iVOD / 153843

Field Value
IVOD_ID 153843
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153843
日期 2024-06-12
會議資料.會議代碼 委員會-11-1-19-16
會議資料.會議代碼:str 第11屆第1會期經濟委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第16次全體委員會議
影片種類 Clip
開始時間 2024-06-12T11:06:31+08:00
結束時間 2024-06-12T11:17:34+08:00
影片長度 00:11:03
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/4f10fa8b3f7cd81963c622a1a00918080fec08313b105ec0dd6f040307a1001a61cd8283283c7cb85ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 11:06:31 - 11:17:34
會議時間 2024-06-12T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第16次全體委員會議(事由:邀請國家發展委員會主任委員、經濟部部長、國家科學及技術委員會首長、數位發展部首長、教育部首長就「為掌握生成式AI等關鍵技術帶來的產業革命機會,台灣要如何深化AI生態系及充實AI人才與產業AI化,促動台灣產業數位轉型與運用AI賦能升級,擴展產業發展,打造智慧未來」進行報告,並備質詢。【6月12日及6月13日兩天一次會】)
gazette.lineno 600
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(11時6分)主席、各位委員。有請國發會主委、經濟部部長。
gazette.blocks[1][0] 主席:好,請兩位,謝謝。
gazette.blocks[2][0] 鄭天財Sra Kacaw委員:再加上教育部政次。
gazette.blocks[3][0] 主席:請教育部次長。
gazette.blocks[4][0] 鄭天財Sra Kacaw委員:大家好。郭部長,對於核電方向又改變,這樣的一件事,我還是要期勉你,上次我在這裡也特別跟郭部長提到,核能、核電是一個專業的部分,所以在郭部長上次的報告裡面有提到,核安、核電議題的三大前提──核安要確保、核廢須處理、社會有共識,還要尊重國會審議及討論,這些都涉及到專業,上次我也特別提到,就算立法院要審議,立法委員大部分沒有這個專業,所以還是要靠專業。請問一下郭部長,你上任到現在有沒有跟負責核電的這些台電人員討論過?
gazette.blocks[5][0] 郭部長智輝:負責核電的同仁是沒有討論過,但是跟台電的同仁幾乎是每天都在討論。
gazette.blocks[6][0] 鄭天財Sra Kacaw委員:好,我建議部長,要跟台電負責核電的同仁還有核能研究所討論。
gazette.blocks[7][0] 郭部長智輝:是的。
gazette.blocks[8][0] 鄭天財Sra Kacaw委員:也許還有其他涉及到的相關部會,這個涉及到專業而且也涉及到我們今天討論的AI,各方面都是需要電力,這個我不是專業,但是我認為應該是要去好好地討論,當然核四我們之所以整個關閉,就是因為日本的福島事故,但是日本很快地就重啟了,對不對?它很快就重啟了,它已經重啟了10部機組,所以它的核電占比從目前的不到5%,預計在2030年提高到20%至22%,這是他們日本對核電的一個處理,這個部分的科技一直在進步,所以相關的這些過去引發的事故,也都會因為科技的進步獲得解決,怎麼樣讓人民安心,讓產業更安心,這很重要。
gazette.blocks[8][1] 好,回到今天的主題,經濟部的報告裡面提到,預計2028年製造業AI應用的普及率能從目前的12.3%提升至50%,這個要積極地來達成目標。當然,這裡面無論是經濟部的報告、國發會的報告或者是數發部的報告,都提到AI人才的培育,百工百業的這些應用,然後相關的認證、發展各方面,而且是跨部會的,確實是跨部會。請問一下部長或者是國發會主委,這個跨部會由誰來負責整合或是召集?國發會主委,你來回答可能比較適合。
gazette.blocks[9][0] 劉主任委員鏡清:是的,跨部會是國發會來負責。
gazette.blocks[10][0] 鄭天財Sra Kacaw委員:國發會喔,當然你的人力也是有限,國發會負責很多的業務,跟相關部會的業務都有關係,有關中長程計畫的核定、各方面的審議,人力怎麼樣去……人力最多的數發部,請他們多發揮這方面的力量,這樣可以節省你們的人力。因為我是30年的老公務員,我會比較強調、考慮到這個部分。好,主委,你就先回座。
gazette.blocks[10][1] 部長還有教育部,因為時間的關係,我還是要談到原住民的部分,畢竟我是原住民的立委,我要讓部長還有教育部瞭解,我過去在臺灣省政府服務20年,然後精省之後到中央服務,常務副主委當過六年多,民國85年,當時的省政府教育廳跟明志工專,也就是王永慶的企業對原住民開設的專班,最早的專班就是這個,他開設專班培育原住民的人才,讓他們能夠到台塑的企業,所以當時這些開設專班的人,現在大部分都在雲林的台塑廠,我講這個部分就是說,AI這個部分,我上次也有跟部長提到AI,怎麼樣能夠鼓勵原住民的人才?這必須要透過產業跟教育,教育部跟大專校院能夠怎麼樣合作,也讓原住民的人才往這個方向去發展?因為原住民的教育,我再講一次,原漢的教育落差高,在大專校院的粗在學率有高達30%的落差,但是很多的學校,尤其是科技大學,它去開這個專班之後,學生到產業界就有很好的一個發展,所以這個部分要請經濟部跟教育部這邊共同合作去推動。部長,要不要先發表一下?
