98034375 |
transcript.pyannote[57].end |
162.53721875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
163.36409375 |
transcript.pyannote[58].end |
164.52846875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
165.57471875 |
transcript.pyannote[59].end |
167.81909375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
168.35909375 |
transcript.pyannote[60].end |
168.84846875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
169.64159375 |
transcript.pyannote[61].end |
170.56971875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
170.85659375 |
transcript.pyannote[62].end |
171.98721875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
172.10534375 |
transcript.pyannote[63].end |
174.21471875 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
175.10909375 |
transcript.pyannote[64].end |
179.71596875 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
180.07034375 |
transcript.pyannote[65].end |
181.01534375 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
181.26846875 |
transcript.pyannote[66].end |
182.68596875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
183.14159375 |
transcript.pyannote[67].end |
184.30596875 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
184.40721875 |
transcript.pyannote[68].end |
185.06534375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
185.70659375 |
transcript.pyannote[69].end |
186.71909375 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
187.57971875 |
transcript.pyannote[70].end |
188.30534375 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
188.47409375 |
transcript.pyannote[71].end |
190.71846875 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
191.03909375 |
transcript.pyannote[72].end |
193.23284375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
193.23284375 |
transcript.pyannote[73].end |
193.78971875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
193.48596875 |
transcript.pyannote[74].end |
195.96659375 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
196.13534375 |
transcript.pyannote[75].end |
197.85659375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
198.24471875 |
transcript.pyannote[76].end |
199.78034375 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
200.65784375 |
transcript.pyannote[77].end |
200.97846875 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
202.02471875 |
transcript.pyannote[78].end |
205.11284375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
206.26034375 |
transcript.pyannote[79].end |
209.28096875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
206.54721875 |
transcript.pyannote[80].end |
206.85096875 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
209.65221875 |
transcript.pyannote[81].end |
211.06971875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
211.76159375 |
transcript.pyannote[82].end |
216.18284375 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
216.87471875 |
transcript.pyannote[83].end |
222.91596875 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
223.50659375 |
transcript.pyannote[84].end |
226.49346875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
226.96596875 |
transcript.pyannote[85].end |
229.83471875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
230.39159375 |
transcript.pyannote[86].end |
232.70346875 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
232.99034375 |
transcript.pyannote[87].end |
237.66471875 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
237.86721875 |
transcript.pyannote[88].end |
239.08221875 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
239.79096875 |
transcript.pyannote[89].end |
242.71034375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
243.13221875 |
transcript.pyannote[90].end |
247.92471875 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
248.14409375 |
transcript.pyannote[91].end |
248.63346875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
249.13971875 |
transcript.pyannote[92].end |
251.85659375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
252.07596875 |
transcript.pyannote[93].end |
261.89721875 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
262.23471875 |
transcript.pyannote[94].end |
265.94721875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
266.52096875 |
transcript.pyannote[95].end |
270.43596875 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
270.82409375 |
transcript.pyannote[96].end |
271.81971875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
272.41034375 |
transcript.pyannote[97].end |
273.82784375 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
274.35096875 |
transcript.pyannote[98].end |
278.28284375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
278.89034375 |
transcript.pyannote[99].end |
282.53534375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
283.17659375 |
transcript.pyannote[100].end |
288.99846875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
289.74096875 |
transcript.pyannote[101].end |
291.05721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
291.58034375 |
transcript.pyannote[102].end |
291.76596875 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
291.95159375 |
transcript.pyannote[103].end |
293.43659375 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
294.43221875 |
transcript.pyannote[104].end |
296.15346875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
