IVOD_ID |
152178 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/152178 |
日期 |
2024-05-06 |
會議資料.會議代碼 |
聯席會議-11-1-20,15-1 |
會議資料.會議代碼:str |
第11屆第1會期財政、內政委員會第1次聯席會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
1 |
會議資料.種類 |
聯席會議 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼[1] |
15 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.委員會代碼:str[1] |
內政委員會 |
會議資料.標題 |
立法院第11屆第1會期財政、內政委員會第1次聯席會議 |
影片種類 |
Clip |
開始時間 |
2024-05-06T09:26:20+08:00 |
結束時間 |
2024-05-06T09:37:27+08:00 |
影片長度 |
00:11:07 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6319d5f220c85a684613b6ff100305ee84bf63cf92ad2af6d65503e05c7869ec87561c4690c68a315ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
賴士葆 |
委員發言時間 |
09:26:20 - 09:37:27 |
會議時間 |
2024-05-06T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期財政、內政委員會第1次聯席會議(事由:審查本院委員賴士葆等22人、委員傅崐萁等20人分別擬具「地方稅法通則第四條條文修正草案」等2案。
【5月6日及8日二天一次會】) |
gazette.lineno |
105 |
gazette.blocks[0][0] |
賴委員士葆:(9時26分)謝謝主席及各位先進。有請財政部的李次長。 |
gazette.blocks[1][0] |
主席:請李次長。 |
gazette.blocks[2][0] |
李次長慶華:委員早安。 |
gazette.blocks[3][0] |
賴委員士葆:你早。就今天的提案,財政部的具體看法為何?你們是沒有意見,還是支持? |
gazette.blocks[4][0] |
李次長慶華:是,我們尊重委員會的審查結果,因為…… |
gazette.blocks[5][0] |
賴委員士葆:你覺得我們的提案合理吧? |
gazette.blocks[6][0] |
李次長慶華:是,因為它是跟原來地方稅法通則第四條的立法意旨是相符的。 |
gazette.blocks[7][0] |
賴委員士葆:對嘛!當初我記得最早有一個立委叫廖學廣,他提出一個鎮長稅,引起全國的軒然大波,後來呢?說要讓地方政府、地方首長,他手上能夠有一點權力,地方議會、地方政府自己決定,所以才有一個稅法通則,它背景是這樣來的,因為我們原來的法令就定了,好像地方稅最多就是30%,可是事實上有些稅目是你們沒有想到的,所以我的案子,就是你沒有提到的地方稅,地方政府、議會覺得有必要,他們自己立,上限多少由自己規範,可以嘛? |
gazette.blocks[8][0] |
李次長慶華:對,因為我們現在地方稅法通則第三條就是這個意思…… |
gazette.blocks[9][0] |
賴委員士葆:就這個意思嘛! |
gazette.blocks[10][0] |
李次長慶華:就是除了不能開徵的那四項規定之外…… |
gazette.blocks[11][0] |
賴委員士葆:就是這個意思啦,只是沒有寫清楚,我把它寫清楚。好,我們來看第二題,你剛才回答吳委員的對話,我就覺得連續兩年…… |
gazette.blocks[11][1] |
請問你,去年的營所稅多少? |
gazette.blocks[12][0] |
李次長慶華:去年的營所稅1兆多少…… |
gazette.blocks[13][0] |
賴委員士葆:超過1兆! |
gazette.blocks[14][0] |
李次長慶華:是,超過1兆。 |
gazette.blocks[15][0] |
賴委員士葆:前年多少?也超過1兆! |
gazette.blocks[16][0] |
李次長慶華:是。 |
gazette.blocks[17][0] |
賴委員士葆:每年都超過1兆,今年把它編一個9,000億?今年的經濟成長率還要變成3%以上,比去年更好,所以今年的GDP比去年好,結果你們財政部是怎樣啦?同一位部長卻退縮了,連續兩年就超過1兆,結果你們114年就編列9,000億?很奇怪! |
gazette.blocks[18][0] |
李次長慶華:報告委員,因為我們所得稅是落後徵收,所以像我們113年估測依據的經濟成長率是112年的經濟成長率,所以只有1.31%而已,而且從去年開始,我們就發現產業確實是因為它的庫存很多,它去化庫存…… |
gazette.blocks[19][0] |
賴委員士葆:這樣太少了!我跟你講了半天,這絕對是太少了,你們每次都低估,到時候「花哩囉」! |
gazette.blocks[20][0] |
李次長慶華:委員,我們已經儘量覈實了。 |
gazette.blocks[21][0] |
賴委員士葆:覈實就要編1兆以上,連續兩年都1兆以上,明年編得…… |
gazette.blocks[21][1] |
好啦!不跟你扯這個。來,我要跟你講統籌分配稅款,現在統籌分配稅款,你們訂了嘛!今年編4,000億,一般補助款2,300億或者2,500億,對吧? |
gazette.blocks[22][0] |
李次長慶華:是。 |
gazette.blocks[23][0] |
賴委員士葆:是嘛!所以加起來就是6,500億,占你們中央的25%,也就是四分之一給地方政府而已。我們現在的社會氛圍,大家都說這個地方政府手頭很緊,現在中央集權又集錢,錢在你手上,都看你臉色,看你今天心情好就多給一點,心情不好就少給一點。我們在法律上把這個財政收支劃分法調整一下,好多委員有十幾個版本都說要修啊!各縣市選出來的立委,大家立場可能不一樣,我臺北市選出來的,我當然要看臺北市啊!我家裡是……我從臺中出來的,我會關心臺中市啊!可是其他的委員,臺南的他關心臺南,這是水平分配。 |
gazette.blocks[23][1] |
至於垂直分配,你先撥一塊肉出來吧!你很清楚,你們以前的長官李述德任內,他就撥了962億要給地方政府,還擺不平。請問這次來講的話,你們可以割多少給地方政府? |
gazette.blocks[24][0] |
李次長慶華:報告委員,財劃法的修正,基本上,因為它涉及到的問題相當地多,當然有垂直分配跟水平分配的問題,目前我們是在通盤檢視近年中央、地方政府財經的情勢變化,我們希望還是能夠適度維持我們中央財政的韌性,因為畢竟中央很多的支出…… |
gazette.blocks[25][0] |
賴委員士葆:我有提案啦!我的提案是3,000億,有人提案6,000億啦!我算了,加10%就是2,600億,加20%就是5,200億,你覺得放中間可以嗎? |
gazette.blocks[26][0] |
李次長慶華:不過委員這個部分…… |
gazette.blocks[27][0] |
賴委員士葆:先做垂直分配,水平再說。垂直、垂直,你可以撥多少給地方嘛?就這樣子。 |
gazette.blocks[28][0] |
李次長慶華:委員,如果我們優先處理這個垂直分配的話,可能就會擴大中央統籌分配稅款的規模,當然就會變成,可能直轄市獲配的金額反而會大幅地增加。會不會因為這樣子而拉到直轄市跟縣市財政的差距?所以這部分我覺得我們在修法還是要兼顧垂直跟水平。 |
gazette.blocks[29][0] |
賴委員士葆:你講到的是水平分配,我講的是中央你心目中可以刮多少肉給地方政府啦! |
gazette.blocks[30][0] |
李次長慶華:委員,我想因為這個涉及到整個地方政府財政的分配,所以我們目前也很積極…… |
gazette.blocks[31][0] |
賴委員士葆:你不要給我扯水平…… |
gazette.blocks[32][0] |
李次長慶華:很積極要求地方政府。 |
gazette.blocks[33][0] |
賴委員士葆:你不割下來地方就沒有,每個地方政府都要錢啊!不管是藍執政、綠執政都要錢啊! |
gazette.blocks[34][0] |
李次長慶華:對,基本上這個部分還是要做比較審慎的評估。 |
gazette.blocks[35][0] |
賴委員士葆:我已經問第二次了,第一次問部長沒有答案,第二次問你,你是財……照理講你也可以當部長了。當那麼久的次長,你是管稅的次長啊! |
gazette.blocks[36][0] |
李次長慶華:是。 |
gazette.blocks[37][0] |
賴委員士葆:你總是知道……莊部長還可以說他管地的,他對這個不瞭解,你很瞭解啊!以我的提案來講,挖3,000億給地方,「好勢、好勢」,輕而易舉,一點都沒有負擔,對你們來講,3,000億。有人講要6,000億,我的版本是3,000億,很客氣了,可以嗎? |
gazette.blocks[38][0] |
李次長慶華:我們尊重委員的提案,因為各個委員都有不同的版本,到時候可能要做充分地討論。 |
gazette.blocks[39][0] |
賴委員士葆:其他委員客氣的提1,000億,有的6,000億,我是很客氣的3,000億,是很克制的。 |
gazette.blocks[40][0] |
李次長慶華:是,謝謝。 |
gazette.blocks[41][0] |
賴委員士葆:我們看到5月的現在開始報稅了,請問一下,網路報稅比例多少? |
gazette.blocks[42][0] |
李次長慶華:九十八點多吧!大概快將將近99%了。 |
gazette.blocks[43][0] |
賴委員士葆:手機報稅多少? |
gazette.blocks[44][0] |
李次長慶華:手機報稅目前到今天……去年大概是三成左右,但是我們從5月1號到今天5月5號為止,占幅大概在50%左右,就目前已經申報的部分。 |
gazette.blocks[45][0] |
賴委員士葆:未來你的目標,希望全部都可以手機報稅嗎? |
gazette.blocks[46][0] |
李次長慶華:我們當然是希望大家都用手機報,但是我們並不預期會百分之百,因為還是有很多民眾不習慣用手機,因為畢竟螢幕比較小,可能大家還是會用電腦、平板來申報,所以我們是覺得,可能手機報稅的比重,未來希望能夠占到三成左右。 |
gazette.blocks[47][0] |
賴委員士葆:你們現在是不是標扣都可以……比如說張三、李四,你都可以告訴他,你就是繳多少稅,你替他試算好了。 |
gazette.blocks[48][0] |
李次長慶華:是,目前我們今年最新的作法,就是在我們的線上版還有就是手機版上,都可以看到一個所謂查調資料的稅額估算表。那個估算表你點進去…… |
gazette.blocks[49][0] |
賴委員士葆:特別扣除額的…… |
gazette.blocks[50][0] |
李次長慶華:特別扣除額也包含在裡面,還有列舉扣除額也可以包含在裡面,我們可以蒐集到的資料,我們都會幫你設算。 |
gazette.blocks[51][0] |
賴委員士葆:這個不錯!但是我們就擔心,你做了這麼多,詐騙集團會不會來take advantage(利用),你這裡這麼方便,手機可以報稅,橫切一刀告訴他,什麼時候可以退稅、退多少錢給他,開始獲取他的個資? |
gazette.blocks[52][0] |
李次長慶華:報告委員,我們這個資料有一個非常嚴密的資安管控,基本上,這個網站別人的系統是進不來的,而且我們是一個單獨的資安系統。 |