gazette.blocks[11][0] 郭部長智輝:報告委員,我們的百工百業對AI的人才沒有訓練那麼高階的LLM部分,我們是訓練微調跟實用部分,這個就是說他接受一段的訓練以後,他就可以發揮,所以這個訓練很快,他可能經過半年的訓練以後就可以馬上在他的工作上應用,所以我才有辦法訓練那麼多人,而那麼多人來了以後,透過AI來訓練AI,我想那個會更快,所以可以讓整個經濟提升,提升價值、減少loss,這個就是我們推動AI最大的目的。
gazette.blocks[12][0] 鄭天財Sra Kacaw委員:好,教育部政次,我先簡要說明,剛才部長講的也非常好!當初我在省政府原住民行政局當副局長,去協調教育廳、明志工專,其實它也不是正式的學程,我講的所謂的專班也不是正式的學程,它就是利用暑假開了那個專班,學會一技之長,然後就到台塑企業,所以剛剛部長也講了不一定是要整個大學4年的學程,次長,可以往這方向去努力嗎?
gazette.blocks[13][0] 葉次長丙成:跟委員報告,其實像剛剛委員提到我們現在在技職這一塊有產攜2.0的計畫,基本上就是要結合技高、科大跟企業,合在一起,讓這些學生學的技術……因為以前都是學技術之後可能還要考試,但是我們現在就是讓他在技高畢業就可以順利的就業,可以領薪水,一邊工作也可以一邊學技術,然後在科大可以得到學位,這個部分的人數目前全臺灣大概是七千多人,其實一直在往上提升,我們未來也會繼續推動這一塊。另外也跟委員報告,在原住民的部分,目前我們有25個大學設立25個專班,也給這些大學經費,鼓勵他們在這邊給原住民的同學有一些好的training,這部分是教育部一直都持續努力在做。
gazette.blocks[14][0] 鄭天財Sra Kacaw委員:希望教育部能夠跟經濟部合作,對於AI產業原住民的部分,能夠給予他們學習的機會、進入產業界的機會,好不好?謝謝。
gazette.blocks[15][0] 主席:之前教育部推的是4加1,現在又來一個3加2,所以我們委員所希望的就是你要針對需求者,去讓他落實在產業當中,這樣子不是只有口號啊!所以你現在是改3加2,應該要跟委員說明清楚。謝謝。
gazette.blocks[15][1] 接下來我們請張嘉郡委員。
gazette.agenda.page_end 152
gazette.agenda.meet_id 委員會-11-1-19-16
gazette.agenda.speakers[0] 楊瓊瓔
gazette.agenda.speakers[1] 林岱樺
gazette.agenda.speakers[2] 陳亭妃
gazette.agenda.speakers[3] 邱議瑩
gazette.agenda.speakers[4] 呂玉玲
gazette.agenda.speakers[5] 張啓楷
gazette.agenda.speakers[6] 謝衣鳯
gazette.agenda.speakers[7] 鄭正鈐
gazette.agenda.speakers[8] 鄭天財Sra Kacaw
gazette.agenda.speakers[9] 張嘉郡
gazette.agenda.speakers[10] 邱志偉
gazette.agenda.speakers[11] 陳超明
gazette.agenda.speakers[12] 賴瑞隆
gazette.agenda.speakers[13] 賴士葆
gazette.agenda.speakers[14] 鍾佳濱
gazette.agenda.speakers[15] 陳培瑜
gazette.agenda.speakers[16] 林宜瑾
gazette.agenda.speakers[17] 蔡易餘
gazette.agenda.speakers[18] 羅智強
gazette.agenda.speakers[19] 葛如鈞
gazette.agenda.speakers[20] 莊瑞雄
gazette.agenda.speakers[21] 陳冠廷
gazette.agenda.page_start 83
gazette.agenda.meetingDate[0] 2024-06-12
gazette.agenda.gazette_id 1136201
gazette.agenda.agenda_lcidc_ids[0] 1136201_00003
gazette.agenda.meet_name 立法院第11屆第1會期經濟委員會第16次全體委員會議紀錄
gazette.agenda.content 邀請國家發展委員會主任委員、經濟部部長、國家科學及技術委員會首長、數位發展部首長、教 育部首長就「為掌握生成式 AI 等關鍵技術帶來的產業革命機會,台灣要如何深化 AI 生態系及充 實 AI 人才與產業 AI 化,促動台灣產業數位轉型與運用 AI 賦能升級,擴展產業發展,打造智慧 未來」進行報告,並備質詢
gazette.agenda.agenda_id 1136201_00002
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.49909375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 13.85159375
transcript.pyannote[1].end 15.30284375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 15.31971875
transcript.pyannote[2].end 16.61909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 16.70346875
transcript.pyannote[3].end 18.13784375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 19.16721875
transcript.pyannote[4].end 20.21346875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 21.46221875
transcript.pyannote[5].end 21.81659375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 22.32284375
transcript.pyannote[6].end 23.58846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 24.11159375
transcript.pyannote[7].end 25.20846875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 25.30971875
transcript.pyannote[8].end 26.37284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 26.79471875
transcript.pyannote[9].end 27.65534375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 28.09409375
transcript.pyannote[10].end 28.93784375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 33.71346875
transcript.pyannote[11].end 34.82721875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 36.83534375
transcript.pyannote[12].end 36.95346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 38.01659375
transcript.pyannote[13].end 39.56909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 39.65346875
transcript.pyannote[14].end 40.49721875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 40.86846875
transcript.pyannote[15].end 43.06221875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 43.77096875
transcript.pyannote[16].end 44.64846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 45.88034375
transcript.pyannote[17].end 47.58471875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 47.80409375
transcript.pyannote[18].end 49.49159375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 50.18346875
transcript.pyannote[19].end 53.20409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 54.60471875
transcript.pyannote[20].end 56.61284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 57.25409375
transcript.pyannote[21].end 58.24971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 58.62096875
transcript.pyannote[22].end 60.61221875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 61.45596875
