IVOD_ID |
150461 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/150461 |
日期 |
2024-03-27 |
會議資料.會議代碼 |
委員會-11-1-36-9 |
會議資料.會議代碼:str |
第11屆第1會期司法及法制委員會第9次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
9 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
36 |
會議資料.委員會代碼:str[0] |
司法及法制委員會 |
會議資料.標題 |
第11屆第1會期司法及法制委員會第9次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-03-27T10:15:16+08:00 |
結束時間 |
2024-03-27T10:28:43+08:00 |
影片長度 |
00:13:27 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/9baf490faf5eb4d53c9708701036590f6e9ac27f41e17f3cf8ba9b0039caa7a60688a33c2524b26f5ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
鍾佳濱 |
委員發言時間 |
10:15:16 - 10:28:43 |
會議時間 |
2024-03-27T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期司法及法制委員會第9次全體委員會議(事由:一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人事服務數位轉型」進行專題報告,並備質詢。
二、審查及處理113年度中央政府總預算關於行政院人事行政總處及所屬主管預算凍結項目共8案。
【其中7案如經院會復議,則不予審查、處理】) |
gazette.lineno |
568 |
gazette.blocks[0][0] |
鍾委員佳濱:(10時15分)主席、在場的委員先進、列席的政府機關首長及官員、會場工作夥伴、媒體記者女士先生。有請蘇人事長,還有移民署陳副署長、矯正署的周署長以及臺鐵公司的馮總經理。 |
gazette.blocks[1][0] |
主席:請人事長、陳副署長、周署長還有臺鐵公司馮總經理。 |
gazette.blocks[2][0] |
鍾委員佳濱:人事長好;署長、副署長以及總經理早。 |
gazette.blocks[3][0] |
蘇人事長俊榮:委員好。 |
gazette.blocks[4][0] |
鍾委員佳濱:請問一下人事長,人總是管理各機關的人事人員還是管理政府的人力資源? |
gazette.blocks[5][0] |
蘇人事長俊榮:都有啦。 |
gazette.blocks[6][0] |
鍾委員佳濱:都有? |
gazette.blocks[7][0] |
蘇人事長俊榮:都有。 |
gazette.blocks[8][0] |
鍾委員佳濱:你覺得哪一個比較能夠發揮人總在這個政府部門當中身為二級機關的價值? |
gazette.blocks[9][0] |
蘇人事長俊榮:我覺得那個是在…… |
gazette.blocks[10][0] |
鍾委員佳濱:你會不會認為你應該像是企業的人資長? |
gazette.blocks[11][0] |
蘇人事長俊榮:對啊!本來就企業的人資長…… |
gazette.blocks[12][0] |
鍾委員佳濱:人資長要做什麼事情? |
gazette.blocks[13][0] |
蘇人事長俊榮:就是人力資源策略規劃。 |
gazette.blocks[14][0] |
鍾委員佳濱:沒有錯,但是今天很遺憾的,給你們這個題目,除了預算解凍報告之外,本來上次本席問政府業務用AI提升人力效能有沒有可能,你說有可能對不對? |
gazette.blocks[15][0] |
蘇人事長俊榮:有可能。 |
gazette.blocks[16][0] |
鍾委員佳濱:而且你是資訊專業是不是?結果你們今天的報告當中完全沒有提到人總怎麼樣協助各機關利用資訊科技來提升他們的人力效能,你只有說人總的人事人員,你怎麼樣協助人總在各機關的人事人員,提升他們服務各機關公務員的效能,你有沒有覺得有點偏差了? |
gazette.blocks[17][0] |
蘇人事長俊榮:我利用這個機會跟委員說明一下…… |
gazette.blocks[18][0] |
鍾委員佳濱:你是要談人總的數位轉型?還是你也希望能夠透過數位,協助政府各機關提升他們人力資源效能? |
gazette.blocks[19][0] |
蘇人事長俊榮:這兩個都有做。 |
gazette.blocks[20][0] |
鍾委員佳濱:好。 |
gazette.blocks[21][0] |
蘇人事長俊榮:第二個就是我們透過…… |
gazette.blocks[22][0] |
鍾委員佳濱:接下來我就要問你,我不是問你人總的人事人員用數位服務各政府機關的單位,不是!你們今天報告已經講過,我看了,我接下來要問你的,在我這邊右下角,你們有沒有辦法利用數位轉型來提高各政府機關的效能?要請你們應用各種研析的方式來提升政府效能,你可以做得到嗎? |
gazette.blocks[23][0] |
蘇人事長俊榮:事實上,我們過去就是朝這個方向在努力。 |
gazette.blocks[24][0] |
鍾委員佳濱:很好,過去就是這樣,我希望你未來繼續。我接下來要問一個問題,我請教一下人事長,你看得出來這個照片嗎?你覺得這個是誰? |
gazette.blocks[25][0] |
蘇人事長俊榮:委員啦! |
gazette.blocks[26][0] |
鍾委員佳濱:是我是不是?長頭髮像女生,這是現在的數位科技,我看到他們副署長在笑了。你覺得如果我打扮成這樣,在機場能不能通過檢查?副署長,你覺得可以通過嗎? |
gazette.blocks[27][0] |
陳副署長建成:看委員當時拿的是什麼護照。 |
gazette.blocks[28][0] |
鍾委員佳濱:很好! |
gazette.blocks[29][0] |
陳副署長建成:本人的護照…… |
gazette.blocks[30][0] |
鍾委員佳濱:如果用人工驗證,用深偽偽造過的護照,有沒有可能騙過你們移民署的官員? |
gazette.blocks[31][0] |
陳副署長建成:有可能,可是…… |
gazette.blocks[32][0] |
鍾委員佳濱:如果是用自動通關呢? |
gazette.blocks[33][0] |
陳副署長建成:自動通關的辨識力比人力還強。 |
gazette.blocks[34][0] |
鍾委員佳濱:更精準? |
gazette.blocks[35][0] |
陳副署長建成:是。 |
gazette.blocks[36][0] |
鍾委員佳濱:人事長聽到沒有?好,我們來看一下。我先來問一下,我現在講移民署,移民署從96年到112年,成立時的員額不到2,400人,到現在已經到了快2,900人了,足足成長了538人,超過總員額的兩成。人事長,在你的任內,你有沒有看過哪個機關,人總這麼大方、行政院給它這麼多人力的?有沒有?有沒有其他人,你講一下。你「心肝大細心」喔!你對他們移民署特別好。 |
gazette.blocks[37][0] |
蘇人事長俊榮:他們一直…… |
gazette.blocks[38][0] |
鍾委員佳濱:他們一直討,你就全部都給他們? |
gazette.blocks[39][0] |
蘇人事長俊榮:不過我這裡要跟委員說明…… |
gazette.blocks[40][0] |
鍾委員佳濱:你有沒有對移民署特別好? |
gazette.blocks[41][0] |
蘇人事長俊榮:我跟他關係很差。 |
gazette.blocks[42][0] |
鍾委員佳濱:很差?那為什麼給他這麼多員額? |
gazette.blocks[43][0] |
蘇人事長俊榮:我跟他關係很差,他要人,基本上我都不大願意給,因為…… |
gazette.blocks[44][0] |
鍾委員佳濱:可是行政院還是給了!今年2月5日再報30個,你們全部都給他。 |
gazette.blocks[45][0] |
蘇人事長俊榮:事實上我們給他的主要原因是希望他加快e-Gate建構。 |
gazette.blocks[46][0] |
鍾委員佳濱:很好。副署長,給了你這麼多人,請教一下副署長,我們入出境的人數在疫情前有高達快6,000萬人次,到了疫情down下來,不到800,甚至掉到100,慢慢回升到450人次,去年大概回升到3,600人次。副署長,你覺得今年2024年,有沒有可能超過可能4,000或5,000? |
gazette.blocks[47][0] |
陳副署長建成:應該會。 |
gazette.blocks[48][0] |
鍾委員佳濱:應該會嘛!對不對?但你們在2019年五千多人的時候,國境大隊職員離職率都超過8%,2020年7%,疫情期間掉下來是4%,疫情後又升上去了,快8%,去年是12%,副署長,奇怪了!給你們那麼多人,為什麼流動率這麼高? |
gazette.blocks[49][0] |
陳副署長建成:報告委員,其實這是我們人力結構的問題。 |
gazette.blocks[50][0] |
鍾委員佳濱:人力結構什麼問題? |
gazette.blocks[51][0] |
陳副署長建成:因為在疫情期間,我們講白了,2019年疫情開始以後,所有旅客量從五千多萬降到709萬,當時我們國境的流動率…… |
gazette.blocks[52][0] |
鍾委員佳濱:本來流動率很高,8%啊!現在down下來了,後來…… |
gazette.blocks[53][0] |
陳副署長建成:因為那時候旅客少。 |
gazette.blocks[54][0] |
鍾委員佳濱:不只是你們的正職人員,連約聘僱人員也是一樣,剛剛那個表告訴我,約聘僱人員的離職也是8%,現在都快到12%了,基本上來說,因為我們航班是24小時的,對不對? |
gazette.blocks[55][0] |
陳副署長建成:是。 |
gazette.blocks[56][0] |
鍾委員佳濱:你們的境管人員要不要輪班? |
gazette.blocks[57][0] |
陳副署長建成:要。 |
gazette.blocks[58][0] |
鍾委員佳濱:我遇過很多次,我半夜從東南亞回來,他們還在那邊看。在疫情期間入職的,因為疫情後突然量增加了,疫情期間很輕鬆的,現在受不了、跑掉了。 |
gazette.blocks[59][0] |
陳副署長建成:是。 |
gazette.blocks[60][0] |
鍾委員佳濱:疫情前勉強撐住的,疫情後撐不住了、跑掉了,是不是這樣? |
gazette.blocks[61][0] |
陳副署長建成:是。 |
gazette.blocks[62][0] |
鍾委員佳濱:人事長,你覺得他們這樣要怎麼改善? |
gazette.blocks[63][0] |
蘇人事長俊榮:就是加速e-Gate的建置,因為他們現在有一代、二代、三代、四代,事實上我們現在酌給人力的原因是說,在整個e-Gate設備還沒有全部penetration rate很高的時候,先給它適當的人力支援。 |
gazette.blocks[64][0] |
鍾委員佳濱:很好,副署長聽到了喔? |
gazette.blocks[65][0] |
陳副署長建成:是。 |
gazette.blocks[66][0] |
鍾委員佳濱:人事長雖然跟你的關係不是很和睦,你們的人他也不給,但是因為你們有需要,還是有了,可是你們留不住這些人,如果把這些人用自動通關來取代,你覺得人員會不會比較穩定?讓機器去做那些比較辛苦的事情,人是要休息的,不用休息的事情給機器做,你同意嗎? |
gazette.blocks[67][0] |
陳副署長建成:是。 |
gazette.blocks[68][0] |
鍾委員佳濱:你們有沒有要加強e-Gate? |
gazette.blocks[69][0] |
陳副署長建成:跟委員報告,其實我們移民署在做自動通關系統的建置早在民國99年…… |
gazette.blocks[70][0] |
鍾委員佳濱:不、不,你們未來要不要繼續加強? |
gazette.blocks[71][0] |
陳副署長建成:我們現在都有規劃,持續在檢討。 |
gazette.blocks[72][0] |
鍾委員佳濱:我現在請你跟人事長配合,當未來自動通關愈來愈多人使用的時候,你們的人力就空出來了,這些人好好用在其他需要人力智慧的地方,好不好? |
gazette.blocks[73][0] |
陳副署長建成:是。 |
gazette.blocks[74][0] |
鍾委員佳濱:謝謝副署長。 |
gazette.blocks[74][1] |
接下來我們請教周署長,你們目前推動智慧監獄3所,缺額逐年增加,你們在108年有24個名額根本招不到,到112年變成128個,剛剛講移民署能招人進來,但留不住,你們是人連來都不來啊!署長,怎麼辦?缺這麼多人怎麼辦? |
gazette.blocks[75][0] |
周署長輝煌:跟委員報告,我們原則上有統計過,我們的離職率大概5%左右…… |
gazette.blocks[76][0] |
鍾委員佳濱:我不是問離職率,你們根本沒有人要去,還離職率!根本找不到人,人事長怎麼辦?你給它名額,但招不到人,沒人要考監獄管理員。 |
gazette.blocks[77][0] |
蘇人事長俊榮:事實上我也滿雞婆的,六、七年前我就跟法務部去監獄大量推智慧型監獄,我舉一個例子,他們受刑人有時候要戒外就醫…… |
gazette.blocks[78][0] |
鍾委員佳濱:戒護就醫。 |
gazette.blocks[79][0] |
蘇人事長俊榮:基本上一定要有兩個戒護人力,一出去至少就是半日,所以我那時候就跟他們建議,儘量找一、兩家大型院所處理所謂的遠距醫療,不管是…… |
gazette.blocks[80][0] |
鍾委員佳濱:OK,減少戒護就醫的人力損耗。 |
gazette.blocks[81][0] |
蘇人事長俊榮:對,可以透過遠距醫療的資源…… |
gazette.blocks[82][0] |
鍾委員佳濱:因為戒護就醫就2個人出去,剩下留在監獄的人辛苦了,對不對? |
gazette.blocks[83][0] |
蘇人事長俊榮:他的loading一定會比較重。 |
gazette.blocks[84][0] |
鍾委員佳濱:署長,你覺得人事長的建議有沒有道理? |
gazette.blocks[85][0] |
周署長輝煌:在科技方面是可以輔助人力的不足,而且提高我們的行政效率。 |
gazette.blocks[86][0] |
鍾委員佳濱:所以你們要不要擴大智慧監獄的推動?可以嗎? |
gazette.blocks[87][0] |
周署長輝煌:跟委員報告,昨天行政院已經核定我們矯正機關科技網的建置計畫,17億1,000萬。 |
gazette.blocks[88][0] |
鍾委員佳濱:很好!人事長,他們有在進行加強了,請繼續督導改進。 |
gazette.blocks[88][1] |
下一個請教臺鐵總經理,之前我聽到一個消息,國營事業臺鐵有312個統編,總經理,你們臺鐵一家公司怎麼有312個統編?什麼原因? |
gazette.blocks[89][0] |
馮總經理輝昇:報告委員,因為我們派出單位、分支單位比較多。 |
gazette.blocks[90][0] |
鍾委員佳濱:沒有錯,你們的派出單位很多,高鐵就相對少了,因為高鐵站比較少,我去查了一下,國營事業台糖有176個統編,菸酒公司有71個統編,因為菸酒公司的配銷所比較少,可是相對的統編愈多,財會人力的需求愈多,可是你們只用100個人,相較於台糖,它的統編比你少,用的人比你多,菸酒公司才71個,用了54人,看起來你們的財會效能很高喔!你們是不是國營事業當中財會人員效率最高的?統編比人家多,用的人比別人少,總經理是不是這樣? |
gazette.blocks[91][0] |
馮總經理輝昇:報告委員,我們主要可能是場域比較多、範圍比較大。 |
gazette.blocks[92][0] |
鍾委員佳濱:我不是說你的統編多,我是說你們的財會人員比別人少,效能比較高,是不是這樣? |
gazette.blocks[93][0] |
馮總經理輝昇:按比例來看,我們現在掌握的數字是比例比較低。 |
gazette.blocks[94][0] |
鍾委員佳濱:我現在要問一下總經理,你覺得ATM跟銀行行員哪一個可以全天候上班? |
gazette.blocks[95][0] |
馮總經理輝昇:ATM可以全天候。 |
gazette.blocks[96][0] |
鍾委員佳濱:哪個營運成本比較低? |
gazette.blocks[97][0] |
馮總經理輝昇:ATM的成本應該比較低。 |
gazette.blocks[98][0] |
鍾委員佳濱:銀行關門了,我需要提錢,我會去哪裡? |
