IVOD_ID |
153843 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/153843 |
日期 |
2024-06-12 |
會議資料.會議代碼 |
委員會-11-1-19-16 |
會議資料.會議代碼:str |
第11屆第1會期經濟委員會第16次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
16 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第1會期經濟委員會第16次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-06-12T11:06:31+08:00 |
結束時間 |
2024-06-12T11:17:34+08:00 |
影片長度 |
00:11:03 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4f10fa8b3f7cd81963c622a1a00918080fec08313b105ec0dd6f040307a1001a61cd8283283c7cb85ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鄭天財Sra Kacaw |
委員發言時間 |
11:06:31 - 11:17:34 |
會議時間 |
2024-06-12T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期經濟委員會第16次全體委員會議(事由:邀請國家發展委員會主任委員、經濟部部長、國家科學及技術委員會首長、數位發展部首長、教育部首長就「為掌握生成式AI等關鍵技術帶來的產業革命機會,台灣要如何深化AI生態系及充實AI人才與產業AI化,促動台灣產業數位轉型與運用AI賦能升級,擴展產業發展,打造智慧未來」進行報告,並備質詢。【6月12日及6月13日兩天一次會】) |
gazette.lineno |
600 |
gazette.blocks[0][0] |
鄭天財Sra Kacaw委員:(11時6分)主席、各位委員。有請國發會主委、經濟部部長。 |
gazette.blocks[1][0] |
主席:好,請兩位,謝謝。 |
gazette.blocks[2][0] |
鄭天財Sra Kacaw委員:再加上教育部政次。 |
gazette.blocks[3][0] |
主席:請教育部次長。 |
gazette.blocks[4][0] |
鄭天財Sra Kacaw委員:大家好。郭部長,對於核電方向又改變,這樣的一件事,我還是要期勉你,上次我在這裡也特別跟郭部長提到,核能、核電是一個專業的部分,所以在郭部長上次的報告裡面有提到,核安、核電議題的三大前提──核安要確保、核廢須處理、社會有共識,還要尊重國會審議及討論,這些都涉及到專業,上次我也特別提到,就算立法院要審議,立法委員大部分沒有這個專業,所以還是要靠專業。請問一下郭部長,你上任到現在有沒有跟負責核電的這些台電人員討論過? |
gazette.blocks[5][0] |
郭部長智輝:負責核電的同仁是沒有討論過,但是跟台電的同仁幾乎是每天都在討論。 |
gazette.blocks[6][0] |
鄭天財Sra Kacaw委員:好,我建議部長,要跟台電負責核電的同仁還有核能研究所討論。 |
gazette.blocks[7][0] |
郭部長智輝:是的。 |
gazette.blocks[8][0] |
鄭天財Sra Kacaw委員:也許還有其他涉及到的相關部會,這個涉及到專業而且也涉及到我們今天討論的AI,各方面都是需要電力,這個我不是專業,但是我認為應該是要去好好地討論,當然核四我們之所以整個關閉,就是因為日本的福島事故,但是日本很快地就重啟了,對不對?它很快就重啟了,它已經重啟了10部機組,所以它的核電占比從目前的不到5%,預計在2030年提高到20%至22%,這是他們日本對核電的一個處理,這個部分的科技一直在進步,所以相關的這些過去引發的事故,也都會因為科技的進步獲得解決,怎麼樣讓人民安心,讓產業更安心,這很重要。 |
gazette.blocks[8][1] |
好,回到今天的主題,經濟部的報告裡面提到,預計2028年製造業AI應用的普及率能從目前的12.3%提升至50%,這個要積極地來達成目標。當然,這裡面無論是經濟部的報告、國發會的報告或者是數發部的報告,都提到AI人才的培育,百工百業的這些應用,然後相關的認證、發展各方面,而且是跨部會的,確實是跨部會。請問一下部長或者是國發會主委,這個跨部會由誰來負責整合或是召集?國發會主委,你來回答可能比較適合。 |
gazette.blocks[9][0] |
劉主任委員鏡清:是的,跨部會是國發會來負責。 |
gazette.blocks[10][0] |
鄭天財Sra Kacaw委員:國發會喔,當然你的人力也是有限,國發會負責很多的業務,跟相關部會的業務都有關係,有關中長程計畫的核定、各方面的審議,人力怎麼樣去……人力最多的數發部,請他們多發揮這方面的力量,這樣可以節省你們的人力。因為我是30年的老公務員,我會比較強調、考慮到這個部分。好,主委,你就先回座。 |
gazette.blocks[10][1] |
部長還有教育部,因為時間的關係,我還是要談到原住民的部分,畢竟我是原住民的立委,我要讓部長還有教育部瞭解,我過去在臺灣省政府服務20年,然後精省之後到中央服務,常務副主委當過六年多,民國85年,當時的省政府教育廳跟明志工專,也就是王永慶的企業對原住民開設的專班,最早的專班就是這個,他開設專班培育原住民的人才,讓他們能夠到台塑的企業,所以當時這些開設專班的人,現在大部分都在雲林的台塑廠,我講這個部分就是說,AI這個部分,我上次也有跟部長提到AI,怎麼樣能夠鼓勵原住民的人才?這必須要透過產業跟教育,教育部跟大專校院能夠怎麼樣合作,也讓原住民的人才往這個方向去發展?因為原住民的教育,我再講一次,原漢的教育落差高,在大專校院的粗在學率有高達30%的落差,但是很多的學校,尤其是科技大學,它去開這個專班之後,學生到產業界就有很好的一個發展,所以這個部分要請經濟部跟教育部這邊共同合作去推動。部長,要不要先發表一下? |
gazette.blocks[11][0] |
郭部長智輝:報告委員,我們的百工百業對AI的人才沒有訓練那麼高階的LLM部分,我們是訓練微調跟實用部分,這個就是說他接受一段的訓練以後,他就可以發揮,所以這個訓練很快,他可能經過半年的訓練以後就可以馬上在他的工作上應用,所以我才有辦法訓練那麼多人,而那麼多人來了以後,透過AI來訓練AI,我想那個會更快,所以可以讓整個經濟提升,提升價值、減少loss,這個就是我們推動AI最大的目的。 |
gazette.blocks[12][0] |
鄭天財Sra Kacaw委員:好,教育部政次,我先簡要說明,剛才部長講的也非常好!當初我在省政府原住民行政局當副局長,去協調教育廳、明志工專,其實它也不是正式的學程,我講的所謂的專班也不是正式的學程,它就是利用暑假開了那個專班,學會一技之長,然後就到台塑企業,所以剛剛部長也講了不一定是要整個大學4年的學程,次長,可以往這方向去努力嗎? |
gazette.blocks[13][0] |
葉次長丙成:跟委員報告,其實像剛剛委員提到我們現在在技職這一塊有產攜2.0的計畫,基本上就是要結合技高、科大跟企業,合在一起,讓這些學生學的技術……因為以前都是學技術之後可能還要考試,但是我們現在就是讓他在技高畢業就可以順利的就業,可以領薪水,一邊工作也可以一邊學技術,然後在科大可以得到學位,這個部分的人數目前全臺灣大概是七千多人,其實一直在往上提升,我們未來也會繼續推動這一塊。另外也跟委員報告,在原住民的部分,目前我們有25個大學設立25個專班,也給這些大學經費,鼓勵他們在這邊給原住民的同學有一些好的training,這部分是教育部一直都持續努力在做。 |
gazette.blocks[14][0] |
鄭天財Sra Kacaw委員:希望教育部能夠跟經濟部合作,對於AI產業原住民的部分,能夠給予他們學習的機會、進入產業界的機會,好不好?謝謝。 |
gazette.blocks[15][0] |
主席:之前教育部推的是4加1,現在又來一個3加2,所以我們委員所希望的就是你要針對需求者,去讓他落實在產業當中,這樣子不是只有口號啊!所以你現在是改3加2,應該要跟委員說明清楚。謝謝。 |
gazette.blocks[15][1] |
接下來我們請張嘉郡委員。 |
gazette.agenda.page_end |
152 |
gazette.agenda.meet_id |
委員會-11-1-19-16 |
gazette.agenda.speakers[0] |
楊瓊瓔 |
gazette.agenda.speakers[1] |
林岱樺 |
gazette.agenda.speakers[2] |
陳亭妃 |
gazette.agenda.speakers[3] |
邱議瑩 |
gazette.agenda.speakers[4] |
呂玉玲 |
gazette.agenda.speakers[5] |
張啓楷 |
gazette.agenda.speakers[6] |
謝衣鳯 |
gazette.agenda.speakers[7] |
鄭正鈐 |
gazette.agenda.speakers[8] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[9] |
張嘉郡 |
gazette.agenda.speakers[10] |
邱志偉 |
gazette.agenda.speakers[11] |
陳超明 |
gazette.agenda.speakers[12] |
賴瑞隆 |
gazette.agenda.speakers[13] |
賴士葆 |
gazette.agenda.speakers[14] |
鍾佳濱 |
gazette.agenda.speakers[15] |
陳培瑜 |
gazette.agenda.speakers[16] |
林宜瑾 |
gazette.agenda.speakers[17] |
蔡易餘 |
gazette.agenda.speakers[18] |
羅智強 |
gazette.agenda.speakers[19] |
葛如鈞 |
gazette.agenda.speakers[20] |
莊瑞雄 |
gazette.agenda.speakers[21] |
陳冠廷 |
gazette.agenda.page_start |
83 |
gazette.agenda.meetingDate[0] |
2024-06-12 |
gazette.agenda.gazette_id |