gazette.blocks[53][0] |
賴委員士葆:因為我的時間到了,你告訴我們,如果退稅,你們什麼時候才通知? |
gazette.blocks[54][0] |
李次長慶華:退稅我們是有分三批,第一批退稅在7月底,最大批的退稅在7月底。 |
gazette.blocks[55][0] |
賴委員士葆:所以在這個之前告訴大家退稅都假的。 |
gazette.blocks[56][0] |
李次長慶華:對,都是假的。 |
gazette.blocks[57][0] |
賴委員士葆:第二批什麼時候? |
gazette.blocks[58][0] |
李次長慶華:第二批是10月底。 |
gazette.blocks[59][0] |
賴委員士葆:10月底。 |
gazette.blocks[60][0] |
李次長慶華:是。 |
gazette.blocks[61][0] |
賴委員士葆:第三批呢? |
gazette.blocks[62][0] |
李次長慶華:第三批是明年1月。 |
gazette.blocks[63][0] |
賴委員士葆:好。最後一個小問題請教你,我們現在很多的網紅平台,YT、FB、IG、Podcast,都是國外的公司,網紅如果分潤了,那屬於境外所得,還是境內所得? |
gazette.blocks[64][0] |
李次長慶華:這個部分,當然我們要看…… |
gazette.blocks[65][0] |
賴委員士葆:請問你,是境外所得,還是境內所得? |
gazette.blocks[66][0] |
李次長慶華:這要看這個網紅平台的交易跟我們臺灣的市場有沒有連結…… |
gazette.blocks[67][0] |
賴委員士葆:我跟你講,就是YT(YouTube)、FB、IG,國外的啊! |
gazette.blocks[68][0] |
李次長慶華:他如果是跟國內的市場交易產生了獲利的話,當然是中華民國的來源所得。 |
gazette.blocks[69][0] |
賴委員士葆:什麼意思?再具體一點。 |
gazette.blocks[70][0] |
李次長慶華:譬如這個平台做廣告,這個廣告主要都是在臺灣刊登或者是跟我們國內的企業或公司結合來進行的話,這個廣告的收入就是中華民國來源所得,如果是境外的廣告,當然就不是我們臺灣的來源所得。 |
gazette.blocks[71][0] |
賴委員士葆:那這個是境外所得? |
gazette.blocks[72][0] |
李次長慶華:如果純粹是境外公司的話…… |
gazette.blocks[73][0] |
賴委員士葆:這個你勾稽得到嗎?你查得到嗎?譬如我們的郭委員開一個節目,他是網紅,全世界都在看,不是只有臺灣看,全世界都在看啊! |
gazette.blocks[74][0] |
李次長慶華:如果它是在臺灣設立的平台,然後他的收入來源都是因為他在境內從事網紅的行為所收取的報酬的話,這個當然就是中華民國境內的來源所得。 |
gazette.blocks[75][0] |
賴委員士葆:所以即便是國外的人看、給他錢,一樣…… |
gazette.blocks[76][0] |
李次長慶華:是、是、是,因為你就是境內的交易行為產生的收入。 |
gazette.blocks[77][0] |
賴委員士葆:好啦!這樣瞭解了,謝謝。 |
gazette.blocks[78][0] |
李次長慶華:謝謝委員。 |
gazette.blocks[79][0] |
主席:謝謝。下一位質詢請郭國文召委。 |
gazette.agenda.page_end |
58 |
gazette.agenda.meet_id |
聯席會議-11-1-20,15-1 |
gazette.agenda.speakers[0] |
羅明才 |
gazette.agenda.speakers[1] |
賴士葆 |
gazette.agenda.speakers[2] |
林德福 |
gazette.agenda.speakers[3] |
吳秉叡 |
gazette.agenda.speakers[4] |
郭國文 |
gazette.agenda.speakers[5] |
賴惠員 |
gazette.agenda.speakers[6] |
顏寬恒 |
gazette.agenda.speakers[7] |
牛煦庭 |
gazette.agenda.speakers[8] |
蘇巧慧 |
gazette.agenda.speakers[9] |
李彥秀 |
gazette.agenda.speakers[10] |
李坤城 |
gazette.agenda.speakers[11] |
王鴻薇 |
gazette.agenda.speakers[12] |
張宏陸 |
gazette.agenda.speakers[13] |
陳玉珍 |
gazette.agenda.speakers[14] |
張智倫 |
gazette.agenda.speakers[15] |
王世堅 |
gazette.agenda.speakers[16] |
黃國昌 |
gazette.agenda.speakers[17] |
鍾佳濱 |
gazette.agenda.speakers[18] |
伍麗華Saidhai‧Tahovecahe |
gazette.agenda.speakers[19] |
王美惠 |
gazette.agenda.speakers[20] |
許宇甄 |
gazette.agenda.speakers[21] |
李柏毅 |
gazette.agenda.page_start |
1 |
gazette.agenda.meetingDate[0] |
2024-05-06 |
gazette.agenda.gazette_id |
1134101 |
gazette.agenda.agenda_lcidc_ids[0] |
1134101_00002 |
gazette.agenda.meet_name |
立法院第11屆第1會期財政、內政委員會第1次聯席會議紀錄 |
gazette.agenda.content |
審查本院委員賴士葆等22人、委員傅崐萁等20人分別擬具「地方稅法通則第四條條文修正草案」
等2案 |
gazette.agenda.agenda_id |
1134101_00001 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
5.04284375 |
transcript.pyannote[0].end |
6.61221875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
7.10159375 |
transcript.pyannote[1].end |
8.72159375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
9.21096875 |
transcript.pyannote[2].end |
9.91971875 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
13.31159375 |
transcript.pyannote[3].end |
13.83471875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
14.22284375 |
transcript.pyannote[4].end |
14.61096875 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
15.04971875 |
transcript.pyannote[5].end |
17.63159375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
17.95221875 |
transcript.pyannote[6].end |
22.69409375 |
transcript.pyannote[7].speaker |
SPEAKER_01 |
transcript.pyannote[7].start |
21.78284375 |
transcript.pyannote[7].end |
32.49846875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
25.63034375 |
transcript.pyannote[8].end |
26.72721875 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
27.63846875 |
transcript.pyannote[9].end |
28.16159375 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
32.49846875 |
transcript.pyannote[10].end |
35.63721875 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
35.97471875 |
transcript.pyannote[11].end |
38.08409375 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
38.84346875 |
transcript.pyannote[12].end |
40.58159375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
41.49284375 |
transcript.pyannote[13].end |
44.09159375 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
44.49659375 |
transcript.pyannote[14].end |
47.65221875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
48.25971875 |
transcript.pyannote[15].end |
48.98534375 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
49.44096875 |
transcript.pyannote[16].end |
50.14971875 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
50.45346875 |
transcript.pyannote[17].end |
53.81159375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
54.14909375 |
transcript.pyannote[18].end |
55.49909375 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
56.32596875 |
transcript.pyannote[19].end |
58.60409375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
58.94159375 |
transcript.pyannote[20].end |
60.15659375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
60.81471875 |
transcript.pyannote[21].end |
