iVOD / 149766

Field Value
IVOD_ID 149766
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/149766
日期 2024-03-13
會議資料.會議代碼 委員會-11-1-26-5
會議資料.會議代碼:str 第11屆第1會期社會福利及衛生環境委員會第5次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 5
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第1會期社會福利及衛生環境委員會第5次全體委員會議
影片種類 Clip
開始時間 2024-03-13T10:28:16+08:00
結束時間 2024-03-13T10:39:25+08:00
影片長度 00:11:09
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/7ed54bd69a3b6903c76f884008139d5c14b75c67118f492bf8ba9b0039caa7a6130a6e79d11c52415ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 楊曜
委員發言時間 10:28:16 - 10:39:25
會議時間 2024-03-13T09:00:00+08:00
會議名稱 立法院第11屆第1會期社會福利及衛生環境委員會第5次全體委員會議(事由:邀請勞動部部長列席報告業務概況,並備質詢。 【3月13日及14日二天一次會】)
gazette.lineno 621
gazette.blocks[0][0] 楊委員曜:(10時28分)謝謝主席。主席,請一下許部長。
gazette.blocks[1][0] 主席:請許部長。
gazette.blocks[2][0] 許部長銘春:楊委員好。
gazette.blocks[3][0] 楊委員曜:部長好。部長,今天的業務報告是有關年金改革準備的部分,部裡面這邊還是一直停留在蒐集意見,對不對?
gazette.blocks[4][0] 許部長銘春:蒐集意見跟溝通。
gazette.blocks[5][0] 楊委員曜:會不會蒐集意見跟溝通的時間太長了?我知道這是一項很嚴峻的工程,我也不是想為難你,可是我覺得好像每一次的業務報告中有關年改的部分,大概都是一直停留在蒐集意見跟評估,這樣一來,到底年改什麼時候可以啟動、什麼時候可以落實,讓廣大的勞工可以得到安心,到底是什麼時候?
gazette.blocks[6][0] 許部長銘春:委員,關於期程部分,我們會來通盤的規劃,只是說因為……
gazette.blocks[7][0] 楊委員曜:部長,我打岔一下,假如說今天來業務報告就已經有期程,那我可能還可以接受。可是這6年來,部長也已經任滿6年了,是一個非常長壽的部長,但對於跟勞工這麼息息相關、影響這麼重大的一個政策,卻一直停留在準備、蒐集意見以達到共識的階段,這點本席真的沒有辦法接受!
gazette.blocks[8][0] 許部長銘春:謝謝委員。因為這部分的確不容易,因為……
gazette.blocks[9][0] 楊委員曜:我知道。
gazette.blocks[10][0] 許部長銘春:因為勞工人口數實在太多,然後每個產業的職業勞工意見又都不同,關心的點也都不同,所以我也認為其實應該要更……
gazette.blocks[11][0] 楊委員曜:我曾經在委員會跟部長討論過,我覺得任何一項改革都不可能有共識。我也知道勞工的年金改革為什麼困難,因為他原本可以領到的給付就少,廣大的受薪階級勞工,並沒有因為臺灣經濟成長而使其薪資等比例增加。所以要增加保費有一定的阻力,要延後退可能會引發很大的風波。我知道困難在哪裡,可是也正因為困難,所以選民才給民進黨機會,就是要民進黨面對困難。
gazette.blocks[11][1] 記得我們在從事軍公教年改時,大概整個民進黨黨團受影響最大的就是我,因為澎湖的軍公教比例太高了!但我還是戴著鋼盔挺過了年改,我又當選兩屆了。如同蔡英文總統講的,應該要改革的就是必須要改革,必須要想出一套方案讓退休的不恐懼,讓正在繳保費的心安,這是我們的責任。這幾年提撥成為改革唯一的選項,這個本席也不反對,甚至我已經提案把政府負擔最終給付責任入法。為什麼我這麼重視這件事情?因為必須讓勞動者有一個安定的心情,讓他知道不管任何人執政,都不會放棄這一千多萬的勞工朋友,這一千多萬對於臺灣經濟有卓著貢獻的勞工,所以我覺得我們必須要去面對,現在就是這樣。就像我剛才講的,我知道改革困難,為什麼?不要說減少給付,就以目前的給付來看,目前請領勞工給付的人數大概有174萬……
gazette.blocks[12][0] 許部長銘春:對。
gazette.blocks[13][0] 楊委員曜:平均每個月領到的是一萬八千多,可是臺灣最低生活費,以臺北市來講,已經高達一萬九千多。臺北市以外的地方平均值也將近一萬五千,現在領這樣子,在臺北市已經未達最低生活費標準了,萬一再減少給付的話怎麼辦?
