iVOD / 153348

Field Value
IVOD_ID 153348
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/153348
日期 2024-05-30
會議資料.會議代碼 委員會-11-1-19-14
會議資料.會議代碼:str 第11屆第1會期經濟委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第14次全體委員會議
影片種類 Clip
開始時間 2024-05-30T10:33:46+08:00
結束時間 2024-05-30T10:44:50+08:00
影片長度 00:11:04
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/bbbc431469b8aebacf825d8743fbf0841766e5648a1e6b71beba37a180c9b1cd6e2ee15e05c91bec5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 陳超明
委員發言時間 10:33:46 - 10:44:50
會議時間 2024-05-30T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第14次全體委員會議(事由:邀請國家發展委員會主任委員列席報告業務概況,並備質詢。【5月27日、5月29日及5月30日三天一次會】)
gazette.lineno 304
gazette.blocks[0][0] 陳委員超明:(10時33分)主席,首先有請劉主委。
gazette.blocks[1][0] 主席:我們再請劉主委。
gazette.blocks[2][0] 劉主任委員鏡清:陳委員早。
gazette.blocks[3][0] 陳委員超明:劉主委好。劉主委,你從企業界來到政府機關,尤其來到重要的內閣單位,我剛剛聽到大國發會的時代要回來了,因為我們的賴總統有特別指示,以後參加國發會,部長都要參加你所主持的各部門的討論,這個非常重要,你一定要堅持下來。
gazette.blocks[4][0] 劉主任委員鏡清:是的,謝謝委員。
gazette.blocks[5][0] 陳委員超明:不是謝謝我,要堅持、要做事情!你是從資誠管理顧問公司過來的,我看了天下雜誌的一篇報導,它說你常常看到別人看不到的問題,大家稱讚你。資誠會計師事務所跟資誠管理顧問公司,可以說是在國際上有名的一種聯合會計師,當然看的場面非常多,今天我要請教你一個問題,你說答應入閣的一個主要原因是你對下一代感到憂心忡忡,你為什麼會對下一代感到憂心忡忡?從民進黨執政8年,賴總統都把年輕人帶來非常有希望,結果臺灣的青年非常優秀,那你怎麼會對臺灣的下一代感到憂心忡忡?你告訴我原因,企業界要講實話,不要像政治人物這樣,講來講去,那邊一套這邊一套,來,你跟我講,為什麼你對下一代憂心忡忡?
gazette.blocks[6][0] 劉主任委員鏡清:其實這世界本來就沒有完美的時刻啦,所以我是一個比較希望不斷的改善,我自己的小孩剛好也是年輕人,我就很想說,能不能弄一個更好的未來,更好的未來,不是說現在不好,只是更好的未來,因為臺灣其實明顯的是一個幸福社會,可是在長期的發展裡面,我們怎麼去讓大家過得更好。
gazette.blocks[7][0] 陳委員超明:我相信你也碰到很多我們下一代的問題,今天你站這個位置不敢講出來,我為什麼特別提醒你這句話?下一代你憂心忡忡,國發會主委講是這一代,表示我對我們臺灣的整體環境非常擔憂,這是第一點我要提醒你的,政治現在已經是非不分了,企業是以利潤為基礎,經營管理為基礎,政治是以選票為基礎,你先要認清楚這一點。第二點,你自己講說,在業界打滾已經有具備我們產業的實務跟前瞻趨勢的條件,那個標題幫你寫成這樣,你要把自己變成鯰魚,推動公部門的平靜池水。你有講到你太太是高層公務文官出身的,說我們文官裡面的人才非常多,水準非常高,但你怎麼說你進來要變成一個鯰魚,把公務機關攪動它平靜的池水,因為你手中握有重要資源,要好好改善,我認同你的觀點,但是你站在這裡,我要跟你說一些事情,你這句話請闡釋給我聽。
gazette.blocks[8][0] 劉主任委員鏡清:我是沒有看那篇報導啦,我不知道它為什麼這樣寫喔,但是從我過去每換一個職務的話,我都希望這個職務跟過去不一樣,我們都希望去更進化嘛,所以我……
gazette.blocks[9][0] 陳委員超明:你是這麼重要的人物,他寫完稿一定要給你過目啊。
gazette.blocks[10][0] 劉主任委員鏡清:媒體不會給我過目。
gazette.blocks[11][0] 陳委員超明:天下雜誌也不是媒體,天下雜誌也不是隨隨便便的雜誌,我現在跟主委講,好好提拔你國發會的人才,這幾年他們被壓制得很慘,多做多錯,少做少錯,他們已經不願意發言,你上級指示我才來做,你要瞭解他們的心態。大家都很優秀,大家都想為臺灣、為這個國家盡一分的心力,但是政治把他們搞得無所適從,我相信在下面的官員,你們心有戚戚焉啦,我都瞭解、都談過。我要強調的是既然你是從企業界過來的,資誠會計師事務所我也很熟,所以我大概瞭解你的觀念,從這裡面去好好提拔優秀的人才,裡面很多人才,但是大家也沒有必要為這個國家現在要這麼努力,政治,我告訴你裡面的原因,你有困難可以來請教我,搞不好我點出你幾個問題,能替你解決問題。
gazette.blocks[11][1] 再來,你談到賴總統有兩次跟你見面,要你在內閣會議裡面開處方,說我們不但要有點線,我們還要全面,你為我們國家經濟的發展,你處方要如何開?
