iVOD / 151979

Field Value
IVOD_ID 151979
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/151979
日期 2024-05-01
會議資料.會議代碼 委員會-11-1-20-11
會議資料.會議代碼:str 第11屆第1會期財政委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第11次全體委員會議
影片種類 Clip
開始時間 2024-05-01T12:46:57+08:00
結束時間 2024-05-01T12:55:12+08:00
影片長度 00:08:15
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75811ef35c27466bacceaf25a3364b78900bfbad7a56e18f7f5010e63071191971a3c8e0ddb401085ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 12:46:57 - 12:55:12
會議時間 2024-05-01T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第11次全體委員會議(事由:邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質薪資」進行專題報告,並備質詢。)
gazette.lineno 1252
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(12時47分)主席、各位委員。有請主計長。
gazette.blocks[1][0] 主席:請主計長。
gazette.blocks[2][0] 鄭天財Sra Kacaw委員:還有國發會的施副主委。
gazette.blocks[3][0] 主席:施副主委。
gazette.blocks[4][0] 朱主計長澤民:委員好。
gazette.blocks[5][0] 鄭天財Sra Kacaw委員:主計長好,辛苦了。
gazette.blocks[6][0] 朱主計長澤民:不會啦!看到委員很高興。
gazette.blocks[7][0] 鄭天財Sra Kacaw委員:今年0403地震,很快的,陳院長4月4日就到花蓮視察災情,而且當天就宣布主計總處已經撥了3億元。請問一下主計長,到現在為止,地震已經快滿一個月,主計總處除了這3億元之外,還有沒有撥其他經費?
gazette.blocks[8][0] 朱主計長澤民:那3億元在當天4月3日下午5點鐘以前,我們就和財政部一起努力,把款項撥到臺灣銀行花蓮分行的戶頭,只是他們那天不用上班,隔天又放假,事實上我們當天就撥下去了。
gazette.blocks[9][0] 鄭天財Sra Kacaw委員:對,本席知道。
gazette.blocks[10][0] 朱主計長澤民:至於以後要撥多少,就要看他們的需求是多少,已經用了多少。而且花蓮縣政府也有所謂的災害準備金,大概是4億元,然後再加上這3億元。他們需要的,只要有報上來,經過審核以後,我們就會繼續補,謝謝。
gazette.blocks[11][0] 鄭天財Sra Kacaw委員:好。所以現在只撥3億元?
gazette.blocks[12][0] 朱主計長澤民:對。
gazette.blocks[13][0] 鄭天財Sra Kacaw委員:我們看25年前,民國88年9月21日的九二一震災,主計總處,當時叫主計處,那時候是韋主計長,是你的前輩,當時在第二天,9月22日,一開始是先撥4億元,後來一看到災情嚴重,所以又再增加,包括臺東縣政府、南投縣政府都有收到,一直到第二天,總共撥款53億元。
gazette.blocks[13][1] 從25年前的物價指數等各方面來看,53億元是非常多的,和現在的53億元差很多,本席建議這個部分主計總處應該主動協助。請教主計長,因為副院長開了幾次會議,花蓮縣政府也開過很多次會議,現在到底準備多少錢?
gazette.blocks[14][0] 朱主計長澤民:我們大概是匡列兩百多億元。那兩百多億元,也許我們明天就可能成立一個方案,由國發會提案報告。因為那是一個方案,主要是以緩濟急,我們可以馬上付諸行動,只要有需求,我們就會付諸行動,謝謝。
gazette.blocks[15][0] 鄭天財Sra Kacaw委員:好。施副主委,剛才主計長有提到國發會,你們很有默契,馬上就請你回答。
gazette.blocks[16][0] 施副主任委員克和:委員好。
gazette.blocks[17][0] 鄭天財Sra Kacaw委員:怎麼樣?要不要接續剛才主計長的答復?
gazette.blocks[18][0] 施副主任委員克和:向委員報告,國發會在花東基金的部分,目前的規劃就是以20億元的規模,向信保……
gazette.blocks[19][0] 鄭天財Sra Kacaw委員:20億元?
