iVOD / 151953

Field Value
IVOD_ID 151953
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/151953
日期 2024-05-01
會議資料.會議代碼 委員會-11-1-20-11
會議資料.會議代碼:str 第11屆第1會期財政委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第11次全體委員會議
影片種類 Clip
開始時間 2024-05-01T10:03:05+08:00
結束時間 2024-05-01T10:16:58+08:00
影片長度 00:13:53
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/75811ef35c27466b5bc1457fe04b9632900bfbad7a56e18f7f5010e63071191996f4c54def4a9f255ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 10:03:05 - 10:16:58
會議時間 2024-05-01T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第11次全體委員會議(事由:邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質薪資」進行專題報告,並備質詢。)
gazette.lineno 285
gazette.blocks[0][0] 賴委員士葆:(10時3分)主席以及各位先進。有請主計長、財政部阮次長,賦稅署署長有來吧?
gazette.blocks[1][0] 主席:請朱主計長、阮次長。
gazette.blocks[2][0] 朱主計長澤民:委員好。
gazette.blocks[3][0] 賴委員士葆:幾位長官好。首先我認為今天題目訂得非常好,本來就應該要討論了,本來就應該討論受僱人員薪資占GDP的比重,這個題目當然可以談啊,跟國民所得是另外一件事,主計長對吧?
gazette.blocks[4][0] 朱主計長澤民:對,我尊重大院。
gazette.blocks[5][0] 賴委員士葆:對吧,這個沒有問題啦!主計長,我要問你的一件事情是你有提到一段話,我仔細讀在你的報告裡面,你說110年上市櫃公司財報,電子零組件營業利益大增63%,人事費用也成長28%,受僱報酬反而降0.9%,這是怎麼樣的狀況?生意做很多、錢賺很多,結果薪水砍下來,這是為什麼?
gazette.blocks[6][0] 朱主計長澤民:沒有,它沒有砍下來……
gazette.blocks[7][0] 賴委員士葆:你說的啊!
gazette.blocks[8][0] 朱主計長澤民:它沒有砍下來,它這個比重……它沒有特別去砍啦!我必須說明一下,它還是在漲……
gazette.blocks[9][0] 賴委員士葆:下降0.9%啊!
gazette.blocks[10][0] 朱主計長澤民:它是比例下降,它的薪水還是漲的啦!
gazette.blocks[11][0] 賴委員士葆:就是0.9%啊,你看!
gazette.blocks[12][0] 朱主計長澤民:那個下降和這個……
gazette.blocks[13][0] 賴委員士葆:你仔細讀一讀你的文章,我覺得寫得很奇怪,會是這樣的情況嗎?讓人讀的感覺是電子業的老闆都是慣老闆、惡老闆,他賺錢賺那麼多、營業額這麼大,結果員工砍薪水!你看受僱的報酬反而下降0.9%,你這個屋頂有問題啦!我今天不是跟你吵這個,給你看一下,這是根據你們的報告,請你看一下,這是你的表,我辛苦……
gazette.blocks[14][0] 朱主計長澤民:這是我的表?
gazette.blocks[15][0] 賴委員士葆:你的,你的,這個你做的吧?你們的啊,不是財政部的喔!
gazette.blocks[16][0] 朱主計長澤民:我知道,這個我很清楚。
gazette.blocks[17][0] 賴委員士葆:這個你的啊!
gazette.blocks[18][0] 朱主計長澤民:對。
gazette.blocks[19][0] 賴委員士葆:這個完全就是你的資料。
gazette.blocks[20][0] 朱主計長澤民:謝謝委員有在看,謝謝。
gazette.blocks[21][0] 賴委員士葆:你當然要感謝我啊,我認真看你的資料,不然你的資料沒人要看,我看了耶!
gazette.blocks[22][0] 朱主計長澤民:對,感謝有共鳴。
gazette.blocks[23][0] 賴委員士葆:你80年做一次、110年做一次,30年才做一次,對不對?
gazette.blocks[24][0] 朱主計長澤民:那個不是我做的,而且我憑良心講,那一次做並不是一個很成功的……他們很努力,因為那一次是表達……
gazette.blocks[25][0] 賴委員士葆:所以80年是亂做的?
gazette.blocks[26][0] 朱主計長澤民:不是亂做,那一次是調查,調查要看被調查人的配合度,這一次我們是用大數據,不是去問出來的,是用大數據做出來的。
gazette.blocks[27][0] 賴委員士葆:你不就是說這次是我朱澤民做的所以比較準!上一次不知道誰做的,不準,這樣就對了,你是這個意思嗎?
gazette.blocks[28][0] 朱主計長澤民:所以我們以前做的有很多……
gazette.blocks[29][0] 賴委員士葆:你是這個意思嗎?
gazette.blocks[30][0] 朱主計長澤民:不是這個意思。
gazette.blocks[31][0] 賴委員士葆:喔,不是這個意思。
gazette.blocks[32][0] 朱主計長澤民:委員加了太多的形容詞,沒有,不是這個意思。
gazette.blocks[33][0] 賴委員士葆:我沒有形容詞啊,你的意思我解讀……
gazette.blocks[34][0] 朱主計長澤民:我講這個因為是做調查,如果說……
gazette.blocks[35][0] 賴委員士葆:我現在是read your lip,看你嘴巴講的啊!
gazette.blocks[36][0] 朱主計長澤民:委員的家庭,人家問到委員說您有多少財產,您自己的很清楚,但您夫人的大概也都不是很清楚,每個都一樣……
gazette.blocks[37][0] 賴委員士葆:所以問的時候就亂講?
gazette.blocks[38][0] 朱主計長澤民:因為那個是調查,是調查……
gazette.blocks[39][0] 賴委員士葆:那這一次呢?這一次比較準?
gazette.blocks[40][0] 朱主計長澤民:這一次就是用大數據的資料……
gazette.blocks[41][0] 賴委員士葆:對!我講的沒有錯啊!
gazette.blocks[42][0] 朱主計長澤民:用大數據的資料、整體的資料……
gazette.blocks[43][0] 賴委員士葆:我請問,這是你當主計長時候做的嘛?
gazette.blocks[44][0] 朱主計長澤民:對啦,是我做的。
gazette.blocks[45][0] 賴委員士葆:對嘛!我推論的有什麼錯?
gazette.blocks[46][0] 朱主計長澤民:這是我做的。
gazette.blocks[47][0] 賴委員士葆:就是朱澤民做的比較準,以前做的比較不準,這樣就對了?
gazette.blocks[48][0] 朱主計長澤民:您認為有缺點,點出來有什麼問題,我跟您解釋,不然機會不多了,快一點!
gazette.blocks[49][0] 賴委員士葆:沒有,你也不必過度解讀,你這樣對我的批評我不接受啦!因為我read your lip,看你的嘴巴講的話就是這樣子,過去不是這樣調查的,可能有人不知道,所以就填一填,不準,這一次撈大數據比較準,這剛才你講的話啊?
gazette.blocks[50][0] 朱主計長澤民:對,是的。
gazette.blocks[51][0] 賴委員士葆:對嘛,所以就是朱澤民任內比較準,以前不是朱澤民就比較不準。
gazette.blocks[52][0] 朱主計長澤民:沒有說比較準,這個是代表統計的一個進步、數據的一個進步。
gazette.blocks[53][0] 賴委員士葆:對啦,朱澤民才有進步,別人不進步,就這樣啊!
