iVOD / 152154

Field Value
IVOD_ID 152154
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/152154
日期 2024-05-02
會議資料.會議代碼 委員會-11-1-19-10
會議資料.會議代碼:str 第11屆第1會期經濟委員會第10次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 10
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第10次全體委員會議
影片種類 Clip
開始時間 2024-05-02T10:27:08+08:00
結束時間 2024-05-02T10:36:05+08:00
影片長度 00:08:57
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/6f015fe8e6787db1fa04b2a2a01bba7fe12ebde737ab3c195c150fdf38e5cae668093d066759b1035ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 10:27:08 - 10:36:05
會議時間 2024-05-02T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第10次全體委員會議(事由:審查: 一、行政院函請審議「中小企業發展條例部分條文修正草案」案。 二、本院委員柯志恩等17人擬具「中小企業發展條例第三十六條之二條文修正草案」案。 三、本院委員賴士葆等19人擬具「中小企業發展條例第三十六條之二條文修正草案」案。 四、本院委員楊瓊瓔等16人擬具「中小企業發展條例第三十六條之二條文修正草案」案。 五、本院委員楊瓊瓔等16人擬具「中小企業發展條例增訂第三十六條之四條文草案」案。 六、本院台灣民眾黨黨團擬具「中小企業發展條例部分條文修正草案」案。 七、本院國民黨黨團擬具「中小企業發展條例第三十六條之二條文修正草案」案。 八、本院委員張智倫等19人擬具「中小企業發展條例第三十五條、第三十六條之二及第四十條條文修正草案」案。 九、本院委員王世堅等16人擬具「中小企業發展條例第三十五條、第三十六條之二及第四十條條文修正草案」案。 十、本院委員郭國文等19人擬具「中小企業發展條例第三十六條之二條文修正草案」案。 十一、本院委員邱議瑩等29人擬具「中小企業發展條例部分條文修正草案」案。 (詢答及處理,委員郭國文等人提案如未接獲議事處來函則不予審查)【4月29日、5月1日及2日三天一次會】)
gazette.lineno 308
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(10時27分)主席、各位委員。請部長、中小及新創企業署署長,還有勞動部。
gazette.blocks[1][0] 王部長美花:委員好。
gazette.blocks[2][0] 鄭天財Sra Kacaw委員:部長辛苦了。經濟部今天的報告裡面提到,我國中小企業家數約163萬家,占全體企業98.90%,就業人數約913萬人,占總就業人數80%,是我國經濟發展穩定的力量。我們看這是昨天主計總處在財政委員會的報告,就GDP分配面結構觀察,受僱人員報酬所占比重在民國70及80年代平均約為49.3%;90年代為45.5%;101到111年間為44.6%(介於43.1%到46%之間)。我們從這個來看,受僱人員報酬所占的比重在遞減,而剛才談的,我們的中小企業是占整個的最多數,所以勞工也就在這個地方最多。我們看剛才主計總處的報告裡面,從民國71年到90年受僱人員報酬占GDP分配面結構來看,49.3%,營業盈餘占30.7%,甚至31.7%、33.8%,然後我們看110年或111年,剛才也講了這個數字,受僱人員報酬占43.1%、43.9%,然後營業盈餘的占比是增加,36.4%、34.4%,比民國71年到90年的都來得高,所以我們要去參考這個。我們決定要給中小企業協助,協助了之後,要怎麼樣讓它也能夠照顧這些受僱人員,也就是勞工,這個部分,經濟部、勞動部,我們政府,都應該去重視。我們看最右邊,生產及進口稅,71年到80年是10.5%,那時候確實是這樣喔!然後你看111年,5.1%,110年4.7%,進來的稅收減少了,營業盈餘增加了,但是並沒有轉嫁到受僱人員,何況現在還有相關的通貨膨脹,包括我們勞工要買房子也很難,房價高,生活的需求都增加。
gazette.blocks[2][1] 我們看勞動部的報告,這裡面你是支持行政院版,這也不能怪你,這個行政院已經通過了,當然就支持了。但是今天在討論,部長或者是中小企業署長,我們可以再思考,從剛才的數字,我們要再思考,尤其是勞動部,今天勞動部列席代表的層級也很低,沒有關係,勇敢地說,我也是老公務員了,我層級很低的時候,也是勇敢地說,這樣的數字,行政院版到底是不是合理?剛才也有委員同仁提到,24歲,以前的24歲早就工作了沒有錯,但是現在的24歲都還要唸書、還在大學、還在研究所、還在找工作,對不對?你還是維持這個!然後45歲以上,現在都高齡化了、少子女化了,到底對不對?我們企業要協助,但是勞工怎麼樣也能夠被照顧,有沒有考量?所以這個部分,部長、署長、我們勞動部的同仁,真的,以前跟我們現在社會勞動力的結構不一樣啊!部長,要不要說明一下?
