IVOD_ID |
150094 |
IVOD_URL |
https://ivod.ly.gov.tw/Play/Clip/1M/150094 |
日期 |
2024-03-20 |
會議資料.會議代碼 |
委員會-11-1-20-4 |
會議資料.會議代碼:str |
第11屆第1會期財政委員會第4次全體委員會議 |
會議資料.屆 |
11 |
會議資料.會期 |
1 |
會議資料.會次 |
4 |
會議資料.種類 |
委員會 |
會議資料.委員會代碼[0] |
20 |
會議資料.委員會代碼:str[0] |
財政委員會 |
會議資料.標題 |
第11屆第1會期財政委員會第4次全體委員會議 |
影片種類 |
Clip |
開始時間 |
2024-03-20T10:01:58+08:00 |
結束時間 |
2024-03-20T10:13:23+08:00 |
影片長度 |
00:11:25 |
支援功能[0] |
ai-transcript |
支援功能[1] |
gazette |
video_url |
https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/b8deaa01a2e7f192f8405a63d907444fed861a3b97380652f8ba9b0039caa7a6de7eaf727ba7c6f95ea18f28b6918d91.mp4/playlist.m3u8 |
委員名稱 |
王世堅 |
委員發言時間 |
10:01:58 - 10:13:23 |
會議時間 |
2024-03-20T09:00:00+08:00 |
會議名稱 |
立法院第11屆第1會期財政委員會第4次全體委員會議(事由:處理或審查中華民國113年度中央政府總預算決議,有關財政部主管預算凍結書面報告案45案。[如經院會復議,則不予處理或審查]
【3月18日及20日二天一次會】) |
gazette.lineno |
487 |
gazette.blocks[0][0] |
王委員世堅:(10時2分)主席,請部長。 |
gazette.blocks[1][0] |
主席:請莊部長。 |
gazette.blocks[2][0] |
莊部長翠雲:委員好。 |
gazette.blocks[3][0] |
王委員世堅:部長,政府要健全投資管道,引導民間的游資,避免熱錢過度投入房市,這是政府一貫的政策,引導民間的游資我們看得到,其實在民間投入公共建設、公共工程的部分,人家都有一定的量。比方這幾年下來,民間投資公共建設金額都維持在1,800億以上,就以這3年來說,從1,888億到前年的2,800億,去年也有1,876億。但是我們要引導另外的,就是關於壽險業,他們有這麼龐大的資金,投入公共建設的部分卻是逐年下滑。本來壽險那麼龐大的資金投入公共建設的金額本來就不多了,然後從3年前開始,我不客氣的講,那個叫雪崩式的下滑,從3年前的355億一路下來,2年前442億,到去年竟然跌到只有112億,112億,我相信部長你應該非常清楚,壽險可以運用的資金是不得了的龐大,都是兆元以上,光我們講這3年來從28兆、30兆累積到31兆,31兆耶!去年31兆可運用的壽險資金竟然只有112億投入公共建設,而公共建設正是現在從中央到地方大家急需要資金去投入的部分。結果壽險資金不來公共建設,把政府的政策、呼籲放一邊也就算了,還把錢大量的投入房市,難怪臺灣的房地產是不漲也怪啊!難怪我們的受薪階層、青年朋友們完全買不起房,變成遙不可及的夢想啦! |
gazette.blocks[3][1] |
部長,徒法不足以自行,不是嗎?一定要政府的相關部會去監督,除了引領之外,後續的,如果給蘿蔔,他不聽話不吃,後面就是棒子了,不是這樣子嗎?我認為財政部在這一塊責無旁貸,你們應該出面,你們可以找金管會一起,看怎麼樣對壽險業來做要求。我就講去年,31兆壽險可運用的資金竟然只有0.03%,0.03個percent、萬分之三,112億去投入公共建設。部長,臺北市政府現在最迫切的捷運北環段、南環段、東環段,這三個線的總金額我就不提了,我相信你很清楚。這三個線因為疫情的延誤、規劃的延誤,造成工資、物料的上漲,光這三線現在的差額就差440億之多,如果我們把細節稍微修訂,如果我們能夠更早去引領壽險業的資金來參與,440億對壽險可運用資金31兆而言算是零錢就對了,幾乎看不到的。如果能投入,我們光講首都臺北的捷運,就不必延誤那麼多年了,延誤多年以後都會造成社會成本上漲,不是這樣嗎?這個部分,我覺得財政部已經到了刻不容緩的地步,我不曉得你們有沒有什麼打算,什麼作法? |
gazette.blocks[4][0] |
莊部長翠雲:謝謝委員的提示,您提的建議非常好,對於公共建設的部分,我們鼓勵各個機關用促參的模式來做,也就是說,不是都編公務預算來支應,比如您剛剛講的軌道建設,在國發會討論計畫的時候,我們都會去看看它的自償性,然後希望以促參模式來辦。以促參模式辦的話,就可以引進民間資金來投資公共建設。在民間資金裡面,確實保險業有相當豐厚的資金,至於它要投注的事業,因為這個錢都來自保戶,所以它應該是要找穩定的收入、穩定的現金流進來,其實公共建設是一個非常好的標的。對於保險業的部分,我們希望它能投入,其實財政部已經做了很多努力,第一個,我們建議修正保險法,這個部分也在2年前過了,也就是保險公司投注,它希望能夠參與相關的營運,所以讓它可以在公司裡面。因為我們會成立一個特許公司,比如公建通常會有個獨立的特許公司,它可以派董事,在裡面有席次,然後去經營這樣的事業。第二個就是協力廠商,因為保險業要去投注各個不同的行業,它不會自己經營,比如經營長照它不會做,它可以找協力廠商,然後怎麼樣三方的合約…… |
gazette.blocks[5][0] |
王委員世堅:保險業最會做的就只剩一個,就是不動產囉? |
gazette.blocks[6][0] |
莊部長翠雲:對,但它可以去做其他的產業,然後找協力,成立一個三方合約來做。 |
gazette.blocks[7][0] |
王委員世堅:部長,你說的這些就是給蘿蔔的部分,可是…… |
gazette.blocks[8][0] |
莊部長翠雲:對,我們要…… |
gazette.blocks[9][0] |
王委員世堅:可是強制的部分…… |
gazette.blocks[10][0] |
莊部長翠雲:強制…… |
gazette.blocks[11][0] |
王委員世堅:你可以強制,我們修法給蘿蔔,這當然應當,可是它投資的比例已經過低,它一頭熱的投入不動產,以109年來看,光109年一年他們投入不動產就1,800億了,就抵了4年整個投資公共建設的金額。然後他們每年除了1,800億、2,000億大量金額投入不動產以外,累計到現在壽險業已經有1兆6,500億在房地產上面,當然你講的對,壽險資金來自於社會大眾,它當然要往穩定的方向去,但是政府已經給了一條路。你看,部長,我不是危言聳聽,我本來只想跟你講這4年,你要是從101年算起,從我們已經有這個規劃算起到現在已是第14年了,你要是從101年算起,它實際投入金額都大概才一百來億,累積14年來它總共才投入1,251億。這是累積的喔!累積下來它可運用的,我剛剛就講了是31兆,這個就不講了,光是講來投資公共建設,我們有訂一個上限給它也要3兆1,000億。這14年來規定它要達到標準的部分,累計只投入1,251億這麼多,但它還有2兆9,000億該進來不進來。那我剛剛跟你提的,光是我們臺北這麼重要的北環、東環、南環就差440億而已,它手上還有2兆9,000億是我們規定它要達到的金額。部長,我認為要積極啦! |
gazette.blocks[11][1] |
我為什麼現在特別跟你講這個?其實,很多部會首長現在都開始數饅頭了啦!等著拍畢業照就對了,但我認為財政部、金管會、中央銀行絕對不行!為什麼?因為你們在這段時間其實可以做更特別的事情,你現在就可以要求,也毫無其它顧忌嘛!你現在等於是做總檢討嘛!總檢討這麼多年來壽險業把政府既定的政策、好意不當一回事,它現在擺那麼多在那邊,為了保障保險人的權益,它當然會說不得已只好去買不動產。 |
gazette.blocks[11][2] |
好啦!我們讓它去買不動產,但至少不要買住家的、不要買住宅的。結果不買住宅的,它去買商辦,一樣也是另外一種炒作,不是嗎?所以我認為部長可以很積極地做很多事,我希望你可以馬上跟金管會聯繫,要求這些不管是REIT基金或壽險業的基金,要引導而且要求他們投入公共建設或者綠色建設,這樣才對嘛!這是政府鼓勵也是全民所期待的嘛!好不好? |
gazette.blocks[12][0] |
莊部長翠雲:謝謝委員的建議,我想這個對…… |
gazette.blocks[13][0] |
王委員世堅:我希望你可以近期內做了,看有哪些動作是不是做一個報告給本席跟我們委員會,好不好? |
gazette.blocks[14][0] |
莊部長翠雲:是,好。怎麼樣讓保險基金投入公共建設,然後讓他們把用途用在該用的地方。 |
gazette.blocks[15][0] |
王委員世堅:對。 |
gazette.blocks[16][0] |
莊部長翠雲:謝謝委員。 |
gazette.blocks[17][0] |
主席:謝王世堅委員的質詢。部長,王世堅委員質詢的這個題目本委員會相當關心,請慎重面對,謝謝。 |
gazette.blocks[17][1] |
接著我們請伍麗華委員質詢。 |
gazette.agenda.page_end |
278 |
gazette.agenda.meet_id |
委員會-11-1-20-4 |
gazette.agenda.speakers[0] |
郭國文 |
gazette.agenda.speakers[1] |
林德福 |
gazette.agenda.speakers[2] |
賴士葆 |
gazette.agenda.speakers[3] |
賴惠員 |