gazette.blocks[12][0] 劉主任委員鏡清:關於這個處方,我們現在就是,在我剛剛的報告有特別提到,第一個,我們要拉成長的核心主軸,我們現在拉兩個核心主軸是半導體跟AI。第二個部分,我們從我們在臺灣市占率超過15%的企業裡面,將產業撈出來,我們現在挑了六個產業,它的市占率超過,在全球市占率超過16%,我們希望把這些產業都拉到市占率超過30%以上,造成對全球的影響力。創造比較高,就是規模比較大的企業以後,讓臺灣得到更大的保障之外,也可以提供員工更好的薪水。
gazette.blocks[13][0] 陳委員超明:我有看到裡面在談的,你說臺灣的晶圓製造、封裝測試,包括你們這邊提的,已經占了整個世界百分之六十幾,機械製造業占了IC產業,臺灣的電子產業裡面,你說要發展AI的一個設計能力,現在占全世界24%,可以翻成48%,這個比較快。但是你要知道,除了你講的AI跟臺灣晶圓的製造業要持續維持一個領先的地位,但你知道現在其他的產業不怎麼好過嗎?我不曉得傳統產業、機械產業等產業你有沒有深入了解,現在大家都一窩蜂追著改,會不會產生荷蘭病?我請你特別注意這點。
gazette.blocks[14][0] 劉主任委員鏡清:是的,這個的確我這邊有在注意,產業的均衡裡面我們有做過數據分析,的確有不均衡的問題。
gazette.blocks[15][0] 陳委員超明:我有看到你做這個分析……
gazette.blocks[16][0] 劉主任委員鏡清:我們需要去改善。
gazette.blocks[17][0] 陳委員超明:我還特別去讀,看到你頭腦的思維是怎樣,結果這點不錯,要占就要占世界的首要地位,占了最起碼30%,你在那邊是這麼寫的。
gazette.blocks[18][0] 劉主任委員鏡清:是的。
gazette.blocks[19][0] 陳委員超明:我講的你聽得清楚嗎?
gazette.blocks[20][0] 劉主任委員鏡清:我聽得清楚。
gazette.blocks[21][0] 陳委員超明:我怕我國語不標準。
gazette.blocks[22][0] 劉主任委員鏡清:我聽得懂。
gazette.blocks[23][0] 陳委員超明:最後一個問題,主委,你說有朋友跟你講,說你當這個官叫做流水的官,這些你手下的公務人員叫做鐵打的兵,我欣賞哪一點?大家都在捧台積電,說它最棒、最好,其實我跟你講,賺的錢都是外國人拿去,我們只占了24%,但是我欣賞你講的一句話,你說台積電吸走我們臺灣大量的人才和資源,業界怨聲載道。真的是怨聲載道,它的薪水一高,第一個抓聯發科的人到台積電,聯發科又要抓其他產業的人到聯發科,我都碰到,但上一次我一直在講這個問題,大家馬耳東風,只要有錢賺,一直往前衝,我不反對,甚至我們也設立半導體學院要培養人才,結果到歐洲、美國,我們自己人才不夠了,我們還要送給他,這個是國安資料,是臺灣維持命脈的一個方式。還有一點我最不滿,我在立法院常常講,高通7億美金的罰款,我們竟然用它來投資的名義弄掉,結果它薪水特別高,高通又把台積電的人才拉到它那邊去,7億的設備我們臺灣人都用不到,7億美金!我們臺灣的政府不給家奴,寧與外人,我就不知道國家怎麼那麼怕美國,這個你好好瞭解一下。
gazette.blocks[24][0] 劉主任委員鏡清:是。
gazette.blocks[25][0] 陳委員超明:你是產業界出身的,高通那7億美元,臺灣到底能得到什麼,能有貢獻出來,把罰款變成它的投資,然後它去補貼,薪水非常高,反而打我們臺灣的產業,我不知道政策在哪裡。你是企業界來的,我希望你講實話,官場還有很多那個,不要怕,做對的事情、為臺灣的事情,做出正確的一條路,要企業這麼想。我是把你整個讀完,我要瞭解你的邏輯,好好的發揮一下,我講的你聽懂嗎?