61.64159375 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
61.70909375 |
transcript.pyannote[22].end |
64.49346875 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
65.28659375 |
transcript.pyannote[23].end |
68.93159375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
69.30284375 |
transcript.pyannote[24].end |
70.11284375 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
70.63596875 |
transcript.pyannote[25].end |
72.32346875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
72.52596875 |
transcript.pyannote[26].end |
74.78721875 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
75.49596875 |
transcript.pyannote[27].end |
75.78284375 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
75.90096875 |
transcript.pyannote[28].end |
76.55909375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
77.87534375 |
transcript.pyannote[29].end |
79.42784375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
80.10284375 |
transcript.pyannote[30].end |
80.79471875 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
80.99721875 |
transcript.pyannote[31].end |
84.16971875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
84.87846875 |
transcript.pyannote[32].end |
86.36346875 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
86.83596875 |
transcript.pyannote[33].end |
86.85284375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
86.85284375 |
transcript.pyannote[34].end |
86.86971875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
86.86971875 |
transcript.pyannote[35].end |
87.29159375 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
87.29159375 |
transcript.pyannote[36].end |
87.39284375 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
87.39284375 |
transcript.pyannote[37].end |
87.42659375 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
87.42659375 |
transcript.pyannote[38].end |
87.47721875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
87.73034375 |
transcript.pyannote[39].end |
95.12159375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
89.56971875 |
transcript.pyannote[40].end |
90.16034375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
91.35846875 |
transcript.pyannote[41].end |
92.48909375 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
95.12159375 |
transcript.pyannote[42].end |
98.76659375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
95.15534375 |
transcript.pyannote[43].end |
95.45909375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
99.10409375 |
transcript.pyannote[44].end |
100.80846875 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
105.38159375 |
transcript.pyannote[45].end |
108.62159375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
109.54971875 |
transcript.pyannote[46].end |
110.93346875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
111.70971875 |
transcript.pyannote[47].end |
113.17784375 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
114.30846875 |
transcript.pyannote[48].end |
115.64159375 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
116.97471875 |
transcript.pyannote[49].end |
120.88971875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
118.79721875 |
transcript.pyannote[50].end |
120.94034375 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
122.12159375 |
transcript.pyannote[51].end |
123.60659375 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
123.89346875 |
transcript.pyannote[52].end |
129.73221875 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
130.17096875 |
transcript.pyannote[53].end |
130.72784375 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
131.58846875 |
transcript.pyannote[54].end |
133.10721875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
133.36034375 |
transcript.pyannote[55].end |
134.37284375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
134.94659375 |
transcript.pyannote[56].end |
149.66159375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
150.28596875 |
transcript.pyannote[57].end |
171.70034375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
170.36721875 |
transcript.pyannote[58].end |
175.69971875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
176.18909375 |
transcript.pyannote[59].end |
177.26909375 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
178.19721875 |
transcript.pyannote[60].end |
180.08721875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
178.43346875 |
transcript.pyannote[61].end |
178.88909375 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
180.08721875 |
transcript.pyannote[62].end |
186.75284375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
187.24221875 |
transcript.pyannote[63].end |
188.28846875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
188.50784375 |
transcript.pyannote[64].end |
189.87471875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
190.36409375 |
transcript.pyannote[65].end |
192.55784375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
192.94596875 |
transcript.pyannote[66].end |
193.46909375 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
194.21159375 |
transcript.pyannote[67].end |
195.12284375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
195.91596875 |
transcript.pyannote[68].end |