296.40659375 |
transcript.pyannote[105].end |
297.04784375 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
297.63846875 |
transcript.pyannote[106].end |
298.88721875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
299.42721875 |
transcript.pyannote[107].end |
300.81096875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
301.11471875 |
transcript.pyannote[108].end |
303.27471875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
304.30409375 |
transcript.pyannote[109].end |
305.55284375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
305.99159375 |
transcript.pyannote[110].end |
306.68346875 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
307.39221875 |
transcript.pyannote[111].end |
312.42096875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
312.87659375 |
transcript.pyannote[112].end |
316.30221875 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
316.82534375 |
transcript.pyannote[113].end |
319.06971875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
319.55909375 |
transcript.pyannote[114].end |
320.25096875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
320.52096875 |
transcript.pyannote[115].end |
322.15784375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
323.03534375 |
transcript.pyannote[116].end |
325.16159375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
325.70159375 |
transcript.pyannote[117].end |
327.52409375 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
328.06409375 |
transcript.pyannote[118].end |
329.70096875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
330.57846875 |
transcript.pyannote[119].end |
335.87721875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
336.14721875 |
transcript.pyannote[120].end |
337.86846875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
338.52659375 |
transcript.pyannote[121].end |
340.66971875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
341.32784375 |
transcript.pyannote[122].end |
342.45846875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
343.13346875 |
transcript.pyannote[123].end |
345.20909375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
345.69846875 |
transcript.pyannote[124].end |
348.24659375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
348.90471875 |
transcript.pyannote[125].end |
354.08534375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
355.57034375 |
transcript.pyannote[126].end |
358.01721875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
358.69221875 |
transcript.pyannote[127].end |
360.26159375 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
360.41346875 |
transcript.pyannote[128].end |
361.03784375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
360.71721875 |
transcript.pyannote[129].end |
360.86909375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
362.21909375 |
transcript.pyannote[130].end |
364.17659375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
364.34534375 |
transcript.pyannote[131].end |
365.56034375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
366.26909375 |
transcript.pyannote[132].end |
368.69909375 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
369.64409375 |
transcript.pyannote[133].end |
371.09534375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
371.38221875 |
transcript.pyannote[134].end |
373.08659375 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
373.87971875 |
transcript.pyannote[135].end |
374.33534375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
374.87534375 |
transcript.pyannote[136].end |
378.62159375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
379.09409375 |
transcript.pyannote[137].end |
380.20784375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
380.93346875 |
transcript.pyannote[138].end |
384.67971875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
385.21971875 |
transcript.pyannote[139].end |
392.15534375 |
transcript.pyannote[140].speaker |
SPEAKER_01 |
transcript.pyannote[140].start |
392.47596875 |
transcript.pyannote[140].end |
393.65721875 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
394.63596875 |
transcript.pyannote[141].end |
396.59346875 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
397.09971875 |
transcript.pyannote[142].end |
412.54034375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
413.06346875 |
transcript.pyannote[143].end |
414.64971875 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
415.29096875 |
transcript.pyannote[144].end |
417.78846875 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
418.14284375 |
transcript.pyannote[145].end |
425.50034375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
425.88846875 |
transcript.pyannote[146].end |
427.45784375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
427.72784375 |
transcript.pyannote[147].end |
428.50409375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
428.87534375 |
transcript.pyannote[148].end |
431.96346875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
432.45284375 |
transcript.pyannote[149].end |
434.61284375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
435.00096875 |
transcript.pyannote[150].end |
437.38034375 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
437.78534375 |
transcript.pyannote[151].end |
439.65846875 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
