iVOD / 149234

Field Value
IVOD_ID 149234
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/149234
日期 2024-03-04
會議資料.會議代碼 委員會-11-1-19-2
會議資料.會議代碼:str 第11屆第1會期經濟委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第1會期經濟委員會第2次全體委員會議
影片種類 Clip
開始時間 2024-03-04T10:58:11+08:00
結束時間 2024-03-04T11:08:41+08:00
影片長度 00:10:30
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ad9f873b941d2ddd96d00555c993f450a874ae98c1f56169f8ba9b0039caa7a6ceda4b77bfb303745ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 10:58:11 - 11:08:41
會議時間 2024-03-04T09:00:00+08:00
會議名稱 立法院第11屆第1會期經濟委員會第2次全體委員會議(事由:邀請農業部部長列席報告業務概況,並備質詢。【3月4日、3月6日及7日三天一次會】)
gazette.lineno 738
gazette.blocks[0][0] 鄭天財Sra Kacaw委員:(10時58分)主席、各位委員。請部長。
gazette.blocks[1][0] 主席:我們再請陳部長。
gazette.blocks[2][0] 鄭天財Sra Kacaw委員:部長好。
gazette.blocks[3][0] 陳代理部長駿季:委員好。
gazette.blocks[4][0] 鄭天財Sra Kacaw委員:有關農民退休儲金,在上一屆完成了這個法律,對於農民退休儲金制度,110年1月1日開始辦理。在立法的過程當中,也要謝謝當時的農委會對原住民族相關的,因為平均餘命的關係有配合做一個處理,所以在法制上是有考量到原住民的部分。我們看農業部的報告,到112年底止,提繳受益人數約10.4萬人,也就是覆蓋率為未滿65歲具提繳資格農保被保險人34.6萬人的30%。你們期望113年度提繳農民退休儲金之覆蓋率目標為35%,這個要繼續加油。但是我們現在看的是原住民的部分,剛才是30%,而原住民的部分,未滿65歲具原住民身分之農保人數總共是1萬3,694人,提繳農退儲金之原住民人數只有783人而已,整個比例才6%,跟30%的差距真的是非常大。我們看農民人數最多的縣市,先照比例,花蓮縣有1,830人,提繳的是176人,占10%,是最高的,但是距離30%還是落差了20%。我們再看臺東,臺東是6%,南投是5%,屏東更低,只有3%。部長知道原因嗎?
gazette.blocks[5][0] 陳代理部長駿季:我跟委員說明,第一個,先謝謝委員支持這樣一個法案。第二個部分,整個農民的退休儲金都是透過農會在宣導……
gazette.blocks[6][0] 鄭天財Sra Kacaw委員:我知道。
gazette.blocks[7][0] 陳代理部長駿季:據我們瞭解,大部分的原因是因為農會的推廣本身可能還需要再加強,所以這個部分,特別是針對原住民的部分,我們會啟動,包括我們試驗改良所有一個原鄉服務團,我們在受訓的時候、在上課的時候、在任何機會,都會把這個訊息傳遞給原住民,我們也會透過原鄉地區的農會加強相關的宣導。
gazette.blocks[8][0] 鄭天財Sra Kacaw委員:你們要加強宣導是一定要的,然後怎麼樣去瞭解為什麼比例會這麼低?他們的考量是什麼?是有什麼樣的考量還是怎麼樣?順便瞭解相關問題。
gazette.blocks[9][0] 陳代理部長駿季:我們看整體覆蓋率的部分,有一部分的原因就是農業經營的不穩定性,當收入有不穩定性的時候,他們對於繳這個錢可能會覺得有點怕怕的。
gazette.blocks[10][0] 鄭天財Sra Kacaw委員:我說蒐集一下相關的。
gazette.blocks[11][0] 陳代理部長駿季:我們會蒐集相關的資料。
gazette.blocks[12][0] 鄭天財Sra Kacaw委員:繼續加油!
