IVOD_ID |
152154 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/152154 |
日期 |
2024-05-02 |
會議資料.會議代碼 |
委員會-11-1-19-10 |
會議資料.會議代碼:str |
第11屆第1會期經濟委員會第10次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
10 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
19 |
會議資料.委員會代碼:str[0] |
經濟委員會 |
會議資料.標題 |
第11屆第1會期經濟委員會第10次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-05-02T10:27:08+08:00 |
結束時間 |
2024-05-02T10:36:05+08:00 |
影片長度 |
00:08:57 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6f015fe8e6787db1fa04b2a2a01bba7fe12ebde737ab3c195c150fdf38e5cae668093d066759b1035ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鄭天財Sra Kacaw |
委員發言時間 |
10:27:08 - 10:36:05 |
會議時間 |
2024-05-02T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期經濟委員會第10次全體委員會議(事由:審查:
一、行政院函請審議「中小企業發展條例部分條文修正草案」案。
二、本院委員柯志恩等17人擬具「中小企業發展條例第三十六條之二條文修正草案」案。
三、本院委員賴士葆等19人擬具「中小企業發展條例第三十六條之二條文修正草案」案。
四、本院委員楊瓊瓔等16人擬具「中小企業發展條例第三十六條之二條文修正草案」案。
五、本院委員楊瓊瓔等16人擬具「中小企業發展條例增訂第三十六條之四條文草案」案。
六、本院台灣民眾黨黨團擬具「中小企業發展條例部分條文修正草案」案。
七、本院國民黨黨團擬具「中小企業發展條例第三十六條之二條文修正草案」案。
八、本院委員張智倫等19人擬具「中小企業發展條例第三十五條、第三十六條之二及第四十條條文修正草案」案。
九、本院委員王世堅等16人擬具「中小企業發展條例第三十五條、第三十六條之二及第四十條條文修正草案」案。
十、本院委員郭國文等19人擬具「中小企業發展條例第三十六條之二條文修正草案」案。
十一、本院委員邱議瑩等29人擬具「中小企業發展條例部分條文修正草案」案。
(詢答及處理,委員郭國文等人提案如未接獲議事處來函則不予審查)【4月29日、5月1日及2日三天一次會】) |
gazette.lineno |
308 |
gazette.blocks[0][0] |
鄭天財Sra Kacaw委員:(10時27分)主席、各位委員。請部長、中小及新創企業署署長,還有勞動部。 |
gazette.blocks[1][0] |
王部長美花:委員好。 |
gazette.blocks[2][0] |
鄭天財Sra Kacaw委員:部長辛苦了。經濟部今天的報告裡面提到,我國中小企業家數約163萬家,占全體企業98.90%,就業人數約913萬人,占總就業人數80%,是我國經濟發展穩定的力量。我們看這是昨天主計總處在財政委員會的報告,就GDP分配面結構觀察,受僱人員報酬所占比重在民國70及80年代平均約為49.3%;90年代為45.5%;101到111年間為44.6%(介於43.1%到46%之間)。我們從這個來看,受僱人員報酬所占的比重在遞減,而剛才談的,我們的中小企業是占整個的最多數,所以勞工也就在這個地方最多。我們看剛才主計總處的報告裡面,從民國71年到90年受僱人員報酬占GDP分配面結構來看,49.3%,營業盈餘占30.7%,甚至31.7%、33.8%,然後我們看110年或111年,剛才也講了這個數字,受僱人員報酬占43.1%、43.9%,然後營業盈餘的占比是增加,36.4%、34.4%,比民國71年到90年的都來得高,所以我們要去參考這個。我們決定要給中小企業協助,協助了之後,要怎麼樣讓它也能夠照顧這些受僱人員,也就是勞工,這個部分,經濟部、勞動部,我們政府,都應該去重視。我們看最右邊,生產及進口稅,71年到80年是10.5%,那時候確實是這樣喔!然後你看111年,5.1%,110年4.7%,進來的稅收減少了,營業盈餘增加了,但是並沒有轉嫁到受僱人員,何況現在還有相關的通貨膨脹,包括我們勞工要買房子也很難,房價高,生活的需求都增加。 |
gazette.blocks[2][1] |
我們看勞動部的報告,這裡面你是支持行政院版,這也不能怪你,這個行政院已經通過了,當然就支持了。但是今天在討論,部長或者是中小企業署長,我們可以再思考,從剛才的數字,我們要再思考,尤其是勞動部,今天勞動部列席代表的層級也很低,沒有關係,勇敢地說,我也是老公務員了,我層級很低的時候,也是勇敢地說,這樣的數字,行政院版到底是不是合理?剛才也有委員同仁提到,24歲,以前的24歲早就工作了沒有錯,但是現在的24歲都還要唸書、還在大學、還在研究所、還在找工作,對不對?你還是維持這個!然後45歲以上,現在都高齡化了、少子女化了,到底對不對?我們企業要協助,但是勞工怎麼樣也能夠被照顧,有沒有考量?所以這個部分,部長、署長、我們勞動部的同仁,真的,以前跟我們現在社會勞動力的結構不一樣啊!部長,要不要說明一下? |
gazette.blocks[3][0] |
王部長美花:謝謝。第一個、45歲以上這個部分其實是放得非常寬,也就是只要你新聘1個45歲以上的,你就可以得到這個加成減除率…… |
gazette.blocks[4][0] |
鄭天財Sra Kacaw委員:我知道啦!部長,我的意思是第一個、24歲以下要進場的,都還在唸書,24歲以後,差不多45歲,他本來就一定會工作,到底應該怎麼樣,要有一些分析的數據,就我們臺灣整個勞動年齡的結構,恐怕要有一些很精準的分析。這個我都知道,你的用意,我知道,但是到底這樣子是合不合理?有沒有符合我們現在勞動力的結構?這個部分真的是須要好好去思考,協助中小企業是應該的,但是在這樣的過程當中,要不要有另外其他的條文說這些獲利怎麼樣去照顧勞工的薪資?這個都必須要一起通盤地去考量,可以嗎? |
gazette.blocks[5][0] |
王部長美花:對於基層員工,怎麼樣讓他能夠得到比較好的薪資待遇,其實有很多面向…… |
gazette.blocks[6][0] |
鄭天財Sra Kacaw委員:我知道。 |
gazette.blocks[7][0] |
王部長美花:今天只是就法律面來弄。另外,政府在不管增加高齡就業也好,補助企業也好,也都會去做,相關設定的參數背後其實也有做一些相關的依據來參考。 |
gazette.blocks[8][0] |
鄭天財Sra Kacaw委員:今天我把昨天主計總處的報告呈現給經濟部部長、中小企業署署長,你就可以看得出來,受僱人員報酬是在降低的,營業盈餘是升高的,以上,謝謝。 |
gazette.blocks[9][0] |
王部長美花:是。 |
gazette.blocks[10][0] |
主席:謝謝。 |
gazette.blocks[10][1] |
接下來請張啓楷委員詢答。 |
gazette.agenda.page_end |
510 |
gazette.agenda.meet_id |
委員會-11-1-19-10 |
gazette.agenda.speakers[0] |
楊瓊瓔 |
gazette.agenda.speakers[1] |
謝衣鳯 |
gazette.agenda.speakers[2] |
賴士葆 |
gazette.agenda.speakers[3] |
邱議瑩 |
gazette.agenda.speakers[4] |
張智倫 |
gazette.agenda.speakers[5] |
郭國文 |
gazette.agenda.speakers[6] |
陳亭妃 |
gazette.agenda.speakers[7] |
林岱樺 |
gazette.agenda.speakers[8] |
鄭正鈐 |
gazette.agenda.speakers[9] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[10] |
張啓楷 |
gazette.agenda.speakers[11] |
呂玉玲 |
gazette.agenda.speakers[12] |
蔡易餘 |
gazette.agenda.speakers[13] |
洪孟楷 |
gazette.agenda.speakers[14] |
邱志偉 |
gazette.agenda.speakers[15] |
鍾佳濱 |
gazette.agenda.speakers[16] |
賴瑞隆 |
gazette.agenda.speakers[17] |
陳冠廷 |
gazette.agenda.speakers[18] |
陳培瑜 |
gazette.agenda.speakers[19] |
張嘉郡 |
gazette.agenda.speakers[20] |
黃國昌 |
gazette.agenda.speakers[21] |
陳超明 |
gazette.agenda.speakers[22] |
牛煦庭 |
gazette.agenda.speakers[23] |
羅廷瑋 |
gazette.agenda.page_start |
419 |