gazette.blocks[99][0] |
馮總經理輝昇:就到ATM領。 |
gazette.blocks[100][0] |
鍾委員佳濱:為什麼銀行不24小時營業?因為人要休息。 |
gazette.blocks[101][0] |
馮總經理輝昇:因為勞動相關法令…… |
gazette.blocks[102][0] |
鍾委員佳濱:人事長,是不是這樣子? |
gazette.blocks[103][0] |
蘇人事長俊榮:是。 |
gazette.blocks[104][0] |
鍾委員佳濱:人事長,你有沒有常常搭臺鐵?我常常搭臺鐵,你有沒有常常搭? |
gazette.blocks[105][0] |
蘇人事長俊榮:有,我常搭。 |
gazette.blocks[106][0] |
鍾委員佳濱:因為我南北跑,我常常搭8點半的高鐵,回到新左營是11點5分,我要轉臺鐵回屏東,我去的時候,每次都怎樣?我都習慣去自動購票機,可是每次我晚上要轉的時候,自動購票機打烊了,我看票口還有人就趕快去買票,總經理有沒有這個經驗?你知不知道你們的自動購票機9點就下班了,人員工作到十一點多?你知道櫃檯人員怎麼跟我講嗎?為什麼自動購票機9點就下班? |
gazette.blocks[107][0] |
馮總經理輝昇:報告委員,他們還要做結帳的工作。 |
gazette.blocks[108][0] |
鍾委員佳濱:所以你們的櫃檯人員說還要輪班到半夜,因為還有人要買票,可是自動購票機因為財會部門9點要結帳,所以通通下班了,你們有沒有搞錯啊?你們的財會人員少,因為他不想做太多事,所以你們的自動購票機9點就離線了,留下最辛苦的工作人員在那邊人工售票。我先問人事長,如果你作為一個公司總經理,你覺得這合理嗎? |
gazette.blocks[109][0] |
馮總經理輝昇:報告委員,我們…… |
gazette.blocks[110][0] |
鍾委員佳濱:我是問人事長啦! |
gazette.blocks[111][0] |
蘇人事長俊榮:如果能自動化,我一定給它自動化。 |
gazette.blocks[112][0] |
鍾委員佳濱:來!總經理,你告訴人事長,你們有多少自動購票機? |
gazette.blocks[113][0] |
馮總經理輝昇:我們現在有432臺。 |
gazette.blocks[114][0] |
鍾委員佳濱:你們有多少票口人員?說不出來?超過好幾千嘛! |
gazette.blocks[115][0] |
馮總經理輝昇:對,我們整個乘務人員…… |
gazette.blocks[116][0] |
鍾委員佳濱:在臺鐵,購票機比人工的人員還輕鬆,9點就下班了,員工很辛苦,你知不知道?以後要不要留2個財會人員幫自動購票機結帳、24小時營運?可以嗎? |
gazette.blocks[117][0] |
馮總經理輝昇:報告委員,我們現在已經在檢討,我們這個…… |
gazette.blocks[118][0] |
鍾委員佳濱:檢討多久了?我反映四年了,我這八年來每次臺鐵通勤、每次超過9點,我都要去臺鐵的窗口人工購票,如果前面排好多人呢?還好現在有TPASS,我以前可以用自動購票機買,但超過9點,自動購票機下班、8臺通通下班,只留一個窗口,後面排十幾個人,我要是趕臺鐵趕不上怎麼辦?總經理要不要檢討一下? |
gazette.blocks[119][0] |
馮總經理輝昇:需要。 |
gazette.blocks[120][0] |
鍾委員佳濱:人事長,講一個結論,請人事總處研析各政府機關的型態跟人力配置效能,請借重資訊科技減少各政府機關人力的低效運用,可以嗎? |
gazette.blocks[121][0] |
蘇人事長俊榮:好,OK。 |
gazette.blocks[122][0] |
鍾委員佳濱:可不可以提一個書面報告給本席跟委員會? |
gazette.blocks[123][0] |
蘇人事長俊榮:好。 |
gazette.blocks[124][0] |
鍾委員佳濱:多久? |
gazette.blocks[125][0] |
蘇人事長俊榮:三個月可以嗎? |
gazette.blocks[126][0] |
鍾委員佳濱:好,可以,謝謝。 |
gazette.blocks[127][0] |
蘇人事長俊榮:謝謝。 |
gazette.blocks[128][0] |
主席:謝謝鍾佳濱委員,鍾委員剛剛提到的部分是他個人碰到的經驗,但也就是一般民眾會碰到的,這個我們確實要好好去做一個改善。 |
gazette.blocks[129][0] |
主席(鍾委員佳濱):接下來有請莊瑞雄委員質詢,謝謝。 |
gazette.agenda.page_end |
210 |
gazette.agenda.meet_id |
委員會-11-1-36-9 |
gazette.agenda.speakers[0] |
鍾佳濱 |
gazette.agenda.speakers[1] |
黃國昌 |
gazette.agenda.speakers[2] |
沈發惠 |
gazette.agenda.speakers[3] |
陳俊宇 |
gazette.agenda.speakers[4] |
林思銘 |
gazette.agenda.speakers[5] |
羅智強 |
gazette.agenda.speakers[6] |
莊瑞雄 |
gazette.agenda.speakers[7] |
吳思瑤 |
gazette.agenda.speakers[8] |
翁曉玲 |
gazette.agenda.speakers[9] |
謝龍介 |
gazette.agenda.speakers[10] |
傅崐萁 |
gazette.agenda.speakers[11] |
吳宗憲 |
gazette.agenda.speakers[12] |
鄭天財Sra Kacaw |
gazette.agenda.page_start |
151 |
gazette.agenda.meetingDate[0] |
2024-03-27 |
gazette.agenda.gazette_id |
1132001 |
gazette.agenda.agenda_lcidc_ids[0] |
1132001_00008 |
gazette.agenda.meet_name |
立法院第11屆第1會期司法及法制委員會第9次全體委員會議紀錄 |
gazette.agenda.content |
一、邀請行政院人事行政總處人事長及行政院相關機關(含事業單位)列席就「政府機關推動人
事服務數位轉型」進行專題報告,並備質詢;二、審查及處理113年度中央政府總預算關於行政
院人事行政總處及所屬主管預算凍結項目共7案 |
gazette.agenda.agenda_id |
1132001_00017 |
transcript.pyannote[0].speaker |
SPEAKER_03 |
transcript.pyannote[0].start |
6.15659375 |
transcript.pyannote[0].end |
7.79346875 |
transcript.pyannote[1].speaker |
SPEAKER_03 |
transcript.pyannote[1].start |
8.02971875 |
transcript.pyannote[1].end |
18.34034375 |
transcript.pyannote[2].speaker |
SPEAKER_04 |
transcript.pyannote[2].start |
15.08346875 |
transcript.pyannote[2].end |
15.77534375 |
transcript.pyannote[3].speaker |
SPEAKER_03 |
transcript.pyannote[3].start |
18.40784375 |
transcript.pyannote[3].end |
22.82909375 |
transcript.pyannote[4].speaker |
SPEAKER_04 |
transcript.pyannote[4].start |
18.45846875 |
transcript.pyannote[4].end |
19.79159375 |
transcript.pyannote[5].speaker |
SPEAKER_04 |
transcript.pyannote[5].start |
20.31471875 |
transcript.pyannote[5].end |
20.87159375 |
transcript.pyannote[6].speaker |
SPEAKER_04 |
transcript.pyannote[6].start |
23.14971875 |
transcript.pyannote[6].end |
26.20409375 |
transcript.pyannote[7].speaker |
SPEAKER_03 |
transcript.pyannote[7].start |
34.92846875 |
transcript.pyannote[7].end |
38.94471875 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
36.76784375 |
transcript.pyannote[8].end |
38.06721875 |
transcript.pyannote[9].speaker |
SPEAKER_03 |
transcript.pyannote[9].start |
39.34971875 |
transcript.pyannote[9].end |
45.74534375 |
transcript.pyannote[10].speaker |
SPEAKER_03 |
transcript.pyannote[10].start |
47.31471875 |
transcript.pyannote[10].end |
47.97284375 |
transcript.pyannote[11].speaker |
SPEAKER_02 |
transcript.pyannote[11].start |
47.97284375 |
transcript.pyannote[11].end |
48.09096875 |
transcript.pyannote[12].speaker |
SPEAKER_03 |
transcript.pyannote[12].start |
48.09096875 |
transcript.pyannote[12].end |
49.89659375 |
transcript.pyannote[13].speaker |
SPEAKER_02 |
transcript.pyannote[13].start |
48.12471875 |
transcript.pyannote[13].end |
48.93471875 |
transcript.pyannote[14].speaker |
SPEAKER_03 |
transcript.pyannote[14].start |
50.25096875 |
transcript.pyannote[14].end |
56.25846875 |
transcript.pyannote[15].speaker |
SPEAKER_02 |
transcript.pyannote[15].start |
57.47346875 |
transcript.pyannote[15].end |
59.09346875 |
transcript.pyannote[16].speaker |
SPEAKER_03 |
transcript.pyannote[16].start |
59.09346875 |
transcript.pyannote[16].end |
59.17784375 |
transcript.pyannote[17].speaker |
SPEAKER_03 |
transcript.pyannote[17].start |
60.39284375 |
transcript.pyannote[17].end |
60.40971875 |
transcript.pyannote[18].speaker |
SPEAKER_02 |
transcript.pyannote[18].start |
60.40971875 |
transcript.pyannote[18].end |
60.42659375 |
transcript.pyannote[19].speaker |
SPEAKER_03 |
transcript.pyannote[19].start |
60.42659375 |
transcript.pyannote[19].end |
60.47721875 |
transcript.pyannote[20].speaker |
SPEAKER_02 |
transcript.pyannote[20].start |
60.47721875 |
transcript.pyannote[20].end |
60.51096875 |
transcript.pyannote[21].speaker |
SPEAKER_03 |
transcript.pyannote[21].start |
60.51096875 |
transcript.pyannote[21].end |
60.52784375 |
transcript.pyannote[22].speaker |
SPEAKER_02 |
transcript.pyannote[22].start |
60.52784375 |
transcript.pyannote[22].end |
61.33784375 |
transcript.pyannote[23].speaker |
SPEAKER_03 |
transcript.pyannote[23].start |
61.33784375 |
transcript.pyannote[23].end |
61.37159375 |
transcript.pyannote[24].speaker |
SPEAKER_02 |
transcript.pyannote[24].start |
61.37159375 |
transcript.pyannote[24].end |
61.40534375 |
transcript.pyannote[25].speaker |
SPEAKER_03 |
transcript.pyannote[25].start |
61.40534375 |
transcript.pyannote[25].end |
66.78846875 |
transcript.pyannote[26].speaker |
SPEAKER_02 |
transcript.pyannote[26].start |
61.48971875 |
transcript.pyannote[26].end |
61.74284375 |
transcript.pyannote[27].speaker |
SPEAKER_02 |
transcript.pyannote[27].start |
65.40471875 |
transcript.pyannote[27].end |
66.16409375 |
transcript.pyannote[28].speaker |
SPEAKER_03 |
transcript.pyannote[28].start |
67.24409375 |
transcript.pyannote[28].end |
67.36221875 |
transcript.pyannote[29].speaker |
SPEAKER_02 |
transcript.pyannote[29].start |
67.36221875 |
transcript.pyannote[29].end |
67.56471875 |
transcript.pyannote[30].speaker |
SPEAKER_03 |
transcript.pyannote[30].start |
67.56471875 |
transcript.pyannote[30].end |
67.96971875 |
transcript.pyannote[31].speaker |
SPEAKER_02 |
transcript.pyannote[31].start |
67.96971875 |
transcript.pyannote[31].end |
68.88096875 |
transcript.pyannote[32].speaker |
SPEAKER_03 |
transcript.pyannote[32].start |
68.88096875 |
transcript.pyannote[32].end |
69.50534375 |
transcript.pyannote[33].speaker |
SPEAKER_03 |