440.08034375 |
transcript.pyannote[152].end |
441.80159375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
442.57784375 |
transcript.pyannote[153].end |
446.32409375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
446.74596875 |
transcript.pyannote[154].end |
451.18409375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
451.26846875 |
transcript.pyannote[155].end |
452.90534375 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
453.10784375 |
transcript.pyannote[156].end |
454.35659375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
454.66034375 |
transcript.pyannote[157].end |
457.05659375 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
457.41096875 |
transcript.pyannote[158].end |
458.54159375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
458.82846875 |
transcript.pyannote[159].end |
458.86221875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
458.86221875 |
transcript.pyannote[160].end |
459.01409375 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
459.01409375 |
transcript.pyannote[161].end |
459.09846875 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
459.19971875 |
transcript.pyannote[162].end |
459.89159375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
461.29221875 |
transcript.pyannote[163].end |
461.39346875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
461.73096875 |
transcript.pyannote[164].end |
464.05971875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
464.44784375 |
transcript.pyannote[165].end |
466.38846875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
467.53596875 |
transcript.pyannote[166].end |
473.99909375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
474.20159375 |
transcript.pyannote[167].end |
477.94784375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
479.41596875 |
transcript.pyannote[168].end |
480.29346875 |
transcript.whisperx[0].start |
0.809 |
transcript.whisperx[0].end |
28.461 |
transcript.whisperx[0].text |
鄭天財委員請做詢答主席會委員有請次長我們再請連次長次長好這個恭喜你這個 |
transcript.whisperx[1].start |
30.836 |
transcript.whisperx[1].end |
59.864 |
transcript.whisperx[1].text |
在經濟部的首署的相關的工業局、標檢局還有什麼國產發署都待過這個很適合擔任這個常務次長這個我也很多年前也當過中央人民會的常務副主委所以這個常務這個次長這個肩負很重要的一個 |
transcript.whisperx[2].start |
60.734 |
transcript.whisperx[2].end |
60.954 |
transcript.whisperx[2].text |
主席 |
transcript.whisperx[3].start |
81.513 |
transcript.whisperx[3].end |
103.922 |
transcript.whisperx[3].text |
好,我們這個今天的這個非常好的一個主題那國營事業嚴格合理化管理作業規定都有一個這樣的一個機制希望能夠朝這個方向去來完備那我們看今天經濟部的報告裡面提到這個這裡面 |
transcript.whisperx[4].start |
107.805 |
transcript.whisperx[4].end |
122.218 |
transcript.whisperx[4].text |
這個經濟部所屬4月103到112年曾面臨人力斷層的危機有三點的一個分析那其中這個第二點60歲源自65歲有一個原因當然要看這個 |
transcript.whisperx[5].start |
128.203 |
transcript.whisperx[5].end |
149.04 |
transcript.whisperx[5].text |
台電、台水、台糖每個不太一樣的工作環境像台電它常常會爬上爬下還要上山所以這個部分也會有所不同但是這個也是會面臨我們未來 |
transcript.whisperx[6].start |
150.253 |
transcript.whisperx[6].end |
173.748 |
transcript.whisperx[6].text |
我還面臨這個少子女化的很多的問題所以這個部分這個都是要去怎麼樣去因應都要去多多的去看那我們看這個這個台電中友台糖台水這個年齡各年齡分布的情形來看的話 |
transcript.whisperx[7].start |
175.148 |
transcript.whisperx[7].end |
198.843 |
transcript.whisperx[7].text |
我們就像我剛剛講的61到65歲台電的比例就相對的比較低了所以他自然他就算你這個勞基法改了他一樣要退啊因為這個工作比較吃重嘛要上上下下所以各方面他會有但是如果我們從這個 |
transcript.whisperx[8].start |
202.076 |
transcript.whisperx[8].end |
203.357 |
transcript.whisperx[8].text |
臺電公司報告提到的整個 |
transcript.whisperx[9].start |
230.704 |
transcript.whisperx[9].end |
238.049 |
transcript.whisperx[9].text |
面臨所謂的中高年齡解剖老化問題然後經過你們的一個整個整個運 |
transcript.whisperx[10].start |
240.164 |
transcript.whisperx[10].end |
265.647 |
transcript.whisperx[10].text |
這個改善改進經濟的方案之後確實有有比較好啦確實有如果從台電這個最他工作性質比相對跟其他的四個公司三個公司的話來講基本上這個35歲到54歲中間人力接近五成這個部分當然因為這個是一個經驗也很重要很重要 |
transcript.whisperx[11].start |
266.627 |
transcript.whisperx[11].end |
295.986 |
transcript.whisperx[11].text |
所以這個部分是一個需要各個公司都要去談的部分然後我們看你未來10年員工退休的情形你們也做了一估這個部分怎麼樣就成為我剛剛講的這個年輕人怎麼樣讓他能夠進來是一個途徑很重要的途徑當然另外一個途徑這個就是我的重點另外一個途徑是原住民 |
transcript.whisperx[12].start |
296.485 |
transcript.whisperx[12].end |
308.348 |
transcript.whisperx[12].text |
的禁用嚴重的禁用我們看這個經濟部首屬事業機構這個新進職員嚴重於報考的人數我們從105年207人然後這個入企人數只有5個5位這個人數的比例很低一直到112年 |
transcript.whisperx[13].start |
323.526 |
transcript.whisperx[13].end |
336.178 |
transcript.whisperx[13].text |
新晉執言偵視,原住民報考人數287人,禁用只有8人。所以這個比例真的是很低。要請我們所有的臺電、臺水、臺堂 |
transcript.whisperx[14].start |
346.294 |
transcript.whisperx[14].end |
368.46 |
transcript.whisperx[14].text |
包括各個事業機構海棠各方面都應該去我們就舉這個例子台電台電一直是我們原住民族一直很嚮往要去的一個國營事業但是如果我們從這個來原住民報考的人數這個105年是107人報考 |
transcript.whisperx[15].start |
375.424 |
transcript.whisperx[15].end |
393.221 |
transcript.whisperx[15].text |
這個入企人數只有10個這個比例真的很低這個112年383人去報告這個有成長一些些因為這幾年我一直在請我們各個國營事業的那個去 |
transcript.whisperx[16].start |
394.65 |
transcript.whisperx[16].end |
394.83 |
transcript.whisperx[16].text |
委員會主席 |
transcript.whisperx[17].start |
415.613 |
transcript.whisperx[17].end |
440.394 |
transcript.whisperx[17].text |
一年就離開了,甚至半年就離開了那何不如讓我們在那邊長期的來去做這樣的一個工作機會台水公司也是一樣這個顏族民族禁用的人數的比例真的都是非常非常的低我們看這個台糖也是一樣這個無論是職研、公研、業務 |
transcript.whisperx[18].start |
442.645 |
transcript.whisperx[18].end |
445.447 |
transcript.whisperx[18].text |
要請次長協助我們的各個公司來禁用原住民,可以嗎? |
transcript.whisperx[19].start |
467.571 |
transcript.whisperx[19].end |
475.602 |
transcript.whisperx[19].text |
好,我再來找我們四大國營事業公司來討論一下怎麼來多多敬略我們原住民的同胞這樣子好,謝謝 |