gazette.blocks[20][0] 施副主任委員克和:因為信保基金可以承作,另外才是紓困。
gazette.blocks[21][0] 鄭天財Sra Kacaw委員:你是說還有另外的款項?
gazette.blocks[22][0] 施副主任委員克和:對。
gazette.blocks[23][0] 鄭天財Sra Kacaw委員:本席說的是總額。
gazette.blocks[24][0] 施副主任委員克和:關於總額的部分,因為這不是我分管的業務,是不是會後馬上請同仁準備?
gazette.blocks[25][0] 鄭天財Sra Kacaw委員:好的。主計長,現在花蓮縣政府的公務人員都非常忙,為什麼當初九二一震災的時候會主動撥款?就是因為地方政府很忙。
gazette.blocks[26][0] 朱主計長澤民:對,我知道。
gazette.blocks[27][0] 鄭天財Sra Kacaw委員:關於這個部分,本席舉一個例子,莫拉克風災災後重建特別條例是在民國98年制定,莫拉克颱風造成八八風災,那時候一樣是當天就撥了很多錢,本席就不再敘述。當時也為了這件事制定特別條例,8月20日行政院會通過,把這個特別條例送到立法院,當時處理的速度非常快,立法院馬上就審查,8月28日就通過施行,前後不到一個月的時間。對於這類事件,我們過去都很有經驗,結果這次的處理速度好像倒退了,這是需要加油的地方。
gazette.blocks[28][0] 朱主計長澤民:有時候制定特別條例或做預算編列,要有數據資料,因為有數據資料才能夠編列預算。
gazette.blocks[29][0] 鄭天財Sra Kacaw委員:本席不接受。那種時候怎麼會有數據?本席剛才說了,八八風災是8月8日發生,8月28日立法院就三讀通過,哪來的數據?沒有數據啊!
gazette.blocks[30][0] 朱主計長澤民:那個是條例,並不是預算,我們明天要公布的是金額,而且馬上可以做,謝謝。
gazette.blocks[31][0] 鄭天財Sra Kacaw委員:這個特別條例裡面……
gazette.blocks[32][0] 朱主計長澤民:馬上就做,現在就在做了。
gazette.blocks[33][0] 鄭天財Sra Kacaw委員:好。當然,你們現在是根據災害防救法第五十七條,可以用第二預備金,可以用災害準備金,還有災害防救法第五十八條,你們也可以依預算法第八十三條,重大災害的時候可以提出特別預算。所以關於這個部分,本席只是建議主計總處的公務員,因為主計長很忙……
gazette.blocks[34][0] 朱主計長澤民:不會,人民的事情,我會擺在第一位。
gazette.blocks[35][0] 鄭天財Sra Kacaw委員:所以要請公務員主動,既然說了是200億元或250億元,因為現在都是媒體報導,請你們趕快付諸實施,好不好?
gazette.blocks[36][0] 朱主計長澤民:我們現在已經在做了,不需要通過特別條例再做。
gazette.blocks[37][0] 鄭天財Sra Kacaw委員:本席知道,現在的法令已經周全,也是因為之前的案例,所以才會修法。
gazette.blocks[38][0] 朱主計長澤民:所以不必有特別條例,也不必編列特別預算,我們現在就可以做,明天只是通過一個方案,謝謝。
gazette.blocks[39][0] 主席:已經在做了。有錢比較重要,鄭委員。
gazette.blocks[40][0] 鄭天財Sra Kacaw委員:本席的意思是說,以前還要立法,而且要很快的立法,現在不用立法,本席剛才也說過,因為有災害防救法。
gazette.blocks[41][0] 朱主計長澤民:所以我們可以直接去做。
gazette.blocks[42][0] 鄭天財Sra Kacaw委員:預算法第八十三條也有相關規定,所以速度要加快。
gazette.blocks[43][0] 朱主計長澤民:如果依照預算法第八十三條,就需要特別條例、特別預算。
gazette.blocks[44][0] 鄭天財Sra Kacaw委員:不用。
gazette.blocks[45][0] 朱主計長澤民:要的,這是特別預算。
gazette.blocks[46][0] 主席:鄭委員,時間到了,後面還有很多委員在等。
gazette.blocks[47][0] 鄭天財Sra Kacaw委員:本席知道。既然災害準備金夠,第二預備金也夠,你們就趕快撥,好不好?
