iVOD / 153724

Field Value
IVOD_ID 153724
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153724
日期 2024-06-06
會議資料.會議代碼 委員會-11-1-20-16
會議資料.會議代碼:str 第11屆第1會期財政委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第16次全體委員會議
影片種類 Clip
開始時間 2024-06-06T11:12:55+08:00
結束時間 2024-06-06T11:23:50+08:00
影片長度 00:10:55
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0d7b1f4370c473d5e0a993bbdf9505c42248f66a23a11b53ee56b966b91e1130dad8ba2f965d2ad25ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:12:55 - 11:23:50
會議時間 2024-06-06T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第16次全體委員會議(事由:邀請中央銀行楊總裁金龍就「日圓貶值效應會否導致亞洲貨幣競貶,及對台灣經濟影響」進行專題報告,並備質詢;另邀請經濟部列席備詢。 【6月3日及6日二天一次會】)
gazette.lineno 686
gazette.blocks[0][0] 王委員世堅:(11時12分)謝謝主席,請楊總裁。
gazette.blocks[1][0] 主席:請楊總裁。
gazette.blocks[2][0] 楊總裁金龍:王委員早。
gazette.blocks[3][0] 王委員世堅:總裁,辛苦了!
gazette.blocks[4][0] 楊總裁金龍:哪裡,謝謝你,謝謝你鼓勵。
gazette.blocks[5][0] 王委員世堅:從去年8月財政部同意了新青安房貸以後,將近七、八個月來,臺灣從北到南房價的飆漲已經飆漲到離譜的地步了,我相信總裁你看在眼裡應該非常清楚。房價繼續飆漲,光是臺北市,臺北市一項5月份的統計,我們臺北市的房價平均高達97萬5,500啦,天啊!這是天文數字就對了。
gazette.blocks[5][1] 過去說到退休金,大家奉公守法一輩子,領個退休金400、500萬,大概照現在的房價,在臺北市等於買個4、5坪,買一間廁所就對啦!你一輩子的辛勞,到最後剩的那些退休金在臺北市買一間廁所,天啊!這是荒唐離譜到極點!當然這牽涉到我們臺幣是否貶值,長期以來我們央行控制住臺幣匯率以及利息的部分。所以我是建議總裁,在第二次貴行的理監事會議,你們是不是該慎重考慮應該適度調升利息了,你覺得呢?你看,過去這一、兩年來,我們調升利息,有!都一點點、一點點,一碼、一碼,過去你們阻止利率的調升,當然你們考慮到很多因素。
gazette.blocks[6][0] 楊總裁金龍:對。
gazette.blocks[7][0] 王委員世堅:但是我是覺得,尤其新青安貸款下去之後,房市這樣漲,過去我們都說升息跟房價沒有必然的關係,但是,總裁,你看一下這個房貸利率與房價的關係圖。我做了這個圖很清楚,房價跟利率的關係,事實上,利率越低、房價越高,他們成反比,這非常清楚的。這個統計是統計了2000年到2018年,19年的期間內,這個統計很清楚看得到的,2000年當時將近7%的房貸利率,一路下來,2000年那時候的房價漲幅跟現在利率來到這麼低,來到1.5%的時候,房價漲幅是高達295%,這是非常清楚的!所以,是不是在這次你們的理監事會議應該討論一下,針對升息你的看法呢?
gazette.blocks[8][0] 楊總裁金龍:我很簡單的跟委員報告,基本上央行的利率是針對通膨,沒有錯!你說央行嚴重輕忽了我們的通膨,但是我跟委員報告,事實上,從2008年、2009年以來我們的通膨非常低,到2019年之前,2019、2018年,就是在COVID-19之前,我們的通膨率平均大概不到1%。
gazette.blocks[9][0] 王委員世堅:這3年突破警戒是事實。
gazette.blocks[10][0] 楊總裁金龍:對嘛!對嘛!所以你說是長期,但事實上是沒有啊!就是從2008年……
gazette.blocks[11][0] 王委員世堅:你在跟我定義什麼叫做長期是不是?我在跟你講現在、這3年!