197.38409375 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
198.17721875 |
transcript.pyannote[69].end |
201.73784375 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
202.10909375 |
transcript.pyannote[70].end |
202.48034375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
203.02034375 |
transcript.pyannote[71].end |
203.27346875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
203.62784375 |
transcript.pyannote[72].end |
207.17159375 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
207.96471875 |
transcript.pyannote[73].end |
208.36971875 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
209.33159375 |
transcript.pyannote[74].end |
209.97284375 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
210.76596875 |
transcript.pyannote[75].end |
211.40721875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
211.77846875 |
transcript.pyannote[76].end |
212.04846875 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
212.36909375 |
transcript.pyannote[77].end |
213.36471875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
213.53346875 |
transcript.pyannote[78].end |
215.99721875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
216.80721875 |
transcript.pyannote[79].end |
219.81096875 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
220.48596875 |
transcript.pyannote[80].end |
222.12284375 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
222.57846875 |
transcript.pyannote[81].end |
224.14784375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
224.73846875 |
transcript.pyannote[82].end |
226.57784375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
227.40471875 |
transcript.pyannote[83].end |
228.60284375 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
229.10909375 |
transcript.pyannote[84].end |
230.07096875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
230.71221875 |
transcript.pyannote[85].end |
233.83409375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
233.85096875 |
transcript.pyannote[86].end |
234.82971875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
235.21784375 |
transcript.pyannote[87].end |
236.29784375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
236.71971875 |
transcript.pyannote[88].end |
237.68159375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
238.79534375 |
transcript.pyannote[89].end |
240.68534375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
241.56284375 |
transcript.pyannote[90].end |
244.07721875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
245.20784375 |
transcript.pyannote[91].end |
247.31721875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
247.58721875 |
transcript.pyannote[92].end |
249.02159375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
249.34221875 |
transcript.pyannote[93].end |
250.69221875 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
251.02971875 |
transcript.pyannote[94].end |
252.59909375 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
253.47659375 |
transcript.pyannote[95].end |
255.72096875 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
255.83909375 |
transcript.pyannote[96].end |
257.30721875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
258.04971875 |
transcript.pyannote[97].end |
259.60221875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
259.73721875 |
transcript.pyannote[98].end |
261.86346875 |
transcript.pyannote[99].speaker |
SPEAKER_00 |
transcript.pyannote[99].start |
262.30221875 |
transcript.pyannote[99].end |
263.73659375 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
264.31034375 |
transcript.pyannote[100].end |
265.59284375 |
transcript.pyannote[101].speaker |
SPEAKER_00 |
transcript.pyannote[101].start |
266.72346875 |
transcript.pyannote[101].end |
268.68096875 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
269.76096875 |
transcript.pyannote[102].end |
272.00534375 |
transcript.pyannote[103].speaker |
SPEAKER_00 |
transcript.pyannote[103].start |
272.54534375 |
transcript.pyannote[103].end |
273.43971875 |
transcript.pyannote[104].speaker |
SPEAKER_00 |
transcript.pyannote[104].start |
273.65909375 |
transcript.pyannote[104].end |
274.23284375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
274.75596875 |
transcript.pyannote[105].end |
275.17784375 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
275.34659375 |
transcript.pyannote[106].end |
277.77659375 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
278.70471875 |
transcript.pyannote[107].end |
279.44721875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
280.67909375 |
transcript.pyannote[108].end |
281.08409375 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
281.60721875 |
transcript.pyannote[109].end |
282.55221875 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
283.19346875 |
transcript.pyannote[110].end |
283.80096875 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
284.20596875 |
transcript.pyannote[111].end |
285.52221875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
286.48409375 |
transcript.pyannote[112].end |
310.54784375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
310.17659375 |
transcript.pyannote[113].end |
310.51409375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