gazette.blocks[54][0] 朱主計長澤民:沒有,你這種衍生已經超過原來文字的……
gazette.blocks[55][0] 賴委員士葆:你意思就是這樣,要說這些誰不知道?來,請你看清楚喔!80年,現在110年喔,房地產1,480萬,先問一下,以後能不能改成10年做一次,可以嗎?
gazette.blocks[56][0] 朱主計長澤民:也許要看未來的主計長……
gazette.blocks[57][0] 賴委員士葆:可以不可以啦?
gazette.blocks[58][0] 朱主計長澤民:就政策來……但我個人認為……
gazette.blocks[59][0] 賴委員士葆:30年太久了啦!
gazette.blocks[60][0] 朱主計長澤民:10年太久了。
gazette.blocks[61][0] 賴委員士葆:30年太久了啦!
gazette.blocks[62][0] 朱主計長澤民:10年太久了。
gazette.blocks[63][0] 賴委員士葆:不然5年?
gazette.blocks[64][0] 朱主計長澤民:我們要衡量,因為要各單位的配合。
gazette.blocks[65][0] 賴委員士葆:如果按照你講大數據的話,老實講每年都可以做。
gazette.blocks[66][0] 朱主計長澤民:不可以,因為有些資料蒐集,會牽連到……最簡單的講……
gazette.blocks[67][0] 賴委員士葆:好啦,好啦,你不要說這個,我沒時間,你一直亂我。
gazette.blocks[67][1] 房地產現在是1,480萬、金融性的資產3,809萬,減掉金融性負債233萬,110年淨值A加B減C等於D,就是五千多萬……
gazette.blocks[68][0] 朱主計長澤民:那個是最高的20%。
gazette.blocks[69][0] 賴委員士葆:對,最高20%是五千多萬,結果最低的20%是77萬,所以這裡面就很清楚看得到,有錢人怎麼有錢?股票、基金、房地產,這裡面看起來就是這樣啊!
gazette.blocks[70][0] 朱主計長澤民:跟委員報告一下,委員提的這個問題很好,但是我也要……
gazette.blocks[71][0] 賴委員士葆:總算講我好囉?
gazette.blocks[72][0] 朱主計長澤民:對,跟委員講,這也是告訴我們最低的20%,您看到他的金融負債有405億……
gazette.blocks[73][0] 賴委員士葆:405萬啦,沒有億啦!
gazette.blocks[74][0] 朱主計長澤民:對,他的金融資產……就是說太多的人,有一部分去做財務槓桿操作,所以他的資產增加有限……
gazette.blocks[75][0] 賴委員士葆:你這樣講……
gazette.blocks[76][0] 朱主計長澤民:平均負債405萬,所以就是金管會所講的,理財要謹慎!
gazette.blocks[77][0] 賴委員士葆:等一下,主計長,你這樣醜化窮人耶!
gazette.blocks[78][0] 朱主計長澤民:沒有醜化窮人,我跟你講資產只增加三點多,負債卻增加十幾倍,這就是財務槓桿操作太嚴重……
gazette.blocks[79][0] 賴委員士葆:什麼財務槓桿?
gazette.blocks[80][0] 朱主計長澤民:所以要聽金管會的話謹慎理財。
gazette.blocks[81][0] 賴委員士葆:你今天變成金管會主委了喔?
gazette.blocks[82][0] 朱主計長澤民:沒有,沒有,沒有,這個是現實。
gazette.blocks[83][0] 賴委員士葆:主計長,你有沒有想到這是窮人要借錢過日子,有錢人借錢炒股票、炒房?有這個可能。
gazette.blocks[84][0] 朱主計長澤民:他的金融性資產也很多,您看到最低20%,金融性資產有兩百多萬……
gazette.blocks[85][0] 賴委員士葆:是啊!
gazette.blocks[86][0] 朱主計長澤民:對,有兩百多萬……
gazette.blocks[87][0] 賴委員士葆:那為什麼負債405萬?
gazette.blocks[88][0] 朱主計長澤民:那四百多萬……有一部分,我不是說所有的人啦!一部分是做金融操作……
gazette.blocks[89][0] 賴委員士葆:借錢度日啦!按照你這樣講,我告訴你有一半去炒股票,有一半借錢度日子,窮人你不要把他污名化啦!主計長不能這樣啦!
gazette.blocks[90][0] 朱主計長澤民:我的意思是要謹慎理財,有金融資產也不要太過於財務操作,謝謝。
gazette.blocks[91][0] 賴委員士葆:他不是都財務操作啦!你這樣講財務操作,這個數字就告訴人家一半而已啦!才一半而已啦!
gazette.blocks[92][0] 朱主計長澤民:我跟你講,最低20%,他的資產只有增加3.82倍,他的負債卻增加16倍,所以說要謹慎理財,謝謝。
gazette.blocks[93][0] 賴委員士葆:你只有講理財?借錢過日子,你沒有想到?你下去,你現在情緒很激動,來,請你下去,請你就座。
gazette.blocks[94][0] 朱主計長澤民:不是要……
gazette.blocks[95][0] 賴委員士葆:不用啦,不用啦!
gazette.blocks[96][0] 主席:休息一下,主計長。
gazette.blocks[97][0] 朱主計長澤民:機會不多啦,謝謝。
gazette.blocks[98][0] 賴委員士葆:機會已經很多了,給你這麼多時間,一直亂、一直亂!
gazette.blocks[98][1] 次長跟署長,從剛才的表已經看得到了,社會投資要降低中產的焦慮,其實我們就可以看嘛,股票、基金、房地產,我們的房地產持有稅太低了……
gazette.blocks[99][0] 阮次長清華:但是現在我們已經開始實施房地……
gazette.blocks[100][0] 賴委員士葆:我們的證所稅沒有課,在證交稅裡面……所以你看美國動輒證所稅要百分之三十幾,當然這個不是我今天要講的重點,我要講的重點在於房地產的持有稅,其實美國房子持有稅大概一年繳1%耶!
gazette.blocks[101][0] 阮次長清華:瞭解,瞭解。
gazette.blocks[102][0] 賴委員士葆:我們一年房屋跟地價稅,昨天節目沈富雄還講他的房子大概五千多萬,結果課房屋稅一萬多、地價稅也差不多一萬多,不到三萬,他自己都覺得稅繳太少了!所以你們這個……
gazette.blocks[103][0] 阮次長清華:是,報告委員,我們現在也開始注意到這個問題,所以我們也提出房屋稅2.0……
gazette.blocks[104][0] 賴委員士葆:你有沒有準備想要課持有稅?房子持有稅,不是囤房稅喔!持有稅有沒有課?
gazette.blocks[105][0] 阮次長清華:對,持有稅就是房屋稅,推動房屋稅2.0嘛!
gazette.blocks[106][0] 賴委員士葆:但房屋稅很低啊,有夠低的低啊!太低啦!
gazette.blocks[107][0] 阮次長清華:我覺得是這樣,報告委員,我們現在已經在改革了……
gazette.blocks[108][0] 賴委員士葆:太低啦!