gazette.agenda.speakers[4] |
王世堅 |
gazette.agenda.speakers[5] |
伍麗華Saidhai‧Tahovecahe |
gazette.agenda.speakers[6] |
顏寬恒 |
gazette.agenda.speakers[7] |
李坤城 |
gazette.agenda.speakers[8] |
黃珊珊 |
gazette.agenda.speakers[9] |
吳秉叡 |
gazette.agenda.speakers[10] |
陳玉珍 |
gazette.agenda.speakers[11] |
李彥秀 |
gazette.agenda.speakers[12] |
鍾佳濱 |
gazette.agenda.speakers[13] |
黃國昌 |
gazette.agenda.speakers[14] |
王鴻薇 |
gazette.agenda.speakers[15] |
謝衣鳯 |
gazette.agenda.speakers[16] |
鄭天財Sra Kacaw |
gazette.agenda.speakers[17] |
羅明才 |
gazette.agenda.page_start |
215 |
gazette.agenda.meetingDate[0] |
2024-03-20 |
gazette.agenda.gazette_id |
1131601 |
gazette.agenda.agenda_lcidc_ids[0] |
1131601_00005 |
gazette.agenda.meet_name |
立法院第11屆第1會期財政委員會第4次全體委員會議紀錄 |
gazette.agenda.content |
處理或審查中華民國113年度中央政府總預算決議,有關財政部主管預算凍結書面報告案45案 |
gazette.agenda.agenda_id |
1131601_00004 |
transcript.pyannote[0].speaker |
SPEAKER_00 |
transcript.pyannote[0].start |
5.86971875 |
transcript.pyannote[0].end |
6.07221875 |
transcript.pyannote[1].speaker |
SPEAKER_00 |
transcript.pyannote[1].start |
6.15659375 |
transcript.pyannote[1].end |
8.11409375 |
transcript.pyannote[2].speaker |
SPEAKER_00 |
transcript.pyannote[2].start |
8.63721875 |
transcript.pyannote[2].end |
9.34596875 |
transcript.pyannote[3].speaker |
SPEAKER_00 |
transcript.pyannote[3].start |
10.40909375 |
transcript.pyannote[3].end |
12.04596875 |
transcript.pyannote[4].speaker |
SPEAKER_00 |
transcript.pyannote[4].start |
13.71659375 |
transcript.pyannote[4].end |
14.29034375 |
transcript.pyannote[5].speaker |
SPEAKER_00 |
transcript.pyannote[5].start |
15.70784375 |
transcript.pyannote[5].end |
16.31534375 |
transcript.pyannote[6].speaker |
SPEAKER_00 |
transcript.pyannote[6].start |
17.51346875 |
transcript.pyannote[6].end |
18.55971875 |
transcript.pyannote[7].speaker |
SPEAKER_00 |
transcript.pyannote[7].start |
19.35284375 |
transcript.pyannote[7].end |
20.23034375 |
transcript.pyannote[8].speaker |
SPEAKER_00 |
transcript.pyannote[8].start |
21.00659375 |
transcript.pyannote[8].end |
22.01909375 |
transcript.pyannote[9].speaker |
SPEAKER_00 |
transcript.pyannote[9].start |
22.79534375 |
transcript.pyannote[9].end |
23.58846875 |
transcript.pyannote[10].speaker |
SPEAKER_00 |
transcript.pyannote[10].start |
23.70659375 |
transcript.pyannote[10].end |
26.06909375 |
transcript.pyannote[11].speaker |
SPEAKER_00 |
transcript.pyannote[11].start |
26.64284375 |
transcript.pyannote[11].end |
27.30096875 |
transcript.pyannote[12].speaker |
SPEAKER_00 |
transcript.pyannote[12].start |
27.55409375 |
transcript.pyannote[12].end |
31.03034375 |
transcript.pyannote[13].speaker |
SPEAKER_00 |
transcript.pyannote[13].start |
31.46909375 |
transcript.pyannote[13].end |
31.99221875 |
transcript.pyannote[14].speaker |
SPEAKER_00 |
transcript.pyannote[14].start |
32.39721875 |
transcript.pyannote[14].end |
33.37596875 |
transcript.pyannote[15].speaker |
SPEAKER_00 |
transcript.pyannote[15].start |
33.93284375 |
transcript.pyannote[15].end |
37.69596875 |
transcript.pyannote[16].speaker |
SPEAKER_00 |
transcript.pyannote[16].start |
37.78034375 |
transcript.pyannote[16].end |
38.89409375 |
transcript.pyannote[17].speaker |
SPEAKER_00 |
transcript.pyannote[17].start |
39.26534375 |
transcript.pyannote[17].end |
40.00784375 |
transcript.pyannote[18].speaker |
SPEAKER_00 |
transcript.pyannote[18].start |
40.93596875 |
transcript.pyannote[18].end |
41.54346875 |
transcript.pyannote[19].speaker |
SPEAKER_00 |
transcript.pyannote[19].start |
42.65721875 |
transcript.pyannote[19].end |
58.80659375 |
transcript.pyannote[20].speaker |
SPEAKER_00 |
transcript.pyannote[20].start |
59.19471875 |
transcript.pyannote[20].end |
59.68409375 |
transcript.pyannote[21].speaker |
SPEAKER_00 |
transcript.pyannote[21].start |
60.08909375 |
transcript.pyannote[21].end |
65.37096875 |
transcript.pyannote[22].speaker |
SPEAKER_00 |
transcript.pyannote[22].start |
66.01221875 |
transcript.pyannote[22].end |
66.73784375 |
transcript.pyannote[23].speaker |
SPEAKER_00 |
transcript.pyannote[23].start |
67.31159375 |
transcript.pyannote[23].end |
68.79659375 |
transcript.pyannote[24].speaker |
SPEAKER_00 |
transcript.pyannote[24].start |
69.65721875 |
transcript.pyannote[24].end |
72.25596875 |