gazette.blocks[3][0] 王部長美花:謝謝。第一個、45歲以上這個部分其實是放得非常寬,也就是只要你新聘1個45歲以上的,你就可以得到這個加成減除率……
gazette.blocks[4][0] 鄭天財Sra Kacaw委員:我知道啦!部長,我的意思是第一個、24歲以下要進場的,都還在唸書,24歲以後,差不多45歲,他本來就一定會工作,到底應該怎麼樣,要有一些分析的數據,就我們臺灣整個勞動年齡的結構,恐怕要有一些很精準的分析。這個我都知道,你的用意,我知道,但是到底這樣子是合不合理?有沒有符合我們現在勞動力的結構?這個部分真的是須要好好去思考,協助中小企業是應該的,但是在這樣的過程當中,要不要有另外其他的條文說這些獲利怎麼樣去照顧勞工的薪資?這個都必須要一起通盤地去考量,可以嗎?
gazette.blocks[5][0] 王部長美花:對於基層員工,怎麼樣讓他能夠得到比較好的薪資待遇,其實有很多面向……
gazette.blocks[6][0] 鄭天財Sra Kacaw委員:我知道。
gazette.blocks[7][0] 王部長美花:今天只是就法律面來弄。另外,政府在不管增加高齡就業也好,補助企業也好,也都會去做,相關設定的參數背後其實也有做一些相關的依據來參考。
gazette.blocks[8][0] 鄭天財Sra Kacaw委員:今天我把昨天主計總處的報告呈現給經濟部部長、中小企業署署長,你就可以看得出來,受僱人員報酬是在降低的,營業盈餘是升高的,以上,謝謝。
gazette.blocks[9][0] 王部長美花:是。
gazette.blocks[10][0] 主席:謝謝。
gazette.blocks[10][1] 接下來請張啓楷委員詢答。
gazette.agenda.page_end 510
gazette.agenda.meet_id 委員會-11-1-19-10
gazette.agenda.speakers[0] 楊瓊瓔
gazette.agenda.speakers[1] 謝衣鳯
gazette.agenda.speakers[2] 賴士葆
gazette.agenda.speakers[3] 邱議瑩
gazette.agenda.speakers[4] 張智倫
gazette.agenda.speakers[5] 郭國文
gazette.agenda.speakers[6] 陳亭妃
gazette.agenda.speakers[7] 林岱樺
gazette.agenda.speakers[8] 鄭正鈐
gazette.agenda.speakers[9] 鄭天財Sra Kacaw
gazette.agenda.speakers[10] 張啓楷
gazette.agenda.speakers[11] 呂玉玲
gazette.agenda.speakers[12] 蔡易餘
gazette.agenda.speakers[13] 洪孟楷
gazette.agenda.speakers[14] 邱志偉
gazette.agenda.speakers[15] 鍾佳濱
gazette.agenda.speakers[16] 賴瑞隆
gazette.agenda.speakers[17] 陳冠廷
gazette.agenda.speakers[18] 陳培瑜
gazette.agenda.speakers[19] 張嘉郡
gazette.agenda.speakers[20] 黃國昌
gazette.agenda.speakers[21] 陳超明
gazette.agenda.speakers[22] 牛煦庭
gazette.agenda.speakers[23] 羅廷瑋
gazette.agenda.page_start 419
gazette.agenda.meetingDate[0] 2024-05-02
gazette.agenda.gazette_id 1133801
gazette.agenda.agenda_lcidc_ids[0] 1133801_00007
gazette.agenda.meet_name 立法院第11屆第1會期經濟委員會第10次全體委員會議紀錄
gazette.agenda.content 審查:一、行政院函請審議「中小企業發展條例部分條文修正草案」案;二、本院委員柯志恩等 17人擬具「中小企業發展條例第三十六條之二條文修正草案」案;三、本院委員賴士葆等19人擬 具「中小企業發展條例第三十六條之二條文修正草案」案;四、本院委員楊瓊瓔等16人擬具「中 小企業發展條例第三十六條之二條文修正草案」案;五、本院委員楊瓊瓔等16人擬具「中小企業 發展條例增訂第三十六條之四條文草案」案;六、本院台灣民眾黨黨團擬具「中小企業發展條例 部分條文修正草案」案;七、本院國民黨黨團擬具「中小企業發展條例第三十六條之二條文修正 草案」案;八、本院委員張智倫等19人擬具「中小企業發展條例第三十五條、第三十六條之二及 第四十條條文修正草案」案;九、本院委員王世堅等16人擬具「中小企業發展條例第三十五條、 第三十六條之二及第四十條條文修正草案」案;十、本院委員郭國文等19人擬具「中小企業發展 條例第三十六條之二條文修正草案」案;十一、本院委員邱議瑩等29人擬具「中小企業發展條例 部分條文修正草案」案
gazette.agenda.agenda_id 1133801_00006
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.79034375
transcript.pyannote[0].end 3.74346875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 21.76596875
transcript.pyannote[1].end 23.08221875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 23.53784375
transcript.pyannote[2].end 25.66409375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 26.49096875
transcript.pyannote[3].end 27.48659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 28.65096875
transcript.pyannote[4].end 30.65909375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 31.46909375
transcript.pyannote[5].end 32.43096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 34.77659375
transcript.pyannote[6].end 36.44721875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 35.45159375
transcript.pyannote[7].end 35.53596875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 39.87284375
transcript.pyannote[8].end 40.26096875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 40.26096875
transcript.pyannote[9].end 42.75846875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 43.93971875
transcript.pyannote[10].end 44.56409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 47.17971875
transcript.pyannote[11].end 58.38471875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 58.90784375
transcript.pyannote[12].end 59.92034375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 60.46034375
transcript.pyannote[13].end 63.64971875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.03784375
transcript.pyannote[14].end 65.42159375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 65.91096875
transcript.pyannote[15].end 69.20159375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 70.39971875
transcript.pyannote[16].end 76.01909375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 76.18784375
transcript.pyannote[17].end 76.66034375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 77.57159375