gazette.blocks[12][1] 我們看原基法第十九條,請林務局,現在叫林業署,即林業保育署。原基法第十九條規定,「原住民得在原住民族地區……」,以水保署的業務來說就是採集野生植物及菌類,我現在談這個部分。至於森林法,現在的森林法是從93年1月20號公布到現在,「森林位於原住民族傳統領域土地者,原住民族得依其生活慣俗需要,採取森林產物」,因為一直沒有修,所以本席在原住民族基本法第三十四條,104年修正的這個,增加了第二項,讓它在法律還沒有修之前可以解釋,這是原基法第三十四條第二項。也謝謝當時的農委會配合原基法第三十四條第二項做了解釋,把所謂的傳統領域解釋為原住民族地區。但是畢竟不能一直透過解釋,還是要修法啊!還是要配合原基法第十九條去修森林法第十五條,有什麼困難嗎?
gazette.blocks[13][0] 陳代理部長駿季:跟委員報告,我是不是可以請林業署說明?
gazette.blocks[14][0] 鄭天財Sra Kacaw委員:好,署長。
gazette.blocks[15][0] 林署長華慶:跟委員報告,委員所講的這個我們非常認同,也會在我們修法的部分納入,未來不會再是指傳統領域。
gazette.blocks[16][0] 鄭天財Sra Kacaw委員:好,既然解釋也都解釋了,就把它法制化。
gazette.blocks[16][1] 最後一個議題有關農業發展條例第三條,「農業用地:指非都市土地或都市土地農業區、保護區範圍……」,如果要興建農舍的話,有規定面積不得小於0.25公頃,且有農舍用地面積不得超過該農業用地面積10%這樣一個規定。然後都市計劃法臺灣省施行細則第二十九條第二項也有規定,都是一樣的規定。我的重點在哪裡呢?相關的這些都是需要這樣大的面積,而我們原住民族的困境在哪裡呢?我就舉一個部落──瑞良部落為例,這個部落被劃為都市計畫的農業區,是部落喔!它被劃為都市計畫的農業區,然後因為是農業區,這一筆土地有2,292.13平方公尺,很大的面積,但是只能蓋一間農舍,當然很多農舍的興建,像宜蘭以前一直被人詬病,那是另外一個問題,但是對於原住民族的部落,部落因為被劃為都市計畫的農業區,或者是非都市土地的農業用地,甚至我們的部落被劃為林業用地,在這樣一個情況之下,要怎麼去解決?因為這麼大的面積只能蓋一間農舍,我們兄弟姐妹分家要蓋就沒辦法蓋了。
gazette.blocks[16][2] 所以我的建議是這樣,要請農業部支持,就是原住民族部落範圍內的農業區或者是農業用地,他要興建自用住宅的土地得劃設為建地。當然這個權責會涉及到內政部,包括國土計畫法、區域計畫法、都市計畫法,所以這樣一個議題要請農業部未來能夠支持,可以嗎?