gazette.blocks[14][0] 許部長銘春:對。跟委員報告,以臺灣的產業勞工來看,退休給付包括兩個:一個勞保,另外一個就是勞退……
gazette.blocks[15][0] 楊委員曜:勞退。
gazette.blocks[16][0] 許部長銘春:這兩個加起來……當然還有健保、長照,這都是照顧我們的退休人員……
gazette.blocks[17][0] 楊委員曜:健保跟長照是另外一回事,我們聚焦在勞工部分,也就是勞保與勞退。我認為勞退比例太低了,自提的部分太低了……
gazette.blocks[18][0] 許部長銘春:自提比較低,但雇提也達到七百多萬……
gazette.blocks[19][0] 楊委員曜:大概是這樣子,全體提繳數在106年時,大概是百分之十四點多……
gazette.blocks[20][0] 許部長銘春:對、對。
gazette.blocks[21][0] 楊委員曜:現在呢?
gazette.blocks[22][0] 許部長銘春:自提部分,去年是14.17%……
gazette.blocks[23][0] 楊委員曜:14.17%?
gazette.blocks[24][0] 許部長銘春:對,人數是106萬。
gazette.blocks[25][0] 楊委員曜:好,14.17%。就像部長講的,沒有錯,我們對勞工退休保障的設計架構是在勞保與勞退,問題是勞退本身有一個現象,即這百分之十四點多,你仔細去看,薪資所得越高的,越願意配合自提;越低的,因為他所得本來就低,所以要再提出6%可能有困難度。
gazette.blocks[26][0] 許部長銘春:還有雇提6%,這6%是雇主一定要提撥的。
gazette.blocks[27][0] 楊委員曜:對,我知道。那6%大家都有……
gazette.blocks[28][0] 許部長銘春:對。
gazette.blocks[29][0] 楊委員曜:我現在講的是6%加6%……
gazette.blocks[30][0] 許部長銘春:自提等於另外……
gazette.blocks[31][0] 楊委員曜:特別是薪資低的勞工來看,6%加6%才足以保障他的退休生活!因為他本來就低薪,可以領的勞保給付本來就低,然後又因為職涯過程、生活所需、教養子女、孝敬父母,所以自提6%對他來講,會馬上面臨生活的困頓,部長懂我的意思嗎?
gazette.blocks[32][0] 許部長銘春:我知道。如果是低薪可能……
gazette.blocks[33][0] 楊委員曜:多數都是低薪,既是低薪,自提的很少。
gazette.blocks[34][0] 許部長銘春:我們現在有統計,月投保薪資平均大概是三萬七千;如果以三萬七千來看,他的勞保,按照現制,大概領一萬七千左右。如果再加上勞退,就是雇提,只算雇提不算自提,大概一萬,所以勞保加勞退,大概二萬七千七百。以現在一個退休勞工的平均月投保薪資三萬七千來看,我們平均大概抓三萬七千,這樣領起來有二萬七千多,替代率68%。
gazette.blocks[35][0] 楊委員曜:這種平均值會比較看不到真正的弱勢,保障弱勢是民進黨邁向執政最重要的一個東西。目前勞保加勞退的平均值有二萬七千,看起來好像夠,暫且不管目前的通貨膨脹,可是我們是不是能夠多替這些低薪的勞工想想辦法?
gazette.blocks[36][0] 許部長銘春:弱勢要特別照顧,我覺得委員您的建議,我們會……
gazette.blocks[37][0] 楊委員曜:我也知道很困難,可是我常說,不困難的事怎麼輪得到我們做?我最後問一個問題,本席已經提出由政府擔負最終的支付責任保證,對這樣的提案,勞動部的立場會支持嗎?