310.54784375 |
transcript.pyannote[114].end |
311.12159375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
311.40846875 |
transcript.pyannote[115].end |
320.67284375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
314.58096875 |
transcript.pyannote[116].end |
314.61471875 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
320.67284375 |
transcript.pyannote[117].end |
320.99346875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
321.28034375 |
transcript.pyannote[118].end |
323.15346875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
323.59221875 |
transcript.pyannote[119].end |
327.03471875 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
327.23721875 |
transcript.pyannote[120].end |
330.47721875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
330.47721875 |
transcript.pyannote[121].end |
330.51096875 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
331.16909375 |
transcript.pyannote[122].end |
355.19909375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
353.74784375 |
transcript.pyannote[123].end |
358.21971875 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
358.70909375 |
transcript.pyannote[124].end |
360.71721875 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
360.86909375 |
transcript.pyannote[125].end |
370.03221875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
366.40409375 |
transcript.pyannote[126].end |
367.92284375 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
370.03221875 |
transcript.pyannote[127].end |
370.60596875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
370.60596875 |
transcript.pyannote[128].end |
371.11221875 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
370.84221875 |
transcript.pyannote[129].end |
376.84971875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
377.35596875 |
transcript.pyannote[130].end |
378.08159375 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
377.52471875 |
transcript.pyannote[131].end |
382.41846875 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
381.28784375 |
transcript.pyannote[132].end |
386.21534375 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
386.48534375 |
transcript.pyannote[133].end |
390.63659375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
391.00784375 |
transcript.pyannote[134].end |
393.70784375 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
394.14659375 |
transcript.pyannote[135].end |
395.24346875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
395.47971875 |
transcript.pyannote[136].end |
396.96471875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
398.14596875 |
transcript.pyannote[137].end |
399.22596875 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
399.76596875 |
transcript.pyannote[138].end |
403.07346875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
403.74846875 |
transcript.pyannote[139].end |
404.47409375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
405.26721875 |
transcript.pyannote[140].end |
406.11096875 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
406.98846875 |
transcript.pyannote[141].end |
408.57471875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
409.03034375 |
transcript.pyannote[142].end |
410.00909375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
410.27909375 |
transcript.pyannote[143].end |
411.10596875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
411.51096875 |
transcript.pyannote[144].end |
412.67534375 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
413.06346875 |
transcript.pyannote[145].end |
414.58221875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
416.01659375 |
transcript.pyannote[146].end |
417.24846875 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
417.38346875 |
transcript.pyannote[147].end |
418.75034375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
419.20596875 |
transcript.pyannote[148].end |
419.86409375 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
421.18034375 |
transcript.pyannote[149].end |
421.51784375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
421.90596875 |
transcript.pyannote[150].end |
424.03221875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
425.36534375 |
transcript.pyannote[151].end |
429.21284375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
429.21284375 |
transcript.pyannote[152].end |
431.84534375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
431.96346875 |
transcript.pyannote[153].end |
433.04346875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
433.63409375 |
transcript.pyannote[154].end |
434.95034375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
435.18659375 |
transcript.pyannote[155].end |
436.43534375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
436.67159375 |
transcript.pyannote[156].end |
437.68409375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
438.32534375 |
transcript.pyannote[157].end |
439.05096875 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
439.42221875 |
transcript.pyannote[158].end |
442.25721875 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
442.89846875 |
transcript.pyannote[159].end |
444.75471875 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
445.44659375 |