gazette.blocks[17][0] 陳代理部長駿季:我跟委員說明,您剛才講的,如果部落在聚集的部分,未來在國土計畫的話,它會被劃分為農四,劃為農四的話,大概就可以解決這個問題。
gazette.blocks[18][0] 鄭天財Sra Kacaw委員:現在是這樣,我知道每次回答都是國土計畫、國土計畫法,但是一直遙遙無期,所以這個部分……
gazette.blocks[19][0] 陳代理部長駿季:這個要看地方政府,第一個,因為聚落如果聚集在一起的時候,特別是部落的部分,它可以劃為農四,因為現在地方政府在公展它的國土計畫圖,相關的意見這時候都可以去陳述,後續我們中央在審查的時候也會特別考量這一點。
gazette.blocks[20][0] 鄭天財Sra Kacaw委員:所以我說你們要特別支持。好,謝謝。
gazette.blocks[21][0] 主席:好,謝謝。
gazette.blocks[21][1] 張嘉郡委員詢答結束後,我們就休息5分鐘。
gazette.blocks[21][2] 請張嘉郡委員做詢答,詢答之前,剛剛主委有特別說看地方政府,因為我們早上還有一個議題是關於蛋銷毀的,你們現在有4,000萬要地方政府處理,但是有很多地方政府沒有化製場,對於蛋殼跟蛋液,蛋液是沒有辦法送去焚化爐的,所以這個你們變成……
gazette.blocks[21][3] 沒關係!本席就是希望不要一直說是地方政府,你們要針對那個議題去解決問題,才不會一直拖,每拖一天,你的電費又要花多少錢,好不好?我們也希望去把問題釐清,真正有答案嘛!好不好?謝謝。
gazette.blocks[21][4] 來,請做詢答。
gazette.agenda.page_end 124
gazette.agenda.meet_id 委員會-11-1-19-2
gazette.agenda.speakers[0] 楊瓊瓔
gazette.agenda.speakers[1] 邱議瑩
gazette.agenda.speakers[2] 林岱樺
gazette.agenda.speakers[3] 謝衣鳯
gazette.agenda.speakers[4] 張啓楷
gazette.agenda.speakers[5] 呂玉玲
gazette.agenda.speakers[6] 蔡易餘
gazette.agenda.speakers[7] 陳亭妃
gazette.agenda.speakers[8] 鄭天財Sra Kacaw
gazette.agenda.speakers[9] 張嘉郡
gazette.agenda.speakers[10] 邱志偉
gazette.agenda.speakers[11] 鄭正鈐
gazette.agenda.speakers[12] 陳超明
gazette.agenda.speakers[13] 賴瑞隆
gazette.agenda.speakers[14] 鍾佳濱
gazette.agenda.speakers[15] 王鴻薇
gazette.agenda.speakers[16] 陳冠廷
gazette.agenda.speakers[17] 徐富癸
gazette.agenda.speakers[18] 賴惠員
gazette.agenda.page_start 61
gazette.agenda.meetingDate[0] 2024-03-04
gazette.agenda.gazette_id 1130801
gazette.agenda.agenda_lcidc_ids[0] 1130801_00003
gazette.agenda.meet_name 立法院第11屆第1會期經濟委員會第2次全體委員會議紀錄
gazette.agenda.content 邀請農業部部長列席報告業務概況,並備質詢
gazette.agenda.agenda_id 1130801_00002
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.44846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 19.97721875
transcript.pyannote[1].end 20.51721875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 23.43659375
transcript.pyannote[2].end 25.51221875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 32.98784375
transcript.pyannote[3].end 33.94971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 43.85534375
transcript.pyannote[4].end 44.39534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 44.66534375
transcript.pyannote[5].end 45.42471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 45.64409375
transcript.pyannote[6].end 46.50471875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 47.02784375
transcript.pyannote[7].end 48.20909375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 49.03596875
transcript.pyannote[8].end 50.11596875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 56.27534375
transcript.pyannote[9].end 57.42284375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 58.26659375
transcript.pyannote[10].end 59.68409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 60.05534375
transcript.pyannote[11].end 62.06346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 62.73846875
transcript.pyannote[12].end 63.73409375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 64.66221875
transcript.pyannote[13].end 67.75034375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 68.18909375
transcript.pyannote[14].end 75.93471875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 76.66034375
transcript.pyannote[15].end 81.16596875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 81.58784375
transcript.pyannote[16].end 82.93784375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 83.19096875
transcript.pyannote[17].end 84.10221875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 84.60846875
transcript.pyannote[18].end 85.94159375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 86.14409375
transcript.pyannote[19].end 87.12284375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 87.29159375
transcript.pyannote[20].end 89.50221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 89.83971875
transcript.pyannote[21].end 101.46659375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 101.97284375
transcript.pyannote[22].end 104.77409375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 105.31409375
transcript.pyannote[23].end 111.08534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 111.57471875
transcript.pyannote[24].end 114.07221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 114.47721875
transcript.pyannote[25].end 123.15096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 123.18471875
transcript.pyannote[26].end 124.97346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 125.78346875
transcript.pyannote[27].end 126.52596875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 127.40346875
transcript.pyannote[28].end 128.65221875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 129.19221875
transcript.pyannote[29].end 131.55471875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 131.80784375
transcript.pyannote[30].end 137.02221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 133.24221875
transcript.pyannote[31].end 133.27596875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 133.29284375
transcript.pyannote[32].end 133.30971875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 133.71471875
transcript.pyannote[33].end 133.79909375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 137.76471875
transcript.pyannote[34].end 138.74346875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 139.26659375
transcript.pyannote[35].end 141.79784375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 142.45596875