gazette.agenda.meetingDate[0] |
2024-05-02 |
gazette.agenda.gazette_id |
1133801 |
gazette.agenda.agenda_lcidc_ids[0] |
1133801_00007 |
gazette.agenda.meet_name |
立法院第11屆第1會期經濟委員會第10次全體委員會議紀錄 |
gazette.agenda.content |
審查:一、行政院函請審議「中小企業發展條例部分條文修正草案」案;二、本院委員柯志恩等
17人擬具「中小企業發展條例第三十六條之二條文修正草案」案;三、本院委員賴士葆等19人擬
具「中小企業發展條例第三十六條之二條文修正草案」案;四、本院委員楊瓊瓔等16人擬具「中
小企業發展條例第三十六條之二條文修正草案」案;五、本院委員楊瓊瓔等16人擬具「中小企業
發展條例增訂第三十六條之四條文草案」案;六、本院台灣民眾黨黨團擬具「中小企業發展條例
部分條文修正草案」案;七、本院國民黨黨團擬具「中小企業發展條例第三十六條之二條文修正
草案」案;八、本院委員張智倫等19人擬具「中小企業發展條例第三十五條、第三十六條之二及
第四十條條文修正草案」案;九、本院委員王世堅等16人擬具「中小企業發展條例第三十五條、
第三十六條之二及第四十條條文修正草案」案;十、本院委員郭國文等19人擬具「中小企業發展
條例第三十六條之二條文修正草案」案;十一、本院委員邱議瑩等29人擬具「中小企業發展條例
部分條文修正草案」案 |
gazette.agenda.agenda_id |
1133801_00006 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
0.79034375 |
transcript.pyannote[0].end |
3.74346875 |
transcript.pyannote[1].speaker |
SPEAKER_01 |
transcript.pyannote[1].start |
21.76596875 |
transcript.pyannote[1].end |
23.08221875 |
transcript.pyannote[2].speaker |
SPEAKER_01 |
transcript.pyannote[2].start |
23.53784375 |
transcript.pyannote[2].end |
25.66409375 |
transcript.pyannote[3].speaker |
SPEAKER_01 |
transcript.pyannote[3].start |
26.49096875 |
transcript.pyannote[3].end |
27.48659375 |
transcript.pyannote[4].speaker |
SPEAKER_01 |
transcript.pyannote[4].start |
28.65096875 |
transcript.pyannote[4].end |
30.65909375 |
transcript.pyannote[5].speaker |
SPEAKER_01 |
transcript.pyannote[5].start |
31.46909375 |
transcript.pyannote[5].end |
32.43096875 |
transcript.pyannote[6].speaker |
SPEAKER_01 |
transcript.pyannote[6].start |
34.77659375 |
transcript.pyannote[6].end |
36.44721875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
35.45159375 |
transcript.pyannote[7].end |
35.53596875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
39.87284375 |
transcript.pyannote[8].end |
40.26096875 |
transcript.pyannote[9].speaker |
SPEAKER_01 |
transcript.pyannote[9].start |
40.26096875 |
transcript.pyannote[9].end |
42.75846875 |
transcript.pyannote[10].speaker |
SPEAKER_01 |
transcript.pyannote[10].start |
43.93971875 |
transcript.pyannote[10].end |
44.56409375 |
transcript.pyannote[11].speaker |
SPEAKER_01 |
transcript.pyannote[11].start |
47.17971875 |
transcript.pyannote[11].end |
58.38471875 |
transcript.pyannote[12].speaker |
SPEAKER_01 |
transcript.pyannote[12].start |
58.90784375 |
transcript.pyannote[12].end |
59.92034375 |
transcript.pyannote[13].speaker |
SPEAKER_01 |
transcript.pyannote[13].start |
60.46034375 |
transcript.pyannote[13].end |
63.64971875 |
transcript.pyannote[14].speaker |
SPEAKER_01 |
transcript.pyannote[14].start |
64.03784375 |
transcript.pyannote[14].end |
65.42159375 |
transcript.pyannote[15].speaker |
SPEAKER_01 |
transcript.pyannote[15].start |
65.91096875 |
transcript.pyannote[15].end |
69.20159375 |
transcript.pyannote[16].speaker |
SPEAKER_01 |
transcript.pyannote[16].start |
70.39971875 |
transcript.pyannote[16].end |
76.01909375 |
transcript.pyannote[17].speaker |
SPEAKER_01 |
transcript.pyannote[17].start |
76.18784375 |
transcript.pyannote[17].end |
76.66034375 |
transcript.pyannote[18].speaker |
SPEAKER_01 |
transcript.pyannote[18].start |
77.57159375 |
transcript.pyannote[18].end |
81.06471875 |
transcript.pyannote[19].speaker |
SPEAKER_01 |
transcript.pyannote[19].start |
81.53721875 |
transcript.pyannote[19].end |
84.38909375 |
transcript.pyannote[20].speaker |
SPEAKER_01 |
transcript.pyannote[20].start |
84.96284375 |
transcript.pyannote[20].end |
87.88221875 |
transcript.pyannote[21].speaker |
SPEAKER_01 |
transcript.pyannote[21].start |
88.38846875 |
transcript.pyannote[21].end |
89.78909375 |
transcript.pyannote[22].speaker |
SPEAKER_01 |
transcript.pyannote[22].start |
90.24471875 |
transcript.pyannote[22].end |
92.30346875 |
transcript.pyannote[23].speaker |
SPEAKER_01 |
transcript.pyannote[23].start |
92.87721875 |
transcript.pyannote[23].end |
95.79659375 |
transcript.pyannote[24].speaker |
SPEAKER_01 |
transcript.pyannote[24].start |
97.29846875 |
transcript.pyannote[24].end |
100.40346875 |
transcript.pyannote[25].speaker |
SPEAKER_01 |
transcript.pyannote[25].start |
100.97721875 |
transcript.pyannote[25].end |
102.98534375 |
transcript.pyannote[26].speaker |
SPEAKER_01 |