gazette.blocks[109][0] 阮次長清華:改革一定要循序漸進。
gazette.blocks[110][0] 賴委員士葆:那我就問你啦,有沒有可能課一個富人稅,把最有錢超過一百億以上的,每一年繳1,000萬給國庫?我們長照需要錢、健保需要錢,太多地方需要錢,有沒有可能乾脆課一個富人稅?
gazette.blocks[111][0] 阮次長清華:我跟委員報告,美國的所得稅最高曾經達到90%,但是它會影響到什麼呢?影響到工作的誘因,影響到經濟的發展,目前好不容易降下來,所以我們的稅率一定要非常的……
gazette.blocks[112][0] 賴委員士葆:不是,我講最有錢的,超過一百億夠有錢了吧?
gazette.blocks[113][0] 阮次長清華:對。
gazette.blocks[114][0] 賴委員士葆:超過十億的有七千多人喔!超過一百億的我認為是上千喔!
gazette.blocks[115][0] 阮次長清華:其實我們現在的所得稅率……
gazette.blocks[116][0] 賴委員士葆:這些給他課富人稅,可不可以?
gazette.blocks[117][0] 阮次長清華:我們現在所謂所得稅率已經達到40%,其實以全世界來比,已經在中高的一個層級了。
gazette.blocks[118][0] 賴委員士葆:你們把原來的45%稅率降為40%,講這樣子?
gazette.blocks[119][0] 阮次長清華:我們現在……
gazette.blocks[120][0] 賴委員士葆:等一下,我把這問完啦!再來中小企業加薪條例,經濟部可以過來幫忙一下。
gazette.blocks[121][0] 主席:把握一下時間。
gazette.blocks[122][0] 賴委員士葆:我今天是完全附和我們主席英明的一個排案,你排案我都給你鼓掌好幾聲,雖然你們同黨立委不認同,但我認同。
gazette.blocks[122][1] 這個中小企業條例的130%,次長還有宋署長要聽一聽,主要你們前面那個框框太多啊!又要CPI到達多少、失業率多少才給它改成通通沒有附帶條件,只要你加薪,我就給你乘以150%,可以嗎?
gazette.blocks[123][0] 林次長全能:現在就是這樣調整。
gazette.blocks[124][0] 賴委員士葆:150%還不夠,本席的提案是200%啦!給他們200%才有誘因,剛才其他委員已經罵得要命,調了半天才幾千萬,要幹什麼?我先講好,我的提案200%,所有條件全部拿掉,好不好?
gazette.blocks[125][0] 林次長全能:我們條件都已經放寬,至於……
gazette.blocks[126][0] 賴委員士葆:全部拿掉啦!
gazette.blocks[127][0] 林次長全能:至於抵減的部分我們尊重委員……
gazette.blocks[128][0] 賴委員士葆:最後一個小問題,署長你比較清楚,要報稅了,今天開始報稅,對不對?
gazette.blocks[129][0] 宋署長秀玲:對、對。
gazette.blocks[130][0] 賴委員士葆:你們一定要叫人家填房子是租的還是自用,有沒有?
gazette.blocks[131][0] 宋署長秀玲:對。
gazette.blocks[132][0] 賴委員士葆:必填喔!
gazette.blocks[133][0] 宋署長秀玲:對。
gazette.blocks[134][0] 賴委員士葆:這是要拿來查房東的稅,是不是?
gazette.blocks[135][0] 宋署長秀玲:這是要瞭解納稅人本身現在的狀況,如果是租的,他可以報租金支出扣除。
gazette.blocks[136][0] 賴委員士葆:某種程度就是查房東的稅了?難怪人家就不要填,是不是?
gazette.blocks[137][0] 宋署長秀玲:其實應該是說課稅資料有多元的用途,絕對不是只有單一為了查稅。
gazette.blocks[138][0] 賴委員士葆:但是可以「摸蜊仔兼洗褲」同時查稅,對吧?
gazette.blocks[139][0] 宋署長秀玲:看到時候怎麼去運用。
gazette.blocks[140][0] 賴委員士葆:你的回答就是了啦!好啦!
gazette.blocks[140][1] 阮次長,我最後問你一個,聽說你要去公股行庫了是吧?
gazette.blocks[141][0] 阮次長清華:沒有聽說啊!
gazette.blocks[142][0] 賴委員士葆:沒有?
gazette.blocks[143][0] 阮次長清華:沒有聽說,我沒辦法回答這個問題……
gazette.blocks[144][0] 賴委員士葆:我比較擔心的是,你是國安基金的操盤手,你走了以後怎麼辦呢?
gazette.blocks[145][0] 阮次長清華:我想……
gazette.blocks[146][0] 賴委員士葆:有很多聲音出來了,我有聽到聲音要把你調去公股行庫啊!
gazette.blocks[147][0] 主席:關於個人生涯,私下……
gazette.blocks[148][0] 阮次長清華:沒有聽說,我沒辦法回答這個問題,謝謝委員關心。
gazette.blocks[149][0] 主席:謝謝賴士葆委員的質詢,也謝謝賴士葆委員的肯定。
gazette.blocks[149][1] 接著我們請李彥秀委員質詢。
gazette.agenda.page_end 122
gazette.agenda.meet_id 委員會-11-1-20-11
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 林德福
gazette.agenda.speakers[2] 吳秉叡
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 李彥秀
gazette.agenda.speakers[5] 賴惠員
gazette.agenda.speakers[6] 王世堅
gazette.agenda.speakers[7] 李坤城
gazette.agenda.speakers[8] 王鴻薇
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[11] 羅明才
gazette.agenda.speakers[12] 顏寬恒
gazette.agenda.speakers[13] 洪孟楷
gazette.agenda.speakers[14] 楊瓊瓔
gazette.agenda.speakers[15] 鄭天財Sra Kacaw
gazette.agenda.speakers[16] 陳玉珍
gazette.agenda.speakers[17] 黃秀芳
gazette.agenda.speakers[18] 陳冠廷
gazette.agenda.page_start 51
gazette.agenda.meetingDate[0] 2024-05-01
gazette.agenda.gazette_id 1133601
gazette.agenda.agenda_lcidc_ids[0] 1133601_00003
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第11次全體委員會議紀錄
gazette.agenda.content 邀請行政院主計總處朱主計長澤民、財政部莊部長翠雲、經濟部、國家發展委員會、勞動部就 「如何改善受僱人員報酬占 GDP 比重偏低現象,導引企業與勞工共享獲利,提升我國勞工實質 薪資」進行專題報告,並備質詢
gazette.agenda.agenda_id 1133601_00002
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.02659375
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 1.65096875
transcript.pyannote[1].end 3.57471875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 3.82784375
transcript.pyannote[2].end 5.39721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 5.88659375
transcript.pyannote[3].end 6.69659375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 7.10159375
transcript.pyannote[4].end 7.74284375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 8.04659375
transcript.pyannote[5].end 9.14346875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 8.19846875
transcript.pyannote[6].end 8.23221875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 9.63284375
transcript.pyannote[7].end 9.71721875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 9.71721875
transcript.pyannote[8].end 9.76784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 9.76784375
transcript.pyannote[9].end 9.97034375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 9.97034375
transcript.pyannote[10].end 10.29096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 10.29096875
transcript.pyannote[11].end 10.30784375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 10.30784375
transcript.pyannote[12].end 10.39221875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 12.99096875
transcript.pyannote[13].end 14.02034375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 14.93159375
transcript.pyannote[14].end 17.83409375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 19.65659375
transcript.pyannote[15].end 20.98971875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 21.41159375
transcript.pyannote[16].end 22.20471875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 23.03159375
transcript.pyannote[17].end 25.05659375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 25.63034375
transcript.pyannote[18].end 29.10659375
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 29.93346875
transcript.pyannote[19].end 31.08096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 31.11471875
transcript.pyannote[20].end 32.76846875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 33.08909375
transcript.pyannote[21].end 34.16909375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 34.67534375
transcript.pyannote[22].end 34.96221875
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 34.96221875
transcript.pyannote[23].end 36.44721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 36.81846875
transcript.pyannote[24].end 38.08409375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 38.53971875
transcript.pyannote[25].end 41.81346875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 42.55596875
transcript.pyannote[26].end 46.20096875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 46.75784375
transcript.pyannote[27].end 49.84596875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 50.14971875
transcript.pyannote[28].end 52.02284375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 52.32659375
transcript.pyannote[29].end 54.77346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 55.12784375
transcript.pyannote[30].end 61.79346875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 62.28284375
transcript.pyannote[31].end 68.34096875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 68.34096875
transcript.pyannote[32].end 91.78034375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 68.49284375
transcript.pyannote[33].end 68.94846875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 70.68659375
transcript.pyannote[34].end 71.15909375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 72.81284375
transcript.pyannote[35].end 73.52159375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 78.31409375
transcript.pyannote[36].end 79.69784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 83.24159375
transcript.pyannote[37].end 83.49471875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 83.51159375
transcript.pyannote[38].end 85.36784375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 88.28721875
transcript.pyannote[39].end 90.46409375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 91.00409375