transcript.pyannote[36].end 143.65409375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 144.09284375
transcript.pyannote[37].end 148.22721875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 148.91909375
transcript.pyannote[38].end 151.50096875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 152.36159375
transcript.pyannote[39].end 153.32346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 154.01534375
transcript.pyannote[40].end 157.60971875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 157.98096875
transcript.pyannote[41].end 160.03971875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 160.61346875
transcript.pyannote[42].end 163.56659375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 164.19096875
transcript.pyannote[43].end 166.16534375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 166.58721875
transcript.pyannote[44].end 168.03846875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 169.08471875
transcript.pyannote[45].end 170.73846875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 171.12659375
transcript.pyannote[46].end 172.08846875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 173.26971875
transcript.pyannote[47].end 176.34096875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 176.83034375
transcript.pyannote[48].end 177.35346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 177.84284375
transcript.pyannote[49].end 178.58534375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 178.82159375
transcript.pyannote[50].end 180.66096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 181.25159375
transcript.pyannote[51].end 181.90971875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 182.26409375
transcript.pyannote[52].end 182.33159375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 182.75346875
transcript.pyannote[53].end 183.51284375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 183.73221875
transcript.pyannote[54].end 185.74034375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 186.24659375
transcript.pyannote[55].end 187.15784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 187.61346875
transcript.pyannote[56].end 188.79471875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 189.46971875
transcript.pyannote[57].end 191.44409375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 191.69721875
transcript.pyannote[58].end 195.66284375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 196.10159375
transcript.pyannote[59].end 197.08034375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 197.89034375
transcript.pyannote[60].end 199.22346875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 199.91534375
transcript.pyannote[61].end 201.29909375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 202.32846875
transcript.pyannote[62].end 204.53909375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 206.04096875
transcript.pyannote[63].end 206.61471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 207.25596875
transcript.pyannote[64].end 207.61034375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 207.61034375
transcript.pyannote[65].end 207.62721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 208.40346875
transcript.pyannote[66].end 208.63971875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 208.63971875
transcript.pyannote[67].end 208.65659375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 209.56784375
transcript.pyannote[68].end 209.58471875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 209.58471875
transcript.pyannote[69].end 210.42846875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 212.20034375
transcript.pyannote[70].end 252.34596875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 223.13534375
transcript.pyannote[71].end 224.19846875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 252.86909375
transcript.pyannote[72].end 253.52721875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 254.03346875
transcript.pyannote[73].end 254.05034375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 254.05034375
transcript.pyannote[74].end 254.97846875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 254.97846875
transcript.pyannote[75].end 260.74971875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 261.25596875
transcript.pyannote[76].end 268.56284375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 266.03159375
transcript.pyannote[77].end 284.15534375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 268.64721875
transcript.pyannote[78].end 269.55846875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 279.58221875
transcript.pyannote[79].end 284.20596875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 284.72909375
transcript.pyannote[80].end 285.82596875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 288.30659375
transcript.pyannote[81].end 288.59346875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 290.17971875
transcript.pyannote[82].end 292.55909375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 292.81221875
transcript.pyannote[83].end 294.01034375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 294.14534375
transcript.pyannote[84].end 296.50784375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 298.04346875
transcript.pyannote[85].end 299.14034375
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 299.57909375
transcript.pyannote[86].end 303.74721875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 303.96659375