transcript.pyannote[160].end |
447.55596875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
447.69096875 |
transcript.pyannote[161].end |
450.27284375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
450.27284375 |
transcript.pyannote[162].end |
450.30659375 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
450.30659375 |
transcript.pyannote[163].end |
450.32346875 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
450.32346875 |
transcript.pyannote[164].end |
451.74096875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
452.02784375 |
transcript.pyannote[165].end |
465.78096875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
466.40534375 |
transcript.pyannote[166].end |
489.86159375 |
transcript.pyannote[167].speaker |
SPEAKER_00 |
transcript.pyannote[167].start |
489.82784375 |
transcript.pyannote[167].end |
499.17659375 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
497.30346875 |
transcript.pyannote[168].end |
518.97096875 |
transcript.pyannote[169].speaker |
SPEAKER_00 |
transcript.pyannote[169].start |
512.23784375 |
transcript.pyannote[169].end |
513.31784375 |
transcript.pyannote[170].speaker |
SPEAKER_00 |
transcript.pyannote[170].start |
514.46534375 |
transcript.pyannote[170].end |
515.66346875 |
transcript.pyannote[171].speaker |
SPEAKER_00 |
transcript.pyannote[171].start |
517.21596875 |
transcript.pyannote[171].end |
519.81471875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
520.28721875 |
transcript.pyannote[172].end |
522.36284375 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
523.12221875 |
transcript.pyannote[173].end |
524.97846875 |
transcript.pyannote[174].speaker |
SPEAKER_00 |
transcript.pyannote[174].start |
525.73784375 |
transcript.pyannote[174].end |
528.64034375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
528.77534375 |
transcript.pyannote[175].end |
538.83284375 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
539.13659375 |
transcript.pyannote[176].end |
553.14284375 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
551.32034375 |
transcript.pyannote[177].end |
555.06659375 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
553.17659375 |
transcript.pyannote[178].end |
553.21034375 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
553.27784375 |
transcript.pyannote[179].end |
553.42971875 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
555.62346875 |
transcript.pyannote[180].end |
556.11284375 |
transcript.pyannote[181].speaker |
SPEAKER_00 |
transcript.pyannote[181].start |
556.92284375 |
transcript.pyannote[181].end |
558.86346875 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
558.86346875 |
transcript.pyannote[182].end |
558.89721875 |
transcript.pyannote[183].speaker |
SPEAKER_01 |
transcript.pyannote[183].start |
559.77471875 |
transcript.pyannote[183].end |
562.99784375 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
563.84159375 |
transcript.pyannote[184].end |
566.91284375 |
transcript.pyannote[185].speaker |
SPEAKER_00 |
transcript.pyannote[185].start |
566.91284375 |
transcript.pyannote[185].end |
566.96346875 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
567.14909375 |
transcript.pyannote[186].end |
567.21659375 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
567.21659375 |
transcript.pyannote[187].end |
570.54096875 |
transcript.pyannote[188].speaker |
SPEAKER_00 |
transcript.pyannote[188].start |
570.59159375 |
transcript.pyannote[188].end |
574.38846875 |
transcript.pyannote[189].speaker |
SPEAKER_00 |
transcript.pyannote[189].start |
574.47284375 |
transcript.pyannote[189].end |
576.10971875 |
transcript.pyannote[190].speaker |
SPEAKER_00 |
transcript.pyannote[190].start |
576.53159375 |
transcript.pyannote[190].end |
578.55659375 |
transcript.pyannote[191].speaker |
SPEAKER_00 |
transcript.pyannote[191].start |
579.01221875 |
transcript.pyannote[191].end |
582.26909375 |
transcript.pyannote[192].speaker |
SPEAKER_00 |
transcript.pyannote[192].start |
582.42096875 |
transcript.pyannote[192].end |
583.61909375 |
transcript.pyannote[193].speaker |
SPEAKER_00 |
transcript.pyannote[193].start |
584.19284375 |
transcript.pyannote[193].end |
585.44159375 |
transcript.pyannote[194].speaker |
SPEAKER_00 |
transcript.pyannote[194].start |
586.50471875 |
transcript.pyannote[194].end |
587.66909375 |
transcript.pyannote[195].speaker |
SPEAKER_00 |
transcript.pyannote[195].start |
588.07409375 |
transcript.pyannote[195].end |
588.78284375 |
transcript.pyannote[196].speaker |
SPEAKER_00 |
transcript.pyannote[196].start |
589.39034375 |
transcript.pyannote[196].end |
590.77409375 |
transcript.pyannote[197].speaker |
SPEAKER_01 |
transcript.pyannote[197].start |
590.77409375 |
transcript.pyannote[197].end |
590.79096875 |
transcript.pyannote[198].speaker |
SPEAKER_01 |
transcript.pyannote[198].start |
592.20846875 |
transcript.pyannote[198].end |
592.49534375 |
transcript.pyannote[199].speaker |
SPEAKER_01 |
transcript.pyannote[199].start |
592.86659375 |
transcript.pyannote[199].end |
604.74659375 |
transcript.pyannote[200].speaker |
SPEAKER_00 |
transcript.pyannote[200].start |
593.03534375 |
transcript.pyannote[200].end |
593.13659375 |