transcript.pyannote[40].end 103.40721875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 104.50409375
transcript.pyannote[41].end 105.93846875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 106.29284375
transcript.pyannote[42].end 109.83659375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 110.64659375
transcript.pyannote[43].end 112.77284375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 113.04284375
transcript.pyannote[44].end 113.34659375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 114.62909375
transcript.pyannote[45].end 115.16909375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 115.38846875
transcript.pyannote[46].end 116.62034375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 117.27846875
transcript.pyannote[47].end 118.27409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 118.45971875
transcript.pyannote[48].end 119.01659375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 119.79284375
transcript.pyannote[49].end 121.32846875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 122.18909375
transcript.pyannote[50].end 122.83034375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 123.04971875
transcript.pyannote[51].end 123.94409375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 124.34909375
transcript.pyannote[52].end 125.98596875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 126.17159375
transcript.pyannote[53].end 126.18846875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 126.18846875
transcript.pyannote[54].end 126.96471875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 126.96471875
transcript.pyannote[55].end 126.98159375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 128.26409375
transcript.pyannote[56].end 128.28096875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 128.28096875
transcript.pyannote[57].end 129.07409375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 129.12471875
transcript.pyannote[58].end 129.59721875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 129.95159375
transcript.pyannote[59].end 138.82784375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 135.13221875
transcript.pyannote[60].end 137.29221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 137.29221875
transcript.pyannote[61].end 137.34284375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 139.43534375
transcript.pyannote[62].end 145.96596875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 144.75096875
transcript.pyannote[63].end 145.32471875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 146.30346875
transcript.pyannote[64].end 177.97784375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 152.17596875
transcript.pyannote[65].end 152.91846875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 163.21221875
transcript.pyannote[66].end 164.83221875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 177.97784375
transcript.pyannote[67].end 184.87971875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 183.31034375
transcript.pyannote[68].end 201.80534375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 189.52034375
transcript.pyannote[69].end 189.70596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 192.01784375
transcript.pyannote[70].end 194.93721875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 197.70471875
transcript.pyannote[71].end 198.85221875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 199.37534375
transcript.pyannote[72].end 199.56096875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 202.17659375
transcript.pyannote[73].end 220.58721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 202.58159375
transcript.pyannote[74].end 203.44221875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 203.49284375
transcript.pyannote[75].end 205.18034375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 215.57534375
transcript.pyannote[76].end 216.03096875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 216.03096875
transcript.pyannote[77].end 217.58346875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 217.58346875
transcript.pyannote[78].end 217.61721875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 218.49471875
transcript.pyannote[79].end 218.52846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 218.52846875
transcript.pyannote[80].end 218.89971875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 218.89971875
transcript.pyannote[81].end 218.96721875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 219.64221875
transcript.pyannote[82].end 219.67596875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 219.67596875
transcript.pyannote[83].end 220.48596875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 220.84034375
transcript.pyannote[84].end 223.10159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 221.29596875
transcript.pyannote[85].end 222.05534375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 223.37159375
transcript.pyannote[86].end 251.97471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 224.29971875
transcript.pyannote[87].end 226.96596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 228.33284375
transcript.pyannote[88].end 228.88971875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 230.12159375
transcript.pyannote[89].end 231.87659375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 236.23034375
transcript.pyannote[90].end 236.63534375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 241.02284375
transcript.pyannote[91].end 241.71471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 251.97471875
transcript.pyannote[92].end 254.80971875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 254.92784375
transcript.pyannote[93].end 255.94034375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 256.59846875
transcript.pyannote[94].end 269.60909375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 269.20409375
transcript.pyannote[95].end 269.67659375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 269.65971875
transcript.pyannote[96].end 272.03909375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 272.03909375
transcript.pyannote[97].end 289.21784375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 280.29096875
transcript.pyannote[98].end 280.71284375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 289.43721875
transcript.pyannote[99].end 290.97284375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 290.97284375
transcript.pyannote[100].end 292.37346875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 293.14971875
transcript.pyannote[101].end 295.74846875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 296.59221875
transcript.pyannote[102].end 298.75221875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 299.84909375
transcript.pyannote[103].end 300.84471875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 300.84471875
transcript.pyannote[104].end 300.92909375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 300.92909375
transcript.pyannote[105].end 301.03034375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 301.03034375
transcript.pyannote[106].end 303.49409375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 303.93284375
transcript.pyannote[107].end 326.86596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 308.70846875
transcript.pyannote[108].end 309.72096875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 311.74596875
transcript.pyannote[109].end 313.23096875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 314.42909375