1136201 |
gazette.agenda.agenda_lcidc_ids[0] |
1136201_00003 |
gazette.agenda.meet_name |
立法院第11屆第1會期經濟委員會第16次全體委員會議紀錄 |
gazette.agenda.content |
邀請國家發展委員會主任委員、經濟部部長、國家科學及技術委員會首長、數位發展部首長、教
育部首長就「為掌握生成式 AI 等關鍵技術帶來的產業革命機會,台灣要如何深化 AI 生態系及充
實 AI 人才與產業 AI 化,促動台灣產業數位轉型與運用 AI 賦能升級,擴展產業發展,打造智慧
未來」進行報告,並備質詢 |
gazette.agenda.agenda_id |
1136201_00002 |
transcript.pyannote[0].speaker |
SPEAKER_01 |
transcript.pyannote[0].start |
0.03096875 |
transcript.pyannote[0].end |
1.49909375 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
13.85159375 |
transcript.pyannote[1].end |
15.30284375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
15.31971875 |
transcript.pyannote[2].end |
16.61909375 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
16.70346875 |
transcript.pyannote[3].end |
18.13784375 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
19.16721875 |
transcript.pyannote[4].end |
20.21346875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
21.46221875 |
transcript.pyannote[5].end |
21.81659375 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
22.32284375 |
transcript.pyannote[6].end |
23.58846875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
24.11159375 |
transcript.pyannote[7].end |
25.20846875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
25.30971875 |
transcript.pyannote[8].end |
26.37284375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
26.79471875 |
transcript.pyannote[9].end |
27.65534375 |
transcript.pyannote[10].speaker |
SPEAKER_02 |
transcript.pyannote[10].start |
28.09409375 |
transcript.pyannote[10].end |
28.93784375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
33.71346875 |
transcript.pyannote[11].end |
34.82721875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
36.83534375 |
transcript.pyannote[12].end |
36.95346875 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
38.01659375 |
transcript.pyannote[13].end |
39.56909375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
39.65346875 |
transcript.pyannote[14].end |
40.49721875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
40.86846875 |
transcript.pyannote[15].end |
43.06221875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
43.77096875 |
transcript.pyannote[16].end |
44.64846875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
45.88034375 |
transcript.pyannote[17].end |
47.58471875 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
47.80409375 |
transcript.pyannote[18].end |
49.49159375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
50.18346875 |
transcript.pyannote[19].end |
53.20409375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
54.60471875 |
transcript.pyannote[20].end |
56.61284375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
57.25409375 |
transcript.pyannote[21].end |
58.24971875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
58.62096875 |
transcript.pyannote[22].end |
60.61221875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
61.45596875 |
transcript.pyannote[23].end |
61.96221875 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
62.62034375 |
transcript.pyannote[24].end |
66.41721875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
67.32846875 |
transcript.pyannote[25].end |
68.20596875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
68.54346875 |
transcript.pyannote[26].end |
70.33221875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
70.82159375 |
transcript.pyannote[27].end |
73.18409375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
73.74096875 |
transcript.pyannote[28].end |
74.82096875 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
75.91784375 |
transcript.pyannote[29].end |
76.17096875 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
76.50846875 |
transcript.pyannote[30].end |
78.48284375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
80.17034375 |
transcript.pyannote[31].end |
82.29659375 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
82.98846875 |
transcript.pyannote[32].end |
84.91221875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
86.00909375 |
transcript.pyannote[33].end |
87.00471875 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
87.67971875 |
transcript.pyannote[34].end |
88.32096875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
89.67096875 |
transcript.pyannote[35].end |
91.81409375 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
92.94471875 |
transcript.pyannote[36].end |
93.55221875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
94.58159375 |
transcript.pyannote[37].end |
95.62784375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
97.01159375 |
transcript.pyannote[38].end |