gazette.blocks[38][0] 許部長銘春:我們支持。
gazette.blocks[39][0] 楊委員曜:好,謝謝部長,謝謝主席。
gazette.blocks[40][0] 主席:謝謝楊曜委員。我們現在休息10分鐘。
gazette.blocks[40][1] 休息(10時39分)
gazette.blocks[40][2] 繼續開會(10時50分)
gazette.blocks[41][0] 主席:接下來請王育敏委員。
gazette.agenda.page_end 286
gazette.agenda.meet_id 委員會-11-1-26-5
gazette.agenda.speakers[0] 黃秀芳
gazette.agenda.speakers[1] 陳昭姿
gazette.agenda.speakers[2] 陳菁徽
gazette.agenda.speakers[3] 盧縣一
gazette.agenda.speakers[4] 邱鎮軍
gazette.agenda.speakers[5] 蘇清泉
gazette.agenda.speakers[6] 涂權吉
gazette.agenda.speakers[7] 王正旭
gazette.agenda.speakers[8] 楊曜
gazette.agenda.speakers[9] 王育敏
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 林淑芬
gazette.agenda.speakers[12] 楊瓊瓔
gazette.agenda.speakers[13] 林月琴
gazette.agenda.speakers[14] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[15] 李彥秀
gazette.agenda.speakers[16] 羅智強
gazette.agenda.speakers[17] 牛煦庭
gazette.agenda.speakers[18] 劉建國
gazette.agenda.speakers[19] 王鴻薇
gazette.agenda.speakers[20] 張雅琳
gazette.agenda.speakers[21] 黃仁
gazette.agenda.speakers[22] 吳春城
gazette.agenda.speakers[23] 陳瑩
gazette.agenda.speakers[24] 廖偉翔
gazette.agenda.speakers[25] 林德福
gazette.agenda.speakers[26] 葉元之
gazette.agenda.page_start 193
gazette.agenda.meetingDate[0] 2024-03-13
gazette.agenda.gazette_id 1131301
gazette.agenda.agenda_lcidc_ids[0] 1131301_00005
gazette.agenda.meet_name 立法院第11屆第1會期社會福利及衛生環境委員會第5次全體委員會議紀錄
gazette.agenda.content 邀請勞動部部長列席報告業務概況,並備質詢
gazette.agenda.agenda_id 1131301_00004
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.13971875
transcript.pyannote[0].end 8.02971875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 8.41784375
transcript.pyannote[1].end 9.21096875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 13.56471875
transcript.pyannote[2].end 14.13846875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 14.13846875
transcript.pyannote[3].end 14.17221875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 14.54346875
transcript.pyannote[4].end 15.25221875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 15.58971875
transcript.pyannote[5].end 16.95659375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 23.16659375
transcript.pyannote[6].end 26.20409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 26.50784375
transcript.pyannote[7].end 30.06846875
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 30.81096875
transcript.pyannote[8].end 34.32096875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 35.53596875
transcript.pyannote[9].end 37.66221875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 37.66221875
transcript.pyannote[10].end 39.02909375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 42.01596875
transcript.pyannote[11].end 42.77534375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 43.19721875
transcript.pyannote[12].end 44.17596875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 44.81721875
transcript.pyannote[13].end 48.17534375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 48.96846875
transcript.pyannote[14].end 54.16596875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 54.77346875
transcript.pyannote[15].end 56.54534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 57.18659375
transcript.pyannote[16].end 62.60346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 63.56534375
transcript.pyannote[17].end 66.70409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 67.17659375
transcript.pyannote[18].end 71.90159375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 72.69471875
transcript.pyannote[19].end 73.99409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 74.24721875
transcript.pyannote[20].end 82.12784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 83.51159375
transcript.pyannote[21].end 86.81909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 86.97096875
transcript.pyannote[22].end 86.98784375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 87.76409375
transcript.pyannote[23].end 88.64159375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 89.36721875
transcript.pyannote[24].end 93.61971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 93.61971875
transcript.pyannote[25].end 101.60159375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 95.96534375
transcript.pyannote[26].end 95.98221875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 95.98221875
transcript.pyannote[27].end 97.39971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 97.39971875
transcript.pyannote[28].end 97.43346875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 97.43346875
transcript.pyannote[29].end 97.45034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 101.87159375
transcript.pyannote[30].end 103.32284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 104.08221875
transcript.pyannote[31].end 106.39409375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 106.39409375
transcript.pyannote[32].end 106.68096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 106.95096875
transcript.pyannote[33].end 109.38096875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 109.87034375
transcript.pyannote[34].end 120.60284375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 121.00784375
transcript.pyannote[35].end 136.51596875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 136.61721875
transcript.pyannote[36].end 136.93784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 137.51159375
transcript.pyannote[37].end 139.84034375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 140.27909375
transcript.pyannote[38].end 140.92034375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 141.32534375
transcript.pyannote[39].end 142.75971875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 142.89471875
transcript.pyannote[40].end 147.28221875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 142.96221875