transcript.pyannote[33].start |
69.99471875 |
transcript.pyannote[33].end |
72.50909375 |
transcript.pyannote[34].speaker |
SPEAKER_03 |
transcript.pyannote[34].start |
72.71159375 |
transcript.pyannote[34].end |
74.28096875 |
transcript.pyannote[35].speaker |
SPEAKER_03 |
transcript.pyannote[35].start |
74.66909375 |
transcript.pyannote[35].end |
77.20034375 |
transcript.pyannote[36].speaker |
SPEAKER_03 |
transcript.pyannote[36].start |
77.67284375 |
transcript.pyannote[36].end |
81.18284375 |
transcript.pyannote[37].speaker |
SPEAKER_03 |
transcript.pyannote[37].start |
81.45284375 |
transcript.pyannote[37].end |
82.00971875 |
transcript.pyannote[38].speaker |
SPEAKER_02 |
transcript.pyannote[38].start |
82.00971875 |
transcript.pyannote[38].end |
82.41471875 |
transcript.pyannote[39].speaker |
SPEAKER_03 |
transcript.pyannote[39].start |
82.16159375 |
transcript.pyannote[39].end |
82.21221875 |
transcript.pyannote[40].speaker |
SPEAKER_03 |
transcript.pyannote[40].start |
82.41471875 |
transcript.pyannote[40].end |
84.49034375 |
transcript.pyannote[41].speaker |
SPEAKER_03 |
transcript.pyannote[41].start |
84.81096875 |
transcript.pyannote[41].end |
86.76846875 |
transcript.pyannote[42].speaker |
SPEAKER_03 |
transcript.pyannote[42].start |
87.27471875 |
transcript.pyannote[42].end |
89.28284375 |
transcript.pyannote[43].speaker |
SPEAKER_03 |
transcript.pyannote[43].start |
89.46846875 |
transcript.pyannote[43].end |
105.60096875 |
transcript.pyannote[44].speaker |
SPEAKER_02 |
transcript.pyannote[44].start |
106.74846875 |
transcript.pyannote[44].end |
110.17409375 |
transcript.pyannote[45].speaker |
SPEAKER_03 |
transcript.pyannote[45].start |
109.61721875 |
transcript.pyannote[45].end |
117.78471875 |
transcript.pyannote[46].speaker |
SPEAKER_02 |
transcript.pyannote[46].start |
118.86471875 |
transcript.pyannote[46].end |
123.43784375 |
transcript.pyannote[47].speaker |
SPEAKER_03 |
transcript.pyannote[47].start |
120.70409375 |
transcript.pyannote[47].end |
128.90534375 |
transcript.pyannote[48].speaker |
SPEAKER_03 |
transcript.pyannote[48].start |
129.15846875 |
transcript.pyannote[48].end |
142.28721875 |
transcript.pyannote[49].speaker |
SPEAKER_03 |
transcript.pyannote[49].start |
143.08034375 |
transcript.pyannote[49].end |
143.45159375 |
transcript.pyannote[50].speaker |
SPEAKER_03 |
transcript.pyannote[50].start |
144.85221875 |
transcript.pyannote[50].end |
150.30284375 |
transcript.pyannote[51].speaker |
SPEAKER_02 |
transcript.pyannote[51].start |
146.53971875 |
transcript.pyannote[51].end |
147.43409375 |
transcript.pyannote[52].speaker |
SPEAKER_03 |
transcript.pyannote[52].start |
151.01159375 |
transcript.pyannote[52].end |
154.75784375 |
transcript.pyannote[53].speaker |
SPEAKER_03 |
transcript.pyannote[53].start |
159.66846875 |
transcript.pyannote[53].end |
166.57034375 |
transcript.pyannote[54].speaker |
SPEAKER_03 |
transcript.pyannote[54].start |
166.80659375 |
transcript.pyannote[54].end |
170.48534375 |
transcript.pyannote[55].speaker |
SPEAKER_03 |
transcript.pyannote[55].start |
170.87346875 |
transcript.pyannote[55].end |
171.68346875 |
transcript.pyannote[56].speaker |
SPEAKER_03 |
transcript.pyannote[56].start |
172.45971875 |
transcript.pyannote[56].end |
173.87721875 |
transcript.pyannote[57].speaker |
SPEAKER_01 |
transcript.pyannote[57].start |
174.97409375 |
transcript.pyannote[57].end |
178.34909375 |
transcript.pyannote[58].speaker |
SPEAKER_03 |
transcript.pyannote[58].start |
178.34909375 |
transcript.pyannote[58].end |
178.87221875 |
transcript.pyannote[59].speaker |
SPEAKER_01 |
transcript.pyannote[59].start |
178.87221875 |
transcript.pyannote[59].end |
180.12096875 |
transcript.pyannote[60].speaker |
SPEAKER_03 |
transcript.pyannote[60].start |
179.54721875 |
transcript.pyannote[60].end |
185.31846875 |
transcript.pyannote[61].speaker |
SPEAKER_03 |
transcript.pyannote[61].start |
185.68971875 |
transcript.pyannote[61].end |
185.70659375 |
transcript.pyannote[62].speaker |
SPEAKER_01 |
transcript.pyannote[62].start |
185.70659375 |
transcript.pyannote[62].end |
185.95971875 |
transcript.pyannote[63].speaker |
SPEAKER_03 |
transcript.pyannote[63].start |
185.95971875 |
transcript.pyannote[63].end |
188.44034375 |
transcript.pyannote[64].speaker |
SPEAKER_01 |
transcript.pyannote[64].start |
186.31409375 |
transcript.pyannote[64].end |
191.17409375 |
transcript.pyannote[65].speaker |
SPEAKER_01 |
transcript.pyannote[65].start |
191.20784375 |
transcript.pyannote[65].end |
191.81534375 |
transcript.pyannote[66].speaker |
SPEAKER_03 |
transcript.pyannote[66].start |
191.81534375 |
transcript.pyannote[66].end |
192.54096875 |
transcript.pyannote[67].speaker |
SPEAKER_01 |
transcript.pyannote[67].start |
192.54096875 |
transcript.pyannote[67].end |
192.94596875 |
transcript.pyannote[68].speaker |
SPEAKER_03 |
transcript.pyannote[68].start |
193.48596875 |
transcript.pyannote[68].end |
212.63909375 |
transcript.pyannote[69].speaker |
SPEAKER_03 |
transcript.pyannote[69].start |
212.90909375 |
transcript.pyannote[69].end |
216.03096875 |
transcript.pyannote[70].speaker |
SPEAKER_03 |
transcript.pyannote[70].start |
216.14909375 |
transcript.pyannote[70].end |
218.56221875 |
transcript.pyannote[71].speaker |
SPEAKER_03 |
transcript.pyannote[71].start |
219.06846875 |
transcript.pyannote[71].end |
220.80659375 |
transcript.pyannote[72].speaker |
SPEAKER_03 |
transcript.pyannote[72].start |
221.43096875 |
transcript.pyannote[72].end |
222.66284375 |
transcript.pyannote[73].speaker |
SPEAKER_03 |
transcript.pyannote[73].start |
223.01721875 |
transcript.pyannote[73].end |
224.55284375 |
transcript.pyannote[74].speaker |
SPEAKER_02 |
transcript.pyannote[74].start |
225.31221875 |
transcript.pyannote[74].end |
227.40471875 |
transcript.pyannote[75].speaker |
SPEAKER_02 |
transcript.pyannote[75].start |
227.70846875 |
transcript.pyannote[75].end |
228.41721875 |
transcript.pyannote[76].speaker |
SPEAKER_03 |
transcript.pyannote[76].start |
227.91096875 |
transcript.pyannote[76].end |
228.38346875 |
transcript.pyannote[77].speaker |
SPEAKER_03 |
transcript.pyannote[77].start |
228.41721875 |
transcript.pyannote[77].end |
228.43409375 |
transcript.pyannote[78].speaker |
SPEAKER_02 |
transcript.pyannote[78].start |
228.43409375 |
transcript.pyannote[78].end |
228.50159375 |
transcript.pyannote[79].speaker |
SPEAKER_03 |
transcript.pyannote[79].start |
228.50159375 |
transcript.pyannote[79].end |
228.75471875 |
transcript.pyannote[80].speaker |
SPEAKER_02 |
transcript.pyannote[80].start |
228.75471875 |
transcript.pyannote[80].end |
234.57659375 |
transcript.pyannote[81].speaker |
SPEAKER_03 |
transcript.pyannote[81].start |
233.09159375 |
transcript.pyannote[81].end |
233.74971875 |
transcript.pyannote[82].speaker |
SPEAKER_02 |
transcript.pyannote[82].start |
235.11659375 |
transcript.pyannote[82].end |
244.53284375 |
transcript.pyannote[83].speaker |
SPEAKER_03 |
transcript.pyannote[83].start |
237.69846875 |
transcript.pyannote[83].end |
237.79971875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
242.37284375 |
transcript.pyannote[84].end |
242.40659375 |
transcript.pyannote[85].speaker |
SPEAKER_03 |
transcript.pyannote[85].start |
242.40659375 |
transcript.pyannote[85].end |
243.35159375 |
transcript.pyannote[86].speaker |
SPEAKER_03 |
transcript.pyannote[86].start |
244.53284375 |
transcript.pyannote[86].end |
248.41409375 |
transcript.pyannote[87].speaker |
SPEAKER_02 |