transcript.pyannote[25].speaker |
SPEAKER_00 |
transcript.pyannote[25].start |
72.44159375 |
transcript.pyannote[25].end |
75.52971875 |
transcript.pyannote[26].speaker |
SPEAKER_00 |
transcript.pyannote[26].start |
76.42409375 |
transcript.pyannote[26].end |
81.04784375 |
transcript.pyannote[27].speaker |
SPEAKER_00 |
transcript.pyannote[27].start |
81.19971875 |
transcript.pyannote[27].end |
83.32596875 |
transcript.pyannote[28].speaker |
SPEAKER_00 |
transcript.pyannote[28].start |
83.88284375 |
transcript.pyannote[28].end |
90.05909375 |
transcript.pyannote[29].speaker |
SPEAKER_00 |
transcript.pyannote[29].start |
90.83534375 |
transcript.pyannote[29].end |
91.94909375 |
transcript.pyannote[30].speaker |
SPEAKER_00 |
transcript.pyannote[30].start |
92.82659375 |
transcript.pyannote[30].end |
94.07534375 |
transcript.pyannote[31].speaker |
SPEAKER_00 |
transcript.pyannote[31].start |
94.59846875 |
transcript.pyannote[31].end |
98.47971875 |
transcript.pyannote[32].speaker |
SPEAKER_00 |
transcript.pyannote[32].start |
100.04909375 |
transcript.pyannote[32].end |
100.96034375 |
transcript.pyannote[33].speaker |
SPEAKER_00 |
transcript.pyannote[33].start |
101.78721875 |
transcript.pyannote[33].end |
102.98534375 |
transcript.pyannote[34].speaker |
SPEAKER_00 |
transcript.pyannote[34].start |
103.54221875 |
transcript.pyannote[34].end |
105.12846875 |
transcript.pyannote[35].speaker |
SPEAKER_00 |
transcript.pyannote[35].start |
105.88784375 |
transcript.pyannote[35].end |
106.84971875 |
transcript.pyannote[36].speaker |
SPEAKER_00 |
transcript.pyannote[36].start |
107.33909375 |
transcript.pyannote[36].end |
113.93721875 |
transcript.pyannote[37].speaker |
SPEAKER_00 |
transcript.pyannote[37].start |
114.59534375 |
transcript.pyannote[37].end |
123.50534375 |
transcript.pyannote[38].speaker |
SPEAKER_00 |
transcript.pyannote[38].start |
124.53471875 |
transcript.pyannote[38].end |
127.60596875 |
transcript.pyannote[39].speaker |
SPEAKER_00 |
transcript.pyannote[39].start |
128.16284375 |
transcript.pyannote[39].end |
129.51284375 |
transcript.pyannote[40].speaker |
SPEAKER_00 |
transcript.pyannote[40].start |
130.32284375 |
transcript.pyannote[40].end |
145.34159375 |
transcript.pyannote[41].speaker |
SPEAKER_00 |
transcript.pyannote[41].start |
145.98284375 |
transcript.pyannote[41].end |
148.96971875 |
transcript.pyannote[42].speaker |
SPEAKER_00 |
transcript.pyannote[42].start |
149.52659375 |
transcript.pyannote[42].end |
152.31096875 |
transcript.pyannote[43].speaker |
SPEAKER_00 |
transcript.pyannote[43].start |
152.78346875 |
transcript.pyannote[43].end |
156.71534375 |
transcript.pyannote[44].speaker |
SPEAKER_00 |
transcript.pyannote[44].start |
157.52534375 |
transcript.pyannote[44].end |
158.33534375 |
transcript.pyannote[45].speaker |
SPEAKER_00 |
transcript.pyannote[45].start |
158.90909375 |
transcript.pyannote[45].end |
160.49534375 |
transcript.pyannote[46].speaker |
SPEAKER_00 |
transcript.pyannote[46].start |
160.83284375 |
transcript.pyannote[46].end |
164.42721875 |
transcript.pyannote[47].speaker |
SPEAKER_00 |
transcript.pyannote[47].start |
164.64659375 |
transcript.pyannote[47].end |
166.21596875 |
transcript.pyannote[48].speaker |
SPEAKER_00 |
transcript.pyannote[48].start |
167.88659375 |
transcript.pyannote[48].end |
178.66971875 |
transcript.pyannote[49].speaker |
SPEAKER_00 |
transcript.pyannote[49].start |
179.42909375 |
transcript.pyannote[49].end |
180.25596875 |
transcript.pyannote[50].speaker |
SPEAKER_00 |
transcript.pyannote[50].start |
180.55971875 |
transcript.pyannote[50].end |
183.05721875 |
transcript.pyannote[51].speaker |
SPEAKER_00 |
transcript.pyannote[51].start |
183.64784375 |
transcript.pyannote[51].end |
183.66471875 |
transcript.pyannote[52].speaker |
SPEAKER_00 |
transcript.pyannote[52].start |
183.68159375 |
transcript.pyannote[52].end |
183.71534375 |
transcript.pyannote[53].speaker |
SPEAKER_00 |
transcript.pyannote[53].start |
184.39034375 |
transcript.pyannote[53].end |
186.09471875 |
transcript.pyannote[54].speaker |
SPEAKER_00 |
transcript.pyannote[54].start |
186.73596875 |
transcript.pyannote[54].end |
188.55846875 |
transcript.pyannote[55].speaker |
SPEAKER_00 |
transcript.pyannote[55].start |