transcript.pyannote[41].end 144.02534375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 146.77596875
transcript.pyannote[42].end 147.23159375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 147.73784375
transcript.pyannote[43].end 153.96471875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 153.49221875
transcript.pyannote[44].end 154.03221875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 154.03221875
transcript.pyannote[45].end 154.84221875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 154.36971875
transcript.pyannote[46].end 158.89221875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 158.52096875
transcript.pyannote[47].end 165.62534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 160.22534375
transcript.pyannote[48].end 160.51221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 166.50284375
transcript.pyannote[49].end 170.67096875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 172.42596875
transcript.pyannote[50].end 175.48034375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 175.75034375
transcript.pyannote[51].end 179.83409375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 180.66096875
transcript.pyannote[52].end 187.47846875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 188.52471875
transcript.pyannote[53].end 189.14909375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 190.54971875
transcript.pyannote[54].end 195.40971875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 196.13534375
transcript.pyannote[55].end 197.18159375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 197.53596875
transcript.pyannote[56].end 197.58659375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 197.95784375
transcript.pyannote[57].end 199.03784375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 200.50596875
transcript.pyannote[58].end 201.13034375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 202.19346875
transcript.pyannote[59].end 202.85159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 203.18909375
transcript.pyannote[60].end 204.89346875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 205.24784375
transcript.pyannote[61].end 206.10846875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 206.66534375
transcript.pyannote[62].end 208.60596875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 209.24721875
transcript.pyannote[63].end 211.15409375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 211.60971875
transcript.pyannote[64].end 212.50409375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 213.68534375
transcript.pyannote[65].end 215.84534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 216.60471875
transcript.pyannote[66].end 218.44409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 219.01784375
transcript.pyannote[67].end 220.68846875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 222.27471875
transcript.pyannote[68].end 224.97471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 226.40909375
transcript.pyannote[69].end 229.88534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 230.44221875
transcript.pyannote[70].end 233.19284375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 233.26034375
transcript.pyannote[71].end 233.42909375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 234.08721875
transcript.pyannote[72].end 235.50471875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 235.94346875
transcript.pyannote[73].end 236.63534375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 236.87159375
transcript.pyannote[74].end 237.34409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 238.33971875
transcript.pyannote[75].end 239.28471875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 239.90909375
transcript.pyannote[76].end 241.05659375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 242.01846875
transcript.pyannote[77].end 244.66784375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 245.42721875
transcript.pyannote[78].end 249.15659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 249.57846875
transcript.pyannote[79].end 251.02971875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 251.31659375
transcript.pyannote[80].end 255.65346875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 256.32846875
transcript.pyannote[81].end 258.20159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 258.33659375
transcript.pyannote[82].end 259.72034375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 260.51346875
transcript.pyannote[83].end 261.17159375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 261.82971875
transcript.pyannote[84].end 262.31909375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 263.12909375
transcript.pyannote[85].end 268.12409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 268.76534375
transcript.pyannote[86].end 273.84471875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 274.51971875
transcript.pyannote[87].end 275.14409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 275.19471875
transcript.pyannote[88].end 281.82659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 281.97846875
transcript.pyannote[89].end 283.54784375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 283.56471875
transcript.pyannote[90].end 283.91909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 283.96971875
transcript.pyannote[91].end 284.98221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 284.98221875
transcript.pyannote[92].end 285.28596875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 285.48846875
transcript.pyannote[93].end 290.02784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 290.06159375
transcript.pyannote[94].end 292.59284375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 293.40284375