transcript.pyannote[110].end 314.95221875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 316.45409375
transcript.pyannote[111].end 316.79159375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 325.02659375
transcript.pyannote[112].end 325.24596875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 325.41471875
transcript.pyannote[113].end 326.07284375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 327.32159375
transcript.pyannote[114].end 334.54409375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 333.43034375
transcript.pyannote[115].end 337.10909375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 338.02034375
transcript.pyannote[116].end 340.93971875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 341.20971875
transcript.pyannote[117].end 348.92159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 349.52909375
transcript.pyannote[118].end 353.03909375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 353.12346875
transcript.pyannote[119].end 361.15596875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 361.39221875
transcript.pyannote[120].end 361.89846875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 362.11784375
transcript.pyannote[121].end 363.23159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 363.53534375
transcript.pyannote[122].end 364.42971875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 364.83471875
transcript.pyannote[123].end 366.31971875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 367.12971875
transcript.pyannote[124].end 368.07471875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 368.58096875
transcript.pyannote[125].end 370.52159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 371.88846875
transcript.pyannote[126].end 372.37784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 373.27221875
transcript.pyannote[127].end 373.81221875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 374.97659375
transcript.pyannote[128].end 375.56721875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 375.56721875
transcript.pyannote[129].end 375.58409375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 376.93409375
transcript.pyannote[130].end 377.03534375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 377.03534375
transcript.pyannote[131].end 377.47409375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 378.09846875
transcript.pyannote[132].end 378.95909375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 379.51596875
transcript.pyannote[133].end 420.28596875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 398.71971875
transcript.pyannote[134].end 403.30971875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 409.58721875
transcript.pyannote[135].end 410.83596875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 413.41784375
transcript.pyannote[136].end 415.05471875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 415.88159375
transcript.pyannote[137].end 415.96596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 417.67034375
transcript.pyannote[138].end 417.68721875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 417.68721875
transcript.pyannote[139].end 418.32846875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 418.32846875
transcript.pyannote[140].end 418.41284375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 420.48846875
transcript.pyannote[141].end 446.00346875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 421.38284375
transcript.pyannote[142].end 422.29409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 431.89596875
transcript.pyannote[143].end 432.97596875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 432.97596875
transcript.pyannote[144].end 432.99284375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 434.05596875
transcript.pyannote[145].end 434.07284375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 434.07284375
transcript.pyannote[146].end 434.96721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 434.96721875
transcript.pyannote[147].end 436.35096875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 442.34159375
transcript.pyannote[148].end 442.94909375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 443.42159375
transcript.pyannote[149].end 444.21471875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 445.39596875
transcript.pyannote[150].end 445.96971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 446.00346875
transcript.pyannote[151].end 454.37346875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 453.42846875
transcript.pyannote[152].end 454.13721875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 454.47471875
transcript.pyannote[153].end 455.47034375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 455.47034375
transcript.pyannote[154].end 479.41596875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 456.78659375
transcript.pyannote[155].end 457.66409375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 467.50221875
transcript.pyannote[156].end 467.77221875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 467.78909375
transcript.pyannote[157].end 470.77596875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 473.29034375
transcript.pyannote[158].end 474.21846875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 475.18034375
transcript.pyannote[159].end 477.57659375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 477.64409375
transcript.pyannote[160].end 486.68909375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 484.69784375
transcript.pyannote[161].end 486.99284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 486.99284375
transcript.pyannote[162].end 487.02659375
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 487.02659375
transcript.pyannote[163].end 494.23221875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 487.29659375
transcript.pyannote[164].end 489.00096875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 494.70471875
transcript.pyannote[165].end 511.14096875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 494.87346875
transcript.pyannote[166].end 495.34596875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 495.61596875
transcript.pyannote[167].end 497.64096875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 498.40034375
transcript.pyannote[168].end 499.80096875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 511.14096875
transcript.pyannote[169].end 514.14471875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 515.05596875
transcript.pyannote[170].end 516.67596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 516.86159375
transcript.pyannote[171].end 518.24534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 518.49846875
transcript.pyannote[172].end 519.91596875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 519.30846875
transcript.pyannote[173].end 520.35471875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 520.48971875
transcript.pyannote[174].end 521.41784375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 522.48096875
transcript.pyannote[175].end 522.81846875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 524.06721875
transcript.pyannote[176].end 526.34534375
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 526.73346875
transcript.pyannote[177].end 528.21846875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 529.75409375
transcript.pyannote[178].end 530.20971875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 531.42471875
transcript.pyannote[179].end 532.60596875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 533.34846875