transcript.pyannote[87].start |
244.54971875 |
transcript.pyannote[87].end |
245.57909375 |
transcript.pyannote[88].speaker |
SPEAKER_02 |
transcript.pyannote[88].start |
248.80221875 |
transcript.pyannote[88].end |
253.52721875 |
transcript.pyannote[89].speaker |
SPEAKER_02 |
transcript.pyannote[89].start |
254.05034375 |
transcript.pyannote[89].end |
255.02909375 |
transcript.pyannote[90].speaker |
SPEAKER_03 |
transcript.pyannote[90].start |
255.02909375 |
transcript.pyannote[90].end |
257.50971875 |
transcript.pyannote[91].speaker |
SPEAKER_03 |
transcript.pyannote[91].start |
257.54346875 |
transcript.pyannote[91].end |
264.36096875 |
transcript.pyannote[92].speaker |
SPEAKER_03 |
transcript.pyannote[92].start |
264.49596875 |
transcript.pyannote[92].end |
270.80721875 |
transcript.pyannote[93].speaker |
SPEAKER_01 |
transcript.pyannote[93].start |
264.56346875 |
transcript.pyannote[93].end |
264.79971875 |
transcript.pyannote[94].speaker |
SPEAKER_03 |
transcript.pyannote[94].start |
271.09409375 |
transcript.pyannote[94].end |
274.09784375 |
transcript.pyannote[95].speaker |
SPEAKER_03 |
transcript.pyannote[95].start |
274.58721875 |
transcript.pyannote[95].end |
276.22409375 |
transcript.pyannote[96].speaker |
SPEAKER_01 |
transcript.pyannote[96].start |
277.38846875 |
transcript.pyannote[96].end |
278.08034375 |
transcript.pyannote[97].speaker |
SPEAKER_03 |
transcript.pyannote[97].start |
278.13096875 |
transcript.pyannote[97].end |
279.34596875 |
transcript.pyannote[98].speaker |
SPEAKER_03 |
transcript.pyannote[98].start |
279.70034375 |
transcript.pyannote[98].end |
296.89596875 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
298.38096875 |
transcript.pyannote[99].end |
309.58596875 |
transcript.pyannote[100].speaker |
SPEAKER_01 |
transcript.pyannote[100].start |
310.34534375 |
transcript.pyannote[100].end |
310.93596875 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
311.13846875 |
transcript.pyannote[101].end |
319.25534375 |
transcript.pyannote[102].speaker |
SPEAKER_01 |
transcript.pyannote[102].start |
320.03159375 |
transcript.pyannote[102].end |
320.97659375 |
transcript.pyannote[103].speaker |
SPEAKER_03 |
transcript.pyannote[103].start |
320.06534375 |
transcript.pyannote[103].end |
320.90909375 |
transcript.pyannote[104].speaker |
SPEAKER_03 |
transcript.pyannote[104].start |
320.97659375 |
transcript.pyannote[104].end |
321.49971875 |
transcript.pyannote[105].speaker |
SPEAKER_01 |
transcript.pyannote[105].start |
321.49971875 |
transcript.pyannote[105].end |
321.63471875 |
transcript.pyannote[106].speaker |
SPEAKER_03 |
transcript.pyannote[106].start |
321.63471875 |
transcript.pyannote[106].end |
321.85409375 |
transcript.pyannote[107].speaker |
SPEAKER_01 |
transcript.pyannote[107].start |
321.85409375 |
transcript.pyannote[107].end |
321.97221875 |
transcript.pyannote[108].speaker |
SPEAKER_03 |
transcript.pyannote[108].start |
321.97221875 |
transcript.pyannote[108].end |
322.00596875 |
transcript.pyannote[109].speaker |
SPEAKER_01 |
transcript.pyannote[109].start |
322.00596875 |
transcript.pyannote[109].end |
325.48221875 |
transcript.pyannote[110].speaker |
SPEAKER_03 |
transcript.pyannote[110].start |
322.25909375 |
transcript.pyannote[110].end |
323.30534375 |
transcript.pyannote[111].speaker |
SPEAKER_03 |
transcript.pyannote[111].start |
323.94659375 |
transcript.pyannote[111].end |
324.46971875 |
transcript.pyannote[112].speaker |
SPEAKER_03 |
transcript.pyannote[112].start |
325.48221875 |
transcript.pyannote[112].end |
331.13534375 |
transcript.pyannote[113].speaker |
SPEAKER_03 |
transcript.pyannote[113].start |
331.48971875 |
transcript.pyannote[113].end |
353.29221875 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
339.13409375 |
transcript.pyannote[114].end |
339.47159375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
341.66534375 |
transcript.pyannote[115].end |
341.69909375 |
transcript.pyannote[116].speaker |
SPEAKER_01 |
transcript.pyannote[116].start |
341.69909375 |
transcript.pyannote[116].end |
342.00284375 |
transcript.pyannote[117].speaker |
SPEAKER_01 |
transcript.pyannote[117].start |
353.29221875 |
transcript.pyannote[117].end |
353.30909375 |
transcript.pyannote[118].speaker |
SPEAKER_03 |
transcript.pyannote[118].start |
353.30909375 |
transcript.pyannote[118].end |
353.32596875 |
transcript.pyannote[119].speaker |
SPEAKER_01 |
transcript.pyannote[119].start |
353.32596875 |
transcript.pyannote[119].end |
353.57909375 |
transcript.pyannote[120].speaker |
SPEAKER_03 |
transcript.pyannote[120].start |
353.54534375 |
transcript.pyannote[120].end |
354.38909375 |
transcript.pyannote[121].speaker |
SPEAKER_03 |
transcript.pyannote[121].start |
354.91221875 |
transcript.pyannote[121].end |
357.46034375 |
transcript.pyannote[122].speaker |
SPEAKER_01 |
transcript.pyannote[122].start |
357.54471875 |
transcript.pyannote[122].end |
357.86534375 |
transcript.pyannote[123].speaker |
SPEAKER_03 |
transcript.pyannote[123].start |
358.01721875 |
transcript.pyannote[123].end |
358.55721875 |
transcript.pyannote[124].speaker |
SPEAKER_03 |
transcript.pyannote[124].start |
358.84409375 |
transcript.pyannote[124].end |
361.37534375 |
transcript.pyannote[125].speaker |
SPEAKER_02 |
transcript.pyannote[125].start |
362.43846875 |
transcript.pyannote[125].end |
382.23284375 |
transcript.pyannote[126].speaker |
SPEAKER_03 |
transcript.pyannote[126].start |
381.76034375 |
transcript.pyannote[126].end |
382.03034375 |
transcript.pyannote[127].speaker |
SPEAKER_03 |
transcript.pyannote[127].start |
382.23284375 |
transcript.pyannote[127].end |
382.35096875 |
transcript.pyannote[128].speaker |
SPEAKER_02 |
transcript.pyannote[128].start |
382.35096875 |
transcript.pyannote[128].end |
382.68846875 |
transcript.pyannote[129].speaker |
SPEAKER_03 |
transcript.pyannote[129].start |
382.68846875 |
transcript.pyannote[129].end |
382.85721875 |
transcript.pyannote[130].speaker |
SPEAKER_02 |
transcript.pyannote[130].start |
382.85721875 |
transcript.pyannote[130].end |
383.05971875 |
transcript.pyannote[131].speaker |
SPEAKER_03 |
transcript.pyannote[131].start |
383.05971875 |
transcript.pyannote[131].end |
383.17784375 |
transcript.pyannote[132].speaker |
SPEAKER_03 |
transcript.pyannote[132].start |
383.44784375 |
transcript.pyannote[132].end |
385.28721875 |
transcript.pyannote[133].speaker |
SPEAKER_03 |
transcript.pyannote[133].start |
385.57409375 |
transcript.pyannote[133].end |
402.73596875 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
391.12596875 |
transcript.pyannote[134].end |
391.26096875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
391.31159375 |
transcript.pyannote[135].end |
391.51409375 |
transcript.pyannote[136].speaker |
SPEAKER_03 |
transcript.pyannote[136].start |
402.78659375 |
transcript.pyannote[136].end |
406.75221875 |
transcript.pyannote[137].speaker |
SPEAKER_01 |
transcript.pyannote[137].start |
407.00534375 |
transcript.pyannote[137].end |
407.32596875 |
transcript.pyannote[138].speaker |
SPEAKER_03 |
transcript.pyannote[138].start |
407.32596875 |
transcript.pyannote[138].end |
409.14846875 |
transcript.pyannote[139].speaker |
SPEAKER_01 |
transcript.pyannote[139].start |
409.14846875 |
transcript.pyannote[139].end |
419.72909375 |
transcript.pyannote[140].speaker |
SPEAKER_03 |
transcript.pyannote[140].start |
415.10534375 |
transcript.pyannote[140].end |
416.65784375 |
transcript.pyannote[141].speaker |
SPEAKER_03 |