transcript.pyannote[95].end 293.92596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 294.76971875
transcript.pyannote[96].end 296.42346875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 297.48659375
transcript.pyannote[97].end 298.56659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 299.17409375
transcript.pyannote[98].end 299.69721875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 301.45221875
transcript.pyannote[99].end 302.51534375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 303.08909375
transcript.pyannote[100].end 303.94971875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 303.96659375
transcript.pyannote[101].end 303.98346875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 304.25346875
transcript.pyannote[102].end 305.28284375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 305.60346875
transcript.pyannote[103].end 311.29034375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 312.52221875
transcript.pyannote[104].end 316.35284375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 316.94346875
transcript.pyannote[105].end 320.82471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 320.82471875
transcript.pyannote[106].end 321.07784375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 321.07784375
transcript.pyannote[107].end 324.25034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 321.09471875
transcript.pyannote[108].end 321.11159375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 324.58784375
transcript.pyannote[109].end 327.05159375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 327.49034375
transcript.pyannote[110].end 328.33409375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 329.26221875
transcript.pyannote[111].end 332.67096875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 332.97471875
transcript.pyannote[112].end 334.61159375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 334.99971875
transcript.pyannote[113].end 335.57346875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 336.82221875
transcript.pyannote[114].end 340.36596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 340.75409375
transcript.pyannote[115].end 342.86346875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 342.96471875
transcript.pyannote[116].end 343.21784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 344.24721875
transcript.pyannote[117].end 345.93471875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 346.60971875
transcript.pyannote[118].end 347.43659375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 348.16221875
transcript.pyannote[119].end 349.09034375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 350.25471875
transcript.pyannote[120].end 352.02659375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 352.87034375
transcript.pyannote[121].end 353.66346875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 354.28784375
transcript.pyannote[122].end 355.57034375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 355.94159375
transcript.pyannote[123].end 356.83596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 357.74721875
transcript.pyannote[124].end 359.95784375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 360.31221875
transcript.pyannote[125].end 361.24034375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 362.62409375
transcript.pyannote[126].end 365.44221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 366.35346875
transcript.pyannote[127].end 368.58096875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 369.49221875
transcript.pyannote[128].end 370.99409375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 371.53409375
transcript.pyannote[129].end 374.03159375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 374.08221875
transcript.pyannote[130].end 376.02284375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 376.10721875
transcript.pyannote[131].end 376.37721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 376.68096875
transcript.pyannote[132].end 377.37284375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 378.35159375
transcript.pyannote[133].end 379.92096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 380.42721875
transcript.pyannote[134].end 380.88284375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 381.60846875
transcript.pyannote[135].end 383.51534375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 384.34221875
transcript.pyannote[136].end 384.76409375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 385.10159375
transcript.pyannote[137].end 392.30721875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 392.84721875
transcript.pyannote[138].end 400.67721875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 393.48846875
transcript.pyannote[139].end 393.52221875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 393.52221875
transcript.pyannote[140].end 393.97784375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 393.97784375
transcript.pyannote[141].end 394.26471875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 397.70721875
transcript.pyannote[142].end 398.11221875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 400.67721875
transcript.pyannote[143].end 400.76159375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 400.76159375
transcript.pyannote[144].end 401.55471875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 400.77846875
transcript.pyannote[145].end 408.18659375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 402.68534375
transcript.pyannote[146].end 403.30971875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 403.30971875
transcript.pyannote[147].end 403.74846875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 406.78596875
transcript.pyannote[148].end 407.22471875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 408.33846875
