iVOD / 151975

Field Value
IVOD_ID 151975
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/151975
日期 2024-05-01
會議資料.會議代碼 委員會-11-1-20-11
會議資料.會議代碼:str 第11屆第1會期財政委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第11次全體委員會議
影片種類 Clip
開始時間 2024-05-01T12:08:09+08:00
結束時間 2024-05-01T12:19:45+08:00
影片長度 00:11:36
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75811ef35c27466b5e160a73380dd83b900bfbad7a56e18f7f5010e63071191952fbb683eb77f5d55ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 12:08:09 - 12:19:45
會議時間 2024-05-01T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第11次全體委員會議(事由:邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質薪資」進行專題報告,並備質詢。)
gazette.lineno 1002
gazette.blocks[0][0] 羅委員明才:(12時7分)主席、各位委員、各位列席官員,大家好。主席,可不可以請主計長?
gazette.blocks[1][0] 主席:朱主計長請。
gazette.blocks[2][0] 羅委員明才:主計長你好。
gazette.blocks[3][0] 朱主計長澤民:委員好。
gazette.blocks[4][0] 羅委員明才:現在是5月1號,五一五一勞工穿新衣,可是今天的勞工朋友還有年輕人很辛苦啊!在今天買新衣服穿的不多,因為阮囊羞澀,因為手邊沒閒錢,主計長你應該是最後,要有始有終,在這艘船上你要繼續努力啊!
gazette.blocks[5][0] 朱主計長澤民:我已經不會在政府單位這一艘船上,我是在中華民國這個島上。
gazette.blocks[6][0] 羅委員明才:對,在這艘你我共同的船上,每個人都要繼續努力,雖然主計長已經快要畢業了,人之將至,其言也善。
gazette.blocks[7][0] 朱主計長澤民:那個是送到殯儀館的啦!你不要用這種話啦!
gazette.blocks[8][0] 羅委員明才:沒有啦!我是說這個位置即將到一個劃句點的時刻,你應該多講一點正面的、講一些良心話。
gazette.blocks[9][0] 朱主計長澤民:我都是講正面的話。
gazette.blocks[10][0] 羅委員明才:本席一直關心年輕人低薪的問題,請問主計長,現在年輕人薪水有沒有高於三萬五的?
gazette.blocks[11][0] 朱主計長澤民:我們的經常性薪資平均大概是四萬多塊,您剛才講的三萬五,剛畢業的人平均沒有那麼多。
gazette.blocks[12][0] 羅委員明才:好,主計長,中華民國很有錢。
gazette.blocks[13][0] 朱主計長澤民:對。
gazette.blocks[14][0] 羅委員明才:我們應該多多照顧年輕人,低於平均線三萬五以下的,是不是可以來申請領一點補助?
gazette.blocks[15][0] 朱主計長澤民:符合低收入戶的話是可以的,要符合一定的條件,而且我們也有很多措施,像租金補貼啦!學貸啦!我們最近都有很多的措施,讓年輕人避免學貸的壓力以及房屋租金的壓力。
gazette.blocks[16][0] 羅委員明才:主計長,那個是緩不濟急啦!
gazette.blocks[17][0] 朱主計長澤民:有啦!那個是每個月都發的,不可能緩不濟急。
gazette.blocks[18][0] 羅委員明才:而且對很多的青年人、年輕人沒有實際的幫助。我請教一個數字,外勞在臺灣一般可以領多少錢?
gazette.blocks[19][0] 朱主計長澤民:就是按照所謂的最低工資,都有。
gazette.blocks[20][0] 羅委員明才:多少?
gazette.blocks[21][0] 朱主計長澤民:如果按照規定,他有額外加班的話,雇主還要另外給錢,這個由勞動部來答會比我更恰當。
gazette.blocks[22][0] 羅委員明才:勞動部是哪一位?
gazette.blocks[23][0] 主席:有請許次長。
gazette.blocks[24][0] 羅委員明才:主計長,也請你留步。
gazette.blocks[25][0] 朱主計長澤民:還要哦?
gazette.blocks[26][0] 羅委員明才:因為你是老臣伏驥,事實上你可以指導幫助很多年輕人,我繼續討論,你就可以講兩句話了。
gazette.blocks[26][1] 請問許次長,外勞的最低薪資,一般在臺灣大概可以領多少?
gazette.blocks[27][0] 許次長傳盛:謝謝羅委員。外勞有好多種,如果是所謂的廠工、製造業,依照目前規定的基本工資……
gazette.blocks[28][0] 羅委員明才:好,直接回答,廠工是多少?
gazette.blocks[29][0] 許次長傳盛:廠工至少要在基本工資以上。
gazette.blocks[30][0] 羅委員明才:多少?
gazette.blocks[31][0] 許次長傳盛:目前基本工資以上的話,是2萬7,470元以上。
gazette.blocks[32][0] 羅委員明才:兩萬七千多。請問長照的這些外勞一個月領多少?
gazette.blocks[33][0] 許次長傳盛:長照的部分,目前是……
gazette.blocks[34][0] 羅委員明才:直接答。
gazette.blocks[35][0] 許次長傳盛:2萬左右。
gazette.blocks[36][0] 羅委員明才:多少?