gazette.blocks[26][0] 劉主任委員鏡清:聽懂,謝謝。
gazette.blocks[27][0] 陳委員超明:到底是有還是沒有?
gazette.blocks[28][0] 劉主任委員鏡清:有啦!
gazette.blocks[29][0] 陳委員超明:雖然國會五法通過,但是我們都不會這樣,那實在有些太可惡的事情我們才會這樣做,但是你來好好做,我們會支持,國發會很重要,規劃國家未來的發展及前景,我希望你好好努力。
gazette.blocks[30][0] 劉主任委員鏡清:是,謝謝委員。
gazette.blocks[31][0] 陳委員超明:謝謝。
gazette.blocks[32][0] 主席:我們現在休息3分鐘。
gazette.blocks[32][1] 休息(10時44分)
gazette.blocks[32][2] 繼續開會(10時48分)
gazette.blocks[33][0] 主席(陳委員超明代):現在我們繼續開會。
gazette.blocks[33][1] 請邱志偉委員質詢。
gazette.agenda.page_end 402
gazette.agenda.meet_id 委員會-11-1-19-14
gazette.agenda.speakers[0] 楊瓊瓔
gazette.agenda.speakers[1] 邱議瑩
gazette.agenda.speakers[2] 鄭正鈐
gazette.agenda.speakers[3] 呂玉玲
gazette.agenda.speakers[4] 賴瑞隆
gazette.agenda.speakers[5] 鄭天財Sra Kacaw
gazette.agenda.speakers[6] 張嘉郡
gazette.agenda.speakers[7] 陳超明
gazette.agenda.speakers[8] 邱志偉
gazette.agenda.speakers[9] 鍾佳濱
gazette.agenda.speakers[10] 羅美玲
gazette.agenda.speakers[11] 李坤城
gazette.agenda.speakers[12] 陳亭妃
gazette.agenda.speakers[13] 牛煦庭
gazette.agenda.speakers[14] 王鴻薇
gazette.agenda.speakers[15] 黃珊珊
gazette.agenda.speakers[16] 洪孟楷
gazette.agenda.speakers[17] 謝衣鳯
gazette.agenda.speakers[18] 李柏毅
gazette.agenda.speakers[19] 陳培瑜
gazette.agenda.speakers[20] 張啓楷
gazette.agenda.speakers[21] 蔡易餘
gazette.agenda.speakers[22] 林岱樺
gazette.agenda.speakers[23] 陳冠廷
gazette.agenda.page_start 347
gazette.agenda.meetingDate[0] 2024-05-30
gazette.agenda.gazette_id 1135501
gazette.agenda.agenda_lcidc_ids[0] 1135501_00007
gazette.agenda.meet_name 立法院第11屆第1會期經濟委員會第14次全體委員會議紀錄
gazette.agenda.content 邀請國家發展委員會主任委員列席報告業務概況,並備質詢
gazette.agenda.agenda_id 1135501_00006
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.46971875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.02659375
transcript.pyannote[1].end 2.32596875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 7.70909375
transcript.pyannote[2].end 11.05034375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 11.80971875
transcript.pyannote[3].end 13.07534375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 13.64909375
transcript.pyannote[4].end 15.57284375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 15.89346875
transcript.pyannote[5].end 16.92284375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 23.09909375
transcript.pyannote[6].end 23.63909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 23.77409375
transcript.pyannote[7].end 24.93846875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 26.00159375
transcript.pyannote[8].end 26.50784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 27.11534375
transcript.pyannote[9].end 28.26284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 28.76909375
transcript.pyannote[10].end 30.32159375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 30.86159375
transcript.pyannote[11].end 33.25784375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 34.48971875
transcript.pyannote[12].end 35.87346875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 36.59909375
transcript.pyannote[13].end 39.45096875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 39.82221875
transcript.pyannote[14].end 42.69096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 42.96096875
transcript.pyannote[15].end 48.02346875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 48.12471875
transcript.pyannote[16].end 49.37346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 49.84596875
transcript.pyannote[17].end 51.06096875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 51.85409375
transcript.pyannote[18].end 53.47409375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 54.89159375
transcript.pyannote[19].end 54.92534375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 54.92534375
transcript.pyannote[20].end 54.94221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 54.94221875
transcript.pyannote[21].end 54.95909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 54.95909375
transcript.pyannote[22].end 54.97596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 54.97596875
transcript.pyannote[23].end 55.68471875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 55.68471875
transcript.pyannote[24].end 55.81971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 55.81971875
transcript.pyannote[25].end 55.85346875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 56.27534375
transcript.pyannote[26].end 56.59596875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 56.86596875
transcript.pyannote[27].end 57.67596875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 58.11471875
transcript.pyannote[28].end 60.69659375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 61.67534375
transcript.pyannote[29].end 65.32034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 66.14721875
transcript.pyannote[30].end 68.96534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 69.69096875
