iVOD / 17028

Field Value
IVOD_ID 17028
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/17028
日期 2025-11-13
會議資料.會議代碼 委員會-11-4-20-8
會議資料.會議代碼:str 第11屆第4會期財政委員會第8次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 8
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第8次全體委員會議
影片種類 Full
開始時間 2025-11-13T08:37:17+08:00
結束時間 2025-11-13T13:01:00+08:00
影片長度 04:23:43
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b41997f390c3528e9bd2a7f32a503ebb65ac066a97af38cb914d0d15f34b2c0269d509bf16dcd23b5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-11-13T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第8次全體委員會議(事由:一、邀請財政部莊部長翠雲、行政院主計總處陳主計長淑姿、中央銀行副總裁、國家發展委員會葉主任委員俊顯、經濟部次長、勞動部次長、衛生福利部次長就「經濟成長讓全民共享:政府如何縮短所得差距暨改善相對貧窮化之對策」進行專題報告,並備質詢。 二、審查本院民進黨黨團擬具「財政收支劃分法第十六條之一未分配款運用暫行條例草案」案。)
委員名稱 完整會議
委員發言時間 08:37:17 - 13:01:00
transcript.pyannote[0].speaker SPEAKER_07
transcript.pyannote[0].start 1366.09596875
transcript.pyannote[0].end 1372.08659375
transcript.pyannote[1].speaker SPEAKER_07
transcript.pyannote[1].start 1375.57971875
transcript.pyannote[1].end 1379.20784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 1379.73096875
transcript.pyannote[2].end 1382.58284375
transcript.pyannote[3].speaker SPEAKER_07
transcript.pyannote[3].start 1383.56159375
transcript.pyannote[3].end 1388.13471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 1389.16409375
transcript.pyannote[4].end 1399.47471875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 1399.81221875
transcript.pyannote[5].end 1401.56721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 1401.82034375
transcript.pyannote[6].end 1404.50346875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 1404.62159375
transcript.pyannote[7].end 1406.98409375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 1407.30471875
transcript.pyannote[8].end 1410.10596875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 1410.34221875
transcript.pyannote[9].end 1411.54034375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 1411.96221875
transcript.pyannote[10].end 1417.09221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 1417.42971875
transcript.pyannote[11].end 1420.65284375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 1421.19284375
transcript.pyannote[12].end 1427.89221875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 1428.14534375
transcript.pyannote[13].end 1435.73909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 1436.09346875
transcript.pyannote[14].end 1438.30409375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 1438.37159375
transcript.pyannote[15].end 1442.92784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 1443.38346875
transcript.pyannote[16].end 1457.17034375
transcript.pyannote[17].speaker SPEAKER_07
transcript.pyannote[17].start 1458.41909375
transcript.pyannote[17].end 1462.62096875
transcript.pyannote[18].speaker SPEAKER_07
transcript.pyannote[18].start 1463.71784375
transcript.pyannote[18].end 1466.04659375
transcript.pyannote[19].speaker SPEAKER_07
transcript.pyannote[19].start 1467.05909375
transcript.pyannote[19].end 1469.21909375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 1470.38346875
transcript.pyannote[20].end 1483.81596875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 1484.25471875
transcript.pyannote[21].end 1488.38909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 1488.60846875
transcript.pyannote[22].end 1491.79784375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 1491.86534375
transcript.pyannote[23].end 1494.14346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 1494.27846875
transcript.pyannote[24].end 1504.67346875
transcript.pyannote[25].speaker SPEAKER_07
transcript.pyannote[25].start 1505.53409375
transcript.pyannote[25].end 1511.42346875
transcript.pyannote[26].speaker SPEAKER_07
transcript.pyannote[26].start 1515.20346875
transcript.pyannote[26].end 1517.34659375
transcript.pyannote[27].speaker SPEAKER_07
transcript.pyannote[27].start 1521.17721875
transcript.pyannote[27].end 1525.93596875
transcript.pyannote[28].speaker SPEAKER_07
transcript.pyannote[28].start 1528.21409375
transcript.pyannote[28].end 1530.93096875
transcript.pyannote[29].speaker SPEAKER_07
transcript.pyannote[29].start 1532.71971875
transcript.pyannote[29].end 1535.01471875
transcript.pyannote[30].speaker SPEAKER_07
transcript.pyannote[30].start 1536.06096875
transcript.pyannote[30].end 1538.44034375
transcript.pyannote[31].speaker SPEAKER_07
transcript.pyannote[31].start 1539.16596875
transcript.pyannote[31].end 1541.46096875
transcript.pyannote[32].speaker SPEAKER_07
transcript.pyannote[32].start 1542.23721875
transcript.pyannote[32].end 1544.12721875
transcript.pyannote[33].speaker SPEAKER_07
transcript.pyannote[33].start 1545.56159375
transcript.pyannote[33].end 1547.83971875
transcript.pyannote[34].speaker SPEAKER_07
transcript.pyannote[34].start 1548.97034375
transcript.pyannote[34].end 1551.60284375
transcript.pyannote[35].speaker SPEAKER_07
transcript.pyannote[35].start 1553.61096875
transcript.pyannote[35].end 1556.39534375
transcript.pyannote[36].speaker SPEAKER_07
transcript.pyannote[36].start 1557.79596875
transcript.pyannote[36].end 1561.32284375
transcript.pyannote[37].speaker SPEAKER_07
transcript.pyannote[37].start 1562.30159375
transcript.pyannote[37].end 1565.17034375
transcript.pyannote[38].speaker SPEAKER_07
transcript.pyannote[38].start 1566.73971875
transcript.pyannote[38].end 1570.16534375
transcript.pyannote[39].speaker SPEAKER_07
transcript.pyannote[39].start 1571.29596875
transcript.pyannote[39].end 1574.19846875
transcript.pyannote[40].speaker SPEAKER_07
transcript.pyannote[40].start 1575.86909375
transcript.pyannote[40].end 1578.38346875
transcript.pyannote[41].speaker SPEAKER_07
transcript.pyannote[41].start 1580.08784375
transcript.pyannote[41].end 1583.41221875
transcript.pyannote[42].speaker SPEAKER_07
transcript.pyannote[42].start 1584.55971875
transcript.pyannote[42].end 1586.80409375
transcript.pyannote[43].speaker SPEAKER_07
transcript.pyannote[43].start 1587.78284375
transcript.pyannote[43].end 1590.01034375
transcript.pyannote[44].speaker SPEAKER_07
transcript.pyannote[44].start 1592.06909375
transcript.pyannote[44].end 1596.13596875
transcript.pyannote[45].speaker SPEAKER_07
transcript.pyannote[45].start 1597.11471875
transcript.pyannote[45].end 1599.34221875
transcript.pyannote[46].speaker SPEAKER_07
transcript.pyannote[46].start 1601.04659375
transcript.pyannote[46].end 1602.37971875
transcript.pyannote[47].speaker SPEAKER_07
transcript.pyannote[47].start 1603.24034375
transcript.pyannote[47].end 1603.89846875
transcript.pyannote[48].speaker SPEAKER_07
transcript.pyannote[48].start 1604.11784375
transcript.pyannote[48].end 1607.84721875
transcript.pyannote[49].speaker SPEAKER_07
transcript.pyannote[49].start 1609.09596875
transcript.pyannote[49].end 1611.39096875
transcript.pyannote[50].speaker SPEAKER_07
transcript.pyannote[50].start 1613.70284375
transcript.pyannote[50].end 1616.57159375
transcript.pyannote[51].speaker SPEAKER_07
transcript.pyannote[51].start 1617.87096875
transcript.pyannote[51].end 1621.21221875
transcript.pyannote[52].speaker SPEAKER_07
transcript.pyannote[52].start 1622.84909375
transcript.pyannote[52].end 1625.17784375
transcript.pyannote[53].speaker SPEAKER_07
transcript.pyannote[53].start 1627.05096875
transcript.pyannote[53].end 1630.83096875
transcript.pyannote[54].speaker SPEAKER_07
transcript.pyannote[54].start 1632.50159375
transcript.pyannote[54].end 1635.89346875
transcript.pyannote[55].speaker SPEAKER_07
transcript.pyannote[55].start 1637.19284375
transcript.pyannote[55].end 1640.21346875
transcript.pyannote[56].speaker SPEAKER_07
transcript.pyannote[56].start 1641.29346875
transcript.pyannote[56].end 1643.82471875
transcript.pyannote[57].speaker SPEAKER_07
transcript.pyannote[57].start 1645.41096875
transcript.pyannote[57].end 1648.09409375
transcript.pyannote[58].speaker SPEAKER_07
transcript.pyannote[58].start 1649.91659375
transcript.pyannote[58].end 1652.26221875
transcript.pyannote[59].speaker SPEAKER_07
transcript.pyannote[59].start 1654.16909375
transcript.pyannote[59].end 1657.67909375
transcript.pyannote[60].speaker SPEAKER_07
transcript.pyannote[60].start 1658.92784375
transcript.pyannote[60].end 1661.88096875
transcript.pyannote[61].speaker SPEAKER_07
transcript.pyannote[61].start 1663.06221875
transcript.pyannote[61].end 1665.35721875
transcript.pyannote[62].speaker SPEAKER_07
transcript.pyannote[62].start 1668.00659375
transcript.pyannote[62].end 1668.25971875
transcript.pyannote[63].speaker SPEAKER_07
transcript.pyannote[63].start 1669.60971875
transcript.pyannote[63].end 1717.51784375
transcript.pyannote[64].speaker SPEAKER_07
transcript.pyannote[64].start 1717.80471875
transcript.pyannote[64].end 1722.42846875
transcript.pyannote[65].speaker SPEAKER_07
transcript.pyannote[65].start 1724.74034375
transcript.pyannote[65].end 1726.46159375
transcript.pyannote[66].speaker SPEAKER_26
transcript.pyannote[66].start 1726.46159375
transcript.pyannote[66].end 1726.47846875
transcript.pyannote[67].speaker SPEAKER_26
transcript.pyannote[67].start 1730.24159375
transcript.pyannote[67].end 1734.12284375
transcript.pyannote[68].speaker SPEAKER_26
transcript.pyannote[68].start 1734.42659375
transcript.pyannote[68].end 1735.65846875
transcript.pyannote[69].speaker SPEAKER_26
transcript.pyannote[69].start 1736.23221875
transcript.pyannote[69].end 1741.83471875
transcript.pyannote[70].speaker SPEAKER_26
transcript.pyannote[70].start 1742.23971875
transcript.pyannote[70].end 1748.02784375
transcript.pyannote[71].speaker SPEAKER_26
transcript.pyannote[71].start 1748.41596875
transcript.pyannote[71].end 1750.08659375
transcript.pyannote[72].speaker SPEAKER_26
transcript.pyannote[72].start 1750.10346875
transcript.pyannote[72].end 1750.64346875
transcript.pyannote[73].speaker SPEAKER_26
transcript.pyannote[73].start 1750.89659375
transcript.pyannote[73].end 1752.43221875
transcript.pyannote[74].speaker SPEAKER_26
transcript.pyannote[74].start 1752.70221875
transcript.pyannote[74].end 1753.68096875
transcript.pyannote[75].speaker SPEAKER_26
transcript.pyannote[75].start 1753.90034375
transcript.pyannote[75].end 1755.68909375
transcript.pyannote[76].speaker SPEAKER_26
transcript.pyannote[76].start 1755.94221875
transcript.pyannote[76].end 1758.20346875
transcript.pyannote[77].speaker SPEAKER_26
transcript.pyannote[77].start 1758.52409375
transcript.pyannote[77].end 1760.38034375
transcript.pyannote[78].speaker SPEAKER_26
transcript.pyannote[78].start 1760.54909375
transcript.pyannote[78].end 1763.62034375
transcript.pyannote[79].speaker SPEAKER_26
transcript.pyannote[79].start 1763.82284375
transcript.pyannote[79].end 1769.57721875
transcript.pyannote[80].speaker SPEAKER_26
transcript.pyannote[80].start 1769.89784375
transcript.pyannote[80].end 1776.31034375
transcript.pyannote[81].speaker SPEAKER_26
transcript.pyannote[81].start 1776.71534375
transcript.pyannote[81].end 1779.43221875
transcript.pyannote[82].speaker SPEAKER_26
transcript.pyannote[82].start 1779.78659375
transcript.pyannote[82].end 1781.13659375
transcript.pyannote[83].speaker SPEAKER_26
transcript.pyannote[83].start 1781.25471875
transcript.pyannote[83].end 1785.16971875
transcript.pyannote[84].speaker SPEAKER_26
transcript.pyannote[84].start 1785.45659375
transcript.pyannote[84].end 1792.10534375
transcript.pyannote[85].speaker SPEAKER_26
transcript.pyannote[85].start 1792.24034375
transcript.pyannote[85].end 1815.93284375
transcript.pyannote[86].speaker SPEAKER_26
transcript.pyannote[86].start 1816.10159375
transcript.pyannote[86].end 1821.02909375
transcript.pyannote[87].speaker SPEAKER_26
transcript.pyannote[87].start 1821.33284375
transcript.pyannote[87].end 1824.84284375
transcript.pyannote[88].speaker SPEAKER_26
transcript.pyannote[88].start 1824.99471875
transcript.pyannote[88].end 1843.65846875
transcript.pyannote[89].speaker SPEAKER_26
transcript.pyannote[89].start 1843.94534375
transcript.pyannote[89].end 1845.48096875
transcript.pyannote[90].speaker SPEAKER_26
transcript.pyannote[90].start 1845.63284375
transcript.pyannote[90].end 1848.01221875
transcript.pyannote[91].speaker SPEAKER_26
transcript.pyannote[91].start 1848.38346875
transcript.pyannote[91].end 1849.80096875
transcript.pyannote[92].speaker SPEAKER_26
transcript.pyannote[92].start 1850.00346875
transcript.pyannote[92].end 1850.35784375
transcript.pyannote[93].speaker SPEAKER_26
transcript.pyannote[93].start 1850.69534375
transcript.pyannote[93].end 1858.05284375
transcript.pyannote[94].speaker SPEAKER_26
transcript.pyannote[94].start 1858.13721875
transcript.pyannote[94].end 1867.63784375
transcript.pyannote[95].speaker SPEAKER_26
transcript.pyannote[95].start 1867.73909375
transcript.pyannote[95].end 1879.90596875
transcript.pyannote[96].speaker SPEAKER_26
transcript.pyannote[96].start 1880.10846875
transcript.pyannote[96].end 1891.83659375
transcript.pyannote[97].speaker SPEAKER_26
transcript.pyannote[97].start 1892.05596875
transcript.pyannote[97].end 1897.13534375
transcript.pyannote[98].speaker SPEAKER_26
transcript.pyannote[98].start 1897.33784375
transcript.pyannote[98].end 1912.99784375
transcript.pyannote[99].speaker SPEAKER_26
transcript.pyannote[99].start 1913.09909375
transcript.pyannote[99].end 1914.28034375
transcript.pyannote[100].speaker SPEAKER_26
transcript.pyannote[100].start 1914.41534375
transcript.pyannote[100].end 1922.61659375
transcript.pyannote[101].speaker SPEAKER_26
transcript.pyannote[101].start 1922.85284375
transcript.pyannote[101].end 1929.55221875
transcript.pyannote[102].speaker SPEAKER_26
transcript.pyannote[102].start 1930.07534375
transcript.pyannote[102].end 1931.72909375
transcript.pyannote[103].speaker SPEAKER_26
transcript.pyannote[103].start 1932.97784375
transcript.pyannote[103].end 1932.99471875
transcript.pyannote[104].speaker SPEAKER_07
transcript.pyannote[104].start 1932.99471875
transcript.pyannote[104].end 1961.32784375
transcript.pyannote[105].speaker SPEAKER_16
transcript.pyannote[105].start 1965.88409375
transcript.pyannote[105].end 1971.50346875
transcript.pyannote[106].speaker SPEAKER_07
transcript.pyannote[106].start 1970.67659375
transcript.pyannote[106].end 1972.39784375
transcript.pyannote[107].speaker SPEAKER_16
transcript.pyannote[107].start 1971.84096875
transcript.pyannote[107].end 1973.02221875
transcript.pyannote[108].speaker SPEAKER_16
transcript.pyannote[108].start 1973.35971875
transcript.pyannote[108].end 1987.50096875
transcript.pyannote[109].speaker SPEAKER_16
transcript.pyannote[109].start 1987.73721875
transcript.pyannote[109].end 2009.33721875
transcript.pyannote[110].speaker SPEAKER_16
transcript.pyannote[110].start 2009.47221875
transcript.pyannote[110].end 2010.85596875
transcript.pyannote[111].speaker SPEAKER_16
transcript.pyannote[111].start 2011.12596875
transcript.pyannote[111].end 2016.71159375
transcript.pyannote[112].speaker SPEAKER_16
transcript.pyannote[112].start 2016.91409375
transcript.pyannote[112].end 2033.16471875
transcript.pyannote[113].speaker SPEAKER_16
transcript.pyannote[113].start 2033.45159375
transcript.pyannote[113].end 2043.69471875
transcript.pyannote[114].speaker SPEAKER_16
transcript.pyannote[114].start 2043.82971875
transcript.pyannote[114].end 2070.61034375
transcript.pyannote[115].speaker SPEAKER_16
transcript.pyannote[115].start 2070.71159375
transcript.pyannote[115].end 2089.59471875
transcript.pyannote[116].speaker SPEAKER_16
transcript.pyannote[116].start 2090.80971875
transcript.pyannote[116].end 2124.28971875
transcript.pyannote[117].speaker SPEAKER_16
transcript.pyannote[117].start 2124.67784375
transcript.pyannote[117].end 2144.69159375
transcript.pyannote[118].speaker SPEAKER_16
transcript.pyannote[118].start 2145.01221875
transcript.pyannote[118].end 2169.19409375
transcript.pyannote[119].speaker SPEAKER_16
transcript.pyannote[119].start 2169.26159375
transcript.pyannote[119].end 2172.70409375
transcript.pyannote[120].speaker SPEAKER_16
transcript.pyannote[120].start 2173.14284375
transcript.pyannote[120].end 2185.14096875
transcript.pyannote[121].speaker SPEAKER_16
transcript.pyannote[121].start 2185.32659375
transcript.pyannote[121].end 2186.49096875
transcript.pyannote[122].speaker SPEAKER_16
transcript.pyannote[122].start 2187.01409375
transcript.pyannote[122].end 2212.24221875
transcript.pyannote[123].speaker SPEAKER_16
transcript.pyannote[123].start 2212.36034375
transcript.pyannote[123].end 2220.34221875
transcript.pyannote[124].speaker SPEAKER_16
transcript.pyannote[124].start 2221.42221875
transcript.pyannote[124].end 2232.76221875
transcript.pyannote[125].speaker SPEAKER_16
transcript.pyannote[125].start 2233.04909375
transcript.pyannote[125].end 2248.28721875
transcript.pyannote[126].speaker SPEAKER_07
transcript.pyannote[126].start 2249.36721875
transcript.pyannote[126].end 2252.08409375
transcript.pyannote[127].speaker SPEAKER_07
transcript.pyannote[127].start 2252.38784375
transcript.pyannote[127].end 2256.25221875
transcript.pyannote[128].speaker SPEAKER_13
transcript.pyannote[128].start 2262.25971875
transcript.pyannote[128].end 2471.91471875
transcript.pyannote[129].speaker SPEAKER_13
transcript.pyannote[129].start 2474.56409375
transcript.pyannote[129].end 2528.59784375
transcript.pyannote[130].speaker SPEAKER_13
transcript.pyannote[130].start 2529.64409375
transcript.pyannote[130].end 2555.00721875
transcript.pyannote[131].speaker SPEAKER_13
transcript.pyannote[131].start 2555.54721875
transcript.pyannote[131].end 2565.28409375
transcript.pyannote[132].speaker SPEAKER_13
transcript.pyannote[132].start 2566.06034375
transcript.pyannote[132].end 2619.90846875
transcript.pyannote[133].speaker SPEAKER_07
transcript.pyannote[133].start 2621.07284375
transcript.pyannote[133].end 2628.07596875
transcript.pyannote[134].speaker SPEAKER_10
transcript.pyannote[134].start 2632.48034375
transcript.pyannote[134].end 2669.60534375
transcript.pyannote[135].speaker SPEAKER_10
transcript.pyannote[135].start 2669.75721875
transcript.pyannote[135].end 2781.52034375
transcript.pyannote[136].speaker SPEAKER_10
transcript.pyannote[136].start 2782.33034375
transcript.pyannote[136].end 2798.58096875
transcript.pyannote[137].speaker SPEAKER_10
transcript.pyannote[137].start 2798.85096875
transcript.pyannote[137].end 2801.56784375
transcript.pyannote[138].speaker SPEAKER_10
transcript.pyannote[138].start 2802.76596875
transcript.pyannote[138].end 2854.90971875
transcript.pyannote[139].speaker SPEAKER_10
transcript.pyannote[139].start 2855.09534375
transcript.pyannote[139].end 2893.45221875
transcript.pyannote[140].speaker SPEAKER_10
transcript.pyannote[140].start 2893.58721875
transcript.pyannote[140].end 2916.14909375
transcript.pyannote[141].speaker SPEAKER_07
transcript.pyannote[141].start 2917.19534375
transcript.pyannote[141].end 2941.68096875
transcript.pyannote[142].speaker SPEAKER_07
transcript.pyannote[142].start 2941.95096875
transcript.pyannote[142].end 2951.62034375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 2959.53471875
transcript.pyannote[143].end 2963.26409375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 2963.82096875
transcript.pyannote[144].end 2966.04846875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 2966.36909375
transcript.pyannote[145].end 2967.22971875
transcript.pyannote[146].speaker SPEAKER_07
transcript.pyannote[146].start 2967.85409375
transcript.pyannote[146].end 2968.98471875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 2975.31284375
transcript.pyannote[147].end 2976.93284375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 2976.96659375
transcript.pyannote[148].end 2989.72409375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 2989.84221875
transcript.pyannote[149].end 3002.54909375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 3002.86971875
transcript.pyannote[150].end 3023.30534375
transcript.pyannote[151].speaker SPEAKER_13
transcript.pyannote[151].start 3024.31784375
transcript.pyannote[151].end 3043.08284375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 3042.54284375
transcript.pyannote[152].end 3046.13721875
transcript.pyannote[153].speaker SPEAKER_13
transcript.pyannote[153].start 3046.42409375
transcript.pyannote[153].end 3050.96346875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 3047.13284375
transcript.pyannote[154].end 3048.06096875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 3048.07784375
transcript.pyannote[155].end 3048.09471875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 3051.09846875
transcript.pyannote[156].end 3052.09409375
transcript.pyannote[157].speaker SPEAKER_13
transcript.pyannote[157].start 3051.94221875
transcript.pyannote[157].end 3052.31346875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 3052.31346875
transcript.pyannote[158].end 3070.82534375
transcript.pyannote[159].speaker SPEAKER_13
transcript.pyannote[159].start 3053.34284375