gazette.blocks[12][0] 楊總裁金龍:現在……
gazette.blocks[13][0] 王委員世堅:你在跟我講定義是不是?什麼叫做長期?你說我的用詞寫長期,你不爽,是這樣嗎?
gazette.blocks[14][0] 楊總裁金龍:我跟委員報告……
gazette.blocks[15][0] 王委員世堅:我客氣的在跟你談事情。
gazette.blocks[16][0] 楊總裁金龍:對啦!委員……
gazette.blocks[17][0] 王委員世堅:你在跟我講字義上……
gazette.blocks[18][0] 楊總裁金龍:不是、不是,委員,不好意思啦!
gazette.blocks[19][0] 王委員世堅:3年不叫做長期,什麼叫做長期?民眾的生活,1年365天、3年1,095天,那不是長期嗎?
gazette.blocks[20][0] 楊總裁金龍:報告委員,抱歉啦!抱歉啦!我讓委員這樣……
gazette.blocks[21][0] 王委員世堅:大家冷靜的討論事情……
gazette.blocks[22][0] 楊總裁金龍:是、是、是。
gazette.blocks[23][0] 王委員世堅:你怎麼來、我怎麼去。
gazette.blocks[24][0] 楊總裁金龍:是啦!
gazette.blocks[25][0] 王委員世堅:我的人很清楚,我這麼客氣的問你,因為你是這部分的專家……
gazette.blocks[26][0] 楊總裁金龍:抱歉。
gazette.blocks[27][0] 王委員世堅:我認為房價跟利率、跟匯率能夠控制,其實全賴央行。
gazette.blocks[28][0] 楊總裁金龍:是、是、是,委員,抱歉啦!委員,抱歉!我跟委員報告……
gazette.blocks[29][0] 王委員世堅:我光跟你講一樣,你沒有去……
gazette.blocks[30][0] 楊總裁金龍:會、會、會……
gazette.blocks[31][0] 王委員世堅:去年8月財政部新青安貸款通過的時候,你們也沒有阻止啊!他們也沒聽你們的話,不是嗎?新青安貸款以後……
gazette.blocks[32][0] 楊總裁金龍:我跟委員報告,第一個,我對委員抱歉。第二個……
gazette.blocks[33][0] 王委員世堅:新青安貸款以後,我先講幾個數字給你聽,新青安貸款去年4月,前五大行庫借房貸不到500億,我們講同期,今年4月同期喔!我們五大行庫借出的房貸將近1,000億元,是兩倍之多耶!這是很嚴重的事情,不是嗎?
gazette.blocks[34][0] 楊總裁金龍:是,很謝謝啦!
gazette.blocks[35][0] 王委員世堅:在這件事情上面,央行眼睜睜看著財政部的作為,只是為了讓大家買房更容易,結果一放鬆就搞成這樣,本席現在是問你如何收拾殘局?
gazette.blocks[36][0] 楊總裁金龍:對,第一個,6月13日的理監事會,我們會討論這個議題。抱歉,委員,讓你不高興,我真的是抱歉。但是我也要向委員報告,我們會在下一次的理監事會討論委員所關心的議題。
gazette.blocks[37][0] 王委員世堅:你們認為經濟成長亮眼,臺幣貶值幅度有限,升息打房不利出口,對於這些議題,你們有自己的看法,但是本席希望你們在討論時,方向是不是可以改變?限制房貸成數,總成數是不是不要超過八成五?或者例如應該以升息來打房,這個是不是應該做了?
gazette.blocks[38][0] 楊總裁金龍:是,委員說的沒有錯啦!
gazette.blocks[39][0] 王委員世堅:新青安貸款實施了8、9個月,你們應該做一些複審的動作,例如有的人假借新青安貸款炒房,對不對?
gazette.blocks[40][0] 楊總裁金龍:是,對啦!
gazette.blocks[41][0] 王委員世堅:他等於多買了一些房子出租或做其他營利,不是這樣嗎?這個部分我們要去複審,不對嗎?