gazette.blocks[37][0] 許次長傳盛:2萬左右。
gazette.blocks[38][0] 羅委員明才:長照2萬可以請得到?
gazette.blocks[39][0] 許次長傳盛:不,長照也有分兩種,一個是在機構工作,那也要基本工資,如果是在家庭幫傭看護的,那個部分是2萬出頭一點。
gazette.blocks[40][0] 羅委員明才:好,家裡的話是兩萬多,多多少?
gazette.blocks[41][0] 許次長傳盛:大概兩萬一、兩萬二,兩萬二。
gazette.blocks[42][0] 羅委員明才:好,兩萬二。長照的部分,外勞是領多少?
gazette.blocks[43][0] 許次長傳盛:以機構嗎?或者是……
gazette.blocks[44][0] 羅委員明才:機構。
gazette.blocks[45][0] 許次長傳盛:機構當然一定要基本工資以上,2萬7,470元以上。
gazette.blocks[46][0] 羅委員明才:次長,你吃米不知道米價啊!不要說那些有的沒的,你去醫院問問看,你要請一個臨時的長照,沒有6萬、沒有8萬你請得到人嗎?
gazette.blocks[47][0] 許次長傳盛:那是本國的啦!
gazette.blocks[48][0] 羅委員明才:本國的,好,那你請外勞不用5萬嗎?
gazette.blocks[49][0] 許次長傳盛:沒有,外勞當然他還有加班費。
gazette.blocks[50][0] 羅委員明才:內行人說內行話,不要粉飾太平,講那一些大家聽不懂的話。你如果說兩萬多可以請到長照,那明天我找一票人去登記,請你把人提供出來給大家。
gazette.blocks[51][0] 許次長傳盛:我跟羅委員報告,本國跟外勞他在薪資上面是有落差。
gazette.blocks[52][0] 羅委員明才:你承不承認本席剛剛講的是比較貼近市場面?對吧!接著要回過來換主計長,事實上,連外勞可能每一個月都是領四萬五,領5萬、6萬以上。
gazette.blocks[53][0] 朱主計長澤民:您講的那個可能是外配,不是外勞,謝謝。
gazette.blocks[54][0] 羅委員明才:外勞啦!在醫院裡面幫忙看護的。
gazette.blocks[55][0] 朱主計長澤民:外配啦!他是外配啦!
gazette.blocks[56][0] 羅委員明才:幫忙24小時在醫院照顧健康的。
gazette.blocks[57][0] 朱主計長澤民:對,那有很多都是外配,謝謝。
gazette.blocks[58][0] 羅委員明才:好,不管啦!我講這個……
gazette.blocks[59][0] 朱主計長澤民:外配他已經有中華民國國籍,所以他已經適用中華民國法律,謝謝。
gazette.blocks[60][0] 羅委員明才:重點是要提醒主計長,連外勞都領5萬了,你為什麼讓中華民國的年輕人、青年人只有領三萬五,有的還領不到?
gazette.blocks[61][0] 朱主計長澤民:我剛才講,那些所謂的外配,他已經是具有中華民國國籍,謝謝。
gazette.blocks[62][0] 羅委員明才:所以本席在這裡一直奉勸你,你就最後一段路了,你就講講實際的心裡話,拜託你幫幫年輕人嘛!如果年輕朋友領不到三萬五的,國家補助嘛!國家支持啊!國家要挺身而出照顧他們啊!
gazette.blocks[63][0] 朱主計長澤民:對,如果說……
gazette.blocks[64][0] 羅委員明才:主計長,能不能幫幫這些年輕人?
gazette.blocks[65][0] 朱主計長澤民:對,也許委員對於……
gazette.blocks[66][0] 羅委員明才:現在的年輕人,我覺得將心比心,如果我是這些年輕人,我每天起來就是4個字,「失望」跟「絕望」,因為我再幹下去沒有什麼好做,只好做Uber啊!主計長,做Uber跑單一個月可以領多少錢?
gazette.blocks[67][0] 朱主計長澤民:現在大概會有3、4萬以上,謝謝。
gazette.blocks[68][0] 羅委員明才:吃米不知道米價,認真一點跑單至少也有7萬,有的拚到底的,晚上也拚白天也拚,差不多有十幾萬,沒辦法嘛!他為了生活,還不是為了理想,因為沒有理想啊!只是在這種困難的環境中自我安慰,然後努力生存,希望可以掙得比外勞多一點點的薪水,看護的起碼都有6萬、7萬啊!所以年輕人是沒有希望的。我希望所有的相關單位、政府機關,平心而論,現在的貧富懸殊已經擴大到歷史新高,主計長,貧富懸殊最高數跟最低數差多少?