transcript.pyannote[23].end 61.96221875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 62.62034375
transcript.pyannote[24].end 66.41721875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 67.32846875
transcript.pyannote[25].end 68.20596875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 68.54346875
transcript.pyannote[26].end 70.33221875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 70.82159375
transcript.pyannote[27].end 73.18409375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 73.74096875
transcript.pyannote[28].end 74.82096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 75.91784375
transcript.pyannote[29].end 76.17096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 76.50846875
transcript.pyannote[30].end 78.48284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 80.17034375
transcript.pyannote[31].end 82.29659375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 82.98846875
transcript.pyannote[32].end 84.91221875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 86.00909375
transcript.pyannote[33].end 87.00471875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 87.67971875
transcript.pyannote[34].end 88.32096875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 89.67096875
transcript.pyannote[35].end 91.81409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 92.94471875
transcript.pyannote[36].end 93.55221875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 94.58159375
transcript.pyannote[37].end 95.62784375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 97.01159375
transcript.pyannote[38].end 98.54721875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 99.22221875
transcript.pyannote[39].end 100.42034375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 101.21346875
transcript.pyannote[40].end 101.87159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 103.25534375
transcript.pyannote[41].end 104.95971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 105.88784375
transcript.pyannote[42].end 106.39409375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 106.84971875
transcript.pyannote[43].end 107.11971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 108.50346875
transcript.pyannote[44].end 110.81534375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 111.11909375
transcript.pyannote[45].end 111.62534375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 112.09784375
transcript.pyannote[46].end 112.65471875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 113.88659375
transcript.pyannote[47].end 118.30784375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 118.56096875
transcript.pyannote[48].end 120.41721875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 121.26096875
transcript.pyannote[49].end 121.29471875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 121.29471875
transcript.pyannote[50].end 122.64471875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 124.11284375
transcript.pyannote[51].end 125.32784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 125.93534375
transcript.pyannote[52].end 127.42034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 128.63534375
transcript.pyannote[53].end 129.17534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 130.12034375
transcript.pyannote[54].end 131.09909375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 132.93846875
transcript.pyannote[55].end 133.79909375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 134.13659375
transcript.pyannote[56].end 137.34284375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 138.11909375
transcript.pyannote[57].end 139.08096875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 140.56596875
transcript.pyannote[58].end 141.13971875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 141.67971875
transcript.pyannote[59].end 142.23659375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 142.75971875
transcript.pyannote[60].end 144.95346875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 145.89846875
transcript.pyannote[61].end 146.89409375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 147.13034375
transcript.pyannote[62].end 147.23159375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 149.02034375
transcript.pyannote[63].end 150.75846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 151.18034375
transcript.pyannote[64].end 151.77096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 152.20971875
transcript.pyannote[65].end 155.53409375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 156.10784375