gazette.blocks[42][0] 楊總裁金龍:對啦!委員關心的沒有錯,只是我剛才的表達讓委員誤解。
gazette.blocks[43][0] 王委員世堅:沒關係啦!我生氣3秒鐘就過了啦!那個沒關係,我經常生氣3秒鐘。
gazette.blocks[44][0] 楊總裁金龍:是啦!委員分析的沒有錯,不過我也可以向委員報告,6月13日的時候,我們的理監事會會就房地產的議題討論,請委員接受這個說明。
gazette.blocks[45][0] 王委員世堅:因為時間有限,最後是本席沒有放上來的這個表格,前十大嚴重貸款負債比例的名單,這個名單交給你,包括他們貸款的金額。
gazette.blocks[46][0] 楊總裁金龍:好,謝謝啦!謝謝委員。
gazette.blocks[47][0] 王委員世堅:你看一下,已經嚴重到這個程度,士林開發、新潤建設、亞昕建設,這些負債比都過高,只因為什麼?只因為利率低,所以他們就大量向銀行借錢囤房、買土地,這樣反而不利於無殼族,未來我們的青年朋友們要買房的時候,房價不但居高不下,而且還節節上升。
gazette.blocks[48][0] 楊總裁金龍:委員,謝謝你啦!你提供我們的這些數據,我們來深入瞭解,謝謝委員。
gazette.blocks[49][0] 王委員世堅:因為照現在這個比例來說,銀行等於沒有風險控管可言,你們是銀行中的銀行,你們才有辦法控管所有的銀行,讓他們遵守該有的財政紀律。好不好?
gazette.blocks[50][0] 楊總裁金龍:是,委員,謝謝你的指教。
gazette.blocks[51][0] 王委員世堅:謝謝。
gazette.blocks[52][0] 楊總裁金龍:謝謝啦!抱歉。
gazette.blocks[53][0] 主席(伍麗華Saidhai Tahovecahe委員代):謝謝王世堅委員,請總裁回座。接下來請召委羅明才委員。
gazette.agenda.page_end 274
gazette.agenda.meet_id 委員會-11-1-20-16
gazette.agenda.speakers[0] 羅明才
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 郭國文
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 顏寬恒
gazette.agenda.speakers[7] 李彥秀
gazette.agenda.speakers[8] 王鴻薇
gazette.agenda.speakers[9] 李坤城
gazette.agenda.speakers[10] 黃珊珊
gazette.agenda.speakers[11] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[12] 王世堅
gazette.agenda.speakers[13] 羅明才
gazette.agenda.speakers[14] 林楚茵
gazette.agenda.speakers[15] 廖先翔
gazette.agenda.speakers[16] 謝衣鳯
gazette.agenda.speakers[17] 葉元之
gazette.agenda.speakers[18] 陳玉珍
gazette.agenda.page_start 229
gazette.agenda.meetingDate[0] 2024-06-06
gazette.agenda.gazette_id 1135801
gazette.agenda.agenda_lcidc_ids[0] 1135801_00004
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第16次全體委員會議紀錄
gazette.agenda.content 邀邀請中央銀行楊總裁金龍就「日圓貶值效應會否導致亞洲貨幣競貶,及對台灣經濟影響」進行 專題報告,並備質詢;另邀請經濟部列席備詢
gazette.agenda.agenda_id 1135801_00003
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.79034375
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.09409375
transcript.pyannote[1].end 2.24159375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 2.24159375
transcript.pyannote[2].end 2.25846875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 3.38909375
transcript.pyannote[3].end 3.40596875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 3.40596875
transcript.pyannote[4].end 4.26659375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 4.53659375
transcript.pyannote[5].end 5.09346875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 5.19471875
transcript.pyannote[6].end 5.92034375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 11.33721875
transcript.pyannote[7].end 17.19284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 15.55596875
transcript.pyannote[8].end 16.16346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.85534375
transcript.pyannote[9].end 18.59346875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 19.50471875
transcript.pyannote[10].end 20.98971875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 21.20909375
transcript.pyannote[11].end 24.53346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 24.93846875
transcript.pyannote[12].end 25.61346875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 26.67659375
transcript.pyannote[13].end 29.14034375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 29.74784375
transcript.pyannote[14].end 30.74346875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 30.94596875
transcript.pyannote[15].end 32.61659375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 33.30846875
transcript.pyannote[16].end 34.75971875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 35.36721875
transcript.pyannote[17].end 42.35346875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 42.53909375
transcript.pyannote[18].end 42.75846875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 42.67409375
transcript.pyannote[19].end 43.38284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 43.65284375
transcript.pyannote[20].end 44.32784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 44.69909375
transcript.pyannote[21].end 48.37784375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 48.79971875
transcript.pyannote[22].end 48.95159375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 48.95159375
transcript.pyannote[23].end 50.55471875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 51.83721875
transcript.pyannote[24].end 52.12409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 52.78221875
transcript.pyannote[25].end 72.74534375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 72.96471875
transcript.pyannote[26].end 77.21721875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 77.65596875
transcript.pyannote[27].end 79.57971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 80.10284375
transcript.pyannote[28].end 81.19971875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 81.89159375
