iVOD / 149226

Field Value
IVOD_ID 149226
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/149226
日期 2024-03-04
會議資料.會議代碼 委員會-11-1-20-2
會議資料.會議代碼:str 第11屆第1會期財政委員會第2次全體委員會議
會議資料.屆 11
會議資料.會期 1
會議資料.會次 2
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第1會期財政委員會第2次全體委員會議
影片種類 Clip
開始時間 2024-03-04T09:47:26+08:00
結束時間 2024-03-04T09:59:07+08:00
影片長度 00:11:41
支援功能[0] ai-transcript
支援功能[1] gazette
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/ad9f873b941d2dddf1d4384ce3e8b635e0c93a942a018238f8ba9b0039caa7a68e43617b4878f6c55ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴士葆
委員發言時間 09:47:26 - 09:59:07
會議時間 2024-03-04T09:00:00+08:00
會議名稱 立法院第11屆第1會期財政委員會第2次全體委員會議(事由:邀請金融監督管理委員會黃主任委員天牧率所屬機關首長暨中央存款保險股份有限公司、監管相關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢。 【3月4日及7日二天一次會】)
gazette.lineno 162
gazette.blocks[0][0] 賴委員士葆:(9時47分)謝謝主席以及各位先進。有請黃天牧主委。
gazette.blocks[1][0] 主席:有請黃主委。
gazette.blocks[2][0] 黃主任委員天牧:委員早。
gazette.blocks[3][0] 賴委員士葆:主委早。最近我的服務處接到三則被詐騙的案子,我特別提出來就是因為我看了很難過,他們一輩子的積蓄幾乎就這樣被騙光了,第三個被騙了三千多萬,來了我的服務處6次,我該做的、能做的都做了,包括怎麼樣找刑事警察局、金管會等等的,但是好像到現在為止就是一籌莫展了。
gazette.blocks[3][1] 我仔細看一下刑事警察局的統計,去年整年度的被詐騙金額有88億,詐騙案的前三名中,第一個是假投資,占了六成以上;第二個是假網拍;第三個是解除分期付款。這個完全都是金管會可以管得到的、可以幫忙的地方啊!比如現在變成大家透過平臺去join那些所謂的投資,教你怎麼賺錢、加LINE或是加名人、加什麼的,我知道像黃主委也被冒名過了,對不對?
gazette.blocks[4][0] 黃主任委員天牧:應該有。
gazette.blocks[5][0] 賴委員士葆:有嘛!還有其他人也被冒名了之類的啊!我就在想,與其讓當事人或者其他的單位、刑事警察局去盯著看,其實你的證交所、你的櫃買中心,人都不少啊!能不能叫他們每天盯著看,可不可以?一有就處理,一有就處理。就現在來看的話,都是金管會的事情。主委,我是在替你當子彈,因為陳情人對我痛罵金管會主委,他也不知道你姓什麼,我還不好意思說你姓黃,他就說金管會都沒在做事情。你看六成都是假投資,交易所的簡總經理與櫃買的陳董事長要不要上來一下?
gazette.blocks[6][0] 黃主任委員天牧:在他們上來中間我跟您報告……
gazette.blocks[7][0] 賴委員士葆:好,你報告。
gazette.blocks[8][0] 黃主任委員天牧:其實這兩個交易所一直有在蒐報,報告中也寫了,從去年3、4月到今年已經有2萬8,000件,但這個平臺還需要跨部會合作,像Google與Meta採實名制,這些都在努力中。
gazette.blocks[9][0] 賴委員士葆:請兩位長官回答我的問題,有沒有派專人,可能不止一個,可能不止二個,派專人每天盯這些平臺?有沒有?有沒有?先回答這問題。
gazette.blocks[10][0] 簡總經理立忠:跟委員報告,交易所有專人在做這個……
gazette.blocks[11][0] 賴委員士葆:有沒有每天盯?
gazette.blocks[12][0] 簡總經理立忠:有、有。
gazette.blocks[13][0] 賴委員士葆:有沒有每天出報告?
gazette.blocks[14][0] 簡總經理立忠:持續發現案子就會移送給檢查局、給主管機關……
gazette.blocks[15][0] 賴委員士葆:你們上個月移送多少?幾件?
gazette.blocks[16][0] 簡總經理立忠:到2月29日為止,我的統計是1萬4,000……
gazette.blocks[17][0] 賴委員士葆:一萬四千多件?
gazette.blocks[18][0] 簡總經理立忠:對。
gazette.blocks[19][0] 賴委員士葆:櫃買呢?你蒐了多少?
gazette.blocks[20][0] 陳董事長永誠:到2月27日是1萬1,634件。
gazette.blocks[21][0] 賴委員士葆:你們兩個當然是確定、每天都有在看?
gazette.blocks[22][0] 陳董事長永誠:對。
gazette.blocks[23][0] 賴委員士葆:有一個一萬多,另一個也一萬多?
gazette.blocks[24][0] 陳董事長永誠:對。
gazette.blocks[25][0] 賴委員士葆:請主委回答,我資質駑鈍。移送這麼多,為什麼都沒辦法查出這裡的名堂什麼之類的?為什麼沒有辦法有效阻斷?行政院陳院長喊得很大聲,花了13億,喊打喊殺說要打詐,結果詐越打越多!你看這曲線圖,這是聯合報的曲線圖,你看到,越來越多!件數越來越多啊!沒有效啊!但你們取締了不少。黃主委,詐騙絕對跟金流有關係,絕對跟你的管區有關係,你會不會覺得你少做了一件什麼事?有沒有?
gazette.blocks[26][0] 黃主任委員天牧:其實我們蒐報、報到刑事局之後,重點是要他下架,他要在24小時之內下架!可是下架之後,他又透過其他管道再上來!所以查完之後,他還會再上來……
gazette.blocks[27][0] 賴委員士葆:下架不能夠處罰嗎?