transcript.pyannote[87].end 305.13096875
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 306.05909375
transcript.pyannote[88].end 308.59034375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 309.09659375
transcript.pyannote[89].end 312.55596875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 314.53034375
transcript.pyannote[90].end 316.96034375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 317.63534375
transcript.pyannote[91].end 319.71096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 320.06534375
transcript.pyannote[92].end 321.19596875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 321.98909375
transcript.pyannote[93].end 332.23221875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 333.73409375
transcript.pyannote[94].end 335.10096875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 335.40471875
transcript.pyannote[95].end 337.10909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 337.49721875
transcript.pyannote[96].end 342.47534375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 343.15034375
transcript.pyannote[97].end 344.78721875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 345.15846875
transcript.pyannote[98].end 348.26346875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 349.42784375
transcript.pyannote[99].end 351.55409375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 351.84096875
transcript.pyannote[100].end 352.66784375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 353.29221875
transcript.pyannote[101].end 354.16971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 354.74346875
transcript.pyannote[102].end 356.53221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 356.97096875
transcript.pyannote[103].end 357.73034375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 358.67534375
transcript.pyannote[104].end 359.23221875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 359.82284375
transcript.pyannote[105].end 361.12221875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 361.67909375
transcript.pyannote[106].end 362.52284375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 363.21471875
transcript.pyannote[107].end 364.46346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 365.02034375
transcript.pyannote[108].end 365.52659375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 365.66159375
transcript.pyannote[109].end 367.60221875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 368.10846875
transcript.pyannote[110].end 368.36159375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 369.22221875
transcript.pyannote[111].end 370.23471875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 370.90971875
transcript.pyannote[112].end 371.75346875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 372.19221875
transcript.pyannote[113].end 373.23846875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 373.79534375
transcript.pyannote[114].end 375.07784375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 376.73159375
transcript.pyannote[115].end 379.02659375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 379.26284375
transcript.pyannote[116].end 381.25409375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 381.57471875
transcript.pyannote[117].end 382.53659375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 384.69659375
transcript.pyannote[118].end 384.96659375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 384.96659375
transcript.pyannote[119].end 387.49784375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 387.85221875
transcript.pyannote[120].end 390.29909375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 388.56096875
transcript.pyannote[121].end 388.94909375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 390.50159375
transcript.pyannote[122].end 394.04534375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 394.23096875
transcript.pyannote[123].end 400.64346875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 400.71096875
transcript.pyannote[124].end 400.84596875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 401.14971875
transcript.pyannote[125].end 401.52096875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 401.94284375
transcript.pyannote[126].end 403.14096875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 403.66409375
transcript.pyannote[127].end 407.91659375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 405.28409375
transcript.pyannote[128].end 405.41909375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 409.45221875
transcript.pyannote[129].end 410.56596875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 411.24096875
transcript.pyannote[130].end 413.46846875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 413.77221875
transcript.pyannote[131].end 414.73409375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 415.29096875
transcript.pyannote[132].end 419.69534375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 420.15096875
transcript.pyannote[133].end 420.69096875
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 421.04534375
transcript.pyannote[134].end 423.12096875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 423.52596875
transcript.pyannote[135].end 427.47471875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 428.41971875
transcript.pyannote[136].end 428.67284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 429.07784375
transcript.pyannote[137].end 433.16159375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 433.33034375