transcript.pyannote[149].end 408.76034375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 408.82784375
transcript.pyannote[150].end 409.77284375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 409.89096875
transcript.pyannote[151].end 410.04284375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 410.09346875
transcript.pyannote[152].end 411.67971875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 412.20284375
transcript.pyannote[153].end 413.40096875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 414.09284375
transcript.pyannote[154].end 415.67909375
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 415.67909375
transcript.pyannote[155].end 416.33721875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 416.18534375
transcript.pyannote[156].end 417.21471875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 416.67471875
transcript.pyannote[157].end 418.71659375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 417.95721875
transcript.pyannote[158].end 421.12971875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 418.96971875
transcript.pyannote[159].end 422.37846875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 422.37846875
transcript.pyannote[160].end 425.24721875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 425.09534375
transcript.pyannote[161].end 425.55096875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 425.73659375
transcript.pyannote[162].end 428.58846875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 428.63909375
transcript.pyannote[163].end 428.90909375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 428.92596875
transcript.pyannote[164].end 430.25909375
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 430.39409375
transcript.pyannote[165].end 435.22034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 431.72721875
transcript.pyannote[166].end 432.09846875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 433.88721875
transcript.pyannote[167].end 433.90409375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 433.90409375
transcript.pyannote[168].end 434.69721875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 435.62534375
transcript.pyannote[169].end 436.18221875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 437.07659375
transcript.pyannote[170].end 437.97096875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 438.62909375
transcript.pyannote[171].end 440.02971875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 441.76784375
transcript.pyannote[172].end 444.85596875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 443.30346875
transcript.pyannote[173].end 443.82659375
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 444.48471875
transcript.pyannote[174].end 446.29034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 445.31159375
transcript.pyannote[175].end 446.81346875
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 446.81346875
transcript.pyannote[176].end 449.47971875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 449.91846875
transcript.pyannote[177].end 456.02721875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 456.93846875
transcript.pyannote[178].end 460.63409375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 460.39784375
transcript.pyannote[179].end 461.03909375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 461.03909375
transcript.pyannote[180].end 466.60784375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 467.31659375
transcript.pyannote[181].end 469.22346875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 470.06721875
transcript.pyannote[182].end 472.51409375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 473.30721875
transcript.pyannote[183].end 473.54346875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 474.01596875
transcript.pyannote[184].end 474.50534375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 475.09596875
transcript.pyannote[185].end 476.29409375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 476.74971875
transcript.pyannote[186].end 480.47909375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 480.71534375
transcript.pyannote[187].end 480.73221875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 480.73221875
transcript.pyannote[188].end 480.98534375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 480.98534375
transcript.pyannote[189].end 481.00221875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 481.13721875
transcript.pyannote[190].end 484.07346875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 484.25909375
transcript.pyannote[191].end 486.06471875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 486.68909375
transcript.pyannote[192].end 490.63784375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 490.65471875
transcript.pyannote[193].end 490.70534375
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 490.70534375
transcript.pyannote[194].end 493.87784375
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 491.27909375
transcript.pyannote[195].end 492.54471875
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 498.55221875
transcript.pyannote[196].end 501.40409375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 501.40409375
transcript.pyannote[197].end 501.69096875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 501.62346875
transcript.pyannote[198].end 503.27721875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 503.22659375
transcript.pyannote[199].end 505.96034375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 503.42909375
transcript.pyannote[200].end 504.55971875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 505.03221875
transcript.pyannote[201].end 515.08971875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 515.93346875