transcript.pyannote[159].end 3053.84909375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 3071.07846875
transcript.pyannote[160].end 3078.84096875
transcript.pyannote[161].speaker SPEAKER_13
transcript.pyannote[161].start 3079.39784375
transcript.pyannote[161].end 3108.77721875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 3104.71034375
transcript.pyannote[162].end 3105.63846875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 3108.47346875
transcript.pyannote[163].end 3113.02971875
transcript.pyannote[164].speaker SPEAKER_13
transcript.pyannote[164].start 3113.21534375
transcript.pyannote[164].end 3137.80221875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 3137.85284375
transcript.pyannote[165].end 3139.87784375
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 3140.24909375
transcript.pyannote[166].end 3167.95784375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 3168.44721875
transcript.pyannote[167].end 3175.29846875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 3175.38284375
transcript.pyannote[168].end 3175.97346875
transcript.pyannote[169].speaker SPEAKER_13
transcript.pyannote[169].start 3175.43346875
transcript.pyannote[169].end 3182.01471875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 3180.25971875
transcript.pyannote[170].end 3181.77846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 3182.01471875
transcript.pyannote[171].end 3190.51971875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 3192.02159375
transcript.pyannote[172].end 3214.00971875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 3214.61721875
transcript.pyannote[173].end 3221.58659375
transcript.pyannote[174].speaker SPEAKER_13
transcript.pyannote[174].start 3222.07596875
transcript.pyannote[174].end 3237.11159375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 3236.31846875
transcript.pyannote[175].end 3240.11534375
transcript.pyannote[176].speaker SPEAKER_13
transcript.pyannote[176].start 3237.46596875
transcript.pyannote[176].end 3237.92159375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 3240.55409375
transcript.pyannote[177].end 3242.44409375
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 3242.59596875
transcript.pyannote[178].end 3282.45471875
transcript.pyannote[179].speaker SPEAKER_13
transcript.pyannote[179].start 3282.87659375
transcript.pyannote[179].end 3300.52784375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 3298.36784375
transcript.pyannote[180].end 3311.42909375
transcript.pyannote[181].speaker SPEAKER_13
transcript.pyannote[181].start 3301.40534375
transcript.pyannote[181].end 3302.43471875
transcript.pyannote[182].speaker SPEAKER_13
transcript.pyannote[182].start 3302.45159375
transcript.pyannote[182].end 3302.48534375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 3311.86784375
transcript.pyannote[183].end 3315.12471875
transcript.pyannote[184].speaker SPEAKER_13
transcript.pyannote[184].start 3315.56346875
transcript.pyannote[184].end 3323.74784375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 3323.84909375
transcript.pyannote[185].end 3326.58284375
transcript.pyannote[186].speaker SPEAKER_13
transcript.pyannote[186].start 3326.65034375
transcript.pyannote[186].end 3327.57846875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 3327.69659375
transcript.pyannote[187].end 3333.53534375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 3333.68721875
transcript.pyannote[188].end 3350.07284375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 3350.47784375
transcript.pyannote[189].end 3359.84346875
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 3360.46784375
transcript.pyannote[190].end 3376.70159375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 3377.56221875
transcript.pyannote[191].end 3403.90409375
transcript.pyannote[192].speaker SPEAKER_13
transcript.pyannote[192].start 3404.86596875
transcript.pyannote[192].end 3430.41471875
transcript.pyannote[193].speaker SPEAKER_13
transcript.pyannote[193].start 3430.54971875
transcript.pyannote[193].end 3432.35534375
transcript.pyannote[194].speaker SPEAKER_13
transcript.pyannote[194].start 3432.64221875
transcript.pyannote[194].end 3458.61284375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 3458.12346875
transcript.pyannote[195].end 3480.55034375
transcript.pyannote[196].speaker SPEAKER_13
transcript.pyannote[196].start 3480.95534375
transcript.pyannote[196].end 3511.48221875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 3511.48221875
transcript.pyannote[197].end 3534.83721875
transcript.pyannote[198].speaker SPEAKER_13
transcript.pyannote[198].start 3512.83221875
transcript.pyannote[198].end 3513.30471875
transcript.pyannote[199].speaker SPEAKER_13
transcript.pyannote[199].start 3535.00596875
transcript.pyannote[199].end 3567.92909375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 3566.89971875
transcript.pyannote[200].end 3587.82471875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 3588.01034375
transcript.pyannote[201].end 3639.46221875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 3640.03596875
transcript.pyannote[202].end 3642.36471875
transcript.pyannote[203].speaker SPEAKER_00
transcript.pyannote[203].start 3643.09034375
transcript.pyannote[203].end 3643.10721875
transcript.pyannote[204].speaker SPEAKER_07
transcript.pyannote[204].start 3643.10721875
transcript.pyannote[204].end 3644.40659375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 3643.57971875
transcript.pyannote[205].end 3644.92971875
transcript.pyannote[206].speaker SPEAKER_16
transcript.pyannote[206].start 3648.89534375
transcript.pyannote[206].end 3656.60721875
transcript.pyannote[207].speaker SPEAKER_16
transcript.pyannote[207].start 3656.94471875
transcript.pyannote[207].end 3661.26471875
transcript.pyannote[208].speaker SPEAKER_16
transcript.pyannote[208].start 3661.55159375
transcript.pyannote[208].end 3670.37721875
transcript.pyannote[209].speaker SPEAKER_16
transcript.pyannote[209].start 3670.64721875
transcript.pyannote[209].end 3675.54096875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 3675.45659375
transcript.pyannote[210].end 3684.07971875
transcript.pyannote[211].speaker SPEAKER_16
transcript.pyannote[211].start 3682.34159375
transcript.pyannote[211].end 3682.66221875
transcript.pyannote[212].speaker SPEAKER_16
transcript.pyannote[212].start 3683.16846875
transcript.pyannote[212].end 3686.45909375
transcript.pyannote[213].speaker SPEAKER_07
transcript.pyannote[213].start 3686.50971875
transcript.pyannote[213].end 3690.27284375
transcript.pyannote[214].speaker SPEAKER_30
transcript.pyannote[214].start 3702.70971875
transcript.pyannote[214].end 3704.59971875
transcript.pyannote[215].speaker SPEAKER_07
transcript.pyannote[215].start 3704.85284375
transcript.pyannote[215].end 3705.69659375
transcript.pyannote[216].speaker SPEAKER_14
transcript.pyannote[216].start 3714.80909375
transcript.pyannote[216].end 3715.60221875
transcript.pyannote[217].speaker SPEAKER_30
transcript.pyannote[217].start 3716.39534375
transcript.pyannote[217].end 3717.34034375
transcript.pyannote[218].speaker SPEAKER_14
transcript.pyannote[218].start 3717.34034375
transcript.pyannote[218].end 3717.55971875
transcript.pyannote[219].speaker SPEAKER_30
transcript.pyannote[219].start 3718.01534375
transcript.pyannote[219].end 3718.58909375
transcript.pyannote[220].speaker SPEAKER_30
transcript.pyannote[220].start 3719.58471875
transcript.pyannote[220].end 3722.77409375
transcript.pyannote[221].speaker SPEAKER_30
transcript.pyannote[221].start 3723.60096875
transcript.pyannote[221].end 3726.50346875
transcript.pyannote[222].speaker SPEAKER_30
transcript.pyannote[222].start 3727.29659375
transcript.pyannote[222].end 3728.47784375
transcript.pyannote[223].speaker SPEAKER_30
transcript.pyannote[223].start 3728.62971875
transcript.pyannote[223].end 3730.67159375
transcript.pyannote[224].speaker SPEAKER_30
transcript.pyannote[224].start 3731.19471875
transcript.pyannote[224].end 3736.64534375
transcript.pyannote[225].speaker SPEAKER_27
transcript.pyannote[225].start 3735.24471875
transcript.pyannote[225].end 3735.95346875
transcript.pyannote[226].speaker SPEAKER_30
transcript.pyannote[226].start 3737.45534375
transcript.pyannote[226].end 3741.67409375
transcript.pyannote[227].speaker SPEAKER_27
transcript.pyannote[227].start 3738.99096875
transcript.pyannote[227].end 3739.51409375
transcript.pyannote[228].speaker SPEAKER_27
transcript.pyannote[228].start 3741.37034375
transcript.pyannote[228].end 3742.19721875
transcript.pyannote[229].speaker SPEAKER_30
transcript.pyannote[229].start 3742.33221875
transcript.pyannote[229].end 3743.42909375
transcript.pyannote[230].speaker SPEAKER_30
transcript.pyannote[230].start 3743.63159375
transcript.pyannote[230].end 3745.53846875
transcript.pyannote[231].speaker SPEAKER_30
transcript.pyannote[231].start 3745.87596875
transcript.pyannote[231].end 3749.26784375
transcript.pyannote[232].speaker SPEAKER_30
transcript.pyannote[232].start 3749.36909375
transcript.pyannote[232].end 3752.71034375
transcript.pyannote[233].speaker SPEAKER_30
transcript.pyannote[233].start 3753.14909375
transcript.pyannote[233].end 3759.91596875
transcript.pyannote[234].speaker SPEAKER_30
transcript.pyannote[234].start 3760.20284375
transcript.pyannote[234].end 3762.26159375
transcript.pyannote[235].speaker SPEAKER_30
transcript.pyannote[235].start 3762.88596875
transcript.pyannote[235].end 3766.66596875
transcript.pyannote[236].speaker SPEAKER_30
transcript.pyannote[236].start 3767.18909375
transcript.pyannote[236].end 3770.51346875
transcript.pyannote[237].speaker SPEAKER_30
transcript.pyannote[237].start 3771.22221875
transcript.pyannote[237].end 3772.58909375
transcript.pyannote[238].speaker SPEAKER_30
transcript.pyannote[238].start 3772.70721875
transcript.pyannote[238].end 3774.32721875
transcript.pyannote[239].speaker SPEAKER_30
transcript.pyannote[239].start 3774.81659375
transcript.pyannote[239].end 3776.72346875
transcript.pyannote[240].speaker SPEAKER_27
transcript.pyannote[240].start 3776.85846875
transcript.pyannote[240].end 3777.22971875
transcript.pyannote[241].speaker SPEAKER_30
transcript.pyannote[241].start 3777.78659375
transcript.pyannote[241].end 3780.26721875
transcript.pyannote[242].speaker SPEAKER_30
transcript.pyannote[242].start 3780.99284375
transcript.pyannote[242].end 3783.32159375
transcript.pyannote[243].speaker SPEAKER_30
transcript.pyannote[243].start 3783.70971875
transcript.pyannote[243].end 3789.05909375
transcript.pyannote[244].speaker SPEAKER_30
transcript.pyannote[244].start 3789.34596875
transcript.pyannote[244].end 3796.90596875
transcript.pyannote[245].speaker SPEAKER_28
transcript.pyannote[245].start 3790.52721875
transcript.pyannote[245].end 3790.86471875
transcript.pyannote[246].speaker SPEAKER_30
transcript.pyannote[246].start 3797.37846875
transcript.pyannote[246].end 3800.56784375
transcript.pyannote[247].speaker SPEAKER_30
transcript.pyannote[247].start 3801.34409375
transcript.pyannote[247].end 3801.64784375
transcript.pyannote[248].speaker SPEAKER_30
transcript.pyannote[248].start 3802.22159375
transcript.pyannote[248].end 3803.14971875
transcript.pyannote[249].speaker SPEAKER_30
transcript.pyannote[249].start 3803.92596875
transcript.pyannote[249].end 3805.91721875
transcript.pyannote[250].speaker SPEAKER_30
transcript.pyannote[250].start 3806.27159375
transcript.pyannote[250].end 3807.46971875
transcript.pyannote[251].speaker SPEAKER_13
transcript.pyannote[251].start 3807.08159375
transcript.pyannote[251].end 3808.63409375
transcript.pyannote[252].speaker SPEAKER_30
transcript.pyannote[252].start 3807.97596875
transcript.pyannote[252].end 3811.08096875
transcript.pyannote[253].speaker SPEAKER_13
transcript.pyannote[253].start 3811.08096875
transcript.pyannote[253].end 3811.58721875
transcript.pyannote[254].speaker SPEAKER_30
transcript.pyannote[254].start 3811.46909375
transcript.pyannote[254].end 3812.88659375
transcript.pyannote[255].speaker SPEAKER_30
transcript.pyannote[255].start 3813.57846875
transcript.pyannote[255].end 3820.66596875
transcript.pyannote[256].speaker SPEAKER_30
transcript.pyannote[256].start 3821.64471875
transcript.pyannote[256].end 3825.00284375
transcript.pyannote[257].speaker SPEAKER_27
transcript.pyannote[257].start 3824.96909375
transcript.pyannote[257].end 3825.30659375
transcript.pyannote[258].speaker SPEAKER_13
transcript.pyannote[258].start 3825.30659375
transcript.pyannote[258].end 3825.32346875
transcript.pyannote[259].speaker SPEAKER_30
transcript.pyannote[259].start 3825.44159375
transcript.pyannote[259].end 3826.43721875
transcript.pyannote[260].speaker SPEAKER_30
transcript.pyannote[260].start 3827.50034375
transcript.pyannote[260].end 3831.22971875
transcript.pyannote[261].speaker SPEAKER_13
transcript.pyannote[261].start 3830.68971875
transcript.pyannote[261].end 3831.33096875
transcript.pyannote[262].speaker SPEAKER_13
transcript.pyannote[262].start 3831.58409375
transcript.pyannote[262].end 3835.02659375
transcript.pyannote[263].speaker SPEAKER_13
transcript.pyannote[263].start 3835.11096875
transcript.pyannote[263].end 3848.20596875
transcript.pyannote[264].speaker SPEAKER_30
transcript.pyannote[264].start 3848.76284375
transcript.pyannote[264].end 3850.48409375
transcript.pyannote[265].speaker SPEAKER_13
transcript.pyannote[265].start 3850.38284375
transcript.pyannote[265].end 3850.83846875
transcript.pyannote[266].speaker SPEAKER_30
transcript.pyannote[266].start 3850.83846875
transcript.pyannote[266].end 3852.89721875
transcript.pyannote[267].speaker SPEAKER_13
transcript.pyannote[267].start 3850.85534375
transcript.pyannote[267].end 3850.88909375
transcript.pyannote[268].speaker SPEAKER_30
transcript.pyannote[268].start 3853.21784375
transcript.pyannote[268].end 3856.66034375
transcript.pyannote[269].speaker SPEAKER_28
transcript.pyannote[269].start 3855.66471875
transcript.pyannote[269].end 3855.85034375
transcript.pyannote[270].speaker SPEAKER_28
transcript.pyannote[270].start 3856.39034375
transcript.pyannote[270].end 3856.47471875
transcript.pyannote[271].speaker SPEAKER_28
transcript.pyannote[271].start 3856.54221875
transcript.pyannote[271].end 3856.55909375
transcript.pyannote[272].speaker SPEAKER_28
transcript.pyannote[272].start 3856.57596875
transcript.pyannote[272].end 3856.62659375
transcript.pyannote[273].speaker SPEAKER_28
transcript.pyannote[273].start 3856.66034375
transcript.pyannote[273].end 3857.35221875
transcript.pyannote[274].speaker SPEAKER_30
transcript.pyannote[274].start 3857.09909375
transcript.pyannote[274].end 3863.96721875
transcript.pyannote[275].speaker SPEAKER_27
transcript.pyannote[275].start 3863.57909375
transcript.pyannote[275].end 3864.47346875
transcript.pyannote[276].speaker SPEAKER_30
transcript.pyannote[276].start 3864.00096875
transcript.pyannote[276].end 3872.38784375
transcript.pyannote[277].speaker SPEAKER_30
transcript.pyannote[277].start 3872.65784375
transcript.pyannote[277].end 3875.69534375
transcript.pyannote[278].speaker SPEAKER_30
transcript.pyannote[278].start 3876.28596875
transcript.pyannote[278].end 3877.28159375
transcript.pyannote[279].speaker SPEAKER_30
transcript.pyannote[279].start 3878.05784375
transcript.pyannote[279].end 3890.34284375
transcript.pyannote[280].speaker SPEAKER_30
transcript.pyannote[280].start 3890.61284375
transcript.pyannote[280].end 3896.56971875
transcript.pyannote[281].speaker SPEAKER_30
transcript.pyannote[281].start 3897.56534375
transcript.pyannote[281].end 3899.21909375
transcript.pyannote[282].speaker SPEAKER_30
transcript.pyannote[282].start 3899.35409375
transcript.pyannote[282].end 3901.12596875
transcript.pyannote[283].speaker SPEAKER_28
transcript.pyannote[283].start 3901.12596875
transcript.pyannote[283].end 3901.59846875
transcript.pyannote[284].speaker SPEAKER_30
transcript.pyannote[284].start 3902.10471875
transcript.pyannote[284].end 3908.06159375
transcript.pyannote[285].speaker SPEAKER_30
transcript.pyannote[285].start 3908.09534375
transcript.pyannote[285].end 3913.41096875
transcript.pyannote[286].speaker SPEAKER_28
transcript.pyannote[286].start 3913.41096875
transcript.pyannote[286].end 3913.90034375
transcript.pyannote[287].speaker SPEAKER_30
transcript.pyannote[287].start 3914.44034375
transcript.pyannote[287].end 3915.03096875
transcript.pyannote[288].speaker SPEAKER_30
transcript.pyannote[288].start 3915.43596875
transcript.pyannote[288].end 3923.41784375
transcript.pyannote[289].speaker SPEAKER_30
transcript.pyannote[289].start 3923.90721875
transcript.pyannote[289].end 3926.43846875
transcript.pyannote[290].speaker SPEAKER_30
transcript.pyannote[290].start 3927.53534375
transcript.pyannote[290].end 3933.30659375
transcript.pyannote[291].speaker SPEAKER_30
transcript.pyannote[291].start 3933.76221875
transcript.pyannote[291].end 3936.47909375
transcript.pyannote[292].speaker SPEAKER_30
transcript.pyannote[292].start 3937.20471875
transcript.pyannote[292].end 3937.59284375
transcript.pyannote[293].speaker SPEAKER_30
transcript.pyannote[293].start 3938.33534375
transcript.pyannote[293].end 3939.26346875
transcript.pyannote[294].speaker SPEAKER_30
transcript.pyannote[294].start 3939.70221875
transcript.pyannote[294].end 3941.45721875
transcript.pyannote[295].speaker SPEAKER_30
transcript.pyannote[295].start 3942.19971875
transcript.pyannote[295].end 3943.02659375
transcript.pyannote[296].speaker SPEAKER_30
transcript.pyannote[296].start 3943.46534375
transcript.pyannote[296].end 3944.96721875
transcript.pyannote[297].speaker SPEAKER_30
transcript.pyannote[297].start 3945.74346875
transcript.pyannote[297].end 3949.15221875
transcript.pyannote[298].speaker SPEAKER_30
transcript.pyannote[298].start 3949.54034375
transcript.pyannote[298].end 3951.44721875
transcript.pyannote[299].speaker SPEAKER_27
transcript.pyannote[299].start 3951.44721875
transcript.pyannote[299].end 3951.56534375
transcript.pyannote[300].speaker SPEAKER_30
transcript.pyannote[300].start 3951.56534375
transcript.pyannote[300].end 3955.24409375
transcript.pyannote[301].speaker SPEAKER_30
transcript.pyannote[301].start 3956.15534375
transcript.pyannote[301].end 3956.25659375
transcript.pyannote[302].speaker SPEAKER_30
transcript.pyannote[302].start 3957.57284375
transcript.pyannote[302].end 3959.80034375
transcript.pyannote[303].speaker SPEAKER_30
transcript.pyannote[303].start 3960.10409375
transcript.pyannote[303].end 3960.50909375
transcript.pyannote[304].speaker SPEAKER_30
transcript.pyannote[304].start 3961.04909375
transcript.pyannote[304].end 3963.02346875
transcript.pyannote[305].speaker SPEAKER_30
transcript.pyannote[305].start 3963.73221875
transcript.pyannote[305].end 3965.13284375
transcript.pyannote[306].speaker SPEAKER_30
transcript.pyannote[306].start 3965.25096875
transcript.pyannote[306].end 3966.01034375
transcript.pyannote[307].speaker SPEAKER_30
transcript.pyannote[307].start 3966.56721875
transcript.pyannote[307].end 3976.43909375
transcript.pyannote[308].speaker SPEAKER_13
transcript.pyannote[308].start 3977.01284375
transcript.pyannote[308].end 3999.37221875
transcript.pyannote[309].speaker SPEAKER_30
transcript.pyannote[309].start 3999.08534375
transcript.pyannote[309].end 4007.37096875
transcript.pyannote[310].speaker SPEAKER_30
transcript.pyannote[310].start 4007.97846875
transcript.pyannote[310].end 4008.41721875
transcript.pyannote[311].speaker SPEAKER_30
transcript.pyannote[311].start 4008.92346875
transcript.pyannote[311].end 4012.02846875
transcript.pyannote[312].speaker SPEAKER_30
transcript.pyannote[312].start 4012.66971875
transcript.pyannote[312].end 4015.84221875
transcript.pyannote[313].speaker SPEAKER_30
transcript.pyannote[313].start 4016.73659375
transcript.pyannote[313].end 4020.93846875
transcript.pyannote[314].speaker SPEAKER_30
transcript.pyannote[314].start 4021.74846875
transcript.pyannote[314].end 4022.01846875
transcript.pyannote[315].speaker SPEAKER_13
transcript.pyannote[315].start 4022.01846875
transcript.pyannote[315].end 4022.03534375
transcript.pyannote[316].speaker SPEAKER_30
transcript.pyannote[316].start 4022.03534375
transcript.pyannote[316].end 4022.42346875
transcript.pyannote[317].speaker SPEAKER_13
transcript.pyannote[317].start 4022.42346875
transcript.pyannote[317].end 4026.03471875
transcript.pyannote[318].speaker SPEAKER_30
transcript.pyannote[318].start 4022.44034375
transcript.pyannote[318].end 4022.84534375
transcript.pyannote[319].speaker SPEAKER_30
transcript.pyannote[319].start 4023.97596875
transcript.pyannote[319].end 4024.60034375
transcript.pyannote[320].speaker SPEAKER_30
transcript.pyannote[320].start 4024.93784375
transcript.pyannote[320].end 4031.02971875
transcript.pyannote[321].speaker SPEAKER_28
transcript.pyannote[321].start 4031.02971875
transcript.pyannote[321].end 4035.06284375
transcript.pyannote[322].speaker SPEAKER_30
transcript.pyannote[322].start 4031.53596875