transcript.pyannote[26].start |
103.77846875 |
transcript.pyannote[26].end |
104.35221875 |
transcript.pyannote[27].speaker |
SPEAKER_01 |
transcript.pyannote[27].start |
104.87534375 |
transcript.pyannote[27].end |
107.22096875 |
transcript.pyannote[28].speaker |
SPEAKER_01 |
transcript.pyannote[28].start |
108.63846875 |
transcript.pyannote[28].end |
111.20346875 |
transcript.pyannote[29].speaker |
SPEAKER_01 |
transcript.pyannote[29].start |
112.11471875 |
transcript.pyannote[29].end |
113.76846875 |
transcript.pyannote[30].speaker |
SPEAKER_01 |
transcript.pyannote[30].start |
114.59534375 |
transcript.pyannote[30].end |
117.91971875 |
transcript.pyannote[31].speaker |
SPEAKER_01 |
transcript.pyannote[31].start |
118.42596875 |
transcript.pyannote[31].end |
120.07971875 |
transcript.pyannote[32].speaker |
SPEAKER_01 |
transcript.pyannote[32].start |
120.68721875 |
transcript.pyannote[32].end |
121.00784375 |
transcript.pyannote[33].speaker |
SPEAKER_01 |
transcript.pyannote[33].start |
121.85159375 |
transcript.pyannote[33].end |
122.69534375 |
transcript.pyannote[34].speaker |
SPEAKER_01 |
transcript.pyannote[34].start |
123.37034375 |
transcript.pyannote[34].end |
124.31534375 |
transcript.pyannote[35].speaker |
SPEAKER_01 |
transcript.pyannote[35].start |
124.93971875 |
transcript.pyannote[35].end |
125.17596875 |
transcript.pyannote[36].speaker |
SPEAKER_01 |
transcript.pyannote[36].start |
126.08721875 |
transcript.pyannote[36].end |
127.18409375 |
transcript.pyannote[37].speaker |
SPEAKER_01 |
transcript.pyannote[37].start |
127.65659375 |
transcript.pyannote[37].end |
129.25971875 |
transcript.pyannote[38].speaker |
SPEAKER_01 |
transcript.pyannote[38].start |
129.42846875 |
transcript.pyannote[38].end |
132.46596875 |
transcript.pyannote[39].speaker |
SPEAKER_01 |
transcript.pyannote[39].start |
133.52909375 |
transcript.pyannote[39].end |
133.83284375 |
transcript.pyannote[40].speaker |
SPEAKER_01 |
transcript.pyannote[40].start |
134.76096875 |
transcript.pyannote[40].end |
135.30096875 |
transcript.pyannote[41].speaker |
SPEAKER_01 |
transcript.pyannote[41].start |
135.89159375 |
transcript.pyannote[41].end |
136.39784375 |
transcript.pyannote[42].speaker |
SPEAKER_01 |
transcript.pyannote[42].start |
137.20784375 |
transcript.pyannote[42].end |
139.46909375 |
transcript.pyannote[43].speaker |
SPEAKER_01 |
transcript.pyannote[43].start |
140.92034375 |
transcript.pyannote[43].end |
142.40534375 |
transcript.pyannote[44].speaker |
SPEAKER_01 |
transcript.pyannote[44].start |
142.48971875 |
transcript.pyannote[44].end |
146.01659375 |
transcript.pyannote[45].speaker |
SPEAKER_01 |
transcript.pyannote[45].start |
146.57346875 |
transcript.pyannote[45].end |
148.36221875 |
transcript.pyannote[46].speaker |
SPEAKER_01 |
transcript.pyannote[46].start |
149.17221875 |
transcript.pyannote[46].end |
149.42534375 |
transcript.pyannote[47].speaker |
SPEAKER_01 |
transcript.pyannote[47].start |
149.72909375 |
transcript.pyannote[47].end |
151.39971875 |
transcript.pyannote[48].speaker |
SPEAKER_01 |
transcript.pyannote[48].start |
152.00721875 |
transcript.pyannote[48].end |
152.31096875 |
transcript.pyannote[49].speaker |
SPEAKER_01 |
transcript.pyannote[49].start |
153.59346875 |
transcript.pyannote[49].end |
156.47909375 |
transcript.pyannote[50].speaker |
SPEAKER_01 |
transcript.pyannote[50].start |
157.27221875 |
transcript.pyannote[50].end |
158.79096875 |
transcript.pyannote[51].speaker |
SPEAKER_01 |
transcript.pyannote[51].start |
159.28034375 |
transcript.pyannote[51].end |
164.78159375 |
transcript.pyannote[52].speaker |
SPEAKER_01 |
transcript.pyannote[52].start |
166.23284375 |
transcript.pyannote[52].end |
170.63721875 |
transcript.pyannote[53].speaker |
SPEAKER_01 |
transcript.pyannote[53].start |
170.89034375 |
transcript.pyannote[53].end |
173.18534375 |
transcript.pyannote[54].speaker |
SPEAKER_01 |
transcript.pyannote[54].start |
173.72534375 |
transcript.pyannote[54].end |
177.45471875 |
transcript.pyannote[55].speaker |
SPEAKER_01 |
transcript.pyannote[55].start |
177.99471875 |
transcript.pyannote[55].end |
179.58096875 |
transcript.pyannote[56].speaker |
SPEAKER_01 |
transcript.pyannote[56].start |
180.23909375 |