transcript.pyannote[201].speaker |
SPEAKER_00 |
transcript.pyannote[201].start |
593.17034375 |
transcript.pyannote[201].end |
593.25471875 |
transcript.pyannote[202].speaker |
SPEAKER_00 |
transcript.pyannote[202].start |
593.84534375 |
transcript.pyannote[202].end |
593.96346875 |
transcript.pyannote[203].speaker |
SPEAKER_00 |
transcript.pyannote[203].start |
596.05596875 |
transcript.pyannote[203].end |
596.47784375 |
transcript.pyannote[204].speaker |
SPEAKER_00 |
transcript.pyannote[204].start |
601.38846875 |
transcript.pyannote[204].end |
604.64534375 |
transcript.pyannote[205].speaker |
SPEAKER_01 |
transcript.pyannote[205].start |
604.93221875 |
transcript.pyannote[205].end |
610.92284375 |
transcript.pyannote[206].speaker |
SPEAKER_01 |
transcript.pyannote[206].start |
611.74971875 |
transcript.pyannote[206].end |
612.23909375 |
transcript.pyannote[207].speaker |
SPEAKER_00 |
transcript.pyannote[207].start |
612.00284375 |
transcript.pyannote[207].end |
612.49221875 |
transcript.pyannote[208].speaker |
SPEAKER_01 |
transcript.pyannote[208].start |
612.49221875 |
transcript.pyannote[208].end |
612.57659375 |
transcript.pyannote[209].speaker |
SPEAKER_00 |
transcript.pyannote[209].start |
612.57659375 |
transcript.pyannote[209].end |
612.67784375 |
transcript.pyannote[210].speaker |
SPEAKER_01 |
transcript.pyannote[210].start |
612.67784375 |
transcript.pyannote[210].end |
626.53221875 |
transcript.pyannote[211].speaker |
SPEAKER_01 |
transcript.pyannote[211].start |
626.78534375 |
transcript.pyannote[211].end |
630.80159375 |
transcript.pyannote[212].speaker |
SPEAKER_00 |
transcript.pyannote[212].start |
630.80159375 |
transcript.pyannote[212].end |
630.91971875 |
transcript.pyannote[213].speaker |
SPEAKER_01 |
transcript.pyannote[213].start |
630.91971875 |
transcript.pyannote[213].end |
630.93659375 |
transcript.pyannote[214].speaker |
SPEAKER_00 |
transcript.pyannote[214].start |
630.93659375 |
transcript.pyannote[214].end |
631.86471875 |
transcript.pyannote[215].speaker |
SPEAKER_01 |
transcript.pyannote[215].start |
631.86471875 |
transcript.pyannote[215].end |
631.98284375 |
transcript.pyannote[216].speaker |
SPEAKER_01 |
transcript.pyannote[216].start |
632.13471875 |
transcript.pyannote[216].end |
632.20221875 |
transcript.pyannote[217].speaker |
SPEAKER_00 |
transcript.pyannote[217].start |
632.20221875 |
transcript.pyannote[217].end |
640.57221875 |
transcript.pyannote[218].speaker |
SPEAKER_01 |
transcript.pyannote[218].start |
633.72096875 |
transcript.pyannote[218].end |
635.96534375 |
transcript.pyannote[219].speaker |
SPEAKER_00 |
transcript.pyannote[219].start |
640.87596875 |
transcript.pyannote[219].end |
643.77846875 |
transcript.pyannote[220].speaker |
SPEAKER_00 |
transcript.pyannote[220].start |
644.68971875 |
transcript.pyannote[220].end |
646.07346875 |
transcript.pyannote[221].speaker |
SPEAKER_00 |
transcript.pyannote[221].start |
646.74846875 |
transcript.pyannote[221].end |
647.05221875 |
transcript.pyannote[222].speaker |
SPEAKER_00 |
transcript.pyannote[222].start |
647.64284375 |
transcript.pyannote[222].end |
647.65971875 |
transcript.pyannote[223].speaker |
SPEAKER_01 |
transcript.pyannote[223].start |
647.65971875 |
transcript.pyannote[223].end |
660.13034375 |
transcript.pyannote[224].speaker |
SPEAKER_00 |
transcript.pyannote[224].start |
659.28659375 |
transcript.pyannote[224].end |
662.20596875 |
transcript.pyannote[225].speaker |
SPEAKER_01 |
transcript.pyannote[225].start |
660.56909375 |
transcript.pyannote[225].end |
660.75471875 |
transcript.pyannote[226].speaker |
SPEAKER_01 |
transcript.pyannote[226].start |
661.86846875 |
transcript.pyannote[226].end |
665.85096875 |
transcript.pyannote[227].speaker |
SPEAKER_00 |
transcript.pyannote[227].start |
662.56034375 |
transcript.pyannote[227].end |
663.21846875 |
transcript.pyannote[228].speaker |
SPEAKER_00 |
transcript.pyannote[228].start |
664.87221875 |
transcript.pyannote[228].end |
665.76659375 |
transcript.pyannote[229].speaker |
SPEAKER_00 |
transcript.pyannote[229].start |
665.85096875 |
transcript.pyannote[229].end |
665.96909375 |
transcript.pyannote[230].speaker |
SPEAKER_01 |
transcript.pyannote[230].start |
665.96909375 |
transcript.pyannote[230].end |
667.13346875 |
transcript.pyannote[231].speaker |
SPEAKER_00 |
transcript.pyannote[231].start |
667.28534375 |
transcript.pyannote[231].end |
667.72409375 |
transcript.whisperx[0].start |
5.41 |
transcript.whisperx[0].end |
8.556 |
transcript.whisperx[0].text |
謝謝主席及各行政有請財政部的理事長請理事長 |
transcript.whisperx[1].start |
13.322 |
transcript.whisperx[1].end |
39.73 |
transcript.whisperx[1].text |
委員長你知道今天的提案財政部的具體是你們是沒有意見還是基礎我們尊重委員會的那個審查的結果你覺得我們的提案合理吧因為它是跟我們原來地方稅法通則第4條的立法意旨是相符的是對嘛我們當初我記得那時候最早最早有一個立委叫廖雪廣他提出一個政長稅 |
transcript.whisperx[2].start |
41.551 |
transcript.whisperx[2].end |
64.343 |
transcript.whisperx[2].text |
引起這個全國的軒然大波後來呢所以讓地方政府地方首長他能夠有這個這個手上有一點權力地方議會地方政府自己決定所以才有一個稅法通則這背景是這樣來的結果因為我們原來的法令就定了 |
transcript.whisperx[3].start |
65.342 |
transcript.whisperx[3].end |
76.192 |
transcript.whisperx[3].text |
就是等於是好像是地方稅最多就是30%可是事實上有些稅目你們沒有想到的所以我的案子就是說 |
transcript.whisperx[4].start |
77.892 |
transcript.whisperx[4].end |
78.292 |
