iVOD / 150486

Field Value
IVOD_ID 150486
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/150486
日期 2024-03-27
會議資料.會議代碼 委員會-11-1-36-9
會議資料.會議代碼:str 第11屆第1會期司法及法制委員會第9次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 9
會議資料.種類 委員會
會議資料.委員會代碼[0] 36
會議資料.委員會代碼:str[0] 司法及法制委員會
會議資料.標題 第11屆第1會期司法及法制委員會第9次全體委員會議
影片種類 Clip
開始時間 2024-03-27T11:07:22+08:00
結束時間 2024-03-27T11:18:09+08:00
影片長度 00:10:47
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/9baf490faf5eb4d530fef07fb8bf739e6e9ac27f41e17f3cf8ba9b0039caa7a62c3008b14a89fbfd5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 謝龍介
委員發言時間 11:07:22 - 11:18:09
會議時間 2024-03-27T09:00:00+08:00
會議名稱 立法院第11屆第1會期司法及法制委員會第9次全體委員會議(事由:一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人事服務數位轉型」進行專題報告,並備質詢。 二、審查及處理113年度中央政府總預算關於行政院人事行政總處及所屬主管預算凍結項目共8案。 【其中7案如經院會復議,則不予審查、處理】)
gazette.lineno 815
gazette.blocks[0][0] 謝委員龍介:(11時7分)謝謝主席。我請人事長跟移民署副署長。
gazette.blocks[1][0] 主席:請人事長跟陳副署長。
gazette.blocks[2][0] 蘇人事長俊榮:委員早。
gazette.blocks[3][0] 謝委員龍介:人事長早。我自民國91年參政以來,應該差不多從那一年開始,各單位在向立法機關討預算時都會說要e化,現在則是要數位化,我們主席今天還誇獎移民署的報告有符合也達到這個標準。接著要AI化,錢愈花愈多,我算了一算,這二十幾年光是全國所有的機關,花在這裡的錢,將近超過一兆新臺幣,包括買設備、硬體、軟體等等。那時候各機關的報告,都說能夠省多少人、多少人,地方一樣,中央也一樣;不過現在看起來,人員是愈用愈多。人事長,你看這是什麼原因?
gazette.blocks[4][0] 蘇人事長俊榮:這有兩個部分,說真的這二十幾年來,我們新興的業務也滿多的,所以就把既有的業務routine成自動化,以節省時間……
gazette.blocks[5][0] 謝委員龍介:沒有啦,你講的那個不通啦!業務多?你一下要e化,一下要數位化,後面還要AI化,人員愈用愈多,這就是在工作過程中出了問題,你要去檢討,而不是跟我說:因為業務愈來愈多,所以人員無法減少,錢愈用愈多。在你的數位化報告裡面有提到個資洩漏的問題,108年的個資洩露案是你們的問題,還是哪一個機關的問題?我跟你說,全國所有公務人員的個資,拿錢去買,都買得到!你知道這個事情嗎?在民間,如果拿錢去買,可以買到中華民國公務人員的個資,你知道有這種事情嗎?
gazette.blocks[6][0] 蘇人事長俊榮:之前媒體有報導過這件事情!
gazette.blocks[7][0] 謝委員龍介:108年的時候曾發生過,如果你現在又要搞這個……
gazette.blocks[8][0] 蘇人事長俊榮:李委員剛剛說的,那是銓敘部之前在委外的過程中,有一些資料被流出去。
gazette.blocks[9][0] 謝委員龍介:資安的問題,大家都知道,大家也都怕人家取得。我不要跟你說這個,我現在要問你的是說我們的臨時人員;我剛才跟你說的那個問題,你回去後一定要切記。什麼叫做資安?數發部拿了這麼多錢過去,你們都沒有跟他們合作?各自做各自的,對不對?詐騙要從源頭管控,它還是一樣啊!檢察官跟警察忙得要命,結果抓到之後,輕判還不打緊,檢察官說應該從源頭管控,你知道那個部長說什麼?他可以做,但他沒做,還說:「他們有需要,可以來找我。」就是檢察官有需要可以去找他!這不是不明事理,是什麼?
gazette.blocks[9][1] 本席現在要跟你說政府的臨時人員跟約聘的人員,為什麼臨時人員可以適用勞基法,約聘的不行?
gazette.blocks[10][0] 蘇人事長俊榮:因為進用的法律依據不一樣。
gazette.blocks[11][0] 謝委員龍介:不是法律依據不一樣啦!碰到事情的時候,都說是廣義的公務人員,犯貪污治罪條例要還加重其刑,而他們又沒有受到公務人員法的保障。
gazette.blocks[12][0] 蘇人事長俊榮:委員所指教的約聘人員,本身就準用公務人員服務法……
gazette.blocks[13][0] 謝委員龍介:他們就沒有受到公務人員的保障啊!