transcript.pyannote[138].end 434.93346875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 435.69284375
transcript.pyannote[139].end 436.67159375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 436.68846875
transcript.pyannote[140].end 444.50159375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 445.31159375
transcript.pyannote[141].end 446.76284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 447.31971875
transcript.pyannote[142].end 449.10846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 449.42909375
transcript.pyannote[143].end 449.69909375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 450.00284375
transcript.pyannote[144].end 452.51721875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 453.19221875
transcript.pyannote[145].end 454.42409375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 454.84596875
transcript.pyannote[146].end 456.04409375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 456.93846875
transcript.pyannote[147].end 458.23784375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 459.33471875
transcript.pyannote[148].end 460.58346875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 461.08971875
transcript.pyannote[149].end 461.93346875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 462.74346875
transcript.pyannote[150].end 463.58721875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 465.84846875
transcript.pyannote[151].end 467.65409375
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 467.94096875
transcript.pyannote[152].end 471.14721875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 471.61971875
transcript.pyannote[153].end 473.61096875
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 474.37034375
transcript.pyannote[154].end 476.00721875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 476.64846875
transcript.pyannote[155].end 477.88034375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 478.90971875
transcript.pyannote[156].end 480.15846875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 480.36096875
transcript.pyannote[157].end 481.82909375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 481.86284375
transcript.pyannote[158].end 484.68096875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 485.44034375
transcript.pyannote[159].end 488.73096875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 489.47346875
transcript.pyannote[160].end 490.50284375
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 491.41409375
transcript.pyannote[161].end 493.16909375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 494.36721875
transcript.pyannote[162].end 495.21096875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 496.35846875
transcript.pyannote[163].end 497.45534375
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 498.13034375
transcript.pyannote[164].end 499.98659375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 500.52659375
transcript.pyannote[165].end 500.83034375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 502.01159375
transcript.pyannote[166].end 505.13346875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 505.47096875
transcript.pyannote[167].end 506.68596875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 506.93909375
transcript.pyannote[168].end 509.03159375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 509.77409375
transcript.pyannote[169].end 510.22971875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 511.07346875
transcript.pyannote[170].end 514.78596875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 515.27534375
transcript.pyannote[171].end 515.98409375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 516.33846875
transcript.pyannote[172].end 518.46471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 519.96659375
transcript.pyannote[173].end 521.29971875
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 522.19409375
transcript.pyannote[174].end 523.89846875
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 525.18096875
transcript.pyannote[175].end 527.81346875
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 528.58971875
transcript.pyannote[176].end 531.28971875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 532.16721875
transcript.pyannote[177].end 534.66471875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 535.22159375
transcript.pyannote[178].end 535.76159375
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 536.43659375
transcript.pyannote[179].end 540.95909375
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 541.54971875
transcript.pyannote[180].end 541.97159375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 542.42721875
transcript.pyannote[181].end 543.96284375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 545.39721875
transcript.pyannote[182].end 547.94534375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 548.65409375
transcript.pyannote[183].end 551.52284375
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 552.61971875
transcript.pyannote[184].end 556.02846875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 555.13409375
transcript.pyannote[185].end 555.74159375
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 556.43346875
transcript.pyannote[186].end 559.43721875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 560.21346875
transcript.pyannote[187].end 560.51721875
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 560.93909375