189.65534375 |
transcript.pyannote[55].end |
190.22909375 |
transcript.pyannote[56].speaker |
SPEAKER_00 |
transcript.pyannote[56].start |
190.80284375 |
transcript.pyannote[56].end |
192.38909375 |
transcript.pyannote[57].speaker |
SPEAKER_00 |
transcript.pyannote[57].start |
194.14409375 |
transcript.pyannote[57].end |
197.04659375 |
transcript.pyannote[58].speaker |
SPEAKER_00 |
transcript.pyannote[58].start |
197.73846875 |
transcript.pyannote[58].end |
200.97846875 |
transcript.pyannote[59].speaker |
SPEAKER_00 |
transcript.pyannote[59].start |
201.29909375 |
transcript.pyannote[59].end |
202.42971875 |
transcript.pyannote[60].speaker |
SPEAKER_00 |
transcript.pyannote[60].start |
203.23971875 |
transcript.pyannote[60].end |
204.52221875 |
transcript.pyannote[61].speaker |
SPEAKER_00 |
transcript.pyannote[61].start |
205.19721875 |
transcript.pyannote[61].end |
206.74971875 |
transcript.pyannote[62].speaker |
SPEAKER_00 |
transcript.pyannote[62].start |
206.86784375 |
transcript.pyannote[62].end |
207.71159375 |
transcript.pyannote[63].speaker |
SPEAKER_00 |
transcript.pyannote[63].start |
208.09971875 |
transcript.pyannote[63].end |
208.57221875 |
transcript.pyannote[64].speaker |
SPEAKER_00 |
transcript.pyannote[64].start |
209.39909375 |
transcript.pyannote[64].end |
210.15846875 |
transcript.pyannote[65].speaker |
SPEAKER_00 |
transcript.pyannote[65].start |
211.87971875 |
transcript.pyannote[65].end |
213.04409375 |
transcript.pyannote[66].speaker |
SPEAKER_00 |
transcript.pyannote[66].start |
213.38159375 |
transcript.pyannote[66].end |
214.64721875 |
transcript.pyannote[67].speaker |
SPEAKER_00 |
transcript.pyannote[67].start |
215.67659375 |
transcript.pyannote[67].end |
216.65534375 |
transcript.pyannote[68].speaker |
SPEAKER_00 |
transcript.pyannote[68].start |
216.97596875 |
transcript.pyannote[68].end |
219.54096875 |
transcript.pyannote[69].speaker |
SPEAKER_00 |
transcript.pyannote[69].start |
219.60846875 |
transcript.pyannote[69].end |
221.12721875 |
transcript.pyannote[70].speaker |
SPEAKER_00 |
transcript.pyannote[70].start |
221.65034375 |
transcript.pyannote[70].end |
231.74159375 |
transcript.pyannote[71].speaker |
SPEAKER_00 |
transcript.pyannote[71].start |
232.23096875 |
transcript.pyannote[71].end |
235.53846875 |
transcript.pyannote[72].speaker |
SPEAKER_00 |
transcript.pyannote[72].start |
236.19659375 |
transcript.pyannote[72].end |
239.52096875 |
transcript.pyannote[73].speaker |
SPEAKER_00 |
transcript.pyannote[73].start |
239.97659375 |
transcript.pyannote[73].end |
242.47409375 |
transcript.pyannote[74].speaker |
SPEAKER_00 |
transcript.pyannote[74].start |
245.00534375 |
transcript.pyannote[74].end |
247.21596875 |
transcript.pyannote[75].speaker |
SPEAKER_00 |
transcript.pyannote[75].start |
247.58721875 |
transcript.pyannote[75].end |
252.64971875 |
transcript.pyannote[76].speaker |
SPEAKER_00 |
transcript.pyannote[76].start |
253.57784375 |
transcript.pyannote[76].end |
254.45534375 |
transcript.pyannote[77].speaker |
SPEAKER_00 |
transcript.pyannote[77].start |
256.34534375 |
transcript.pyannote[77].end |
257.84721875 |
transcript.pyannote[78].speaker |
SPEAKER_00 |
transcript.pyannote[78].start |
258.47159375 |
transcript.pyannote[78].end |
259.66971875 |
transcript.pyannote[79].speaker |
SPEAKER_00 |
transcript.pyannote[79].start |
260.64846875 |
transcript.pyannote[79].end |
261.20534375 |
transcript.pyannote[80].speaker |
SPEAKER_00 |
transcript.pyannote[80].start |
261.47534375 |
transcript.pyannote[80].end |
264.09096875 |
transcript.pyannote[81].speaker |
SPEAKER_00 |
transcript.pyannote[81].start |
264.58034375 |
transcript.pyannote[81].end |
270.62159375 |
transcript.pyannote[82].speaker |
SPEAKER_00 |
transcript.pyannote[82].start |
271.33034375 |
transcript.pyannote[82].end |
272.24159375 |
transcript.pyannote[83].speaker |
SPEAKER_00 |
transcript.pyannote[83].start |
273.23721875 |
transcript.pyannote[83].end |
274.58721875 |
transcript.pyannote[84].speaker |
SPEAKER_00 |
transcript.pyannote[84].start |
274.68846875 |
transcript.pyannote[84].end |
275.29596875 |
transcript.pyannote[85].speaker |
SPEAKER_00 |
transcript.pyannote[85].start |
275.93721875 |
transcript.pyannote[85].end |
277.10159375 |