transcript.pyannote[31].end 72.88034375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 73.47096875
transcript.pyannote[32].end 74.51721875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 75.29346875
transcript.pyannote[33].end 79.12409375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 79.57971875
transcript.pyannote[34].end 80.72721875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 80.86221875
transcript.pyannote[35].end 86.75159375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 88.69221875
transcript.pyannote[36].end 90.54846875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 91.89846875
transcript.pyannote[37].end 94.83471875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 95.20596875
transcript.pyannote[38].end 99.23909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 99.64409375
transcript.pyannote[39].end 102.64784375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 103.42409375
transcript.pyannote[40].end 108.80721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 109.33034375
transcript.pyannote[41].end 111.81096875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 112.33409375
transcript.pyannote[42].end 114.19034375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 114.46034375
transcript.pyannote[43].end 117.44721875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 117.97034375
transcript.pyannote[44].end 119.77596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 120.40034375
transcript.pyannote[45].end 129.31034375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 126.81284375
transcript.pyannote[46].end 126.86346875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 129.31034375
transcript.pyannote[47].end 129.32721875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 130.00221875
transcript.pyannote[48].end 131.55471875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 131.95971875
transcript.pyannote[49].end 155.75346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 153.98159375
transcript.pyannote[50].end 154.89284375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 155.75346875
transcript.pyannote[51].end 155.80409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 155.82096875
transcript.pyannote[52].end 158.45346875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 158.77409375
transcript.pyannote[53].end 160.57971875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 160.63034375
transcript.pyannote[54].end 161.74409375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 162.40221875
transcript.pyannote[55].end 168.93284375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 169.48971875
transcript.pyannote[56].end 172.76346875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 173.26971875
transcript.pyannote[57].end 174.75471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 174.82221875
transcript.pyannote[58].end 175.66596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 177.04971875
transcript.pyannote[59].end 178.55159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 179.27721875
transcript.pyannote[60].end 181.01534375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 181.72409375
transcript.pyannote[61].end 183.05721875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 183.73221875
transcript.pyannote[62].end 187.02284375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 187.86659375
transcript.pyannote[63].end 188.42346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 189.46971875
transcript.pyannote[64].end 192.60846875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 193.09784375
transcript.pyannote[65].end 198.04221875
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 198.66659375
transcript.pyannote[66].end 200.62409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 201.11346875
transcript.pyannote[67].end 203.44221875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 204.01596875
transcript.pyannote[68].end 207.23909375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 207.88034375
transcript.pyannote[69].end 211.49159375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 211.98096875
transcript.pyannote[70].end 212.85846875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 213.09471875
transcript.pyannote[71].end 215.87909375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 216.58784375
transcript.pyannote[72].end 218.07284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 218.84909375
transcript.pyannote[73].end 225.90284375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 226.39221875
transcript.pyannote[74].end 233.54721875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 234.39096875
transcript.pyannote[75].end 236.95596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 237.19221875
transcript.pyannote[76].end 238.96409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 238.96409375