98.54721875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
99.22221875 |
transcript.pyannote[39].end |
100.42034375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
101.21346875 |
transcript.pyannote[40].end |
101.87159375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
103.25534375 |
transcript.pyannote[41].end |
104.95971875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
105.88784375 |
transcript.pyannote[42].end |
106.39409375 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
106.84971875 |
transcript.pyannote[43].end |
107.11971875 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
108.50346875 |
transcript.pyannote[44].end |
110.81534375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
111.11909375 |
transcript.pyannote[45].end |
111.62534375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
112.09784375 |
transcript.pyannote[46].end |
112.65471875 |
transcript.pyannote[47].speaker |
SPEAKER_02 |
transcript.pyannote[47].start |
113.88659375 |
transcript.pyannote[47].end |
118.30784375 |
transcript.pyannote[48].speaker |
SPEAKER_02 |
transcript.pyannote[48].start |
118.56096875 |
transcript.pyannote[48].end |
120.41721875 |
transcript.pyannote[49].speaker |
SPEAKER_02 |
transcript.pyannote[49].start |
121.26096875 |
transcript.pyannote[49].end |
121.29471875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
121.29471875 |
transcript.pyannote[50].end |
122.64471875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
124.11284375 |
transcript.pyannote[51].end |
125.32784375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
125.93534375 |
transcript.pyannote[52].end |
127.42034375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
128.63534375 |
transcript.pyannote[53].end |
129.17534375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
130.12034375 |
transcript.pyannote[54].end |
131.09909375 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
132.93846875 |
transcript.pyannote[55].end |
133.79909375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
134.13659375 |
transcript.pyannote[56].end |
137.34284375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
138.11909375 |
transcript.pyannote[57].end |
139.08096875 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
140.56596875 |
transcript.pyannote[58].end |
141.13971875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
141.67971875 |
transcript.pyannote[59].end |
142.23659375 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
142.75971875 |
transcript.pyannote[60].end |
144.95346875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
145.89846875 |
transcript.pyannote[61].end |
146.89409375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
147.13034375 |
transcript.pyannote[62].end |
147.23159375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
149.02034375 |
transcript.pyannote[63].end |
150.75846875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
151.18034375 |
transcript.pyannote[64].end |
151.77096875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
152.20971875 |
transcript.pyannote[65].end |
155.53409375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
156.10784375 |
transcript.pyannote[66].end |
157.62659375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
158.30159375 |
transcript.pyannote[67].end |
159.04409375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
159.93846875 |
transcript.pyannote[68].end |
160.59659375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
161.28846875 |
transcript.pyannote[69].end |
161.89596875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
163.06034375 |
transcript.pyannote[70].end |
163.54971875 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
164.02221875 |
transcript.pyannote[71].end |
165.47346875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
166.50284375 |
transcript.pyannote[72].end |
171.17721875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
173.05034375 |
transcript.pyannote[73].end |
175.85159375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
176.77971875 |
transcript.pyannote[74].end |
177.16784375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
177.64034375 |
transcript.pyannote[75].end |
178.88909375 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
179.98596875 |
transcript.pyannote[76].end |
181.11659375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
181.77471875 |
transcript.pyannote[77].end |
183.95159375 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
184.27221875 |
transcript.pyannote[78].end |
184.50846875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
185.11596875 |
transcript.pyannote[79].end |
186.46596875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