transcript.pyannote[86].speaker |
SPEAKER_00 |
transcript.pyannote[86].start |
277.59096875 |
transcript.pyannote[86].end |
278.87346875 |
transcript.pyannote[87].speaker |
SPEAKER_00 |
transcript.pyannote[87].start |
280.03784375 |
transcript.pyannote[87].end |
286.78784375 |
transcript.pyannote[88].speaker |
SPEAKER_00 |
transcript.pyannote[88].start |
287.42909375 |
transcript.pyannote[88].end |
288.07034375 |
transcript.pyannote[89].speaker |
SPEAKER_00 |
transcript.pyannote[89].start |
288.84659375 |
transcript.pyannote[89].end |
298.97159375 |
transcript.pyannote[90].speaker |
SPEAKER_00 |
transcript.pyannote[90].start |
299.17409375 |
transcript.pyannote[90].end |
304.32096875 |
transcript.pyannote[91].speaker |
SPEAKER_00 |
transcript.pyannote[91].start |
304.89471875 |
transcript.pyannote[91].end |
306.61596875 |
transcript.pyannote[92].speaker |
SPEAKER_00 |
transcript.pyannote[92].start |
307.37534375 |
transcript.pyannote[92].end |
308.72534375 |
transcript.pyannote[93].speaker |
SPEAKER_00 |
transcript.pyannote[93].start |
309.18096875 |
transcript.pyannote[93].end |
311.45909375 |
transcript.pyannote[94].speaker |
SPEAKER_00 |
transcript.pyannote[94].start |
311.98221875 |
transcript.pyannote[94].end |
313.73721875 |
transcript.pyannote[95].speaker |
SPEAKER_00 |
transcript.pyannote[95].start |
314.58096875 |
transcript.pyannote[95].end |
319.86284375 |
transcript.pyannote[96].speaker |
SPEAKER_00 |
transcript.pyannote[96].start |
320.55471875 |
transcript.pyannote[96].end |
321.43221875 |
transcript.pyannote[97].speaker |
SPEAKER_00 |
transcript.pyannote[97].start |
321.95534375 |
transcript.pyannote[97].end |
324.09846875 |
transcript.pyannote[98].speaker |
SPEAKER_00 |
transcript.pyannote[98].start |
324.14909375 |
transcript.pyannote[98].end |
330.22409375 |
transcript.pyannote[99].speaker |
SPEAKER_01 |
transcript.pyannote[99].start |
330.84846875 |
transcript.pyannote[99].end |
410.93721875 |
transcript.pyannote[100].speaker |
SPEAKER_00 |
transcript.pyannote[100].start |
408.84471875 |
transcript.pyannote[100].end |
412.57409375 |
transcript.pyannote[101].speaker |
SPEAKER_01 |
transcript.pyannote[101].start |
412.57409375 |
transcript.pyannote[101].end |
418.27784375 |
transcript.pyannote[102].speaker |
SPEAKER_00 |
transcript.pyannote[102].start |
415.34159375 |
transcript.pyannote[102].end |
435.62534375 |
transcript.pyannote[103].speaker |
SPEAKER_01 |
transcript.pyannote[103].start |
420.43784375 |
transcript.pyannote[103].end |
421.29846875 |
transcript.pyannote[104].speaker |
SPEAKER_01 |
transcript.pyannote[104].start |
422.46284375 |
transcript.pyannote[104].end |
422.86784375 |
transcript.pyannote[105].speaker |
SPEAKER_00 |
transcript.pyannote[105].start |
435.67596875 |
transcript.pyannote[105].end |
435.77721875 |
transcript.pyannote[106].speaker |
SPEAKER_00 |
transcript.pyannote[106].start |
436.11471875 |
transcript.pyannote[106].end |
440.29971875 |
transcript.pyannote[107].speaker |
SPEAKER_00 |
transcript.pyannote[107].start |
440.94096875 |
transcript.pyannote[107].end |
451.87596875 |
transcript.pyannote[108].speaker |
SPEAKER_00 |
transcript.pyannote[108].start |
452.33159375 |
transcript.pyannote[108].end |
459.63846875 |
transcript.pyannote[109].speaker |
SPEAKER_00 |
transcript.pyannote[109].start |
460.14471875 |
transcript.pyannote[109].end |
465.02159375 |
transcript.pyannote[110].speaker |
SPEAKER_00 |
transcript.pyannote[110].start |
465.54471875 |
transcript.pyannote[110].end |
477.03659375 |
transcript.pyannote[111].speaker |
SPEAKER_00 |
transcript.pyannote[111].start |
478.09971875 |
transcript.pyannote[111].end |
478.89284375 |
transcript.pyannote[112].speaker |
SPEAKER_00 |
transcript.pyannote[112].start |
479.36534375 |
transcript.pyannote[112].end |
482.77409375 |
transcript.pyannote[113].speaker |
SPEAKER_00 |
transcript.pyannote[113].start |
482.92596875 |
transcript.pyannote[113].end |
486.14909375 |
transcript.pyannote[114].speaker |
SPEAKER_00 |
transcript.pyannote[114].start |
486.63846875 |
transcript.pyannote[114].end |
490.46909375 |
transcript.pyannote[115].speaker |
SPEAKER_00 |
transcript.pyannote[115].start |
491.26221875 |
transcript.pyannote[115].end |
492.67971875 |
transcript.pyannote[116].speaker |