transcript.pyannote[180].end 535.23846875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 536.52096875
transcript.pyannote[181].end 539.17034375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 539.47409375
transcript.pyannote[182].end 541.54971875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 541.90409375
transcript.pyannote[183].end 542.79846875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 543.42284375
transcript.pyannote[184].end 544.01346875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 544.24971875
transcript.pyannote[185].end 544.84034375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 545.09346875
transcript.pyannote[186].end 545.73471875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 546.59534375
transcript.pyannote[187].end 549.24471875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 550.86471875
transcript.pyannote[188].end 555.89346875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 551.13471875
transcript.pyannote[189].end 553.44659375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 556.36596875
transcript.pyannote[190].end 556.80471875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 556.97346875
transcript.pyannote[191].end 564.53346875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 565.14096875
transcript.pyannote[192].end 568.14471875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 568.60034375
transcript.pyannote[193].end 572.38034375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 572.51534375
transcript.pyannote[194].end 573.74721875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 573.07221875
transcript.pyannote[195].end 578.43846875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 578.62409375
transcript.pyannote[196].end 582.40409375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 582.94409375
transcript.pyannote[197].end 583.60221875
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 583.93971875
transcript.pyannote[198].end 585.94784375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 586.53846875
transcript.pyannote[199].end 590.03159375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 590.16659375
transcript.pyannote[200].end 598.78971875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 591.11159375
transcript.pyannote[201].end 592.22534375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 596.98409375
transcript.pyannote[202].end 599.32971875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 600.35909375
transcript.pyannote[203].end 603.71721875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 600.78096875
transcript.pyannote[204].end 600.96659375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 604.00409375
transcript.pyannote[205].end 604.76346875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 605.01659375
transcript.pyannote[206].end 605.91096875
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 606.24846875
transcript.pyannote[207].end 606.50159375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 606.50159375
transcript.pyannote[208].end 607.37909375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 606.92346875
transcript.pyannote[209].end 607.24409375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 607.53096875
transcript.pyannote[210].end 607.75034375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 607.83471875
transcript.pyannote[211].end 610.16346875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 610.16346875
transcript.pyannote[212].end 611.51346875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 611.95221875
transcript.pyannote[213].end 620.76096875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 612.55971875
transcript.pyannote[214].end 612.79596875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 616.79534375
transcript.pyannote[215].end 617.58846875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 619.98471875
transcript.pyannote[216].end 622.26284375
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 622.44846875
transcript.pyannote[217].end 635.29034375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 629.72159375
transcript.pyannote[218].end 629.97471875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 635.29034375
transcript.pyannote[219].end 651.87846875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 645.87096875
transcript.pyannote[220].end 645.92159375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 645.92159375
transcript.pyannote[221].end 645.95534375
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 645.95534375
transcript.pyannote[222].end 645.97221875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 645.97221875
transcript.pyannote[223].end 646.46159375
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 646.46159375
transcript.pyannote[224].end 646.54596875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 650.17409375
transcript.pyannote[225].end 651.40596875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 651.87846875
transcript.pyannote[226].end 651.89534375
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 652.24971875
transcript.pyannote[227].end 652.97534375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 652.97534375
transcript.pyannote[228].end 654.29159375
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 655.64159375
transcript.pyannote[229].end 655.86096875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 656.46846875
transcript.pyannote[230].end 658.83096875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 659.33721875
transcript.pyannote[231].end 662.25659375
transcript.pyannote[232].speaker SPEAKER_01
transcript.pyannote[232].start 662.25659375
transcript.pyannote[232].end 678.43971875
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 662.89784375
transcript.pyannote[233].end 664.88909375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 671.08221875
transcript.pyannote[234].end 671.60534375
transcript.pyannote[235].speaker SPEAKER_02
transcript.pyannote[235].start 672.44909375
transcript.pyannote[235].end 674.96346875
transcript.pyannote[236].speaker SPEAKER_00
transcript.pyannote[236].start 674.96346875
transcript.pyannote[236].end 674.98034375
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 676.17846875
transcript.pyannote[237].end 676.19534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 676.19534375
transcript.pyannote[238].end 678.25409375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 678.43971875
transcript.pyannote[239].end 678.54096875
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 678.54096875
transcript.pyannote[240].end 678.55784375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 678.55784375
transcript.pyannote[241].end 678.60846875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 678.60846875
transcript.pyannote[242].end 680.17784375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 678.67596875
transcript.pyannote[243].end 680.19471875
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 680.19471875
transcript.pyannote[244].end 680.97096875
transcript.pyannote[245].speaker SPEAKER_02
transcript.pyannote[245].start 680.97096875
transcript.pyannote[245].end 682.21971875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 682.21971875
transcript.pyannote[246].end 683.21534375
transcript.pyannote[247].speaker SPEAKER_02
transcript.pyannote[247].start 683.92409375
transcript.pyannote[247].end 685.35846875
transcript.pyannote[248].speaker SPEAKER_02
transcript.pyannote[248].start 685.91534375
transcript.pyannote[248].end 689.13846875