transcript.pyannote[66].end 157.62659375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 158.30159375
transcript.pyannote[67].end 159.04409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 159.93846875
transcript.pyannote[68].end 160.59659375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 161.28846875
transcript.pyannote[69].end 161.89596875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 163.06034375
transcript.pyannote[70].end 163.54971875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 164.02221875
transcript.pyannote[71].end 165.47346875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 166.50284375
transcript.pyannote[72].end 171.17721875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 173.05034375
transcript.pyannote[73].end 175.85159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 176.77971875
transcript.pyannote[74].end 177.16784375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 177.64034375
transcript.pyannote[75].end 178.88909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 179.98596875
transcript.pyannote[76].end 181.11659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 181.77471875
transcript.pyannote[77].end 183.95159375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 184.27221875
transcript.pyannote[78].end 184.50846875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 185.11596875
transcript.pyannote[79].end 186.46596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 187.25909375
transcript.pyannote[80].end 189.45284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 190.17846875
transcript.pyannote[81].end 195.10596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 195.51096875
transcript.pyannote[82].end 197.82284375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 198.43034375
transcript.pyannote[83].end 201.23159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 202.07534375
transcript.pyannote[84].end 203.76284375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 204.35346875
transcript.pyannote[85].end 209.93909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 210.29346875
transcript.pyannote[86].end 212.60534375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 213.09471875
transcript.pyannote[87].end 215.08596875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 215.82846875
transcript.pyannote[88].end 218.54534375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 219.38909375
transcript.pyannote[89].end 221.22846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 222.81471875
transcript.pyannote[90].end 224.58659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 224.92409375
transcript.pyannote[91].end 225.54846875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 226.29096875
transcript.pyannote[92].end 230.61096875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 231.16784375
transcript.pyannote[93].end 234.28971875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 234.74534375
transcript.pyannote[94].end 239.26784375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 239.53784375
transcript.pyannote[95].end 246.69284375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 247.19909375
transcript.pyannote[96].end 249.35909375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 250.21971875
transcript.pyannote[97].end 251.04659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 251.87346875
transcript.pyannote[98].end 253.59471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 253.91534375
transcript.pyannote[99].end 255.14721875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 255.83909375
transcript.pyannote[100].end 257.77971875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 258.85971875
transcript.pyannote[101].end 259.51784375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 259.90596875
transcript.pyannote[102].end 260.32784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 262.35284375
transcript.pyannote[103].end 263.28096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 263.71971875
transcript.pyannote[104].end 263.97284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 264.49596875
transcript.pyannote[105].end 265.77846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 266.90909375
transcript.pyannote[106].end 267.90471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 268.44471875
transcript.pyannote[107].end 269.60909375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 270.18284375
transcript.pyannote[108].end 270.63846875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 271.63409375
transcript.pyannote[109].end 273.43971875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 273.94596875