gazette.blocks[48][0] 朱主計長澤民:有需求,我們就會直接撥款。
gazette.blocks[49][0] 鄭天財Sra Kacaw委員:當然有需求啊!
gazette.blocks[50][0] 主席:有啦!主計長聽得懂啦!
gazette.blocks[51][0] 鄭天財Sra Kacaw委員:現在本席就是在這邊苦苦哀求啊!謝謝。
gazette.blocks[52][0] 主席:好,謝謝鄭天財委員的質詢。緊接著請陳玉珍委員質詢。
gazette.agenda.page_end 122
gazette.agenda.meet_id 委員會-11-1-20-11
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 李彥秀
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 王世堅
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 王鴻薇
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[11] 羅明才
gazette.agenda.speakers[12] 顏寬恒
gazette.agenda.speakers[13] 洪孟楷
gazette.agenda.speakers[14] 楊瓊瓔
gazette.agenda.speakers[15] 鄭天財Sra Kacaw
gazette.agenda.speakers[16] 陳玉珍
gazette.agenda.speakers[17] 黃秀芳
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.page_start 51
gazette.agenda.meetingDate[0] 2024-05-01
gazette.agenda.gazette_id 1133601
gazette.agenda.agenda_lcidc_ids[0] 1133601_00003
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第11次全體委員會議紀錄
gazette.agenda.content 邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就 「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質 薪資」進行專題報告,並備質詢
gazette.agenda.agenda_id 1133601_00002
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.51596875
transcript.pyannote[0].end 5.78534375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 5.85284375
transcript.pyannote[1].end 9.39659375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 8.26596875
transcript.pyannote[2].end 8.77221875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 8.83971875
transcript.pyannote[3].end 8.87346875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 10.96596875
transcript.pyannote[4].end 10.98284375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 10.98284375
transcript.pyannote[5].end 12.14721875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 11.50596875
transcript.pyannote[6].end 12.88971875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 12.33284375
transcript.pyannote[7].end 12.99096875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 13.37909375
transcript.pyannote[8].end 16.66971875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 16.70346875
transcript.pyannote[9].end 17.44596875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 18.01971875
transcript.pyannote[10].end 22.82909375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 23.21721875
transcript.pyannote[11].end 23.60534375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 23.92596875
transcript.pyannote[12].end 24.56721875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 25.14096875
transcript.pyannote[13].end 31.16534375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 31.85721875
transcript.pyannote[14].end 36.14346875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 36.86909375
transcript.pyannote[15].end 39.07971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 40.02471875
transcript.pyannote[16].end 42.50534375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 43.07909375
transcript.pyannote[17].end 44.61471875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 45.40784375
transcript.pyannote[18].end 48.15846875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 48.34409375
transcript.pyannote[19].end 51.61784375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 50.43659375
transcript.pyannote[20].end 92.15159375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 92.15159375
transcript.pyannote[21].end 92.16846875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 92.16846875
transcript.pyannote[22].end 92.18534375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 92.50596875
transcript.pyannote[23].end 93.26534375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 93.26534375
transcript.pyannote[24].end 93.34971875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 93.72096875
transcript.pyannote[25].end 93.97409375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 93.97409375
transcript.pyannote[26].end 97.83846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 99.03659375
transcript.pyannote[27].end 101.34846875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 102.10784375
transcript.pyannote[28].end 103.57596875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 104.11596875
transcript.pyannote[29].end 108.26721875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 108.97596875
transcript.pyannote[30].end 109.93784375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 110.59596875
transcript.pyannote[31].end 113.65034375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 114.27471875
transcript.pyannote[32].end 115.65846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 116.36721875
transcript.pyannote[33].end 117.34596875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 118.40909375
transcript.pyannote[34].end 119.25284375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 119.80971875