transcript.pyannote[77].end 238.98096875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 242.03534375
transcript.pyannote[78].end 251.55284375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 251.90721875
transcript.pyannote[79].end 254.84346875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 252.02534375
transcript.pyannote[80].end 252.34596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 253.94909375
transcript.pyannote[81].end 256.02471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 256.17659375
transcript.pyannote[82].end 258.89346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 259.14659375
transcript.pyannote[83].end 264.52971875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 259.65284375
transcript.pyannote[84].end 260.32784375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 265.18784375
transcript.pyannote[85].end 271.98846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 272.56221875
transcript.pyannote[86].end 273.62534375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 274.36784375
transcript.pyannote[87].end 280.34159375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 281.03346875
transcript.pyannote[88].end 282.40034375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 283.00784375
transcript.pyannote[89].end 284.25659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 284.93159375
transcript.pyannote[90].end 288.71159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 289.31909375
transcript.pyannote[91].end 295.96784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 296.33909375
transcript.pyannote[92].end 300.03471875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 300.86159375
transcript.pyannote[93].end 302.63346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 303.62909375
transcript.pyannote[94].end 305.67096875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 306.36284375
transcript.pyannote[95].end 308.75909375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 309.65346875
transcript.pyannote[96].end 309.99096875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 310.15971875
transcript.pyannote[97].end 311.42534375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 311.62784375
transcript.pyannote[98].end 315.94784375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 316.35284375
transcript.pyannote[99].end 316.94346875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 317.21346875
transcript.pyannote[100].end 317.93909375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 318.59721875
transcript.pyannote[101].end 321.04409375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 321.49971875
transcript.pyannote[102].end 324.82409375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 326.08971875
transcript.pyannote[103].end 326.44409375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 327.91221875
transcript.pyannote[104].end 329.46471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 330.37596875
transcript.pyannote[105].end 332.26596875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 333.14346875
transcript.pyannote[106].end 334.37534375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 334.79721875
transcript.pyannote[107].end 336.40034375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 336.88971875
transcript.pyannote[108].end 340.68659375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 341.09159375
transcript.pyannote[109].end 345.12471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 346.06971875
transcript.pyannote[110].end 346.25534375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 346.91346875
transcript.pyannote[111].end 348.01034375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 348.41534375
transcript.pyannote[112].end 348.43221875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 348.43221875
transcript.pyannote[113].end 388.27409375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 388.69596875
transcript.pyannote[114].end 397.03221875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 397.03221875
transcript.pyannote[115].end 405.23346875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 406.26284375
transcript.pyannote[116].end 408.35534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 409.01346875
transcript.pyannote[117].end 410.61659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 411.27471875
transcript.pyannote[118].end 412.20284375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 412.55721875
transcript.pyannote[119].end 413.78909375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 413.95784375
transcript.pyannote[120].end 417.02909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 417.55221875
transcript.pyannote[121].end 418.27784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 418.73346875