transcript.pyannote[18].end 81.06471875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 81.53721875
transcript.pyannote[19].end 84.38909375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 84.96284375
transcript.pyannote[20].end 87.88221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 88.38846875
transcript.pyannote[21].end 89.78909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 90.24471875
transcript.pyannote[22].end 92.30346875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 92.87721875
transcript.pyannote[23].end 95.79659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 97.29846875
transcript.pyannote[24].end 100.40346875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 100.97721875
transcript.pyannote[25].end 102.98534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 103.77846875
transcript.pyannote[26].end 104.35221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 104.87534375
transcript.pyannote[27].end 107.22096875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 108.63846875
transcript.pyannote[28].end 111.20346875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 112.11471875
transcript.pyannote[29].end 113.76846875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 114.59534375
transcript.pyannote[30].end 117.91971875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 118.42596875
transcript.pyannote[31].end 120.07971875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 120.68721875
transcript.pyannote[32].end 121.00784375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 121.85159375
transcript.pyannote[33].end 122.69534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 123.37034375
transcript.pyannote[34].end 124.31534375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 124.93971875
transcript.pyannote[35].end 125.17596875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 126.08721875
transcript.pyannote[36].end 127.18409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 127.65659375
transcript.pyannote[37].end 129.25971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 129.42846875
transcript.pyannote[38].end 132.46596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 133.52909375
transcript.pyannote[39].end 133.83284375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 134.76096875
transcript.pyannote[40].end 135.30096875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 135.89159375
transcript.pyannote[41].end 136.39784375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 137.20784375
transcript.pyannote[42].end 139.46909375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 140.92034375
transcript.pyannote[43].end 142.40534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 142.48971875
transcript.pyannote[44].end 146.01659375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 146.57346875
transcript.pyannote[45].end 148.36221875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 149.17221875
transcript.pyannote[46].end 149.42534375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 149.72909375
transcript.pyannote[47].end 151.39971875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 152.00721875
transcript.pyannote[48].end 152.31096875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 153.59346875
transcript.pyannote[49].end 156.47909375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 157.27221875
transcript.pyannote[50].end 158.79096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 159.28034375
transcript.pyannote[51].end 164.78159375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 166.23284375
transcript.pyannote[52].end 170.63721875
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 170.89034375
transcript.pyannote[53].end 173.18534375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 173.72534375
transcript.pyannote[54].end 177.45471875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 177.99471875
transcript.pyannote[55].end 179.58096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 180.23909375
transcript.pyannote[56].end 182.66909375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 182.87159375
transcript.pyannote[57].end 183.56346875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 184.40721875