transcript.pyannote[35].end 121.04159375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 121.49721875
transcript.pyannote[36].end 122.59409375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 123.45471875
transcript.pyannote[37].end 125.02409375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 125.76659375
transcript.pyannote[38].end 127.47096875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 128.09534375
transcript.pyannote[39].end 129.29346875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 130.12034375
transcript.pyannote[40].end 130.40721875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 130.86284375
transcript.pyannote[41].end 131.33534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 131.85846875
transcript.pyannote[42].end 134.47409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 135.08159375
transcript.pyannote[43].end 135.75659375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 136.93784375
transcript.pyannote[44].end 138.16971875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 138.65909375
transcript.pyannote[45].end 142.03409375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 142.59096875
transcript.pyannote[46].end 150.99471875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 151.29846875
transcript.pyannote[47].end 162.52034375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 163.11096875
transcript.pyannote[48].end 166.21596875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 166.33409375
transcript.pyannote[49].end 167.39721875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 167.83596875
transcript.pyannote[50].end 168.83159375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 169.64159375
transcript.pyannote[51].end 172.62846875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 173.05034375
transcript.pyannote[52].end 174.43409375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 175.24409375
transcript.pyannote[53].end 177.42096875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 178.45034375
transcript.pyannote[54].end 179.14221875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 179.14221875
transcript.pyannote[55].end 179.44596875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 179.44596875
transcript.pyannote[56].end 180.03659375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 180.03659375
transcript.pyannote[57].end 181.21784375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 181.43721875
transcript.pyannote[58].end 210.69846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 210.69846875
transcript.pyannote[59].end 210.73221875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 210.73221875
transcript.pyannote[60].end 210.74909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 210.74909375
transcript.pyannote[61].end 210.79971875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 211.17096875
transcript.pyannote[62].end 219.43971875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 216.72284375
transcript.pyannote[63].end 217.06034375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 220.85721875
transcript.pyannote[64].end 223.03409375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 223.57409375
transcript.pyannote[65].end 224.53596875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 224.82284375
transcript.pyannote[66].end 225.39659375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 226.10534375
transcript.pyannote[67].end 238.27221875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 233.90159375
transcript.pyannote[68].end 234.27284375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 237.00659375
transcript.pyannote[69].end 241.29284375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 241.36034375
transcript.pyannote[70].end 241.73159375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 241.96784375
transcript.pyannote[71].end 246.74346875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 245.22471875
transcript.pyannote[72].end 245.68034375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 246.11909375
transcript.pyannote[73].end 247.30034375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 247.87409375
transcript.pyannote[74].end 249.02159375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 249.02159375
transcript.pyannote[75].end 249.03846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 249.03846875
transcript.pyannote[76].end 249.12284375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 249.12284375
transcript.pyannote[77].end 249.15659375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 250.94534375
transcript.pyannote[78].end 256.09221875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 257.03721875
transcript.pyannote[79].end 257.77971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 258.21846875
transcript.pyannote[80].end 265.57596875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 266.33534375