transcript.pyannote[322].end 4034.84346875
transcript.pyannote[323].speaker SPEAKER_30
transcript.pyannote[323].start 4035.95721875
transcript.pyannote[323].end 4042.69034375
transcript.pyannote[324].speaker SPEAKER_28
transcript.pyannote[324].start 4037.03721875
transcript.pyannote[324].end 4037.47596875
transcript.pyannote[325].speaker SPEAKER_13
transcript.pyannote[325].start 4037.47596875
transcript.pyannote[325].end 4037.50971875
transcript.pyannote[326].speaker SPEAKER_13
transcript.pyannote[326].start 4042.63971875
transcript.pyannote[326].end 4045.12034375
transcript.pyannote[327].speaker SPEAKER_30
transcript.pyannote[327].start 4044.22596875
transcript.pyannote[327].end 4054.14846875
transcript.pyannote[328].speaker SPEAKER_13
transcript.pyannote[328].start 4046.01471875
transcript.pyannote[328].end 4046.50409375
transcript.pyannote[329].speaker SPEAKER_30
transcript.pyannote[329].start 4054.43534375
transcript.pyannote[329].end 4061.20221875
transcript.pyannote[330].speaker SPEAKER_30
transcript.pyannote[330].start 4061.32034375
transcript.pyannote[330].end 4064.13846875
transcript.pyannote[331].speaker SPEAKER_30
transcript.pyannote[331].start 4064.25659375
transcript.pyannote[331].end 4065.26909375
transcript.pyannote[332].speaker SPEAKER_30
transcript.pyannote[332].start 4065.53909375
transcript.pyannote[332].end 4066.36596875
transcript.pyannote[333].speaker SPEAKER_30
transcript.pyannote[333].start 4067.00721875
transcript.pyannote[333].end 4069.33596875
transcript.pyannote[334].speaker SPEAKER_30
transcript.pyannote[334].start 4069.38659375
transcript.pyannote[334].end 4070.71971875
transcript.pyannote[335].speaker SPEAKER_30
transcript.pyannote[335].start 4071.39471875
transcript.pyannote[335].end 4073.36909375
transcript.pyannote[336].speaker SPEAKER_30
transcript.pyannote[336].start 4073.89221875
transcript.pyannote[336].end 4079.05596875
transcript.pyannote[337].speaker SPEAKER_13
transcript.pyannote[337].start 4079.62971875
transcript.pyannote[337].end 4095.08721875
transcript.pyannote[338].speaker SPEAKER_30
transcript.pyannote[338].start 4079.73096875
transcript.pyannote[338].end 4080.00096875
transcript.pyannote[339].speaker SPEAKER_30
transcript.pyannote[339].start 4088.42159375
transcript.pyannote[339].end 4088.59034375
transcript.pyannote[340].speaker SPEAKER_00
transcript.pyannote[340].start 4088.59034375
transcript.pyannote[340].end 4088.60721875
transcript.pyannote[341].speaker SPEAKER_30
transcript.pyannote[341].start 4092.16784375
transcript.pyannote[341].end 4092.64034375
transcript.pyannote[342].speaker SPEAKER_30
transcript.pyannote[342].start 4094.19284375
transcript.pyannote[342].end 4095.98159375
transcript.pyannote[343].speaker SPEAKER_13
transcript.pyannote[343].start 4095.98159375
transcript.pyannote[343].end 4096.43721875
transcript.pyannote[344].speaker SPEAKER_30
transcript.pyannote[344].start 4096.75784375
transcript.pyannote[344].end 4097.28096875
transcript.pyannote[345].speaker SPEAKER_30
transcript.pyannote[345].start 4098.34409375
transcript.pyannote[345].end 4101.76971875
transcript.pyannote[346].speaker SPEAKER_28
transcript.pyannote[346].start 4102.19159375
transcript.pyannote[346].end 4102.56284375
transcript.pyannote[347].speaker SPEAKER_30
transcript.pyannote[347].start 4102.49534375
transcript.pyannote[347].end 4105.22909375
transcript.pyannote[348].speaker SPEAKER_30
transcript.pyannote[348].start 4105.60034375
transcript.pyannote[348].end 4107.16971875
transcript.pyannote[349].speaker SPEAKER_30
transcript.pyannote[349].start 4107.52409375
transcript.pyannote[349].end 4109.49846875
transcript.pyannote[350].speaker SPEAKER_30
transcript.pyannote[350].start 4109.83596875
transcript.pyannote[350].end 4110.76409375
transcript.pyannote[351].speaker SPEAKER_30
transcript.pyannote[351].start 4111.20284375
transcript.pyannote[351].end 4114.57784375
transcript.pyannote[352].speaker SPEAKER_30
transcript.pyannote[352].start 4114.59471875
transcript.pyannote[352].end 4116.09659375
transcript.pyannote[353].speaker SPEAKER_30
transcript.pyannote[353].start 4116.46784375
transcript.pyannote[353].end 4128.71909375
transcript.pyannote[354].speaker SPEAKER_28
transcript.pyannote[354].start 4119.75846875
transcript.pyannote[354].end 4119.84284375
transcript.pyannote[355].speaker SPEAKER_27
transcript.pyannote[355].start 4119.85971875
transcript.pyannote[355].end 4119.97784375
transcript.pyannote[356].speaker SPEAKER_28
transcript.pyannote[356].start 4119.97784375
transcript.pyannote[356].end 4120.12971875
transcript.pyannote[357].speaker SPEAKER_30
transcript.pyannote[357].start 4128.90471875
transcript.pyannote[357].end 4133.05596875
transcript.pyannote[358].speaker SPEAKER_13
transcript.pyannote[358].start 4129.17471875
transcript.pyannote[358].end 4129.41096875
transcript.pyannote[359].speaker SPEAKER_13
transcript.pyannote[359].start 4131.28409375
transcript.pyannote[359].end 4133.03909375
transcript.pyannote[360].speaker SPEAKER_13
transcript.pyannote[360].start 4133.05596875
transcript.pyannote[360].end 4133.27534375
transcript.pyannote[361].speaker SPEAKER_16
transcript.pyannote[361].start 4133.27534375
transcript.pyannote[361].end 4133.30909375
transcript.pyannote[362].speaker SPEAKER_16
transcript.pyannote[362].start 4139.48534375
transcript.pyannote[362].end 4140.07596875
transcript.pyannote[363].speaker SPEAKER_30
transcript.pyannote[363].start 4140.36284375
transcript.pyannote[363].end 4144.73346875
transcript.pyannote[364].speaker SPEAKER_30
transcript.pyannote[364].start 4145.08784375
transcript.pyannote[364].end 4145.59409375
transcript.pyannote[365].speaker SPEAKER_30
transcript.pyannote[365].start 4145.88096875
transcript.pyannote[365].end 4149.52596875
transcript.pyannote[366].speaker SPEAKER_16
transcript.pyannote[366].start 4151.06159375
transcript.pyannote[366].end 4161.91221875
transcript.pyannote[367].speaker SPEAKER_30
transcript.pyannote[367].start 4161.03471875
transcript.pyannote[367].end 4182.43221875
transcript.pyannote[368].speaker SPEAKER_16
transcript.pyannote[368].start 4165.96221875
transcript.pyannote[368].end 4166.23221875
transcript.pyannote[369].speaker SPEAKER_16
transcript.pyannote[369].start 4183.14096875
transcript.pyannote[369].end 4195.96596875
transcript.pyannote[370].speaker SPEAKER_30
transcript.pyannote[370].start 4195.51034375
transcript.pyannote[370].end 4200.20159375
transcript.pyannote[371].speaker SPEAKER_28
transcript.pyannote[371].start 4200.42096875
transcript.pyannote[371].end 4200.47159375
transcript.pyannote[372].speaker SPEAKER_16
transcript.pyannote[372].start 4200.47159375
transcript.pyannote[372].end 4200.75846875
transcript.pyannote[373].speaker SPEAKER_28
transcript.pyannote[373].start 4200.75846875
transcript.pyannote[373].end 4200.77534375
transcript.pyannote[374].speaker SPEAKER_30
transcript.pyannote[374].start 4200.77534375
transcript.pyannote[374].end 4202.90159375
transcript.pyannote[375].speaker SPEAKER_30
transcript.pyannote[375].start 4203.61034375
transcript.pyannote[375].end 4204.99409375
transcript.pyannote[376].speaker SPEAKER_30
transcript.pyannote[376].start 4205.53409375
transcript.pyannote[376].end 4207.59284375
transcript.pyannote[377].speaker SPEAKER_30
transcript.pyannote[377].start 4208.11596875
transcript.pyannote[377].end 4208.94284375
transcript.pyannote[378].speaker SPEAKER_30
transcript.pyannote[378].start 4209.46596875
transcript.pyannote[378].end 4212.99284375
transcript.pyannote[379].speaker SPEAKER_28
transcript.pyannote[379].start 4213.63409375
transcript.pyannote[379].end 4214.56221875
transcript.pyannote[380].speaker SPEAKER_30
transcript.pyannote[380].start 4214.05596875
transcript.pyannote[380].end 4214.78159375
transcript.pyannote[381].speaker SPEAKER_30
transcript.pyannote[381].start 4214.79846875
transcript.pyannote[381].end 4214.81534375
transcript.pyannote[382].speaker SPEAKER_28
transcript.pyannote[382].start 4214.81534375
transcript.pyannote[382].end 4215.03471875
transcript.pyannote[383].speaker SPEAKER_16
transcript.pyannote[383].start 4215.03471875
transcript.pyannote[383].end 4215.28784375
transcript.pyannote[384].speaker SPEAKER_30
transcript.pyannote[384].start 4215.43971875
transcript.pyannote[384].end 4217.98784375
transcript.pyannote[385].speaker SPEAKER_30
transcript.pyannote[385].start 4218.24096875
transcript.pyannote[385].end 4219.60784375
transcript.pyannote[386].speaker SPEAKER_16
transcript.pyannote[386].start 4219.84409375
transcript.pyannote[386].end 4231.11659375
transcript.pyannote[387].speaker SPEAKER_30
transcript.pyannote[387].start 4226.98221875
transcript.pyannote[387].end 4227.45471875
transcript.pyannote[388].speaker SPEAKER_30
transcript.pyannote[388].start 4227.64034375
transcript.pyannote[388].end 4229.04096875
transcript.pyannote[389].speaker SPEAKER_30
transcript.pyannote[389].start 4230.52596875
transcript.pyannote[389].end 4232.44971875
transcript.pyannote[390].speaker SPEAKER_16
transcript.pyannote[390].start 4232.44971875
transcript.pyannote[390].end 4235.18346875
transcript.pyannote[391].speaker SPEAKER_30
transcript.pyannote[391].start 4233.36096875
transcript.pyannote[391].end 4236.14534375
transcript.pyannote[392].speaker SPEAKER_30
transcript.pyannote[392].start 4236.73596875
transcript.pyannote[392].end 4238.35596875
transcript.pyannote[393].speaker SPEAKER_30
transcript.pyannote[393].start 4238.60909375
transcript.pyannote[393].end 4243.73909375
transcript.pyannote[394].speaker SPEAKER_30
transcript.pyannote[394].start 4243.80659375
transcript.pyannote[394].end 4248.05909375
transcript.pyannote[395].speaker SPEAKER_30
transcript.pyannote[395].start 4248.73409375
transcript.pyannote[395].end 4251.28221875
transcript.pyannote[396].speaker SPEAKER_30
transcript.pyannote[396].start 4251.95721875
transcript.pyannote[396].end 4254.62346875
transcript.pyannote[397].speaker SPEAKER_30
transcript.pyannote[397].start 4256.59784375
transcript.pyannote[397].end 4258.01534375
transcript.pyannote[398].speaker SPEAKER_30
transcript.pyannote[398].start 4258.55534375
transcript.pyannote[398].end 4260.09096875
transcript.pyannote[399].speaker SPEAKER_30
transcript.pyannote[399].start 4261.22159375
transcript.pyannote[399].end 4261.66034375
transcript.pyannote[400].speaker SPEAKER_30
transcript.pyannote[400].start 4261.94721875
transcript.pyannote[400].end 4266.18284375
transcript.pyannote[401].speaker SPEAKER_16
transcript.pyannote[401].start 4267.92096875
transcript.pyannote[401].end 4271.24534375
transcript.pyannote[402].speaker SPEAKER_30
transcript.pyannote[402].start 4269.59159375
transcript.pyannote[402].end 4276.96596875
transcript.pyannote[403].speaker SPEAKER_30
transcript.pyannote[403].start 4278.13034375
transcript.pyannote[403].end 4282.18034375
transcript.pyannote[404].speaker SPEAKER_30
transcript.pyannote[404].start 4282.50096875
transcript.pyannote[404].end 4283.39534375
transcript.pyannote[405].speaker SPEAKER_30
transcript.pyannote[405].start 4283.73284375
transcript.pyannote[405].end 4284.62721875
transcript.pyannote[406].speaker SPEAKER_30
transcript.pyannote[406].start 4285.77471875
transcript.pyannote[406].end 4286.75346875
transcript.pyannote[407].speaker SPEAKER_30
transcript.pyannote[407].start 4287.15846875
transcript.pyannote[407].end 4289.68971875
transcript.pyannote[408].speaker SPEAKER_30
transcript.pyannote[408].start 4290.38159375
transcript.pyannote[408].end 4291.68096875
transcript.pyannote[409].speaker SPEAKER_30
transcript.pyannote[409].start 4293.04784375
transcript.pyannote[409].end 4295.49471875
transcript.pyannote[410].speaker SPEAKER_30
transcript.pyannote[410].start 4295.95034375
transcript.pyannote[410].end 4298.61659375
transcript.pyannote[411].speaker SPEAKER_16
transcript.pyannote[411].start 4300.84409375
transcript.pyannote[411].end 4304.18534375
transcript.pyannote[412].speaker SPEAKER_30
transcript.pyannote[412].start 4302.64971875
transcript.pyannote[412].end 4307.91471875
transcript.pyannote[413].speaker SPEAKER_30
transcript.pyannote[413].start 4308.48846875
transcript.pyannote[413].end 4314.27659375
transcript.pyannote[414].speaker SPEAKER_30
transcript.pyannote[414].start 4314.86721875
transcript.pyannote[414].end 4319.99721875
transcript.pyannote[415].speaker SPEAKER_30
transcript.pyannote[415].start 4320.80721875
transcript.pyannote[415].end 4321.71846875
transcript.pyannote[416].speaker SPEAKER_30
transcript.pyannote[416].start 4322.95034375
transcript.pyannote[416].end 4325.53221875
transcript.pyannote[417].speaker SPEAKER_16
transcript.pyannote[417].start 4327.32096875
transcript.pyannote[417].end 4331.08409375
transcript.pyannote[418].speaker SPEAKER_30
transcript.pyannote[418].start 4331.18534375
transcript.pyannote[418].end 4341.47909375
transcript.pyannote[419].speaker SPEAKER_27
transcript.pyannote[419].start 4334.13846875
transcript.pyannote[419].end 4334.18909375
transcript.pyannote[420].speaker SPEAKER_16
transcript.pyannote[420].start 4334.42534375
transcript.pyannote[420].end 4334.49284375
transcript.pyannote[421].speaker SPEAKER_27
transcript.pyannote[421].start 4334.49284375
transcript.pyannote[421].end 4334.52659375
transcript.pyannote[422].speaker SPEAKER_27
transcript.pyannote[422].start 4341.25971875
transcript.pyannote[422].end 4341.64784375
transcript.pyannote[423].speaker SPEAKER_30
transcript.pyannote[423].start 4341.64784375
transcript.pyannote[423].end 4352.05971875
transcript.pyannote[424].speaker SPEAKER_30
transcript.pyannote[424].start 4352.98784375
transcript.pyannote[424].end 4353.88221875
transcript.pyannote[425].speaker SPEAKER_30
transcript.pyannote[425].start 4354.54034375
transcript.pyannote[425].end 4357.24034375
transcript.pyannote[426].speaker SPEAKER_30
transcript.pyannote[426].start 4357.29096875
transcript.pyannote[426].end 4360.53096875
transcript.pyannote[427].speaker SPEAKER_16
transcript.pyannote[427].start 4360.98659375
transcript.pyannote[427].end 4364.26034375
transcript.pyannote[428].speaker SPEAKER_30
transcript.pyannote[428].start 4364.51346875
transcript.pyannote[428].end 4370.33534375
transcript.pyannote[429].speaker SPEAKER_16
transcript.pyannote[429].start 4367.19659375
transcript.pyannote[429].end 4367.53409375
transcript.pyannote[430].speaker SPEAKER_16
transcript.pyannote[430].start 4370.58846875
transcript.pyannote[430].end 4370.90909375
transcript.pyannote[431].speaker SPEAKER_30
transcript.pyannote[431].start 4372.12409375
transcript.pyannote[431].end 4373.67659375
transcript.pyannote[432].speaker SPEAKER_16
transcript.pyannote[432].start 4372.47846875
transcript.pyannote[432].end 4374.85784375
transcript.pyannote[433].speaker SPEAKER_07
transcript.pyannote[433].start 4373.67659375
transcript.pyannote[433].end 4373.76096875
transcript.pyannote[434].speaker SPEAKER_07
transcript.pyannote[434].start 4374.99284375
transcript.pyannote[434].end 4376.47784375
transcript.pyannote[435].speaker SPEAKER_07
transcript.pyannote[435].start 4377.06846875
transcript.pyannote[435].end 4379.22846875
transcript.pyannote[436].speaker SPEAKER_32
transcript.pyannote[436].start 4391.59784375
transcript.pyannote[436].end 4393.58909375
transcript.pyannote[437].speaker SPEAKER_32
transcript.pyannote[437].start 4394.11221875
transcript.pyannote[437].end 4397.62221875
transcript.pyannote[438].speaker SPEAKER_32
transcript.pyannote[438].start 4397.85846875
transcript.pyannote[438].end 4399.96784375
transcript.pyannote[439].speaker SPEAKER_32
transcript.pyannote[439].start 4400.33909375
transcript.pyannote[439].end 4402.24596875
transcript.pyannote[440].speaker SPEAKER_32
transcript.pyannote[440].start 4402.87034375
transcript.pyannote[440].end 4404.79409375
transcript.pyannote[441].speaker SPEAKER_07
transcript.pyannote[441].start 4404.79409375
transcript.pyannote[441].end 4408.64159375
transcript.pyannote[442].speaker SPEAKER_32
transcript.pyannote[442].start 4405.80659375
transcript.pyannote[442].end 4406.17784375
transcript.pyannote[443].speaker SPEAKER_32
transcript.pyannote[443].start 4409.50221875
transcript.pyannote[443].end 4410.07596875
transcript.pyannote[444].speaker SPEAKER_32
transcript.pyannote[444].start 4410.64971875
transcript.pyannote[444].end 4415.34096875
transcript.pyannote[445].speaker SPEAKER_32
transcript.pyannote[445].start 4415.94846875
transcript.pyannote[445].end 4423.05284375
transcript.pyannote[446].speaker SPEAKER_32
transcript.pyannote[446].start 4423.33971875
transcript.pyannote[446].end 4425.21284375
transcript.pyannote[447].speaker SPEAKER_32
transcript.pyannote[447].start 4425.73596875
transcript.pyannote[447].end 4426.95096875
transcript.pyannote[448].speaker SPEAKER_32
transcript.pyannote[448].start 4427.79471875
transcript.pyannote[448].end 4429.19534375
transcript.pyannote[449].speaker SPEAKER_32
transcript.pyannote[449].start 4429.78596875
transcript.pyannote[449].end 4431.23721875
transcript.pyannote[450].speaker SPEAKER_32
transcript.pyannote[450].start 4431.54096875
transcript.pyannote[450].end 4434.03846875
transcript.pyannote[451].speaker SPEAKER_32
transcript.pyannote[451].start 4434.79784375
transcript.pyannote[451].end 4436.56971875
transcript.pyannote[452].speaker SPEAKER_32
transcript.pyannote[452].start 4437.17721875
transcript.pyannote[452].end 4442.81346875
transcript.pyannote[453].speaker SPEAKER_16
transcript.pyannote[453].start 4440.02909375
transcript.pyannote[453].end 4440.36659375
transcript.pyannote[454].speaker SPEAKER_32
transcript.pyannote[454].start 4443.03284375
transcript.pyannote[454].end 4447.50471875
transcript.pyannote[455].speaker SPEAKER_32
transcript.pyannote[455].start 4448.02784375
transcript.pyannote[455].end 4448.71971875
transcript.pyannote[456].speaker SPEAKER_16
transcript.pyannote[456].start 4449.29346875
transcript.pyannote[456].end 4460.02596875
transcript.pyannote[457].speaker SPEAKER_32
transcript.pyannote[457].start 4454.50784375
transcript.pyannote[457].end 4454.62596875
transcript.pyannote[458].speaker SPEAKER_32
transcript.pyannote[458].start 4454.64284375
transcript.pyannote[458].end 4454.72721875
transcript.pyannote[459].speaker SPEAKER_32
transcript.pyannote[459].start 4455.36846875
transcript.pyannote[459].end 4456.06034375
transcript.pyannote[460].speaker SPEAKER_32
transcript.pyannote[460].start 4460.02596875
transcript.pyannote[460].end 4463.89034375
transcript.pyannote[461].speaker SPEAKER_16
transcript.pyannote[461].start 4463.43471875
transcript.pyannote[461].end 4468.93596875
transcript.pyannote[462].speaker SPEAKER_32
transcript.pyannote[462].start 4468.93596875
transcript.pyannote[462].end 4471.72034375
transcript.pyannote[463].speaker SPEAKER_16
transcript.pyannote[463].start 4469.40846875
transcript.pyannote[463].end 4469.98221875
transcript.pyannote[464].speaker SPEAKER_32
transcript.pyannote[464].start 4471.95659375
transcript.pyannote[464].end 4472.14221875
transcript.pyannote[465].speaker SPEAKER_16
transcript.pyannote[465].start 4472.69909375
transcript.pyannote[465].end 4473.07034375
transcript.pyannote[466].speaker SPEAKER_32
transcript.pyannote[466].start 4473.30659375
transcript.pyannote[466].end 4473.99846875
transcript.pyannote[467].speaker SPEAKER_16
transcript.pyannote[467].start 4474.97721875
transcript.pyannote[467].end 4478.48721875
transcript.pyannote[468].speaker SPEAKER_32
transcript.pyannote[468].start 4479.28034375
transcript.pyannote[468].end 4482.35159375
transcript.pyannote[469].speaker SPEAKER_16
transcript.pyannote[469].start 4481.59221875
transcript.pyannote[469].end 4482.43596875
transcript.pyannote[470].speaker SPEAKER_16
transcript.pyannote[470].start 4483.73534375
transcript.pyannote[470].end 4484.73096875
transcript.pyannote[471].speaker SPEAKER_32
transcript.pyannote[471].start 4485.16971875
transcript.pyannote[471].end 4486.30034375
transcript.pyannote[472].speaker SPEAKER_16
transcript.pyannote[472].start 4486.78971875
transcript.pyannote[472].end 4487.93721875
transcript.pyannote[473].speaker SPEAKER_32
transcript.pyannote[473].start 4487.93721875
transcript.pyannote[473].end 4489.79346875
transcript.pyannote[474].speaker SPEAKER_16
transcript.pyannote[474].start 4487.97096875
transcript.pyannote[474].end 4489.50659375
transcript.pyannote[475].speaker SPEAKER_16
transcript.pyannote[475].start 4489.79346875
transcript.pyannote[475].end 4489.86096875
transcript.pyannote[476].speaker SPEAKER_16
transcript.pyannote[476].start 4489.97909375
transcript.pyannote[476].end 4493.03346875
transcript.pyannote[477].speaker SPEAKER_32
transcript.pyannote[477].start 4492.49346875
transcript.pyannote[477].end 4492.74659375
transcript.pyannote[478].speaker SPEAKER_32
transcript.pyannote[478].start 4493.38784375
transcript.pyannote[478].end 4495.90221875
transcript.pyannote[479].speaker SPEAKER_32
transcript.pyannote[479].start 4497.03284375
transcript.pyannote[479].end 4503.37784375
transcript.pyannote[480].speaker SPEAKER_32
transcript.pyannote[480].start 4503.83346875
transcript.pyannote[480].end 4504.28909375
transcript.pyannote[481].speaker SPEAKER_32