gazette.blocks[28][0] 黃主任委員天牧:沒有,處罰的前提必須是他不下架,我們才能處罰,他下架就不能處罰,這是法律上的規定。另外一個重點是,將來透過平臺Google與Meta實名制,現在用實名制……
gazette.blocks[29][0] 賴委員士葆:你可以不可以要求……因為上架的大部分都和投顧有關,投顧也是你管的啊……
gazette.blocks[30][0] 黃主任委員天牧:報告委員,其實真正的投顧不會做這些事……
gazette.blocks[31][0] 賴委員士葆:假投顧可以啊!
gazette.blocks[32][0] 黃主任委員天牧:假的……不管是不是投顧,他就是詐欺集團,不是真正的投顧……
gazette.blocks[33][0] 賴委員士葆:你沒辦法……
gazette.blocks[34][0] 黃主任委員天牧:6月底會有實名制,將來如果在平臺上廣告,用實名就可以追索。
gazette.blocks[35][0] 賴委員士葆:我請問你,被詐騙的金額大概可以追回來多少?
gazette.blocks[36][0] 黃主任委員天牧:這要刑事局才有資料。
gazette.blocks[37][0] 賴委員士葆:我得到的資料是不超過一成,幾乎都血本無歸!是overall!譬如88億最多才追回來8億,而且不知道什麼時候才追得到!碰到這樣的案子真的很難過,當事人都想自殺了,三千多萬!主委,你腦筋很好,再多想一想,好不好?
gazette.blocks[38][0] 黃主任委員天牧:謝謝委員,我想我們對於……
gazette.blocks[39][0] 賴委員士葆:有效阻止啦,你這裡扮演很多角色……
gazette.blocks[40][0] 黃主任委員天牧:數位部……從今年6月開始,這兩個平臺願意用實名制來……
gazette.blocks[41][0] 賴委員士葆:第二個,我跟你談一下臺股。最近臺股嚇嚇叫,漲到一萬九千多,是不是已經正式進入牛市?
gazette.blocks[42][0] 黃主任委員天牧:我們不太適合去判斷牛市或熊市,我想台股有基本面是事實。
gazette.blocks[43][0] 賴委員士葆:牛市怎麼判斷?
gazette.blocks[44][0] 黃主任委員天牧:大概是在一定期間漲……
gazette.blocks[45][0] 賴委員士葆:20%!但現在不只漲20%了!如果一段時間內不只漲20%,從1萬7,000到1萬9,000就差不多20%了,何況是從1萬5,000、6,000漲到1萬9,000?20%怎麼不是呢?所以你還不敢講牛市?
gazette.blocks[46][0] 黃主任委員天牧:國際政經情況多變,我們還是要審慎以對。
gazette.blocks[47][0] 賴委員士葆:基本面很好?
gazette.blocks[48][0] 黃主任委員天牧:是有基本面,我沒有說……
gazette.blocks[49][0] 賴委員士葆:整體台股的本益比有多少?
gazette.blocks[50][0] 黃主任委員天牧:21.17倍。
gazette.blocks[51][0] 賴委員士葆:OK嗎?
gazette.blocks[52][0] 黃主任委員天牧:我覺得還算穩健,還算穩健。
gazette.blocks[53][0] 賴委員士葆:美國道瓊的本益比多少?
gazette.blocks[54][0] 黃主任委員天牧:報告委員,我沒聽清楚。
gazette.blocks[55][0] 賴委員士葆:美國道瓊的本益比多少?
gazette.blocks[56][0] 黃主任委員天牧:這個要請同仁提供一下,多少?24.06。
gazette.blocks[57][0] 賴委員士葆:所以臺灣本益比不高?
gazette.blocks[58][0] 黃主任委員天牧:對,從這個角度……
gazette.blocks[59][0] 賴委員士葆:意思就是還可能會漲?
gazette.blocks[60][0] 黃主任委員天牧:報告委員,監理機關不太適合對漲跌有太多的……
gazette.blocks[61][0] 賴委員士葆:本來就是這樣,本益比低就是要漲,就是這樣。但是你仔細看就會發現,漲幅都是靠AI跟台積電相關的電子族群,其他的族群很少,也就是不夠平均。這讓外界有點擔心我們的資本市場,特別是股票市場扭曲的現象還滿嚴重的!怎麼大家的資金都一窩蜂擠到電子相關產業?有些電子的本益比都很高了,電子公司的本益比都非常高。
gazette.blocks[62][0] 黃主任委員天牧:報告委員……
gazette.blocks[63][0] 賴委員士葆:本益比高,風險當然就高啊!
gazette.blocks[64][0] 黃主任委員天牧:報告委員,您說的是一個事實,可是另外一個事實是:台股30年來的發展中,臺灣證券交易所的市場結構半導體電子就占一半,所以這是反映它的產業結構。
gazette.blocks[65][0] 賴委員士葆:所以你不敢說後市怎麼樣,但就本益比來說臺灣OK,還不算高,所以是juicy,值得投資,可以吧?我做這結論?
gazette.blocks[66][0] 黃主任委員天牧:投不投資還是看投資人的決定,就是要注意風險,而且台股有基本面……
gazette.blocks[67][0] 賴委員士葆:好,最後一題,也是很重要的題目。金融營業稅今年底到期,我們現在是5%,其中3%給財政部,2%進入金融業特別準備金,現在有將近3,500億。金管會對於今年底到期的這個法要怎麼修?有沒有方向?
gazette.blocks[68][0] 黃主任委員天牧:第一個,這是財政部主管,我們要尊重財政部……
gazette.blocks[69][0] 賴委員士葆:問你的態度!我問了財政部,財政部說問你!
gazette.blocks[70][0] 黃主任委員天牧:我的任期到5月19日,所以由下一任主委來回答會比較合適。真的,我不是不願意回答你,我不應該超越我的……
gazette.blocks[71][0] 賴委員士葆:後面的媒體都笑出來了!好歹你要離開之前做一件大事吧?這件不是大事?這個是大事!