transcript.pyannote[122].end 423.44159375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 424.18409375
transcript.pyannote[123].end 427.67721875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 428.28471875
transcript.pyannote[124].end 436.75596875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 437.41409375
transcript.pyannote[125].end 447.10034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 447.79221875
transcript.pyannote[126].end 450.96471875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 450.96471875
transcript.pyannote[127].end 451.16721875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 451.90971875
transcript.pyannote[128].end 451.92659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 451.92659375
transcript.pyannote[129].end 455.70659375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 455.92596875
transcript.pyannote[130].end 460.04346875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 459.33471875
transcript.pyannote[131].end 463.31721875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 461.30909375
transcript.pyannote[132].end 462.52409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 463.77284375
transcript.pyannote[133].end 467.02971875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 467.87346875
transcript.pyannote[134].end 468.22784375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 469.49346875
transcript.pyannote[135].end 475.55159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 475.92284375
transcript.pyannote[136].end 476.31096875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 476.69909375
transcript.pyannote[137].end 477.35721875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 477.52596875
transcript.pyannote[138].end 479.19659375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 479.19659375
transcript.pyannote[139].end 479.29784375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 479.29784375
transcript.pyannote[140].end 482.52096875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 479.85471875
transcript.pyannote[141].end 479.97284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 481.66034375
transcript.pyannote[142].end 482.31846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 482.52096875
transcript.pyannote[143].end 482.53784375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 483.04409375
transcript.pyannote[144].end 483.07784375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 483.07784375
transcript.pyannote[145].end 485.50784375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 486.79034375
transcript.pyannote[146].end 487.78596875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 488.49471875
transcript.pyannote[147].end 490.24971875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 491.04284375
transcript.pyannote[148].end 493.79346875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 494.50221875
transcript.pyannote[149].end 498.01221875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 498.83909375
transcript.pyannote[150].end 499.76721875
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 500.44221875
transcript.pyannote[151].end 502.39971875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 503.00721875
transcript.pyannote[152].end 504.22221875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 505.15034375
transcript.pyannote[153].end 507.19221875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 507.54659375
transcript.pyannote[154].end 513.18284375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 514.80284375
transcript.pyannote[155].end 515.42721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 516.23721875
transcript.pyannote[156].end 517.08096875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 517.57034375
transcript.pyannote[157].end 520.99596875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 522.05909375
transcript.pyannote[158].end 522.39659375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 522.53159375
transcript.pyannote[159].end 523.29096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 523.78034375
transcript.pyannote[160].end 535.22159375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 536.04846875
transcript.pyannote[161].end 538.46159375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 539.23784375
transcript.pyannote[162].end 540.57096875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 541.12784375
transcript.pyannote[163].end 544.63784375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 545.29596875
transcript.pyannote[164].end 548.46846875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 548.87346875
transcript.pyannote[165].end 549.91971875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 551.11784375
transcript.pyannote[166].end 557.49659375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 558.08721875