gazette.blocks[69][0] 朱主計長澤民:我剛才有講,以最高最低去比並不是很恰當。
gazette.blocks[70][0] 羅委員明才:67倍。
gazette.blocks[71][0] 朱主計長澤民:那個並不是很恰當,因為最高的裡面有很高的負債。
gazette.blocks[72][0] 羅委員明才:67倍的意思就是與主計長沒關,因為你不是最底層的那六十七分之一,年輕人比較辛苦、弱勢的,只能寄望寄生上游,不斷地往上攀爬,問題是沒有人像你那麼好啊!你是在公務機關,你退休還有退休金啊!你退休了,國家會養你啊!這些年輕人手無寸鐵,人為刀俎、我為魚肉,所以本席建議今年度的預算優先照顧年輕人,今年所有的預算大力、大幅度來照顧年輕人,特別是有小孩的年輕人,單親家庭也要照顧。
gazette.blocks[73][0] 朱主計長澤民:我們最近的預算就是像委員所說的那樣,青年有學貸,有房租補貼,而且有小孩的每個人5,000元,我們就是像委員所講的,已經有在照顧,那個都是過去8年以前沒有的,謝謝。
gazette.blocks[74][0] 羅委員明才:主計長,難道你要我在這邊好好地感謝你謝主隆恩嗎?
gazette.blocks[75][0] 朱主計長澤民:沒有啦!這是我們應該做的,因為那是納稅人的錢,是我們應該做的。
gazette.blocks[76][0] 羅委員明才:如果你做得好,年輕人就不會怨嘆了!你做得好,年輕人就不會痛哭流淚啊!你做得好,大家拿香來跟你拜啊!問題是你做好了嗎?
gazette.blocks[77][0] 朱主計長澤民:沒有,我又沒有去殯儀館,不必拿香跟我拜,謝謝。
gazette.blocks[78][0] 羅委員明才:年輕人的薪資,以目前的情況,起碼你要5萬起跳啊!主計長,以現在的經濟水平,現在政府的照顧,什麼時候能讓臺灣的年輕人可以稍微緩緩,至少一個月領5萬元以上?什麼時候做得到?
gazette.blocks[79][0] 朱主計長澤民:未來的人會做得到,謝謝。
gazette.blocks[80][0] 羅委員明才:好啦!做不到請下臺。其實國家有很多的政策工具,貧富懸殊那麼大……
gazette.blocks[81][0] 朱主計長澤民:我很快就下臺了,我再兩個多禮拜就下臺了。
gazette.blocks[82][0] 羅委員明才:所以你做不到要下臺啊!
gazette.blocks[83][0] 朱主計長澤民:對,我下臺。
gazette.blocks[84][0] 羅委員明才:政府有那麼多的單位,那麼多的錢,該用不用!上上禮拜,我報一條消息讓你們聞香,保險法第一百四十六條之四修正以後,從國外引進來的資金有六兆多,你也可以要求這六兆多優先以怎麼樣的方式來照顧年輕人啊!你們碰到財團、碰到大企業家,統統轉彎!
gazette.blocks[85][0] 朱主計長澤民:那個六兆多不能發給大家,那個是人家的錢。
gazette.blocks[86][0] 羅委員明才:六兆多回來,你為什麼不主張歡迎你們回來,以10%的概念,全部優先照顧年輕人?
gazette.blocks[87][0] 朱主計長澤民:歡迎回來要產生價值,那個不是中華民國的錢,不是政府的錢,所以不能發給民眾。
gazette.blocks[88][0] 羅委員明才:這個是你可以提的啊!錢回來……
gazette.blocks[89][0] 朱主計長澤民:那個不是政府的錢,不能夠發給民眾。
gazette.blocks[90][0] 羅委員明才:你可以遺贈稅增加20%、50%,全部照顧年輕人啊!你們都不做啊!該做不做,所以主計長,不做的結果,最後就是要下臺一鞠躬,謝謝。
gazette.blocks[91][0] 主席:謝謝羅召委的質詢。
gazette.blocks[91][1] 緊接著我們請顏寬恒委員質詢。
gazette.agenda.page_end 122
gazette.agenda.meet_id 委員會-11-1-20-11
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 李彥秀
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 王世堅
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 王鴻薇
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[11] 羅明才
gazette.agenda.speakers[12] 顏寬恒
gazette.agenda.speakers[13] 洪孟楷
gazette.agenda.speakers[14] 楊瓊瓔
gazette.agenda.speakers[15] 鄭天財Sra Kacaw
gazette.agenda.speakers[16] 陳玉珍
gazette.agenda.speakers[17] 黃秀芳
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.page_start 51
gazette.agenda.meetingDate[0] 2024-05-01
gazette.agenda.gazette_id 1133601
gazette.agenda.agenda_lcidc_ids[0] 1133601_00003
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第11次全體委員會議紀錄
gazette.agenda.content 邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就 「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質 薪資」進行專題報告,並備質詢
gazette.agenda.agenda_id 1133601_00002
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.31346875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 1.56659375
transcript.pyannote[1].end 3.03471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 3.20346875
transcript.pyannote[2].end 4.14846875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 4.67159375
transcript.pyannote[3].end 5.58284375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 5.93721875
transcript.pyannote[4].end 7.67534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 8.40096875
transcript.pyannote[5].end 9.02534375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 9.85221875
transcript.pyannote[6].end 11.20221875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 11.64096875
transcript.pyannote[7].end 12.24846875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 12.38346875
transcript.pyannote[8].end 14.20596875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 14.99909375
transcript.pyannote[9].end 15.64034375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 16.39971875
transcript.pyannote[10].end 18.17159375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 18.37409375
transcript.pyannote[11].end 19.57221875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 20.28096875
transcript.pyannote[12].end 21.37784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 21.96846875
transcript.pyannote[13].end 25.76534375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 22.00221875
transcript.pyannote[14].end 22.55909375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 26.87909375
transcript.pyannote[15].end 30.16971875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 27.16596875
transcript.pyannote[16].end 27.52034375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 30.25409375
transcript.pyannote[17].end 34.03409375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 34.03409375
transcript.pyannote[18].end 39.21471875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 39.46784375
transcript.pyannote[19].end 43.14659375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 43.53471875
transcript.pyannote[20].end 44.85096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 45.40784375
transcript.pyannote[21].end 45.74534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 46.48784375
transcript.pyannote[22].end 47.48346875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 48.15846875
transcript.pyannote[23].end 55.56659375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 55.75221875
transcript.pyannote[24].end 57.25409375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 58.19909375
transcript.pyannote[25].end 59.44784375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 60.05534375
transcript.pyannote[26].end 61.30409375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 61.54034375
transcript.pyannote[27].end 62.40096875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 62.87346875
transcript.pyannote[28].end 64.32471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 64.51034375
transcript.pyannote[29].end 66.61971875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 64.57784375
transcript.pyannote[30].end 66.38346875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 66.38346875
transcript.pyannote[31].end 66.45096875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 67.10909375
transcript.pyannote[32].end 67.90221875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 68.17221875
transcript.pyannote[33].end 69.92721875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 71.27721875
transcript.pyannote[34].end 72.54284375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 73.38659375
transcript.pyannote[35].end 74.44971875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 74.92221875
transcript.pyannote[36].end 77.30159375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 77.30159375