187.25909375 |
transcript.pyannote[80].end |
189.45284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
190.17846875 |
transcript.pyannote[81].end |
195.10596875 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
195.51096875 |
transcript.pyannote[82].end |
197.82284375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
198.43034375 |
transcript.pyannote[83].end |
201.23159375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
202.07534375 |
transcript.pyannote[84].end |
203.76284375 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
204.35346875 |
transcript.pyannote[85].end |
209.93909375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
210.29346875 |
transcript.pyannote[86].end |
212.60534375 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
213.09471875 |
transcript.pyannote[87].end |
215.08596875 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
215.82846875 |
transcript.pyannote[88].end |
218.54534375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
219.38909375 |
transcript.pyannote[89].end |
221.22846875 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
222.81471875 |
transcript.pyannote[90].end |
224.58659375 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
224.92409375 |
transcript.pyannote[91].end |
225.54846875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
226.29096875 |
transcript.pyannote[92].end |
230.61096875 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
231.16784375 |
transcript.pyannote[93].end |
234.28971875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
234.74534375 |
transcript.pyannote[94].end |
239.26784375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
239.53784375 |
transcript.pyannote[95].end |
246.69284375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
247.19909375 |
transcript.pyannote[96].end |
249.35909375 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
250.21971875 |
transcript.pyannote[97].end |
251.04659375 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
251.87346875 |
transcript.pyannote[98].end |
253.59471875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
253.91534375 |
transcript.pyannote[99].end |
255.14721875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
255.83909375 |
transcript.pyannote[100].end |
257.77971875 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
258.85971875 |
transcript.pyannote[101].end |
259.51784375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
259.90596875 |
transcript.pyannote[102].end |
260.32784375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
262.35284375 |
transcript.pyannote[103].end |
263.28096875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
263.71971875 |
transcript.pyannote[104].end |
263.97284375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
264.49596875 |
transcript.pyannote[105].end |
265.77846875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
266.90909375 |
transcript.pyannote[106].end |
267.90471875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
268.44471875 |
transcript.pyannote[107].end |
269.60909375 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
270.18284375 |
transcript.pyannote[108].end |
270.63846875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
271.63409375 |
transcript.pyannote[109].end |
273.43971875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
273.94596875 |
transcript.pyannote[110].end |
274.70534375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
274.97534375 |
transcript.pyannote[111].end |
275.49846875 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
275.85284375 |
transcript.pyannote[112].end |
277.18596875 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
277.69221875 |
transcript.pyannote[113].end |
278.90721875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
279.98721875 |
transcript.pyannote[114].end |
282.63659375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
283.95284375 |
transcript.pyannote[115].end |
285.84284375 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
286.19721875 |
transcript.pyannote[116].end |
286.82159375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
287.26034375 |
transcript.pyannote[117].end |
289.35284375 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
290.90534375 |
transcript.pyannote[118].end |
293.04846875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
293.21721875 |
transcript.pyannote[119].end |
298.26284375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
298.56659375 |
transcript.pyannote[120].end |
299.35971875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
300.28784375 |
transcript.pyannote[121].end |