transcript.pyannote[29].end 82.75221875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 82.92096875
transcript.pyannote[30].end 83.91659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 84.33846875
transcript.pyannote[31].end 88.96221875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 89.43471875
transcript.pyannote[32].end 90.12659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 90.34596875
transcript.pyannote[33].end 90.49784375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 90.49784375
transcript.pyannote[34].end 91.22346875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 91.76346875
transcript.pyannote[35].end 93.97409375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 93.97409375
transcript.pyannote[36].end 94.22721875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 94.22721875
transcript.pyannote[37].end 95.99909375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 96.58971875
transcript.pyannote[38].end 97.24784375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 98.02409375
transcript.pyannote[39].end 99.03659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 99.93096875
transcript.pyannote[40].end 102.68159375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 103.39034375
transcript.pyannote[41].end 104.20034375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 104.70659375
transcript.pyannote[42].end 105.58409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 105.80346875
transcript.pyannote[43].end 106.83284375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 107.47409375
transcript.pyannote[44].end 109.36409375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 110.15721875
transcript.pyannote[45].end 112.89096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 113.22846875
transcript.pyannote[46].end 113.90346875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 114.98346875
transcript.pyannote[47].end 115.72596875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 115.92846875
transcript.pyannote[48].end 117.10971875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 117.93659375
transcript.pyannote[49].end 118.69596875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 118.74659375
transcript.pyannote[50].end 119.01659375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 119.42159375
transcript.pyannote[51].end 120.53534375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 121.95284375
transcript.pyannote[52].end 123.15096875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 123.65721875
transcript.pyannote[53].end 127.38659375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 127.65659375
transcript.pyannote[54].end 140.16096875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 140.66721875
transcript.pyannote[55].end 143.06346875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 143.85659375
transcript.pyannote[56].end 156.29346875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 156.81659375
transcript.pyannote[57].end 159.02721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 159.12846875
transcript.pyannote[58].end 159.55034375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 160.52909375
transcript.pyannote[59].end 161.13659375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 161.60909375
transcript.pyannote[60].end 164.22471875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 164.71409375
transcript.pyannote[61].end 166.14846875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 166.63784375
transcript.pyannote[62].end 167.34659375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 168.94971875
transcript.pyannote[63].end 170.26596875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 171.34596875
transcript.pyannote[64].end 174.02909375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 174.50159375
transcript.pyannote[65].end 181.52159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 181.85909375
transcript.pyannote[66].end 181.87596875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 181.87596875
transcript.pyannote[67].end 182.75346875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 183.17534375
transcript.pyannote[68].end 184.05284375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 185.04846875
transcript.pyannote[69].end 187.15784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 187.56284375
transcript.pyannote[70].end 188.30534375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 189.13221875
transcript.pyannote[71].end 195.89909375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 196.59096875
transcript.pyannote[72].end 199.88159375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 200.70846875
transcript.pyannote[73].end 207.13784375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 207.13784375
transcript.pyannote[74].end 207.34034375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 207.34034375