transcript.pyannote[37].end 77.33534375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 77.82471875
transcript.pyannote[38].end 77.97659375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 77.97659375
transcript.pyannote[39].end 97.02846875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 90.80159375
transcript.pyannote[40].end 91.27409375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 97.02846875
transcript.pyannote[41].end 99.67784375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 100.15034375
transcript.pyannote[42].end 100.80846875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 101.04471875
transcript.pyannote[43].end 105.70221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 106.17471875
transcript.pyannote[44].end 112.62096875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 112.82346875
transcript.pyannote[45].end 114.96659375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 114.96659375
transcript.pyannote[46].end 143.41784375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 143.41784375
transcript.pyannote[47].end 143.45159375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 144.26159375
transcript.pyannote[48].end 145.03784375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 145.03784375
transcript.pyannote[49].end 145.56096875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 145.72971875
transcript.pyannote[50].end 146.89409375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 146.20221875
transcript.pyannote[51].end 148.17659375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 147.65346875
transcript.pyannote[52].end 150.64034375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 151.04534375
transcript.pyannote[53].end 160.96784375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 160.96784375
transcript.pyannote[54].end 178.02846875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 178.02846875
transcript.pyannote[55].end 178.36596875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 178.90596875
transcript.pyannote[56].end 178.93971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 178.93971875
transcript.pyannote[57].end 180.20534375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 181.11659375
transcript.pyannote[58].end 181.72409375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 182.26409375
transcript.pyannote[59].end 184.33971875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 184.93034375
transcript.pyannote[60].end 186.55034375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 186.90471875
transcript.pyannote[61].end 188.42346875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 188.99721875
transcript.pyannote[62].end 191.15721875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 191.56221875
transcript.pyannote[63].end 193.48596875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 193.97534375
transcript.pyannote[64].end 197.14784375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 197.58659375
transcript.pyannote[65].end 198.93659375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 199.52721875
transcript.pyannote[66].end 200.97846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 201.38346875
transcript.pyannote[67].end 205.07909375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 205.07909375
transcript.pyannote[68].end 205.11284375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 206.12534375
transcript.pyannote[69].end 219.94596875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 214.51221875
transcript.pyannote[70].end 215.76096875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 215.94659375
transcript.pyannote[71].end 216.28409375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 220.63784375
transcript.pyannote[72].end 228.97409375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 223.99596875
transcript.pyannote[73].end 224.55284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 228.97409375
transcript.pyannote[74].end 229.02471875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 229.02471875
transcript.pyannote[75].end 229.96971875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 229.96971875
transcript.pyannote[76].end 230.03721875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 230.03721875
transcript.pyannote[77].end 230.96534375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 230.96534375
transcript.pyannote[78].end 231.03284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 231.03284375
transcript.pyannote[79].end 233.19284375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 231.74159375
transcript.pyannote[80].end 232.50096875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 233.49659375
transcript.pyannote[81].end 234.93096875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 234.94784375
transcript.pyannote[82].end 234.96471875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 235.21784375
transcript.pyannote[83].end 237.19221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 237.95159375
transcript.pyannote[84].end 245.93346875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 243.62159375
transcript.pyannote[85].end 244.04346875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 245.03909375
transcript.pyannote[86].end 248.88659375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 249.17346875
transcript.pyannote[87].end 250.96221875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 250.96221875
transcript.pyannote[88].end 251.02971875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 251.02971875
transcript.pyannote[89].end 251.24909375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 251.24909375
transcript.pyannote[90].end 251.72159375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 251.26596875
transcript.pyannote[91].end 251.68784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 251.72159375
transcript.pyannote[92].end 251.97471875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 251.97471875
transcript.pyannote[93].end 252.02534375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 252.02534375
transcript.pyannote[94].end 252.97034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 252.97034375
transcript.pyannote[95].end 253.03784375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 253.03784375
transcript.pyannote[96].end 253.96596875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 253.96596875
transcript.pyannote[97].end 254.03346875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 254.03346875