transcript.pyannote[141].start |
419.08784375 |
transcript.pyannote[141].end |
434.57909375 |
transcript.pyannote[142].speaker |
SPEAKER_01 |
transcript.pyannote[142].start |
425.14596875 |
transcript.pyannote[142].end |
425.56784375 |
transcript.pyannote[143].speaker |
SPEAKER_01 |
transcript.pyannote[143].start |
430.05659375 |
transcript.pyannote[143].end |
430.46159375 |
transcript.pyannote[144].speaker |
SPEAKER_03 |
transcript.pyannote[144].start |
436.03034375 |
transcript.pyannote[144].end |
451.50471875 |
transcript.pyannote[145].speaker |
SPEAKER_03 |
transcript.pyannote[145].start |
451.94346875 |
transcript.pyannote[145].end |
453.98534375 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
456.01034375 |
transcript.pyannote[146].end |
463.19909375 |
transcript.pyannote[147].speaker |
SPEAKER_03 |
transcript.pyannote[147].start |
462.43971875 |
transcript.pyannote[147].end |
466.74284375 |
transcript.pyannote[148].speaker |
SPEAKER_03 |
transcript.pyannote[148].start |
467.08034375 |
transcript.pyannote[148].end |
468.07596875 |
transcript.pyannote[149].speaker |
SPEAKER_03 |
transcript.pyannote[149].start |
470.62409375 |
transcript.pyannote[149].end |
474.15096875 |
transcript.pyannote[150].speaker |
SPEAKER_02 |
transcript.pyannote[150].start |
471.07971875 |
transcript.pyannote[150].end |
471.33284375 |
transcript.pyannote[151].speaker |
SPEAKER_02 |
transcript.pyannote[151].start |
472.69971875 |
transcript.pyannote[151].end |
506.53409375 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
481.98096875 |
transcript.pyannote[152].end |
482.14971875 |
transcript.pyannote[153].speaker |
SPEAKER_03 |
transcript.pyannote[153].start |
489.47346875 |
transcript.pyannote[153].end |
490.03034375 |
transcript.pyannote[154].speaker |
SPEAKER_03 |
transcript.pyannote[154].start |
490.24971875 |
transcript.pyannote[154].end |
490.33409375 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
490.38471875 |
transcript.pyannote[155].end |
490.43534375 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
495.61596875 |
transcript.pyannote[156].end |
495.91971875 |
transcript.pyannote[157].speaker |
SPEAKER_03 |
transcript.pyannote[157].start |
503.64846875 |
transcript.pyannote[157].end |
504.62721875 |
transcript.pyannote[158].speaker |
SPEAKER_03 |
transcript.pyannote[158].start |
505.33596875 |
transcript.pyannote[158].end |
506.48346875 |
transcript.pyannote[159].speaker |
SPEAKER_03 |
transcript.pyannote[159].start |
506.53409375 |
transcript.pyannote[159].end |
511.69784375 |
transcript.pyannote[160].speaker |
SPEAKER_02 |
transcript.pyannote[160].start |
507.96846875 |
transcript.pyannote[160].end |
509.23409375 |
transcript.pyannote[161].speaker |
SPEAKER_02 |
transcript.pyannote[161].start |
511.27596875 |
transcript.pyannote[161].end |
511.88346875 |
transcript.pyannote[162].speaker |
SPEAKER_03 |
transcript.pyannote[162].start |
511.88346875 |
transcript.pyannote[162].end |
511.96784375 |
transcript.pyannote[163].speaker |
SPEAKER_02 |
transcript.pyannote[163].start |
511.96784375 |
transcript.pyannote[163].end |
512.03534375 |
transcript.pyannote[164].speaker |
SPEAKER_03 |
transcript.pyannote[164].start |
512.03534375 |
transcript.pyannote[164].end |
512.20409375 |
transcript.pyannote[165].speaker |
SPEAKER_02 |
transcript.pyannote[165].start |
512.20409375 |
transcript.pyannote[165].end |
512.59221875 |
transcript.pyannote[166].speaker |
SPEAKER_03 |
transcript.pyannote[166].start |
512.59221875 |
transcript.pyannote[166].end |
518.12721875 |
transcript.pyannote[167].speaker |
SPEAKER_02 |
transcript.pyannote[167].start |
513.04784375 |
transcript.pyannote[167].end |
514.34721875 |
transcript.pyannote[168].speaker |
SPEAKER_02 |
transcript.pyannote[168].start |
517.70534375 |
transcript.pyannote[168].end |
517.99221875 |
transcript.pyannote[169].speaker |
SPEAKER_02 |
transcript.pyannote[169].start |
518.12721875 |
transcript.pyannote[169].end |
519.37596875 |
transcript.pyannote[170].speaker |
SPEAKER_03 |
transcript.pyannote[170].start |
519.37596875 |
transcript.pyannote[170].end |
521.94096875 |
transcript.pyannote[171].speaker |
SPEAKER_02 |
transcript.pyannote[171].start |
519.40971875 |
transcript.pyannote[171].end |
520.35471875 |
transcript.pyannote[172].speaker |
SPEAKER_00 |
transcript.pyannote[172].start |
523.18971875 |
transcript.pyannote[172].end |
524.03346875 |
transcript.pyannote[173].speaker |
SPEAKER_00 |
transcript.pyannote[173].start |
524.18534375 |
transcript.pyannote[173].end |
525.13034375 |
transcript.pyannote[174].speaker |
SPEAKER_03 |
transcript.pyannote[174].start |
524.55659375 |
transcript.pyannote[174].end |
524.86034375 |
transcript.pyannote[175].speaker |
SPEAKER_00 |
transcript.pyannote[175].start |
525.60284375 |
transcript.pyannote[175].end |
531.23909375 |
transcript.pyannote[176].speaker |
SPEAKER_03 |
transcript.pyannote[176].start |
527.61096875 |
transcript.pyannote[176].end |
527.93159375 |
transcript.pyannote[177].speaker |
SPEAKER_03 |
transcript.pyannote[177].start |
530.04096875 |
transcript.pyannote[177].end |
533.31471875 |
transcript.pyannote[178].speaker |
SPEAKER_00 |
transcript.pyannote[178].start |
533.09534375 |
transcript.pyannote[178].end |
545.83596875 |
transcript.pyannote[179].speaker |
SPEAKER_03 |
transcript.pyannote[179].start |
545.81909375 |
transcript.pyannote[179].end |
552.45096875 |
transcript.pyannote[180].speaker |
SPEAKER_03 |
transcript.pyannote[180].start |
553.36221875 |
transcript.pyannote[180].end |
562.18784375 |
transcript.pyannote[181].speaker |
SPEAKER_04 |
transcript.pyannote[181].start |
563.13284375 |
transcript.pyannote[181].end |
563.16659375 |
transcript.pyannote[182].speaker |
SPEAKER_03 |
transcript.pyannote[182].start |
563.16659375 |
transcript.pyannote[182].end |
592.36034375 |
transcript.pyannote[183].speaker |
SPEAKER_03 |
transcript.pyannote[183].start |
592.68096875 |
transcript.pyannote[183].end |
595.83659375 |
transcript.pyannote[184].speaker |
SPEAKER_03 |
transcript.pyannote[184].start |
595.97159375 |
transcript.pyannote[184].end |
599.14409375 |
transcript.pyannote[185].speaker |
SPEAKER_04 |
transcript.pyannote[185].start |
599.14409375 |
transcript.pyannote[185].end |
599.46471875 |
transcript.pyannote[186].speaker |
SPEAKER_03 |
transcript.pyannote[186].start |
599.46471875 |
transcript.pyannote[186].end |
599.49846875 |
transcript.pyannote[187].speaker |
SPEAKER_03 |
transcript.pyannote[187].start |
599.53221875 |
transcript.pyannote[187].end |
602.62034375 |
transcript.pyannote[188].speaker |
SPEAKER_04 |
transcript.pyannote[188].start |
602.62034375 |
transcript.pyannote[188].end |
602.65409375 |
transcript.pyannote[189].speaker |
SPEAKER_03 |
transcript.pyannote[189].start |
602.75534375 |
transcript.pyannote[189].end |
602.82284375 |
transcript.pyannote[190].speaker |
SPEAKER_04 |
transcript.pyannote[190].start |
602.82284375 |
transcript.pyannote[190].end |
602.85659375 |
transcript.pyannote[191].speaker |
SPEAKER_03 |
transcript.pyannote[191].start |
602.83971875 |
transcript.pyannote[191].end |
607.73346875 |
transcript.pyannote[192].speaker |
SPEAKER_04 |
transcript.pyannote[192].start |
602.95784375 |
transcript.pyannote[192].end |
603.63284375 |
transcript.pyannote[193].speaker |
SPEAKER_04 |
transcript.pyannote[193].start |
607.73346875 |
transcript.pyannote[193].end |
607.76721875 |
transcript.pyannote[194].speaker |
SPEAKER_03 |
transcript.pyannote[194].start |
607.76721875 |