transcript.pyannote[75].end 209.90534375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 209.95596875
transcript.pyannote[76].end 210.95159375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 211.71096875
transcript.pyannote[77].end 213.26346875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 213.75284375
transcript.pyannote[78].end 215.01846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 216.19971875
transcript.pyannote[79].end 216.53721875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 217.17846875
transcript.pyannote[80].end 218.47784375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 219.62534375
transcript.pyannote[81].end 222.02159375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 222.62909375
transcript.pyannote[82].end 224.65409375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 224.92409375
transcript.pyannote[83].end 226.37534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 227.06721875
transcript.pyannote[84].end 231.30284375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 231.97784375
transcript.pyannote[85].end 235.48784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 235.77471875
transcript.pyannote[86].end 240.85409375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 241.14096875
transcript.pyannote[87].end 246.79409375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 247.38471875
transcript.pyannote[88].end 250.38846875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 252.00846875
transcript.pyannote[89].end 283.53096875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 284.23971875
transcript.pyannote[90].end 296.11971875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 297.60471875
transcript.pyannote[91].end 303.42659375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 300.91221875
transcript.pyannote[92].end 308.10096875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 307.74659375
transcript.pyannote[93].end 307.96596875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 308.05034375
transcript.pyannote[94].end 308.06721875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 308.10096875
transcript.pyannote[95].end 312.72471875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 308.15159375
transcript.pyannote[96].end 308.30346875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 308.33721875
transcript.pyannote[97].end 308.37096875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 312.72471875
transcript.pyannote[98].end 313.07909375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 313.07909375
transcript.pyannote[99].end 314.34471875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 313.18034375
transcript.pyannote[100].end 313.36596875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 314.34471875
transcript.pyannote[101].end 315.40784375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 314.96909375
transcript.pyannote[102].end 319.99784375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 316.15034375
transcript.pyannote[103].end 323.38971875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 323.65971875
transcript.pyannote[104].end 324.89159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 325.71846875
transcript.pyannote[105].end 335.74221875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 327.59159375
transcript.pyannote[106].end 327.91221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 327.92909375
transcript.pyannote[107].end 327.94596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 335.74221875
transcript.pyannote[108].end 337.34534375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 337.83471875
transcript.pyannote[109].end 338.91471875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 339.58971875
transcript.pyannote[110].end 347.87534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 347.67284375
transcript.pyannote[111].end 354.70971875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 350.01846875
transcript.pyannote[112].end 350.03534375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 350.03534375
transcript.pyannote[113].end 350.28846875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 350.28846875
transcript.pyannote[114].end 350.55846875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 353.57909375
transcript.pyannote[115].end 356.97096875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 355.23284375
transcript.pyannote[116].end 356.90346875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 356.97096875
transcript.pyannote[117].end 358.30409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 358.30409375
transcript.pyannote[118].end 362.11784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 358.77659375
transcript.pyannote[119].end 359.56971875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 362.50596875