transcript.pyannote[98].end 255.48471875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 256.46346875
transcript.pyannote[99].end 266.62221875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 266.62221875
transcript.pyannote[100].end 276.89909375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 266.67284375
transcript.pyannote[101].end 267.46596875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 277.18596875
transcript.pyannote[102].end 280.52721875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 281.70846875
transcript.pyannote[103].end 285.20159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 282.70409375
transcript.pyannote[104].end 283.75034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 285.62346875
transcript.pyannote[105].end 290.26409375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 290.80409375
transcript.pyannote[106].end 297.95909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 298.65096875
transcript.pyannote[107].end 298.66784375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 298.66784375
transcript.pyannote[108].end 305.67096875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 301.77284375
transcript.pyannote[109].end 303.34221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 306.78471875
transcript.pyannote[110].end 307.39221875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 308.08409375
transcript.pyannote[111].end 308.59034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 309.31596875
transcript.pyannote[112].end 310.31159375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 310.71659375
transcript.pyannote[113].end 312.77534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 313.28159375
transcript.pyannote[114].end 315.35721875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 315.69471875
transcript.pyannote[115].end 316.36971875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 316.72409375
transcript.pyannote[116].end 319.96409375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 319.96409375
transcript.pyannote[117].end 320.47034375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 320.80784375
transcript.pyannote[118].end 328.03034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 328.03034375
transcript.pyannote[119].end 328.21596875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 328.21596875
transcript.pyannote[120].end 331.28721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 329.36346875
transcript.pyannote[121].end 330.30846875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 331.11846875
transcript.pyannote[122].end 335.01659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 335.20221875
transcript.pyannote[123].end 337.02471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 337.02471875
transcript.pyannote[124].end 337.07534375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 337.07534375
transcript.pyannote[125].end 337.34534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 337.34534375
transcript.pyannote[126].end 338.40846875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 339.20159375
transcript.pyannote[127].end 342.99846875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 339.31971875
transcript.pyannote[128].end 344.02784375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 344.34846875
transcript.pyannote[129].end 344.63534375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 345.05721875
transcript.pyannote[130].end 355.51971875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 350.45721875
transcript.pyannote[131].end 350.59221875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 351.58784375
transcript.pyannote[132].end 352.12784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 352.48221875
transcript.pyannote[133].end 352.81971875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 355.51971875
transcript.pyannote[134].end 359.09721875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 356.02596875
transcript.pyannote[135].end 365.32409375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 360.00846875
transcript.pyannote[136].end 360.61596875
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 365.76284375
transcript.pyannote[137].end 368.34471875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 368.80034375
transcript.pyannote[138].end 374.58846875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 374.85846875
transcript.pyannote[139].end 377.79471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 379.07721875
transcript.pyannote[140].end 386.62034375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 379.61721875
transcript.pyannote[141].end 379.97159375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 379.97159375
transcript.pyannote[142].end 380.03909375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 387.12659375
transcript.pyannote[143].end 388.86471875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 389.55659375
transcript.pyannote[144].end 390.87284375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 391.41284375
transcript.pyannote[145].end 391.96971875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 392.47596875
transcript.pyannote[146].end 393.13409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 394.45034375
transcript.pyannote[147].end 395.56409375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 396.93096875
transcript.pyannote[148].end 398.36534375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 399.41159375
transcript.pyannote[149].end 401.65596875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 402.75284375
transcript.pyannote[150].end 403.34346875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 403.96784375
transcript.pyannote[151].end 406.22909375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 406.22909375
transcript.pyannote[152].end 406.27971875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 406.51596875
transcript.pyannote[153].end 406.53284375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 406.53284375
transcript.pyannote[154].end 406.97159375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 406.97159375
transcript.pyannote[155].end 407.03909375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 407.03909375
transcript.pyannote[156].end 407.96721875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 407.96721875
transcript.pyannote[157].end 408.03471875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 408.03471875