transcript.pyannote[81].end 266.70659375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 267.24659375
transcript.pyannote[82].end 269.08596875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 270.16596875
transcript.pyannote[83].end 271.65096875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 272.49471875
transcript.pyannote[84].end 273.45659375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 273.77721875
transcript.pyannote[85].end 275.85284375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 276.54471875
transcript.pyannote[86].end 277.92846875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 278.33346875
transcript.pyannote[87].end 278.56971875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 279.81846875
transcript.pyannote[88].end 280.98284375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 281.52284375
transcript.pyannote[89].end 282.67034375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 283.14284375
transcript.pyannote[90].end 284.29034375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 284.66159375
transcript.pyannote[91].end 287.76659375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 288.50909375
transcript.pyannote[92].end 289.21784375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 289.28534375
transcript.pyannote[93].end 293.25096875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 294.16221875
transcript.pyannote[94].end 297.23346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 298.14471875
transcript.pyannote[95].end 299.19096875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 300.00096875
transcript.pyannote[96].end 301.77284375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 302.71784375
transcript.pyannote[97].end 306.22784375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 307.29096875
transcript.pyannote[98].end 307.98284375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 308.75909375
transcript.pyannote[99].end 310.36221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 311.83034375
transcript.pyannote[100].end 313.21409375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 314.31096875
transcript.pyannote[101].end 317.73659375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 317.97284375
transcript.pyannote[102].end 320.80784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 321.02721875
transcript.pyannote[103].end 322.20846875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 322.56284375
transcript.pyannote[104].end 324.50346875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 325.21221875
transcript.pyannote[105].end 328.85721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 328.85721875
transcript.pyannote[106].end 328.94159375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 329.00909375
transcript.pyannote[107].end 329.07659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 329.07659375
transcript.pyannote[108].end 331.03409375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 329.26221875
transcript.pyannote[109].end 344.53409375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 337.58159375
transcript.pyannote[110].end 341.47971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 343.65659375
transcript.pyannote[111].end 345.59721875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 346.13721875
transcript.pyannote[112].end 349.79909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 349.95096875
transcript.pyannote[113].end 349.96784375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 349.96784375
transcript.pyannote[114].end 367.97346875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 350.13659375
transcript.pyannote[115].end 352.95471875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 363.97409375
transcript.pyannote[116].end 365.49284375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 366.57284375
transcript.pyannote[117].end 366.87659375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 367.97346875
transcript.pyannote[118].end 369.15471875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 369.64409375
transcript.pyannote[119].end 369.93096875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 371.44971875
transcript.pyannote[120].end 374.80784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 375.43221875
transcript.pyannote[121].end 375.75284375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 376.20846875
transcript.pyannote[122].end 376.79909375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 377.33909375
transcript.pyannote[123].end 378.36846875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 378.89159375
transcript.pyannote[124].end 380.73096875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 381.23721875
transcript.pyannote[125].end 381.59159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 382.30034375
transcript.pyannote[126].end 382.89096875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 383.70096875