transcript.pyannote[120].end 364.90221875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 365.00346875
transcript.pyannote[121].end 374.41971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 365.08784375
transcript.pyannote[122].end 366.10034375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 369.25596875
transcript.pyannote[123].end 369.96471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 370.18409375
transcript.pyannote[124].end 370.92659375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 371.90534375
transcript.pyannote[125].end 372.46221875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 372.71534375
transcript.pyannote[126].end 373.06971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 373.12034375
transcript.pyannote[127].end 378.99284375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 374.72346875
transcript.pyannote[128].end 374.82471875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 377.10284375
transcript.pyannote[129].end 378.87471875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 379.21221875
transcript.pyannote[130].end 381.27096875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 379.33034375
transcript.pyannote[131].end 380.46096875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 381.27096875
transcript.pyannote[132].end 394.93971875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 381.28784375
transcript.pyannote[133].end 381.96284375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 381.96284375
transcript.pyannote[134].end 384.86534375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 394.38284375
transcript.pyannote[135].end 400.42409375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 396.69471875
transcript.pyannote[136].end 400.49159375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 400.49159375
transcript.pyannote[137].end 400.55909375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 400.55909375
transcript.pyannote[138].end 400.59284375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 400.59284375
transcript.pyannote[139].end 400.60971875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 400.60971875
transcript.pyannote[140].end 400.66034375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 400.66034375
transcript.pyannote[141].end 400.69409375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 400.69409375
transcript.pyannote[142].end 400.71096875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 400.71096875
transcript.pyannote[143].end 400.86284375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 400.86284375
transcript.pyannote[144].end 400.93034375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 400.93034375
transcript.pyannote[145].end 401.70659375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 401.03159375
transcript.pyannote[146].end 405.55409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 402.19596875
transcript.pyannote[147].end 403.51221875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 406.73534375
transcript.pyannote[148].end 410.66721875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 411.66284375
transcript.pyannote[149].end 414.24471875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 414.73409375
transcript.pyannote[150].end 417.68721875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 418.22721875
transcript.pyannote[151].end 429.55034375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 429.55034375
transcript.pyannote[152].end 434.05596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 429.80346875
transcript.pyannote[153].end 436.21596875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 437.02596875
transcript.pyannote[154].end 439.89471875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 440.13096875
transcript.pyannote[155].end 440.73846875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 441.41346875
transcript.pyannote[156].end 446.49284375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 446.49284375
transcript.pyannote[157].end 470.52284375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 446.61096875
transcript.pyannote[158].end 447.03284375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 470.97846875
transcript.pyannote[159].end 471.01221875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 471.01221875
transcript.pyannote[160].end 471.02909375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 471.02909375
transcript.pyannote[161].end 471.07971875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 471.07971875
transcript.pyannote[162].end 471.09659375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 471.09659375
transcript.pyannote[163].end 471.41721875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 471.41721875
transcript.pyannote[164].end 471.70409375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 471.43409375