transcript.pyannote[481].start 4504.71096875
transcript.pyannote[481].end 4505.14971875
transcript.pyannote[482].speaker SPEAKER_32
transcript.pyannote[482].start 4505.55471875
transcript.pyannote[482].end 4507.12409375
transcript.pyannote[483].speaker SPEAKER_32
transcript.pyannote[483].start 4507.91721875
transcript.pyannote[483].end 4509.85784375
transcript.pyannote[484].speaker SPEAKER_32
transcript.pyannote[484].start 4510.27971875
transcript.pyannote[484].end 4517.60346875
transcript.pyannote[485].speaker SPEAKER_16
transcript.pyannote[485].start 4518.81846875
transcript.pyannote[485].end 4541.24534375
transcript.pyannote[486].speaker SPEAKER_32
transcript.pyannote[486].start 4523.71221875
transcript.pyannote[486].end 4526.88471875
transcript.pyannote[487].speaker SPEAKER_32
transcript.pyannote[487].start 4528.62284375
transcript.pyannote[487].end 4532.14971875
transcript.pyannote[488].speaker SPEAKER_32
transcript.pyannote[488].start 4533.95534375
transcript.pyannote[488].end 4534.86659375
transcript.pyannote[489].speaker SPEAKER_32
transcript.pyannote[489].start 4535.32221875
transcript.pyannote[489].end 4536.19971875
transcript.pyannote[490].speaker SPEAKER_32
transcript.pyannote[490].start 4538.49471875
transcript.pyannote[490].end 4540.99221875
transcript.pyannote[491].speaker SPEAKER_32
transcript.pyannote[491].start 4541.24534375
transcript.pyannote[491].end 4542.66284375
transcript.pyannote[492].speaker SPEAKER_27
transcript.pyannote[492].start 4542.02159375
transcript.pyannote[492].end 4542.03846875
transcript.pyannote[493].speaker SPEAKER_27
transcript.pyannote[493].start 4542.07221875
transcript.pyannote[493].end 4542.51096875
transcript.pyannote[494].speaker SPEAKER_27
transcript.pyannote[494].start 4543.01721875
transcript.pyannote[494].end 4543.08471875
transcript.pyannote[495].speaker SPEAKER_32
transcript.pyannote[495].start 4543.08471875
transcript.pyannote[495].end 4545.14346875
transcript.pyannote[496].speaker SPEAKER_27
transcript.pyannote[496].start 4543.11846875
transcript.pyannote[496].end 4543.15221875
transcript.pyannote[497].speaker SPEAKER_16
transcript.pyannote[497].start 4543.15221875
transcript.pyannote[497].end 4543.16909375
transcript.pyannote[498].speaker SPEAKER_32
transcript.pyannote[498].start 4545.32909375
transcript.pyannote[498].end 4546.29096875
transcript.pyannote[499].speaker SPEAKER_32
transcript.pyannote[499].start 4547.23596875
transcript.pyannote[499].end 4550.44221875
transcript.pyannote[500].speaker SPEAKER_32
transcript.pyannote[500].start 4550.71221875
transcript.pyannote[500].end 4552.29846875
transcript.pyannote[501].speaker SPEAKER_32
transcript.pyannote[501].start 4552.53471875
transcript.pyannote[501].end 4554.15471875
transcript.pyannote[502].speaker SPEAKER_32
transcript.pyannote[502].start 4554.50909375
transcript.pyannote[502].end 4556.78721875
transcript.pyannote[503].speaker SPEAKER_32
transcript.pyannote[503].start 4557.71534375
transcript.pyannote[503].end 4558.55909375
transcript.pyannote[504].speaker SPEAKER_13
transcript.pyannote[504].start 4557.86721875
transcript.pyannote[504].end 4558.32284375
transcript.pyannote[505].speaker SPEAKER_13
transcript.pyannote[505].start 4558.94721875
transcript.pyannote[505].end 4564.60034375
transcript.pyannote[506].speaker SPEAKER_32
transcript.pyannote[506].start 4563.97596875
transcript.pyannote[506].end 4567.21596875
transcript.pyannote[507].speaker SPEAKER_13
transcript.pyannote[507].start 4565.29221875
transcript.pyannote[507].end 4567.11471875
transcript.pyannote[508].speaker SPEAKER_13
transcript.pyannote[508].start 4567.21596875
transcript.pyannote[508].end 4568.02596875
transcript.pyannote[509].speaker SPEAKER_32
transcript.pyannote[509].start 4567.67159375
transcript.pyannote[509].end 4567.68846875
transcript.pyannote[510].speaker SPEAKER_32
transcript.pyannote[510].start 4567.70534375
transcript.pyannote[510].end 4568.11034375
transcript.pyannote[511].speaker SPEAKER_13
transcript.pyannote[511].start 4568.41409375
transcript.pyannote[511].end 4569.81471875
transcript.pyannote[512].speaker SPEAKER_13
transcript.pyannote[512].start 4570.45596875
transcript.pyannote[512].end 4573.42596875
transcript.pyannote[513].speaker SPEAKER_32
transcript.pyannote[513].start 4570.50659375
transcript.pyannote[513].end 4571.16471875
transcript.pyannote[514].speaker SPEAKER_32
transcript.pyannote[514].start 4572.81846875
transcript.pyannote[514].end 4573.56096875
transcript.pyannote[515].speaker SPEAKER_13
transcript.pyannote[515].start 4574.47221875
transcript.pyannote[515].end 4576.17659375
transcript.pyannote[516].speaker SPEAKER_32
transcript.pyannote[516].start 4575.46784375
transcript.pyannote[516].end 4577.93159375
transcript.pyannote[517].speaker SPEAKER_13
transcript.pyannote[517].start 4577.00346875
transcript.pyannote[517].end 4577.88096875
transcript.pyannote[518].speaker SPEAKER_13
transcript.pyannote[518].start 4578.20159375
transcript.pyannote[518].end 4581.32346875
transcript.pyannote[519].speaker SPEAKER_32
transcript.pyannote[519].start 4579.90596875
transcript.pyannote[519].end 4583.29784375
transcript.pyannote[520].speaker SPEAKER_13
transcript.pyannote[520].start 4581.49221875
transcript.pyannote[520].end 4581.96471875
transcript.pyannote[521].speaker SPEAKER_32
transcript.pyannote[521].start 4584.90096875
transcript.pyannote[521].end 4587.06096875
transcript.pyannote[522].speaker SPEAKER_32
transcript.pyannote[522].start 4587.48284375
transcript.pyannote[522].end 4590.03096875
transcript.pyannote[523].speaker SPEAKER_32
transcript.pyannote[523].start 4591.24596875
transcript.pyannote[523].end 4593.59159375
transcript.pyannote[524].speaker SPEAKER_32
transcript.pyannote[524].start 4594.24971875
transcript.pyannote[524].end 4596.46034375
transcript.pyannote[525].speaker SPEAKER_32
transcript.pyannote[525].start 4596.79784375
transcript.pyannote[525].end 4597.91159375
transcript.pyannote[526].speaker SPEAKER_13
transcript.pyannote[526].start 4597.69221875
transcript.pyannote[526].end 4598.78909375
transcript.pyannote[527].speaker SPEAKER_32
transcript.pyannote[527].start 4598.24909375
transcript.pyannote[527].end 4601.55659375
transcript.pyannote[528].speaker SPEAKER_32
transcript.pyannote[528].start 4601.79284375
transcript.pyannote[528].end 4603.29471875
transcript.pyannote[529].speaker SPEAKER_32
transcript.pyannote[529].start 4603.83471875
transcript.pyannote[529].end 4605.72471875
transcript.pyannote[530].speaker SPEAKER_27
transcript.pyannote[530].start 4605.30284375
transcript.pyannote[530].end 4606.02846875
transcript.pyannote[531].speaker SPEAKER_32
transcript.pyannote[531].start 4606.45034375
transcript.pyannote[531].end 4619.00534375
transcript.pyannote[532].speaker SPEAKER_32
transcript.pyannote[532].start 4619.42721875
transcript.pyannote[532].end 4624.72596875
transcript.pyannote[533].speaker SPEAKER_32
transcript.pyannote[533].start 4625.04659375
transcript.pyannote[533].end 4627.07159375
transcript.pyannote[534].speaker SPEAKER_32
transcript.pyannote[534].start 4627.42596875
transcript.pyannote[534].end 4628.01659375
transcript.pyannote[535].speaker SPEAKER_32
transcript.pyannote[535].start 4629.19784375
transcript.pyannote[535].end 4630.71659375
transcript.pyannote[536].speaker SPEAKER_32
transcript.pyannote[536].start 4631.34096875
transcript.pyannote[536].end 4635.47534375
transcript.pyannote[537].speaker SPEAKER_32
transcript.pyannote[537].start 4636.06596875
transcript.pyannote[537].end 4640.77409375
transcript.pyannote[538].speaker SPEAKER_32
transcript.pyannote[538].start 4642.74846875
transcript.pyannote[538].end 4645.36409375
transcript.pyannote[539].speaker SPEAKER_32
transcript.pyannote[539].start 4646.05596875
transcript.pyannote[539].end 4651.92846875
transcript.pyannote[540].speaker SPEAKER_32
transcript.pyannote[540].start 4652.08034375
transcript.pyannote[540].end 4655.25284375
transcript.pyannote[541].speaker SPEAKER_32
transcript.pyannote[541].start 4655.70846875
transcript.pyannote[541].end 4656.60284375
transcript.pyannote[542].speaker SPEAKER_32
transcript.pyannote[542].start 4657.21034375
transcript.pyannote[542].end 4659.55596875
transcript.pyannote[543].speaker SPEAKER_32
transcript.pyannote[543].start 4660.55159375
transcript.pyannote[543].end 4661.86784375
transcript.pyannote[544].speaker SPEAKER_32
transcript.pyannote[544].start 4662.64409375
transcript.pyannote[544].end 4663.65659375
transcript.pyannote[545].speaker SPEAKER_32
transcript.pyannote[545].start 4664.01096875
transcript.pyannote[545].end 4664.80409375
transcript.pyannote[546].speaker SPEAKER_32
transcript.pyannote[546].start 4665.04034375
transcript.pyannote[546].end 4667.16659375
transcript.pyannote[547].speaker SPEAKER_32
transcript.pyannote[547].start 4667.75721875
transcript.pyannote[547].end 4669.47846875
transcript.pyannote[548].speaker SPEAKER_32
transcript.pyannote[548].start 4669.98471875
transcript.pyannote[548].end 4670.77784375
transcript.pyannote[549].speaker SPEAKER_32
transcript.pyannote[549].start 4671.01409375
transcript.pyannote[549].end 4674.13596875
transcript.pyannote[550].speaker SPEAKER_32
transcript.pyannote[550].start 4674.42284375
transcript.pyannote[550].end 4683.63659375
transcript.pyannote[551].speaker SPEAKER_32
transcript.pyannote[551].start 4684.27784375
transcript.pyannote[551].end 4686.01596875
transcript.pyannote[552].speaker SPEAKER_16
transcript.pyannote[552].start 4686.74159375
transcript.pyannote[552].end 4702.87409375
transcript.pyannote[553].speaker SPEAKER_32
transcript.pyannote[553].start 4690.62284375
transcript.pyannote[553].end 4691.39909375
transcript.pyannote[554].speaker SPEAKER_00
transcript.pyannote[554].start 4691.39909375
transcript.pyannote[554].end 4691.44971875
transcript.pyannote[555].speaker SPEAKER_32
transcript.pyannote[555].start 4692.41159375
transcript.pyannote[555].end 4693.62659375
transcript.pyannote[556].speaker SPEAKER_00
transcript.pyannote[556].start 4693.62659375
transcript.pyannote[556].end 4693.64346875
transcript.pyannote[557].speaker SPEAKER_32
transcript.pyannote[557].start 4695.39846875
transcript.pyannote[557].end 4695.85409375
transcript.pyannote[558].speaker SPEAKER_32
transcript.pyannote[558].start 4697.94659375
transcript.pyannote[558].end 4701.49034375
transcript.pyannote[559].speaker SPEAKER_32
transcript.pyannote[559].start 4702.67159375
transcript.pyannote[559].end 4707.32909375
transcript.pyannote[560].speaker SPEAKER_32
transcript.pyannote[560].start 4707.64971875
transcript.pyannote[560].end 4708.00409375
transcript.pyannote[561].speaker SPEAKER_32
transcript.pyannote[561].start 4708.22346875
transcript.pyannote[561].end 4710.02909375
transcript.pyannote[562].speaker SPEAKER_32
transcript.pyannote[562].start 4710.97409375
transcript.pyannote[562].end 4716.22221875
transcript.pyannote[563].speaker SPEAKER_32
transcript.pyannote[563].start 4716.62721875
transcript.pyannote[563].end 4722.98909375
transcript.pyannote[564].speaker SPEAKER_32
transcript.pyannote[564].start 4723.54596875
transcript.pyannote[564].end 4723.95096875
transcript.pyannote[565].speaker SPEAKER_03
transcript.pyannote[565].start 4723.95096875
transcript.pyannote[565].end 4723.96784375
transcript.pyannote[566].speaker SPEAKER_03
transcript.pyannote[566].start 4724.67659375
transcript.pyannote[566].end 4729.31721875
transcript.pyannote[567].speaker SPEAKER_03
transcript.pyannote[567].start 4729.63784375
transcript.pyannote[567].end 4730.61659375
transcript.pyannote[568].speaker SPEAKER_03
transcript.pyannote[568].start 4731.08909375
transcript.pyannote[568].end 4736.60721875
transcript.pyannote[569].speaker SPEAKER_03
transcript.pyannote[569].start 4736.82659375
transcript.pyannote[569].end 4739.98221875
transcript.pyannote[570].speaker SPEAKER_03
transcript.pyannote[570].start 4740.47159375
transcript.pyannote[570].end 4741.39971875
transcript.pyannote[571].speaker SPEAKER_03
transcript.pyannote[571].start 4742.17596875
transcript.pyannote[571].end 4750.02284375
transcript.pyannote[572].speaker SPEAKER_32
transcript.pyannote[572].start 4743.62721875
transcript.pyannote[572].end 4745.43284375
transcript.pyannote[573].speaker SPEAKER_03
transcript.pyannote[573].start 4750.09034375
transcript.pyannote[573].end 4751.87909375
transcript.pyannote[574].speaker SPEAKER_32
transcript.pyannote[574].start 4750.61346875
transcript.pyannote[574].end 4751.13659375
transcript.pyannote[575].speaker SPEAKER_03
transcript.pyannote[575].start 4753.88721875
transcript.pyannote[575].end 4756.03034375
transcript.pyannote[576].speaker SPEAKER_03
transcript.pyannote[576].start 4757.07659375
transcript.pyannote[576].end 4759.54034375
transcript.pyannote[577].speaker SPEAKER_03
transcript.pyannote[577].start 4760.08034375
transcript.pyannote[577].end 4766.27346875
transcript.pyannote[578].speaker SPEAKER_32
transcript.pyannote[578].start 4765.49721875
transcript.pyannote[578].end 4769.41221875
transcript.pyannote[579].speaker SPEAKER_03
transcript.pyannote[579].start 4770.42471875
transcript.pyannote[579].end 4773.10784375
transcript.pyannote[580].speaker SPEAKER_32
transcript.pyannote[580].start 4770.49221875
transcript.pyannote[580].end 4771.08284375
transcript.pyannote[581].speaker SPEAKER_32
transcript.pyannote[581].start 4773.04034375
transcript.pyannote[581].end 4774.08659375
transcript.pyannote[582].speaker SPEAKER_32
transcript.pyannote[582].start 4774.67721875
transcript.pyannote[582].end 4777.20846875
transcript.pyannote[583].speaker SPEAKER_32
transcript.pyannote[583].start 4778.82846875
transcript.pyannote[583].end 4780.60034375
transcript.pyannote[584].speaker SPEAKER_32
transcript.pyannote[584].start 4781.15721875
transcript.pyannote[584].end 4782.96284375
transcript.pyannote[585].speaker SPEAKER_32
transcript.pyannote[585].start 4783.63784375
transcript.pyannote[585].end 4787.18159375
transcript.pyannote[586].speaker SPEAKER_32
transcript.pyannote[586].start 4788.64971875
transcript.pyannote[586].end 4791.75471875
transcript.pyannote[587].speaker SPEAKER_32
transcript.pyannote[587].start 4792.07534375
transcript.pyannote[587].end 4795.02846875
transcript.pyannote[588].speaker SPEAKER_32
transcript.pyannote[588].start 4795.50096875
transcript.pyannote[588].end 4796.44596875
transcript.pyannote[589].speaker SPEAKER_32
transcript.pyannote[589].start 4797.59346875
transcript.pyannote[589].end 4798.08284375
transcript.pyannote[590].speaker SPEAKER_16
transcript.pyannote[590].start 4799.33159375
transcript.pyannote[590].end 4801.54221875
transcript.pyannote[591].speaker SPEAKER_32
transcript.pyannote[591].start 4801.59284375
transcript.pyannote[591].end 4803.48284375
transcript.pyannote[592].speaker SPEAKER_32
transcript.pyannote[592].start 4803.63471875
transcript.pyannote[592].end 4805.49096875
transcript.pyannote[593].speaker SPEAKER_32
transcript.pyannote[593].start 4805.89596875
transcript.pyannote[593].end 4808.29221875
transcript.pyannote[594].speaker SPEAKER_32
transcript.pyannote[594].start 4808.88284375
transcript.pyannote[594].end 4812.91596875
transcript.pyannote[595].speaker SPEAKER_32
transcript.pyannote[595].start 4813.55721875
transcript.pyannote[595].end 4815.91971875
transcript.pyannote[596].speaker SPEAKER_32
transcript.pyannote[596].start 4816.25721875
transcript.pyannote[596].end 4816.83096875
transcript.pyannote[597].speaker SPEAKER_32
transcript.pyannote[597].start 4816.84784375
transcript.pyannote[597].end 4818.95721875
transcript.pyannote[598].speaker SPEAKER_32
transcript.pyannote[598].start 4820.89784375
transcript.pyannote[598].end 4821.84284375
transcript.pyannote[599].speaker SPEAKER_32
transcript.pyannote[599].start 4822.93971875
transcript.pyannote[599].end 4824.86346875
transcript.pyannote[600].speaker SPEAKER_32
transcript.pyannote[600].start 4825.70721875
transcript.pyannote[600].end 4830.56721875
transcript.pyannote[601].speaker SPEAKER_32
transcript.pyannote[601].start 4830.65159375
transcript.pyannote[601].end 4832.18721875
transcript.pyannote[602].speaker SPEAKER_32
transcript.pyannote[602].start 4832.98034375
transcript.pyannote[602].end 4837.03034375
transcript.pyannote[603].speaker SPEAKER_32
transcript.pyannote[603].start 4837.87409375
transcript.pyannote[603].end 4847.42534375
transcript.pyannote[604].speaker SPEAKER_32
transcript.pyannote[604].start 4848.15096875
transcript.pyannote[604].end 4851.59346875
transcript.pyannote[605].speaker SPEAKER_32
transcript.pyannote[605].start 4852.45409375
transcript.pyannote[605].end 4859.20409375
transcript.pyannote[606].speaker SPEAKER_32
transcript.pyannote[606].start 4859.91284375
transcript.pyannote[606].end 4864.23284375
transcript.pyannote[607].speaker SPEAKER_32
transcript.pyannote[607].start 4865.07659375
transcript.pyannote[607].end 4865.81909375
transcript.pyannote[608].speaker SPEAKER_32
transcript.pyannote[608].start 4866.03846875
transcript.pyannote[608].end 4866.05534375
transcript.pyannote[609].speaker SPEAKER_16
transcript.pyannote[609].start 4866.96659375
transcript.pyannote[609].end 4874.93159375
transcript.pyannote[610].speaker SPEAKER_32
transcript.pyannote[610].start 4873.63221875
transcript.pyannote[610].end 4873.98659375
transcript.pyannote[611].speaker SPEAKER_32
transcript.pyannote[611].start 4875.20159375
transcript.pyannote[611].end 4876.85534375
transcript.pyannote[612].speaker SPEAKER_16
transcript.pyannote[612].start 4878.94784375
transcript.pyannote[612].end 4878.98159375
transcript.pyannote[613].speaker SPEAKER_32
transcript.pyannote[613].start 4878.98159375
transcript.pyannote[613].end 4879.36971875
transcript.pyannote[614].speaker SPEAKER_16
transcript.pyannote[614].start 4879.36971875
transcript.pyannote[614].end 4883.30159375
transcript.pyannote[615].speaker SPEAKER_32
transcript.pyannote[615].start 4882.86284375
transcript.pyannote[615].end 4889.52846875
transcript.pyannote[616].speaker SPEAKER_16
transcript.pyannote[616].start 4883.75721875
transcript.pyannote[616].end 4884.17909375
transcript.pyannote[617].speaker SPEAKER_32
transcript.pyannote[617].start 4891.01346875
transcript.pyannote[617].end 4893.03846875
transcript.pyannote[618].speaker SPEAKER_32
transcript.pyannote[618].start 4893.10596875
transcript.pyannote[618].end 4895.19846875
transcript.pyannote[619].speaker SPEAKER_32
transcript.pyannote[619].start 4896.37971875
transcript.pyannote[619].end 4898.80971875
transcript.pyannote[620].speaker SPEAKER_32
transcript.pyannote[620].start 4899.67034375
transcript.pyannote[620].end 4904.00721875
transcript.pyannote[621].speaker SPEAKER_32
transcript.pyannote[621].start 4904.26034375
transcript.pyannote[621].end 4905.13784375
transcript.pyannote[622].speaker SPEAKER_32
transcript.pyannote[622].start 4906.09971875
transcript.pyannote[622].end 4907.24721875
transcript.pyannote[623].speaker SPEAKER_32
transcript.pyannote[623].start 4907.80409375
transcript.pyannote[623].end 4908.19221875
transcript.pyannote[624].speaker SPEAKER_32
transcript.pyannote[624].start 4908.56346875
transcript.pyannote[624].end 4910.79096875
transcript.pyannote[625].speaker SPEAKER_32
transcript.pyannote[625].start 4911.09471875
transcript.pyannote[625].end 4915.88721875
transcript.pyannote[626].speaker SPEAKER_32
transcript.pyannote[626].start 4916.61284375
transcript.pyannote[626].end 4920.15659375
transcript.pyannote[627].speaker SPEAKER_32
transcript.pyannote[627].start 4920.51096875
transcript.pyannote[627].end 4920.96659375
transcript.pyannote[628].speaker SPEAKER_32
transcript.pyannote[628].start 4921.33784375
transcript.pyannote[628].end 4923.88596875
transcript.pyannote[629].speaker SPEAKER_32
transcript.pyannote[629].start 4924.99971875
transcript.pyannote[629].end 4925.43846875
transcript.pyannote[630].speaker SPEAKER_32
transcript.pyannote[630].start 4925.59034375
transcript.pyannote[630].end 4928.25659375
transcript.pyannote[631].speaker SPEAKER_32
transcript.pyannote[631].start 4929.13409375
transcript.pyannote[631].end 4929.92721875
transcript.pyannote[632].speaker SPEAKER_32
transcript.pyannote[632].start 4930.24784375
transcript.pyannote[632].end 4932.79596875
transcript.pyannote[633].speaker SPEAKER_32
transcript.pyannote[633].start 4933.35284375
transcript.pyannote[633].end 4935.32721875
transcript.pyannote[634].speaker SPEAKER_32
transcript.pyannote[634].start 4935.73221875
transcript.pyannote[634].end 4940.50784375
transcript.pyannote[635].speaker SPEAKER_32
transcript.pyannote[635].start 4941.35159375
transcript.pyannote[635].end 4942.00971875
transcript.pyannote[636].speaker SPEAKER_32
transcript.pyannote[636].start 4942.48221875
transcript.pyannote[636].end 4944.20346875
transcript.pyannote[637].speaker SPEAKER_03
transcript.pyannote[637].start 4946.93721875
transcript.pyannote[637].end 4952.60721875
transcript.pyannote[638].speaker SPEAKER_32
transcript.pyannote[638].start 4952.60721875
transcript.pyannote[638].end 4952.62409375
transcript.pyannote[639].speaker SPEAKER_32
transcript.pyannote[639].start 4953.80534375