gazette.blocks[72][0] 黃主任委員天牧:這應該是520後的財政部才能做的事。
gazette.blocks[73][0] 賴委員士葆:沒有,你的態度非常重要。我找了財政部,財政部告訴我,金管會的態度非常重要。當然,行政院相關政委的態度也很重要……
gazette.blocks[74][0] 黃主任委員天牧:報告委員,其實我的態度,過去在您垂詢或其他委員垂詢時我有報告過,現在我們跟國際趨勢是不符的,所以希望能夠降低。但原有準備金的部分希望能夠留著。
gazette.blocks[75][0] 賴委員士葆:準備金已經3,500億了,臺灣現在都已經控制這麼好了,逾放比這麼低,老實講用不太到了,這個多餘了!你的意思我有問出來了,我站了老半天好歹總要問出一個東西。你說調降,降多少可以說嗎?
gazette.blocks[76][0] 黃主任委員天牧:我們希望能夠適度調降,但尊重財政部。
gazette.blocks[77][0] 賴委員士葆:我知道,但是你的本意很重要。好,謝謝。
gazette.blocks[78][0] 黃主任委員天牧:謝謝委員。
gazette.blocks[79][0] 主席(賴委員惠員代):接著請郭國文委員。
gazette.agenda.page_end 322
gazette.agenda.meet_id 委員會-11-1-20-2
gazette.agenda.speakers[0] 郭國文
gazette.agenda.speakers[1] 吳秉叡
gazette.agenda.speakers[2] 林德福
gazette.agenda.speakers[3] 賴士葆
gazette.agenda.speakers[4] 賴惠員
gazette.agenda.speakers[5] 王鴻薇
gazette.agenda.speakers[6] 陳玉珍
gazette.agenda.speakers[7] 伍麗華Saidhai‧Tahovecahe
gazette.agenda.speakers[8] 顏寬恒
gazette.agenda.speakers[9] 黃珊珊
gazette.agenda.speakers[10] 李坤城
gazette.agenda.speakers[11] 王世堅
gazette.agenda.speakers[12] 李彥秀
gazette.agenda.speakers[13] 謝衣鳯
gazette.agenda.speakers[14] 葛如鈞
gazette.agenda.speakers[15] 邱志偉
gazette.agenda.speakers[16] 黃國昌
gazette.agenda.speakers[17] 林楚茵
gazette.agenda.speakers[18] 羅明才
gazette.agenda.speakers[19] 楊瓊瓔
gazette.agenda.page_start 269
gazette.agenda.meetingDate[0] 2024-03-04
gazette.agenda.gazette_id 1130701
gazette.agenda.agenda_lcidc_ids[0] 1130701_00006
gazette.agenda.meet_name 立法院第11屆第1會期財政委員會第2次全體委員會議紀錄
gazette.agenda.content 邀請金融監督管理委員會黃主任委員天牧率所屬機關首長暨中央存款保險股份有限公司、監管相 關機構有關之財團法人、臺灣證券交易所股份有限公司、臺灣期貨交易所股份有限公司、臺灣集 中保管結算所股份有限公司等董事長、總經理列席業務報告,並備質詢
gazette.agenda.agenda_id 1130701_00005
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.09846875
transcript.pyannote[0].end 1.14471875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 1.53284375
transcript.pyannote[1].end 2.03909375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 2.03909375
transcript.pyannote[2].end 2.22471875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 6.54471875
transcript.pyannote[3].end 6.94971875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 7.79346875
transcript.pyannote[4].end 8.58659375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 9.70034375
transcript.pyannote[5].end 13.12596875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 14.88096875
transcript.pyannote[6].end 16.48409375
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 17.49659375
transcript.pyannote[7].end 18.47534375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 19.85909375
transcript.pyannote[8].end 20.43284375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 20.83784375
transcript.pyannote[9].end 22.22159375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 22.82909375
transcript.pyannote[10].end 23.92596875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 24.63471875
transcript.pyannote[11].end 25.57971875
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 25.90034375
transcript.pyannote[12].end 26.40659375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 27.38534375
transcript.pyannote[13].end 29.96721875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 30.74346875
transcript.pyannote[14].end 31.41846875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 32.27909375
transcript.pyannote[15].end 33.69659375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 35.70471875
transcript.pyannote[16].end 37.64534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 38.82659375
transcript.pyannote[17].end 41.62784375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 41.94846875
transcript.pyannote[18].end 42.84284375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 42.97784375
transcript.pyannote[19].end 45.12096875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 45.37409375
transcript.pyannote[20].end 45.98159375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 46.26846875
transcript.pyannote[21].end 46.72409375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 47.24721875
transcript.pyannote[22].end 48.39471875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 49.42409375
transcript.pyannote[23].end 50.53784375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 51.14534375
transcript.pyannote[24].end 52.37721875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 53.30534375
transcript.pyannote[25].end 55.07721875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 56.02221875
transcript.pyannote[26].end 59.21159375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 60.37596875
transcript.pyannote[27].end 65.96159375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 66.46784375
transcript.pyannote[28].end 68.88096875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 68.96534375
transcript.pyannote[29].end 71.09159375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 72.12096875
transcript.pyannote[30].end 73.15034375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 73.62284375
transcript.pyannote[31].end 74.44971875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 75.68159375
transcript.pyannote[32].end 78.17909375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 80.20409375
transcript.pyannote[33].end 80.49096875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 81.18284375
transcript.pyannote[34].end 81.80721875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 82.73534375
transcript.pyannote[35].end 83.19096875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 83.29221875
transcript.pyannote[36].end 84.23721875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 84.60846875
transcript.pyannote[37].end 86.31284375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 87.24096875
transcript.pyannote[38].end 87.67971875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 88.08471875
transcript.pyannote[39].end 88.72596875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 89.83971875
transcript.pyannote[40].end 91.47659375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 92.20221875
transcript.pyannote[41].end 93.36659375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 94.73346875
transcript.pyannote[42].end 97.01159375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 97.34909375
transcript.pyannote[43].end 100.36971875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 101.38221875
transcript.pyannote[44].end 103.54221875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 103.08659375
transcript.pyannote[45].end 103.86284375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 104.63909375
transcript.pyannote[46].end 107.13659375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 107.76096875
transcript.pyannote[47].end 108.38534375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 109.80284375
transcript.pyannote[48].end 110.74784375
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 112.23284375
transcript.pyannote[49].end 112.97534375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 113.63346875