transcript.pyannote[56].end |
182.66909375 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
182.87159375 |
transcript.pyannote[57].end |
183.56346875 |
transcript.pyannote[58].speaker |
SPEAKER_01 |
transcript.pyannote[58].start |
184.40721875 |
transcript.pyannote[58].end |
188.62596875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
189.16596875 |
transcript.pyannote[59].end |
190.81971875 |
transcript.pyannote[60].speaker |
SPEAKER_01 |
transcript.pyannote[60].start |
191.73096875 |
transcript.pyannote[60].end |
192.47346875 |
transcript.pyannote[61].speaker |
SPEAKER_01 |
transcript.pyannote[61].start |
192.62534375 |
transcript.pyannote[61].end |
193.82346875 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
193.92471875 |
transcript.pyannote[62].end |
195.00471875 |
transcript.pyannote[63].speaker |
SPEAKER_01 |
transcript.pyannote[63].start |
195.76409375 |
transcript.pyannote[63].end |
199.13909375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
200.72534375 |
transcript.pyannote[64].end |
201.70409375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
202.93596875 |
transcript.pyannote[65].end |
204.21846875 |
transcript.pyannote[66].speaker |
SPEAKER_01 |
transcript.pyannote[66].start |
204.30284375 |
transcript.pyannote[66].end |
205.39971875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
205.77096875 |
transcript.pyannote[67].end |
206.73284375 |
transcript.pyannote[68].speaker |
SPEAKER_01 |
transcript.pyannote[68].start |
207.72846875 |
transcript.pyannote[68].end |
207.98159375 |
transcript.pyannote[69].speaker |
SPEAKER_01 |
transcript.pyannote[69].start |
208.48784375 |
transcript.pyannote[69].end |
211.10346875 |
transcript.pyannote[70].speaker |
SPEAKER_01 |
transcript.pyannote[70].start |
211.64346875 |
transcript.pyannote[70].end |
213.63471875 |
transcript.pyannote[71].speaker |
SPEAKER_01 |
transcript.pyannote[71].start |
214.30971875 |
transcript.pyannote[71].end |
216.08159375 |
transcript.pyannote[72].speaker |
SPEAKER_01 |
transcript.pyannote[72].start |
216.99284375 |
transcript.pyannote[72].end |
220.38471875 |
transcript.pyannote[73].speaker |
SPEAKER_01 |
transcript.pyannote[73].start |
222.35909375 |
transcript.pyannote[73].end |
225.64971875 |
transcript.pyannote[74].speaker |
SPEAKER_01 |
transcript.pyannote[74].start |
226.32471875 |
transcript.pyannote[74].end |
228.31596875 |
transcript.pyannote[75].speaker |
SPEAKER_01 |
transcript.pyannote[75].start |
228.87284375 |
transcript.pyannote[75].end |
230.79659375 |
transcript.pyannote[76].speaker |
SPEAKER_01 |
transcript.pyannote[76].start |
231.20159375 |
transcript.pyannote[76].end |
232.39971875 |
transcript.pyannote[77].speaker |
SPEAKER_01 |
transcript.pyannote[77].start |
232.78784375 |
transcript.pyannote[77].end |
234.88034375 |
transcript.pyannote[78].speaker |
SPEAKER_01 |
transcript.pyannote[78].start |
236.70284375 |
transcript.pyannote[78].end |
238.93034375 |
transcript.pyannote[79].speaker |
SPEAKER_01 |
transcript.pyannote[79].start |
239.62221875 |
transcript.pyannote[79].end |
240.16221875 |
transcript.pyannote[80].speaker |
SPEAKER_01 |
transcript.pyannote[80].start |
240.76971875 |
transcript.pyannote[80].end |
244.26284375 |
transcript.pyannote[81].speaker |
SPEAKER_01 |
transcript.pyannote[81].start |
244.81971875 |
transcript.pyannote[81].end |
246.81096875 |
transcript.pyannote[82].speaker |
SPEAKER_01 |
transcript.pyannote[82].start |
247.68846875 |
transcript.pyannote[82].end |
249.27471875 |
transcript.pyannote[83].speaker |
SPEAKER_01 |
transcript.pyannote[83].start |
249.47721875 |
transcript.pyannote[83].end |
251.55284375 |
transcript.pyannote[84].speaker |
SPEAKER_01 |
transcript.pyannote[84].start |
252.19409375 |
transcript.pyannote[84].end |
252.95346875 |
transcript.pyannote[85].speaker |
SPEAKER_01 |
transcript.pyannote[85].start |
253.49346875 |
transcript.pyannote[85].end |
258.38721875 |
transcript.pyannote[86].speaker |
SPEAKER_01 |
transcript.pyannote[86].start |
258.94409375 |
transcript.pyannote[86].end |
261.07034375 |
transcript.pyannote[87].speaker |
SPEAKER_01 |
transcript.pyannote[87].start |
262.16721875 |
transcript.pyannote[87].end |
265.12034375 |
transcript.pyannote[88].speaker |
SPEAKER_01 |