301.23284375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
301.50284375 |
transcript.pyannote[122].end |
303.24096875 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
303.76409375 |
transcript.pyannote[123].end |
305.28284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
305.92409375 |
transcript.pyannote[124].end |
307.10534375 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
307.44284375 |
transcript.pyannote[125].end |
310.34534375 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
311.02034375 |
transcript.pyannote[126].end |
312.16784375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
312.65721875 |
transcript.pyannote[127].end |
316.13346875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
316.96034375 |
transcript.pyannote[128].end |
317.97284375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
318.32721875 |
transcript.pyannote[129].end |
319.10346875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
319.84596875 |
transcript.pyannote[130].end |
321.60096875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
321.92159375 |
transcript.pyannote[131].end |
322.79909375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
323.25471875 |
transcript.pyannote[132].end |
324.63846875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
325.27971875 |
transcript.pyannote[133].end |
325.65096875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
325.83659375 |
transcript.pyannote[134].end |
333.41346875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
333.54846875 |
transcript.pyannote[135].end |
334.99971875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
335.21909375 |
transcript.pyannote[136].end |
336.70409375 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
337.63221875 |
transcript.pyannote[137].end |
338.67846875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
340.56846875 |
transcript.pyannote[138].end |
341.22659375 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
341.47971875 |
transcript.pyannote[139].end |
343.11659375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
344.12909375 |
transcript.pyannote[140].end |
346.12034375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
347.75721875 |
transcript.pyannote[141].end |
349.09034375 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
350.30534375 |
transcript.pyannote[142].end |
351.75659375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
352.49909375 |
transcript.pyannote[143].end |
353.83221875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
354.10221875 |
transcript.pyannote[144].end |
355.95846875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
356.88659375 |
transcript.pyannote[145].end |
359.94096875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
361.69596875 |
transcript.pyannote[146].end |
363.56909375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
364.56471875 |
transcript.pyannote[147].end |
365.17221875 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
366.03284375 |
transcript.pyannote[148].end |
368.32784375 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
368.95221875 |
transcript.pyannote[149].end |
371.80409375 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
373.40721875 |
transcript.pyannote[150].end |
376.57971875 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
377.62596875 |
transcript.pyannote[151].end |
379.66784375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
381.74346875 |
transcript.pyannote[152].end |
383.17784375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
383.56596875 |
transcript.pyannote[153].end |
384.78096875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
385.52346875 |
transcript.pyannote[154].end |
387.34596875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
389.55659375 |
transcript.pyannote[155].end |
390.83909375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
391.39596875 |
transcript.pyannote[156].end |
392.52659375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
393.31971875 |
transcript.pyannote[157].end |
394.56846875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
395.22659375 |
transcript.pyannote[158].end |
397.20096875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
397.89284375 |
transcript.pyannote[159].end |
398.53409375 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
398.88846875 |
transcript.pyannote[160].end |
399.46221875 |
transcript.pyannote[161].speaker |
SPEAKER_00 |
transcript.pyannote[161].start |
400.50846875 |
transcript.pyannote[161].end |
402.58409375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
403.20846875 |
transcript.pyannote[162].end |
403.91721875 |
transcript.pyannote[163].speaker |
SPEAKER_00 |