transcript.pyannote[167].end 559.53846875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 560.23034375
transcript.pyannote[168].end 562.76159375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 563.33534375
transcript.pyannote[169].end 564.80346875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 565.79909375
transcript.pyannote[170].end 567.23346875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 567.99284375
transcript.pyannote[171].end 570.43971875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 571.09784375
transcript.pyannote[172].end 573.46034375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 573.83159375
transcript.pyannote[173].end 574.67534375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 574.96221875
transcript.pyannote[174].end 577.00409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 577.24034375
transcript.pyannote[175].end 580.85159375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 581.39159375
transcript.pyannote[176].end 584.47971875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 585.00284375
transcript.pyannote[177].end 586.57221875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 587.38221875
transcript.pyannote[178].end 588.85034375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 589.60971875
transcript.pyannote[179].end 590.01471875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 590.97659375
transcript.pyannote[180].end 592.02284375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 592.88346875
transcript.pyannote[181].end 594.65534375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 595.02659375
transcript.pyannote[182].end 597.69284375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 598.11471875
transcript.pyannote[183].end 599.78534375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 600.07221875
transcript.pyannote[184].end 602.01284375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 602.56971875
transcript.pyannote[185].end 606.01221875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 606.34971875
transcript.pyannote[186].end 607.96971875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 608.67846875
transcript.pyannote[187].end 611.17596875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 611.64846875
transcript.pyannote[188].end 614.16284375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 614.38221875
transcript.pyannote[189].end 616.49159375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 616.91346875
transcript.pyannote[190].end 618.33096875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 619.12409375
transcript.pyannote[191].end 621.53721875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 622.36409375
transcript.pyannote[192].end 624.65909375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 625.14846875
transcript.pyannote[193].end 626.17784375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 626.53221875
transcript.pyannote[194].end 627.64596875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 628.25346875
transcript.pyannote[195].end 629.92409375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 630.53159375
transcript.pyannote[196].end 631.74659375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 632.11784375
transcript.pyannote[197].end 632.38784375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 632.57346875
transcript.pyannote[198].end 635.96534375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 636.45471875
transcript.pyannote[199].end 637.83846875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 638.00721875
transcript.pyannote[200].end 638.46284375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 638.98596875
transcript.pyannote[201].end 643.74471875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 642.59721875
transcript.pyannote[202].end 643.60971875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 643.98096875
transcript.pyannote[203].end 647.45721875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 647.76096875
transcript.pyannote[204].end 651.47346875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 651.81096875
transcript.pyannote[205].end 655.25346875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 655.35471875
transcript.pyannote[206].end 657.53159375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 657.81846875
transcript.pyannote[207].end 660.43409375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 660.78846875
transcript.pyannote[208].end 662.03721875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 662.91471875
transcript.pyannote[209].end 664.23096875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 663.60659375
transcript.pyannote[210].end 663.62346875
transcript.whisperx[0].start 0.752
transcript.whisperx[0].end 13.798
transcript.whisperx[0].text 陳昌明委員請做詢答陳昌明委員詢答結束我們休息三分鐘謝謝首先要請劉志偉我們再請劉志偉劉志偉好