transcript.pyannote[165].end 471.61971875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 471.70409375
transcript.pyannote[166].end 471.72096875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 471.72096875
transcript.pyannote[167].end 471.75471875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 471.75471875
transcript.pyannote[168].end 471.88971875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 471.88971875
transcript.pyannote[169].end 472.76721875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 472.21034375
transcript.pyannote[170].end 472.48034375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 472.76721875
transcript.pyannote[171].end 472.85159375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 472.85159375
transcript.pyannote[172].end 501.15096875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 481.22159375
transcript.pyannote[173].end 481.64346875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 482.08221875
transcript.pyannote[174].end 482.35221875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 484.05659375
transcript.pyannote[175].end 488.86596875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 489.55784375
transcript.pyannote[176].end 489.97971875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 497.35409375
transcript.pyannote[177].end 497.97846875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 499.07534375
transcript.pyannote[178].end 501.94409375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 501.31971875
transcript.pyannote[179].end 513.08159375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 513.25034375
transcript.pyannote[180].end 514.09409375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 514.09409375
transcript.pyannote[181].end 514.39784375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 514.39784375
transcript.pyannote[182].end 514.85346875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 514.78596875
transcript.pyannote[183].end 524.03346875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 524.03346875
transcript.pyannote[184].end 534.12471875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 533.02784375
transcript.pyannote[185].end 535.72784375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 534.12471875
transcript.pyannote[186].end 534.90096875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 536.79096875
transcript.pyannote[187].end 559.97721875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 537.90471875
transcript.pyannote[188].end 540.04784375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 555.42096875
transcript.pyannote[189].end 555.43784375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 555.43784375
transcript.pyannote[190].end 556.53471875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 559.97721875
transcript.pyannote[191].end 616.08659375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 577.62846875
transcript.pyannote[192].end 580.48034375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 582.28596875
transcript.pyannote[193].end 582.31971875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 582.31971875
transcript.pyannote[194].end 582.72471875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 582.72471875
transcript.pyannote[195].end 582.77534375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 589.93034375
transcript.pyannote[196].end 590.31846875
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 593.81159375
transcript.pyannote[197].end 594.30096875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 597.59159375
transcript.pyannote[198].end 598.82346875
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 600.81471875
transcript.pyannote[199].end 601.08471875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 601.81034375
transcript.pyannote[200].end 602.26596875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 614.34846875
transcript.pyannote[201].end 623.51159375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 622.58346875
transcript.pyannote[202].end 643.03596875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 624.27096875
transcript.pyannote[203].end 624.47346875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 624.47346875
transcript.pyannote[204].end 624.49034375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 635.08784375
transcript.pyannote[205].end 635.71221875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 636.08346875
transcript.pyannote[206].end 636.65721875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 642.10784375
transcript.pyannote[207].end 642.63096875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 643.03596875
transcript.pyannote[208].end 643.74471875
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 643.25534375