transcript.pyannote[58].end 188.62596875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 189.16596875
transcript.pyannote[59].end 190.81971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 191.73096875
transcript.pyannote[60].end 192.47346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 192.62534375
transcript.pyannote[61].end 193.82346875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 193.92471875
transcript.pyannote[62].end 195.00471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 195.76409375
transcript.pyannote[63].end 199.13909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 200.72534375
transcript.pyannote[64].end 201.70409375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 202.93596875
transcript.pyannote[65].end 204.21846875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 204.30284375
transcript.pyannote[66].end 205.39971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 205.77096875
transcript.pyannote[67].end 206.73284375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 207.72846875
transcript.pyannote[68].end 207.98159375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 208.48784375
transcript.pyannote[69].end 211.10346875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 211.64346875
transcript.pyannote[70].end 213.63471875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 214.30971875
transcript.pyannote[71].end 216.08159375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 216.99284375
transcript.pyannote[72].end 220.38471875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 222.35909375
transcript.pyannote[73].end 225.64971875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 226.32471875
transcript.pyannote[74].end 228.31596875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 228.87284375
transcript.pyannote[75].end 230.79659375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 231.20159375
transcript.pyannote[76].end 232.39971875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 232.78784375
transcript.pyannote[77].end 234.88034375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 236.70284375
transcript.pyannote[78].end 238.93034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 239.62221875
transcript.pyannote[79].end 240.16221875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 240.76971875
transcript.pyannote[80].end 244.26284375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 244.81971875
transcript.pyannote[81].end 246.81096875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 247.68846875
transcript.pyannote[82].end 249.27471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 249.47721875
transcript.pyannote[83].end 251.55284375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 252.19409375
transcript.pyannote[84].end 252.95346875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 253.49346875
transcript.pyannote[85].end 258.38721875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 258.94409375
transcript.pyannote[86].end 261.07034375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 262.16721875
transcript.pyannote[87].end 265.12034375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 266.70659375
transcript.pyannote[88].end 273.25409375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 273.96284375
transcript.pyannote[89].end 275.71784375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 276.69659375
transcript.pyannote[90].end 278.14784375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 278.89034375
transcript.pyannote[91].end 281.26971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 281.92784375
transcript.pyannote[92].end 282.83909375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 283.75034375
transcript.pyannote[93].end 284.02034375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 284.45909375
transcript.pyannote[94].end 285.79221875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 286.12971875
transcript.pyannote[95].end 287.42909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 288.67784375
transcript.pyannote[96].end 289.77471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 290.85471875
transcript.pyannote[97].end 292.00221875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 293.04846875
transcript.pyannote[98].end 293.38596875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 293.75721875