transcript.whisperx[4].text |
我們來看第二題 |
transcript.whisperx[5].start |
105.902 |
transcript.whisperx[5].end |
120.682 |
transcript.whisperx[5].text |
你剛才提啊,你剛才回答吳委員的這個對話,我就覺得連續兩年,請問你啊,去年的營所稅多少?去年的營所稅一兆多少?超過一兆!前年多少? |
transcript.whisperx[6].start |
122.145 |
transcript.whisperx[6].end |
122.425 |
transcript.whisperx[6].text |
議員賴士葆 |
transcript.whisperx[7].start |
151.344 |
transcript.whisperx[7].end |
171.111 |
transcript.whisperx[7].text |
這個報告委員因為我們所得稅是落後徵收所以它如果是110像我們113年估測依據的經濟成長率是112年的經濟成長率所以只有百分之1.31而已而且從那個去年開始我們就發現產業確實是因為它的庫存很多它去化庫存很多 |
transcript.whisperx[8].start |
178.203 |
transcript.whisperx[8].end |
198.643 |
transcript.whisperx[8].text |
委員我們已經盡量核實了核實就要編一兆以上連續兩年都要一兆以上明明編的好啦不願意扯這個我要跟你扯來我跟你講這個統籌分配稅款現在統籌分配稅款你們訂了嘛今年編4千億一般補助款2300萬或者2500萬2500億對吧 |
transcript.whisperx[9].start |
204.653 |
transcript.whisperx[9].end |
215.88 |
transcript.whisperx[9].text |
所以加起來就是6500億,佔你們中央的25%,也就是四分之一給地方政府而已。 |
transcript.whisperx[10].start |
216.877 |
transcript.whisperx[10].end |
237.418 |
transcript.whisperx[10].text |
我們現在大家都社會氛圍啊,都說這個地方政府,國共的中央極權又極淺。錢在你手上啊,都看你臉色。看你今天心情好就多給一點,心情不好不少給一點。我們法律把它調整一下。 |
transcript.whisperx[11].start |
239.554 |
transcript.whisperx[11].end |
265.343 |
transcript.whisperx[11].text |
財政措施法律法好多委員十幾個版本都說要修!構憲式的選擇的立委大家立場可能不一樣我台北市選出來的我當然要看台北市啊我家裡是我從台中出來的我會關心台中市啊可是其他的委員關心台南的這是水平分配垂直分配 |
transcript.whisperx[12].start |
266.755 |
transcript.whisperx[12].end |
268.056 |
transcript.whisperx[12].text |
你先撥一塊肉出來吧! |
transcript.whisperx[13].start |
268.056 |
transcript.whisperx[13].end |
270.699 |
transcript.whisperx[13].text |
你先撥一塊肉出來吧!你很清楚啊! |
transcript.whisperx[14].start |
270.699 |
transcript.whisperx[14].end |
274.803 |
transcript.whisperx[14].text |
你們以前的長官李肅德任內 你很清楚啊! |
transcript.whisperx[15].start |
274.803 |
transcript.whisperx[15].end |
279.107 |
transcript.whisperx[15].text |
你們以前的長官李肅德任內他就撥了962億給地方政府 他就撥了962億給地方政府還擺不平! |
transcript.whisperx[16].start |
279.107 |
transcript.whisperx[16].end |
282.27 |
transcript.whisperx[16].text |
還擺不平!請問 這一次來講的話 你們可以割多少給地方政府? |
transcript.whisperx[17].start |
282.27 |
transcript.whisperx[17].end |
285.534 |
transcript.whisperx[17].text |
請問 這一次來講的話 你們可以割多少給地方政府? |
transcript.whisperx[18].start |
286.516 |
transcript.whisperx[18].end |
286.896 |
transcript.whisperx[18].text |
我提案啊!是 |
transcript.whisperx[19].start |
311.548 |
transcript.whisperx[19].end |
314.51 |
transcript.whisperx[19].text |
如果是我們優先處理這個垂直分配的話可能就是會擴大這個中央統籌分配稅款的規模 |
transcript.whisperx[20].start |
340.106 |
transcript.whisperx[20].end |
360.685 |
transcript.whisperx[20].text |
那當然就會變成說可能直轄市貨配的金額反而會大幅的增加那會不會是因為這樣子而拉到直轄市跟縣市財政的差距所以這部分我覺得我們在修法還是要兼顧這個你那個講到水平了我講說中央你心目中可以刮多少肉給地方政府啦 |
transcript.whisperx[21].start |
361.225 |
transcript.whisperx[21].end |
376.357 |
transcript.whisperx[21].text |
委員這個我想因為這個涉及到整個地方政府財政的分配所以我們目前也很積極要求地方政府你不割下來地方就沒有啊每個地方政府都是要錢啊不管是藍執政綠執政都要錢啊 |
transcript.whisperx[22].start |
377.398 |
transcript.whisperx[22].end |
383.662 |
transcript.whisperx[22].text |
我已經第二次,第一次問部長有沒有答案第二次問你,你是財﹑照你講你也可以當部長的當那麼久了,這個次長你是稅的,管稅的次長啊你總知道 |
transcript.whisperx[23].start |
398.148 |
transcript.whisperx[23].end |
399.028 |
transcript.whisperx[23].text |
我們尊重委員的提案啦 |
transcript.whisperx[24].start |
425.427 |
transcript.whisperx[24].end |
442.167 |
transcript.whisperx[24].text |
因為各個委員都有不同的版本,到時候可能要做充分的討論。其他委員科技也都一千億,有的六千億,我是很科技的,三千億也科資的。我們看到五月份現在開始報稅了,請問現在網路報稅比例多少? |
transcript.whisperx[25].start |
446.93 |
transcript.whisperx[25].end |
465.567 |
transcript.whisperx[25].text |
98點多吧,大概快將近99%了。手機報稅多少?手機報稅目前到今天,去年大概是百分之三成左右,但是我們5月,從5月1號到今天5月5號為止,大概戰服大概百分之50左右。 |
transcript.whisperx[26].start |
466.565 |
transcript.whisperx[26].end |
489.612 |
transcript.whisperx[26].text |
未來你的目標希望全部都可以手機報稅嗎?當然是希望大家都用手機報稅但是我們並不預期會百分之百因為還是有很多的民眾他不習慣用手機因為他畢竟螢幕比較小那可能大家還是會用這個電腦或平板來申報所以我們是覺得可能手機報稅的比重未來希望能夠佔到三成左右 |
transcript.whisperx[27].start |
489.872 |
transcript.whisperx[27].end |
496.234 |
transcript.whisperx[27].text |
目前我們今年最新的做法就是在我們的這個現象版還有就是手機版上面都可以看到一個所謂的查調資料的稅額估算表 |
transcript.whisperx[28].start |
508.757 |
transcript.whisperx[28].end |
509.337 |
transcript.whisperx[28].text |
賴士葆賴士葆 |
transcript.whisperx[29].start |
525.743 |
transcript.whisperx[29].end |
525.783 |
transcript.whisperx[29].text |
賴士葆 |
transcript.whisperx[30].start |
556.973 |
transcript.whisperx[30].end |
562.869 |
transcript.whisperx[30].text |
這個如果退稅什麼時候你們再通知?退稅我們是有分3批,第一批退稅在7月底。 |
transcript.whisperx[31].start |
564.068 |
transcript.whisperx[31].end |
572.033 |
transcript.whisperx[31].text |
現在很多的網紅平台都是YT、FB、IG、Podcast都是國外的公司欸那他分論了網紅的分論了這屬於境外所得還是境內所得 |
transcript.whisperx[32].start |
592.273 |
transcript.whisperx[32].end |
592.934 |
transcript.whisperx[32].text |
議員賴士葆 |
transcript.whisperx[33].start |
611.809 |
transcript.whisperx[33].end |
612.87 |
transcript.whisperx[33].text |
什麽意思?再具體一點。 |
transcript.whisperx[34].start |
627.026 |
transcript.whisperx[34].end |
643.283 |
transcript.whisperx[34].text |
那如果是境外的廣告那當然就不是我們台灣的來源所得那這個是境外所得?如果是純粹是境外公司的話你查得到嗎?你現在看比如說我們的郭委員他開一個節目他網紅他全世界看到的不是只有台灣看嗎? |
transcript.whisperx[35].start |
644.918 |
transcript.whisperx[35].end |
666.791 |
transcript.whisperx[35].text |
對,如果他是在台灣設立的平台,然後他的收入來源的話,都是因為他在境內從事這個網紅的行為所收取的報酬的話,這個當然就是中華民國境內的來源。所以即便是國外的人看給他錢一樣。是是是,因為你就是境內的交易行為產生的收入。對,是,謝謝委員。 |