transcript.pyannote[639].end 4956.67409375
transcript.pyannote[640].speaker SPEAKER_32
transcript.pyannote[640].start 4956.94409375
transcript.pyannote[640].end 4957.50096875
transcript.pyannote[641].speaker SPEAKER_03
transcript.pyannote[641].start 4958.22659375
transcript.pyannote[641].end 4969.63409375
transcript.pyannote[642].speaker SPEAKER_32
transcript.pyannote[642].start 4966.63034375
transcript.pyannote[642].end 4967.38971875
transcript.pyannote[643].speaker SPEAKER_32
transcript.pyannote[643].start 4969.63409375
transcript.pyannote[643].end 4976.70471875
transcript.pyannote[644].speaker SPEAKER_03
transcript.pyannote[644].start 4976.70471875
transcript.pyannote[644].end 4976.75534375
transcript.pyannote[645].speaker SPEAKER_32
transcript.pyannote[645].start 4976.75534375
transcript.pyannote[645].end 4976.83971875
transcript.pyannote[646].speaker SPEAKER_03
transcript.pyannote[646].start 4976.83971875
transcript.pyannote[646].end 4978.44284375
transcript.pyannote[647].speaker SPEAKER_32
transcript.pyannote[647].start 4978.44284375
transcript.pyannote[647].end 4978.49346875
transcript.pyannote[648].speaker SPEAKER_03
transcript.pyannote[648].start 4978.49346875
transcript.pyannote[648].end 4978.54409375
transcript.pyannote[649].speaker SPEAKER_32
transcript.pyannote[649].start 4979.50596875
transcript.pyannote[649].end 4980.60284375
transcript.pyannote[650].speaker SPEAKER_03
transcript.pyannote[650].start 4981.12596875
transcript.pyannote[650].end 4983.15096875
transcript.pyannote[651].speaker SPEAKER_32
transcript.pyannote[651].start 4984.09596875
transcript.pyannote[651].end 4989.39471875
transcript.pyannote[652].speaker SPEAKER_16
transcript.pyannote[652].start 4989.41159375
transcript.pyannote[652].end 5000.31284375
transcript.pyannote[653].speaker SPEAKER_32
transcript.pyannote[653].start 4999.21596875
transcript.pyannote[653].end 5003.65409375
transcript.pyannote[654].speaker SPEAKER_32
transcript.pyannote[654].start 5004.29534375
transcript.pyannote[654].end 5004.93659375
transcript.pyannote[655].speaker SPEAKER_32
transcript.pyannote[655].start 5006.20221875
transcript.pyannote[655].end 5008.15971875
transcript.pyannote[656].speaker SPEAKER_32
transcript.pyannote[656].start 5008.68284375
transcript.pyannote[656].end 5017.12034375
transcript.pyannote[657].speaker SPEAKER_32
transcript.pyannote[657].start 5017.81221875
transcript.pyannote[657].end 5019.07784375
transcript.pyannote[658].speaker SPEAKER_32
transcript.pyannote[658].start 5019.36471875
transcript.pyannote[658].end 5020.76534375
transcript.pyannote[659].speaker SPEAKER_32
transcript.pyannote[659].start 5021.40659375
transcript.pyannote[659].end 5025.32159375
transcript.pyannote[660].speaker SPEAKER_32
transcript.pyannote[660].start 5026.33409375
transcript.pyannote[660].end 5027.00909375
transcript.pyannote[661].speaker SPEAKER_32
transcript.pyannote[661].start 5027.19471875
transcript.pyannote[661].end 5029.42221875
transcript.pyannote[662].speaker SPEAKER_32
transcript.pyannote[662].start 5030.43471875
transcript.pyannote[662].end 5032.20659375
transcript.pyannote[663].speaker SPEAKER_03
transcript.pyannote[663].start 5034.02909375
transcript.pyannote[663].end 5034.88971875
transcript.pyannote[664].speaker SPEAKER_32
transcript.pyannote[664].start 5034.88971875
transcript.pyannote[664].end 5037.08346875
transcript.pyannote[665].speaker SPEAKER_32
transcript.pyannote[665].start 5037.67409375
transcript.pyannote[665].end 5037.97784375
transcript.pyannote[666].speaker SPEAKER_03
transcript.pyannote[666].start 5037.97784375
transcript.pyannote[666].end 5038.02846875
transcript.pyannote[667].speaker SPEAKER_32
transcript.pyannote[667].start 5038.02846875
transcript.pyannote[667].end 5038.97346875
transcript.pyannote[668].speaker SPEAKER_03
transcript.pyannote[668].start 5038.97346875
transcript.pyannote[668].end 5039.19284375
transcript.pyannote[669].speaker SPEAKER_03
transcript.pyannote[669].start 5040.44159375
transcript.pyannote[669].end 5045.55471875
transcript.pyannote[670].speaker SPEAKER_32
transcript.pyannote[670].start 5043.68159375
transcript.pyannote[670].end 5044.49159375
transcript.pyannote[671].speaker SPEAKER_32
transcript.pyannote[671].start 5045.55471875
transcript.pyannote[671].end 5045.63909375
transcript.pyannote[672].speaker SPEAKER_03
transcript.pyannote[672].start 5045.63909375
transcript.pyannote[672].end 5046.02721875
transcript.pyannote[673].speaker SPEAKER_03
transcript.pyannote[673].start 5046.66846875
transcript.pyannote[673].end 5049.04784375
transcript.pyannote[674].speaker SPEAKER_32
transcript.pyannote[674].start 5049.04784375
transcript.pyannote[674].end 5049.06471875
transcript.pyannote[675].speaker SPEAKER_03
transcript.pyannote[675].start 5049.06471875
transcript.pyannote[675].end 5049.08159375
transcript.pyannote[676].speaker SPEAKER_32
transcript.pyannote[676].start 5049.08159375
transcript.pyannote[676].end 5049.09846875
transcript.pyannote[677].speaker SPEAKER_03
transcript.pyannote[677].start 5049.18284375
transcript.pyannote[677].end 5049.28409375
transcript.pyannote[678].speaker SPEAKER_32
transcript.pyannote[678].start 5049.28409375
transcript.pyannote[678].end 5053.01346875
transcript.pyannote[679].speaker SPEAKER_32
transcript.pyannote[679].start 5053.28346875
transcript.pyannote[679].end 5061.28221875
transcript.pyannote[680].speaker SPEAKER_03
transcript.pyannote[680].start 5054.43096875
transcript.pyannote[680].end 5054.78534375
transcript.pyannote[681].speaker SPEAKER_32
transcript.pyannote[681].start 5061.55221875
transcript.pyannote[681].end 5064.97784375
transcript.pyannote[682].speaker SPEAKER_03
transcript.pyannote[682].start 5061.73784375
transcript.pyannote[682].end 5061.88971875
transcript.pyannote[683].speaker SPEAKER_03
transcript.pyannote[683].start 5063.67846875
transcript.pyannote[683].end 5063.86409375
transcript.pyannote[684].speaker SPEAKER_03
transcript.pyannote[684].start 5064.97784375
transcript.pyannote[684].end 5071.17096875
transcript.pyannote[685].speaker SPEAKER_32
transcript.pyannote[685].start 5065.19721875
transcript.pyannote[685].end 5065.80471875
transcript.pyannote[686].speaker SPEAKER_03
transcript.pyannote[686].start 5071.84596875
transcript.pyannote[686].end 5072.40284375
transcript.pyannote[687].speaker SPEAKER_03
transcript.pyannote[687].start 5073.33096875
transcript.pyannote[687].end 5079.06846875
transcript.pyannote[688].speaker SPEAKER_03
transcript.pyannote[688].start 5079.60846875
transcript.pyannote[688].end 5081.53221875
transcript.pyannote[689].speaker SPEAKER_32
transcript.pyannote[689].start 5080.72221875
transcript.pyannote[689].end 5086.78034375
transcript.pyannote[690].speaker SPEAKER_03
transcript.pyannote[690].start 5081.58284375
transcript.pyannote[690].end 5081.59971875
transcript.pyannote[691].speaker SPEAKER_03
transcript.pyannote[691].start 5081.75159375
transcript.pyannote[691].end 5081.86971875
transcript.pyannote[692].speaker SPEAKER_03
transcript.pyannote[692].start 5082.00471875
transcript.pyannote[692].end 5082.73034375
transcript.pyannote[693].speaker SPEAKER_32
transcript.pyannote[693].start 5087.06721875
transcript.pyannote[693].end 5089.26096875
transcript.pyannote[694].speaker SPEAKER_03
transcript.pyannote[694].start 5089.83471875
transcript.pyannote[694].end 5090.96534375
transcript.pyannote[695].speaker SPEAKER_32
transcript.pyannote[695].start 5090.96534375
transcript.pyannote[695].end 5093.46284375
transcript.pyannote[696].speaker SPEAKER_32
transcript.pyannote[696].start 5095.35284375
transcript.pyannote[696].end 5096.65221875
transcript.pyannote[697].speaker SPEAKER_07
transcript.pyannote[697].start 5097.39471875
transcript.pyannote[697].end 5099.03159375
transcript.pyannote[698].speaker SPEAKER_07
transcript.pyannote[698].start 5099.85846875
transcript.pyannote[698].end 5102.08596875
transcript.pyannote[699].speaker SPEAKER_12
transcript.pyannote[699].start 5111.99159375
transcript.pyannote[699].end 5117.91471875
transcript.pyannote[700].speaker SPEAKER_12
transcript.pyannote[700].start 5118.01596875
transcript.pyannote[700].end 5118.03284375
transcript.pyannote[701].speaker SPEAKER_12
transcript.pyannote[701].start 5118.11721875
transcript.pyannote[701].end 5120.29409375
transcript.pyannote[702].speaker SPEAKER_07
transcript.pyannote[702].start 5120.29409375
transcript.pyannote[702].end 5120.34471875
transcript.pyannote[703].speaker SPEAKER_14
transcript.pyannote[703].start 5129.96346875
transcript.pyannote[703].end 5130.62159375
transcript.pyannote[704].speaker SPEAKER_20
transcript.pyannote[704].start 5130.08159375
transcript.pyannote[704].end 5206.00221875
transcript.pyannote[705].speaker SPEAKER_00
transcript.pyannote[705].start 5172.50534375
transcript.pyannote[705].end 5172.87659375
transcript.pyannote[706].speaker SPEAKER_13
transcript.pyannote[706].start 5206.67721875
transcript.pyannote[706].end 5212.00971875
transcript.pyannote[707].speaker SPEAKER_20
transcript.pyannote[707].start 5206.81221875
transcript.pyannote[707].end 5207.53784375
transcript.pyannote[708].speaker SPEAKER_20
transcript.pyannote[708].start 5210.96346875
transcript.pyannote[708].end 5316.48284375
transcript.pyannote[709].speaker SPEAKER_13
transcript.pyannote[709].start 5212.53284375
transcript.pyannote[709].end 5214.49034375
transcript.pyannote[710].speaker SPEAKER_19
transcript.pyannote[710].start 5241.16971875
transcript.pyannote[710].end 5241.20346875
transcript.pyannote[711].speaker SPEAKER_20
transcript.pyannote[711].start 5317.30971875
transcript.pyannote[711].end 5327.53596875
transcript.pyannote[712].speaker SPEAKER_24
transcript.pyannote[712].start 5317.52909375
transcript.pyannote[712].end 5317.88346875
transcript.pyannote[713].speaker SPEAKER_20
transcript.pyannote[713].start 5328.14346875
transcript.pyannote[713].end 5328.43034375
transcript.pyannote[714].speaker SPEAKER_20
transcript.pyannote[714].start 5329.05471875
transcript.pyannote[714].end 5347.97159375
transcript.pyannote[715].speaker SPEAKER_24
transcript.pyannote[715].start 5330.80971875
transcript.pyannote[715].end 5331.78846875
transcript.pyannote[716].speaker SPEAKER_24
transcript.pyannote[716].start 5347.97159375
transcript.pyannote[716].end 5348.44409375
transcript.pyannote[717].speaker SPEAKER_20
transcript.pyannote[717].start 5348.44409375
transcript.pyannote[717].end 5348.46096875
transcript.pyannote[718].speaker SPEAKER_20
transcript.pyannote[718].start 5348.66346875
transcript.pyannote[718].end 5348.96721875
transcript.pyannote[719].speaker SPEAKER_24
transcript.pyannote[719].start 5348.96721875
transcript.pyannote[719].end 5358.33284375
transcript.pyannote[720].speaker SPEAKER_00
transcript.pyannote[720].start 5357.74221875
transcript.pyannote[720].end 5357.75909375
transcript.pyannote[721].speaker SPEAKER_20
transcript.pyannote[721].start 5357.75909375
transcript.pyannote[721].end 5357.97846875
transcript.pyannote[722].speaker SPEAKER_00
transcript.pyannote[722].start 5357.97846875
transcript.pyannote[722].end 5358.07971875
transcript.pyannote[723].speaker SPEAKER_24
transcript.pyannote[723].start 5358.82221875
transcript.pyannote[723].end 5360.66159375
transcript.pyannote[724].speaker SPEAKER_24
transcript.pyannote[724].start 5361.30284375
transcript.pyannote[724].end 5366.02784375
transcript.pyannote[725].speaker SPEAKER_20
transcript.pyannote[725].start 5366.02784375
transcript.pyannote[725].end 5378.41409375
transcript.pyannote[726].speaker SPEAKER_24
transcript.pyannote[726].start 5377.99221875
transcript.pyannote[726].end 5378.38034375
transcript.pyannote[727].speaker SPEAKER_24
transcript.pyannote[727].start 5378.41409375
transcript.pyannote[727].end 5378.75159375
transcript.pyannote[728].speaker SPEAKER_20
transcript.pyannote[728].start 5378.75159375
transcript.pyannote[728].end 5388.82596875
transcript.pyannote[729].speaker SPEAKER_24
transcript.pyannote[729].start 5378.97096875
transcript.pyannote[729].end 5379.24096875
transcript.pyannote[730].speaker SPEAKER_20
transcript.pyannote[730].start 5390.26034375
transcript.pyannote[730].end 5391.47534375
transcript.pyannote[731].speaker SPEAKER_20
transcript.pyannote[731].start 5393.90534375
transcript.pyannote[731].end 5395.12034375
transcript.pyannote[732].speaker SPEAKER_16
transcript.pyannote[732].start 5395.72784375
transcript.pyannote[732].end 5396.33534375
transcript.pyannote[733].speaker SPEAKER_20
transcript.pyannote[733].start 5396.75721875
transcript.pyannote[733].end 5445.88034375
transcript.pyannote[734].speaker SPEAKER_20
transcript.pyannote[734].start 5446.47096875
transcript.pyannote[734].end 5468.40846875
transcript.pyannote[735].speaker SPEAKER_12
transcript.pyannote[735].start 5468.94846875
transcript.pyannote[735].end 5469.16784375
transcript.pyannote[736].speaker SPEAKER_06
transcript.pyannote[736].start 5470.60221875
transcript.pyannote[736].end 5474.80409375
transcript.pyannote[737].speaker SPEAKER_06
transcript.pyannote[737].start 5474.93909375
transcript.pyannote[737].end 5483.95034375
transcript.pyannote[738].speaker SPEAKER_06
transcript.pyannote[738].start 5484.22034375
transcript.pyannote[738].end 5487.49409375
transcript.pyannote[739].speaker SPEAKER_19
transcript.pyannote[739].start 5486.53221875
transcript.pyannote[739].end 5486.56596875
transcript.pyannote[740].speaker SPEAKER_20
transcript.pyannote[740].start 5486.56596875
transcript.pyannote[740].end 5486.93721875
transcript.pyannote[741].speaker SPEAKER_19
transcript.pyannote[741].start 5486.93721875
transcript.pyannote[741].end 5486.98784375
transcript.pyannote[742].speaker SPEAKER_06
transcript.pyannote[742].start 5487.62909375
transcript.pyannote[742].end 5493.28221875
transcript.pyannote[743].speaker SPEAKER_20
transcript.pyannote[743].start 5492.28659375
transcript.pyannote[743].end 5499.23909375
transcript.pyannote[744].speaker SPEAKER_19
transcript.pyannote[744].start 5499.15471875
transcript.pyannote[744].end 5500.01534375
transcript.pyannote[745].speaker SPEAKER_20
transcript.pyannote[745].start 5500.01534375
transcript.pyannote[745].end 5509.54971875
transcript.pyannote[746].speaker SPEAKER_19
transcript.pyannote[746].start 5503.27221875
transcript.pyannote[746].end 5504.13284375
transcript.pyannote[747].speaker SPEAKER_19
transcript.pyannote[747].start 5509.46534375
transcript.pyannote[747].end 5509.92096875
transcript.pyannote[748].speaker SPEAKER_20
transcript.pyannote[748].start 5509.78596875
transcript.pyannote[748].end 5513.46471875
transcript.pyannote[749].speaker SPEAKER_20
transcript.pyannote[749].start 5514.89909375
transcript.pyannote[749].end 5516.38409375
transcript.pyannote[750].speaker SPEAKER_06
transcript.pyannote[750].start 5516.75534375
transcript.pyannote[750].end 5517.02534375
transcript.pyannote[751].speaker SPEAKER_20
transcript.pyannote[751].start 5517.02534375
transcript.pyannote[751].end 5522.91471875
transcript.pyannote[752].speaker SPEAKER_27
transcript.pyannote[752].start 5522.88096875
transcript.pyannote[752].end 5523.31971875
transcript.pyannote[753].speaker SPEAKER_20
transcript.pyannote[753].start 5523.23534375
transcript.pyannote[753].end 5536.24596875
transcript.pyannote[754].speaker SPEAKER_19
transcript.pyannote[754].start 5523.31971875
transcript.pyannote[754].end 5523.35346875
transcript.pyannote[755].speaker SPEAKER_06
transcript.pyannote[755].start 5536.19534375
transcript.pyannote[755].end 5536.21221875
transcript.pyannote[756].speaker SPEAKER_06
transcript.pyannote[756].start 5536.24596875
transcript.pyannote[756].end 5536.56659375
transcript.pyannote[757].speaker SPEAKER_20
transcript.pyannote[757].start 5536.56659375
transcript.pyannote[757].end 5539.67159375
transcript.pyannote[758].speaker SPEAKER_06
transcript.pyannote[758].start 5536.58346875
transcript.pyannote[758].end 5536.71846875
transcript.pyannote[759].speaker SPEAKER_20
transcript.pyannote[759].start 5540.56596875
transcript.pyannote[759].end 5571.54846875
transcript.pyannote[760].speaker SPEAKER_19
transcript.pyannote[760].start 5543.72159375
transcript.pyannote[760].end 5543.73846875
transcript.pyannote[761].speaker SPEAKER_27
transcript.pyannote[761].start 5543.73846875
transcript.pyannote[761].end 5544.10971875
transcript.pyannote[762].speaker SPEAKER_19
transcript.pyannote[762].start 5544.10971875
transcript.pyannote[762].end 5544.17721875
transcript.pyannote[763].speaker SPEAKER_22
transcript.pyannote[763].start 5557.66034375
transcript.pyannote[763].end 5558.30159375
transcript.pyannote[764].speaker SPEAKER_22
transcript.pyannote[764].start 5564.64659375
transcript.pyannote[764].end 5564.66346875
transcript.pyannote[765].speaker SPEAKER_19
transcript.pyannote[765].start 5564.66346875
transcript.pyannote[765].end 5565.18659375
transcript.pyannote[766].speaker SPEAKER_22
transcript.pyannote[766].start 5566.24971875
transcript.pyannote[766].end 5566.33409375
transcript.pyannote[767].speaker SPEAKER_20
transcript.pyannote[767].start 5571.61596875
transcript.pyannote[767].end 5572.08846875
transcript.pyannote[768].speaker SPEAKER_20
transcript.pyannote[768].start 5572.49346875
transcript.pyannote[768].end 5609.39909375
transcript.pyannote[769].speaker SPEAKER_27
transcript.pyannote[769].start 5572.93221875
transcript.pyannote[769].end 5577.10034375
transcript.pyannote[770].speaker SPEAKER_00
transcript.pyannote[770].start 5577.10034375
transcript.pyannote[770].end 5577.15096875
transcript.pyannote[771].speaker SPEAKER_16
transcript.pyannote[771].start 5609.98971875
transcript.pyannote[771].end 5611.18784375
transcript.pyannote[772].speaker SPEAKER_20
transcript.pyannote[772].start 5610.90096875
transcript.pyannote[772].end 5661.74534375
transcript.pyannote[773].speaker SPEAKER_16
transcript.pyannote[773].start 5612.72346875
transcript.pyannote[773].end 5612.92596875
transcript.pyannote[774].speaker SPEAKER_27
transcript.pyannote[774].start 5612.92596875
transcript.pyannote[774].end 5613.06096875
transcript.pyannote[775].speaker SPEAKER_20
transcript.pyannote[775].start 5661.86346875
transcript.pyannote[775].end 5665.37346875
transcript.pyannote[776].speaker SPEAKER_20
transcript.pyannote[776].start 5666.26784375
transcript.pyannote[776].end 5667.53346875
transcript.pyannote[777].speaker SPEAKER_20
transcript.pyannote[777].start 5668.14096875
transcript.pyannote[777].end 5679.68346875
transcript.pyannote[778].speaker SPEAKER_20
transcript.pyannote[778].start 5680.45971875
transcript.pyannote[778].end 5681.21909375
transcript.pyannote[779].speaker SPEAKER_20
transcript.pyannote[779].start 5681.77596875
transcript.pyannote[779].end 5684.89784375
transcript.pyannote[780].speaker SPEAKER_16
transcript.pyannote[780].start 5684.94846875
transcript.pyannote[780].end 5690.66909375
transcript.pyannote[781].speaker SPEAKER_20
transcript.pyannote[781].start 5688.62721875
transcript.pyannote[781].end 5706.71721875
transcript.pyannote[782].speaker SPEAKER_19
transcript.pyannote[782].start 5699.49471875
transcript.pyannote[782].end 5699.81534375
transcript.pyannote[783].speaker SPEAKER_06
transcript.pyannote[783].start 5705.23221875
transcript.pyannote[783].end 5705.85659375
transcript.pyannote[784].speaker SPEAKER_06
transcript.pyannote[784].start 5706.21096875
transcript.pyannote[784].end 5721.19596875
transcript.pyannote[785].speaker SPEAKER_06
transcript.pyannote[785].start 5721.80346875
transcript.pyannote[785].end 5726.07284375
transcript.pyannote[786].speaker SPEAKER_20
transcript.pyannote[786].start 5724.11534375
transcript.pyannote[786].end 5724.97596875
transcript.pyannote[787].speaker SPEAKER_20
transcript.pyannote[787].start 5726.07284375
transcript.pyannote[787].end 5726.27534375
transcript.pyannote[788].speaker SPEAKER_06
transcript.pyannote[788].start 5726.10659375
transcript.pyannote[788].end 5726.15721875
transcript.pyannote[789].speaker SPEAKER_06
transcript.pyannote[789].start 5726.27534375
transcript.pyannote[789].end 5726.96721875
transcript.pyannote[790].speaker SPEAKER_20
transcript.pyannote[790].start 5726.96721875
transcript.pyannote[790].end 5759.94096875
transcript.pyannote[791].speaker SPEAKER_19
transcript.pyannote[791].start 5733.83534375
transcript.pyannote[791].end 5736.07971875
transcript.pyannote[792].speaker SPEAKER_19
transcript.pyannote[792].start 5737.91909375
transcript.pyannote[792].end 5739.42096875
transcript.pyannote[793].speaker SPEAKER_19
transcript.pyannote[793].start 5741.88471875
transcript.pyannote[793].end 5741.96909375
transcript.pyannote[794].speaker SPEAKER_19
transcript.pyannote[794].start 5742.18846875
transcript.pyannote[794].end 5742.27284375
transcript.pyannote[795].speaker SPEAKER_19
transcript.pyannote[795].start 5745.39471875
transcript.pyannote[795].end 5745.73221875
transcript.pyannote[796].speaker SPEAKER_20
transcript.pyannote[796].start 5760.31221875
transcript.pyannote[796].end 5766.69096875
transcript.pyannote[797].speaker SPEAKER_19
transcript.pyannote[797].start 5767.11284375
transcript.pyannote[797].end 5768.29409375