gazette.blocks[14][0] 蘇人事長俊榮:大部分的保障都有,當然不像正式的公務人員那樣啦!比如他沒辦法當主管……
gazette.blocks[15][0] 謝委員龍介:針對這些問題,我改天再跟你討論,包括警消跟公務人員為什麼不能組工會?
gazette.blocks[15][1] 接下來想請教陳副署長,星期二我跟院長探討逃逸外勞這件事情,你知道嗎?
gazette.blocks[16][0] 陳副署長建成:我知道。
gazette.blocks[17][0] 謝委員龍介:你知道喔!那麼你知道我們臺灣有多誇張?逃逸外勞逃跑之後都在做什麼,你知道嗎?
gazette.blocks[18][0] 陳副署長建成:有時候是去打黑工。
gazette.blocks[19][0] 謝委員龍介:打黑工?這樣而已嗎?你的情報只有這樣嗎?難怪抓不到人!從八萬五、九萬、九萬五,難怪你抓不到,你們不應該沒有這種情報,所有的民意代表或多或少都有接受到這種情報,沒人提供給你?就打黑工嗎?
gazette.blocks[20][0] 陳副署長建成:還有啦。
gazette.blocks[21][0] 謝委員龍介:還有什麼?
gazette.blocks[22][0] 陳副署長建成:還有很多元,比方他會到山區裡面砍伐山林珍貴木材……
gazette.blocks[23][0] 謝委員龍介:這樣而已嗎?
gazette.blocks[24][0] 陳副署長建成:還有一些是……
gazette.blocks[25][0] 謝委員龍介:那是你們少數抓到的。我現在跟你說……
gazette.blocks[26][0] 陳副署長建成:是。
gazette.blocks[27][0] 謝委員龍介:我就在這裡向你公開舉發,哪有抓不到的!你知道他們到工地不是來做黑工而已,現在是當包工頭!我們這些土木包商去跟營造廠報價,一個工2,800,你明天缺40個人,我給你帶過來;可是,你知道逃逸外勞的包工頭報2,300,因為他不用開發票,也沒有勞保,不用幫他們保險,他沒成本的來跟我們在地的包商拼,我們拼輸了,工作被他們拿走。幾乎中大型工地的工程統統有,你們卻沒辦法抓?而且你們很厲害的是去那個工地前面貼告示,僱用非法勞工要罰15萬至75萬,對不對?
gazette.blocks[28][0] 陳副署長建成:是。
gazette.blocks[29][0] 謝委員龍介:那個包工頭看了之後,還站在那邊笑,因為隔天他就帶了40個逃逸勞工來向工地主任報到,你知道有這種事情嗎?
gazette.blocks[30][0] 陳副署長建成:我有耳聞啦。
gazette.blocks[31][0] 謝委員龍介:有耳聞,卻沒辦法抓人?是你們人力不足?
gazette.blocks[32][0] 陳副署長建成:有各種原因,我們還是會再加強查緝。
gazette.blocks[33][0] 謝委員龍介:主席,你看這麼明確的事情!我已經跟院長、勞動部長說了,勞動部長說這是移民署的事情。
gazette.blocks[34][0] 陳副署長建成:其實我們跟……
gazette.blocks[35][0] 謝委員龍介:有沒有辦法去抓?
gazette.blocks[36][0] 陳副署長建成:我們會積極來聯合警政署,還有海巡各相關的……
gazette.blocks[37][0] 謝委員龍介:不是這樣啦!
gazette.blocks[38][0] 陳副署長建成:合力來把這個現象儘量的來查清楚。
gazette.blocks[39][0] 謝委員龍介:我再跟你說一點,國家發包的公共工程裡面的工地也有這個現象,逃逸外勞的包工頭,帶著一群逃逸外勞到我們公共工程的工地裡面去包攬工作,結果我們在地的包商、包工頭拿不到工作,因為對方比較便宜,我們比較貴。這些逃逸外勞每天在那張公告前面笑說,你們說抓到要罰幾萬到幾萬,我一次帶四十、五十個,三十、四十個來工地報到,你們都抓不到!請問副署長,這樣要怎麼辦?
gazette.blocks[40][0] 陳副署長建成:其實我們也積極在查緝,像我們每年都至少抓了兩、三萬的這一些……
gazette.blocks[41][0] 謝委員龍介:你們現在檢舉有沒有獎金?
gazette.blocks[42][0] 陳副署長建成:檢舉還是有獎金。
gazette.blocks[43][0] 謝委員龍介:獎金有多少?一次抓到十個,獎金幾萬?