transcript.pyannote[50].end 116.97471875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 117.32909375
transcript.pyannote[51].end 119.89409375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 120.28221875
transcript.pyannote[52].end 121.00784375
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 121.05846875
transcript.pyannote[53].end 122.98221875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 123.43784375
transcript.pyannote[54].end 124.66971875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 125.04096875
transcript.pyannote[55].end 127.40346875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 127.70721875
transcript.pyannote[56].end 130.60971875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 130.93034375
transcript.pyannote[57].end 131.43659375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 131.79096875
transcript.pyannote[58].end 132.85409375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 133.24221875
transcript.pyannote[59].end 133.91721875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 134.52471875
transcript.pyannote[60].end 135.80721875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 137.03909375
transcript.pyannote[61].end 137.59596875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 138.35534375
transcript.pyannote[62].end 139.58721875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 139.89096875
transcript.pyannote[63].end 141.69659375
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 142.50659375
transcript.pyannote[64].end 143.58659375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 145.12221875
transcript.pyannote[65].end 146.50596875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 147.61971875
transcript.pyannote[66].end 148.04159375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 148.41284375
transcript.pyannote[67].end 150.50534375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 151.60221875
transcript.pyannote[68].end 154.13346875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 155.58471875
transcript.pyannote[69].end 155.71971875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 156.24284375
transcript.pyannote[70].end 157.40721875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 157.74471875
transcript.pyannote[71].end 158.65596875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 159.11159375
transcript.pyannote[72].end 159.73596875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 160.20846875
transcript.pyannote[73].end 163.43159375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 165.03471875
transcript.pyannote[74].end 180.15471875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 167.49846875
transcript.pyannote[75].end 168.40971875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 180.39096875
transcript.pyannote[76].end 186.02721875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 186.02721875
transcript.pyannote[77].end 187.20846875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 188.52471875
transcript.pyannote[78].end 191.22471875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 192.10221875
transcript.pyannote[79].end 193.84034375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 194.05971875
transcript.pyannote[80].end 196.40534375
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 197.16471875
transcript.pyannote[81].end 198.21096875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 198.21096875
transcript.pyannote[82].end 202.91909375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 203.52659375
transcript.pyannote[83].end 206.41221875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 205.14659375
transcript.pyannote[84].end 205.63596875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 206.98596875
transcript.pyannote[85].end 213.39846875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 213.93846875
transcript.pyannote[86].end 218.25846875
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 216.52034375
transcript.pyannote[87].end 217.02659375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 217.19534375
transcript.pyannote[88].end 217.66784375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 218.71409375
transcript.pyannote[89].end 219.15284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 220.19909375
transcript.pyannote[90].end 225.83534375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 226.02096875
transcript.pyannote[91].end 226.03784375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 226.05471875
transcript.pyannote[92].end 227.52284375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 226.61159375
transcript.pyannote[93].end 226.96596875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 227.97846875
transcript.pyannote[94].end 228.26534375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 228.26534375
transcript.pyannote[95].end 228.28221875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 228.99096875
transcript.pyannote[96].end 229.64909375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 229.64909375
transcript.pyannote[97].end 229.71659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 230.05409375
transcript.pyannote[98].end 230.07096875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 230.07096875
transcript.pyannote[99].end 231.89346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 234.35721875
transcript.pyannote[100].end 238.69409375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 238.45784375
transcript.pyannote[101].end 241.09034375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 241.09034375
transcript.pyannote[102].end 241.71471875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 242.79471875
transcript.pyannote[103].end 243.46971875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 243.01409375
transcript.pyannote[104].end 244.87034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 245.05596875
transcript.pyannote[105].end 245.59596875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 245.71409375
transcript.pyannote[106].end 248.44784375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 248.58284375
transcript.pyannote[107].end 250.06784375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 250.62471875
transcript.pyannote[108].end 253.34159375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 253.57784375
transcript.pyannote[109].end 259.26471875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 260.19284375
transcript.pyannote[110].end 262.94346875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 263.28096875
transcript.pyannote[111].end 264.51284375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 265.22159375
transcript.pyannote[112].end 266.74034375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 267.12846875
transcript.pyannote[113].end 269.17034375
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 269.60909375
transcript.pyannote[114].end 272.51159375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 272.91659375