transcript.pyannote[110].end 274.70534375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 274.97534375
transcript.pyannote[111].end 275.49846875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 275.85284375
transcript.pyannote[112].end 277.18596875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 277.69221875
transcript.pyannote[113].end 278.90721875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 279.98721875
transcript.pyannote[114].end 282.63659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 283.95284375
transcript.pyannote[115].end 285.84284375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 286.19721875
transcript.pyannote[116].end 286.82159375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 287.26034375
transcript.pyannote[117].end 289.35284375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 290.90534375
transcript.pyannote[118].end 293.04846875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 293.21721875
transcript.pyannote[119].end 298.26284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 298.56659375
transcript.pyannote[120].end 299.35971875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 300.28784375
transcript.pyannote[121].end 301.23284375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 301.50284375
transcript.pyannote[122].end 303.24096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 303.76409375
transcript.pyannote[123].end 305.28284375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 305.92409375
transcript.pyannote[124].end 307.10534375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 307.44284375
transcript.pyannote[125].end 310.34534375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 311.02034375
transcript.pyannote[126].end 312.16784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 312.65721875
transcript.pyannote[127].end 316.13346875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 316.96034375
transcript.pyannote[128].end 317.97284375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 318.32721875
transcript.pyannote[129].end 319.10346875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 319.84596875
transcript.pyannote[130].end 321.60096875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 321.92159375
transcript.pyannote[131].end 322.79909375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 323.25471875
transcript.pyannote[132].end 324.63846875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 325.27971875
transcript.pyannote[133].end 325.65096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 325.83659375
transcript.pyannote[134].end 333.41346875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 333.54846875
transcript.pyannote[135].end 334.99971875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 335.21909375
transcript.pyannote[136].end 336.70409375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 337.63221875
transcript.pyannote[137].end 338.67846875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 340.56846875
transcript.pyannote[138].end 341.22659375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 341.47971875
transcript.pyannote[139].end 343.11659375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 344.12909375
transcript.pyannote[140].end 346.12034375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 347.75721875
transcript.pyannote[141].end 349.09034375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 350.30534375
transcript.pyannote[142].end 351.75659375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 352.49909375
transcript.pyannote[143].end 353.83221875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 354.10221875
transcript.pyannote[144].end 355.95846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 356.88659375
transcript.pyannote[145].end 359.94096875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 361.69596875
transcript.pyannote[146].end 363.56909375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 364.56471875
transcript.pyannote[147].end 365.17221875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 366.03284375
transcript.pyannote[148].end 368.32784375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 368.95221875
transcript.pyannote[149].end 371.80409375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 373.40721875
transcript.pyannote[150].end 376.57971875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 377.62596875
transcript.pyannote[151].end 379.66784375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 381.74346875