transcript.pyannote[798].speaker SPEAKER_20
transcript.pyannote[798].start 5767.33221875
transcript.pyannote[798].end 5777.37284375
transcript.pyannote[799].speaker SPEAKER_20
transcript.pyannote[799].start 5777.69346875
transcript.pyannote[799].end 5788.59471875
transcript.pyannote[800].speaker SPEAKER_20
transcript.pyannote[800].start 5789.10096875
transcript.pyannote[800].end 5791.49721875
transcript.pyannote[801].speaker SPEAKER_20
transcript.pyannote[801].start 5791.76721875
transcript.pyannote[801].end 5793.77534375
transcript.pyannote[802].speaker SPEAKER_16
transcript.pyannote[802].start 5793.77534375
transcript.pyannote[802].end 5808.05159375
transcript.pyannote[803].speaker SPEAKER_20
transcript.pyannote[803].start 5798.39909375
transcript.pyannote[803].end 5798.77034375
transcript.pyannote[804].speaker SPEAKER_20
transcript.pyannote[804].start 5807.74784375
transcript.pyannote[804].end 5824.26846875
transcript.pyannote[805].speaker SPEAKER_20
transcript.pyannote[805].start 5824.65659375
transcript.pyannote[805].end 5826.56346875
transcript.pyannote[806].speaker SPEAKER_16
transcript.pyannote[806].start 5826.22596875
transcript.pyannote[806].end 5831.60909375
transcript.pyannote[807].speaker SPEAKER_20
transcript.pyannote[807].start 5828.89221875
transcript.pyannote[807].end 5840.51909375
transcript.pyannote[808].speaker SPEAKER_32
transcript.pyannote[808].start 5840.51909375
transcript.pyannote[808].end 5842.42596875
transcript.pyannote[809].speaker SPEAKER_20
transcript.pyannote[809].start 5841.29534375
transcript.pyannote[809].end 5841.97034375
transcript.pyannote[810].speaker SPEAKER_07
transcript.pyannote[810].start 5841.97034375
transcript.pyannote[810].end 5846.69534375
transcript.pyannote[811].speaker SPEAKER_17
transcript.pyannote[811].start 5855.53784375
transcript.pyannote[811].end 5859.23346875
transcript.pyannote[812].speaker SPEAKER_07
transcript.pyannote[812].start 5859.72284375
transcript.pyannote[812].end 5861.52846875
transcript.pyannote[813].speaker SPEAKER_28
transcript.pyannote[813].start 5866.99596875
transcript.pyannote[813].end 5867.09721875
transcript.pyannote[814].speaker SPEAKER_17
transcript.pyannote[814].start 5867.09721875
transcript.pyannote[814].end 5877.35721875
transcript.pyannote[815].speaker SPEAKER_28
transcript.pyannote[815].start 5867.11409375
transcript.pyannote[815].end 5867.45159375
transcript.pyannote[816].speaker SPEAKER_17
transcript.pyannote[816].start 5877.71159375
transcript.pyannote[816].end 5879.50034375
transcript.pyannote[817].speaker SPEAKER_17
transcript.pyannote[817].start 5880.78284375
transcript.pyannote[817].end 5883.11159375
transcript.pyannote[818].speaker SPEAKER_17
transcript.pyannote[818].start 5883.73596875
transcript.pyannote[818].end 5887.46534375
transcript.pyannote[819].speaker SPEAKER_17
transcript.pyannote[819].start 5887.73534375
transcript.pyannote[819].end 5889.55784375
transcript.pyannote[820].speaker SPEAKER_17
transcript.pyannote[820].start 5889.77721875
transcript.pyannote[820].end 5890.73909375
transcript.pyannote[821].speaker SPEAKER_17
transcript.pyannote[821].start 5890.97534375
transcript.pyannote[821].end 5892.52784375
transcript.pyannote[822].speaker SPEAKER_17
transcript.pyannote[822].start 5893.48971875
transcript.pyannote[822].end 5917.11471875
transcript.pyannote[823].speaker SPEAKER_17
transcript.pyannote[823].start 5918.34659375
transcript.pyannote[823].end 5920.64159375
transcript.pyannote[824].speaker SPEAKER_17
transcript.pyannote[824].start 5922.49784375
transcript.pyannote[824].end 5930.56409375
transcript.pyannote[825].speaker SPEAKER_17
transcript.pyannote[825].start 5930.98596875
transcript.pyannote[825].end 5938.20846875
transcript.pyannote[826].speaker SPEAKER_16
transcript.pyannote[826].start 5937.26346875
transcript.pyannote[826].end 5941.95471875
transcript.pyannote[827].speaker SPEAKER_17
transcript.pyannote[827].start 5942.39346875
transcript.pyannote[827].end 5966.17034375
transcript.pyannote[828].speaker SPEAKER_17
transcript.pyannote[828].start 5966.40659375
transcript.pyannote[828].end 5969.42721875
transcript.pyannote[829].speaker SPEAKER_17
transcript.pyannote[829].start 5970.59159375
transcript.pyannote[829].end 5971.40159375
transcript.pyannote[830].speaker SPEAKER_16
transcript.pyannote[830].start 5971.67159375
transcript.pyannote[830].end 5974.33784375
transcript.pyannote[831].speaker SPEAKER_17
transcript.pyannote[831].start 5972.26221875
transcript.pyannote[831].end 5974.05096875
transcript.pyannote[832].speaker SPEAKER_17
transcript.pyannote[832].start 5974.33784375
transcript.pyannote[832].end 5976.19409375
transcript.pyannote[833].speaker SPEAKER_17
transcript.pyannote[833].start 5977.25721875
transcript.pyannote[833].end 5980.69971875
transcript.pyannote[834].speaker SPEAKER_17
transcript.pyannote[834].start 5983.06221875
transcript.pyannote[834].end 5991.14534375
transcript.pyannote[835].speaker SPEAKER_17
transcript.pyannote[835].start 5992.32659375
transcript.pyannote[835].end 5999.92034375
transcript.pyannote[836].speaker SPEAKER_17
transcript.pyannote[836].start 6000.05534375
transcript.pyannote[836].end 6001.35471875
transcript.pyannote[837].speaker SPEAKER_17
transcript.pyannote[837].start 6001.69221875
transcript.pyannote[837].end 6003.75096875
transcript.pyannote[838].speaker SPEAKER_17
transcript.pyannote[838].start 6005.38784375
transcript.pyannote[838].end 6039.81284375
transcript.pyannote[839].speaker SPEAKER_17
transcript.pyannote[839].start 6040.15034375
transcript.pyannote[839].end 6076.19534375
transcript.pyannote[840].speaker SPEAKER_07
transcript.pyannote[840].start 6077.61284375
transcript.pyannote[840].end 6079.40159375
transcript.pyannote[841].speaker SPEAKER_17
transcript.pyannote[841].start 6085.00409375
transcript.pyannote[841].end 6092.17596875
transcript.pyannote[842].speaker SPEAKER_11
transcript.pyannote[842].start 6091.95659375
transcript.pyannote[842].end 6092.34471875
transcript.pyannote[843].speaker SPEAKER_17
transcript.pyannote[843].start 6092.34471875
transcript.pyannote[843].end 6121.57221875
transcript.pyannote[844].speaker SPEAKER_11
transcript.pyannote[844].start 6099.46596875
transcript.pyannote[844].end 6099.85409375
transcript.pyannote[845].speaker SPEAKER_17
transcript.pyannote[845].start 6122.09534375
transcript.pyannote[845].end 6123.61409375
transcript.pyannote[846].speaker SPEAKER_17
transcript.pyannote[846].start 6124.47471875
transcript.pyannote[846].end 6129.04784375
transcript.pyannote[847].speaker SPEAKER_10
transcript.pyannote[847].start 6129.79034375
transcript.pyannote[847].end 6137.19846875
transcript.pyannote[848].speaker SPEAKER_17
transcript.pyannote[848].start 6136.20284375
transcript.pyannote[848].end 6141.14721875
transcript.pyannote[849].speaker SPEAKER_17
transcript.pyannote[849].start 6142.04159375
transcript.pyannote[849].end 6143.13846875
transcript.pyannote[850].speaker SPEAKER_10
transcript.pyannote[850].start 6143.13846875
transcript.pyannote[850].end 6143.15534375
transcript.pyannote[851].speaker SPEAKER_17
transcript.pyannote[851].start 6143.57721875
transcript.pyannote[851].end 6144.97784375
transcript.pyannote[852].speaker SPEAKER_10
transcript.pyannote[852].start 6144.97784375
transcript.pyannote[852].end 6145.06221875
transcript.pyannote[853].speaker SPEAKER_17
transcript.pyannote[853].start 6145.06221875
transcript.pyannote[853].end 6145.53471875
transcript.pyannote[854].speaker SPEAKER_10
transcript.pyannote[854].start 6145.11284375
transcript.pyannote[854].end 6145.50096875
transcript.pyannote[855].speaker SPEAKER_10
transcript.pyannote[855].start 6145.53471875
transcript.pyannote[855].end 6147.20534375
transcript.pyannote[856].speaker SPEAKER_10
transcript.pyannote[856].start 6147.47534375
transcript.pyannote[856].end 6159.47346875
transcript.pyannote[857].speaker SPEAKER_17
transcript.pyannote[857].start 6158.12346875
transcript.pyannote[857].end 6218.16471875
transcript.pyannote[858].speaker SPEAKER_17
transcript.pyannote[858].start 6218.75534375
transcript.pyannote[858].end 6232.94721875
transcript.pyannote[859].speaker SPEAKER_17
transcript.pyannote[859].start 6233.26784375
transcript.pyannote[859].end 6265.09409375
transcript.pyannote[860].speaker SPEAKER_10
transcript.pyannote[860].start 6265.70159375
transcript.pyannote[860].end 6279.03284375
transcript.pyannote[861].speaker SPEAKER_17
transcript.pyannote[861].start 6274.81409375
transcript.pyannote[861].end 6278.30721875
transcript.pyannote[862].speaker SPEAKER_17
transcript.pyannote[862].start 6279.03284375
transcript.pyannote[862].end 6289.27596875
transcript.pyannote[863].speaker SPEAKER_10
transcript.pyannote[863].start 6280.48409375
transcript.pyannote[863].end 6281.80034375
transcript.pyannote[864].speaker SPEAKER_10
transcript.pyannote[864].start 6288.48284375
transcript.pyannote[864].end 6289.25909375
transcript.pyannote[865].speaker SPEAKER_10
transcript.pyannote[865].start 6289.27596875
transcript.pyannote[865].end 6303.97409375
transcript.pyannote[866].speaker SPEAKER_17
transcript.pyannote[866].start 6300.61596875
transcript.pyannote[866].end 6303.73784375
transcript.pyannote[867].speaker SPEAKER_17
transcript.pyannote[867].start 6303.97409375
transcript.pyannote[867].end 6304.00784375
transcript.pyannote[868].speaker SPEAKER_10
transcript.pyannote[868].start 6304.00784375
transcript.pyannote[868].end 6304.26096875
transcript.pyannote[869].speaker SPEAKER_17
transcript.pyannote[869].start 6304.26096875
transcript.pyannote[869].end 6309.01971875
transcript.pyannote[870].speaker SPEAKER_10
transcript.pyannote[870].start 6309.01971875
transcript.pyannote[870].end 6309.03659375
transcript.pyannote[871].speaker SPEAKER_17
transcript.pyannote[871].start 6310.55534375
transcript.pyannote[871].end 6311.11221875
transcript.pyannote[872].speaker SPEAKER_10
transcript.pyannote[872].start 6311.11221875
transcript.pyannote[872].end 6311.14596875
transcript.pyannote[873].speaker SPEAKER_10
transcript.pyannote[873].start 6311.56784375
transcript.pyannote[873].end 6336.98159375
transcript.pyannote[874].speaker SPEAKER_17
transcript.pyannote[874].start 6320.35971875
transcript.pyannote[874].end 6323.22846875
transcript.pyannote[875].speaker SPEAKER_17
transcript.pyannote[875].start 6334.58534375
transcript.pyannote[875].end 6359.74596875
transcript.pyannote[876].speaker SPEAKER_10
transcript.pyannote[876].start 6337.58909375
transcript.pyannote[876].end 6341.16659375
transcript.pyannote[877].speaker SPEAKER_00
transcript.pyannote[877].start 6345.73971875
transcript.pyannote[877].end 6346.48221875
transcript.pyannote[878].speaker SPEAKER_00
transcript.pyannote[878].start 6347.52846875
transcript.pyannote[878].end 6349.03034375
transcript.pyannote[879].speaker SPEAKER_09
transcript.pyannote[879].start 6349.03034375
transcript.pyannote[879].end 6349.57034375
transcript.pyannote[880].speaker SPEAKER_00
transcript.pyannote[880].start 6349.57034375
transcript.pyannote[880].end 6349.72221875
transcript.pyannote[881].speaker SPEAKER_09
transcript.pyannote[881].start 6356.10096875
transcript.pyannote[881].end 6356.97846875
transcript.pyannote[882].speaker SPEAKER_17
transcript.pyannote[882].start 6359.94846875
transcript.pyannote[882].end 6361.41659375
transcript.pyannote[883].speaker SPEAKER_07
transcript.pyannote[883].start 6361.51784375
transcript.pyannote[883].end 6365.34846875
transcript.pyannote[884].speaker SPEAKER_17
transcript.pyannote[884].start 6366.04034375
transcript.pyannote[884].end 6368.77409375
transcript.pyannote[885].speaker SPEAKER_07
transcript.pyannote[885].start 6368.99346875
transcript.pyannote[885].end 6371.47409375
transcript.pyannote[886].speaker SPEAKER_17
transcript.pyannote[886].start 6372.01409375
transcript.pyannote[886].end 6373.27971875
transcript.pyannote[887].speaker SPEAKER_07
transcript.pyannote[887].start 6373.27971875
transcript.pyannote[887].end 6373.29659375
transcript.pyannote[888].speaker SPEAKER_07
transcript.pyannote[888].start 6374.25846875
transcript.pyannote[888].end 6374.69721875
transcript.pyannote[889].speaker SPEAKER_17
transcript.pyannote[889].start 6375.49034375
transcript.pyannote[889].end 6440.34096875
transcript.pyannote[890].speaker SPEAKER_17
transcript.pyannote[890].start 6440.69534375
transcript.pyannote[890].end 6441.53909375
transcript.pyannote[891].speaker SPEAKER_17
transcript.pyannote[891].start 6441.92721875
transcript.pyannote[891].end 6490.35846875
transcript.pyannote[892].speaker SPEAKER_17
transcript.pyannote[892].start 6490.91534375
transcript.pyannote[892].end 6522.79221875
transcript.pyannote[893].speaker SPEAKER_06
transcript.pyannote[893].start 6522.79221875
transcript.pyannote[893].end 6538.55346875
transcript.pyannote[894].speaker SPEAKER_17
transcript.pyannote[894].start 6538.16534375
transcript.pyannote[894].end 6540.32534375
transcript.pyannote[895].speaker SPEAKER_06
transcript.pyannote[895].start 6540.32534375
transcript.pyannote[895].end 6549.13409375
transcript.pyannote[896].speaker SPEAKER_17
transcript.pyannote[896].start 6548.84721875
transcript.pyannote[896].end 6568.91159375
transcript.pyannote[897].speaker SPEAKER_06
transcript.pyannote[897].start 6569.13096875
transcript.pyannote[897].end 6575.69534375
transcript.pyannote[898].speaker SPEAKER_17
transcript.pyannote[898].start 6575.15534375
transcript.pyannote[898].end 6581.78721875
transcript.pyannote[899].speaker SPEAKER_06
transcript.pyannote[899].start 6579.76221875
transcript.pyannote[899].end 6585.71909375
transcript.pyannote[900].speaker SPEAKER_17
transcript.pyannote[900].start 6585.97221875
transcript.pyannote[900].end 6586.78221875
transcript.pyannote[901].speaker SPEAKER_06
transcript.pyannote[901].start 6586.78221875
transcript.pyannote[901].end 6586.79909375
transcript.pyannote[902].speaker SPEAKER_06
transcript.pyannote[902].start 6587.60909375
transcript.pyannote[902].end 6593.56596875
transcript.pyannote[903].speaker SPEAKER_17
transcript.pyannote[903].start 6595.16909375
transcript.pyannote[903].end 6596.26596875
transcript.pyannote[904].speaker SPEAKER_17
transcript.pyannote[904].start 6596.58659375
transcript.pyannote[904].end 6608.56784375
transcript.pyannote[905].speaker SPEAKER_17
transcript.pyannote[905].start 6608.82096875
transcript.pyannote[905].end 6623.24909375
transcript.pyannote[906].speaker SPEAKER_06
transcript.pyannote[906].start 6623.24909375
transcript.pyannote[906].end 6624.09284375
transcript.pyannote[907].speaker SPEAKER_07
transcript.pyannote[907].start 6624.09284375
transcript.pyannote[907].end 6633.84659375
transcript.pyannote[908].speaker SPEAKER_26
transcript.pyannote[908].start 6643.90409375
transcript.pyannote[908].end 6657.10034375
transcript.pyannote[909].speaker SPEAKER_26
transcript.pyannote[909].start 6657.33659375
transcript.pyannote[909].end 6672.60846875
transcript.pyannote[910].speaker SPEAKER_07
transcript.pyannote[910].start 6664.12034375
transcript.pyannote[910].end 6664.81221875
transcript.pyannote[911].speaker SPEAKER_07
transcript.pyannote[911].start 6670.95471875
transcript.pyannote[911].end 6675.94971875
transcript.pyannote[912].speaker SPEAKER_26
transcript.pyannote[912].start 6675.93284375
transcript.pyannote[912].end 6678.49784375
transcript.pyannote[913].speaker SPEAKER_07
transcript.pyannote[913].start 6677.06346875
transcript.pyannote[913].end 6677.24909375
transcript.pyannote[914].speaker SPEAKER_07
transcript.pyannote[914].start 6678.05909375
transcript.pyannote[914].end 6680.57346875
transcript.pyannote[915].speaker SPEAKER_26
transcript.pyannote[915].start 6680.57346875
transcript.pyannote[915].end 6680.59034375
transcript.pyannote[916].speaker SPEAKER_07
transcript.pyannote[916].start 6681.24846875
transcript.pyannote[916].end 6681.26534375
transcript.pyannote[917].speaker SPEAKER_26
transcript.pyannote[917].start 6681.26534375
transcript.pyannote[917].end 6681.61971875
transcript.pyannote[918].speaker SPEAKER_07
transcript.pyannote[918].start 6681.61971875
transcript.pyannote[918].end 6681.72096875
transcript.pyannote[919].speaker SPEAKER_26
transcript.pyannote[919].start 6681.72096875
transcript.pyannote[919].end 6683.34096875
transcript.pyannote[920].speaker SPEAKER_26
transcript.pyannote[920].start 6683.88096875
transcript.pyannote[920].end 6686.05784375
transcript.pyannote[921].speaker SPEAKER_26
transcript.pyannote[921].start 6686.54721875
transcript.pyannote[921].end 6690.58034375
transcript.pyannote[922].speaker SPEAKER_13
transcript.pyannote[922].start 6691.00221875
transcript.pyannote[922].end 6696.99284375
transcript.pyannote[923].speaker SPEAKER_26
transcript.pyannote[923].start 6693.44909375
transcript.pyannote[923].end 6693.76971875
transcript.pyannote[924].speaker SPEAKER_26
transcript.pyannote[924].start 6695.65971875
transcript.pyannote[924].end 6699.57471875
transcript.pyannote[925].speaker SPEAKER_13
transcript.pyannote[925].start 6697.87034375
transcript.pyannote[925].end 6701.85284375
transcript.pyannote[926].speaker SPEAKER_26
transcript.pyannote[926].start 6701.73471875
transcript.pyannote[926].end 6706.05471875
transcript.pyannote[927].speaker SPEAKER_13
transcript.pyannote[927].start 6706.03784375
transcript.pyannote[927].end 6706.15596875
transcript.pyannote[928].speaker SPEAKER_26
transcript.pyannote[928].start 6706.15596875
transcript.pyannote[928].end 6712.23096875
transcript.pyannote[929].speaker SPEAKER_13
transcript.pyannote[929].start 6706.22346875
transcript.pyannote[929].end 6706.24034375
transcript.pyannote[930].speaker SPEAKER_13
transcript.pyannote[930].start 6709.75034375
transcript.pyannote[930].end 6710.02034375
transcript.pyannote[931].speaker SPEAKER_13
transcript.pyannote[931].start 6711.99471875
transcript.pyannote[931].end 6715.87596875
transcript.pyannote[932].speaker SPEAKER_26
transcript.pyannote[932].start 6712.70346875
transcript.pyannote[932].end 6713.61471875
transcript.pyannote[933].speaker SPEAKER_26
transcript.pyannote[933].start 6715.50471875
transcript.pyannote[933].end 6730.16909375
transcript.pyannote[934].speaker SPEAKER_13
transcript.pyannote[934].start 6716.53409375
transcript.pyannote[934].end 6717.24284375
transcript.pyannote[935].speaker SPEAKER_26
transcript.pyannote[935].start 6730.70909375
transcript.pyannote[935].end 6732.29534375
transcript.pyannote[936].speaker SPEAKER_26
transcript.pyannote[936].start 6732.61596875
transcript.pyannote[936].end 6736.24409375
transcript.pyannote[937].speaker SPEAKER_26
transcript.pyannote[937].start 6736.78409375
transcript.pyannote[937].end 6738.20159375
transcript.pyannote[938].speaker SPEAKER_26
transcript.pyannote[938].start 6738.37034375
transcript.pyannote[938].end 6750.38534375
transcript.pyannote[939].speaker SPEAKER_26
transcript.pyannote[939].start 6750.72284375
transcript.pyannote[939].end 6753.37221875
transcript.pyannote[940].speaker SPEAKER_26
transcript.pyannote[940].start 6754.26659375
transcript.pyannote[940].end 6755.34659375
transcript.pyannote[941].speaker SPEAKER_26
transcript.pyannote[941].start 6755.59971875
transcript.pyannote[941].end 6756.56159375
transcript.pyannote[942].speaker SPEAKER_26
transcript.pyannote[942].start 6757.18596875
transcript.pyannote[942].end 6760.62846875
transcript.pyannote[943].speaker SPEAKER_26
transcript.pyannote[943].start 6761.72534375
transcript.pyannote[943].end 6766.43346875
transcript.pyannote[944].speaker SPEAKER_28
transcript.pyannote[944].start 6762.97409375
transcript.pyannote[944].end 6763.22721875
transcript.pyannote[945].speaker SPEAKER_26
transcript.pyannote[945].start 6766.82159375
transcript.pyannote[945].end 6771.34409375
transcript.pyannote[946].speaker SPEAKER_27
transcript.pyannote[946].start 6767.31096875
transcript.pyannote[946].end 6767.32784375
transcript.pyannote[947].speaker SPEAKER_28
transcript.pyannote[947].start 6767.32784375
transcript.pyannote[947].end 6767.34471875
transcript.pyannote[948].speaker SPEAKER_26
transcript.pyannote[948].start 6771.36096875
transcript.pyannote[948].end 6775.59659375
transcript.pyannote[949].speaker SPEAKER_26
transcript.pyannote[949].start 6776.50784375
transcript.pyannote[949].end 6776.98034375
transcript.pyannote[950].speaker SPEAKER_26
transcript.pyannote[950].start 6777.55409375
transcript.pyannote[950].end 6778.44846875
transcript.pyannote[951].speaker SPEAKER_26
transcript.pyannote[951].start 6778.76909375
transcript.pyannote[951].end 6779.52846875
transcript.pyannote[952].speaker SPEAKER_19
transcript.pyannote[952].start 6778.93784375
transcript.pyannote[952].end 6779.46096875
transcript.pyannote[953].speaker SPEAKER_19
transcript.pyannote[953].start 6779.52846875
transcript.pyannote[953].end 6780.03471875
transcript.pyannote[954].speaker SPEAKER_26
transcript.pyannote[954].start 6780.03471875
transcript.pyannote[954].end 6784.43909375
transcript.pyannote[955].speaker SPEAKER_19
transcript.pyannote[955].start 6783.39284375
transcript.pyannote[955].end 6784.03409375
transcript.pyannote[956].speaker SPEAKER_06