gazette.blocks[44][0] 陳副署長建成:應該差不多兩萬塊左右。
gazette.blocks[45][0] 謝委員龍介:一次抓到十個是幾萬?抓一個是幾萬?一個一萬嗎?
gazette.blocks[46][0] 陳副署長建成:沒有那麼多。
gazette.blocks[47][0] 謝委員龍介:現在降價了嗎?難怪你抓不到!以前抓到一個是一萬,一次抓到七個是五萬!現在呢?
gazette.blocks[48][0] 陳副署長建成:這部分我可能要再瞭解一下。
gazette.blocks[49][0] 謝委員龍介:這個部分你們要再研議一下。會議結束後,請你來辦公室找我,我報一樁給你,最少可以抓到20個,真的啦,我若在這邊跟你說,他們就跑了,你等一下來辦公室找我,我跟你說去哪裡抓。
gazette.blocks[50][0] 陳副署長建成:好的,謝謝委員。
gazette.blocks[51][0] 主席:請人事長跟陳副署長就剛剛的質詢,私下再跟我們回復。謝謝。
gazette.blocks[51][1] 剛剛本來宣告要先休息,現在因為傅委員徵得吳委員的同意要對調,我們先進行傅總召的質詢,之後再休息5分鐘。有請傅總召。
gazette.agenda.page_end 210
gazette.agenda.meet_id 委員會-11-1-36-9
gazette.agenda.speakers[0] 鍾佳濱
gazette.agenda.speakers[1] 黃國昌
gazette.agenda.speakers[2] 沈發惠
gazette.agenda.speakers[3] 陳俊宇
gazette.agenda.speakers[4] 林思銘
gazette.agenda.speakers[5] 羅智強
gazette.agenda.speakers[6] 莊瑞雄
gazette.agenda.speakers[7] 吳思瑤
gazette.agenda.speakers[8] 翁曉玲
gazette.agenda.speakers[9] 謝龍介
gazette.agenda.speakers[10] 傅崐萁
gazette.agenda.speakers[11] 吳宗憲
gazette.agenda.speakers[12] 鄭天財Sra Kacaw
gazette.agenda.page_start 151
gazette.agenda.meetingDate[0] 2024-03-27
gazette.agenda.gazette_id 1132001
gazette.agenda.agenda_lcidc_ids[0] 1132001_00008
gazette.agenda.meet_name 立法院第11屆第1會期司法及法制委員會第9次全體委員會議紀錄
gazette.agenda.content 一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人 事服務數位轉型」進行專題報告,並備質詢;二、審查及處理113年度中央政府總預算關於行政 院人事行政總處及所屬主管預算凍結項目共7案
gazette.agenda.agenda_id 1132001_00017
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 17.36159375
transcript.pyannote[0].end 26.08596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 28.48221875
transcript.pyannote[1].end 29.32596875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 29.32596875
transcript.pyannote[2].end 29.34284375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 29.76471875
transcript.pyannote[3].end 30.30471875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 30.30471875
transcript.pyannote[4].end 30.35534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 30.77721875
transcript.pyannote[5].end 30.81096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 30.81096875
transcript.pyannote[6].end 30.96284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 30.96284375
transcript.pyannote[7].end 31.35096875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 33.22409375
transcript.pyannote[8].end 34.08471875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 34.67534375
transcript.pyannote[9].end 37.67909375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 38.69159375
transcript.pyannote[10].end 42.80909375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 43.73721875
transcript.pyannote[11].end 46.40346875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 46.79159375
transcript.pyannote[12].end 49.62659375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 50.72346875
transcript.pyannote[13].end 53.60909375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 54.19971875
transcript.pyannote[14].end 58.90784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 59.26221875
transcript.pyannote[15].end 60.42659375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 61.54034375
transcript.pyannote[16].end 63.53159375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 64.56096875
transcript.pyannote[17].end 67.66596875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 68.39159375
transcript.pyannote[18].end 69.62346875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 70.92284375
transcript.pyannote[19].end 74.11221875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 75.14159375
transcript.pyannote[20].end 76.72784375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 77.38596875
transcript.pyannote[21].end 78.22971875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 79.56284375
transcript.pyannote[22].end 81.14909375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 81.57096875
transcript.pyannote[23].end 82.95471875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 84.60846875
transcript.pyannote[24].end 85.21596875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 86.02596875
transcript.pyannote[25].end 87.71346875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 88.13534375
transcript.pyannote[26].end 89.58659375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 90.31221875
transcript.pyannote[27].end 92.60721875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 93.33284375
transcript.pyannote[28].end 96.84284375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 98.95221875
transcript.pyannote[29].end 101.12909375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 101.29784375
transcript.pyannote[30].end 101.80409375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 104.65596875
transcript.pyannote[31].end 107.03534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 106.02284375
transcript.pyannote[32].end 106.24221875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 107.03534375
transcript.pyannote[33].end 107.44034375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 107.79471875
transcript.pyannote[34].end 107.96346875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 108.50346875
transcript.pyannote[35].end 120.24846875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 109.87034375
transcript.pyannote[36].end 110.20784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 116.02971875
transcript.pyannote[37].end 116.63721875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 118.27409375
transcript.pyannote[38].end 122.44221875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 122.96534375
transcript.pyannote[39].end 125.26034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 126.08721875
transcript.pyannote[40].end 131.99346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 132.29721875
transcript.pyannote[41].end 135.57096875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 136.17846875
transcript.pyannote[42].end 142.54034375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 142.96221875
transcript.pyannote[43].end 144.37971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 144.95346875
transcript.pyannote[44].end 147.29909375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 149.13846875
transcript.pyannote[45].end 150.87659375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 151.48409375
transcript.pyannote[46].end 160.41096875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 161.22096875
transcript.pyannote[47].end 162.28409375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 164.32596875
transcript.pyannote[48].end 164.51159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 164.51159375