transcript.pyannote[202].end 519.37596875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 519.56159375
transcript.pyannote[203].end 522.09284375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 522.49784375
transcript.pyannote[204].end 523.61159375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 523.96596875
transcript.pyannote[205].end 525.94034375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 526.22721875
transcript.pyannote[206].end 526.54784375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 526.96971875
transcript.pyannote[207].end 528.53909375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 527.79659375
transcript.pyannote[208].end 528.26909375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 528.94409375
transcript.pyannote[209].end 529.53471875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 529.92284375
transcript.pyannote[210].end 531.50909375
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 532.09971875
transcript.pyannote[211].end 535.76159375
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 536.33534375
transcript.pyannote[212].end 540.53721875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 541.04346875
transcript.pyannote[213].end 545.04284375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 547.47284375
transcript.pyannote[214].end 549.09284375
transcript.pyannote[215].speaker SPEAKER_02
transcript.pyannote[215].start 548.36721875
transcript.pyannote[215].end 549.44721875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 549.75096875
transcript.pyannote[216].end 552.95721875
transcript.pyannote[217].speaker SPEAKER_02
transcript.pyannote[217].start 553.15971875
transcript.pyannote[217].end 553.21034375
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 553.21034375
transcript.pyannote[218].end 557.17596875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 553.22721875
transcript.pyannote[219].end 553.78409375
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 554.35784375
transcript.pyannote[220].end 554.47596875
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 556.29846875
transcript.pyannote[221].end 561.32721875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 561.49596875
transcript.pyannote[222].end 561.51284375
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 561.51284375
transcript.pyannote[223].end 561.95159375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 561.95159375
transcript.pyannote[224].end 569.56221875
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 570.35534375
transcript.pyannote[225].end 574.45596875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 575.06346875
transcript.pyannote[226].end 579.61971875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 580.09221875
transcript.pyannote[227].end 584.98596875
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 585.64409375
transcript.pyannote[228].end 595.04346875
transcript.pyannote[229].speaker SPEAKER_00
transcript.pyannote[229].start 595.04346875
transcript.pyannote[229].end 603.48096875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 595.61721875
transcript.pyannote[230].end 596.12346875
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 597.57471875
transcript.pyannote[231].end 599.46471875
transcript.pyannote[232].speaker SPEAKER_00
transcript.pyannote[232].start 603.86909375
transcript.pyannote[232].end 611.32784375
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 608.34096875
transcript.pyannote[233].end 608.71221875
transcript.pyannote[234].speaker SPEAKER_01
transcript.pyannote[234].start 609.69096875
transcript.pyannote[234].end 610.04534375
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 611.81721875
transcript.pyannote[235].end 633.46784375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 632.06721875
transcript.pyannote[236].end 632.26971875
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 633.31596875
transcript.pyannote[237].end 637.41659375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 634.15971875
transcript.pyannote[238].end 634.71659375
transcript.pyannote[239].speaker SPEAKER_00
transcript.pyannote[239].start 635.13846875
transcript.pyannote[239].end 637.53471875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 637.77096875
transcript.pyannote[240].end 639.27284375
transcript.pyannote[241].speaker SPEAKER_00
transcript.pyannote[241].start 637.87221875
transcript.pyannote[241].end 645.53346875
transcript.pyannote[242].speaker SPEAKER_01
transcript.pyannote[242].start 639.27284375
transcript.pyannote[242].end 639.45846875
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 640.03221875
transcript.pyannote[243].end 640.35284375
transcript.pyannote[244].speaker SPEAKER_01
transcript.pyannote[244].start 640.35284375
transcript.pyannote[244].end 640.36971875
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 646.00596875
transcript.pyannote[245].end 646.68096875
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 646.79909375
transcript.pyannote[246].end 650.66346875
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 650.95034375
transcript.pyannote[247].end 651.52409375
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 652.80659375
transcript.pyannote[248].end 654.93284375
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 655.55721875
transcript.pyannote[249].end 656.24909375
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 656.97471875
transcript.pyannote[250].end 665.68221875
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 658.52721875
transcript.pyannote[251].end 658.67909375
transcript.pyannote[252].speaker SPEAKER_02
transcript.pyannote[252].start 658.67909375
transcript.pyannote[252].end 659.06721875
transcript.pyannote[253].speaker SPEAKER_02
transcript.pyannote[253].start 665.15909375
transcript.pyannote[253].end 665.37846875