transcript.pyannote[249].speaker SPEAKER_02
transcript.pyannote[249].start 689.59409375
transcript.pyannote[249].end 691.70346875
transcript.pyannote[250].speaker SPEAKER_02
transcript.pyannote[250].start 692.07471875
transcript.pyannote[250].end 694.31909375
transcript.pyannote[251].speaker SPEAKER_02
transcript.pyannote[251].start 696.24284375
transcript.pyannote[251].end 696.69846875
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 698.01471875
transcript.pyannote[252].end 701.03534375
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 701.35596875
transcript.pyannote[253].end 704.83221875
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 705.18659375
transcript.pyannote[254].end 708.34221875
transcript.pyannote[255].speaker SPEAKER_02
transcript.pyannote[255].start 708.40971875
transcript.pyannote[255].end 712.96596875
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 713.67471875
transcript.pyannote[256].end 714.23159375
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 714.31596875
transcript.pyannote[257].end 717.79221875
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 717.92721875
transcript.pyannote[258].end 719.32784375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 719.54721875
transcript.pyannote[259].end 721.03221875
transcript.pyannote[260].speaker SPEAKER_02
transcript.pyannote[260].start 721.01534375
transcript.pyannote[260].end 721.45409375
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 721.08284375
transcript.pyannote[261].end 721.43721875
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 721.45409375
transcript.pyannote[262].end 722.01096875
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 722.01096875
transcript.pyannote[263].end 722.02784375
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 722.16284375
transcript.pyannote[264].end 725.03159375
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 725.80784375
transcript.pyannote[265].end 728.76096875
transcript.pyannote[266].speaker SPEAKER_02
transcript.pyannote[266].start 729.16596875
transcript.pyannote[266].end 730.73534375
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 731.03909375
transcript.pyannote[267].end 733.04721875
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 733.84034375
transcript.pyannote[268].end 734.46471875
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 735.25784375
transcript.pyannote[269].end 735.67971875
transcript.pyannote[270].speaker SPEAKER_02
transcript.pyannote[270].start 736.20284375
transcript.pyannote[270].end 736.92846875
transcript.pyannote[271].speaker SPEAKER_02
transcript.pyannote[271].start 737.89034375
transcript.pyannote[271].end 738.58221875
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 738.85221875
transcript.pyannote[272].end 739.29096875
transcript.pyannote[273].speaker SPEAKER_02
transcript.pyannote[273].start 740.20221875
transcript.pyannote[273].end 741.40034375
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 742.34534375
transcript.pyannote[274].end 743.84721875
transcript.pyannote[275].speaker SPEAKER_00
transcript.pyannote[275].start 743.84721875
transcript.pyannote[275].end 743.88096875
transcript.pyannote[276].speaker SPEAKER_02
transcript.pyannote[276].start 743.96534375
transcript.pyannote[276].end 744.03284375
transcript.pyannote[277].speaker SPEAKER_00
transcript.pyannote[277].start 744.03284375
transcript.pyannote[277].end 744.43784375
transcript.pyannote[278].speaker SPEAKER_02
transcript.pyannote[278].start 744.75846875
transcript.pyannote[278].end 744.80909375
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 744.80909375
transcript.pyannote[279].end 745.21409375
transcript.pyannote[280].speaker SPEAKER_00
transcript.pyannote[280].start 745.28159375
transcript.pyannote[280].end 752.03159375
transcript.pyannote[281].speaker SPEAKER_02
transcript.pyannote[281].start 747.23909375
transcript.pyannote[281].end 748.25159375
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 752.03159375
transcript.pyannote[282].end 752.36909375
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 752.36909375
transcript.pyannote[283].end 752.52096875
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 752.52096875
transcript.pyannote[284].end 752.55471875
transcript.pyannote[285].speaker SPEAKER_00
transcript.pyannote[285].start 752.97659375
transcript.pyannote[285].end 752.99346875
transcript.pyannote[286].speaker SPEAKER_02
transcript.pyannote[286].start 752.99346875
transcript.pyannote[286].end 753.88784375
transcript.pyannote[287].speaker SPEAKER_02
transcript.pyannote[287].start 754.10721875
transcript.pyannote[287].end 754.63034375
transcript.pyannote[288].speaker SPEAKER_02
transcript.pyannote[288].start 754.84971875
transcript.pyannote[288].end 755.47409375
transcript.pyannote[289].speaker SPEAKER_02
transcript.pyannote[289].start 755.96346875
transcript.pyannote[289].end 756.04784375
transcript.pyannote[290].speaker SPEAKER_02
transcript.pyannote[290].start 756.50346875
transcript.pyannote[290].end 758.17409375
transcript.pyannote[291].speaker SPEAKER_04
transcript.pyannote[291].start 758.05596875
transcript.pyannote[291].end 758.10659375
transcript.pyannote[292].speaker SPEAKER_04
transcript.pyannote[292].start 758.17409375
transcript.pyannote[292].end 758.88284375
transcript.pyannote[293].speaker SPEAKER_02
transcript.pyannote[293].start 758.88284375
transcript.pyannote[293].end 758.89971875
transcript.pyannote[294].speaker SPEAKER_02
transcript.pyannote[294].start 759.27096875
transcript.pyannote[294].end 760.46909375
transcript.pyannote[295].speaker SPEAKER_02
transcript.pyannote[295].start 760.78971875
transcript.pyannote[295].end 762.78096875
transcript.pyannote[296].speaker SPEAKER_04
transcript.pyannote[296].start 763.38846875
transcript.pyannote[296].end 763.62471875
transcript.pyannote[297].speaker SPEAKER_02
transcript.pyannote[297].start 764.29971875
transcript.pyannote[297].end 765.48096875
transcript.pyannote[298].speaker SPEAKER_04
transcript.pyannote[298].start 765.66659375
transcript.pyannote[298].end 765.86909375
transcript.pyannote[299].speaker SPEAKER_02
transcript.pyannote[299].start 766.66221875
transcript.pyannote[299].end 768.36659375
transcript.pyannote[300].speaker SPEAKER_02
transcript.pyannote[300].start 768.68721875
transcript.pyannote[300].end 769.83471875
transcript.pyannote[301].speaker SPEAKER_05
transcript.pyannote[301].start 770.05409375
transcript.pyannote[301].end 777.36096875
transcript.pyannote[302].speaker SPEAKER_02
transcript.pyannote[302].start 778.20471875
transcript.pyannote[302].end 781.49534375
transcript.pyannote[303].speaker SPEAKER_05
transcript.pyannote[303].start 782.81159375
transcript.pyannote[303].end 783.45284375
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 784.27971875
transcript.pyannote[304].end 791.19846875
transcript.pyannote[305].speaker SPEAKER_02
transcript.pyannote[305].start 784.38096875
transcript.pyannote[305].end 784.76909375
transcript.pyannote[306].speaker SPEAKER_02
transcript.pyannote[306].start 790.70909375
transcript.pyannote[306].end 791.40096875
transcript.pyannote[307].speaker SPEAKER_02
transcript.pyannote[307].start 791.51909375
transcript.pyannote[307].end 795.34971875
transcript.pyannote[308].speaker SPEAKER_05
transcript.pyannote[308].start 796.54784375
transcript.pyannote[308].end 797.03721875
transcript.pyannote[309].speaker SPEAKER_02
transcript.pyannote[309].start 797.03721875
transcript.pyannote[309].end 803.01096875
transcript.pyannote[310].speaker SPEAKER_02