transcript.pyannote[956].start 6784.03409375
transcript.pyannote[956].end 6784.75971875
transcript.pyannote[957].speaker SPEAKER_26
transcript.pyannote[957].start 6784.60784375
transcript.pyannote[957].end 6789.01221875
transcript.pyannote[958].speaker SPEAKER_06
transcript.pyannote[958].start 6788.40471875
transcript.pyannote[958].end 6789.19784375
transcript.pyannote[959].speaker SPEAKER_26
transcript.pyannote[959].start 6789.19784375
transcript.pyannote[959].end 6809.65034375
transcript.pyannote[960].speaker SPEAKER_06
transcript.pyannote[960].start 6795.82971875
transcript.pyannote[960].end 6795.84659375
transcript.pyannote[961].speaker SPEAKER_06
transcript.pyannote[961].start 6795.86346875
transcript.pyannote[961].end 6795.89721875
transcript.pyannote[962].speaker SPEAKER_06
transcript.pyannote[962].start 6797.63534375
transcript.pyannote[962].end 6798.37784375
transcript.pyannote[963].speaker SPEAKER_06
transcript.pyannote[963].start 6807.42284375
transcript.pyannote[963].end 6808.01346875
transcript.pyannote[964].speaker SPEAKER_06
transcript.pyannote[964].start 6809.27909375
transcript.pyannote[964].end 6811.97909375
transcript.pyannote[965].speaker SPEAKER_26
transcript.pyannote[965].start 6810.67971875
transcript.pyannote[965].end 6811.54034375
transcript.pyannote[966].speaker SPEAKER_26
transcript.pyannote[966].start 6811.79346875
transcript.pyannote[966].end 6816.45096875
transcript.pyannote[967].speaker SPEAKER_26
transcript.pyannote[967].start 6816.55221875
transcript.pyannote[967].end 6818.47596875
transcript.pyannote[968].speaker SPEAKER_26
transcript.pyannote[968].start 6818.62784375
transcript.pyannote[968].end 6818.66159375
transcript.pyannote[969].speaker SPEAKER_06
transcript.pyannote[969].start 6818.66159375
transcript.pyannote[969].end 6819.10034375
transcript.pyannote[970].speaker SPEAKER_26
transcript.pyannote[970].start 6819.10034375
transcript.pyannote[970].end 6821.51346875
transcript.pyannote[971].speaker SPEAKER_06
transcript.pyannote[971].start 6821.74971875
transcript.pyannote[971].end 6825.15846875
transcript.pyannote[972].speaker SPEAKER_26
transcript.pyannote[972].start 6825.15846875
transcript.pyannote[972].end 6835.78971875
transcript.pyannote[973].speaker SPEAKER_06
transcript.pyannote[973].start 6826.57596875
transcript.pyannote[973].end 6826.62659375
transcript.pyannote[974].speaker SPEAKER_06
transcript.pyannote[974].start 6829.69784375
transcript.pyannote[974].end 6830.52471875
transcript.pyannote[975].speaker SPEAKER_19
transcript.pyannote[975].start 6830.52471875
transcript.pyannote[975].end 6830.60909375
transcript.pyannote[976].speaker SPEAKER_26
transcript.pyannote[976].start 6836.48159375
transcript.pyannote[976].end 6837.84846875
transcript.pyannote[977].speaker SPEAKER_26
transcript.pyannote[977].start 6838.64159375
transcript.pyannote[977].end 6842.97846875
transcript.pyannote[978].speaker SPEAKER_06
transcript.pyannote[978].start 6841.86471875
transcript.pyannote[978].end 6845.93159375
transcript.pyannote[979].speaker SPEAKER_26
transcript.pyannote[979].start 6844.49721875
transcript.pyannote[979].end 6845.99909375
transcript.pyannote[980].speaker SPEAKER_26
transcript.pyannote[980].start 6846.53909375
transcript.pyannote[980].end 6860.51159375
transcript.pyannote[981].speaker SPEAKER_26
transcript.pyannote[981].start 6860.78159375
transcript.pyannote[981].end 6864.96659375
transcript.pyannote[982].speaker SPEAKER_26
transcript.pyannote[982].start 6865.62471875
transcript.pyannote[982].end 6882.02721875
transcript.pyannote[983].speaker SPEAKER_24
transcript.pyannote[983].start 6882.02721875
transcript.pyannote[983].end 6882.75284375
transcript.pyannote[984].speaker SPEAKER_26
transcript.pyannote[984].start 6882.75284375
transcript.pyannote[984].end 6882.78659375
transcript.pyannote[985].speaker SPEAKER_24
transcript.pyannote[985].start 6882.78659375
transcript.pyannote[985].end 6882.80346875
transcript.pyannote[986].speaker SPEAKER_24
transcript.pyannote[986].start 6883.54596875
transcript.pyannote[986].end 6884.71034375
transcript.pyannote[987].speaker SPEAKER_24
transcript.pyannote[987].start 6884.82846875
transcript.pyannote[987].end 6888.96284375
transcript.pyannote[988].speaker SPEAKER_26
transcript.pyannote[988].start 6888.96284375
transcript.pyannote[988].end 6898.05846875
transcript.pyannote[989].speaker SPEAKER_26
transcript.pyannote[989].start 6898.68284375
transcript.pyannote[989].end 6899.56034375
transcript.pyannote[990].speaker SPEAKER_26
transcript.pyannote[990].start 6900.08346875
transcript.pyannote[990].end 6901.02846875
transcript.pyannote[991].speaker SPEAKER_24
transcript.pyannote[991].start 6901.02846875
transcript.pyannote[991].end 6906.32721875
transcript.pyannote[992].speaker SPEAKER_26
transcript.pyannote[992].start 6903.98159375
transcript.pyannote[992].end 6921.44721875
transcript.pyannote[993].speaker SPEAKER_00
transcript.pyannote[993].start 6918.15659375
transcript.pyannote[993].end 6918.19034375
transcript.pyannote[994].speaker SPEAKER_24
transcript.pyannote[994].start 6918.19034375
transcript.pyannote[994].end 6919.50659375
transcript.pyannote[995].speaker SPEAKER_26
transcript.pyannote[995].start 6921.63284375
transcript.pyannote[995].end 6924.68721875
transcript.pyannote[996].speaker SPEAKER_26
transcript.pyannote[996].start 6925.14284375
transcript.pyannote[996].end 6926.83034375
transcript.pyannote[997].speaker SPEAKER_26
transcript.pyannote[997].start 6927.58971875
transcript.pyannote[997].end 6933.47909375
transcript.pyannote[998].speaker SPEAKER_16
transcript.pyannote[998].start 6933.85034375
transcript.pyannote[998].end 6934.59284375
transcript.pyannote[999].speaker SPEAKER_26
transcript.pyannote[999].start 6934.86284375
transcript.pyannote[999].end 6938.44034375
transcript.pyannote[1000].speaker SPEAKER_16
transcript.pyannote[1000].start 6938.60909375
transcript.pyannote[1000].end 6943.50284375
transcript.pyannote[1001].speaker SPEAKER_26
transcript.pyannote[1001].start 6940.51596875
transcript.pyannote[1001].end 6941.27534375
transcript.pyannote[1002].speaker SPEAKER_26
transcript.pyannote[1002].start 6943.09784375
transcript.pyannote[1002].end 6946.16909375
transcript.pyannote[1003].speaker SPEAKER_26
transcript.pyannote[1003].start 6946.47284375
transcript.pyannote[1003].end 6955.19721875
transcript.pyannote[1004].speaker SPEAKER_16
transcript.pyannote[1004].start 6955.72034375
transcript.pyannote[1004].end 6960.37784375
transcript.pyannote[1005].speaker SPEAKER_26
transcript.pyannote[1005].start 6960.07409375
transcript.pyannote[1005].end 6967.34721875
transcript.pyannote[1006].speaker SPEAKER_16
transcript.pyannote[1006].start 6967.04346875
transcript.pyannote[1006].end 6973.43909375
transcript.pyannote[1007].speaker SPEAKER_26
transcript.pyannote[1007].start 6971.16096875
transcript.pyannote[1007].end 6976.02096875
transcript.pyannote[1008].speaker SPEAKER_16
transcript.pyannote[1008].start 6976.22346875
transcript.pyannote[1008].end 6977.60721875
transcript.pyannote[1009].speaker SPEAKER_26
transcript.pyannote[1009].start 6976.98284375
transcript.pyannote[1009].end 6978.06284375
transcript.pyannote[1010].speaker SPEAKER_16
transcript.pyannote[1010].start 6977.89409375
transcript.pyannote[1010].end 6978.31596875
transcript.pyannote[1011].speaker SPEAKER_26
transcript.pyannote[1011].start 6978.40034375
transcript.pyannote[1011].end 6979.88534375
transcript.pyannote[1012].speaker SPEAKER_26
transcript.pyannote[1012].start 6979.93596875
transcript.pyannote[1012].end 6981.31971875
transcript.pyannote[1013].speaker SPEAKER_26
transcript.pyannote[1013].start 6981.84284375
transcript.pyannote[1013].end 6984.07034375
transcript.pyannote[1014].speaker SPEAKER_26
transcript.pyannote[1014].start 6984.12096875
transcript.pyannote[1014].end 6984.55971875
transcript.pyannote[1015].speaker SPEAKER_26
transcript.pyannote[1015].start 6984.82971875
transcript.pyannote[1015].end 6985.65659375
transcript.pyannote[1016].speaker SPEAKER_26
transcript.pyannote[1016].start 6985.99409375
transcript.pyannote[1016].end 6990.26346875
transcript.pyannote[1017].speaker SPEAKER_19
transcript.pyannote[1017].start 6989.97659375
transcript.pyannote[1017].end 6990.60096875
transcript.pyannote[1018].speaker SPEAKER_26
transcript.pyannote[1018].start 6990.98909375
transcript.pyannote[1018].end 6991.44471875
transcript.pyannote[1019].speaker SPEAKER_26
transcript.pyannote[1019].start 6991.81596875
transcript.pyannote[1019].end 6993.62159375
transcript.pyannote[1020].speaker SPEAKER_26
transcript.pyannote[1020].start 6994.17846875
transcript.pyannote[1020].end 6995.59596875
transcript.pyannote[1021].speaker SPEAKER_26
transcript.pyannote[1021].start 6996.05159375
transcript.pyannote[1021].end 6999.47721875
transcript.pyannote[1022].speaker SPEAKER_26
transcript.pyannote[1022].start 6999.88221875
transcript.pyannote[1022].end 7002.00846875
transcript.pyannote[1023].speaker SPEAKER_02
transcript.pyannote[1023].start 7002.46409375
transcript.pyannote[1023].end 7003.96596875
transcript.pyannote[1024].speaker SPEAKER_26
transcript.pyannote[1024].start 7003.10534375
transcript.pyannote[1024].end 7005.72096875
transcript.pyannote[1025].speaker SPEAKER_26
transcript.pyannote[1025].start 7005.99096875
transcript.pyannote[1025].end 7013.58471875
transcript.pyannote[1026].speaker SPEAKER_26
transcript.pyannote[1026].start 7014.17534375
transcript.pyannote[1026].end 7014.96846875
transcript.pyannote[1027].speaker SPEAKER_02
transcript.pyannote[1027].start 7016.38596875
transcript.pyannote[1027].end 7018.22534375
transcript.pyannote[1028].speaker SPEAKER_26
transcript.pyannote[1028].start 7017.66846875
transcript.pyannote[1028].end 7018.69784375
transcript.pyannote[1029].speaker SPEAKER_02
transcript.pyannote[1029].start 7018.69784375
transcript.pyannote[1029].end 7018.93409375
transcript.pyannote[1030].speaker SPEAKER_26
transcript.pyannote[1030].start 7018.93409375
transcript.pyannote[1030].end 7021.80284375
transcript.pyannote[1031].speaker SPEAKER_26
transcript.pyannote[1031].start 7022.02221875
transcript.pyannote[1031].end 7022.69721875
transcript.pyannote[1032].speaker SPEAKER_26
transcript.pyannote[1032].start 7023.59159375
transcript.pyannote[1032].end 7028.41784375
transcript.pyannote[1033].speaker SPEAKER_26
transcript.pyannote[1033].start 7029.73409375
transcript.pyannote[1033].end 7030.59471875
transcript.pyannote[1034].speaker SPEAKER_26
transcript.pyannote[1034].start 7031.10096875
transcript.pyannote[1034].end 7034.52659375
transcript.pyannote[1035].speaker SPEAKER_26
transcript.pyannote[1035].start 7034.61096875
transcript.pyannote[1035].end 7036.83846875
transcript.pyannote[1036].speaker SPEAKER_10
transcript.pyannote[1036].start 7037.02409375
transcript.pyannote[1036].end 7039.90971875
transcript.pyannote[1037].speaker SPEAKER_26
transcript.pyannote[1037].start 7038.91409375
transcript.pyannote[1037].end 7043.01471875
transcript.pyannote[1038].speaker SPEAKER_10
transcript.pyannote[1038].start 7043.77409375
transcript.pyannote[1038].end 7049.89971875
transcript.pyannote[1039].speaker SPEAKER_26
transcript.pyannote[1039].start 7048.06034375
transcript.pyannote[1039].end 7049.35971875
transcript.pyannote[1040].speaker SPEAKER_26
transcript.pyannote[1040].start 7049.89971875
transcript.pyannote[1040].end 7051.68846875
transcript.pyannote[1041].speaker SPEAKER_26
transcript.pyannote[1041].start 7052.11034375
transcript.pyannote[1041].end 7057.25721875
transcript.pyannote[1042].speaker SPEAKER_27
transcript.pyannote[1042].start 7057.91534375
transcript.pyannote[1042].end 7058.50596875
transcript.pyannote[1043].speaker SPEAKER_26
transcript.pyannote[1043].start 7058.11784375
transcript.pyannote[1043].end 7067.77034375
transcript.pyannote[1044].speaker SPEAKER_02
transcript.pyannote[1044].start 7067.98971875
transcript.pyannote[1044].end 7068.41159375
transcript.pyannote[1045].speaker SPEAKER_26
transcript.pyannote[1045].start 7068.56346875
transcript.pyannote[1045].end 7072.86659375
transcript.pyannote[1046].speaker SPEAKER_26
transcript.pyannote[1046].start 7073.87909375
transcript.pyannote[1046].end 7074.89159375
transcript.pyannote[1047].speaker SPEAKER_26
transcript.pyannote[1047].start 7075.58346875
transcript.pyannote[1047].end 7077.03471875
transcript.pyannote[1048].speaker SPEAKER_26
transcript.pyannote[1048].start 7078.06409375
transcript.pyannote[1048].end 7081.65846875
transcript.pyannote[1049].speaker SPEAKER_26
transcript.pyannote[1049].start 7082.35034375
transcript.pyannote[1049].end 7084.45971875
transcript.pyannote[1050].speaker SPEAKER_26
transcript.pyannote[1050].start 7085.26971875
transcript.pyannote[1050].end 7086.23159375
transcript.pyannote[1051].speaker SPEAKER_26
transcript.pyannote[1051].start 7087.31159375
transcript.pyannote[1051].end 7089.85971875
transcript.pyannote[1052].speaker SPEAKER_10
transcript.pyannote[1052].start 7087.53096875
transcript.pyannote[1052].end 7094.26409375
transcript.pyannote[1053].speaker SPEAKER_26
transcript.pyannote[1053].start 7093.94346875
transcript.pyannote[1053].end 7096.05284375
transcript.pyannote[1054].speaker SPEAKER_10
transcript.pyannote[1054].start 7096.32284375
transcript.pyannote[1054].end 7096.86284375
transcript.pyannote[1055].speaker SPEAKER_10
transcript.pyannote[1055].start 7097.28471875
transcript.pyannote[1055].end 7103.51159375
transcript.pyannote[1056].speaker SPEAKER_26
transcript.pyannote[1056].start 7101.50346875
transcript.pyannote[1056].end 7114.86846875
transcript.pyannote[1057].speaker SPEAKER_10
transcript.pyannote[1057].start 7103.98409375
transcript.pyannote[1057].end 7104.43971875
transcript.pyannote[1058].speaker SPEAKER_10
transcript.pyannote[1058].start 7115.10471875
transcript.pyannote[1058].end 7123.67721875
transcript.pyannote[1059].speaker SPEAKER_26
transcript.pyannote[1059].start 7123.08659375
transcript.pyannote[1059].end 7130.41034375
transcript.pyannote[1060].speaker SPEAKER_26
transcript.pyannote[1060].start 7130.78159375
transcript.pyannote[1060].end 7133.41409375
transcript.pyannote[1061].speaker SPEAKER_26
transcript.pyannote[1061].start 7133.85284375
transcript.pyannote[1061].end 7141.07534375
transcript.pyannote[1062].speaker SPEAKER_02
transcript.pyannote[1062].start 7140.67034375
transcript.pyannote[1062].end 7142.12159375
transcript.pyannote[1063].speaker SPEAKER_26
transcript.pyannote[1063].start 7142.12159375
transcript.pyannote[1063].end 7143.42096875
transcript.pyannote[1064].speaker SPEAKER_26
transcript.pyannote[1064].start 7143.77534375
transcript.pyannote[1064].end 7146.13784375
transcript.pyannote[1065].speaker SPEAKER_10
transcript.pyannote[1065].start 7145.26034375
transcript.pyannote[1065].end 7153.52909375
transcript.pyannote[1066].speaker SPEAKER_26
transcript.pyannote[1066].start 7146.96471875
transcript.pyannote[1066].end 7147.52159375
transcript.pyannote[1067].speaker SPEAKER_26
transcript.pyannote[1067].start 7149.78284375
transcript.pyannote[1067].end 7151.43659375
transcript.pyannote[1068].speaker SPEAKER_26
transcript.pyannote[1068].start 7152.63471875
transcript.pyannote[1068].end 7159.08096875
transcript.pyannote[1069].speaker SPEAKER_10
transcript.pyannote[1069].start 7159.08096875
transcript.pyannote[1069].end 7159.35096875
transcript.pyannote[1070].speaker SPEAKER_26
transcript.pyannote[1070].start 7159.35096875
transcript.pyannote[1070].end 7162.91159375
transcript.pyannote[1071].speaker SPEAKER_10
transcript.pyannote[1071].start 7163.04659375
transcript.pyannote[1071].end 7163.43471875
transcript.pyannote[1072].speaker SPEAKER_26
transcript.pyannote[1072].start 7163.56971875
transcript.pyannote[1072].end 7167.60284375
transcript.pyannote[1073].speaker SPEAKER_10
transcript.pyannote[1073].start 7168.32846875
transcript.pyannote[1073].end 7169.66159375
transcript.pyannote[1074].speaker SPEAKER_26
transcript.pyannote[1074].start 7169.56034375
transcript.pyannote[1074].end 7175.11221875
transcript.pyannote[1075].speaker SPEAKER_10
transcript.pyannote[1075].start 7169.76284375
transcript.pyannote[1075].end 7170.52221875
transcript.pyannote[1076].speaker SPEAKER_10
transcript.pyannote[1076].start 7170.67409375
transcript.pyannote[1076].end 7170.84284375
transcript.pyannote[1077].speaker SPEAKER_10
transcript.pyannote[1077].start 7174.72409375
transcript.pyannote[1077].end 7176.00659375
transcript.pyannote[1078].speaker SPEAKER_26
transcript.pyannote[1078].start 7175.39909375
transcript.pyannote[1078].end 7176.79971875
transcript.pyannote[1079].speaker SPEAKER_10
transcript.pyannote[1079].start 7176.63096875
transcript.pyannote[1079].end 7177.06971875
transcript.pyannote[1080].speaker SPEAKER_26
transcript.pyannote[1080].start 7177.01909375
transcript.pyannote[1080].end 7182.73971875
transcript.pyannote[1081].speaker SPEAKER_10
transcript.pyannote[1081].start 7182.40221875
transcript.pyannote[1081].end 7186.67159375
transcript.pyannote[1082].speaker SPEAKER_26
transcript.pyannote[1082].start 7185.45659375
transcript.pyannote[1082].end 7186.94159375
transcript.pyannote[1083].speaker SPEAKER_10
transcript.pyannote[1083].start 7186.87409375
transcript.pyannote[1083].end 7187.26221875
transcript.pyannote[1084].speaker SPEAKER_26
transcript.pyannote[1084].start 7187.21159375
transcript.pyannote[1084].end 7191.46409375
transcript.pyannote[1085].speaker SPEAKER_10
transcript.pyannote[1085].start 7191.95346875
transcript.pyannote[1085].end 7193.84346875
transcript.pyannote[1086].speaker SPEAKER_26
transcript.pyannote[1086].start 7192.02096875
transcript.pyannote[1086].end 7192.81409375
transcript.pyannote[1087].speaker SPEAKER_26
transcript.pyannote[1087].start 7193.43846875
transcript.pyannote[1087].end 7194.40034375
transcript.pyannote[1088].speaker SPEAKER_26
transcript.pyannote[1088].start 7194.83909375
transcript.pyannote[1088].end 7205.47034375
transcript.pyannote[1089].speaker SPEAKER_02
transcript.pyannote[1089].start 7207.15784375
transcript.pyannote[1089].end 7214.75159375
transcript.pyannote[1090].speaker SPEAKER_26
transcript.pyannote[1090].start 7214.39721875
transcript.pyannote[1090].end 7216.69221875
transcript.pyannote[1091].speaker SPEAKER_02
transcript.pyannote[1091].start 7216.69221875
transcript.pyannote[1091].end 7217.78909375
transcript.pyannote[1092].speaker SPEAKER_26
transcript.pyannote[1092].start 7216.82721875
transcript.pyannote[1092].end 7216.87784375
transcript.pyannote[1093].speaker SPEAKER_26
transcript.pyannote[1093].start 7216.91159375
transcript.pyannote[1093].end 7217.77221875
transcript.pyannote[1094].speaker SPEAKER_26
transcript.pyannote[1094].start 7217.78909375
transcript.pyannote[1094].end 7217.87346875
transcript.pyannote[1095].speaker SPEAKER_02
transcript.pyannote[1095].start 7217.80596875
transcript.pyannote[1095].end 7218.83534375
transcript.pyannote[1096].speaker SPEAKER_26
transcript.pyannote[1096].start 7217.89034375
transcript.pyannote[1096].end 7217.95784375
transcript.pyannote[1097].speaker SPEAKER_26
transcript.pyannote[1097].start 7218.12659375
transcript.pyannote[1097].end 7218.37971875
transcript.pyannote[1098].speaker SPEAKER_02
transcript.pyannote[1098].start 7219.49346875
transcript.pyannote[1098].end 7226.32784375
transcript.pyannote[1099].speaker SPEAKER_26
transcript.pyannote[1099].start 7221.63659375
transcript.pyannote[1099].end 7222.00784375
transcript.pyannote[1100].speaker SPEAKER_26
transcript.pyannote[1100].start 7224.77534375
transcript.pyannote[1100].end 7230.02346875
transcript.pyannote[1101].speaker SPEAKER_26
transcript.pyannote[1101].start 7230.34409375
transcript.pyannote[1101].end 7234.57971875
transcript.pyannote[1102].speaker SPEAKER_26
transcript.pyannote[1102].start 7234.88346875
transcript.pyannote[1102].end 7236.16596875
transcript.pyannote[1103].speaker SPEAKER_26
transcript.pyannote[1103].start 7236.45284375
transcript.pyannote[1103].end 7237.12784375
transcript.pyannote[1104].speaker SPEAKER_26
transcript.pyannote[1104].start 7237.46534375
transcript.pyannote[1104].end 7245.09284375
transcript.pyannote[1105].speaker SPEAKER_26
transcript.pyannote[1105].start 7245.76784375
transcript.pyannote[1105].end 7250.20596875
transcript.pyannote[1106].speaker SPEAKER_26
transcript.pyannote[1106].start 7250.54346875
transcript.pyannote[1106].end 7253.26034375
transcript.pyannote[1107].speaker SPEAKER_26
transcript.pyannote[1107].start 7253.78346875
transcript.pyannote[1107].end 7255.65659375
transcript.pyannote[1108].speaker SPEAKER_26
transcript.pyannote[1108].start 7256.09534375
transcript.pyannote[1108].end 7260.75284375
transcript.pyannote[1109].speaker SPEAKER_26
transcript.pyannote[1109].start 7261.17471875
transcript.pyannote[1109].end 7261.68096875
transcript.pyannote[1110].speaker SPEAKER_26
transcript.pyannote[1110].start 7262.28846875
transcript.pyannote[1110].end 7263.01409375
transcript.pyannote[1111].speaker SPEAKER_26
transcript.pyannote[1111].start 7263.41909375
transcript.pyannote[1111].end 7263.89159375
transcript.pyannote[1112].speaker SPEAKER_26