transcript.pyannote[115].end 275.36346875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 275.85284375
transcript.pyannote[116].end 276.78096875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 277.60784375
transcript.pyannote[117].end 279.73409375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 280.86471875
transcript.pyannote[118].end 282.56909375
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 282.75471875
transcript.pyannote[119].end 283.96971875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 284.12159375
transcript.pyannote[120].end 284.54346875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 286.18034375
transcript.pyannote[121].end 286.65284375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 287.39534375
transcript.pyannote[122].end 289.97721875
transcript.pyannote[123].speaker SPEAKER_03
transcript.pyannote[123].start 290.12909375
transcript.pyannote[123].end 291.98534375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 292.30596875
transcript.pyannote[124].end 294.93846875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 295.54596875
transcript.pyannote[125].end 302.81909375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 303.27471875
transcript.pyannote[126].end 313.33221875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 313.82159375
transcript.pyannote[127].end 317.31471875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 317.73659375
transcript.pyannote[128].end 322.59659375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 322.88346875
transcript.pyannote[129].end 328.03034375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 325.43159375
transcript.pyannote[130].end 325.90409375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 328.03034375
transcript.pyannote[131].end 329.65034375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 329.97096875
transcript.pyannote[132].end 335.20221875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 333.85221875
transcript.pyannote[133].end 334.44284375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 334.93221875
transcript.pyannote[134].end 345.02346875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 339.47159375
transcript.pyannote[135].end 340.34909375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 345.41159375
transcript.pyannote[136].end 347.20034375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 348.58409375
transcript.pyannote[137].end 349.84971875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 349.90034375
transcript.pyannote[138].end 350.76096875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 351.28409375
transcript.pyannote[139].end 354.03471875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 354.16971875
transcript.pyannote[140].end 358.43909375
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 359.26596875
transcript.pyannote[141].end 359.36721875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 360.93659375
transcript.pyannote[142].end 361.62846875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 362.21909375
transcript.pyannote[143].end 364.75034375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 366.20159375
transcript.pyannote[144].end 368.29409375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 367.93971875
transcript.pyannote[145].end 369.98159375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 370.84221875
transcript.pyannote[146].end 372.56346875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 373.27221875
transcript.pyannote[147].end 374.65596875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 375.63471875
transcript.pyannote[148].end 376.78221875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 377.57534375
transcript.pyannote[149].end 379.29659375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 379.71846875
transcript.pyannote[150].end 381.59159375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 382.35096875
transcript.pyannote[151].end 382.72221875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 383.58284375
transcript.pyannote[152].end 384.81471875
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 386.04659375
transcript.pyannote[153].end 387.61596875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 388.39221875
transcript.pyannote[154].end 390.65346875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 391.75034375
transcript.pyannote[155].end 392.83034375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 394.55159375
transcript.pyannote[156].end 394.99034375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 395.47971875
transcript.pyannote[157].end 395.95221875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 396.20534375
transcript.pyannote[158].end 397.50471875
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 397.90971875
transcript.pyannote[159].end 398.68596875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 399.41159375
transcript.pyannote[160].end 399.56346875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 399.56346875
transcript.pyannote[161].end 399.58034375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 399.58034375
transcript.pyannote[162].end 402.09471875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 402.63471875
transcript.pyannote[163].end 405.46971875
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 402.70221875
transcript.pyannote[164].end 405.41909375
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 405.46971875
transcript.pyannote[165].end 407.54534375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 405.73971875
transcript.pyannote[166].end 415.49346875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 414.51471875
transcript.pyannote[167].end 417.78846875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 418.37909375
transcript.pyannote[168].end 422.39534375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 422.78346875
transcript.pyannote[169].end 425.23034375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 426.44534375
transcript.pyannote[170].end 433.75221875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 435.03471875
transcript.pyannote[171].end 438.47721875
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 437.29596875
transcript.pyannote[172].end 438.76409375
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 438.84846875
transcript.pyannote[173].end 442.74659375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 443.65784375
transcript.pyannote[174].end 445.42971875
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 445.88534375
transcript.pyannote[175].end 449.32784375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 450.00284375
transcript.pyannote[176].end 451.38659375
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 451.87596875
transcript.pyannote[177].end 453.02346875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 453.88409375
transcript.pyannote[178].end 454.47471875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 454.93034375