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 665.68221875
transcript.pyannote[254].end 665.85096875
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 665.85096875
transcript.pyannote[255].end 667.94346875
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 666.25596875
transcript.pyannote[256].end 666.62721875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 666.62721875
transcript.pyannote[257].end 666.64409375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 667.52159375
transcript.pyannote[258].end 667.70721875
transcript.pyannote[259].speaker SPEAKER_01
transcript.pyannote[259].start 667.70721875
transcript.pyannote[259].end 667.77471875
transcript.pyannote[260].speaker SPEAKER_01
transcript.pyannote[260].start 669.07409375
transcript.pyannote[260].end 669.96846875
transcript.whisperx[0].start 6.341
transcript.whisperx[0].end 33.922
transcript.whisperx[0].text 謝謝主席。主席請一下許部長。請許部長。兩位委員好。部長好。部長我看...部長我看今天的業務報告,就有關年金改革的準備的部分,部裡面這邊還是一直停留在收集意見。
transcript.whisperx[1].start 35.578
transcript.whisperx[1].end 62.205
transcript.whisperx[1].text 對不對我看你們的給我報告收集意見跟溝通會不會會不會收集意見跟溝通的時間太長了部長不是我不是不是不是我我我知道這是一項很很嚴峻的工程我也不是想為難你可是因為我覺得好像每每一次
transcript.whisperx[2].start 63.615
transcript.whisperx[2].end 88.172
transcript.whisperx[2].text 每一次的業務報告有關年改的部分大概一直都是停留在收集意見跟評估那這樣子到底年改革什麼時候可以啟動什麼時候可以落實讓讓讓廣大的勞工可以得到安心到底什麼時候
transcript.whisperx[3].start 89.434
transcript.whisperx[3].end 102.879
transcript.whisperx[3].text 委員這個期程部分我們會來通盤的規劃只是說因為不是 現在部長我打岔一下部長我打岔一下就是說你假如說說今天來EO報告已經有期程
transcript.whisperx[4].start 104.147
transcript.whisperx[4].end 126.414
transcript.whisperx[4].text 那我可能還可以接受可是這6年來我看部長也已經認滿6年了這個是一個非常長壽的部長可是對於跟勞工這麼息息相關影響這麼重大的一個政策一直停留在
transcript.whisperx[5].start 128.234
transcript.whisperx[5].end 136.29
transcript.whisperx[5].text 在準備跟收集意見達到共識這個階段本席真的沒有辦法接受
transcript.whisperx[6].start 137.871
transcript.whisperx[6].end 165.084
transcript.whisperx[6].text 謝謝委員因為這部分的確是不容易因為勞工的人口數實在是太多每個產業勞工職業勞工的意見都不同關心的點都不同所以這個部分我也認為說這個其實應該要更我曾經在委員會跟部長討論過我覺得任何一項改革都不可能有共識
transcript.whisperx[7].start 166.547
transcript.whisperx[7].end 186.378
transcript.whisperx[7].text 吼都不可能有共識那我也知道欸勞工的的年齡改革為什麼困難就是因為他原本的的可以領到的給付就少那欸廣大的勞工也沒的受薪階級也沒有因為台灣的經濟成長的
transcript.whisperx[8].start 190.575
transcript.whisperx[8].end 212.078
transcript.whisperx[8].text 他的薪資等比例的增加所以要增加保費也有一定的阻力那要延後退可能會引發很大的風波所以我知道困難在哪裡可是也正因為困難所以才
transcript.whisperx[9].start 214.275
transcript.whisperx[9].end 240.851
transcript.whisperx[9].text 選民給民進黨機會就是要民進黨面對困難我還記得我們在從事軍功校年改的時候整個民進黨黨團大概受影響最大的就是我因為我澎湖的軍功校比例太高了可是我還是帶著鋼盔挺過了年改
transcript.whisperx[10].start 242.479
transcript.whisperx[10].end 263.187
transcript.whisperx[10].text 我也已經又當選兩屆了就是說應該像蔡英文總統講的就是應該要改革的就是必須要改革必須要想到一套方案出來讓退休的不恐懼讓正在繳保費的喜難這個是我們的責任
transcript.whisperx[11].start 268.891
transcript.whisperx[11].end 296.103
transcript.whisperx[11].text 那我看這幾年就是提撥成為改革唯一的選項那這個本席也不反對甚至於我也已經提案把政府負擔最終的責任入法為什麼我這麼重視這件事情就是我講的這必須要讓勞動者有一個安定的心情
transcript.whisperx[12].start 297.943
transcript.whisperx[12].end 315.65
transcript.whisperx[12].text 欸讓他知道知道任何人執政都不會放棄這一千多萬的老公朋友這一千多萬對台灣經濟有卓著貢獻的老公我我我
transcript.whisperx[13].start 317.702
transcript.whisperx[13].end 342.232
transcript.whisperx[13].text 我覺得我們必須要去面對現在就是這樣子就我剛才講的我知道改革的困難為什麼呢因為不要說減少給付就以目前的給付來看我們目前在請領勞工給付的人數大概有174萬平均每個月
transcript.whisperx[14].start 346.853
transcript.whisperx[14].end 367.741
transcript.whisperx[14].text 領到的是18000多18000多可是最低台灣的最低生活費以台北市來講就已經高達19000多其台北市以外的地方平均值也已經將近到達15000
transcript.whisperx[15].start 369.554
transcript.whisperx[15].end 383.083
transcript.whisperx[15].text 那他現在領這樣子已經快要快要未達在臺北市已經未達未達最低生活費的標準了現在萬一再減少幾副怎麼辦
transcript.whisperx[16].start 385.166
transcript.whisperx[16].end 413.196
transcript.whisperx[16].text 對,各位報告但是我們其實臺灣的產業勞工來看他其實他退休包括兩個一個就勞保另外一個就勞退這兩個加起來那當然還有一些健保啦長照現在是照顧我們的退休的人員健保跟長照是另外一回事啦我們就聚焦在勞工的部分就勞保跟勞退可是呢勞退的比例呢就是太低了
transcript.whisperx[17].start 414.176
transcript.whisperx[17].end 439.434
transcript.whisperx[17].text 字體的部分太低了。字體比較低,但是固體拿到700多萬喔。大概是這樣子啦。前體體角數大概在106年的時候大概是14%多啦。那現在呢?就是到字體的部分。
transcript.whisperx[18].start 441.823
transcript.whisperx[18].end 464.872
transcript.whisperx[18].text 我們到去年年底是14.17%人數是106萬所以就是像部長講的沒有錯勞工的退休的保障我們的設計是架構在勞保跟勞退可是問題是勞退本身有一個現象就這14點幾%
transcript.whisperx[19].start 467.352
transcript.whisperx[19].end 493.67
transcript.whisperx[19].text 他你你你仔細去看新知所得越高的越願意自提配合自提的部分那越低的呢因為他的所得本來就低所以他要再要再提出6%他可能有他的困難度不過我也還有一個固體6%固體6%是僱主一定要提撥的對我知道我知道那6%就是
transcript.whisperx[20].start 495.811
transcript.whisperx[20].end 497.858
transcript.whisperx[20].text 響鈴
transcript.whisperx[21].start 498.598
transcript.whisperx[21].end 525.693
transcript.whisperx[21].text 那6%呢是大家都有我現在講的是6加6特別是以薪資低的勞工來看6加6才足以保障他的退休生活那因為他假如說本來就低薪他可以領的勞保給付本來就低
transcript.whisperx[22].start 527.011
transcript.whisperx[22].end 544.592
transcript.whisperx[22].text 然後呢他又因為職涯的過程生活的所需教養子女孝敬父母所以他可能要自提這六趴對他來講就馬上面臨生活的困頓
transcript.whisperx[23].start 547.503
transcript.whisperx[23].end 569.045
transcript.whisperx[23].text 部長你懂我的意思嗎?我知道我知道不過當然啦如果是低薪的齁可能多數都是低薪的低薪的字題很少啦對我們現在大概有統計啦齁大概平均啦齁報告委員平均我們那個月投保薪資大概就是平均大概3萬7啦齁如果以3萬7來看喔他的勞保
transcript.whisperx[24].start 570.564
transcript.whisperx[24].end 583.476
transcript.whisperx[24].text 應照按照現在限制他大概是領1萬7左右然後再如果他的再加上勞退就是固體只算固體不算自體啦齁大概1萬所以這個加起來勞保加勞退大概有27700
transcript.whisperx[25].start 585.837
transcript.whisperx[25].end 610.872
transcript.whisperx[25].text 就是像一個退休勞工以平均的月頭保薪資來看如果是37000平均大概我們抓大概37000這樣領起來有27000多對啊這種平均值就是這種平均值就是比較看不到看不到真正弱勢的啦保障弱勢呢是民進黨邁向指正最重要的一個一個一個
transcript.whisperx[26].start 611.732
transcript.whisperx[26].end 637.619
transcript.whisperx[26].text 對對對
transcript.whisperx[27].start 638.319
transcript.whisperx[27].end 649.526
transcript.whisperx[27].text 我也知道很困難可是我常說不困難的事情怎麼輪得到我們做呢那不然我最後問一個問題就是
transcript.whisperx[28].start 652.844
transcript.whisperx[28].end 667.699
transcript.whisperx[28].text 本席已經提出來政府擔負最終的支付責任的保證那這樣子的提案勞動部這邊的立場會支持嗎我們支持好謝謝部長謝謝主席謝謝楊耀文委員