transcript.pyannote[152].end 383.17784375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 383.56596875
transcript.pyannote[153].end 384.78096875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 385.52346875
transcript.pyannote[154].end 387.34596875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 389.55659375
transcript.pyannote[155].end 390.83909375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 391.39596875
transcript.pyannote[156].end 392.52659375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 393.31971875
transcript.pyannote[157].end 394.56846875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 395.22659375
transcript.pyannote[158].end 397.20096875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 397.89284375
transcript.pyannote[159].end 398.53409375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 398.88846875
transcript.pyannote[160].end 399.46221875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 400.50846875
transcript.pyannote[161].end 402.58409375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 403.20846875
transcript.pyannote[162].end 403.91721875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 404.67659375
transcript.pyannote[163].end 405.77346875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 406.56659375
transcript.pyannote[164].end 410.41409375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 410.83596875
transcript.pyannote[165].end 412.30409375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 413.19846875
transcript.pyannote[166].end 414.49784375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 414.68346875
transcript.pyannote[167].end 414.83534375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 415.88159375
transcript.pyannote[168].end 417.04596875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 417.36659375
transcript.pyannote[169].end 417.87284375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 418.59846875
transcript.pyannote[170].end 419.47596875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 420.84284375
transcript.pyannote[171].end 422.80034375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 423.13784375
transcript.pyannote[172].end 426.59721875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 426.95159375
transcript.pyannote[173].end 429.28034375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 429.87096875
transcript.pyannote[174].end 431.79471875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 432.40221875
transcript.pyannote[175].end 433.49909375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 434.14034375
transcript.pyannote[176].end 435.87846875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 436.43534375
transcript.pyannote[177].end 438.25784375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 438.76409375
transcript.pyannote[178].end 439.82721875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 440.77221875
transcript.pyannote[179].end 441.53159375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 442.51034375
transcript.pyannote[180].end 444.06284375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 444.40034375
transcript.pyannote[181].end 445.15971875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 446.39159375
transcript.pyannote[182].end 447.47159375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 448.14659375
transcript.pyannote[183].end 450.44159375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 451.21784375
transcript.pyannote[184].end 452.95596875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 453.44534375
transcript.pyannote[185].end 454.42409375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 455.63909375
transcript.pyannote[186].end 455.94284375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 456.31409375
transcript.pyannote[187].end 457.12409375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 457.44471875
transcript.pyannote[188].end 458.57534375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 459.11534375
transcript.pyannote[189].end 459.84096875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 460.00971875
transcript.pyannote[190].end 460.70159375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 461.54534375
transcript.pyannote[191].end 462.45659375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 463.24971875
transcript.pyannote[192].end 464.09346875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 464.93721875
transcript.pyannote[193].end 465.42659375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 465.62909375