transcript.pyannote[179].end 458.84534375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 458.92971875
transcript.pyannote[180].end 459.13221875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 459.30096875
transcript.pyannote[181].end 460.19534375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 461.12346875
transcript.pyannote[182].end 465.46034375
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 465.81471875
transcript.pyannote[183].end 467.08034375
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 467.45159375
transcript.pyannote[184].end 469.49346875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 469.89846875
transcript.pyannote[185].end 470.52284375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 471.56909375
transcript.pyannote[186].end 472.51409375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 472.98659375
transcript.pyannote[187].end 475.61909375
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 475.61909375
transcript.pyannote[188].end 476.64846875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 477.25596875
transcript.pyannote[189].end 478.82534375
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 479.92221875
transcript.pyannote[190].end 481.79534375
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 481.93034375
transcript.pyannote[191].end 483.49971875
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 483.49971875
transcript.pyannote[192].end 483.53346875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 484.19159375
transcript.pyannote[193].end 485.22096875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 485.54159375
transcript.pyannote[194].end 488.15721875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 488.81534375
transcript.pyannote[195].end 489.23721875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 489.99659375
transcript.pyannote[196].end 494.51909375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 495.64971875
transcript.pyannote[197].end 499.29471875
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 497.30346875
transcript.pyannote[198].end 497.74221875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 500.20596875
transcript.pyannote[199].end 505.23471875
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 505.23471875
transcript.pyannote[200].end 505.25159375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 505.25159375
transcript.pyannote[201].end 505.55534375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 505.72409375
transcript.pyannote[202].end 506.02784375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 506.02784375
transcript.pyannote[203].end 507.34409375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 507.49596875
transcript.pyannote[204].end 507.52971875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 507.52971875
transcript.pyannote[205].end 508.32284375
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 508.72784375
transcript.pyannote[206].end 510.73596875
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 510.97221875
transcript.pyannote[207].end 512.33909375
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 513.89159375
transcript.pyannote[208].end 514.54971875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 515.47784375
transcript.pyannote[209].end 516.62534375
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 517.16534375
transcript.pyannote[210].end 518.61659375
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 518.95409375
transcript.pyannote[211].end 520.74284375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 521.26596875
transcript.pyannote[212].end 523.74659375
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 524.30346875
transcript.pyannote[213].end 525.16409375
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 525.85596875
transcript.pyannote[214].end 529.12971875
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 529.77096875
transcript.pyannote[215].end 531.39096875
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 531.67784375
transcript.pyannote[216].end 532.57221875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 532.89284375
transcript.pyannote[217].end 533.97284375
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 534.37784375
transcript.pyannote[218].end 535.99784375
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 536.30159375
transcript.pyannote[219].end 537.19596875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 537.51659375
transcript.pyannote[220].end 537.98909375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 538.83284375
transcript.pyannote[221].end 540.18284375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 540.40221875
transcript.pyannote[222].end 541.34721875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 542.00534375
transcript.pyannote[223].end 543.69284375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 544.36784375
transcript.pyannote[224].end 546.30846875
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 547.59096875
transcript.pyannote[225].end 549.78471875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 549.78471875
transcript.pyannote[226].end 555.69096875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 556.83846875
transcript.pyannote[227].end 558.07034375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 558.28971875
transcript.pyannote[228].end 559.87596875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 560.06159375
transcript.pyannote[229].end 561.59721875
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 561.90096875
transcript.pyannote[230].end 564.01034375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 564.26346875
transcript.pyannote[231].end 564.97221875
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 564.97221875
transcript.pyannote[232].end 567.63846875
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 567.87471875
transcript.pyannote[233].end 568.71846875
transcript.pyannote[234].speaker SPEAKER_03
transcript.pyannote[234].start 568.93784375
transcript.pyannote[234].end 569.88284375
transcript.pyannote[235].speaker SPEAKER_03
transcript.pyannote[235].start 570.69284375
transcript.pyannote[235].end 571.13159375
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 571.51971875
transcript.pyannote[236].end 573.81471875
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 573.88221875
transcript.pyannote[237].end 575.36721875
transcript.pyannote[238].speaker SPEAKER_03
transcript.pyannote[238].start 575.50221875
transcript.pyannote[238].end 576.76784375
transcript.pyannote[239].speaker SPEAKER_02
transcript.pyannote[239].start 577.40909375
transcript.pyannote[239].end 584.73284375
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 581.37471875
transcript.pyannote[240].end 582.89346875
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 583.50096875
transcript.pyannote[241].end 583.82159375
transcript.pyannote[242].speaker SPEAKER_03
transcript.pyannote[242].start 584.73284375
transcript.pyannote[242].end 584.96909375