transcript.pyannote[158].end 408.96284375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 408.96284375
transcript.pyannote[159].end 409.03034375
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 409.03034375
transcript.pyannote[160].end 409.97534375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 409.97534375
transcript.pyannote[161].end 410.02596875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 410.02596875
transcript.pyannote[162].end 410.36346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 410.36346875
transcript.pyannote[163].end 410.38034375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 410.38034375
transcript.pyannote[164].end 410.41409375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 410.86971875
transcript.pyannote[165].end 412.27034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 412.59096875
transcript.pyannote[166].end 413.36721875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 413.82284375
transcript.pyannote[167].end 416.33721875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 416.37096875
transcript.pyannote[168].end 421.97346875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 422.80034375
transcript.pyannote[169].end 424.16721875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 425.01096875
transcript.pyannote[170].end 425.87159375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 426.32721875
transcript.pyannote[171].end 427.40721875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 428.23409375
transcript.pyannote[172].end 430.49534375
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 431.57534375
transcript.pyannote[173].end 432.31784375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 433.31346875
transcript.pyannote[174].end 435.15284375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 435.79409375
transcript.pyannote[175].end 439.13534375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 439.50659375
transcript.pyannote[176].end 443.11784375
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 443.64096875
transcript.pyannote[177].end 445.83471875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 448.12971875
transcript.pyannote[178].end 448.53471875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 448.93971875
transcript.pyannote[179].end 450.55971875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 451.65659375
transcript.pyannote[180].end 452.43284375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 454.00221875
transcript.pyannote[181].end 455.72346875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 456.36471875
transcript.pyannote[182].end 457.36034375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 458.38971875
transcript.pyannote[183].end 459.25034375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 459.77346875
transcript.pyannote[184].end 461.93346875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 462.50721875
transcript.pyannote[185].end 468.56534375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 469.10534375
transcript.pyannote[186].end 473.45909375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 473.61096875
transcript.pyannote[187].end 474.70784375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 473.99909375
transcript.pyannote[188].end 475.60221875
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 475.60221875
transcript.pyannote[189].end 479.77034375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 477.59346875
transcript.pyannote[190].end 486.50346875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 487.24596875
transcript.pyannote[191].end 497.16846875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 498.21471875
transcript.pyannote[192].end 506.02784375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 506.78721875
transcript.pyannote[193].end 509.48721875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 510.56721875
transcript.pyannote[194].end 511.61346875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 512.42346875
transcript.pyannote[195].end 513.23346875
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 514.26284375
transcript.pyannote[196].end 515.41034375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 516.76034375
transcript.pyannote[197].end 517.87409375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 518.58284375
transcript.pyannote[198].end 520.08471875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 520.99596875
transcript.pyannote[199].end 521.73846875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 522.27846875
transcript.pyannote[200].end 523.20659375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 524.08409375
transcript.pyannote[201].end 532.62284375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 531.05346875
transcript.pyannote[202].end 555.10034375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 554.69534375
transcript.pyannote[203].end 555.01596875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 555.10034375
transcript.pyannote[204].end 555.30284375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 555.91034375
transcript.pyannote[205].end 561.46221875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 561.46221875
transcript.pyannote[206].end 565.34346875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 562.52534375
transcript.pyannote[207].end 567.14909375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 565.79909375
transcript.pyannote[208].end 567.75659375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 567.50346875
transcript.pyannote[209].end 569.49471875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 570.40596875
transcript.pyannote[210].end 571.50284375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 571.99221875
transcript.pyannote[211].end 574.42221875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 575.18159375
transcript.pyannote[212].end 576.27846875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 576.59909375
transcript.pyannote[213].end 578.21909375
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 579.16409375
transcript.pyannote[214].end 587.11221875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 581.00346875
transcript.pyannote[215].end 582.85971875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 583.24784375
transcript.pyannote[216].end 584.02409375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 587.29784375
transcript.pyannote[217].end 588.07409375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 588.66471875