transcript.pyannote[209].end 643.32284375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 643.74471875
transcript.pyannote[210].end 643.86284375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 643.86284375
transcript.pyannote[211].end 653.27909375
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 643.87971875
transcript.pyannote[212].end 646.22534375
transcript.whisperx[0].start 1.205
transcript.whisperx[0].end 4.906
transcript.whisperx[0].text 從去年8月財政部同意了新清安房貸以後那這將近七八個月來我們
transcript.whisperx[1].start 30.235
transcript.whisperx[1].end 49.606
transcript.whisperx[1].text 台灣從北到南房價的飆漲已經飆漲到離譜的地步了我相信總裁你看在眼裡應該非常清楚嘛那房價繼續飆漲光是台北市啊台北市一項統計
transcript.whisperx[2].start 52.91
transcript.whisperx[2].end 79.117
transcript.whisperx[2].text 五月份的統計我們台北市的房價平均高達九十七萬五千五啦九十七萬五千五天啊這是天文數字就對過去說那退休金大家奉公守法的一輩子領個退休金四五百萬大概照現在的房價在台北市等於買個四五平買一間廁所就對了
transcript.whisperx[3].start 80.165
transcript.whisperx[3].end 81.005
transcript.whisperx[3].text 王世堅王世堅
transcript.whisperx[4].start 100.063
transcript.whisperx[4].end 120.285
transcript.whisperx[4].text 是否貶值長期以來我們央行控制住我們台幣這個匯率的部分那麼以及利息的部分所以這個我是建議總裁在這一次
transcript.whisperx[5].start 121.991
transcript.whisperx[5].end 141.536
transcript.whisperx[5].text 第二次的這個貴航的禮監事會議我想是不是你們應該慎重去考慮應該適度的調升利息啦你覺得呢過去這幾你看這一兩年來我們調升利息有都一點點一點點一碼一碼
transcript.whisperx[6].start 143.902
transcript.whisperx[6].end 143.922
transcript.whisperx[6].text 總裁
transcript.whisperx[7].start 171.397
transcript.whisperx[7].end 197.729
transcript.whisperx[7].text 你看一下這個房貸與利率關係圖房貸利率與房價的關係圖這上面我做了這個圖很清楚的就是說房價跟利率事實上事實上利率越低房價越高他們曾反比這非常清楚的這一個統計是統計了
transcript.whisperx[8].start 201.085
transcript.whisperx[8].end 218.32
transcript.whisperx[8].text 兩千年到兩千零一十八年十九年的期間內那麼這一個統計很清楚看得到的兩千年當時將近七趴的房貸利率
transcript.whisperx[9].start 219.653
transcript.whisperx[9].end 246.662
transcript.whisperx[9].text 一路下來2000年那時候這個房價的漲幅跟現在利率來到這麼低來到1.5的時候房價的漲幅是高達295%這是非常清楚的所以是不是在這一次你們旅間式會議是不是應該討論一下針對升息你的看法呢
transcript.whisperx[10].start 247.783
transcript.whisperx[10].end 274.583
transcript.whisperx[10].text 我跟委員報告就是說因為你是用很簡單的報告跟委員報告就是說基本上央行的一個利率他是針對是通膨沒有錯那你就說央行呢那個嚴重的你的那個你說說央行嚴重的輕忽了我們的通膨
transcript.whisperx[11].start 275.484
transcript.whisperx[11].end 295.476
transcript.whisperx[11].text 但是我跟委員報告事實上我們從2008年、09年以來我們的通膨非常低我們的平均從到2019年之前2019、2018就是說COVID-19之前我們的通膨率大概是多少平均不到1%
transcript.whisperx[12].start 298.277
transcript.whisperx[12].end 323.132
transcript.whisperx[12].text 這三年這三年突破警戒就是事實啊所以你就說長期事實上是沒有啊就是說從2008年你在跟我定義什麼叫做長期是不是我在跟你講現在這三年你在跟我講定義是不是什麼叫長期你的意思你說我的用詞寫長期那你不爽是這樣嗎
transcript.whisperx[13].start 325.714
transcript.whisperx[13].end 329.536
transcript.whisperx[13].text 我科技在跟你談事情!你在跟我講智慾上!三年不叫做長期!什麼叫做長期?民眾的生活一年365天三年1095天那不是長期嗎?抱歉啦抱歉啦我讓委員這樣講話
transcript.whisperx[14].start 353.968
transcript.whisperx[14].end 378.726
transcript.whisperx[14].text 大家冷靜的討論事情你怎麼來我怎麼去我這麼客氣的問你因為你是這一部分的專家我認為房價跟利率跟匯率能夠控制其實全賴央行的啦是是是我很好我抱歉啦我抱歉
transcript.whisperx[15].start 379.406
transcript.whisperx[15].end 385.231
transcript.whisperx[15].text 昨年8月財政部新青安貸款通過的時候你們也沒有阻止阿他們也沒聽你們的話阿不是嗎新青安貸款以後我跟你講那個多嚴重新青安貸款以後我先講幾個數字給你聽新青安貸款去年阿
transcript.whisperx[16].start 406.792
transcript.whisperx[16].end 410.346
transcript.whisperx[16].text 去年4月我們講同期去年4月
transcript.whisperx[17].start 411.741
transcript.whisperx[17].end 435.979
transcript.whisperx[17].text 我們前五大行庫借房貸大概不到五百億今年的四月同期喔我們五大行庫借房貸將近一千億兩倍之多欸這是很嚴重的事情欸不是嗎那在這個事情上面你央行眼睜睜看著財政部
transcript.whisperx[18].start 437.12
transcript.whisperx[18].end 452.209
transcript.whisperx[18].text 只是說為了大家買房更容易結果那麼一放鬆搞成這樣我現在是問你說如何收拾殘局我跟委員報告第一個就是說我們在6月13日我們理監事會我們會討論這個議題
transcript.whisperx[19].start 455.811
transcript.whisperx[19].end 467.515
transcript.whisperx[19].text 所以抱歉那個委員讓你這樣的話那個不高興我是真的是抱歉但是我跟委員報告我們會在下一次的禮監事會我們會討論委員所關心的議題
transcript.whisperx[20].start 472.176
transcript.whisperx[20].end 489.26
transcript.whisperx[20].text 你們認為說經濟成長量沿台北本質幅度有限升息打房不利出口這些都有你們的看法但是我希望說你們再來再來再討論是不是方向改變限制房貸層數是不是說不要超過總層數不要超過8乘5那應該要譬如說升息來打房這是應該做的嘛
transcript.whisperx[21].start 500.083
transcript.whisperx[21].end 500.483
transcript.whisperx[21].text 王世堅王世堅王世堅
transcript.whisperx[22].start 524.023
transcript.whisperx[22].end 525.064
transcript.whisperx[22].text 我經常這種生氣三秒鐘的
transcript.whisperx[23].start 540.251
transcript.whisperx[23].end 543.014
transcript.whisperx[23].text 委員你分析得沒有錯不過我會跟委員報告就是說我們在6月13日的時候我們理監事會會就這個房地產的議題我們會討論請委員接受因為時間有限了
transcript.whisperx[24].start 562.97
transcript.whisperx[24].end 580.217
transcript.whisperx[24].text 我最後我會把我沒有放的這個表格我們有前十大嚴重性的貸款的這個負債比例齁這個前十大這個名字我會交給你啦包括他金額之間你看一下在已經嚴重到這個程度的時候從408新潤這樣一路亞新建設這一些這個負債比都過高那是因為什麼
transcript.whisperx[25].start 591.261
transcript.whisperx[25].end 613.911
transcript.whisperx[25].text 只因為利率低所以他們就大量的跟銀行拿錢出來那麼去大量的去囤房去買土地那這反而會不利於我們社會上無可足我們青年朋友們他們要買房未來他們碰到該他們要買的時候房價都會居高不下
transcript.whisperx[26].start 614.571
transcript.whisperx[26].end 614.691
transcript.whisperx[26].text 王世堅
transcript.whisperx[27].start 632.583
transcript.whisperx[27].end 634.084
transcript.whisperx[27].text 謝謝王世堅委員請總裁會座接下來我們請趙偉羅明才委員