transcript.pyannote[243].speaker SPEAKER_02
transcript.pyannote[243].start 584.96909375
transcript.pyannote[243].end 585.03659375
transcript.pyannote[244].speaker SPEAKER_03
transcript.pyannote[244].start 585.03659375
transcript.pyannote[244].end 586.20096875
transcript.pyannote[245].speaker SPEAKER_03
transcript.pyannote[245].start 586.63971875
transcript.pyannote[245].end 586.65659375
transcript.pyannote[246].speaker SPEAKER_02
transcript.pyannote[246].start 586.65659375
transcript.pyannote[246].end 586.67346875
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 586.67346875
transcript.pyannote[247].end 589.13721875
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 590.43659375
transcript.pyannote[248].end 595.34721875
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 596.10659375
transcript.pyannote[249].end 597.03471875
transcript.pyannote[250].speaker SPEAKER_03
transcript.pyannote[250].start 598.08096875
transcript.pyannote[250].end 603.21096875
transcript.pyannote[251].speaker SPEAKER_03
transcript.pyannote[251].start 603.56534375
transcript.pyannote[251].end 605.18534375
transcript.pyannote[252].speaker SPEAKER_03
transcript.pyannote[252].start 605.69159375
transcript.pyannote[252].end 607.27784375
transcript.pyannote[253].speaker SPEAKER_03
transcript.pyannote[253].start 607.88534375
transcript.pyannote[253].end 609.23534375
transcript.pyannote[254].speaker SPEAKER_02
transcript.pyannote[254].start 610.41659375
transcript.pyannote[254].end 615.37784375
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 615.37784375
transcript.pyannote[255].end 617.84159375
transcript.pyannote[256].speaker SPEAKER_02
transcript.pyannote[256].start 617.84159375
transcript.pyannote[256].end 617.85846875
transcript.pyannote[257].speaker SPEAKER_02
transcript.pyannote[257].start 618.55034375
transcript.pyannote[257].end 623.34284375
transcript.pyannote[258].speaker SPEAKER_02
transcript.pyannote[258].start 624.89534375
transcript.pyannote[258].end 629.67096875
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 627.88221875
transcript.pyannote[259].end 628.20284375
transcript.pyannote[260].speaker SPEAKER_03
transcript.pyannote[260].start 632.05034375
transcript.pyannote[260].end 639.81284375
transcript.pyannote[261].speaker SPEAKER_02
transcript.pyannote[261].start 638.29409375
transcript.pyannote[261].end 641.12909375
transcript.pyannote[262].speaker SPEAKER_03
transcript.pyannote[262].start 640.89284375
transcript.pyannote[262].end 651.62534375
transcript.pyannote[263].speaker SPEAKER_02
transcript.pyannote[263].start 643.22159375
transcript.pyannote[263].end 643.30596875
transcript.pyannote[264].speaker SPEAKER_02
transcript.pyannote[264].start 643.94721875
transcript.pyannote[264].end 643.98096875
transcript.pyannote[265].speaker SPEAKER_02
transcript.pyannote[265].start 651.52409375
transcript.pyannote[265].end 666.61034375
transcript.pyannote[266].speaker SPEAKER_03
transcript.pyannote[266].start 666.61034375
transcript.pyannote[266].end 666.62721875
transcript.pyannote[267].speaker SPEAKER_02
transcript.pyannote[267].start 667.42034375
transcript.pyannote[267].end 668.02784375
transcript.pyannote[268].speaker SPEAKER_03
transcript.pyannote[268].start 668.02784375
transcript.pyannote[268].end 676.58346875
transcript.pyannote[269].speaker SPEAKER_02
transcript.pyannote[269].start 676.02659375
transcript.pyannote[269].end 676.34721875
transcript.pyannote[270].speaker SPEAKER_03
transcript.pyannote[270].start 677.12346875
transcript.pyannote[270].end 677.46096875
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 677.51159375
transcript.pyannote[271].end 684.41346875
transcript.pyannote[272].speaker SPEAKER_02
transcript.pyannote[272].start 683.28284375
transcript.pyannote[272].end 686.82659375
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 686.77596875
transcript.pyannote[273].end 688.26096875
transcript.pyannote[274].speaker SPEAKER_02
transcript.pyannote[274].start 688.26096875
transcript.pyannote[274].end 688.27784375
transcript.pyannote[275].speaker SPEAKER_03
transcript.pyannote[275].start 688.71659375
transcript.pyannote[275].end 688.73346875
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 688.73346875
transcript.pyannote[276].end 688.96971875
transcript.pyannote[277].speaker SPEAKER_03
transcript.pyannote[277].start 688.96971875
transcript.pyannote[277].end 689.02034375
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 689.02034375
transcript.pyannote[278].end 689.25659375
transcript.pyannote[279].speaker SPEAKER_03
transcript.pyannote[279].start 689.25659375
transcript.pyannote[279].end 689.37471875
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 689.37471875
transcript.pyannote[280].end 689.40846875
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 690.43784375
transcript.pyannote[281].end 691.36596875
transcript.pyannote[282].speaker SPEAKER_02
transcript.pyannote[282].start 690.72471875
transcript.pyannote[282].end 692.00721875
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 692.56409375
transcript.pyannote[283].end 696.22596875
transcript.whisperx[0].start 0.389
transcript.whisperx[0].end 26.01
transcript.whisperx[0].text 黃天牧主委有請黃主委委員長主委委員長現在啊我最近我的服務處啊截掉三者的被詐騙的案子我特別提出來就是我看了很難過啊幾乎是他們
transcript.whisperx[1].start 27.461
transcript.whisperx[1].end 52.149
transcript.whisperx[1].text 全一輩子的積蓄這樣被騙光了第三個被騙了三千多萬來我的服務處來了六次我該做能做的都做了能做的都做了怎麼樣找行事警察局什麼的金管會等等的但是好像到現在為止就一籌莫展了我就仔細看一下
transcript.whisperx[2].start 53.422
transcript.whisperx[2].end 78.081
transcript.whisperx[2].text 刑事警察局統計了去年度整年度被詐騙金額88億詐騙案的前三名第一個假投資佔了六成以上第二個假網拍第三個解除分期付款這個都完全是金管委裡面可以管得到可以幫忙的地方啊
transcript.whisperx[3].start 81.216
transcript.whisperx[3].end 106.763
transcript.whisperx[3].text 比如說這個現在變成是大家透過平台去join那些的所謂的投資教你怎麼賺錢加line啦加什麼啦加名人啦我知道像我黃主委名誰被冒名過了對不對應該有應該有有嘛齁還有其他人也冒名啊什麼之類的這個
transcript.whisperx[4].start 109.861
transcript.whisperx[4].end 135.626
transcript.whisperx[4].text 我正在想,與其讓其他的當事人或者其他的單位,刑事警察局,他們去聽著看,欸,你的證交所、你的櫃檯中心,人都不少啊,能不能叫他們每天聽著看,可不可以?一樓就處理,一樓就處理,現在來看的話,都是金管會的事情啊,讓那個陳青仁去告訴我。
transcript.whisperx[5].start 137.246
transcript.whisperx[5].end 163.22
transcript.whisperx[5].text 主委啊,我踢你當子彈捏,他偷罵這金管會主委,他還不知道你姓什麼,我還不好意思說你姓黃。嗯,他就說金管會都沒你做事,你看六成都是假投資。我們交易所的金總經理跟櫃馬的陳董事長要不要上來一下。
transcript.whisperx[6].start 165.066
transcript.whisperx[6].end 186.391
transcript.whisperx[6].text 我想在他們上來的中間我跟您報告我們其實一直就有在兩個交易所去收報這報告中也寫從去年四三四月到今年已經有兩萬八千件但是這個平台還要大家跨部會去合作像Google跟Meta要用實名制這些都有在努力中請兩位的長官就回到我的問題你以為派專人
transcript.whisperx[7].start 192.148
transcript.whisperx[7].end 218.099
transcript.whisperx[7].text 可能不只一個可能不只兩個專人每天盯這些平台有沒有有沒有回答這問題跟委員報告我們交易所這邊有專人在做這個有沒有每天盯有有我們有沒有每天出報告我們持續發現案子就會做移送的這個動作給檢察局給好你們三個有移送多少幾間
transcript.whisperx[8].start 221.251
transcript.whisperx[8].end 231.501
transcript.whisperx[8].text 到2月29號為止我這邊的統計是一萬四千一萬四千多件?對那貴賣這邊呢?你說了多少?我們到2月27號是一萬一千六百三十四千你們兩個都是確定每天都有在看喔?對對對
transcript.whisperx[9].start 243.442
transcript.whisperx[9].end 258.677
transcript.whisperx[9].text 一個一萬多、一個一萬多。諸位啊,你回答我不好。我支持魯頓喔。輿送這麼多,為什麼都沒辦法查出來?這裡面的名堂啊什麼之類的,為什麼沒有辦法有效阻斷?