transcript.pyannote[88].start |
266.70659375 |
transcript.pyannote[88].end |
273.25409375 |
transcript.pyannote[89].speaker |
SPEAKER_01 |
transcript.pyannote[89].start |
273.96284375 |
transcript.pyannote[89].end |
275.71784375 |
transcript.pyannote[90].speaker |
SPEAKER_01 |
transcript.pyannote[90].start |
276.69659375 |
transcript.pyannote[90].end |
278.14784375 |
transcript.pyannote[91].speaker |
SPEAKER_01 |
transcript.pyannote[91].start |
278.89034375 |
transcript.pyannote[91].end |
281.26971875 |
transcript.pyannote[92].speaker |
SPEAKER_01 |
transcript.pyannote[92].start |
281.92784375 |
transcript.pyannote[92].end |
282.83909375 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
283.75034375 |
transcript.pyannote[93].end |
284.02034375 |
transcript.pyannote[94].speaker |
SPEAKER_01 |
transcript.pyannote[94].start |
284.45909375 |
transcript.pyannote[94].end |
285.79221875 |
transcript.pyannote[95].speaker |
SPEAKER_01 |
transcript.pyannote[95].start |
286.12971875 |
transcript.pyannote[95].end |
287.42909375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
288.67784375 |
transcript.pyannote[96].end |
289.77471875 |
transcript.pyannote[97].speaker |
SPEAKER_01 |
transcript.pyannote[97].start |
290.85471875 |
transcript.pyannote[97].end |
292.00221875 |
transcript.pyannote[98].speaker |
SPEAKER_01 |
transcript.pyannote[98].start |
293.04846875 |
transcript.pyannote[98].end |
293.38596875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
293.75721875 |
transcript.pyannote[99].end |
294.92159375 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
295.59659375 |
transcript.pyannote[100].end |
297.06471875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
297.82409375 |
transcript.pyannote[101].end |
298.88721875 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
299.64659375 |
transcript.pyannote[102].end |
300.52409375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
300.77721875 |
transcript.pyannote[103].end |
302.02596875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
303.10596875 |
transcript.pyannote[104].end |
305.38409375 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
306.17721875 |
transcript.pyannote[105].end |
306.44721875 |
transcript.pyannote[106].speaker |
SPEAKER_01 |
transcript.pyannote[106].start |
307.39221875 |
transcript.pyannote[106].end |
308.70846875 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
309.31596875 |
transcript.pyannote[107].end |
310.32846875 |
transcript.pyannote[108].speaker |
SPEAKER_01 |
transcript.pyannote[108].start |
310.90221875 |
transcript.pyannote[108].end |
312.72471875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
315.25596875 |
transcript.pyannote[109].end |
315.57659375 |
transcript.pyannote[110].speaker |
SPEAKER_01 |
transcript.pyannote[110].start |
316.94346875 |
transcript.pyannote[110].end |
319.69409375 |
transcript.pyannote[111].speaker |
SPEAKER_01 |
transcript.pyannote[111].start |
320.47034375 |
transcript.pyannote[111].end |
321.33096875 |
transcript.pyannote[112].speaker |
SPEAKER_01 |
transcript.pyannote[112].start |
322.49534375 |
transcript.pyannote[112].end |
324.41909375 |
transcript.pyannote[113].speaker |
SPEAKER_01 |
transcript.pyannote[113].start |
324.87471875 |
transcript.pyannote[113].end |
326.42721875 |
transcript.pyannote[114].speaker |
SPEAKER_01 |
transcript.pyannote[114].start |
326.51159375 |
transcript.pyannote[114].end |
327.91221875 |
transcript.pyannote[115].speaker |
SPEAKER_01 |
transcript.pyannote[115].start |
329.11034375 |
transcript.pyannote[115].end |
330.30846875 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
330.66284375 |
transcript.pyannote[116].end |
331.64159375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
332.45159375 |
transcript.pyannote[117].end |
335.33721875 |
transcript.pyannote[118].speaker |
SPEAKER_01 |
transcript.pyannote[118].start |
336.58596875 |
transcript.pyannote[118].end |
337.00784375 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
337.24409375 |
transcript.pyannote[119].end |
338.84721875 |
transcript.pyannote[120].speaker |
SPEAKER_01 |
transcript.pyannote[120].start |
339.87659375 |
transcript.pyannote[120].end |
340.19721875 |
transcript.pyannote[121].speaker |