transcript.pyannote[49].end 169.00034375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 169.11846875
transcript.pyannote[50].end 171.02534375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 171.02534375
transcript.pyannote[51].end 171.97034375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 173.03346875
transcript.pyannote[52].end 191.96721875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 191.96721875
transcript.pyannote[53].end 193.97534375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 194.46471875
transcript.pyannote[54].end 197.21534375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 197.92409375
transcript.pyannote[55].end 202.39596875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 203.72909375
transcript.pyannote[56].end 204.55596875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 207.01971875
transcript.pyannote[57].end 207.66096875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 208.20096875
transcript.pyannote[58].end 213.28034375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 214.81596875
transcript.pyannote[59].end 216.18284375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 217.00971875
transcript.pyannote[60].end 217.49909375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 219.60846875
transcript.pyannote[61].end 222.34221875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 223.42221875
transcript.pyannote[62].end 225.34596875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 226.51034375
transcript.pyannote[63].end 232.65284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 234.67784375
transcript.pyannote[64].end 235.79159375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 236.50034375
transcript.pyannote[65].end 237.59721875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 238.03596875
transcript.pyannote[66].end 239.72346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 240.12846875
transcript.pyannote[67].end 242.38971875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 245.03909375
transcript.pyannote[68].end 246.55784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 248.65034375
transcript.pyannote[69].end 250.59096875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 251.41784375
transcript.pyannote[70].end 255.56909375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 256.81784375
transcript.pyannote[71].end 257.29034375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 259.02846875
transcript.pyannote[72].end 259.90596875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 260.05784375
transcript.pyannote[73].end 261.79596875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 262.40346875
transcript.pyannote[74].end 263.66909375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 265.54221875
transcript.pyannote[75].end 269.42346875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 270.40221875
transcript.pyannote[76].end 277.55721875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 278.56971875
transcript.pyannote[77].end 280.83096875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 283.53096875
transcript.pyannote[78].end 291.14159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 290.11221875
transcript.pyannote[79].end 292.49159375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 294.16221875
transcript.pyannote[80].end 301.16534375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 300.76034375
transcript.pyannote[81].end 309.21471875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 312.10034375
transcript.pyannote[82].end 313.07909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 314.15909375
transcript.pyannote[83].end 319.12034375
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 320.41971875
transcript.pyannote[84].end 320.79096875
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 321.28034375
transcript.pyannote[85].end 321.70221875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 322.00596875
transcript.pyannote[86].end 322.59659375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 323.03534375
transcript.pyannote[87].end 324.01409375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 324.01409375
transcript.pyannote[88].end 324.04784375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 324.80721875
transcript.pyannote[89].end 326.91659375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 328.67159375
transcript.pyannote[90].end 329.81909375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 330.29159375
transcript.pyannote[91].end 332.45159375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 333.68346875
transcript.pyannote[92].end 335.37096875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 335.37096875
transcript.pyannote[93].end 336.48471875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 335.40471875
transcript.pyannote[94].end 336.36659375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 337.68284375
transcript.pyannote[95].end 338.05409375
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 337.76721875
transcript.pyannote[96].end 338.74596875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 340.04534375
transcript.pyannote[97].end 340.66971875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 340.95659375
transcript.pyannote[98].end 341.76659375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 341.90159375
transcript.pyannote[99].end 341.93534375
transcript.pyannote[100].speaker SPEAKER_03
transcript.pyannote[100].start 341.93534375
transcript.pyannote[100].end 342.22221875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 342.54284375
transcript.pyannote[101].end 343.35284375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 344.43284375
transcript.pyannote[102].end 346.82909375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 346.99784375
transcript.pyannote[103].end 347.35221875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 347.75721875
transcript.pyannote[104].end 349.46159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 349.91721875
transcript.pyannote[105].end 351.03096875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 351.58784375
transcript.pyannote[106].end 357.71346875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 358.64159375
transcript.pyannote[107].end 360.36284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 361.30784375
transcript.pyannote[108].end 362.03346875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 362.74221875
transcript.pyannote[109].end 366.58971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 363.56909375
transcript.pyannote[110].end 364.15971875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 366.79221875