transcript.pyannote[194].end |
607.78409375 |
transcript.pyannote[195].speaker |
SPEAKER_04 |
transcript.pyannote[195].start |
607.78409375 |
transcript.pyannote[195].end |
611.69909375 |
transcript.pyannote[196].speaker |
SPEAKER_03 |
transcript.pyannote[196].start |
610.92284375 |
transcript.pyannote[196].end |
612.84659375 |
transcript.pyannote[197].speaker |
SPEAKER_03 |
transcript.pyannote[197].start |
613.25159375 |
transcript.pyannote[197].end |
618.28034375 |
transcript.pyannote[198].speaker |
SPEAKER_03 |
transcript.pyannote[198].start |
619.79909375 |
transcript.pyannote[198].end |
620.33909375 |
transcript.pyannote[199].speaker |
SPEAKER_04 |
transcript.pyannote[199].start |
619.83284375 |
transcript.pyannote[199].end |
621.50346875 |
transcript.pyannote[200].speaker |
SPEAKER_03 |
transcript.pyannote[200].start |
621.13221875 |
transcript.pyannote[200].end |
622.60034375 |
transcript.pyannote[201].speaker |
SPEAKER_04 |
transcript.pyannote[201].start |
623.57909375 |
transcript.pyannote[201].end |
625.51971875 |
transcript.pyannote[202].speaker |
SPEAKER_03 |
transcript.pyannote[202].start |
625.11471875 |
transcript.pyannote[202].end |
627.64596875 |
transcript.pyannote[203].speaker |
SPEAKER_04 |
transcript.pyannote[203].start |
628.32096875 |
transcript.pyannote[203].end |
629.56971875 |
transcript.pyannote[204].speaker |
SPEAKER_03 |
transcript.pyannote[204].start |
629.43471875 |
transcript.pyannote[204].end |
631.15596875 |
transcript.pyannote[205].speaker |
SPEAKER_04 |
transcript.pyannote[205].start |
632.23596875 |
transcript.pyannote[205].end |
632.26971875 |
transcript.pyannote[206].speaker |
SPEAKER_03 |
transcript.pyannote[206].start |
632.26971875 |
transcript.pyannote[206].end |
632.97846875 |
transcript.pyannote[207].speaker |
SPEAKER_04 |
transcript.pyannote[207].start |
632.28659375 |
transcript.pyannote[207].end |
632.82659375 |
transcript.pyannote[208].speaker |
SPEAKER_04 |
transcript.pyannote[208].start |
632.97846875 |
transcript.pyannote[208].end |
634.02471875 |
transcript.pyannote[209].speaker |
SPEAKER_03 |
transcript.pyannote[209].start |
634.02471875 |
transcript.pyannote[209].end |
635.25659375 |
transcript.pyannote[210].speaker |
SPEAKER_04 |
transcript.pyannote[210].start |
634.07534375 |
transcript.pyannote[210].end |
634.98659375 |
transcript.pyannote[211].speaker |
SPEAKER_04 |
transcript.pyannote[211].start |
635.05409375 |
transcript.pyannote[211].end |
635.07096875 |
transcript.pyannote[212].speaker |
SPEAKER_04 |
transcript.pyannote[212].start |
635.35784375 |
transcript.pyannote[212].end |
635.40846875 |
transcript.pyannote[213].speaker |
SPEAKER_03 |
transcript.pyannote[213].start |
635.40846875 |
transcript.pyannote[213].end |
635.52659375 |
transcript.pyannote[214].speaker |
SPEAKER_04 |
transcript.pyannote[214].start |
635.52659375 |
transcript.pyannote[214].end |
635.64471875 |
transcript.pyannote[215].speaker |
SPEAKER_03 |
transcript.pyannote[215].start |
635.64471875 |
transcript.pyannote[215].end |
637.31534375 |
transcript.pyannote[216].speaker |
SPEAKER_03 |
transcript.pyannote[216].start |
638.88471875 |
transcript.pyannote[216].end |
640.74096875 |
transcript.pyannote[217].speaker |
SPEAKER_02 |
transcript.pyannote[217].start |
640.40346875 |
transcript.pyannote[217].end |
640.42034375 |
transcript.pyannote[218].speaker |
SPEAKER_02 |
transcript.pyannote[218].start |
640.74096875 |
transcript.pyannote[218].end |
640.90971875 |
transcript.pyannote[219].speaker |
SPEAKER_03 |
transcript.pyannote[219].start |
640.90971875 |
transcript.pyannote[219].end |
640.97721875 |
transcript.pyannote[220].speaker |
SPEAKER_02 |
transcript.pyannote[220].start |
640.97721875 |
transcript.pyannote[220].end |
641.02784375 |
transcript.pyannote[221].speaker |
SPEAKER_03 |
transcript.pyannote[221].start |
641.02784375 |
transcript.pyannote[221].end |
641.09534375 |
transcript.pyannote[222].speaker |
SPEAKER_02 |
transcript.pyannote[222].start |
641.09534375 |
transcript.pyannote[222].end |
641.63534375 |
transcript.pyannote[223].speaker |
SPEAKER_03 |
transcript.pyannote[223].start |
641.63534375 |
transcript.pyannote[223].end |
647.32221875 |
transcript.pyannote[224].speaker |
SPEAKER_03 |
transcript.pyannote[224].start |
647.67659375 |
transcript.pyannote[224].end |
651.62534375 |
transcript.pyannote[225].speaker |
SPEAKER_03 |
transcript.pyannote[225].start |
652.16534375 |
transcript.pyannote[225].end |
654.27471875 |
transcript.pyannote[226].speaker |
SPEAKER_03 |
transcript.pyannote[226].start |
654.79784375 |
transcript.pyannote[226].end |
655.86096875 |
transcript.pyannote[227].speaker |
SPEAKER_03 |
transcript.pyannote[227].start |
656.18159375 |
transcript.pyannote[227].end |
658.05471875 |
transcript.pyannote[228].speaker |
SPEAKER_03 |
transcript.pyannote[228].start |
658.84784375 |
transcript.pyannote[228].end |
663.20159375 |
transcript.pyannote[229].speaker |
SPEAKER_03 |
transcript.pyannote[229].start |
663.84284375 |
transcript.pyannote[229].end |
668.14596875 |
transcript.pyannote[230].speaker |
SPEAKER_03 |
transcript.pyannote[230].start |
668.41596875 |
transcript.pyannote[230].end |
670.44096875 |
transcript.pyannote[231].speaker |
SPEAKER_03 |
transcript.pyannote[231].start |
671.25096875 |
transcript.pyannote[231].end |
671.68971875 |
transcript.pyannote[232].speaker |
SPEAKER_03 |
transcript.pyannote[232].start |
671.72346875 |
transcript.pyannote[232].end |
673.07346875 |
transcript.pyannote[233].speaker |
SPEAKER_03 |
transcript.pyannote[233].start |
673.68096875 |
transcript.pyannote[233].end |
674.94659375 |
transcript.pyannote[234].speaker |
SPEAKER_03 |
transcript.pyannote[234].start |
675.46971875 |
transcript.pyannote[234].end |
676.27971875 |
transcript.pyannote[235].speaker |
SPEAKER_04 |
transcript.pyannote[235].start |
678.20346875 |
transcript.pyannote[235].end |
678.70971875 |
transcript.pyannote[236].speaker |
SPEAKER_04 |
transcript.pyannote[236].start |
678.86159375 |
transcript.pyannote[236].end |
681.86534375 |
transcript.pyannote[237].speaker |
SPEAKER_03 |
transcript.pyannote[237].start |
681.86534375 |
transcript.pyannote[237].end |
683.13096875 |
transcript.pyannote[238].speaker |
SPEAKER_03 |
transcript.pyannote[238].start |
683.53596875 |
transcript.pyannote[238].end |
688.90221875 |
transcript.pyannote[239].speaker |
SPEAKER_03 |
transcript.pyannote[239].start |
689.23971875 |
transcript.pyannote[239].end |
693.25596875 |
transcript.pyannote[240].speaker |
SPEAKER_03 |
transcript.pyannote[240].start |
693.84659375 |
transcript.pyannote[240].end |
695.39909375 |
transcript.pyannote[241].speaker |
SPEAKER_03 |
transcript.pyannote[241].start |
696.32721875 |
transcript.pyannote[241].end |
697.30596875 |
transcript.pyannote[242].speaker |
SPEAKER_03 |
transcript.pyannote[242].start |
697.74471875 |
transcript.pyannote[242].end |
698.94284375 |
transcript.pyannote[243].speaker |
SPEAKER_03 |
transcript.pyannote[243].start |
699.24659375 |
transcript.pyannote[243].end |
700.46159375 |
transcript.pyannote[244].speaker |
SPEAKER_03 |
transcript.pyannote[244].start |
701.06909375 |
transcript.pyannote[244].end |
707.31284375 |
transcript.pyannote[245].speaker |
SPEAKER_03 |
transcript.pyannote[245].start |
707.71784375 |
transcript.pyannote[245].end |
708.30846875 |
transcript.pyannote[246].speaker |
SPEAKER_03 |
transcript.pyannote[246].start |
708.59534375 |
transcript.pyannote[246].end |
709.38846875 |
transcript.pyannote[247].speaker |