transcript.pyannote[310].start 803.55096875
transcript.pyannote[310].end 805.39034375
transcript.pyannote[311].speaker SPEAKER_01
transcript.pyannote[311].start 806.23409375
transcript.pyannote[311].end 810.13221875
transcript.pyannote[312].speaker SPEAKER_02
transcript.pyannote[312].start 808.37721875
transcript.pyannote[312].end 810.18284375
transcript.pyannote[313].speaker SPEAKER_02
transcript.pyannote[313].start 810.60471875
transcript.pyannote[313].end 813.77721875
transcript.pyannote[314].speaker SPEAKER_01
transcript.pyannote[314].start 814.16534375
transcript.pyannote[314].end 817.38846875
transcript.pyannote[315].speaker SPEAKER_02
transcript.pyannote[315].start 816.05534375
transcript.pyannote[315].end 820.03784375
transcript.pyannote[316].speaker SPEAKER_01
transcript.pyannote[316].start 819.85221875
transcript.pyannote[316].end 824.30721875
transcript.pyannote[317].speaker SPEAKER_00
transcript.pyannote[317].start 820.03784375
transcript.pyannote[317].end 822.97409375
transcript.pyannote[318].speaker SPEAKER_00
transcript.pyannote[318].start 824.10471875
transcript.pyannote[318].end 830.14596875
transcript.whisperx[0].start 0.549
transcript.whisperx[0].end 23.815
transcript.whisperx[0].text 幾個先進有請主計長還有財政部的阮次長財政部副帥書長也來吧阮次幾位長官好喔首先我認為今天題目定的非常好本來就應該討論本來就應該也可以討論受僱人員的薪資占GDP的比重
transcript.whisperx[1].start 30.1
transcript.whisperx[1].end 45.9
transcript.whisperx[1].text 題目當然可以談了,跟國民所得是另外一件事,對不對?主計長,對吧?對,我尊重大議員這個沒問題了來,主計長,我問你的一件事情是你有提到有一段話,我仔細讀你的報告裡面
transcript.whisperx[2].start 46.801
transcript.whisperx[2].end 56.891
transcript.whisperx[2].text 你說110年上市貴公司財報.電子零組件.營業率大增63%.人事費用也成長28%.受僱報酬反而降0.9.
transcript.whisperx[3].start 62.476
transcript.whisperx[3].end 70.879
transcript.whisperx[3].text 這怎麼回事啊 生意很多 賺錢很多 結果薪水砍下來 怎麼回事沒有沒有 他沒有砍下來 因為是他沒有特別去砍啦 那個我就必須鬆鬆免一下他還是下降 他是比例下降 他是薪水還是漲的啦
transcript.whisperx[4].start 88.344
transcript.whisperx[4].end 96.147
transcript.whisperx[4].text 你直接讀一讀,你連文章寫的都很奇怪,有沒有這個情況?你現在讀,讓人家感覺是,這個電子業的老闆都很慣老闆、惡老闆,他賺錢賺那麼多,營業額這麼大,結果員工砍薪水,你看,受僱的報酬占,你這個窩點有問題啦,我今天不是跟你吵這個,跟你看一下,來
transcript.whisperx[5].start 114.69
transcript.whisperx[5].end 126.825
transcript.whisperx[5].text 你剛這是根據你們的報告啊請你看一下看一下這個錶這個錶我辛苦這是你的錶喔是我的對你的你的你的這你做的吧
transcript.whisperx[6].start 128.331
transcript.whisperx[6].end 137.221
transcript.whisperx[6].text 這個你們的?這個你們的?不是財政部的?這個你們的?這個完全不是你們的資料?我再看大家感謝我認真看你們的資料不然你的資料沒辦法看我我給你看了勒來感謝
transcript.whisperx[7].start 147.012
transcript.whisperx[7].end 169.31
transcript.whisperx[7].text 有共鳴你80年做一次110年做一次30年才做一次對不對那個不是我做的而且那一次做我憑良心講那一次做的話是並不是一個很成功的他們很努力所以80年是亂亂做的那一次不是亂做那一次是調查調查要看被調查人的
transcript.whisperx[8].start 169.71
transcript.whisperx[8].end 195.211
transcript.whisperx[8].text 那一個配合度這一次我們是用大數據不是去問出來的是用大數據出來的安定定的告訴你說這一次是我朱正民做的事比較準上一次怕誰做的不準這樣就對了你是這個意思嗎所以我們之前那個做的話有很多你是這個意思嗎不是這個意思委員是加了太多的形容詞沒有不是這個意思這是沒有形容詞啊你的意思這是我的講說因為是做調查
transcript.whisperx[9].start 197.793
transcript.whisperx[9].end 216.991
transcript.whisperx[9].text 我現在啊我現在就是read your lipsread your lips我看你怎麼講的啊委員的家庭人家問到委員說您東有多少財產你自己的很清楚您夫人的您大概也都不是很清楚每個都一樣所以就問的說是你那家那個是調查啊這一次咧
transcript.whisperx[10].start 221.814
transcript.whisperx[10].end 237.862
transcript.whisperx[10].text 這次就是用大數據的資料對嘛那我講的沒有錯啊用大數據的資料是整體的資料這個是來請問這是你當主計長時候做的嘛對嘛啊我做的啊就是朱正平做的比較準啊以前做的不準你覺得有缺點你解釋出來有什麼問題我跟您解釋謝謝不然機會沒機會快點
transcript.whisperx[11].start 249.628
transcript.whisperx[11].end 276.333
transcript.whisperx[11].text 沒有 你也不必過度解讀你這樣你對我的批評我不接受啦齁因為你read your lips看你的嘴巴講的話就是這樣子過去不是 現在調查的可能有人不知道所以呢就挺一挺不準這次大數據比較準這根本就是你講的話啊對對嘛所以就是朱成敏任內比較準以前不是朱成敏比較準沒有不是比較準這個是代表統計的一個進步
transcript.whisperx[12].start 278.593
transcript.whisperx[12].end 279.434
transcript.whisperx[12].text 80年現在110年房地產1480萬
transcript.whisperx[13].start 300.203
transcript.whisperx[13].end 326.642
transcript.whisperx[13].text 先問一下以後能不能改成10年做一次可以嗎那個也許我們那個看未來的主計長可以不可以啦30年太久啦對10年太久30年太久啦10年太久10年那個5年那個我們要衡量因為那個要各單位的配合如果按照你講大數據的話齁老實講每年都可以做
transcript.whisperx[14].start 327.683
transcript.whisperx[14].end 332.773
transcript.whisperx[14].text 不可以因為有些資料會是那個收集會牽連到一個很簡單的角度
transcript.whisperx[15].start 338.112
transcript.whisperx[15].end 366.222
transcript.whisperx[15].text 房地產現在是1480萬對金融性的資產3809萬對減掉金融事務負債233把減掉114年進食A加B減息等於低就是5000多萬那個是最高的百分之二十對最高百分之五千多萬結果最低的是77萬所以這裡面來看的話這很清楚看得到了
transcript.whisperx[16].start 367.162
transcript.whisperx[16].end 395.17
transcript.whisperx[16].text 很清楚看得到有錢人怎麼有錢?股票?基金?房地產?這裡面?看的是這樣啊?看的是這樣啊?跟那個委員報告一下您委員提的這個問題很好但是我也要總算講我好了對 我要跟委員講這也是告訴我們那個最低的百分之二十您看到他的金融負債
transcript.whisperx[17].start 396.69
transcript.whisperx[17].end 401.213
transcript.whisperx[17].text 所以他的資產增加有限負債增加所以負債405萬所以我們就是民管委所講的理財要謹慎
transcript.whisperx[18].start 420.623
transcript.whisperx[18].end 421.103
transcript.whisperx[18].text 朱主計長,你有沒有想到
transcript.whisperx[19].start 447.749
transcript.whisperx[19].end 463.654
transcript.whisperx[19].text 這是窮人要借錢過日子有錢人借錢炒股票炒房沒有可能金融性資產也很多你看到最低百分之二十金融性資產有200多萬所以負債405那為什麼405
transcript.whisperx[20].start 471.556
transcript.whisperx[20].end 474.597
transcript.whisperx[20].text 有一部分我不是說所有的人啦一部分是貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸貸�
transcript.whisperx[21].start 495.125
transcript.whisperx[21].end 495.445
transcript.whisperx[21].text 休息一下主席長
transcript.whisperx[22].start 531.493
transcript.whisperx[22].end 549.082
transcript.whisperx[22].text 市長跟署長啊從剛才的表已經看得到了這個社會投資要降低中產的焦慮啊其實我們就可以看嘛股票、基金、房地產我們的房地產持有稅太低了
transcript.whisperx[23].start 551.4
transcript.whisperx[23].end 572.22
transcript.whisperx[23].text 我們的振作稅沒有課我們增加稅裡面所以我們的你看美國動資的振作稅要30幾%這個當然今天不是我要講的重點我要講的重點就是在於說房地產的持有稅其實美國房子它那個持有稅大概一年一趴的
transcript.whisperx[24].start 573.3
transcript.whisperx[24].end 591.447
transcript.whisperx[24].text 我們一年房屋跟地價稅昨天那個節目沈副熊還講他的房子大概五千多萬結果的房屋稅一萬多地價稅也從一萬多不到三萬他自己都覺得說稅太少了稅太少了我們現在也開始注意到這個問題了所以我們也提出房屋稅你有沒有準備想要課持有稅
transcript.whisperx[25].start 600.571
transcript.whisperx[25].end 603.239
transcript.whisperx[25].text 瘋子十六歲,不是土豪歲喔!十六歲沒有課!對,十六歲十六歲!
transcript.whisperx[26].start 606.828
transcript.whisperx[26].end 634.738
transcript.whisperx[26].text 房屋稅就是房屋稅嘛房屋稅2.0嘛啊房屋稅很低啊又夠低就低啊太低啦我們現在已經在改革啦太低啦改革一定要循序漸進啦那我就問你啦有沒有可能靠一個婦人稅把最有錢的超過一百億以上的反正你這邊一百億以上的每年繳一千萬給國庫我們長照需要錢健保需要錢太多需要錢有沒有可能跟著靠一個婦人稅
transcript.whisperx[27].start 635.538
transcript.whisperx[27].end 656.015
transcript.whisperx[27].text 對﹖
transcript.whisperx[28].start 656.516
transcript.whisperx[28].end 660.257
transcript.whisperx[28].text 中小企業加薪條例那個經濟部可以過來幫忙一下保衛一下時間
transcript.whisperx[29].start 684.196
transcript.whisperx[29].end 693.503
transcript.whisperx[29].text 這個沒有我今天是完全完全呼籲我們主席英明特意的排案你排了案我都跟你鼓掌鼓掌好幾聲雖然你們通黨立委不認同我認同這個
transcript.whisperx[30].start 698.072
transcript.whisperx[30].end 720.286
transcript.whisperx[30].text 中小企業條例130%那個市長啊市長你等一下那個受署長要聽一聽啊主要就是你們前面那個框框太多啊又要那個CPI到達多少啦又失業率到多少才給他改成通通沒有附帶條件只要你加薪我就給你乘150可以嗎現在就是這樣調整要這樣子150還不夠啦本期的天是200啦
transcript.whisperx[31].start 725.951
transcript.whisperx[31].end 741.248
transcript.whisperx[31].text 給他兩百啊!那個右營才有,剛才委員已經罵得要命,就是條例辦公室幾千萬不一件!不一件!就是,我已經講了喔!我有提案,兩百!所有條件全部拿掉!
transcript.whisperx[32].start 742.446
transcript.whisperx[32].end 765.318
transcript.whisperx[32].text 所有條件全部拿掉好不好我們條件都已經放寬那至於那個底檢的部分我們尊重委員的那個最後一個小問題那個署長啊你署長你給清楚欸要報稅今天開始報稅對不對對你們一定要叫人家填房子是主的自用有沒有對必填喔必填喔對
transcript.whisperx[33].start 766.864
transcript.whisperx[33].end 794.622
transcript.whisperx[33].text 這個事要來查房東的稅是不是這是要了解一下納稅人本身現在的狀況然後如果租的話他可以報租金支出扣除我們某種程度就查房東的稅了喔難怪人家就不要停其實應該是說課稅資料有多元的用途啦但絕對不是只有單一位的查稅但是可以同時某種程度同時查稅對吧
transcript.whisperx[34].start 796.59
transcript.whisperx[34].end 805.379
transcript.whisperx[34].text 看到時候怎麼去運用就是你的回答就是了好啦 那個賴士葆我最後問你一個聽說你要去宮古防庫的是吧
transcript.whisperx[35].start 806.243
transcript.whisperx[35].end 808.946
transcript.whisperx[35].text 謝謝賴士葆委員的質詢也謝謝賴士葆委員的肯定接著我們請李燕秀文質詢