SPEAKER_00 |
transcript.pyannote[116].start |
493.55721875 |
transcript.pyannote[116].end |
496.27409375 |
transcript.pyannote[117].speaker |
SPEAKER_00 |
transcript.pyannote[117].start |
497.05034375 |
transcript.pyannote[117].end |
500.00346875 |
transcript.pyannote[118].speaker |
SPEAKER_00 |
transcript.pyannote[118].start |
500.89784375 |
transcript.pyannote[118].end |
502.83846875 |
transcript.pyannote[119].speaker |
SPEAKER_00 |
transcript.pyannote[119].start |
504.07034375 |
transcript.pyannote[119].end |
511.49534375 |
transcript.pyannote[120].speaker |
SPEAKER_00 |
transcript.pyannote[120].start |
511.90034375 |
transcript.pyannote[120].end |
513.23346875 |
transcript.pyannote[121].speaker |
SPEAKER_00 |
transcript.pyannote[121].start |
513.62159375 |
transcript.pyannote[121].end |
525.43409375 |
transcript.pyannote[122].speaker |
SPEAKER_00 |
transcript.pyannote[122].start |
525.97409375 |
transcript.pyannote[122].end |
535.05284375 |
transcript.pyannote[123].speaker |
SPEAKER_00 |
transcript.pyannote[123].start |
535.20471875 |
transcript.pyannote[123].end |
540.45284375 |
transcript.pyannote[124].speaker |
SPEAKER_00 |
transcript.pyannote[124].start |
541.51596875 |
transcript.pyannote[124].end |
546.10596875 |
transcript.pyannote[125].speaker |
SPEAKER_00 |
transcript.pyannote[125].start |
546.25784375 |
transcript.pyannote[125].end |
549.41346875 |
transcript.pyannote[126].speaker |
SPEAKER_00 |
transcript.pyannote[126].start |
550.62846875 |
transcript.pyannote[126].end |
552.31596875 |
transcript.pyannote[127].speaker |
SPEAKER_00 |
transcript.pyannote[127].start |
552.82221875 |
transcript.pyannote[127].end |
553.46346875 |
transcript.pyannote[128].speaker |
SPEAKER_00 |
transcript.pyannote[128].start |
553.73346875 |
transcript.pyannote[128].end |
555.37034375 |
transcript.pyannote[129].speaker |
SPEAKER_00 |
transcript.pyannote[129].start |
555.64034375 |
transcript.pyannote[129].end |
558.62721875 |
transcript.pyannote[130].speaker |
SPEAKER_00 |
transcript.pyannote[130].start |
559.43721875 |
transcript.pyannote[130].end |
565.03971875 |
transcript.pyannote[131].speaker |
SPEAKER_00 |
transcript.pyannote[131].start |
565.81596875 |
transcript.pyannote[131].end |
568.53284375 |
transcript.pyannote[132].speaker |
SPEAKER_00 |
transcript.pyannote[132].start |
568.85346875 |
transcript.pyannote[132].end |
574.15221875 |
transcript.pyannote[133].speaker |
SPEAKER_00 |
transcript.pyannote[133].start |
575.18159375 |
transcript.pyannote[133].end |
576.86909375 |
transcript.pyannote[134].speaker |
SPEAKER_00 |
transcript.pyannote[134].start |
577.44284375 |
transcript.pyannote[134].end |
579.24846875 |
transcript.pyannote[135].speaker |
SPEAKER_00 |
transcript.pyannote[135].start |
579.97409375 |
transcript.pyannote[135].end |
580.69971875 |
transcript.pyannote[136].speaker |
SPEAKER_00 |
transcript.pyannote[136].start |
580.86846875 |
transcript.pyannote[136].end |
582.25221875 |
transcript.pyannote[137].speaker |
SPEAKER_00 |
transcript.pyannote[137].start |
582.94409375 |
transcript.pyannote[137].end |
583.65284375 |
transcript.pyannote[138].speaker |
SPEAKER_00 |
transcript.pyannote[138].start |
584.66534375 |
transcript.pyannote[138].end |
585.28971875 |
transcript.pyannote[139].speaker |
SPEAKER_00 |
transcript.pyannote[139].start |
585.86346875 |
transcript.pyannote[139].end |
586.50471875 |
transcript.pyannote[140].speaker |
SPEAKER_00 |
transcript.pyannote[140].start |
587.07846875 |
transcript.pyannote[140].end |
588.78284375 |
transcript.pyannote[141].speaker |
SPEAKER_00 |
transcript.pyannote[141].start |
589.13721875 |
transcript.pyannote[141].end |
595.92096875 |
transcript.pyannote[142].speaker |
SPEAKER_00 |
transcript.pyannote[142].start |
595.97159375 |
transcript.pyannote[142].end |
599.68409375 |
transcript.pyannote[143].speaker |
SPEAKER_00 |
transcript.pyannote[143].start |
600.37596875 |
transcript.pyannote[143].end |
602.06346875 |
transcript.pyannote[144].speaker |
SPEAKER_00 |
transcript.pyannote[144].start |
602.21534375 |
transcript.pyannote[144].end |
609.18471875 |
transcript.pyannote[145].speaker |
SPEAKER_00 |
transcript.pyannote[145].start |
609.60659375 |
transcript.pyannote[145].end |
611.00721875 |
transcript.pyannote[146].speaker |