SPEAKER_03 |
transcript.pyannote[247].start |
710.28284375 |
transcript.pyannote[247].end |
711.48096875 |
transcript.pyannote[248].speaker |
SPEAKER_03 |
transcript.pyannote[248].start |
711.91971875 |
transcript.pyannote[248].end |
713.26971875 |
transcript.pyannote[249].speaker |
SPEAKER_04 |
transcript.pyannote[249].start |
714.36659375 |
transcript.pyannote[249].end |
714.40034375 |
transcript.pyannote[250].speaker |
SPEAKER_02 |
transcript.pyannote[250].start |
714.40034375 |
transcript.pyannote[250].end |
715.02471875 |
transcript.pyannote[251].speaker |
SPEAKER_03 |
transcript.pyannote[251].start |
714.95721875 |
transcript.pyannote[251].end |
715.96971875 |
transcript.pyannote[252].speaker |
SPEAKER_04 |
transcript.pyannote[252].start |
715.02471875 |
transcript.pyannote[252].end |
715.54784375 |
transcript.pyannote[253].speaker |
SPEAKER_04 |
transcript.pyannote[253].start |
715.86846875 |
transcript.pyannote[253].end |
715.91909375 |
transcript.pyannote[254].speaker |
SPEAKER_04 |
transcript.pyannote[254].start |
715.96971875 |
transcript.pyannote[254].end |
716.86409375 |
transcript.pyannote[255].speaker |
SPEAKER_02 |
transcript.pyannote[255].start |
718.12971875 |
transcript.pyannote[255].end |
722.21346875 |
transcript.pyannote[256].speaker |
SPEAKER_03 |
transcript.pyannote[256].start |
722.77034375 |
transcript.pyannote[256].end |
726.24659375 |
transcript.pyannote[257].speaker |
SPEAKER_03 |
transcript.pyannote[257].start |
726.71909375 |
transcript.pyannote[257].end |
727.02284375 |
transcript.pyannote[258].speaker |
SPEAKER_04 |
transcript.pyannote[258].start |
727.02284375 |
transcript.pyannote[258].end |
728.59221875 |
transcript.pyannote[259].speaker |
SPEAKER_03 |
transcript.pyannote[259].start |
728.59221875 |
transcript.pyannote[259].end |
729.79034375 |
transcript.pyannote[260].speaker |
SPEAKER_04 |
transcript.pyannote[260].start |
729.79034375 |
transcript.pyannote[260].end |
729.80721875 |
transcript.pyannote[261].speaker |
SPEAKER_04 |
transcript.pyannote[261].start |
729.97596875 |
transcript.pyannote[261].end |
730.07721875 |
transcript.pyannote[262].speaker |
SPEAKER_03 |
transcript.pyannote[262].start |
730.07721875 |
transcript.pyannote[262].end |
730.78596875 |
transcript.pyannote[263].speaker |
SPEAKER_04 |
transcript.pyannote[263].start |
730.78596875 |
transcript.pyannote[263].end |
730.80284375 |
transcript.pyannote[264].speaker |
SPEAKER_03 |
transcript.pyannote[264].start |
732.25409375 |
transcript.pyannote[264].end |
732.28784375 |
transcript.pyannote[265].speaker |
SPEAKER_04 |
transcript.pyannote[265].start |
732.28784375 |
transcript.pyannote[265].end |
737.67096875 |
transcript.pyannote[266].speaker |
SPEAKER_03 |
transcript.pyannote[266].start |
732.30471875 |
transcript.pyannote[266].end |
732.97971875 |
transcript.pyannote[267].speaker |
SPEAKER_03 |
transcript.pyannote[267].start |
733.24971875 |
transcript.pyannote[267].end |
733.60409375 |
transcript.pyannote[268].speaker |
SPEAKER_03 |
transcript.pyannote[268].start |
736.43909375 |
transcript.pyannote[268].end |
737.50221875 |
transcript.pyannote[269].speaker |
SPEAKER_03 |
transcript.pyannote[269].start |
737.67096875 |
transcript.pyannote[269].end |
740.15159375 |
transcript.pyannote[270].speaker |
SPEAKER_03 |
transcript.pyannote[270].start |
740.43846875 |
transcript.pyannote[270].end |
741.48471875 |
transcript.pyannote[271].speaker |
SPEAKER_03 |
transcript.pyannote[271].start |
742.59846875 |
transcript.pyannote[271].end |
744.16784375 |
transcript.pyannote[272].speaker |
SPEAKER_04 |
transcript.pyannote[272].start |
744.89346875 |
transcript.pyannote[272].end |
745.55159375 |
transcript.pyannote[273].speaker |
SPEAKER_03 |
transcript.pyannote[273].start |
745.24784375 |
transcript.pyannote[273].end |
753.01034375 |
transcript.pyannote[274].speaker |
SPEAKER_04 |
transcript.pyannote[274].start |
753.97221875 |
transcript.pyannote[274].end |
757.60034375 |
transcript.pyannote[275].speaker |
SPEAKER_03 |
transcript.pyannote[275].start |
757.12784375 |
transcript.pyannote[275].end |
759.59159375 |
transcript.pyannote[276].speaker |
SPEAKER_03 |
transcript.pyannote[276].start |
759.84471875 |
transcript.pyannote[276].end |
765.09284375 |
transcript.pyannote[277].speaker |
SPEAKER_03 |
transcript.pyannote[277].start |
765.34596875 |
transcript.pyannote[277].end |
767.86034375 |
transcript.pyannote[278].speaker |
SPEAKER_03 |
transcript.pyannote[278].start |
768.55221875 |
transcript.pyannote[278].end |
769.66596875 |
transcript.pyannote[279].speaker |
SPEAKER_03 |
transcript.pyannote[279].start |
770.44221875 |
transcript.pyannote[279].end |
772.12971875 |
transcript.pyannote[280].speaker |
SPEAKER_03 |
transcript.pyannote[280].start |
772.29846875 |
transcript.pyannote[280].end |
774.17159375 |
transcript.pyannote[281].speaker |
SPEAKER_03 |
transcript.pyannote[281].start |
774.40784375 |
transcript.pyannote[281].end |
775.62284375 |
transcript.pyannote[282].speaker |
SPEAKER_03 |
transcript.pyannote[282].start |
775.96034375 |
transcript.pyannote[282].end |
778.67721875 |
transcript.pyannote[283].speaker |
SPEAKER_03 |
transcript.pyannote[283].start |
778.98096875 |
transcript.pyannote[283].end |
780.66846875 |
transcript.pyannote[284].speaker |
SPEAKER_03 |
transcript.pyannote[284].start |
782.35596875 |
transcript.pyannote[284].end |
783.70596875 |
transcript.pyannote[285].speaker |
SPEAKER_04 |
transcript.pyannote[285].start |
783.11534375 |
transcript.pyannote[285].end |
783.40221875 |
transcript.pyannote[286].speaker |
SPEAKER_04 |
transcript.pyannote[286].start |
783.70596875 |
transcript.pyannote[286].end |
783.75659375 |
transcript.pyannote[287].speaker |
SPEAKER_03 |
transcript.pyannote[287].start |
783.75659375 |
transcript.pyannote[287].end |
783.80721875 |
transcript.pyannote[288].speaker |
SPEAKER_04 |
transcript.pyannote[288].start |
783.80721875 |
transcript.pyannote[288].end |
783.90846875 |
transcript.pyannote[289].speaker |
SPEAKER_04 |
transcript.pyannote[289].start |
784.06034375 |
transcript.pyannote[289].end |
784.66784375 |
transcript.pyannote[290].speaker |
SPEAKER_03 |
transcript.pyannote[290].start |
784.66784375 |
transcript.pyannote[290].end |
785.17409375 |
transcript.pyannote[291].speaker |
SPEAKER_04 |
transcript.pyannote[291].start |
784.68471875 |
transcript.pyannote[291].end |
784.75221875 |
transcript.pyannote[292].speaker |
SPEAKER_03 |
transcript.pyannote[292].start |
785.73096875 |
transcript.pyannote[292].end |
791.09721875 |
transcript.pyannote[293].speaker |
SPEAKER_03 |
transcript.pyannote[293].start |
791.13096875 |
transcript.pyannote[293].end |
795.34971875 |
transcript.pyannote[294].speaker |
SPEAKER_03 |
transcript.pyannote[294].start |
796.07534375 |
transcript.pyannote[294].end |
796.56471875 |
transcript.pyannote[295].speaker |
SPEAKER_03 |
transcript.pyannote[295].start |
796.95284375 |
transcript.pyannote[295].end |
799.68659375 |
transcript.pyannote[296].speaker |
SPEAKER_03 |
transcript.pyannote[296].start |
800.20971875 |
transcript.pyannote[296].end |
801.47534375 |
transcript.pyannote[297].speaker |
SPEAKER_03 |
transcript.pyannote[297].start |
802.18409375 |
transcript.pyannote[297].end |
802.69034375 |
transcript.pyannote[298].speaker |
SPEAKER_03 |
transcript.pyannote[298].start |
804.73221875 |
transcript.pyannote[298].end |
804.96846875 |
transcript.pyannote[299].speaker |
SPEAKER_02 |
transcript.pyannote[299].start |
804.96846875 |