transcript.pyannote[163].start |
404.67659375 |
transcript.pyannote[163].end |
405.77346875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
406.56659375 |
transcript.pyannote[164].end |
410.41409375 |
transcript.pyannote[165].speaker |
SPEAKER_00 |
transcript.pyannote[165].start |
410.83596875 |
transcript.pyannote[165].end |
412.30409375 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
413.19846875 |
transcript.pyannote[166].end |
414.49784375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
414.68346875 |
transcript.pyannote[167].end |
414.83534375 |
transcript.pyannote[168].speaker |
SPEAKER_00 |
transcript.pyannote[168].start |
415.88159375 |
transcript.pyannote[168].end |
417.04596875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
417.36659375 |
transcript.pyannote[169].end |
417.87284375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
418.59846875 |
transcript.pyannote[170].end |
419.47596875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
420.84284375 |
transcript.pyannote[171].end |
422.80034375 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
423.13784375 |
transcript.pyannote[172].end |
426.59721875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
426.95159375 |
transcript.pyannote[173].end |
429.28034375 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
429.87096875 |
transcript.pyannote[174].end |
431.79471875 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
432.40221875 |
transcript.pyannote[175].end |
433.49909375 |
transcript.pyannote[176].speaker |
SPEAKER_00 |
transcript.pyannote[176].start |
434.14034375 |
transcript.pyannote[176].end |
435.87846875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
436.43534375 |
transcript.pyannote[177].end |
438.25784375 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
438.76409375 |
transcript.pyannote[178].end |
439.82721875 |
transcript.pyannote[179].speaker |
SPEAKER_00 |
transcript.pyannote[179].start |
440.77221875 |
transcript.pyannote[179].end |
441.53159375 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
442.51034375 |
transcript.pyannote[180].end |
444.06284375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
444.40034375 |
transcript.pyannote[181].end |
445.15971875 |
transcript.pyannote[182].speaker |
SPEAKER_00 |
transcript.pyannote[182].start |
446.39159375 |
transcript.pyannote[182].end |
447.47159375 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
448.14659375 |
transcript.pyannote[183].end |
450.44159375 |
transcript.pyannote[184].speaker |
SPEAKER_00 |
transcript.pyannote[184].start |
451.21784375 |
transcript.pyannote[184].end |
452.95596875 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
453.44534375 |
transcript.pyannote[185].end |
454.42409375 |
transcript.pyannote[186].speaker |
SPEAKER_00 |
transcript.pyannote[186].start |
455.63909375 |
transcript.pyannote[186].end |
455.94284375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
456.31409375 |
transcript.pyannote[187].end |
457.12409375 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
457.44471875 |
transcript.pyannote[188].end |
458.57534375 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
459.11534375 |
transcript.pyannote[189].end |
459.84096875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
460.00971875 |
transcript.pyannote[190].end |
460.70159375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
461.54534375 |
transcript.pyannote[191].end |
462.45659375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
463.24971875 |
transcript.pyannote[192].end |
464.09346875 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
464.93721875 |
transcript.pyannote[193].end |
465.42659375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
465.62909375 |
transcript.pyannote[194].end |
467.08034375 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
467.70471875 |
transcript.pyannote[195].end |
469.37534375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
470.37096875 |
transcript.pyannote[196].end |
471.28221875 |
transcript.pyannote[197].speaker |
SPEAKER_00 |
transcript.pyannote[197].start |
471.53534375 |
transcript.pyannote[197].end |
473.27346875 |
transcript.pyannote[198].speaker |
SPEAKER_00 |
transcript.pyannote[198].start |
473.34096875 |
transcript.pyannote[198].end |
474.52221875 |
transcript.pyannote[199].speaker |
SPEAKER_00 |
transcript.pyannote[199].start |
475.07909375 |
transcript.pyannote[199].end |
476.32784375 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
477.13784375 |
transcript.pyannote[200].end |
478.06596875 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
478.60596875 |
transcript.pyannote[201].end |