transcript.pyannote[218].end 590.75721875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 590.89221875
transcript.pyannote[219].end 592.54596875
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 592.83284375
transcript.pyannote[220].end 599.14409375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 599.59971875
transcript.pyannote[221].end 603.93659375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 605.91096875
transcript.pyannote[222].end 608.35784375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 606.70409375
transcript.pyannote[223].end 606.87284375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 607.02471875
transcript.pyannote[224].end 607.96971875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 609.84284375
transcript.pyannote[225].end 610.90596875
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 612.22221875
transcript.pyannote[226].end 620.84534375
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 614.88846875
transcript.pyannote[227].end 617.11596875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 618.14534375
transcript.pyannote[228].end 618.53346875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 621.09846875
transcript.pyannote[229].end 623.51159375
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 623.71409375
transcript.pyannote[230].end 625.46909375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 625.89096875
transcript.pyannote[231].end 627.22409375
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 628.48971875
transcript.pyannote[232].end 629.35034375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 630.95346875
transcript.pyannote[233].end 632.57346875
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 633.29909375
transcript.pyannote[234].end 635.67846875
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 636.23534375
transcript.pyannote[235].end 640.53846875
transcript.pyannote[236].speaker SPEAKER_01
transcript.pyannote[236].start 641.12909375
transcript.pyannote[236].end 644.94284375
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 645.28034375
transcript.pyannote[237].end 647.49096875
transcript.pyannote[238].speaker SPEAKER_01
transcript.pyannote[238].start 648.18284375
transcript.pyannote[238].end 651.92909375
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 652.65471875
transcript.pyannote[239].end 654.32534375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 654.91596875
transcript.pyannote[240].end 659.25284375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 655.03409375
transcript.pyannote[241].end 659.97846875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 660.53534375
transcript.pyannote[242].end 670.96409375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 664.19721875
transcript.pyannote[243].end 670.60971875
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 671.25096875
transcript.pyannote[244].end 682.30409375
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 672.85409375
transcript.pyannote[245].end 673.49534375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 674.00159375
transcript.pyannote[246].end 675.30096875
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 682.92846875
transcript.pyannote[247].end 683.89034375
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 685.39221875
transcript.pyannote[248].end 686.25284375
transcript.pyannote[249].speaker SPEAKER_01
transcript.pyannote[249].start 687.14721875
transcript.pyannote[249].end 687.56909375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 688.27784375
transcript.pyannote[250].end 688.83471875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 689.42534375
transcript.pyannote[251].end 690.40409375
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 690.82596875
transcript.pyannote[252].end 691.70346875
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 691.82159375
transcript.pyannote[253].end 692.20971875
transcript.pyannote[254].speaker SPEAKER_01
transcript.pyannote[254].start 692.86784375
transcript.pyannote[254].end 693.76221875
transcript.pyannote[255].speaker SPEAKER_01
transcript.pyannote[255].start 693.93096875
transcript.pyannote[255].end 694.33596875
transcript.pyannote[256].speaker SPEAKER_01
transcript.pyannote[256].start 695.33159375
transcript.pyannote[256].end 696.10784375
transcript.whisperx[0].start 0.009
transcript.whisperx[0].end 22.477
transcript.whisperx[0].text 今天的勞工朋友還有年輕人很辛苦在今天買新衣服穿得不多因為軟囊羞澀因為手邊沒閒錢主計長你應該是最後有始有終在這艘船上你要繼續努力
transcript.whisperx[1].start 28.127
transcript.whisperx[1].end 47.248
transcript.whisperx[1].text 我已經不會在政府這個單位這艘船上我是在中華民國這個島上在這艘你我共同的船上每個人都要繼續努力雖然主計長已經是快要畢業了人之將至
transcript.whisperx[2].start 48.246
transcript.whisperx[2].end 65.491
transcript.whisperx[2].text 其言也善那個是送到殯儀館的啦你不要用對話我是說這個位置即將到一個話句點的時刻你應該多講一點正面的講一些良心話一時關心年輕人低薪的問題請問一下主計長
transcript.whisperx[3].start 73.527
transcript.whisperx[3].end 81.394
transcript.whisperx[3].text 現在年輕人薪水有沒有高於3萬5的我們的經常薪資平均大概是4萬多塊那您剛才講的3萬5那個剛畢業的人是平均沒有那麼多
transcript.whisperx[4].start 98.849
transcript.whisperx[4].end 113.737
transcript.whisperx[4].text 那是不是主計長中華民國很有錢啊對我們應該多多照顧年輕人低於平均線3萬5以下的是不是可以來申請你一點補助啊那個是
transcript.whisperx[5].start 114.617
transcript.whisperx[5].end 142.791
transcript.whisperx[5].text 他如果符合低收入戶的話就是可以的要符合那個一定的一個條件而且我們也有很多的一些措施像那個租金補貼啊像那個綏帶啊我們最近都有很多的一個措施讓年輕人避免綏帶的壓力以及那個所謂的房屋租金的一個壓力那個
transcript.whisperx[6].start 144.522
transcript.whisperx[6].end 149.942
transcript.whisperx[6].text 緩不濟急啦有啦那個每個月都發的不可能緩不濟急很多的青年
transcript.whisperx[7].start 151.161
transcript.whisperx[7].end 153.361
transcript.whisperx[7].text 勞工部是哪一位?勞動部許市長
transcript.whisperx[8].start 181.135
transcript.whisperx[8].end 204.896
transcript.whisperx[8].text 許次長那主計長也請你留步齁因為你是老陳福記事實上你可以指導幫助很多年輕人的齁我繼續討論你就可以講兩句話了齁那請問許次長請問啊外勞啊他最低薪資一般大概在台灣可以領多少
transcript.whisperx[9].start 206.873
transcript.whisperx[9].end 219.595
transcript.whisperx[9].text 謝謝羅委員外島有好多種如果是我們所謂的廠工、製造業那依照我們目前規定的基本工資廠工至少要在基本工資以上多少
transcript.whisperx[10].start 220.717
transcript.whisperx[10].end 248.618
transcript.whisperx[10].text 目前基本工資以上的話是兩萬七千四百七十兩萬七千多請問長照的這些外勞一個月領多少長照的部分就以目前是兩萬左右多少兩萬左右長照兩萬可以請得到長照有分兩種一個是在機構工作那也要基本工資如果是在家庭幫庸看護的那部分是兩萬出頭一點家裡的話是兩萬多對多少
transcript.whisperx[11].start 249.209
transcript.whisperx[11].end 266.087
transcript.whisperx[11].text 大概兩萬一、兩萬二兩萬二長照的部分外勞是領多少以機構嗎或者是機構大概基本工資以上兩萬七千四百七十元以上市長啊你吃米不知道米多少
transcript.whisperx[12].start 267.301
transcript.whisperx[12].end 279.928
transcript.whisperx[12].text 不要說那個有的沒的啦你去醫院問問看你要挺一個臨時的長照沒六萬、沒八萬,你要請哪有人啊?那是本國的啦本國的?好,那你請外勞的不用五萬嗎?