transcript.pyannote[194].end 467.08034375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 467.70471875
transcript.pyannote[195].end 469.37534375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 470.37096875
transcript.pyannote[196].end 471.28221875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 471.53534375
transcript.pyannote[197].end 473.27346875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 473.34096875
transcript.pyannote[198].end 474.52221875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 475.07909375
transcript.pyannote[199].end 476.32784375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 477.13784375
transcript.pyannote[200].end 478.06596875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 478.60596875
transcript.pyannote[201].end 480.39471875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 481.00221875
transcript.pyannote[202].end 483.60096875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 484.46159375
transcript.pyannote[203].end 486.30096875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 487.22909375
transcript.pyannote[204].end 487.90409375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 488.68034375
transcript.pyannote[205].end 502.65284375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 503.27721875
transcript.pyannote[206].end 511.54596875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 512.06909375
transcript.pyannote[207].end 532.26846875
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 532.26846875
transcript.pyannote[208].end 532.30221875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 532.80846875
transcript.pyannote[209].end 533.02784375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 533.02784375
transcript.pyannote[210].end 535.49159375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 535.99784375
transcript.pyannote[211].end 540.72284375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 541.85346875
transcript.pyannote[212].end 542.54534375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 543.77721875
transcript.pyannote[213].end 547.25346875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 547.60784375
transcript.pyannote[214].end 550.39221875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 550.71284375
transcript.pyannote[215].end 551.38784375
transcript.pyannote[216].speaker SPEAKER_00
transcript.pyannote[216].start 551.64096875
transcript.pyannote[216].end 553.02471875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 553.78409375
transcript.pyannote[217].end 557.46284375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 558.07034375
transcript.pyannote[218].end 559.97721875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 560.60159375
transcript.pyannote[219].end 561.91784375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 562.37346875
transcript.pyannote[220].end 563.53784375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 564.24659375
transcript.pyannote[221].end 565.52909375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 566.47409375
transcript.pyannote[222].end 568.19534375
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 568.68471875
transcript.pyannote[223].end 570.59159375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 570.92909375
transcript.pyannote[224].end 574.65846875
transcript.pyannote[225].speaker SPEAKER_00
transcript.pyannote[225].start 575.11409375
transcript.pyannote[225].end 581.45909375
transcript.pyannote[226].speaker SPEAKER_00
transcript.pyannote[226].start 581.71221875
transcript.pyannote[226].end 583.19721875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 581.91471875
transcript.pyannote[227].end 582.13409375
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 583.19721875
transcript.pyannote[228].end 583.21409375
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 583.75409375
transcript.pyannote[229].end 584.96909375
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 584.96909375
transcript.pyannote[230].end 607.04159375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 607.61534375
transcript.pyannote[231].end 634.49721875
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 634.76721875
transcript.pyannote[232].end 645.02721875
transcript.pyannote[233].speaker SPEAKER_00
transcript.pyannote[233].start 645.02721875
transcript.pyannote[233].end 659.01659375
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 659.91096875
transcript.pyannote[234].end 660.75471875
transcript.whisperx[0].start 14.112
transcript.whisperx[0].end 28.639
transcript.whisperx[0].text 主席、各位委員有請那個國發會主委、經濟部部長好請兩位謝謝再加上這個教育部教育部次長