transcript.pyannote[188].end 562.96409375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 563.65596875
transcript.pyannote[189].end 566.03534375
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 566.42346875
transcript.pyannote[190].end 566.77784375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 567.19971875
transcript.pyannote[191].end 568.41471875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 568.80284375
transcript.pyannote[192].end 572.39721875
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 572.95409375
transcript.pyannote[193].end 574.91159375
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 575.31659375
transcript.pyannote[194].end 577.59471875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 577.71284375
transcript.pyannote[195].end 578.18534375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 579.01221875
transcript.pyannote[196].end 580.34534375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 580.44659375
transcript.pyannote[197].end 586.89284375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 587.19659375
transcript.pyannote[198].end 589.67721875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 590.33534375
transcript.pyannote[199].end 598.97534375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 598.78971875
transcript.pyannote[200].end 604.10534375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 604.30784375
transcript.pyannote[201].end 607.14284375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 607.34534375
transcript.pyannote[202].end 611.09159375
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 611.39534375
transcript.pyannote[203].end 613.67346875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 614.09534375
transcript.pyannote[204].end 614.98971875
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 615.10784375
transcript.pyannote[205].end 619.91721875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 620.06909375
transcript.pyannote[206].end 620.10284375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 620.10284375
transcript.pyannote[207].end 620.13659375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 620.13659375
transcript.pyannote[208].end 620.32221875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 620.45721875
transcript.pyannote[209].end 620.96346875
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 620.96346875
transcript.pyannote[210].end 621.13221875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 621.13221875
transcript.pyannote[211].end 621.25034375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 621.25034375
transcript.pyannote[212].end 621.48659375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 622.46534375
transcript.pyannote[213].end 623.19096875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 627.08909375
transcript.pyannote[214].end 630.14346875
transcript.whisperx[0].start 0.409
transcript.whisperx[0].end 1.27
transcript.whisperx[0].text 議員請作詢答。謝謝。議員請協助一下。
transcript.whisperx[1].start 45.026
transcript.whisperx[1].end 49.531
transcript.whisperx[1].text 主席、各位委員請部長我們再請陳部長部長有關農民退休儲金
transcript.whisperx[2].start 64.727
transcript.whisperx[2].end 72.779
transcript.whisperx[2].text 上一屆完成了法例對於農民退休儲金的制度110年1月1日開始來辦理
transcript.whisperx[3].start 77.551
transcript.whisperx[3].end 78.211
transcript.whisperx[3].text 我們看這個農業部的報告
transcript.whisperx[4].start 105.382
transcript.whisperx[4].end 111.805
transcript.whisperx[4].text 到112年抵止提繳受益人數約10.4萬人,也就是覆蓋率為未滿60歲及提繳資格農保備保險人34.6萬人的30%。希望你們的期望是
transcript.whisperx[5].start 128.198
transcript.whisperx[5].end 147.946
transcript.whisperx[5].text 113年度提交農民退休儲金之覆蓋率目標為35%這個要繼續加油但是我們現在看的是原住民的部分剛才是30%的原住民的部分總共未滿65歲即原住民身份之農保人數13694人
transcript.whisperx[6].start 152.801
transcript.whisperx[6].end 171.908
transcript.whisperx[6].text 這個提繳農退儲金之原住民人數只有783人而已 這個整個比例才6%跟30點多 30%差距真的是非常的大
transcript.whisperx[7].start 173.305
transcript.whisperx[7].end 177.846
transcript.whisperx[7].text 我們看這個農民人數最多的我們先照比例花蓮縣有1830人提角的是176占10%是最高的但是距離30%還是落差20%那我們看台東台東是6%南投5%
transcript.whisperx[8].start 202.386
transcript.whisperx[8].end 210.135
transcript.whisperx[8].text 平等更低只有3% 這個部長知道原因嗎?
transcript.whisperx[9].start 212.53
transcript.whisperx[9].end 232.102
transcript.whisperx[9].text 我跟委員說明,第一個先謝謝委員支持這樣的一個法案。第二個部分就是整個農民的退休儲金都是透過農會在宣導。我知道。我覺得很多的,我們了解很多的,大部分的原因是因為農會的推廣本身可能還需要再加強。
transcript.whisperx[10].start 232.862
transcript.whisperx[10].end 260.239
transcript.whisperx[10].text 所以這個部分特別是針對原住民的部分我想我們會啟動包括我們試驗改良當中我們有一個原鄉服務團我們會上去讓在受訓的時候在上課在任何機會都要把這個訊息傳遞給我們的原住民然後我們也會透過原鄉地區的這些農會加強相關的一個宣導這個你們要加強宣導是一定要的然後怎麼樣去了解為什麼
transcript.whisperx[11].start 261.6
transcript.whisperx[11].end 268.323
transcript.whisperx[11].text 為什麼會比例這麼低?他們也考量是什麼?有什麼樣的考量?還是怎麼樣?順便了解這個相關的問題。我們會收集相關的資料。繼續加油。好。
transcript.whisperx[12].start 290.199
transcript.whisperx[12].end 316.801
transcript.whisperx[12].text 我們看這個延期法第19條這個零務集現在叫零業署零業保衛署延期法19條延住民得債延住民主第7以這個水保署的業務的話就是採集野生植物集我現在談這個部分那森林法現在的森林法
transcript.whisperx[13].start 320.155
transcript.whisperx[13].end 331.62
transcript.whisperx[13].text 從9393公布到現在,生靈為原住民族傳統領域土地者得採取生靈產物,原住民得依其灌輸需要採取生靈產物。
transcript.whisperx[14].start 333.749
transcript.whisperx[14].end 357.334
transcript.whisperx[14].text 因為一直沒有修了,所以這個本席在原住民主基本法第34條104年修正的這個增加第二項法律還沒有修的時候可以解釋這是延期法30條第二項也謝謝當時的農委會也配合依延期法這個34條第二項做了解釋
transcript.whisperx[15].start 358.697
transcript.whisperx[15].end 382.055
transcript.whisperx[15].text 把這個所謂的傳統禮儀解釋為原住民主第7但是畢竟一直透過解釋是還是要修法還是要修法還是要把這個原基法還是要配合原基法第19條去修森林法第15條有什麼困難嗎?