transcript.whisperx[13].start 281.718
transcript.whisperx[13].end 284.5
transcript.whisperx[13].text 現在我跟羅委員報告本國跟外勞他你承不承認本席剛講的是比較貼近市場面對吧齁所以
transcript.whisperx[14].start 309.349
transcript.whisperx[14].end 338.233
transcript.whisperx[14].text 那個接著回過來就是換主計長了事實上連外勞啊可能每一個月都是領4萬5、領5萬、6萬以上那個我跟委員報告你講的那個可能是外配不是外勞謝謝外勞啦在醫院裡面幫忙看護的幫忙24小時在醫院照顧健康的對那很多都是外配謝謝好啦不管了喔
transcript.whisperx[15].start 339.249
transcript.whisperx[15].end 362.583
transcript.whisperx[15].text 外配他已經有中華民國國籍所以他已經適用中華民國法律 謝謝主計長是的阿你外勞都領五萬了阿你為什麼讓中華民國我們的年輕人、青年人只有領三萬五 有的還領不到所以本席在這裡就一直奉勸你你就最後一段路了嘛你就講講實際的心裡話
transcript.whisperx[16].start 365.825
transcript.whisperx[16].end 392.919
transcript.whisperx[16].text 拜託你幫幫年輕人嘛如果年輕朋友領不到3萬5的國家補助嘛國家支持啊國家要挺身而出照顧他們啊主計長能不能幫幫這些年輕人啊對也許委員現在年輕人我覺得將心比心啊如果我是這些年輕人喔我每天起來的話就是四個字
transcript.whisperx[17].start 394.565
transcript.whisperx[17].end 421.061
transcript.whisperx[17].text 希望跟絕望因為我再幹下去啊沒有什麼好做只好做Uber啊主計長做Uber跑單一個月可以領多少錢現在大概會有3、4萬以上謝謝吃米不知道米多少青菜比較認真、早餐最少也7萬有的拼到底齁我不是也拼,你也是也拼差不多要10幾萬啦
transcript.whisperx[18].start 422.847
transcript.whisperx[18].end 452.231
transcript.whisperx[18].text 所以這造成說沒辦法啦為了生活不是為了理想啊因為沒有理想啊只是在這種困難的環境中自我安慰然後努力生存希望可以掙得比外勞多一點點的薪水看護的起碼都六萬七萬啊所以年輕人是沒有希望的啊所以我希望
transcript.whisperx[19].start 454.039
transcript.whisperx[19].end 468.352
transcript.whisperx[19].text 我們所有的相關單位政府機關平心而論現在的貧富懸殊啊已經擴大到歷史新高主計長貧富懸殊最高數跟最低數差多少
transcript.whisperx[20].start 469.504
transcript.whisperx[20].end 496.766
transcript.whisperx[20].text 那個我剛才講說那個最高最低級比沒有恰67倍那個並不很恰當因為67倍的意思就是主計長跟你沒關係因為你不是最底層的那67分之一每個人每個年輕人比較辛苦弱勢的只能寄望寄生上游不斷的往上攀爬
transcript.whisperx[21].start 498.497
transcript.whisperx[21].end 522.943
transcript.whisperx[21].text 問題沒有人像你那麼好啊你有公務機關啊你退休還有退休金啊你退薪還有退休人國家會養你啊這年輕人手無寸鐵啊人為刀齒我為魚肉所以本席建議啊今年度的預算優先照顧年輕人今年的所有的預算
transcript.whisperx[22].start 524.127
transcript.whisperx[22].end 538.136
transcript.whisperx[22].text 大力大幅度來照顧年輕人特別有小孩的年輕人我們最近的預算就是像委員所做的那個樣子我們的那個是怎麼樣
transcript.whisperx[23].start 539.817
transcript.whisperx[23].end 554.687
transcript.whisperx[23].text 就是說青年有隨隨代而且有房租補貼而且有小孩的每一個人五千塊我們就是像委員所講的已經在照顧那個東西那個都是以前過去八年以前沒有的謝謝
transcript.whisperx[24].start 556.168
transcript.whisperx[24].end 577.998
transcript.whisperx[24].text 難道你要我在這邊好好的感謝你謝主榮恩嗎?如果你做得好,年輕人就不會完蛋了啦你做得好啊,年輕人就不會痛哭流淚啊你做得好啊,大家就拿槍來跟你敗啊
transcript.whisperx[25].start 579.455
transcript.whisperx[25].end 603.725
transcript.whisperx[25].text 問題你做好了嗎?年輕人的薪資在目前的情況起碼你要五萬起跳啊主計長以現在的經濟水平現在政府的照顧什麼時候能讓年輕人臺灣的年輕人可以稍微緩緩至少一個月領五萬塊以上什麼時候做得到?那個未來的人會做得到
transcript.whisperx[26].start 609.895
transcript.whisperx[26].end 632.3
transcript.whisperx[26].text 做不到請下台其實國家有很多的政策工具啊我下台很快輸出那麼大所以你做不到要下台啊對啊我下台啊政府有那麼多的單位那麼多的錢該用不用我上上禮拜
transcript.whisperx[27].start 633.342
transcript.whisperx[27].end 653.34
transcript.whisperx[27].text 報一條給你批判的你保險法146條知識修正以後從國外引進來的資金有6兆多你也可以要求這6兆多優先怎麼樣的方式來照顧年輕人啊你們碰到財團
transcript.whisperx[28].start 654.983
transcript.whisperx[28].end 683.681
transcript.whisperx[28].text 碰到大企業家通通轉彎六兆多回來你為什麼不主張歡迎你們回來百分之十的概念全部優先照顧年輕人這個你可以提的啊錢回來你可以移增稅增加百分之二十、百分之五十全部照顧年輕人啊你們都不做啊
transcript.whisperx[29].start 685.624
transcript.whisperx[29].end 693.297
transcript.whisperx[29].text 該做不做所以主計長不做的結果最後就是要下台一鞠躬謝謝