transcript.whisperx[1].start 34.095
transcript.whisperx[1].end 61.745
transcript.whisperx[1].text 大家好對於國部長對於核電又改變這樣的一個我還是要其免上次在這裡我也特別跟國部長提到這個核能、核電它是一個專業的部分所以
transcript.whisperx[2].start 62.682
transcript.whisperx[2].end 91.101
transcript.whisperx[2].text 在你上次的報告裡面 郭部長上次的報告核安、核電議題三大前提核安要確保、核廢墟處理、社會有共識尊重國會審議及討論這些都是涉及到專業了上次我也特別提到就算立法院要審議立法委員大部分沒有這個專業了
transcript.whisperx[3].start 93.204
transcript.whisperx[3].end 120.182
transcript.whisperx[3].text 所以還是要靠專業請問一下郭部長你上任到現在有沒有跟台電負責核電的這些台電的人員討論過負責核電的同仁是沒有討論過但是跟台電的同仁是幾乎每天都在討論這個我建議部長
transcript.whisperx[4].start 124.161
transcript.whisperx[4].end 146.609
transcript.whisperx[4].text 要跟台電負責核電的同仁還有核能研究所要討論也許還有其他的相關涉及到的部會這個是涉及到專業的而且涉及到
transcript.whisperx[5].start 149.039
transcript.whisperx[5].end 178.482
transcript.whisperx[5].text 我們今天討論的AI各方面都是需要電力的都是需要電力這個我不是專業但是我認為應該是要去好好的討論這個當然我們之所以合適這個整個關閉就是因為福島事故嘛日本的福島事故但是日本馬上就很快的就重啟了對不對他很快重啟
transcript.whisperx[6].start 180.071
transcript.whisperx[6].end 200.731
transcript.whisperx[6].text 所以它這個整個已經重啟了10步基礎所以它從目前的不到5%在2030年提高到20%至22%這是他們日本對核電的一個處理所以這個部分是科技一直在進步
transcript.whisperx[7].start 202.43
transcript.whisperx[7].end 220.61
transcript.whisperx[7].text 所以相關的這些過去引發的這些事故都也會因為科技的進步然後去解決所以這個怎麼樣讓人民安心產業更安心這很重要回到今天的主題
transcript.whisperx[8].start 224.065
transcript.whisperx[8].end 241.716
transcript.whisperx[8].text 這個經濟部的這裡面提到AI應用普及力能從目前12.3%提升至50%製造業以及2028年製造業AI應用普及力能從目前12.3%提升至50%這個是要這個積極的來達成這個目標當然這裡面
transcript.whisperx[9].start 251.909
transcript.whisperx[9].end 278.846
transcript.whisperx[9].text 無論是經濟部的報告、國發會的報告或者是數發部的報告都提到AI人才、AI人才的培育百工百業的這些應用然後相關的認證、發展各方面而且是跨部會,確實是跨部會了
transcript.whisperx[10].start 280.231
transcript.whisperx[10].end 302.855
transcript.whisperx[10].text 請問一下部長還是或者是國會主委這個跨部會誰來負責整合或是說來召集國會主委你來回答可能比較適合是的跨部會是國會會來負責跨國會當然你的人力也是有限這個國會負責很多的業務
transcript.whisperx[11].start 307.963
transcript.whisperx[11].end 332.767
transcript.whisperx[11].text 這個相關的這些各部會的業務都有關係中長程計劃的核定各方面審議人力怎麼樣去這個人力最多的書發部請他們多發揮這方面的這樣可以節省你們的人力因為我是老公務員我會強調會比較考慮這個我是30年公務員會比較考慮這個部分
transcript.whisperx[12].start 337.659
transcript.whisperx[12].end 363.297
transcript.whisperx[12].text 好 這個那個主委你就先回座部長還有那個教育部因為時間的關係這個我還是要談到原住民的部分畢竟原住民的立委我要讓部長還有教育部了解我過去在台灣省政府服務
transcript.whisperx[13].start 364.925
transcript.whisperx[13].end 386.527
transcript.whisperx[13].text 20年然後經審之後到中央服務常務副主委當過6年多民國85年當時的省政府教育廳跟明智工專明智工專也就是王永慶這個企業
transcript.whisperx[14].start 389.905
transcript.whisperx[14].end 417.648
transcript.whisperx[14].text 對原住民開設專班在明治公專最早的專班就是這個專班開設專班培育原住民的人才能夠到台售的企業所以當時這些開設專班的人大部分現在都在雲林雲林的台售廠我講這個部分就是說AI
transcript.whisperx[15].start 419.149
transcript.whisperx[15].end 444.807
transcript.whisperx[15].text 這個部分我上次也有跟部長提到AI原住民的人才怎麼樣能夠鼓勵他們所以這必須要產業跟教育教育部大專校院怎麼樣能夠合作也讓原住民的人才會往這個方向去發展因為這個原住民的教育
transcript.whisperx[16].start 446.428
transcript.whisperx[16].end 468.25
transcript.whisperx[16].text 我再講一次嚴漢的教育落差帶大專校院的出債協力出債協力高達百分之三十的落差但是很多的學校尤其是科技大學它去開專班之後
transcript.whisperx[17].start 470.407
transcript.whisperx[17].end 485.943
transcript.whisperx[17].text 到產業界具有很好的一個發展所以這個部分要請經濟部跟教育部這邊共同的來去合作及推動這個部長要不要先
transcript.whisperx[18].start 487.287
transcript.whisperx[18].end 502.405
transcript.whisperx[18].text 發表一下報告委員我們的百工百業對AI的人才沒有訓練那麼高階的LLM的部分但是我們是訓練在微調跟使用上面那這個就是說它除了
transcript.whisperx[19].start 503.362
transcript.whisperx[19].end 532.161
transcript.whisperx[19].text 接受一段的這個訓練以後他就可以發揮所以這個是訓練很快他可能是半年的訓練以後就馬上可以在他工作上面應用所以我才有辦法說訓練那麼多人那麼多人來以後因為透過AI來訓練AI我想那個是更快所以可以讓整個經濟提升提升那個價值減少那個loss這個就是我們推動AI的最大的目的
transcript.whisperx[20].start 532.898
transcript.whisperx[20].end 542.405
transcript.whisperx[20].text 好 那個教育部政策我先簡要說明剛才部長講得也非常好當初啊
transcript.whisperx[21].start 543.8
transcript.whisperx[21].end 562.874
transcript.whisperx[21].text 我那時候在省政府原住民行政局當副局長去協調這個教育廳然後這個明治公專其實他也不是正式的那個我所謂的這個專班也不是正式的協程他就是利用暑假開了那個專班
transcript.whisperx[22].start 564.776
transcript.whisperx[22].end 582.911
transcript.whisperx[22].text 然後就去學會一技之長然後就到台塑企業是這樣所以剛剛部長也講了他不一定是要一個是一個整個大學的四年的學程部長可以往這方向去市長可以往這方向去努力嗎
transcript.whisperx[23].start 584.412
transcript.whisperx[23].end 606.903
transcript.whisperx[23].text 跟這個委員報告那其實像剛剛委員提到我們現在這個在技職這一塊我們有這個產業這個產業產息這2.0這個計畫他基本上就是要結合這個技高還有這個科大跟企業合在一起就讓這些學生其他學的技術因為以前都是學技術之後可能還要考試但是我們現在就是讓他可以
transcript.whisperx[24].start 607.923
transcript.whisperx[24].end 629.993
transcript.whisperx[24].text 順利在科大技高畢業後可以就業可以領薪水一邊工作一邊學技術在科大可以得到學位這個部分的人數目前全台灣大概是7000多人一直在往上提升我們未來也會繼續推動這一塊特別是另外也跟委員報告我們在原住民這邊目前我們有25個大學
transcript.whisperx[25].start 635.475
transcript.whisperx[25].end 656.603
transcript.whisperx[25].text 這個設立25個專班那也給這些大學經費鼓勵他們就是在這邊給原住民的同學他有一些一好的training所以我想這部分是教育部是在持續的都一直在努力在做希望教育部能夠跟經濟部合作對這個AI產業的部分對原住民的部分給他們這個學習的機會進入產業界的機會好不好 謝謝好 謝謝