SPEAKER_00 |
transcript.pyannote[146].start |
611.86784375 |
transcript.pyannote[146].end |
612.84659375 |
transcript.pyannote[147].speaker |
SPEAKER_00 |
transcript.pyannote[147].start |
613.57221875 |
transcript.pyannote[147].end |
615.31034375 |
transcript.pyannote[148].speaker |
SPEAKER_00 |
transcript.pyannote[148].start |
616.08659375 |
transcript.pyannote[148].end |
617.28471875 |
transcript.pyannote[149].speaker |
SPEAKER_00 |
transcript.pyannote[149].start |
617.75721875 |
transcript.pyannote[149].end |
619.14096875 |
transcript.pyannote[150].speaker |
SPEAKER_00 |
transcript.pyannote[150].start |
619.93409375 |
transcript.pyannote[150].end |
627.49409375 |
transcript.pyannote[151].speaker |
SPEAKER_00 |
transcript.pyannote[151].start |
628.28721875 |
transcript.pyannote[151].end |
629.02971875 |
transcript.pyannote[152].speaker |
SPEAKER_00 |
transcript.pyannote[152].start |
629.62034375 |
transcript.pyannote[152].end |
631.17284375 |
transcript.pyannote[153].speaker |
SPEAKER_00 |
transcript.pyannote[153].start |
632.05034375 |
transcript.pyannote[153].end |
636.75846875 |
transcript.pyannote[154].speaker |
SPEAKER_00 |
transcript.pyannote[154].start |
637.87221875 |
transcript.pyannote[154].end |
643.77846875 |
transcript.pyannote[155].speaker |
SPEAKER_00 |
transcript.pyannote[155].start |
644.70659375 |
transcript.pyannote[155].end |
646.47846875 |
transcript.pyannote[156].speaker |
SPEAKER_00 |
transcript.pyannote[156].start |
647.17034375 |
transcript.pyannote[156].end |
655.10159375 |
transcript.pyannote[157].speaker |
SPEAKER_00 |
transcript.pyannote[157].start |
655.42221875 |
transcript.pyannote[157].end |
657.05909375 |
transcript.pyannote[158].speaker |
SPEAKER_00 |
transcript.pyannote[158].start |
657.48096875 |
transcript.pyannote[158].end |
664.45034375 |
transcript.pyannote[159].speaker |
SPEAKER_00 |
transcript.pyannote[159].start |
664.66971875 |
transcript.pyannote[159].end |
669.17534375 |
transcript.pyannote[160].speaker |
SPEAKER_00 |
transcript.pyannote[160].start |
669.85034375 |
transcript.pyannote[160].end |
676.53284375 |
transcript.pyannote[161].speaker |
SPEAKER_01 |
transcript.pyannote[161].start |
669.95159375 |
transcript.pyannote[161].end |
672.11159375 |
transcript.pyannote[162].speaker |
SPEAKER_01 |
transcript.pyannote[162].start |
673.17471875 |
transcript.pyannote[162].end |
673.68096875 |
transcript.pyannote[163].speaker |
SPEAKER_01 |
transcript.pyannote[163].start |
675.52034375 |
transcript.pyannote[163].end |
676.56659375 |
transcript.pyannote[164].speaker |
SPEAKER_00 |
transcript.pyannote[164].start |
676.56659375 |
transcript.pyannote[164].end |
678.33846875 |
transcript.pyannote[165].speaker |
SPEAKER_01 |
transcript.pyannote[165].start |
677.35971875 |
transcript.pyannote[165].end |
683.80596875 |
transcript.pyannote[166].speaker |
SPEAKER_00 |
transcript.pyannote[166].start |
682.79346875 |
transcript.pyannote[166].end |
685.17284375 |
transcript.whisperx[0].start |
6.239 |
transcript.whisperx[0].end |
33.167 |
transcript.whisperx[0].text |
主席我請部長有請莊部長謝謝主席委員好部長政府要健全投資管道那麼引導民間的遊資避免熱錢過度投入房市這是政府一貫的政策 |
transcript.whisperx[1].start |
33.991 |
transcript.whisperx[1].end |
56.83 |
transcript.whisperx[1].text |
那引導民間的油資我們看得到其實在民間投入公共建設的部分公共工程的部分人家都有一定的量我比如說這幾年下來民間投資公共建設金額都維持在1800億以上就以這三年1888億到 |
transcript.whisperx[2].start |
60.242 |
transcript.whisperx[2].end |
73.235 |
transcript.whisperx[2].text |
前年的2800億去年也都有18766億但是我們要引導另外就是關於受險業他們有這麼龐大的資金 |
transcript.whisperx[3].start |
76.482 |
transcript.whisperx[3].end |
98.536 |
transcript.whisperx[3].text |
那但是他們投入公共建設的部分卻是逐年下滑了本來他們授權那麼龐大的資金投入公共建設本來就不多了然後從三年前開始我不客氣的講那叫雪崩式的下滑了你三年前355億那一路下來 |
transcript.whisperx[4].start |
105.973 |
transcript.whisperx[4].end |
122.66 |
transcript.whisperx[4].text |
兩年前442億到去年竟然跌到只有112億我相信部長你應該非常清楚授權他們可以運用的資金那是不得了的龐大 |
transcript.whisperx[5].start |
124.574 |
transcript.whisperx[5].end |
142.673 |
transcript.whisperx[5].text |
那都兆元以上光我們講他這3年來28兆30兆累計到31兆31兆欸去年31兆可運用的授權資金竟然只有112億投入 |
transcript.whisperx[6].start |
146.036 |
transcript.whisperx[6].end |
165.798 |
transcript.whisperx[6].text |
公共建設而公共建設正是我們現在從中央到地方大家急於需要資金去投入的部分那結果受險資金不來公共建設把政府的政策呼籲放一邊 |
transcript.whisperx[7].start |
167.93 |
transcript.whisperx[7].end |