transcript.whisperx[10].start 260.419
transcript.whisperx[10].end 284.39
transcript.whisperx[10].text 這些你看我們行政院陳院長這樣摸著這大聲花了13例喊打喊殺打詐結果詐越打越多你看到這裡曲線圖這個是聯運報的曲線圖你看到越來越多越來越多件數越來越多沒有效啊而且看起來你取締了不少啊所以
transcript.whisperx[11].start 286.349
transcript.whisperx[11].end 312.481
transcript.whisperx[11].text 黃主委因為這個詐騙絕對跟經理有關係絕對跟你的管區有關係你會不會覺得你少做了一件什麼事其實報告委員重點就是因為我們收報之後報到刑事局之後其實重點是叫他下架他是有在一二四小時之內下架可是下架之後他又透過其他管道又再上來所以查完之後他還會再上來所以我們下架不能跟他處罰嗎
transcript.whisperx[12].start 313.861
transcript.whisperx[12].end 338.582
transcript.whisperx[12].text 沒有,處罰的前提必須他不下架我們才能處罰他下架就不能處罰那這是法律上的規定那另外一個重點就是將來透過平台Google跟Meta用實名制現在用實名制你可以不可以要求因為這個上架的大部分很多是投顧的嘛投顧也是你管的啊其實真正的投顧不會做這些事
transcript.whisperx[13].start 339.022
transcript.whisperx[13].end 364.623
transcript.whisperx[13].text 假投顧也可以啊假的假的不管是不是投顧或是就是一個詐欺集團他這個不是真正的投顧你沒辦法現在就是六月底有實名制將來如果你真正在這個平台要上廣告要實名就可以追索你我請問你啊被詐騙的金融大概可以追回來多少
transcript.whisperx[14].start 366.386
transcript.whisperx[14].end 392.48
transcript.whisperx[14].text 這個要刑事局這邊才有這個資料我得到的資料是不超過一成耶幾乎都是血本不歸啊那是overall的我88億那最多追回來8億而且不知道什麼時候才追得到這個這個噴到這樣的案子真的很難過啊真的這個這個當事人都想自殺啊三千多萬
transcript.whisperx[15].start 394.608
transcript.whisperx[15].end 398.535
transcript.whisperx[15].text 真的那個主委啊您腦筋很好啊這都想一想
transcript.whisperx[16].start 400.068
transcript.whisperx[16].end 424.538
transcript.whisperx[16].text 有效阻止啦你這裡啦你這裡啦其實我們跟數位部就是最近就有就是今年6月開始這兩個平台就是願意用實名制來介紹好 第二個我跟你談一下臺股啊最近嚇嚇叫啊漲了1萬到1萬9千多啊是不是已經正式進入流勢
transcript.whisperx[17].start 426.465
transcript.whisperx[17].end 441.009
transcript.whisperx[17].text 我們不太敢我們不太適合判斷牛市跟熊市我想臺股有基本面是牛市什麼判斷大概一定期間漲我想我20%你現在不只漲20%了如果你一段時間不只漲20%了從1萬7到1萬9就差不多20了1萬6、1萬5漲到1萬9就20%了是不是所以你還不敢講牛市
transcript.whisperx[18].start 453.902
transcript.whisperx[18].end 478.684
transcript.whisperx[18].text 我想國際政經情況多變,我們還是要審慎以對了。基本面很好?基本面有,基本面我沒有說。整體台股的本利比有多少?21.17倍。OK嗎?我覺得還算穩健了,對,還算穩健。美國的東京市的本利比多少?
transcript.whisperx[19].start 480.306
transcript.whisperx[19].end 498.957
transcript.whisperx[19].text 報告委員我沒聽清楚你是美國的Dow Jones的本利比多少這個我要請同仁提供一下多少84.06所以臺灣的本利比不高還對從這個角度他的意思就是還可能會漲
transcript.whisperx[20].start 500.719
transcript.whisperx[20].end 528.808
transcript.whisperx[20].text 呃,報告委員,監理機關不太適合對漲跌有太多的…下一步就是這樣說啊,本地比低的要去漲啊,就是這樣啊,對嗎?但是你仔細發現到,這個漲幅都是靠AI啦,跟台積電相關的電子族群,其他的族群很少啊,就是這個不夠平均的啊,這其實外界,外界會,會有點擔心說我們資本市場,特別股票市場,
transcript.whisperx[21].start 530.208
transcript.whisperx[21].end 555.339
transcript.whisperx[21].text 扭曲的現象還蠻嚴重的怎麼大家資金都一萬萬的擠到這個電子的一個相關的產業過來有些電子的有些電子本益比都很高耶公司電子本益比都非常高耶而且比高風險當然就高啊報委員這個是您說的是一個事實可是另外一個事實也是臺股30年的發展我們的
transcript.whisperx[22].start 557.274
transcript.whisperx[22].end 576.345
transcript.whisperx[22].text 臺灣證券交易所的市場結構就是半導體電子就這樣一半所以這個跟反映它的產業結構所以你的意思你不敢說後市怎麼樣就是本地比臺灣OK還不算高所以它是Juicy所以它值得投資可以吧我現在結論
transcript.whisperx[23].start 577.421
transcript.whisperx[23].end 588.782
transcript.whisperx[23].text 我覺得投不投資還是看投資人決定就注意方式但是台股是有日本面好 最後一題也是很重要的題題目金融營業稅今年底到期
transcript.whisperx[24].start 590.472
transcript.whisperx[24].end 617.446
transcript.whisperx[24].text 我們現在是3%現在是5%3%給財政部2%2%是你們到進到金融業特別準備金現在已經將近3500億金管會對於這個法今天底到底這個法要怎麼修有沒有方向我想第一個就是財政部主管的我們要尊重財政部第二個那你態度好問了財政部財政部主管問你欸
transcript.whisperx[25].start 618.601
transcript.whisperx[25].end 628.012
transcript.whisperx[25].text 我的任期到5月19號這應該是下一任主委要回答會比較合適真的我不是不願意回答你我不應該超越我的決定
transcript.whisperx[26].start 632.148
transcript.whisperx[26].end 654.549
transcript.whisperx[26].text 好歹你要離開之前做一件大事吧!這件不是大事!這個是大事喔!這個是大事喔!沒有!你的態度非常重要!我找了財政部,財政部告訴我金管會的態度非常重要!當然行政院相關政委他的態度嚴重!報告委員,其實我的態度過去在您垂詢的時候
transcript.whisperx[27].start 655.109
transcript.whisperx[27].end 666.054
transcript.whisperx[27].text 其他委員隨行書我有報告過現在的我們覺得其實跟國際趨勢來講是不符的希望能夠降低但是原有到準備金的部分希望能夠留著
transcript.whisperx[28].start 667.578
transcript.whisperx[28].end 668.439
transcript.whisperx[28].text 謝謝市保委員接著我們請郭國文委員