transcript.pyannote[99].end 294.92159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 295.59659375
transcript.pyannote[100].end 297.06471875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 297.82409375
transcript.pyannote[101].end 298.88721875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 299.64659375
transcript.pyannote[102].end 300.52409375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 300.77721875
transcript.pyannote[103].end 302.02596875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 303.10596875
transcript.pyannote[104].end 305.38409375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 306.17721875
transcript.pyannote[105].end 306.44721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 307.39221875
transcript.pyannote[106].end 308.70846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 309.31596875
transcript.pyannote[107].end 310.32846875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 310.90221875
transcript.pyannote[108].end 312.72471875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 315.25596875
transcript.pyannote[109].end 315.57659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 316.94346875
transcript.pyannote[110].end 319.69409375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 320.47034375
transcript.pyannote[111].end 321.33096875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 322.49534375
transcript.pyannote[112].end 324.41909375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 324.87471875
transcript.pyannote[113].end 326.42721875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 326.51159375
transcript.pyannote[114].end 327.91221875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 329.11034375
transcript.pyannote[115].end 330.30846875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 330.66284375
transcript.pyannote[116].end 331.64159375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 332.45159375
transcript.pyannote[117].end 335.33721875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 336.58596875
transcript.pyannote[118].end 337.00784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 337.24409375
transcript.pyannote[119].end 338.84721875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 339.87659375
transcript.pyannote[120].end 340.19721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 340.72034375
transcript.pyannote[121].end 342.47534375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 344.09534375
transcript.pyannote[122].end 346.74471875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 348.49971875
transcript.pyannote[123].end 349.02284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 349.12409375
transcript.pyannote[124].end 349.93409375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 353.24159375
transcript.pyannote[125].end 354.62534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 354.94596875
transcript.pyannote[126].end 355.68846875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 355.80659375
transcript.pyannote[127].end 356.93721875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 357.81471875
transcript.pyannote[128].end 359.45159375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 360.66659375
transcript.pyannote[129].end 361.54409375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 363.60284375
transcript.pyannote[130].end 364.93596875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 365.67846875
transcript.pyannote[131].end 366.13409375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 367.01159375
transcript.pyannote[132].end 367.56846875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 368.73284375
transcript.pyannote[133].end 369.03659375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 369.22221875
transcript.pyannote[134].end 370.80846875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 372.29346875
transcript.pyannote[135].end 372.68159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 374.48721875
transcript.pyannote[136].end 375.58409375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 376.34346875
transcript.pyannote[137].end 376.52909375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 376.63034375