transcript.pyannote[299].end |
806.63909375 |
transcript.whisperx[0].start |
6.313 |
transcript.whisperx[0].end |
22.122 |
transcript.whisperx[0].text |
主席、在場的委員先進、列席政府機關市長、官員、會長、工作夥伴、媒體記者、女士先生,有請書人市長,還有我們移民署的陳副署長、小鎮署的周副署長,以及台鐵公司的馮總經理。 |
transcript.whisperx[1].start |
35.106 |
transcript.whisperx[1].end |
45.394 |
transcript.whisperx[1].text |
人事長好,署長、副署長、總經理早。來,請問一下人事長,人總是管理各機關的人事人員還是管理政府的人力資源?都有啦,都有。那你覺得哪一個比較能夠發揮人總在這個政府部門當中,身為二級機關的一個價值? |
transcript.whisperx[2].start |
57.966 |
transcript.whisperx[2].end |
86.567 |
transcript.whisperx[2].text |
我覺得那個是在你為什麼認為你是應該企業的人資長對啊就是本來就企業的人資長要做什麼事情就是人力支援策略規劃嘛沒有錯但是今天很遺憾的給你們這個題目除了預算解凍報告之外本來上次主席在我本席在說政府業務用AI提升人力效能有沒有可能你說有可能對不對有可能而且你是資訊專業是不是結果你們今天的報告當中啊 |
transcript.whisperx[3].start |
87.347 |
transcript.whisperx[3].end |
92.251 |
transcript.whisperx[3].text |
完全沒有提到怎麼樣人總來協助各機關利用資訊科技來提升他們的人力效能你只有在說你們人總的人事人員你怎麼樣協助人總在各機關的人事人員提升他們服務各機關公務員的效能你有沒有覺得有點偏差啦 |
transcript.whisperx[4].start |
106.935 |
transcript.whisperx[4].end |
117.641 |
transcript.whisperx[4].text |
我覺得我利用這個機會跟委員說明一下你是要談人種的數位轉型還是你也希望能夠透過這個數位協助政府各機關提升他們的人力資源效能 |
transcript.whisperx[5].start |
118.885 |
transcript.whisperx[5].end |
121.746 |
transcript.whisperx[5].text |
二、審查及處理113年度中央政府總預算關於行政院人事服務數位轉型 |
transcript.whisperx[6].start |
144.924 |
transcript.whisperx[6].end |
154.667 |
transcript.whisperx[6].text |
事實上我們過去就是朝這個很好過去是這樣我希望你未來繼續我來我現在要問一個來我請教一下人事長你看得到這個照片嗎你覺得這個是誰是我是不是長頭髮像女生這是現在的數位科技啦我看到副署長在笑了你覺得像我這樣的如果我打扮成這樣能不能通得過檢查在機場副署長你覺得可以通過來嗎 |
transcript.whisperx[7].start |
175.311 |
transcript.whisperx[7].end |
192.72 |
transcript.whisperx[7].text |
這個如果看委員當時拿的是什麼護照很好本人的護照如果用人工驗證用身為未照過的護照有沒有可能騙過你們的移民署的官員有可能那如果是用人自動通關呢自動通關他的辨識力比人力還強更精準是 |
transcript.whisperx[8].start |
193.547 |
transcript.whisperx[8].end |
203.252 |
transcript.whisperx[8].text |
人事長聽到沒有?好我們來看一下來我先來問一下我現在講移民署移民署從96年到現在112年成立的元額不到2400人到現在已經到了快2900人了足足成長了538人超過總元額的兩成人事長在你的任中任內你有沒有看過哪個機關人總這麼大方行政院給他這麼多人力的 |
transcript.whisperx[9].start |
219.119 |
transcript.whisperx[9].end |
243.123 |
transcript.whisperx[9].text |
有沒有?有沒有其他人?你講一下你心肝大小心喔你對他們移民署特別好喔啊...啊...就...他們一直...一直拖一直拖你就走給他走給他不過我這裡要跟委員...呃...說明...你有沒有對移民署特別好?我跟他關係很差啊?很差?我跟他關係很差啊?為什麼給他這麼多冤枉?我跟他關係很差他要人基本上我都不大願意給可是今天還是給啦他們今年喔2月5號再報30個你們全部都給他給 |
transcript.whisperx[10].start |
248.84 |
transcript.whisperx[10].end |
275.385 |
transcript.whisperx[10].text |
事實上我們給他的主要原因是希望他加快EGATE建構很好來副組長來我看一下給了你這麼多人副組長請教一下下一頁我們入村的人數在疫情前有高達快6000萬人次到了疫情盪下來不到800甚至掉到100慢慢回升到450去年大概回升到3600副組長你覺得今年2024年有沒有可能超過超過可能4000或5000 |
transcript.whisperx[11].start |
277.435 |
transcript.whisperx[11].end |
281.76 |
transcript.whisperx[11].text |
應該會應該會嘛對不對但你們20195000多人的時候你們國進大隊資源移植率都超過8%20207%疫情期間掉下來4%欸疫情後呢又升上去了快8%去年12%啊副署長奇怪了勒給你們那麼多人為什麼你流動率這麼高 |
transcript.whisperx[12].start |
298.41 |
transcript.whisperx[12].end |
315.79 |
transcript.whisperx[12].text |
報告委員其實這個是我們人力結構的問題人力結構什麼問題因為在疫情期間我們講白了就是在2019年疫情開始以後我們所有旅客量從5000多萬降到709萬當時因為我們在國境它的流動率是 |
transcript.whisperx[13].start |
320.16 |
transcript.whisperx[13].end |
330.448 |
transcript.whisperx[13].text |
本來流動率很高啊8%啊現在當下來啦當下來因為那時候旅客少所以嘛齁不只是你們正職人員連你們約聘僱人員也是一樣剛剛那個表呢告訴我約聘僱的人員的離職率也是8%現在也快到12%了基本上來說因為我們航班是24小時的 |
transcript.whisperx[14].start |
338.615 |
transcript.whisperx[14].end |
361.151 |
transcript.whisperx[14].text |
對不對?你們的儘管的人員要不要輪班?要嘛。我遇到很多次我半夜從東南亞回來他們還在那邊看疫情期間入職的因為疫情後突然量增加了疫情今天來很輕鬆的現在受不了了跑掉了疫情前勉強撐住的疫情後撐不住了跑掉了是不是這樣?是人事長那你覺得他們這樣子有什麼辦法改善? |
transcript.whisperx[15].start |
362.469 |
transcript.whisperx[15].end |
362.569 |
transcript.whisperx[15].text |
很好,來,人長 |
transcript.whisperx[16].start |
383.53 |
transcript.whisperx[16].end |
406.42 |
transcript.whisperx[16].text |
那副署長、市長聽到了齁?人事長他雖然跟你關係不是很和睦你們的人他也不給但是因為你們有需要還是有了但是這些人呢你們留不住如果把這些人用自動通關來取代你覺得會不會人員比較穩定讓人員去做那些機器比較辛苦的事情讓機器做人是要休息的不用休息的事情給機器做你同意嗎? |
transcript.whisperx[17].start |
407.06 |
transcript.whisperx[17].end |
433.927 |
transcript.whisperx[17].text |
是那你們有沒有要加強這個EGATE?跟委員報告其實我們移民署在做自動通關系統的建制早在民國99年那你們未來要不要繼續加強?我們現在都有規劃實際再加強好那我現在請你跟人長配合當你們未來自動通關越來越多人使用的時候你們的人力就空出來了是這些人好好的用在其他需要人力智慧的地方好不好?是好謝謝副署長來謝謝下一個來我們現在請教我們的周署長 |
transcript.whisperx[18].start |
436.069 |
transcript.whisperx[18].end |
444.774 |
transcript.whisperx[18].text |
你們目前有智慧監獄推動3所,缺額逐年增加。你們在108年有24個名額根本招不到。到了112年變成128個。剛剛講移民署是人招得進來但留不住。你們是連人來都不來啊。署長怎麼辦?缺這麼多人怎麼辦? |
transcript.whisperx[19].start |
460.562 |
transcript.whisperx[19].end |
467.688 |
transcript.whisperx[19].text |
我不是問你離職率阿你們根本沒有料去阿離職率根本找不到人阿人事長怎麼辦 |
transcript.whisperx[20].start |
470.686 |
transcript.whisperx[20].end |
487.72 |
transcript.whisperx[20].text |
其實齁你給他名字他找不到人啊沒有人要找那個監獄管理員啊我事實上我也蠻急迫的6、7年前我就跟法務部去監獄去大量去推智慧型監獄我舉一個例子啦就是他們受刑人有時候要去借外就醫嘛對 |
transcript.whisperx[21].start |
488.28 |
transcript.whisperx[21].end |
517.808 |
transcript.whisperx[21].text |
借戶就醫基本上 借戶就醫一定要有兩個 借戶人力 一次就是報令嘛 中間來報令嘛 所以我那時候就跟他們建議就是說盡量去找一兩家大型的院所去處理所謂的演技醫療 演技醫療不管是你在立法 減少人力借戶就醫的這個 你也在透過演技醫療的 因為借戶就醫兩個人出去了剩下留在監獄的人辛苦了 對不對 |
transcript.whisperx[22].start |
518.228 |
transcript.whisperx[22].end |
518.689 |
transcript.whisperx[22].text |
處長,你覺得人事長的建議有沒有道理? |
transcript.whisperx[23].start |
524.368 |
transcript.whisperx[23].end |
524.388 |
transcript.whisperx[23].text |
來 總經理 |
transcript.whisperx[24].start |
553.427 |
transcript.whisperx[24].end |
561.631 |
transcript.whisperx[24].text |
之前我聽到一個消息說國營事業台鐵有312個桶邊總經理你們台鐵一家公司怎麼有312個桶邊?什麼原因?報告委員因為我們派出單位分支單位沒有錯你們派出單位很多高鐵就相對少了因為高鐵的站比較少我去查了一下國營事業台堂有176個桶邊燕酒公司有71個桶邊因為燕酒公司的配銷所比較少 |
transcript.whisperx[25].start |
578.078 |
transcript.whisperx[25].end |
602.353 |
transcript.whisperx[25].text |
可是相對的 桶邊越多 財塊的人力需有越多可是你們只用了100個人相較於台糖 它桶邊比你少 用的人比你多燕有公司才71個用了50人欸 看起來你們的財塊的效能很高喔你們是不是國營事業當中 你們財塊人員效率最高的桶邊比人家多 用的人比別人少總監是不是這樣報告委員 我們主要可能是我們的場域比較多 |
transcript.whisperx[26].start |
603.153 |
transcript.whisperx[26].end |
618.137 |
transcript.whisperx[26].text |
對啦我不是說你桶邊多啦我說你們的財快人員比別人少效能比較高是不是這樣按比例來看是我們現在掌握的數字是好那我現在要問一下齁來總經理你覺得ATM跟銀行行員哪一個可以全天候上班ATM可以全天候那哪個營運成本比較低ATM的成本應該比較銀行關門了我要去要來提錢我要去哪裡就到ATM那為什麼銀行不24小時營業 |
transcript.whisperx[27].start |
632.356 |
transcript.whisperx[27].end |
657.857 |
transcript.whisperx[27].text |
因為人要休息嗎?人事長是不是這樣子?好,人事長你有沒有常常搭台鐵?我常常搭台鐵,你有沒有常常搭?我曾經我南北跑,我常常搭8點半的高鐵回到新左營11點05分我要轉什麼?我要轉台鐵回屏東我去的時候每次怎樣?我都習慣去自動購票機可是每次我要轉的時候晚上去 |
transcript.whisperx[28].start |
659.049 |
transcript.whisperx[28].end |
659.069 |
transcript.whisperx[28].text |
委員 |
transcript.whisperx[29].start |
679.376 |
transcript.whisperx[29].end |
682.84 |
transcript.whisperx[29].text |
應該他們是還要做結帳的工作所以說嘛櫃檯他們你們的櫃檯的人說我們還要輪班到半夜因為還有人買票可是我們的自動貨票機因為財快部門9點要結帳所以就通通下班了 |
transcript.whisperx[30].start |
696.38 |
transcript.whisperx[30].end |
709.204 |
transcript.whisperx[30].text |
你們有沒有搞錯啊?你們的財困人員少,因為他不想做太多事。所以你們的自動貨票機啊,9點就離線了。留下最辛苦的工作人員,在那邊人工售票。總經理,我先問人事長。如果你作為一個公司,總經理,你覺得這合理嗎?我是問人事長啊。我一定喔,可以自動化,我一定會自動化。 |
transcript.whisperx[31].start |
723.193 |
transcript.whisperx[31].end |
729.357 |
transcript.whisperx[31].text |
來,總經理,你告訴人事長,你們有多少自動購票機?我們現在有432台...你們有多少的票口人員?說不出來?超過好幾千嗎?對,我們整個乘務人員當然...在台鐵啊!購票機比人工人員還輕鬆啊!9點就下班了!員工很辛苦,你知不知道? |
transcript.whisperx[32].start |
745.326 |
transcript.whisperx[32].end |
767.823 |
transcript.whisperx[32].text |
那你們要不要叫你們財快人員以後留兩個財快人員幫自動購票機結帳24小時營運可以嗎?報告委員我們現在已經在檢討我們的這個檢討多久了?我反映過4年了我這8年來我每次台北通勤每次超過9點我在台鐵的窗口我要去人工購票如果前面排了好多人咧還好現在有TPAS啊 |
transcript.whisperx[33].start |
770.495 |
transcript.whisperx[33].end |
780.602 |
transcript.whisperx[33].text |
我以前可以用自動購票機買啊超過9點自動購票機下班8台通通下班窗口只留一個窗口後面排十幾個人我要是趕台鐵趕不上怎麼辦總經理要不要檢討一下要 需要人事長結果結論請人事總處啊研析各政府機關的形態跟人力配置的效能請借重資訊科技減少各政府機關的人力的低效運用可以嗎好可不可以提個書面報告給本席給委員會 |
transcript.whisperx[34].start |
800.892 |
transcript.whisperx[34].end |
801.995 |
transcript.whisperx[34].text |
多久?好 可以 謝謝 |