transcript.whisperx[1].start 26.215
transcript.whisperx[1].end 53.115
transcript.whisperx[1].text 劉志偉你從企業界來到政府的機關而且來到重要的內閣單位那我剛剛聽了大國發會的時代要回來了因為我們的賴總統有特別指示以後參加國發會部長都要參加你所指示的各部門的討論這個非常重要你一定要堅持下來
transcript.whisperx[2].start 56.951
transcript.whisperx[2].end 74.45
transcript.whisperx[2].text 是的,謝謝委員。不是謝謝我,要堅持,要做事情。那你是從資層管理顧問公司過來的。那我看了天下雜誌的一篇報導,他說你常常看到別人看不到的問題,大家稱讚你。
transcript.whisperx[3].start 75.579
transcript.whisperx[3].end 101.947
transcript.whisperx[3].text 支持會計事務所跟支持管理顧問公司可以說是在國際上是有名的一種聯手的會計事務當然看的層面非常多那今天我要請教你一個問題你說答應日格的一個主要原因是我對下一代感到憂心忡忡你為什麼會對下一代感到憂心忡忡
transcript.whisperx[4].start 103.716
transcript.whisperx[4].end 128.605
transcript.whisperx[4].text 從民進黨執政八年那總統都把年輕人帶來非常有希望結果臺灣的青年非常優秀那你怎麼感到臺灣的下一代憂心忡忡你告訴我業界要講實話不要像政治人物這樣講來講去那邊一套這邊一套來你跟我講為什麼你對下一代憂心忡忡
transcript.whisperx[5].start 130.046
transcript.whisperx[5].end 132.228
transcript.whisperx[5].text 你也碰到很多我們下一代的問題
transcript.whisperx[6].start 159.009
transcript.whisperx[6].end 188.106
transcript.whisperx[6].text 今天你站這個位置不敢講出來我為什麼特別提醒你這一句話下一代你憂心忡忡國外會執委講師這一代表示我對我們臺灣的整體環境非常擔憂這第一點我要提醒你政治現在已經示威不分了企業是以利潤為基礎經營管理支持政治是以選票為基礎你先要認清楚這一點第二點
transcript.whisperx[7].start 189.517
transcript.whisperx[7].end 217.843
transcript.whisperx[7].text 你自己講說在業界打滾已經有具備我們產業的實務跟前瞻其視的條件那標題幫你寫成這樣你要把自己變成聯誼推動公部門的平靜池水你又講到你太太是高層公務文官出身了說我們文官裡面的人才非常多水準非常高
transcript.whisperx[8].start 219.028
transcript.whisperx[8].end 235.504
transcript.whisperx[8].text 你怎麼說你進來要變成一個連儀把公務機關那個攪動他平靜的池水因為你手中我有重要事業要好好改善我認同你的觀點但是你站在這我愛跟你講一些事情你這句禪事給我聽
transcript.whisperx[9].start 242.662
transcript.whisperx[9].end 267.697
transcript.whisperx[9].text 我是沒有看那篇報導啦我不知道他為什麼這樣寫喔但是從我過去每換一個職務的話我都希望這個職務跟過去不一樣那我們都希望去更進化嘛你這麼重要的人物他喜歡搞一定要給你公務阿媒體不會給你公務阿天下雜誌也不是媒體天下雜誌也不是隨隨便便的雜誌我現在跟職位講好好提拔你國發會的人才
transcript.whisperx[10].start 269.798
transcript.whisperx[10].end 284.028
transcript.whisperx[10].text 這幾年他被壓制了很慘他們多做做錯多錯少做少錯他們已經不願意發言你上級指示我才來做你要了解他們心態大家都很優秀
transcript.whisperx[11].start 284.989
transcript.whisperx[11].end 308.651
transcript.whisperx[11].text 但是大家都想為台灣為這個國家建立一份的心理但是政治把他們搞得無所適同我相信在下的官員你們心有戚戚焉啊我都瞭解都談過我只要說你為企業幹的執行官就是歐元首所以我大概瞭解你的觀念這裡面好好提拔優秀的人才
transcript.whisperx[12].start 310.267
transcript.whisperx[12].end 311.148
transcript.whisperx[12].text 你再來談到賴總統所以我兩次跟你見面
transcript.whisperx[13].start 333.386
transcript.whisperx[13].end 344.586
transcript.whisperx[13].text 在內閣會裡要你開處方說我們不但要有頂線我們要全面你為我們國家經濟的發展你處方要如何開
transcript.whisperx[14].start 349.224
transcript.whisperx[14].end 364.893
transcript.whisperx[14].text OK這個處方我們現在就是在我剛剛的報告有特別提到了第一個我們要拉成長的核心主軸那我們現在拉兩個核心主軸是半導體跟AI那第二個部分我們從我們在臺灣占市佔率超過12%的15的企業裡面產業撈出來我們現在挑了6個產業他的市佔率超過在全球市佔率超過16%我們希望把
transcript.whisperx[15].start 375.919
transcript.whisperx[15].end 404.048
transcript.whisperx[15].text 把這些產業都拉到市佔率超過30%以上那造成對全球的影響力那創造比較規模大的企業以後去讓台灣得到更大的保障之外可以提供員工更好的薪水我有看到裡面在談你說台灣的晶圓製造、封裝測試包括冷的這邊已經佔了整個世界60幾%
transcript.whisperx[16].start 406.548
transcript.whisperx[16].end 414.57
transcript.whisperx[16].text 機械製造業占的是臺灣的電子產業裏面你說要發展AI的一個設計能力現在24%占全世界可以寬鬆48%這個比較快但是你還怎樣除了這你講的AI
transcript.whisperx[17].start 428.334
transcript.whisperx[17].end 450.585
transcript.whisperx[17].text 跟臺灣經營的製造業要持續維持一個領先的地位你知道現在其他的產業不怎麼好過因為你所接觸我不曉得你傳統產業、機械產業、一些的產業你有沒有深入了解現在大家都一汪汪追著趕會不會產生核燃病我請你特別注意這樣
transcript.whisperx[18].start 452.14
transcript.whisperx[18].end 460.949
transcript.whisperx[18].text 是的 這個的確我這邊有在注意產業的均衡裡面我們有做過數據分析的確有不均衡的問題我們需要去改善看到你頭腦的思維是怎樣結果這點不錯
transcript.whisperx[19].start 469.637
transcript.whisperx[19].end 497.749
transcript.whisperx[19].text 要站就要站世界的首要地位站了最起碼要30%你是在那邊這麼寫的啊是的我講的你聽得清楚嗎我聽得清楚我怕我國語不標準我聽得清楚好最後一個問題那個主席李毅所有朋友跟你講說你當這個官叫做流水的官公務人員這些你手下叫做鐵塔的兵
transcript.whisperx[20].start 498.871
transcript.whisperx[20].end 520.713
transcript.whisperx[20].text 我欣賞那一點大家都在捧台積電說他最棒最好其實我跟你講賺的錢都是外國人拿去我們只佔了24%但是你又講了一句話我欣賞你說台積電吸走我們台灣大量的人才和資源
transcript.whisperx[21].start 522.653
transcript.whisperx[21].end 549.006
transcript.whisperx[21].text 業界怨書宰盜真的是怨書宰盜他薪水一高第一個抓蓮花客人到台積電蓮花客要抓其他產業的人到蓮花我都碰到但上一次我一直在講這問題大家馬爾東風只有有錢賺這個一直往前衝我不反對甚至我們也把人才設立的一個
transcript.whisperx[22].start 554.196
transcript.whisperx[22].end 564.533
transcript.whisperx[22].text 我們自己人才不夠的我們要私送給他們這個是國安資料是台灣維持命脈的一個方式還有一點我最不滿
transcript.whisperx[23].start 565.831
transcript.whisperx[23].end 591.277
transcript.whisperx[23].text 我在立法院常常講我們高通的7億美金的罰款我們竟然用他來投資的名義把他弄掉結果他薪水特別高高通又把台積隊的人才拉到他那邊去7億裡面的設備我們台灣人都用不到7億美金咧咱台灣的政府不給我們這個
transcript.whisperx[24].start 592.898
transcript.whisperx[24].end 618.045
transcript.whisperx[24].text 不給家農領以外人我就不知道說到這點怎麼還怕美國你這個好好瞭解一下你產業界出身的你跟高通那7億錢臺灣到底得到什麼能有貢獻出來把法緩變成他的投資然後他去補貼薪水非常高變成了把我們臺灣的產業我不知道政策在哪裡
transcript.whisperx[25].start 619.165
transcript.whisperx[25].end 638.299
transcript.whisperx[25].text 我希望你7月就來講實話觀察還有很多那個不要怕做對的事情為臺灣的事情做出正確的一條路要7月這麼想我是把你整個我需要了解你的邏輯啊好好的發揮一下好不好
transcript.whisperx[26].start 639.059
transcript.whisperx[26].end 661.604
transcript.whisperx[26].text 我講的這樣聽得到嗎?聽得到,謝謝到底是有還是沒有?聽得到,聽得到雖然那個無法通過,但是我們都不會這樣那時候有一些太誇張的事情在裡面,我們才這樣做但是你來好好做,我們會支持,國安會很重要規劃國家未來的發展及全球,我希望你好好努力是,謝謝委員好,謝謝感謝