188.322 |
transcript.whisperx[7].text |
也就算了他還把錢拿去投入大量的投入房市所以難怪啊我們台灣的房地產難道難怪部長也怪啊難怪我們壽星階層親人朋友們買房完全買不起遙不可及的夢想啊所以我不曉得部長你們 |
transcript.whisperx[8].start |
194.192 |
transcript.whisperx[8].end |
214.52 |
transcript.whisperx[8].text |
徒法不足以自刑不是嗎一定要政府的相關的部會要去監督要去除了引領之外後續給蘿蔔他不聽話不吃後面就是棒子了 |
transcript.whisperx[9].start |
215.731 |
transcript.whisperx[9].end |
239.421 |
transcript.whisperx[9].text |
不是這樣子嗎那我認為財政部在這一塊則無旁貸你們應該出面你們可以找金管會一起看怎麼樣對壽險業來做一個要求你看喔我就講去年31兆壽險可運用的資金竟然只有0.03%啦 |
transcript.whisperx[10].start |
245.063 |
transcript.whisperx[10].end |
269.922 |
transcript.whisperx[10].text |
零點零三個percent欸萬分之三一百一十二億去投入公共建設部長我我們臺北市政府現在最迫切的捷運北環段南環段東環段光這個三個線總結呢我就不提我相信你很清楚光這三個線現在被 |
transcript.whisperx[11].start |
273.291 |
transcript.whisperx[11].end |
278.66 |
transcript.whisperx[11].text |
因為疫情的延誤規劃的延誤那造成的 |
transcript.whisperx[12].start |
280.12 |
transcript.whisperx[12].end |
296.248 |
transcript.whisperx[12].text |
以工資物料的上漲光這三線現在差額就差440億之多如果我們把細節稍微修訂如果我們能夠更早去引領受險業的資金來參與440億對受險可運用資金31兆而言懶散的就對了看不到的就對了 |
transcript.whisperx[13].start |
307.421 |
transcript.whisperx[13].end |
329.952 |
transcript.whisperx[13].text |
然後我們就光就講首都台北的捷運就不必延誤那麼多年啊那延誤多年以後都會造成我們社會成本的上漲嘛不是這樣嗎所以這個部分我覺得財政部已經到了刻不容緩的地步了我不曉得你們有沒有什麼打算什麼做法 |
transcript.whisperx[14].start |
331.262 |
transcript.whisperx[14].end |
354.271 |
transcript.whisperx[14].text |
謝謝委員的提示您的提見非常好第一個就是說對於公共建設的部分我們鼓勵各個機關它用促餐的模式來做也就是說不是都編公務預算來指引比如您剛剛講的軌道建設應該我們在國發會討論計劃的時候我們都會去看看它的日常性然後希望以促餐模式來辦那你以促餐模式的辦的話你就可以引進 |
transcript.whisperx[15].start |
354.531 |
transcript.whisperx[15].end |
372.875 |
transcript.whisperx[15].text |
﹗ |
transcript.whisperx[16].start |
372.915 |
transcript.whisperx[16].end |
385.988 |
transcript.whisperx[16].text |
那保險業的部分我們希望他投入其實財政部已經做了很多努力第一個我們建議就是說修正保險法那個部分也在兩年前過了也就是保險公司他投注他希望能夠參與相關的一個營運所以讓他可以在公司裡面因為我們會成立一個特許公司比如說那個你公建的話都會有一個獨立的特許公司他可以派董事在裡面的席次 |
transcript.whisperx[17].start |
395.657 |
transcript.whisperx[17].end |
413.404 |
transcript.whisperx[17].text |
﹏ |
transcript.whisperx[18].start |
413.664 |
transcript.whisperx[18].end |
435.213 |
transcript.whisperx[18].text |
但他可以去做其他的產業然後找協議成立一個三方的合約來做你說的這些就是給蘿蔔的部分可是強制的部分你可以強制我們修法給蘿蔔這當然應當可是因為他投資的那個比例已經過低嘛他一頭熱的投入不動產光109年就好光109年一年啊 |
transcript.whisperx[19].start |
440.998 |
transcript.whisperx[19].end |
464.816 |
transcript.whisperx[19].text |
他們投入不動產就1800億啦就抵了那三四年四年四年整個投資公共建設的金額難道他們每年除了1800億2000億大量金額投入不動產以外累計現在授權率已經一兆6500億在房地產上面 |
transcript.whisperx[20].start |
465.769 |
transcript.whisperx[20].end |
491.875 |
transcript.whisperx[20].text |
所以這當然你講對啦他受選資金來自於社會大眾他當然要往穩定的方向去但是我們政府已經給了一條路嘛你看那個部長我不是危言所聽我剛剛我本來只想跟你講這4年你要是從101年算起啊從我們已經有這一個規劃算起到現在第14年啊 |
transcript.whisperx[21].start |
493.615 |
transcript.whisperx[21].end |
502.262 |
transcript.whisperx[21].text |
你要是從101年算起啊他實際投入金額都大概都大概才一百來億 |
transcript.whisperx[22].start |
504.164 |
transcript.whisperx[22].end |
525.056 |
transcript.whisperx[22].text |
累積啊累積14年來他總共來投入一千兩百五十一億那累積喔累積他可運用我剛剛講了31兆這個不講光是講那你來投資公認建設我們有訂一個上限給他也要三兆一 |
transcript.whisperx[23].start |
526.136 |
transcript.whisperx[23].end |
549.233 |
transcript.whisperx[23].text |
三兆一千億三兆一千億這十四年來規定他要達到了標準的部分他累計只投入一千兩百五十一億累計這麼多他還有兩兆九千億該進來的他不進來那我剛剛跟你提光是我們台北 |
transcript.whisperx[24].start |
551.1 |
transcript.whisperx[24].end |
574.104 |
transcript.whisperx[24].text |
這麼重要的這北環東環南環就差440億而已耶然後他手上他還有兩兆九千億我們規定他要達到的金額喔所以我認為部長我認為要積極啦要積極我為什麼現在特別跟你講這個其實部長很多部會首長啦現在都開始數饅頭了啦 |
transcript.whisperx[25].start |
580.011 |
transcript.whisperx[25].end |
599.506 |
transcript.whisperx[25].text |
等著拍畢業照就對但我認為財政部、金管會、中央銀行絕對不行為什麼因為你們在這段時間其實你們可以做更做更特別的事情啦因為你現在下去要求你毫無其他顧忌嘛 |
transcript.whisperx[26].start |
600.424 |
transcript.whisperx[26].end |
618.921 |
transcript.whisperx[26].text |
你現在等於總檢討嘛總檢討說這麼多年來受檢驗把政府既定的政策好意不當一回事不當一回事啊他現在擺那麼多在那邊那當然啊為了說保障 |
transcript.whisperx[27].start |
620 |
transcript.whisperx[27].end |
646.344 |
transcript.whisperx[27].text |
那個保險人的權益讓他知道他說那我不得已我就去買不動產好啦我們要他說那你不動產那你至少不要買住家的不要買住宅的我買住宅的他去買商辦一樣也是另外一種炒作不是嗎另外一種炒作不是嗎所以我認為部長可以很積極的做很多事我希望是不是你可以 |
transcript.whisperx[28].start |
647.473 |
transcript.whisperx[28].end |
668.969 |
transcript.whisperx[28].text |
馬上跟金管會聯繫,說要求這一些不管是IEIT這些基金,這個送錢這些基金要引導而且要求他們投入公共建設或者綠色的建設。這樣不知道對嗎?這是政府鼓勵也是全民所期待的嘛。 |
transcript.whisperx[29].start |
669.995 |
transcript.whisperx[29].end |
670.375 |
transcript.whisperx[29].text |
謝謝委員謝謝王世堅 |