480.39471875 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
481.00221875 |
transcript.pyannote[202].end |
483.60096875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
484.46159375 |
transcript.pyannote[203].end |
486.30096875 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
487.22909375 |
transcript.pyannote[204].end |
487.90409375 |
transcript.pyannote[205].speaker |
SPEAKER_02 |
transcript.pyannote[205].start |
488.68034375 |
transcript.pyannote[205].end |
502.65284375 |
transcript.pyannote[206].speaker |
SPEAKER_02 |
transcript.pyannote[206].start |
503.27721875 |
transcript.pyannote[206].end |
511.54596875 |
transcript.pyannote[207].speaker |
SPEAKER_02 |
transcript.pyannote[207].start |
512.06909375 |
transcript.pyannote[207].end |
532.26846875 |
transcript.pyannote[208].speaker |
SPEAKER_00 |
transcript.pyannote[208].start |
532.26846875 |
transcript.pyannote[208].end |
532.30221875 |
transcript.pyannote[209].speaker |
SPEAKER_02 |
transcript.pyannote[209].start |
532.80846875 |
transcript.pyannote[209].end |
533.02784375 |
transcript.pyannote[210].speaker |
SPEAKER_00 |
transcript.pyannote[210].start |
533.02784375 |
transcript.pyannote[210].end |
535.49159375 |
transcript.pyannote[211].speaker |
SPEAKER_00 |
transcript.pyannote[211].start |
535.99784375 |
transcript.pyannote[211].end |
540.72284375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
541.85346875 |
transcript.pyannote[212].end |
542.54534375 |
transcript.pyannote[213].speaker |
SPEAKER_00 |
transcript.pyannote[213].start |
543.77721875 |
transcript.pyannote[213].end |
547.25346875 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
547.60784375 |
transcript.pyannote[214].end |
550.39221875 |
transcript.pyannote[215].speaker |
SPEAKER_00 |
transcript.pyannote[215].start |
550.71284375 |
transcript.pyannote[215].end |
551.38784375 |
transcript.pyannote[216].speaker |
SPEAKER_00 |
transcript.pyannote[216].start |
551.64096875 |
transcript.pyannote[216].end |
553.02471875 |
transcript.pyannote[217].speaker |
SPEAKER_00 |
transcript.pyannote[217].start |
553.78409375 |
transcript.pyannote[217].end |
557.46284375 |
transcript.pyannote[218].speaker |
SPEAKER_00 |
transcript.pyannote[218].start |
558.07034375 |
transcript.pyannote[218].end |
559.97721875 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
560.60159375 |
transcript.pyannote[219].end |
561.91784375 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
562.37346875 |
transcript.pyannote[220].end |
563.53784375 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
564.24659375 |
transcript.pyannote[221].end |
565.52909375 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
566.47409375 |
transcript.pyannote[222].end |
568.19534375 |
transcript.pyannote[223].speaker |
SPEAKER_00 |
transcript.pyannote[223].start |
568.68471875 |
transcript.pyannote[223].end |
570.59159375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
570.92909375 |
transcript.pyannote[224].end |
574.65846875 |
transcript.pyannote[225].speaker |
SPEAKER_00 |
transcript.pyannote[225].start |
575.11409375 |
transcript.pyannote[225].end |
581.45909375 |
transcript.pyannote[226].speaker |
SPEAKER_00 |
transcript.pyannote[226].start |
581.71221875 |
transcript.pyannote[226].end |
583.19721875 |
transcript.pyannote[227].speaker |
SPEAKER_01 |
transcript.pyannote[227].start |
581.91471875 |
transcript.pyannote[227].end |
582.13409375 |
transcript.pyannote[228].speaker |
SPEAKER_01 |
transcript.pyannote[228].start |
583.19721875 |
transcript.pyannote[228].end |
583.21409375 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
583.75409375 |
transcript.pyannote[229].end |
584.96909375 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
584.96909375 |
transcript.pyannote[230].end |
607.04159375 |
transcript.pyannote[231].speaker |
SPEAKER_01 |
transcript.pyannote[231].start |
607.61534375 |
transcript.pyannote[231].end |
634.49721875 |
transcript.pyannote[232].speaker |
SPEAKER_01 |
transcript.pyannote[232].start |
634.76721875 |
transcript.pyannote[232].end |
645.02721875 |
transcript.pyannote[233].speaker |
SPEAKER_00 |
transcript.pyannote[233].start |
645.02721875 |
transcript.pyannote[233].end |
659.01659375 |
transcript.pyannote[234].speaker |
SPEAKER_01 |
transcript.pyannote[234].start |
659.91096875 |
transcript.pyannote[234].end |
660.75471875 |
transcript.whisperx[0].start |
14.112 |
transcript.whisperx[0].end |
28.639 |
transcript.whisperx[0].text |
主席、各位委員有請那個國發會主委、經濟部部長好請兩位謝謝再加上這個教育部教育部次長 |
transcript.whisperx[1].start |
34.095 |
transcript.whisperx[1].end |
61.745 |
transcript.whisperx[1].text |
大家好對於國部長對於核電又改變這樣的一個我還是要其免上次在這裡我也特別跟國部長提到這個核能、核電它是一個專業的部分所以 |