transcript.whisperx[16].start 384.824
transcript.whisperx[16].end 391.086
transcript.whisperx[16].text 委員所講的這個我們非常認同那也會在我們修法的這部分納入未來不會再是只傳統領域好這個就既然解釋也都解釋了就把它法制化法制化
transcript.whisperx[17].start 409.682
transcript.whisperx[17].end 431.28
transcript.whisperx[17].text 最後一個議題,農業發展條例第三條,農業用地指非都市土地或都市土地農業區保護區範圍,然後要興建農舍的話,有規定面積不得小於0.25公頃,農舍用地面積不得超過該農業用地10%,這樣的一個規定。
transcript.whisperx[18].start 435.771
transcript.whisperx[18].end 463.489
transcript.whisperx[18].text 然後這個都市計畫法臺灣省施行細則29條第二項也規定都是一樣的規定我的重點在哪裡呢這個相關的這些都是都是需要這樣大的面積我們就舉一個我們原住民族的困境在哪裡呢我就舉這個一個部落瑞良部落
transcript.whisperx[19].start 466.917
transcript.whisperx[19].end 480.9
transcript.whisperx[19].text 這個被列為化為我們的部落被化為都市計劃區的農業區部落都市計劃的農業區然後這個農業區因為是農業區這一筆土地2292.13平方公尺很大的面積但是只能蓋一間農舍蓋一間農舍
transcript.whisperx[20].start 496.611
transcript.whisperx[20].end 523.755
transcript.whisperx[20].text 所以當有很多農舍的興建像宜蘭之前一直被勾變那是另外一個問題但是對於原住民族的部落部落因為都是被化為都市計劃的農業區或者是非都市土地的農業用地甚至林業用地
transcript.whisperx[21].start 525.536
transcript.whisperx[21].end 550.359
transcript.whisperx[21].text 甚至是我們的部落被化為在這樣的一個情況之下怎麼樣去解決因為這麼大的面積只能蓋一間農舍事實上我們兄弟姐妹分家就沒辦法蓋所以我是建議要請農業部能夠支持原住民族部落的範圍內
transcript.whisperx[22].start 553.537
transcript.whisperx[22].end 577.987
transcript.whisperx[22].text 農業期的或者是農業用地他要興建自用住宅的土地得化設為建地當然這個前者會涉及到內政部啦會涉及到內政部國土計劃法、區計劃法、都市計劃法所以這樣的一個議題要請農業部未來能夠支持可以嗎?
transcript.whisperx[23].start 579.056
transcript.whisperx[23].end 588.858
transcript.whisperx[23].text 我跟委員說明喔,如果您剛才講的部落是聚集的部分,未來在國土計畫的話,它會被劃分為農事那劃為農事的話大概就可以解決這個問題
transcript.whisperx[24].start 593.151
transcript.whisperx[24].end 600.974
transcript.whisperx[24].text 我知道每次回答都是國土計劃法,但是一直遙遙無極,所以這個部分...因為地方政府在公展他的國土計劃圖
transcript.whisperx[25].start 611.457
transcript.whisperx[25].end 622.988
transcript.whisperx[25].text 然後相關的意見這時候都可以去陳述那後續我們中央在審查的時候我們也會考量特別考量這一點所以我說你們要特別支持好好謝謝好謝謝好那我們張家俊委員尋答結束