SPEAKER_01 |
transcript.pyannote[121].start |
340.72034375 |
transcript.pyannote[121].end |
342.47534375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
344.09534375 |
transcript.pyannote[122].end |
346.74471875 |
transcript.pyannote[123].speaker |
SPEAKER_01 |
transcript.pyannote[123].start |
348.49971875 |
transcript.pyannote[123].end |
349.02284375 |
transcript.pyannote[124].speaker |
SPEAKER_01 |
transcript.pyannote[124].start |
349.12409375 |
transcript.pyannote[124].end |
349.93409375 |
transcript.pyannote[125].speaker |
SPEAKER_01 |
transcript.pyannote[125].start |
353.24159375 |
transcript.pyannote[125].end |
354.62534375 |
transcript.pyannote[126].speaker |
SPEAKER_01 |
transcript.pyannote[126].start |
354.94596875 |
transcript.pyannote[126].end |
355.68846875 |
transcript.pyannote[127].speaker |
SPEAKER_01 |
transcript.pyannote[127].start |
355.80659375 |
transcript.pyannote[127].end |
356.93721875 |
transcript.pyannote[128].speaker |
SPEAKER_01 |
transcript.pyannote[128].start |
357.81471875 |
transcript.pyannote[128].end |
359.45159375 |
transcript.pyannote[129].speaker |
SPEAKER_01 |
transcript.pyannote[129].start |
360.66659375 |
transcript.pyannote[129].end |
361.54409375 |
transcript.pyannote[130].speaker |
SPEAKER_01 |
transcript.pyannote[130].start |
363.60284375 |
transcript.pyannote[130].end |
364.93596875 |
transcript.pyannote[131].speaker |
SPEAKER_01 |
transcript.pyannote[131].start |
365.67846875 |
transcript.pyannote[131].end |
366.13409375 |
transcript.pyannote[132].speaker |
SPEAKER_01 |
transcript.pyannote[132].start |
367.01159375 |
transcript.pyannote[132].end |
367.56846875 |
transcript.pyannote[133].speaker |
SPEAKER_01 |
transcript.pyannote[133].start |
368.73284375 |
transcript.pyannote[133].end |
369.03659375 |
transcript.pyannote[134].speaker |
SPEAKER_01 |
transcript.pyannote[134].start |
369.22221875 |
transcript.pyannote[134].end |
370.80846875 |
transcript.pyannote[135].speaker |
SPEAKER_01 |
transcript.pyannote[135].start |
372.29346875 |
transcript.pyannote[135].end |
372.68159375 |
transcript.pyannote[136].speaker |
SPEAKER_01 |
transcript.pyannote[136].start |
374.48721875 |
transcript.pyannote[136].end |
375.58409375 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
376.34346875 |
transcript.pyannote[137].end |
376.52909375 |
transcript.pyannote[138].speaker |
SPEAKER_01 |
transcript.pyannote[138].start |
376.63034375 |
transcript.pyannote[138].end |
377.57534375 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
379.22909375 |
transcript.pyannote[139].end |
380.61284375 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
381.72659375 |
transcript.pyannote[140].end |
382.23284375 |
transcript.pyannote[141].speaker |
SPEAKER_01 |
transcript.pyannote[141].start |
382.23284375 |
transcript.pyannote[141].end |
382.36784375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
384.30846875 |
transcript.pyannote[142].end |
385.65846875 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
386.26596875 |
transcript.pyannote[143].end |
401.06534375 |
transcript.pyannote[144].speaker |
SPEAKER_01 |
transcript.pyannote[144].start |
399.09096875 |
transcript.pyannote[144].end |
401.57159375 |
transcript.pyannote[145].speaker |
SPEAKER_01 |
transcript.pyannote[145].start |
403.56284375 |
transcript.pyannote[145].end |
405.48659375 |
transcript.pyannote[146].speaker |
SPEAKER_01 |
transcript.pyannote[146].start |
405.53721875 |
transcript.pyannote[146].end |
409.13159375 |
transcript.pyannote[147].speaker |
SPEAKER_01 |
transcript.pyannote[147].start |
410.09346875 |
transcript.pyannote[147].end |
411.35909375 |
transcript.pyannote[148].speaker |
SPEAKER_01 |
transcript.pyannote[148].start |
412.18596875 |
transcript.pyannote[148].end |
413.50221875 |
transcript.pyannote[149].speaker |
SPEAKER_01 |
transcript.pyannote[149].start |
414.90284375 |
transcript.pyannote[149].end |
415.64534375 |
transcript.pyannote[150].speaker |
SPEAKER_01 |
transcript.pyannote[150].start |
415.96596875 |
transcript.pyannote[150].end |
417.07971875 |
transcript.pyannote[151].speaker |
SPEAKER_01 |
transcript.pyannote[151].start |
417.72096875 |
transcript.pyannote[151].end |
418.75034375 |