transcript.pyannote[138].end 377.57534375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 379.22909375
transcript.pyannote[139].end 380.61284375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 381.72659375
transcript.pyannote[140].end 382.23284375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 382.23284375
transcript.pyannote[141].end 382.36784375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 384.30846875
transcript.pyannote[142].end 385.65846875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 386.26596875
transcript.pyannote[143].end 401.06534375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 399.09096875
transcript.pyannote[144].end 401.57159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 403.56284375
transcript.pyannote[145].end 405.48659375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 405.53721875
transcript.pyannote[146].end 409.13159375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 410.09346875
transcript.pyannote[147].end 411.35909375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 412.18596875
transcript.pyannote[148].end 413.50221875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 414.90284375
transcript.pyannote[149].end 415.64534375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 415.96596875
transcript.pyannote[150].end 417.07971875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 417.72096875
transcript.pyannote[151].end 418.75034375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 419.89784375
transcript.pyannote[152].end 421.78784375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 422.19284375
transcript.pyannote[153].end 424.04909375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 425.12909375
transcript.pyannote[154].end 427.82909375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 428.77409375
transcript.pyannote[155].end 429.12846875
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 429.31409375
transcript.pyannote[156].end 430.36034375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 431.01846875
transcript.pyannote[157].end 431.89596875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 432.65534375
transcript.pyannote[158].end 433.68471875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 434.71409375
transcript.pyannote[159].end 436.60409375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 437.49846875
transcript.pyannote[160].end 440.94096875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 441.76784375
transcript.pyannote[161].end 446.66159375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 444.24846875
transcript.pyannote[162].end 445.05846875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 447.26909375
transcript.pyannote[163].end 449.34471875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 450.00284375
transcript.pyannote[164].end 451.70721875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 452.31471875
transcript.pyannote[165].end 453.79971875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 455.23409375
transcript.pyannote[166].end 457.09034375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 458.87909375
transcript.pyannote[167].end 461.66346875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 462.16971875
transcript.pyannote[168].end 464.71784375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 465.37596875
transcript.pyannote[169].end 465.88221875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 466.43909375
transcript.pyannote[170].end 470.30346875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 470.99534375
transcript.pyannote[171].end 472.27784375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 472.93596875
transcript.pyannote[172].end 474.31971875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 475.04534375
transcript.pyannote[173].end 477.40784375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 478.55534375
transcript.pyannote[174].end 479.80409375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 480.14159375
transcript.pyannote[175].end 481.60971875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 482.72346875
transcript.pyannote[176].end 483.16221875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 483.70221875
transcript.pyannote[177].end 513.13221875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 496.79721875