transcript.pyannote[127].end 385.87784375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 386.56971875
transcript.pyannote[128].end 390.23159375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 390.60284375
transcript.pyannote[129].end 396.99846875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 397.40346875
transcript.pyannote[130].end 402.22971875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 402.49971875
transcript.pyannote[131].end 403.10721875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 403.10721875
transcript.pyannote[132].end 407.02221875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 403.20846875
transcript.pyannote[133].end 414.46409375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 415.39221875
transcript.pyannote[134].end 421.65284375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 422.69909375
transcript.pyannote[135].end 428.03159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 428.03159375
transcript.pyannote[136].end 432.89159375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 432.89159375
transcript.pyannote[137].end 433.76909375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 433.12784375
transcript.pyannote[138].end 438.57846875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 434.71409375
transcript.pyannote[139].end 435.72659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 436.75596875
transcript.pyannote[140].end 437.22846875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 438.78096875
transcript.pyannote[141].end 438.86534375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 438.86534375
transcript.pyannote[142].end 444.09659375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 438.94971875
transcript.pyannote[143].end 439.69221875
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 444.94034375
transcript.pyannote[144].end 445.59846875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 445.93596875
transcript.pyannote[145].end 447.13409375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 447.64034375
transcript.pyannote[146].end 457.32659375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 453.88409375
transcript.pyannote[147].end 453.95159375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 453.95159375
transcript.pyannote[148].end 454.00221875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 454.00221875
transcript.pyannote[149].end 454.05284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 457.39409375
transcript.pyannote[150].end 458.62596875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 458.82846875
transcript.pyannote[151].end 461.05596875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 461.05596875
transcript.pyannote[152].end 461.10659375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 461.10659375
transcript.pyannote[153].end 461.12346875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 461.12346875
transcript.pyannote[154].end 461.24159375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 461.24159375
transcript.pyannote[155].end 461.37659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 461.37659375
transcript.pyannote[156].end 461.61284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 461.61284375
transcript.pyannote[157].end 461.69721875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 461.69721875
transcript.pyannote[158].end 462.28784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 461.83221875
transcript.pyannote[159].end 462.38909375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 462.86159375
transcript.pyannote[160].end 462.94596875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 462.94596875
transcript.pyannote[161].end 467.90721875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 463.41846875
transcript.pyannote[162].end 463.57034375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 464.14409375
transcript.pyannote[163].end 468.17721875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 468.17721875
transcript.pyannote[164].end 468.19409375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 468.19409375
transcript.pyannote[165].end 468.21096875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 468.21096875
transcript.pyannote[166].end 471.94034375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 472.44659375
transcript.pyannote[167].end 475.02846875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 477.81284375
transcript.pyannote[168].end 479.28096875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 479.43284375
transcript.pyannote[169].end 479.44971875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 479.44971875
transcript.pyannote[170].end 479.61846875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 479.61846875
transcript.pyannote[171].end 479.65221875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 480.05721875
transcript.pyannote[172].end 480.58034375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 480.51284375