transcript.pyannote[152].speaker |
SPEAKER_01 |
transcript.pyannote[152].start |
419.89784375 |
transcript.pyannote[152].end |
421.78784375 |
transcript.pyannote[153].speaker |
SPEAKER_01 |
transcript.pyannote[153].start |
422.19284375 |
transcript.pyannote[153].end |
424.04909375 |
transcript.pyannote[154].speaker |
SPEAKER_01 |
transcript.pyannote[154].start |
425.12909375 |
transcript.pyannote[154].end |
427.82909375 |
transcript.pyannote[155].speaker |
SPEAKER_01 |
transcript.pyannote[155].start |
428.77409375 |
transcript.pyannote[155].end |
429.12846875 |
transcript.pyannote[156].speaker |
SPEAKER_01 |
transcript.pyannote[156].start |
429.31409375 |
transcript.pyannote[156].end |
430.36034375 |
transcript.pyannote[157].speaker |
SPEAKER_01 |
transcript.pyannote[157].start |
431.01846875 |
transcript.pyannote[157].end |
431.89596875 |
transcript.pyannote[158].speaker |
SPEAKER_01 |
transcript.pyannote[158].start |
432.65534375 |
transcript.pyannote[158].end |
433.68471875 |
transcript.pyannote[159].speaker |
SPEAKER_01 |
transcript.pyannote[159].start |
434.71409375 |
transcript.pyannote[159].end |
436.60409375 |
transcript.pyannote[160].speaker |
SPEAKER_01 |
transcript.pyannote[160].start |
437.49846875 |
transcript.pyannote[160].end |
440.94096875 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
441.76784375 |
transcript.pyannote[161].end |
446.66159375 |
transcript.pyannote[162].speaker |
SPEAKER_00 |
transcript.pyannote[162].start |
444.24846875 |
transcript.pyannote[162].end |
445.05846875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
447.26909375 |
transcript.pyannote[163].end |
449.34471875 |
transcript.pyannote[164].speaker |
SPEAKER_01 |
transcript.pyannote[164].start |
450.00284375 |
transcript.pyannote[164].end |
451.70721875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
452.31471875 |
transcript.pyannote[165].end |
453.79971875 |
transcript.pyannote[166].speaker |
SPEAKER_01 |
transcript.pyannote[166].start |
455.23409375 |
transcript.pyannote[166].end |
457.09034375 |
transcript.pyannote[167].speaker |
SPEAKER_01 |
transcript.pyannote[167].start |
458.87909375 |
transcript.pyannote[167].end |
461.66346875 |
transcript.pyannote[168].speaker |
SPEAKER_01 |
transcript.pyannote[168].start |
462.16971875 |
transcript.pyannote[168].end |
464.71784375 |
transcript.pyannote[169].speaker |
SPEAKER_01 |
transcript.pyannote[169].start |
465.37596875 |
transcript.pyannote[169].end |
465.88221875 |
transcript.pyannote[170].speaker |
SPEAKER_01 |
transcript.pyannote[170].start |
466.43909375 |
transcript.pyannote[170].end |
470.30346875 |
transcript.pyannote[171].speaker |
SPEAKER_01 |
transcript.pyannote[171].start |
470.99534375 |
transcript.pyannote[171].end |
472.27784375 |
transcript.pyannote[172].speaker |
SPEAKER_01 |
transcript.pyannote[172].start |
472.93596875 |
transcript.pyannote[172].end |
474.31971875 |
transcript.pyannote[173].speaker |
SPEAKER_01 |
transcript.pyannote[173].start |
475.04534375 |
transcript.pyannote[173].end |
477.40784375 |
transcript.pyannote[174].speaker |
SPEAKER_01 |
transcript.pyannote[174].start |
478.55534375 |
transcript.pyannote[174].end |
479.80409375 |
transcript.pyannote[175].speaker |
SPEAKER_01 |
transcript.pyannote[175].start |
480.14159375 |
transcript.pyannote[175].end |
481.60971875 |
transcript.pyannote[176].speaker |
SPEAKER_01 |
transcript.pyannote[176].start |
482.72346875 |
transcript.pyannote[176].end |
483.16221875 |
transcript.pyannote[177].speaker |
SPEAKER_00 |
transcript.pyannote[177].start |
483.70221875 |
transcript.pyannote[177].end |
513.13221875 |
transcript.pyannote[178].speaker |
SPEAKER_01 |
transcript.pyannote[178].start |
496.79721875 |
transcript.pyannote[178].end |
496.96596875 |
transcript.pyannote[179].speaker |
SPEAKER_01 |
transcript.pyannote[179].start |
497.03346875 |
transcript.pyannote[179].end |
497.05034375 |
transcript.pyannote[180].speaker |
SPEAKER_00 |
transcript.pyannote[180].start |
513.36846875 |
transcript.pyannote[180].end |
513.85784375 |
transcript.pyannote[181].speaker |
SPEAKER_01 |
transcript.pyannote[181].start |
513.85784375 |
transcript.pyannote[181].end |
516.22034375 |
transcript.pyannote[182].speaker |
SPEAKER_01 |
transcript.pyannote[182].start |