transcript.whisperx[2].start |
62.682 |
transcript.whisperx[2].end |
91.101 |
transcript.whisperx[2].text |
在你上次的報告裡面 郭部長上次的報告核安、核電議題三大前提核安要確保、核廢墟處理、社會有共識尊重國會審議及討論這些都是涉及到專業了上次我也特別提到就算立法院要審議立法委員大部分沒有這個專業了 |
transcript.whisperx[3].start |
93.204 |
transcript.whisperx[3].end |
120.182 |
transcript.whisperx[3].text |
所以還是要靠專業請問一下郭部長你上任到現在有沒有跟台電負責核電的這些台電的人員討論過負責核電的同仁是沒有討論過但是跟台電的同仁是幾乎每天都在討論這個我建議部長 |
transcript.whisperx[4].start |
124.161 |
transcript.whisperx[4].end |
146.609 |
transcript.whisperx[4].text |
要跟台電負責核電的同仁還有核能研究所要討論也許還有其他的相關涉及到的部會這個是涉及到專業的而且涉及到 |
transcript.whisperx[5].start |
149.039 |
transcript.whisperx[5].end |
178.482 |
transcript.whisperx[5].text |
我們今天討論的AI各方面都是需要電力的都是需要電力這個我不是專業但是我認為應該是要去好好的討論這個當然我們之所以合適這個整個關閉就是因為福島事故嘛日本的福島事故但是日本馬上就很快的就重啟了對不對他很快重啟 |
transcript.whisperx[6].start |
180.071 |
transcript.whisperx[6].end |
200.731 |
transcript.whisperx[6].text |
所以它這個整個已經重啟了10步基礎所以它從目前的不到5%在2030年提高到20%至22%這是他們日本對核電的一個處理所以這個部分是科技一直在進步 |
transcript.whisperx[7].start |
202.43 |
transcript.whisperx[7].end |
220.61 |
transcript.whisperx[7].text |
所以相關的這些過去引發的這些事故都也會因為科技的進步然後去解決所以這個怎麼樣讓人民安心產業更安心這很重要回到今天的主題 |
transcript.whisperx[8].start |
224.065 |
transcript.whisperx[8].end |
241.716 |
transcript.whisperx[8].text |
這個經濟部的這裡面提到AI應用普及力能從目前12.3%提升至50%製造業以及2028年製造業AI應用普及力能從目前12.3%提升至50%這個是要這個積極的來達成這個目標當然這裡面 |
transcript.whisperx[9].start |
251.909 |
transcript.whisperx[9].end |
278.846 |
transcript.whisperx[9].text |
無論是經濟部的報告、國發會的報告或者是數發部的報告都提到AI人才、AI人才的培育百工百業的這些應用然後相關的認證、發展各方面而且是跨部會,確實是跨部會了 |
transcript.whisperx[10].start |
280.231 |
transcript.whisperx[10].end |
302.855 |
transcript.whisperx[10].text |
請問一下部長還是或者是國會主委這個跨部會誰來負責整合或是說來召集國會主委你來回答可能比較適合是的跨部會是國會會來負責跨國會當然你的人力也是有限這個國會負責很多的業務 |
transcript.whisperx[11].start |
307.963 |
transcript.whisperx[11].end |
332.767 |
transcript.whisperx[11].text |
這個相關的這些各部會的業務都有關係中長程計劃的核定各方面審議人力怎麼樣去這個人力最多的書發部請他們多發揮這方面的這樣可以節省你們的人力因為我是老公務員我會強調會比較考慮這個我是30年公務員會比較考慮這個部分 |
transcript.whisperx[12].start |
337.659 |
transcript.whisperx[12].end |
363.297 |
transcript.whisperx[12].text |
好 這個那個主委你就先回座部長還有那個教育部因為時間的關係這個我還是要談到原住民的部分畢竟原住民的立委我要讓部長還有教育部了解我過去在台灣省政府服務 |
transcript.whisperx[13].start |
364.925 |
transcript.whisperx[13].end |
386.527 |
transcript.whisperx[13].text |
20年然後經審之後到中央服務常務副主委當過6年多民國85年當時的省政府教育廳跟明智工專明智工專也就是王永慶這個企業 |
transcript.whisperx[14].start |
389.905 |
transcript.whisperx[14].end |
417.648 |
transcript.whisperx[14].text |
對原住民開設專班在明治公專最早的專班就是這個專班開設專班培育原住民的人才能夠到台售的企業所以當時這些開設專班的人大部分現在都在雲林雲林的台售廠我講這個部分就是說AI |
transcript.whisperx[15].start |
419.149 |
transcript.whisperx[15].end |
444.807 |
transcript.whisperx[15].text |
這個部分我上次也有跟部長提到AI原住民的人才怎麼樣能夠鼓勵他們所以這必須要產業跟教育教育部大專校院怎麼樣能夠合作也讓原住民的人才會往這個方向去發展因為這個原住民的教育 |
transcript.whisperx[16].start |
446.428 |
transcript.whisperx[16].end |
468.25 |
transcript.whisperx[16].text |
我再講一次嚴漢的教育落差帶大專校院的出債協力出債協力高達百分之三十的落差但是很多的學校尤其是科技大學它去開專班之後 |
transcript.whisperx[17].start |
470.407 |
transcript.whisperx[17].end |
485.943 |
transcript.whisperx[17].text |
到產業界具有很好的一個發展所以這個部分要請經濟部跟教育部這邊共同的來去合作及推動這個部長要不要先 |
transcript.whisperx[18].start |
487.287 |
transcript.whisperx[18].end |
502.405 |
transcript.whisperx[18].text |
發表一下報告委員我們的百工百業對AI的人才沒有訓練那麼高階的LLM的部分但是我們是訓練在微調跟使用上面那這個就是說它除了 |
transcript.whisperx[19].start |
503.362 |
transcript.whisperx[19].end |
532.161 |
transcript.whisperx[19].text |
接受一段的這個訓練以後他就可以發揮所以這個是訓練很快他可能是半年的訓練以後就馬上可以在他工作上面應用所以我才有辦法說訓練那麼多人那麼多人來以後因為透過AI來訓練AI我想那個是更快所以可以讓整個經濟提升提升那個價值減少那個loss這個就是我們推動AI的最大的目的 |
transcript.whisperx[20].start |
532.898 |
transcript.whisperx[20].end |
542.405 |
transcript.whisperx[20].text |
好 那個教育部政策我先簡要說明剛才部長講得也非常好當初啊 |
transcript.whisperx[21].start |
543.8 |
transcript.whisperx[21].end |
562.874 |
transcript.whisperx[21].text |
我那時候在省政府原住民行政局當副局長去協調這個教育廳然後這個明治公專其實他也不是正式的那個我所謂的這個專班也不是正式的協程他就是利用暑假開了那個專班 |
transcript.whisperx[22].start |
564.776 |
transcript.whisperx[22].end |
582.911 |
transcript.whisperx[22].text |
然後就去學會一技之長然後就到台塑企業是這樣所以剛剛部長也講了他不一定是要一個是一個整個大學的四年的學程部長可以往這方向去市長可以往這方向去努力嗎 |
transcript.whisperx[23].start |
584.412 |
transcript.whisperx[23].end |
606.903 |
transcript.whisperx[23].text |
跟這個委員報告那其實像剛剛委員提到我們現在這個在技職這一塊我們有這個產業這個產業產息這2.0這個計畫他基本上就是要結合這個技高還有這個科大跟企業合在一起就讓這些學生其他學的技術因為以前都是學技術之後可能還要考試但是我們現在就是讓他可以 |
transcript.whisperx[24].start |
607.923 |
transcript.whisperx[24].end |
629.993 |
transcript.whisperx[24].text |
順利在科大技高畢業後可以就業可以領薪水一邊工作一邊學技術在科大可以得到學位這個部分的人數目前全台灣大概是7000多人一直在往上提升我們未來也會繼續推動這一塊特別是另外也跟委員報告我們在原住民這邊目前我們有25個大學 |
transcript.whisperx[25].start |
635.475 |
transcript.whisperx[25].end |
656.603 |
transcript.whisperx[25].text |
這個設立25個專班那也給這些大學經費鼓勵他們就是在這邊給原住民的同學他有一些一好的training所以我想這部分是教育部是在持續的都一直在努力在做希望教育部能夠跟經濟部合作對這個AI產業的部分對原住民的部分給他們這個學習的機會進入產業界的機會好不好 謝謝好 謝謝 |