transcript.pyannote[111].end 367.51784375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 367.72034375
transcript.pyannote[112].end 370.77471875
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 371.38221875
transcript.pyannote[113].end 374.28471875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 374.52096875
transcript.pyannote[114].end 375.17909375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 375.68534375
transcript.pyannote[115].end 381.00096875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 380.61284375
transcript.pyannote[116].end 380.83221875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 382.94159375
transcript.pyannote[117].end 382.95846875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 382.95846875
transcript.pyannote[118].end 384.79784375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 386.09721875
transcript.pyannote[119].end 387.29534375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 387.68346875
transcript.pyannote[120].end 388.96596875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 390.07971875
transcript.pyannote[121].end 392.17221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 393.08346875
transcript.pyannote[122].end 395.22659375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 396.32346875
transcript.pyannote[123].end 397.35284375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 398.87159375
transcript.pyannote[124].end 403.03971875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 403.61346875
transcript.pyannote[125].end 405.80721875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 406.87034375
transcript.pyannote[126].end 409.08096875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 410.86971875
transcript.pyannote[127].end 411.20721875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 411.51096875
transcript.pyannote[128].end 414.00846875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 414.91971875
transcript.pyannote[129].end 417.46784375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 419.08784375
transcript.pyannote[130].end 420.31971875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 420.97784375
transcript.pyannote[131].end 423.05346875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 423.77909375
transcript.pyannote[132].end 425.98971875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 426.85034375
transcript.pyannote[133].end 429.76971875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 431.20409375
transcript.pyannote[134].end 433.49909375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 434.37659375
transcript.pyannote[135].end 435.30471875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 436.16534375
transcript.pyannote[136].end 437.00909375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 438.19034375
transcript.pyannote[137].end 442.18971875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 442.56096875
transcript.pyannote[138].end 448.11284375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 448.56846875
transcript.pyannote[139].end 449.22659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 450.22221875
transcript.pyannote[140].end 450.86346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 452.43284375
transcript.pyannote[141].end 452.97284375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 453.69846875
transcript.pyannote[142].end 454.03596875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 454.50846875
transcript.pyannote[143].end 455.06534375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 456.07784375
transcript.pyannote[144].end 457.51221875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 457.83284375
transcript.pyannote[145].end 458.37284375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 458.50784375
transcript.pyannote[146].end 458.69346875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 458.69346875
transcript.pyannote[147].end 458.71034375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 458.81159375
transcript.pyannote[148].end 460.39784375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 460.51596875
transcript.pyannote[149].end 461.95034375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 462.64221875
transcript.pyannote[150].end 464.86971875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 465.74721875
transcript.pyannote[151].end 468.66659375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 469.94909375
transcript.pyannote[152].end 471.07971875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 472.71659375
transcript.pyannote[153].end 473.37471875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 474.97784375
transcript.pyannote[154].end 476.24346875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 476.53034375
transcript.pyannote[155].end 476.86784375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 476.86784375
transcript.pyannote[156].end 478.53846875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 477.42471875
transcript.pyannote[157].end 479.02784375
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 479.02784375
transcript.pyannote[158].end 479.21346875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 479.55096875
transcript.pyannote[159].end 481.42409375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 479.87159375
transcript.pyannote[160].end 481.32284375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 482.30159375
transcript.pyannote[161].end 486.52034375
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 486.95909375
transcript.pyannote[162].end 486.99284375
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 486.99284375
transcript.pyannote[163].end 488.81534375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 488.91659375
transcript.pyannote[164].end 492.39284375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 492.39284375
transcript.pyannote[165].end 492.49409375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 492.49409375
transcript.pyannote[166].end 492.52784375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 492.52784375
transcript.pyannote[167].end 492.57846875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 493.00034375
transcript.pyannote[168].end 496.39221875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 498.78846875
transcript.pyannote[169].end 513.97596875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 500.29034375
transcript.pyannote[170].end 501.42096875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 507.39471875
transcript.pyannote[171].end 507.93471875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 509.57159375
transcript.pyannote[172].end 510.06096875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 513.97596875