516.54096875 |
transcript.pyannote[182].end |
524.33721875 |
transcript.pyannote[183].speaker |
SPEAKER_00 |
transcript.pyannote[183].start |
517.48596875 |
transcript.pyannote[183].end |
517.95846875 |
transcript.pyannote[184].speaker |
SPEAKER_01 |
transcript.pyannote[184].start |
524.89409375 |
transcript.pyannote[184].end |
528.50534375 |
transcript.pyannote[185].speaker |
SPEAKER_01 |
transcript.pyannote[185].start |
528.75846875 |
transcript.pyannote[185].end |
530.20971875 |
transcript.pyannote[186].speaker |
SPEAKER_01 |
transcript.pyannote[186].start |
530.81721875 |
transcript.pyannote[186].end |
534.63096875 |
transcript.pyannote[187].speaker |
SPEAKER_00 |
transcript.pyannote[187].start |
535.82909375 |
transcript.pyannote[187].end |
536.33534375 |
transcript.whisperx[0].start |
0.819 |
transcript.whisperx[0].end |
26.887 |
transcript.whisperx[0].text |
接下來我們請鄭天才委員請做詢答。主席、各位委員、邀請部長還有中小、 |
transcript.whisperx[1].start |
28.643 |
transcript.whisperx[1].end |
44.65 |
transcript.whisperx[1].text |
|
transcript.whisperx[2].start |
47.453 |
transcript.whisperx[2].end |
58.999 |
transcript.whisperx[2].text |
經部今天的報告裏面提到我國中小企業加數約163萬家,佔全體企業98.90%,就業人數約913萬人,佔總就業人數80%,是我國經濟發展穩定的力量。好,我們看昨天,這是昨天主計總署的報告,在財政委員會昨天的報告。 |
transcript.whisperx[3].start |
77.648 |
transcript.whisperx[3].end |
89.213 |
transcript.whisperx[3].text |
就GDP分配面結構觀察,受雇人員報酬所佔比重在民國70及80年代平均約為49.3%,90年代為45.5%,101到111年間為40.6%,介於43.1% |
transcript.whisperx[4].start |
108.66 |
transcript.whisperx[4].end |
136.391 |
transcript.whisperx[4].text |
|
transcript.whisperx[5].start |
137.253 |
transcript.whisperx[5].end |
164.109 |
transcript.whisperx[5].text |
主計總署的這個報告裏面,從七十一到九十年,民國七十一年到九十年,受雇人員的報酬,這個佔整個它的這個一個結構,來看的話,四十九點三,營業營業,三十點七,甚至三十一點七,三十三點八, |
transcript.whisperx[6].start |
166.257 |
transcript.whisperx[6].end |
171.922 |
transcript.whisperx[6].text |
然後我們看這個111年或110年,就剛才也講了這個數字。受僱人員報酬43.14、43.9,然後營業營業增加36.4、34,比這個民國71年到90年的都來得高。所以我們要去參考這個。 |
transcript.whisperx[7].start |
191.809 |
transcript.whisperx[7].end |
219.926 |
transcript.whisperx[7].text |
所以我們給中小企業決定要協助協助了之後要怎麼樣讓他能夠也照顧這些我們的受僱人員也就是勞工這個不是這個部分經濟部勞動部我們政府都應該去重視所以這個部分你看看我們看這個最右邊生產及進口稅 |
transcript.whisperx[8].start |
222.363 |
transcript.whisperx[8].end |
222.383 |
transcript.whisperx[8].text |
〔記者註冊〕 |
transcript.whisperx[9].start |
252.21 |
transcript.whisperx[9].end |
275.913 |
transcript.whisperx[9].text |
|
transcript.whisperx[10].start |
277.201 |
transcript.whisperx[10].end |
305.064 |
transcript.whisperx[10].text |
討論我們今天所以部長或者是中小企業的署長我們可以再思考從剛才的數字我們要再思考尤其是勞動部所以今天勞動部的成績也很低沒有關係勇敢地說我也是老公務員我成績很低的時候也是勇敢地說 |
transcript.whisperx[11].start |
307.423 |
transcript.whisperx[11].end |
335.089 |
transcript.whisperx[11].text |
到底這樣的數字,行政院版,到底是不是合理?剛才委員同仁也有提到,24歲,以前的24歲早就工作了,沒有錯啊,現在的24歲都還要念書啊,還在大學啊,還在研究所啊,還在找工作啊。 |
transcript.whisperx[12].start |
337.396 |
transcript.whisperx[12].end |
365.761 |
transcript.whisperx[12].text |
所以你還是維持這個。然後45歲以下,現在都高齡化了,少子女化了。到底對不對?我們協助企業,要協助,但是勞工,怎麼樣能夠也被照顧?有沒有考量?所以這個部分,部長, |
transcript.whisperx[13].start |
367.085 |
transcript.whisperx[13].end |
385.49 |
transcript.whisperx[13].text |
署長、我們勞動部的同仁,真的跟我們的現在的這個社會勞動力的結構不一樣啊。部長要不要說明一下? |
transcript.whisperx[14].start |
387.032 |
transcript.whisperx[14].end |
410.889 |
transcript.whisperx[14].text |
謝謝,那第一個齁45歲以上這個部分其實是放得非常寬也就是說只要是你新聘一個45歲以上的那你就可以得到這個加成減除率啦我知道那個部長我的意思是說第一個24歲以下要進場的還在念書還在工作還在念書啦24歲以後 |
transcript.whisperx[15].start |
415.163 |
transcript.whisperx[15].end |
430.516 |
transcript.whisperx[15].text |
然後差不多也是45歲,他本來就會一定會工作啦,然後到底應該怎麼樣,要有一些分析的數據,就我們整個臺灣的勞動的那個年齡的結構。 |
transcript.whisperx[16].start |
437.523 |
transcript.whisperx[16].end |
464.086 |
transcript.whisperx[16].text |
恐怕要有一些很精準的分析所以我知道你這個我都知道你的用意我知道但是到底這樣子是合不合理有沒有符合我們現在的勞動力的結構這個部分是真的是需要去好好的去協助中小企業是應該的 |
transcript.whisperx[17].start |
465.407 |
transcript.whisperx[17].end |
482.925 |
transcript.whisperx[17].text |
但是在這樣的過程當中要不要另外其他的條文說這些後例怎麼樣去照顧勞工的薪資這個都必須要一起通盤的去考量啊可以嗎 |
transcript.whisperx[18].start |
483.723 |
transcript.whisperx[18].end |
483.943 |
transcript.whisperx[18].text |
賴主席﹚賴主席﹚ |
transcript.whisperx[19].start |
514.079 |
transcript.whisperx[19].end |
533.584 |
transcript.whisperx[19].text |
今天我把昨天主計總署的報告呈現在給經濟部部長、中小企業署的署長。你就可以看得出來受僱人員的報酬是在降低的。營業營業是升高的。以上。謝謝。 |