transcript.pyannote[173].end 480.64784375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 480.59721875
transcript.pyannote[174].end 480.73221875
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 480.73221875
transcript.pyannote[175].end 480.86721875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 480.86721875
transcript.pyannote[176].end 487.73534375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 480.88409375
transcript.pyannote[177].end 480.90096875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 480.93471875
transcript.pyannote[178].end 483.43221875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 485.22096875
transcript.pyannote[179].end 485.23784375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 486.31784375
transcript.pyannote[180].end 486.48659375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 486.68909375
transcript.pyannote[181].end 487.27971875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 487.73534375
transcript.pyannote[182].end 487.90409375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 487.90409375
transcript.pyannote[183].end 492.61221875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 488.12346875
transcript.pyannote[184].end 488.73096875
transcript.whisperx[0].start 1.713
transcript.whisperx[0].end 5.315
transcript.whisperx[0].text 主席、各位委員、請主計長還有國發會的師傅主委主計長好,辛苦了
transcript.whisperx[1].start 13.479
transcript.whisperx[1].end 34.276
transcript.whisperx[1].text 不會啦,看到委員很高興謝謝這個今年啊這個0403地震很快的陳院長在4月4號就到花蓮視察災情當天就宣布主計總處已經撥了3億請問一下這個主計長
transcript.whisperx[2].start 40.086
transcript.whisperx[2].end 66.698
transcript.whisperx[2].text 到現在為止已經快滿一個月了這個主計總處現在已經除了這3億之外還沒有撥其他那個跟那個委員報告一下那個3億在當天到下午4月3號下午5點鐘以前我們就跟財政部一起努力就撥到臺灣銀行花年昏朗的戶頭只是他們那一天不上班對,國天又放假
transcript.whisperx[3].start 67.878
transcript.whisperx[3].end 89.212
transcript.whisperx[3].text 對,所以事實上我們當天就補下去阿這個錢以後要撥多少是他們要把那個是怎麼樣需求多少已經用了多少而且這個是花蓮縣政府也有所謂的災害準備金大概4億再加上3億他們所需要的只要有報上來我們經過審核以後我們就會繼續補,謝謝
transcript.whisperx[4].start 93.775
transcript.whisperx[4].end 106.42
transcript.whisperx[4].text 好,所以現在只播了3億嗎?對,好好,我們看25年前25年前的民國88年的9月21號的921政災主計總處,當時叫主計處啦那時候是委主計長這個你的前輩當時在9月,第二天喔9月22號
transcript.whisperx[5].start 123.496
transcript.whisperx[5].end 135.521
transcript.whisperx[5].text 一開始先撥了4億然後緊接著一看到災情又再增加這個臺東縣政府、南投縣政府又再增加一直到
transcript.whisperx[6].start 137.234
transcript.whisperx[6].end 158.161
transcript.whisperx[6].text 當天第二天總共增加到撥款53億當然25年前的物價指數各方面53億是非常非常大要跟現在的這個53億是有差很多所以這個部分這個是主動我是建議這個主計總處主動來協助
transcript.whisperx[7].start 163.163
transcript.whisperx[7].end 176.888
transcript.whisperx[7].text 那我請教一下這個主計長,這個現在啊,到底我們因為副院長開了幾次會議嘛,後來現在我也開了很多次會議。
transcript.whisperx[8].start 178.796
transcript.whisperx[8].end 195.124
transcript.whisperx[8].text 現在到底準備了多少錢我們是有匡列大概是兩百多億有匡列兩百多億那個兩百多億我們將來也許說在明天就可能成立一個方案有國發會提案來報告
transcript.whisperx[9].start 197.245
transcript.whisperx[9].end 199.507
transcript.whisperx[9].text 師傅主委剛剛主計長有提到國發會還有默契就馬上就請你
transcript.whisperx[10].start 220.919
transcript.whisperx[10].end 248.332
transcript.whisperx[10].text 那個澤民要不要接續剛才主計長的向委員報告就是那個國發會在化中階級的部分目前的規劃就是以20億來提撥那來跟信保因為信保可以乘坐那個信保可以乘坐200億的財源紓困對對對這樣我講的是總的啦是跟委員報告因為總的部分因為這不是我分管的業務那我是不是會後馬上請同仁準備好的好的好那個主計長
transcript.whisperx[11].start 251.604
transcript.whisperx[11].end 277.022
transcript.whisperx[11].text 這個因為現在花蓮縣政府的公務人員都很忙都非常忙所以為什麼當初九二一會主動播就是因為很忙對我知道我知道所以這個部分我又舉一個例子莫拉克颱風風災災禍重建的特別條例這是民國98年
transcript.whisperx[12].start 280.041
transcript.whisperx[12].end 305.876
transcript.whisperx[12].text 8月20號88風災喔88風災莫拉克颱風是88風災就是8月8號一樣當天撥很多錢我就不再細數了為了這個訂特別條例行政院8月20號8月20號就把經過行政院會通過送到立法院這個特別條例
transcript.whisperx[13].start 307.315
transcript.whisperx[13].end 330.232
transcript.whisperx[13].text 我們看非常非常快立法院馬上就審查8月28號就公布施行所以不到一個月的時間所以這個部分都是我們過去都很有經驗結果這次的經驗好像倒退了我們有時候做那個
transcript.whisperx[14].start 332.393
transcript.whisperx[14].end 334.873
transcript.whisperx[14].text 我剛講到八八風災八月八號喔他那個是條例喔條例是他那個是條例並沒有預算那我們這一次明天要公佈的
transcript.whisperx[15].start 361.538
transcript.whisperx[15].end 366.622
transcript.whisperx[15].text 當然你現在是根據災害防救法57條可以用第二一倍金可以用災害準備金
transcript.whisperx[16].start 382.355
transcript.whisperx[16].end 401.771
transcript.whisperx[16].text 然後災害防救法第58條然後你也可以依依算法第83條重大災害的時候就可以提出特別預算所以這個部分我只是建議我們的主計處的公務員因為主計長很忙
transcript.whisperx[17].start 402.512
transcript.whisperx[17].end 421.337
transcript.whisperx[17].text 不會不會不會這個人民的事情我會擺在第一位既然講了兩百億還是兩百五十億現在都媒體報導趕快付諸實施好不好我們現在就在已經在在做了而不是說要通過特別條例在做我知道
transcript.whisperx[18].start 423.045
transcript.whisperx[18].end 443.814
transcript.whisperx[18].text 這個法例已經周全了,因為之前的案例,所以才會有綏修所以不必特別條例才來做,也不必要變特別預算才做我們現在就可以做,那明天只是通過一個方案,謝謝有錢比較重要,政委員我的意思是說,已經比這個,以前是要立法
transcript.whisperx[19].start 446.034
transcript.whisperx[19].end 471.479
transcript.whisperx[19].text 以前要立法然後立法的那麼快而現在是不用立法我剛剛有講了災害防救法有了預算法83條也有了所以還要加快預算法83條要特別條例要特別預算要要要這個是怎麼要特別預算我知道我知道所以既然災害準備金夠
transcript.whisperx[20].start 472.606
transcript.whisperx[20].end 473.806
transcript.whisperx[20].text 謝謝鄭天財委員的質詢 緊接著我們陳玉珍委員質詢