transcript.pyannote[173].end 514.75221875
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 515.96721875
transcript.pyannote[174].end 516.00096875
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 516.00096875
transcript.pyannote[175].end 517.16534375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 518.24534375
transcript.pyannote[176].end 521.90721875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 523.52721875
transcript.pyannote[177].end 524.70846875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 526.85159375
transcript.pyannote[178].end 528.03284375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 528.21846875
transcript.pyannote[179].end 529.09596875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 529.73721875
transcript.pyannote[180].end 535.25534375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 537.04409375
transcript.pyannote[181].end 537.75284375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 538.07346875
transcript.pyannote[182].end 539.11971875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 539.76096875
transcript.pyannote[183].end 540.35159375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 540.92534375
transcript.pyannote[184].end 544.46909375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 546.64596875
transcript.pyannote[185].end 550.17284375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 550.84784375
transcript.pyannote[186].end 557.32784375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 557.80034375
transcript.pyannote[187].end 558.61034375
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 561.59721875
transcript.pyannote[188].end 570.28784375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 562.69409375
transcript.pyannote[189].end 563.30159375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 569.54534375
transcript.pyannote[190].end 571.62096875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 572.12721875
transcript.pyannote[191].end 573.34221875
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 573.51096875
transcript.pyannote[192].end 573.54471875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 573.54471875
transcript.pyannote[193].end 574.43909375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 575.67096875
transcript.pyannote[194].end 577.25721875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 578.06721875
transcript.pyannote[195].end 579.95721875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 579.61971875
transcript.pyannote[196].end 580.34534375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 580.73346875
transcript.pyannote[197].end 581.56034375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 582.20159375
transcript.pyannote[198].end 583.24784375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 584.51346875
transcript.pyannote[199].end 585.39096875
transcript.pyannote[200].speaker SPEAKER_02
transcript.pyannote[200].start 586.74096875
transcript.pyannote[200].end 587.55096875
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 588.07409375
transcript.pyannote[201].end 589.17096875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 590.45346875
transcript.pyannote[202].end 591.51659375
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 593.94659375
transcript.pyannote[203].end 595.22909375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 597.22034375
transcript.pyannote[204].end 598.70534375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 600.17346875
transcript.pyannote[205].end 601.48971875
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 603.17721875
transcript.pyannote[206].end 603.83534375
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 606.50159375
transcript.pyannote[207].end 608.29034375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 608.13846875
transcript.pyannote[208].end 611.80034375
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 611.80034375
transcript.pyannote[209].end 612.10409375
transcript.pyannote[210].speaker SPEAKER_02
transcript.pyannote[210].start 611.91846875
transcript.pyannote[210].end 614.26409375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 615.90096875
transcript.pyannote[211].end 618.22971875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 619.74846875
transcript.pyannote[212].end 622.02659375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 623.69721875
transcript.pyannote[213].end 624.05159375
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 624.42284375
transcript.pyannote[214].end 624.64221875
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 624.99659375
transcript.pyannote[215].end 627.47721875
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 627.66284375
transcript.pyannote[216].end 628.08471875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 628.28721875
transcript.pyannote[217].end 629.01284375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 628.64159375
transcript.pyannote[218].end 629.35034375
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 629.35034375
transcript.pyannote[219].end 630.12659375
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 630.39659375
transcript.pyannote[220].end 630.90284375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 633.16409375
transcript.pyannote[221].end 633.78846875
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 634.75034375
transcript.pyannote[222].end 635.50971875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 635.96534375
transcript.pyannote[223].end 636.64034375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 636.84284375
transcript.pyannote[224].end 637.02846875
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 637.02846875
transcript.pyannote[225].end 637.16346875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 637.16346875
transcript.pyannote[226].end 639.34034375
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 639.84659375
transcript.pyannote[227].end 647.06909375
transcript.whisperx[0].start 18.345
transcript.whisperx[0].end 23.328
transcript.whisperx[0].text 主席我請領事長及議員署的副署長請人事長跟陳副署長請委員老大老大
transcript.whisperx[1].start 33.24
transcript.whisperx[1].end 44.864
transcript.whisperx[1].text 您知道我在民國91年參政以來每一年從那一年開始,應該是差不多從那一年開始國單位和這個立法機關有算、託有算的是依法現在來數位法今天我們主席俄羅斯及移民宿報告有符合在19這個標準
transcript.whisperx[2].start 61.584
transcript.whisperx[2].end 72.894
transcript.whisperx[2].text 直到現在要AI化經營越開越多我相信這20多年只有在這全國所有的機關開在這裡最緊要超過一條的信頼表包括要設備硬貼、軟貼、硬貼結果
transcript.whisperx[3].start 86.095
transcript.whisperx[3].end 96.081
transcript.whisperx[3].text 國安說那時候差不多把國機關報告就是說,可以選多少人就多少人。差不多地方也一樣,中央也一樣。不過現在看起來你人越來越多。林書長你看這是什麼原因?