transcript.pyannote[178].end 496.96596875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 497.03346875
transcript.pyannote[179].end 497.05034375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 513.36846875
transcript.pyannote[180].end 513.85784375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 513.85784375
transcript.pyannote[181].end 516.22034375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 516.54096875
transcript.pyannote[182].end 524.33721875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 517.48596875
transcript.pyannote[183].end 517.95846875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 524.89409375
transcript.pyannote[184].end 528.50534375
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 528.75846875
transcript.pyannote[185].end 530.20971875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 530.81721875
transcript.pyannote[186].end 534.63096875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 535.82909375
transcript.pyannote[187].end 536.33534375
transcript.whisperx[0].start 0.819
transcript.whisperx[0].end 26.887
transcript.whisperx[0].text 接下來我們請鄭天才委員請做詢答。主席、各位委員、邀請部長還有中小、
transcript.whisperx[1].start 28.643
transcript.whisperx[1].end 44.65
transcript.whisperx[1].text 
transcript.whisperx[2].start 47.453
transcript.whisperx[2].end 58.999
transcript.whisperx[2].text 經部今天的報告裏面提到我國中小企業加數約163萬家,佔全體企業98.90%,就業人數約913萬人,佔總就業人數80%,是我國經濟發展穩定的力量。好,我們看昨天,這是昨天主計總署的報告,在財政委員會昨天的報告。
transcript.whisperx[3].start 77.648
transcript.whisperx[3].end 89.213
transcript.whisperx[3].text 就GDP分配面結構觀察,受雇人員報酬所佔比重在民國70及80年代平均約為49.3%,90年代為45.5%,101到111年間為40.6%,介於43.1%
transcript.whisperx[4].start 108.66
transcript.whisperx[4].end 136.391
transcript.whisperx[4].text 
transcript.whisperx[5].start 137.253
transcript.whisperx[5].end 164.109
transcript.whisperx[5].text 主計總署的這個報告裏面,從七十一到九十年,民國七十一年到九十年,受雇人員的報酬,這個佔整個它的這個一個結構,來看的話,四十九點三,營業營業,三十點七,甚至三十一點七,三十三點八,
transcript.whisperx[6].start 166.257
transcript.whisperx[6].end 171.922
transcript.whisperx[6].text 然後我們看這個111年或110年,就剛才也講了這個數字。受僱人員報酬43.14、43.9,然後營業營業增加36.4、34,比這個民國71年到90年的都來得高。所以我們要去參考這個。
transcript.whisperx[7].start 191.809
transcript.whisperx[7].end 219.926
transcript.whisperx[7].text 所以我們給中小企業決定要協助協助了之後要怎麼樣讓他能夠也照顧這些我們的受僱人員也就是勞工這個不是這個部分經濟部勞動部我們政府都應該去重視所以這個部分你看看我們看這個最右邊生產及進口稅
transcript.whisperx[8].start 222.363
transcript.whisperx[8].end 222.383
transcript.whisperx[8].text 〔記者註冊〕
transcript.whisperx[9].start 252.21
transcript.whisperx[9].end 275.913
transcript.whisperx[9].text 
transcript.whisperx[10].start 277.201
transcript.whisperx[10].end 305.064
transcript.whisperx[10].text 討論我們今天所以部長或者是中小企業的署長我們可以再思考從剛才的數字我們要再思考尤其是勞動部所以今天勞動部的成績也很低沒有關係勇敢地說我也是老公務員我成績很低的時候也是勇敢地說
transcript.whisperx[11].start 307.423
transcript.whisperx[11].end 335.089
transcript.whisperx[11].text 到底這樣的數字,行政院版,到底是不是合理?剛才委員同仁也有提到,24歲,以前的24歲早就工作了,沒有錯啊,現在的24歲都還要念書啊,還在大學啊,還在研究所啊,還在找工作啊。
transcript.whisperx[12].start 337.396
transcript.whisperx[12].end 365.761
transcript.whisperx[12].text 所以你還是維持這個。然後45歲以下,現在都高齡化了,少子女化了。到底對不對?我們協助企業,要協助,但是勞工,怎麼樣能夠也被照顧?有沒有考量?所以這個部分,部長,
transcript.whisperx[13].start 367.085
transcript.whisperx[13].end 385.49
transcript.whisperx[13].text 署長、我們勞動部的同仁,真的跟我們的現在的這個社會勞動力的結構不一樣啊。部長要不要說明一下?
transcript.whisperx[14].start 387.032
transcript.whisperx[14].end 410.889
transcript.whisperx[14].text 謝謝,那第一個齁45歲以上這個部分其實是放得非常寬也就是說只要是你新聘一個45歲以上的那你就可以得到這個加成減除率啦我知道那個部長我的意思是說第一個24歲以下要進場的還在念書還在工作還在念書啦24歲以後
transcript.whisperx[15].start 415.163
transcript.whisperx[15].end 430.516
transcript.whisperx[15].text 然後差不多也是45歲,他本來就會一定會工作啦,然後到底應該怎麼樣,要有一些分析的數據,就我們整個臺灣的勞動的那個年齡的結構。
transcript.whisperx[16].start 437.523
transcript.whisperx[16].end 464.086
transcript.whisperx[16].text 恐怕要有一些很精準的分析所以我知道你這個我都知道你的用意我知道但是到底這樣子是合不合理有沒有符合我們現在的勞動力的結構這個部分是真的是需要去好好的去協助中小企業是應該的
transcript.whisperx[17].start 465.407
transcript.whisperx[17].end 482.925
transcript.whisperx[17].text 但是在這樣的過程當中要不要另外其他的條文說這些後例怎麼樣去照顧勞工的薪資這個都必須要一起通盤的去考量啊可以嗎
transcript.whisperx[18].start 483.723
transcript.whisperx[18].end 483.943
transcript.whisperx[18].text 賴主席﹚賴主席﹚
transcript.whisperx[19].start 514.079
transcript.whisperx[19].end 533.584
transcript.whisperx[19].text 今天我把昨天主計總署的報告呈現在給經濟部部長、中小企業署的署長。你就可以看得出來受僱人員的報酬是在降低的。營業營業是升高的。以上。謝謝。