transcript.whisperx[4].start 108.861
transcript.whisperx[4].end 134.675
transcript.whisperx[4].text 那有兩個部分啦因為說這個這二十幾天來我們新興的業務也蠻多的就是把既有的業務Latino 把它自動化節省的時間移過去你講的那個不通啦對阿 業務多阿你如果要 如果要醫化 如果要數位化現在阿伯要AI化所有人都越來越多這就是一定在工作的過程中齁
transcript.whisperx[5].start 136.223
transcript.whisperx[5].end 145.947
transcript.whisperx[5].text 有出一個問題 你要去檢討啦 你不是跟我說我因為夾毛肚來越多 所以我人沒那麼多檢啊 錢要越贏越多 你的那個數位法裡面有一個說 個資的涉牢啦 你一百塊八年 我覺得這是你的問題 還是做一個機關的問題 全國所有的公務人員的個資 我跟你講 拿錢去買買有捏 你知道這個事情嗎
transcript.whisperx[6].start 164.595
transcript.whisperx[6].end 170.18
transcript.whisperx[6].text 在民間啊,拿錢去買,可以買到公務員的個資啊,中華民國的公務人員,你知不知道有這個事情?
transcript.whisperx[7].start 173.092
transcript.whisperx[7].end 198.624
transcript.whisperx[7].text 之前媒體有報導過啦之前媒體有報導過這件事情一百萬八年啊那如果你現在又要搞這個那個立委員剛才講的那個是之前那個專屬部的資料用於委外的過程中有一些資料被流出去資安的問題大家都在知道大家都怕人生我不要跟你講這個我現在要問你就是說我們的臨時領域這個你的我剛才跟你講那個你的帳戶一定要檢查
transcript.whisperx[8].start 203.712
transcript.whisperx[8].end 212.817
transcript.whisperx[8].text 那撈處理還有什麼什麼叫做主案你現在司法部你拿那麼多錢去你都沒在跟他們合作誰人做誰人的對不對詐騙從源頭管控還是一樣啊檢察官跟警察總要死結果抓你還要不要勤奮沒得緊檢察官說應該從源頭管控你知不知道那個補充說什麼
transcript.whisperx[9].start 235.258
transcript.whisperx[9].end 242.24
transcript.whisperx[9].text 他們有需要可以來找我。檢測官有需要可以來找我。這不是動盲的,不是什麼。所以本市現在要說政府的臨時臨緣及藥品的臨緣就對了。他們為什麼臨時的可以用到計劃,為什麼藥品的不行?
transcript.whisperx[10].start 265.835
transcript.whisperx[10].end 292.239
transcript.whisperx[10].text 訴用的法律是禁用的法律依據不一樣啦不是法律依據不一樣啦啊你若卡到事情的時候都是廣義公務人員貪污自罪條例要加重期刑的啊他若不適當公務人員的保障委員機構的業聘人員他本身就是用公務人員服務法準用公務人員服務法的啊你若不公務人員的保障啊
transcript.whisperx[11].start 294.284
transcript.whisperx[11].end 304.553
transcript.whisperx[11].text 一代不分的保證都有啦當然不像正式的公務人員這樣啦他沒辦法做主管嘛我問這問題我領你我陪你討論啦包括那個競銷及公務人員為什麼不能做公費這個來我請那個書長寫書長我拜理的陪議長探討討議我的這個事情你知不知道
transcript.whisperx[12].start 320.435
transcript.whisperx[12].end 321.336
transcript.whisperx[12].text 你知道嗎?
transcript.whisperx[13].start 321.336
transcript.whisperx[13].end 323.117
transcript.whisperx[13].text 你知道嗎?
transcript.whisperx[14].start 323.117
transcript.whisperx[14].end 324.879
transcript.whisperx[14].text 你知道嗎?
transcript.whisperx[15].start 324.879
transcript.whisperx[15].end 325.119
transcript.whisperx[15].text 你知道嗎?
transcript.whisperx[16].start 325.119
transcript.whisperx[16].end 325.619
transcript.whisperx[16].text 你知道嗎?
transcript.whisperx[17].start 325.619
transcript.whisperx[17].end 326.36
transcript.whisperx[17].text 你知道嗎?
transcript.whisperx[18].start 326.36
transcript.whisperx[18].end 329.002
transcript.whisperx[18].text 你知道嗎?
transcript.whisperx[19].start 329.002
transcript.whisperx[19].end 330.364
transcript.whisperx[19].text 你知道嗎?
transcript.whisperx[20].start 330.364
transcript.whisperx[20].end 330.864
transcript.whisperx[20].text 你知道嗎?
transcript.whisperx[21].start 330.864
transcript.whisperx[21].end 331.344
transcript.whisperx[21].text 你知道嗎?
transcript.whisperx[22].start 331.344
transcript.whisperx[22].end 331.545
transcript.whisperx[22].text 你知道嗎?
transcript.whisperx[23].start 344.688
transcript.whisperx[23].end 361.671
transcript.whisperx[23].text 您的進步只有這樣而已,難怪抓不住啊。八萬五、九萬、九萬五,難怪你抓不住啊。不應該,你沒什麼進步捏。這所謂民意代表差不多,好多好少,大家都有去接觸到,這種的進步啊。啊可能沒人提供給你?大家說嘛。
transcript.whisperx[24].start 362.922
transcript.whisperx[24].end 391.748
transcript.whisperx[24].text 還有啦 有很多元項 比方說他就會到山區裡面 比方會去做一些砍伐山林珍貴木材的 還有也有一些是在那個 那是你們攝手抓到 我現在跟你講啦 是我公開在這裡跟你拘捕啦 靠 那就抓不到了 你敢知道去工地 他不是來做黑工而已捏
transcript.whisperx[25].start 393.117
transcript.whisperx[25].end 413.442
transcript.whisperx[25].text 他現在是當包工頭阿做老頭阿然後我們這些土木包的齁去跟營造廠報價比如說他今天要缺40個工我去報價一個人2800那你明天缺40個我給你帶過來你知不知道我老的老頭
transcript.whisperx[26].start 419.11
transcript.whisperx[26].end 429.638
transcript.whisperx[26].text 他報2300啊!因為他不用開發票,他不用落報啊!他不用給他們報那樣嘛!他沒身份啊!他去看我們拼,看我們在地的帽頭拼啦!啊咱們拼輸贏啦!看過又退去!工程咧!工程啊!
transcript.whisperx[27].start 438.504
transcript.whisperx[27].end 439.966
transcript.whisperx[27].text 幾乎中大型工地
transcript.whisperx[28].start 452.5
transcript.whisperx[28].end 457.924
transcript.whisperx[28].text 我有耳紋阿有耳紋阿,不可能啦是你們人力不足
transcript.whisperx[29].start 482.355
transcript.whisperx[29].end 496.217
transcript.whisperx[29].text 有各種原因,那我們還是再加強查詢主席你給我看,這個這麼明顯的東西,你如果沒有解釋,他對我是已經跟他說了是喔,立法院補充說,那立法院補充說移民署的事情啊
transcript.whisperx[30].start 499.037
transcript.whisperx[30].end 524.013
transcript.whisperx[30].text 我們會積極來聯合警政署還有海巡各相關的機關來合力來把這個現象盡量的來查清。公共工程國家發包的公共工程裡面的工程也有這個現象
transcript.whisperx[31].start 526.909
transcript.whisperx[31].end 543.094
transcript.whisperx[31].text 逃逸外勞的帽套穿一頓逃逸外勞去我們的公共工程的工地裡面去保康貴。啊結果,我們在地的保障帽套拿不到因為什麼?他比較兇,我們會比他貴。
transcript.whisperx[32].start 546.664
transcript.whisperx[32].end 552.209
transcript.whisperx[32].text 府長你看 這樣怎麼辦其實我們也積極在查緝啦 像我們每年都至少我們有抓了兩三萬的這一些你們現在檢舉有沒有獎金檢舉還是有獎金獎金多少
transcript.whisperx[33].start 575.489
transcript.whisperx[33].end 584.851
transcript.whisperx[33].text 一半拿10個幾萬?應該差不多2萬塊左右10個呢?一半拿10個?拿1個幾萬?1個1萬嘛?沒有,沒有,沒有那麼多現在下去?沒怪你拿嗎?沒怪你拿嗎?以前拿1個1萬呢?啊7個才5萬呢?一半拿7個5萬呢?啊現在勒?
transcript.whisperx[34].start 606.93
transcript.whisperx[34].end 607.231
transcript.whisperx[34].text 主席阿
transcript.whisperx[35].start 639.892
transcript.whisperx[35].end 646.258
transcript.whisperx[35].text 好啦,那我們就是請那個人事總跟副署長這邊就剛剛的質詢,可以私下再跟我們回覆,謝謝。