transcript.pyannote[1112].start 7264.56659375
transcript.pyannote[1112].end 7267.45221875
transcript.pyannote[1113].speaker SPEAKER_26
transcript.pyannote[1113].start 7267.75596875
transcript.pyannote[1113].end 7269.49409375
transcript.pyannote[1114].speaker SPEAKER_26
transcript.pyannote[1114].start 7269.81471875
transcript.pyannote[1114].end 7272.00846875
transcript.pyannote[1115].speaker SPEAKER_26
transcript.pyannote[1115].start 7272.86909375
transcript.pyannote[1115].end 7279.60221875
transcript.pyannote[1116].speaker SPEAKER_26
transcript.pyannote[1116].start 7279.99034375
transcript.pyannote[1116].end 7280.04096875
transcript.pyannote[1117].speaker SPEAKER_26
transcript.pyannote[1117].start 7280.29409375
transcript.pyannote[1117].end 7282.74096875
transcript.pyannote[1118].speaker SPEAKER_26
transcript.pyannote[1118].start 7284.14159375
transcript.pyannote[1118].end 7285.03596875
transcript.pyannote[1119].speaker SPEAKER_02
transcript.pyannote[1119].start 7285.03596875
transcript.pyannote[1119].end 7294.41846875
transcript.pyannote[1120].speaker SPEAKER_26
transcript.pyannote[1120].start 7293.01784375
transcript.pyannote[1120].end 7295.31284375
transcript.pyannote[1121].speaker SPEAKER_02
transcript.pyannote[1121].start 7295.51534375
transcript.pyannote[1121].end 7295.88659375
transcript.pyannote[1122].speaker SPEAKER_26
transcript.pyannote[1122].start 7296.12284375
transcript.pyannote[1122].end 7298.67096875
transcript.pyannote[1123].speaker SPEAKER_02
transcript.pyannote[1123].start 7298.58659375
transcript.pyannote[1123].end 7298.95784375
transcript.pyannote[1124].speaker SPEAKER_26
transcript.pyannote[1124].start 7298.90721875
transcript.pyannote[1124].end 7300.03784375
transcript.pyannote[1125].speaker SPEAKER_26
transcript.pyannote[1125].start 7300.62846875
transcript.pyannote[1125].end 7305.18471875
transcript.pyannote[1126].speaker SPEAKER_26
transcript.pyannote[1126].start 7305.53909375
transcript.pyannote[1126].end 7309.97721875
transcript.pyannote[1127].speaker SPEAKER_26
transcript.pyannote[1127].start 7310.58471875
transcript.pyannote[1127].end 7313.25096875
transcript.pyannote[1128].speaker SPEAKER_26
transcript.pyannote[1128].start 7313.48721875
transcript.pyannote[1128].end 7314.75284375
transcript.pyannote[1129].speaker SPEAKER_26
transcript.pyannote[1129].start 7315.00596875
transcript.pyannote[1129].end 7316.11971875
transcript.pyannote[1130].speaker SPEAKER_26
transcript.pyannote[1130].start 7316.42346875
transcript.pyannote[1130].end 7319.84909375
transcript.pyannote[1131].speaker SPEAKER_26
transcript.pyannote[1131].start 7320.32159375
transcript.pyannote[1131].end 7335.91409375
transcript.pyannote[1132].speaker SPEAKER_10
transcript.pyannote[1132].start 7336.20096875
transcript.pyannote[1132].end 7351.62471875
transcript.pyannote[1133].speaker SPEAKER_26
transcript.pyannote[1133].start 7342.14096875
transcript.pyannote[1133].end 7342.46159375
transcript.pyannote[1134].speaker SPEAKER_04
transcript.pyannote[1134].start 7342.46159375
transcript.pyannote[1134].end 7342.49534375
transcript.pyannote[1135].speaker SPEAKER_26
transcript.pyannote[1135].start 7351.72596875
transcript.pyannote[1135].end 7355.59034375
transcript.pyannote[1136].speaker SPEAKER_26
transcript.pyannote[1136].start 7355.86034375
transcript.pyannote[1136].end 7366.86284375
transcript.pyannote[1137].speaker SPEAKER_26
transcript.pyannote[1137].start 7366.98096875
transcript.pyannote[1137].end 7372.63409375
transcript.pyannote[1138].speaker SPEAKER_26
transcript.pyannote[1138].start 7373.42721875
transcript.pyannote[1138].end 7373.93346875
transcript.pyannote[1139].speaker SPEAKER_26
transcript.pyannote[1139].start 7374.15284375
transcript.pyannote[1139].end 7376.93721875
transcript.pyannote[1140].speaker SPEAKER_26
transcript.pyannote[1140].start 7377.35909375
transcript.pyannote[1140].end 7378.10159375
transcript.pyannote[1141].speaker SPEAKER_26
transcript.pyannote[1141].start 7378.45596875
transcript.pyannote[1141].end 7380.27846875
transcript.pyannote[1142].speaker SPEAKER_26
transcript.pyannote[1142].start 7380.48096875
transcript.pyannote[1142].end 7386.10034375
transcript.pyannote[1143].speaker SPEAKER_10
transcript.pyannote[1143].start 7386.52221875
transcript.pyannote[1143].end 7388.15909375
transcript.pyannote[1144].speaker SPEAKER_26
transcript.pyannote[1144].start 7387.85534375
transcript.pyannote[1144].end 7396.30971875
transcript.pyannote[1145].speaker SPEAKER_26
transcript.pyannote[1145].start 7396.66409375
transcript.pyannote[1145].end 7407.71721875
transcript.pyannote[1146].speaker SPEAKER_26
transcript.pyannote[1146].start 7408.24034375
transcript.pyannote[1146].end 7409.69159375
transcript.pyannote[1147].speaker SPEAKER_07
transcript.pyannote[1147].start 7409.84346875
transcript.pyannote[1147].end 7414.33221875
transcript.pyannote[1148].speaker SPEAKER_31
transcript.pyannote[1148].start 7437.38346875
transcript.pyannote[1148].end 7440.60659375
transcript.pyannote[1149].speaker SPEAKER_21
transcript.pyannote[1149].start 7440.60659375
transcript.pyannote[1149].end 7440.87659375
transcript.pyannote[1150].speaker SPEAKER_26
transcript.pyannote[1150].start 7440.87659375
transcript.pyannote[1150].end 7440.91034375
transcript.pyannote[1151].speaker SPEAKER_21
transcript.pyannote[1151].start 7440.91034375
transcript.pyannote[1151].end 7441.02846875
transcript.pyannote[1152].speaker SPEAKER_26
transcript.pyannote[1152].start 7441.02846875
transcript.pyannote[1152].end 7441.36596875
transcript.pyannote[1153].speaker SPEAKER_21
transcript.pyannote[1153].start 7441.36596875
transcript.pyannote[1153].end 7441.65284375
transcript.pyannote[1154].speaker SPEAKER_31
transcript.pyannote[1154].start 7450.34346875
transcript.pyannote[1154].end 7452.03096875
transcript.pyannote[1155].speaker SPEAKER_31
transcript.pyannote[1155].start 7452.25034375
transcript.pyannote[1155].end 7455.59159375
transcript.pyannote[1156].speaker SPEAKER_31
transcript.pyannote[1156].start 7455.99659375
transcript.pyannote[1156].end 7457.78534375
transcript.pyannote[1157].speaker SPEAKER_31
transcript.pyannote[1157].start 7458.15659375
transcript.pyannote[1157].end 7462.72971875
transcript.pyannote[1158].speaker SPEAKER_31
transcript.pyannote[1158].start 7463.15159375
transcript.pyannote[1158].end 7471.18409375
transcript.pyannote[1159].speaker SPEAKER_27
transcript.pyannote[1159].start 7467.64034375
transcript.pyannote[1159].end 7467.70784375
transcript.pyannote[1160].speaker SPEAKER_27
transcript.pyannote[1160].start 7468.41659375
transcript.pyannote[1160].end 7468.66971875
transcript.pyannote[1161].speaker SPEAKER_31
transcript.pyannote[1161].start 7471.42034375
transcript.pyannote[1161].end 7473.58034375
transcript.pyannote[1162].speaker SPEAKER_31
transcript.pyannote[1162].start 7473.66471875
transcript.pyannote[1162].end 7476.85409375
transcript.pyannote[1163].speaker SPEAKER_27
transcript.pyannote[1163].start 7473.81659375
transcript.pyannote[1163].end 7473.96846875
transcript.pyannote[1164].speaker SPEAKER_31
transcript.pyannote[1164].start 7477.47846875
transcript.pyannote[1164].end 7479.35159375
transcript.pyannote[1165].speaker SPEAKER_31
transcript.pyannote[1165].start 7480.17846875
transcript.pyannote[1165].end 7486.62471875
transcript.pyannote[1166].speaker SPEAKER_27
transcript.pyannote[1166].start 7487.06346875
transcript.pyannote[1166].end 7487.99159375
transcript.pyannote[1167].speaker SPEAKER_31
transcript.pyannote[1167].start 7487.11409375
transcript.pyannote[1167].end 7505.82846875
transcript.pyannote[1168].speaker SPEAKER_27
transcript.pyannote[1168].start 7502.53784375
transcript.pyannote[1168].end 7502.65596875
transcript.pyannote[1169].speaker SPEAKER_31
transcript.pyannote[1169].start 7506.21659375
transcript.pyannote[1169].end 7517.84346875
transcript.pyannote[1170].speaker SPEAKER_31
transcript.pyannote[1170].start 7517.96159375
transcript.pyannote[1170].end 7524.59346875
transcript.pyannote[1171].speaker SPEAKER_31
transcript.pyannote[1171].start 7525.33596875
transcript.pyannote[1171].end 7525.90971875
transcript.pyannote[1172].speaker SPEAKER_31
transcript.pyannote[1172].start 7526.14596875
transcript.pyannote[1172].end 7527.34409375
transcript.pyannote[1173].speaker SPEAKER_31
transcript.pyannote[1173].start 7527.66471875
transcript.pyannote[1173].end 7529.43659375
transcript.pyannote[1174].speaker SPEAKER_31
transcript.pyannote[1174].start 7529.92596875
transcript.pyannote[1174].end 7531.29284375
transcript.pyannote[1175].speaker SPEAKER_31
transcript.pyannote[1175].start 7532.20409375
transcript.pyannote[1175].end 7534.75221875
transcript.pyannote[1176].speaker SPEAKER_31
transcript.pyannote[1176].start 7534.85346875
transcript.pyannote[1176].end 7535.17409375
transcript.pyannote[1177].speaker SPEAKER_31
transcript.pyannote[1177].start 7535.98409375
transcript.pyannote[1177].end 7538.00909375
transcript.pyannote[1178].speaker SPEAKER_31
transcript.pyannote[1178].start 7538.65034375
transcript.pyannote[1178].end 7539.17346875
transcript.pyannote[1179].speaker SPEAKER_31
transcript.pyannote[1179].start 7539.47721875
transcript.pyannote[1179].end 7541.09721875
transcript.pyannote[1180].speaker SPEAKER_31
transcript.pyannote[1180].start 7541.41784375
transcript.pyannote[1180].end 7542.46409375
transcript.pyannote[1181].speaker SPEAKER_31
transcript.pyannote[1181].start 7542.98721875
transcript.pyannote[1181].end 7549.95659375
transcript.pyannote[1182].speaker SPEAKER_31
transcript.pyannote[1182].start 7550.46284375
transcript.pyannote[1182].end 7554.81659375
transcript.pyannote[1183].speaker SPEAKER_31
transcript.pyannote[1183].start 7555.62659375
transcript.pyannote[1183].end 7556.94284375
transcript.pyannote[1184].speaker SPEAKER_31
transcript.pyannote[1184].start 7557.82034375
transcript.pyannote[1184].end 7561.78596875
transcript.pyannote[1185].speaker SPEAKER_31
transcript.pyannote[1185].start 7562.52846875
transcript.pyannote[1185].end 7564.48596875
transcript.pyannote[1186].speaker SPEAKER_31
transcript.pyannote[1186].start 7565.80221875
transcript.pyannote[1186].end 7567.75971875
transcript.pyannote[1187].speaker SPEAKER_31
transcript.pyannote[1187].start 7568.29971875
transcript.pyannote[1187].end 7572.21471875
transcript.pyannote[1188].speaker SPEAKER_31
transcript.pyannote[1188].start 7572.60284375
transcript.pyannote[1188].end 7593.39284375
transcript.pyannote[1189].speaker SPEAKER_00
transcript.pyannote[1189].start 7578.67784375
transcript.pyannote[1189].end 7578.72846875
transcript.pyannote[1190].speaker SPEAKER_27
transcript.pyannote[1190].start 7578.72846875
transcript.pyannote[1190].end 7578.96471875
transcript.pyannote[1191].speaker SPEAKER_00
transcript.pyannote[1191].start 7578.96471875
transcript.pyannote[1191].end 7579.06596875
transcript.pyannote[1192].speaker SPEAKER_31
transcript.pyannote[1192].start 7594.03409375
transcript.pyannote[1192].end 7594.96221875
transcript.pyannote[1193].speaker SPEAKER_31
transcript.pyannote[1193].start 7595.35034375
transcript.pyannote[1193].end 7596.02534375
transcript.pyannote[1194].speaker SPEAKER_31
transcript.pyannote[1194].start 7597.44284375
transcript.pyannote[1194].end 7597.86471875
transcript.pyannote[1195].speaker SPEAKER_31
transcript.pyannote[1195].start 7598.70846875
transcript.pyannote[1195].end 7599.90659375
transcript.pyannote[1196].speaker SPEAKER_31
transcript.pyannote[1196].start 7600.34534375
transcript.pyannote[1196].end 7601.66159375
transcript.pyannote[1197].speaker SPEAKER_31
transcript.pyannote[1197].start 7602.74159375
transcript.pyannote[1197].end 7608.24284375
transcript.pyannote[1198].speaker SPEAKER_31
transcript.pyannote[1198].start 7608.61409375
transcript.pyannote[1198].end 7630.34909375
transcript.pyannote[1199].speaker SPEAKER_30
transcript.pyannote[1199].start 7612.59659375
transcript.pyannote[1199].end 7612.95096875
transcript.pyannote[1200].speaker SPEAKER_31
transcript.pyannote[1200].start 7630.78784375
transcript.pyannote[1200].end 7634.48346875
transcript.pyannote[1201].speaker SPEAKER_31
transcript.pyannote[1201].start 7634.77034375
transcript.pyannote[1201].end 7635.91784375
transcript.pyannote[1202].speaker SPEAKER_31
transcript.pyannote[1202].start 7636.96409375
transcript.pyannote[1202].end 7637.75721875
transcript.pyannote[1203].speaker SPEAKER_31
transcript.pyannote[1203].start 7638.01034375
transcript.pyannote[1203].end 7639.90034375
transcript.pyannote[1204].speaker SPEAKER_31
transcript.pyannote[1204].start 7640.99721875
transcript.pyannote[1204].end 7643.32596875
transcript.pyannote[1205].speaker SPEAKER_31
transcript.pyannote[1205].start 7644.38909375
transcript.pyannote[1205].end 7648.84409375
transcript.pyannote[1206].speaker SPEAKER_31
transcript.pyannote[1206].start 7649.51909375
transcript.pyannote[1206].end 7658.68221875
transcript.pyannote[1207].speaker SPEAKER_27
transcript.pyannote[1207].start 7658.85096875
transcript.pyannote[1207].end 7659.22221875
transcript.pyannote[1208].speaker SPEAKER_31
transcript.pyannote[1208].start 7659.22221875
transcript.pyannote[1208].end 7675.60784375
transcript.pyannote[1209].speaker SPEAKER_31
transcript.pyannote[1209].start 7676.19846875
transcript.pyannote[1209].end 7685.10846875
transcript.pyannote[1210].speaker SPEAKER_31
transcript.pyannote[1210].start 7685.69909375
transcript.pyannote[1210].end 7693.79909375
transcript.pyannote[1211].speaker SPEAKER_30
transcript.pyannote[1211].start 7687.31909375
transcript.pyannote[1211].end 7687.67346875
transcript.pyannote[1212].speaker SPEAKER_31
transcript.pyannote[1212].start 7694.35596875
transcript.pyannote[1212].end 7705.13909375
transcript.pyannote[1213].speaker SPEAKER_27
transcript.pyannote[1213].start 7705.13909375
transcript.pyannote[1213].end 7705.35846875
transcript.pyannote[1214].speaker SPEAKER_31
transcript.pyannote[1214].start 7705.35846875
transcript.pyannote[1214].end 7706.13471875
transcript.pyannote[1215].speaker SPEAKER_31
transcript.pyannote[1215].start 7706.89409375
transcript.pyannote[1215].end 7715.61846875
transcript.pyannote[1216].speaker SPEAKER_31
transcript.pyannote[1216].start 7715.92221875
transcript.pyannote[1216].end 7733.50596875
transcript.pyannote[1217].speaker SPEAKER_31
transcript.pyannote[1217].start 7733.86034375
transcript.pyannote[1217].end 7735.66596875
transcript.pyannote[1218].speaker SPEAKER_31
transcript.pyannote[1218].start 7735.85159375
transcript.pyannote[1218].end 7736.52659375
transcript.pyannote[1219].speaker SPEAKER_31
transcript.pyannote[1219].start 7736.81346875
transcript.pyannote[1219].end 7738.58534375
transcript.pyannote[1220].speaker SPEAKER_31
transcript.pyannote[1220].start 7738.93971875
transcript.pyannote[1220].end 7746.97221875
transcript.pyannote[1221].speaker SPEAKER_06
transcript.pyannote[1221].start 7744.99784375
transcript.pyannote[1221].end 7745.38596875
transcript.pyannote[1222].speaker SPEAKER_06
transcript.pyannote[1222].start 7746.97221875
transcript.pyannote[1222].end 7747.29284375
transcript.pyannote[1223].speaker SPEAKER_31
transcript.pyannote[1223].start 7747.29284375
transcript.pyannote[1223].end 7747.30971875
transcript.pyannote[1224].speaker SPEAKER_31
transcript.pyannote[1224].start 7747.64721875
transcript.pyannote[1224].end 7747.66409375
transcript.pyannote[1225].speaker SPEAKER_06
transcript.pyannote[1225].start 7747.66409375
transcript.pyannote[1225].end 7776.97596875
transcript.pyannote[1226].speaker SPEAKER_00
transcript.pyannote[1226].start 7759.91534375
transcript.pyannote[1226].end 7760.40471875
transcript.pyannote[1227].speaker SPEAKER_31
transcript.pyannote[1227].start 7773.51659375
transcript.pyannote[1227].end 7774.64721875
transcript.pyannote[1228].speaker SPEAKER_31
transcript.pyannote[1228].start 7775.22096875
transcript.pyannote[1228].end 7806.03471875
transcript.pyannote[1229].speaker SPEAKER_06
transcript.pyannote[1229].start 7781.26221875
transcript.pyannote[1229].end 7782.20721875
transcript.pyannote[1230].speaker SPEAKER_06
transcript.pyannote[1230].start 7786.83096875
transcript.pyannote[1230].end 7787.65784375
transcript.pyannote[1231].speaker SPEAKER_00
transcript.pyannote[1231].start 7787.65784375
transcript.pyannote[1231].end 7787.70846875
transcript.pyannote[1232].speaker SPEAKER_27
transcript.pyannote[1232].start 7806.03471875
transcript.pyannote[1232].end 7806.59159375
transcript.pyannote[1233].speaker SPEAKER_31
transcript.pyannote[1233].start 7806.59159375
transcript.pyannote[1233].end 7810.30409375
transcript.pyannote[1234].speaker SPEAKER_31
transcript.pyannote[1234].start 7811.23221875
transcript.pyannote[1234].end 7826.06534375
transcript.pyannote[1235].speaker SPEAKER_27
transcript.pyannote[1235].start 7815.63659375
transcript.pyannote[1235].end 7815.85596875
transcript.pyannote[1236].speaker SPEAKER_27
transcript.pyannote[1236].start 7826.58846875
transcript.pyannote[1236].end 7826.90909375
transcript.pyannote[1237].speaker SPEAKER_31
transcript.pyannote[1237].start 7826.79096875
transcript.pyannote[1237].end 7849.87596875
transcript.pyannote[1238].speaker SPEAKER_27
transcript.pyannote[1238].start 7833.45659375
transcript.pyannote[1238].end 7833.69284375
transcript.pyannote[1239].speaker SPEAKER_27
transcript.pyannote[1239].start 7849.87596875
transcript.pyannote[1239].end 7850.09534375
transcript.pyannote[1240].speaker SPEAKER_31
transcript.pyannote[1240].start 7850.09534375
transcript.pyannote[1240].end 7853.20034375
transcript.pyannote[1241].speaker SPEAKER_27
transcript.pyannote[1241].start 7850.12909375
transcript.pyannote[1241].end 7850.19659375
transcript.pyannote[1242].speaker SPEAKER_06
transcript.pyannote[1242].start 7850.19659375
transcript.pyannote[1242].end 7850.31471875
transcript.pyannote[1243].speaker SPEAKER_31
transcript.pyannote[1243].start 7853.85846875
transcript.pyannote[1243].end 7855.37721875
transcript.pyannote[1244].speaker SPEAKER_06
transcript.pyannote[1244].start 7855.37721875
transcript.pyannote[1244].end 7855.84971875
transcript.pyannote[1245].speaker SPEAKER_31
transcript.pyannote[1245].start 7855.84971875
transcript.pyannote[1245].end 7867.81409375
transcript.pyannote[1246].speaker SPEAKER_31
transcript.pyannote[1246].start 7867.83096875
transcript.pyannote[1246].end 7867.88159375
transcript.pyannote[1247].speaker SPEAKER_31
transcript.pyannote[1247].start 7867.93221875
transcript.pyannote[1247].end 7869.90659375
transcript.pyannote[1248].speaker SPEAKER_31
transcript.pyannote[1248].start 7870.27784375
transcript.pyannote[1248].end 7874.59784375
transcript.pyannote[1249].speaker SPEAKER_31
transcript.pyannote[1249].start 7874.86784375
transcript.pyannote[1249].end 7875.96471875
transcript.pyannote[1250].speaker SPEAKER_06
transcript.pyannote[1250].start 7875.96471875
transcript.pyannote[1250].end 7877.43284375
transcript.pyannote[1251].speaker SPEAKER_31
transcript.pyannote[1251].start 7876.80846875
transcript.pyannote[1251].end 7885.73534375
transcript.pyannote[1252].speaker SPEAKER_06
transcript.pyannote[1252].start 7878.14159375
transcript.pyannote[1252].end 7878.27659375
transcript.pyannote[1253].speaker SPEAKER_06
transcript.pyannote[1253].start 7879.05284375
transcript.pyannote[1253].end 7881.75284375
transcript.pyannote[1254].speaker SPEAKER_31
transcript.pyannote[1254].start 7886.84909375
transcript.pyannote[1254].end 7888.14846875
transcript.pyannote[1255].speaker SPEAKER_31
transcript.pyannote[1255].start 7888.26659375
transcript.pyannote[1255].end 7888.28346875
transcript.pyannote[1256].speaker SPEAKER_26
transcript.pyannote[1256].start 7888.28346875
transcript.pyannote[1256].end 7889.16096875
transcript.pyannote[1257].speaker SPEAKER_31
transcript.pyannote[1257].start 7894.18971875
transcript.pyannote[1257].end 7901.12534375
transcript.pyannote[1258].speaker SPEAKER_31
transcript.pyannote[1258].start 7901.46284375
transcript.pyannote[1258].end 7902.96471875
transcript.pyannote[1259].speaker SPEAKER_31
transcript.pyannote[1259].start 7903.89284375
transcript.pyannote[1259].end 7918.70909375
transcript.pyannote[1260].speaker SPEAKER_31
transcript.pyannote[1260].start 7918.97909375
transcript.pyannote[1260].end 7944.94971875
transcript.pyannote[1261].speaker SPEAKER_31
transcript.pyannote[1261].start 7945.30409375
transcript.pyannote[1261].end 7975.89846875
transcript.pyannote[1262].speaker SPEAKER_31
transcript.pyannote[1262].start 7976.82659375
transcript.pyannote[1262].end 7977.53534375
transcript.pyannote[1263].speaker SPEAKER_31
transcript.pyannote[1263].start 7978.39596875
transcript.pyannote[1263].end 7978.68284375
transcript.pyannote[1264].speaker SPEAKER_31
transcript.pyannote[1264].start 7979.94846875
transcript.pyannote[1264].end 7980.64034375
transcript.pyannote[1265].speaker SPEAKER_31
transcript.pyannote[1265].start 7980.72471875
transcript.pyannote[1265].end 7983.54284375
transcript.pyannote[1266].speaker SPEAKER_31
transcript.pyannote[1266].start 7984.26846875
transcript.pyannote[1266].end 8018.17034375
transcript.pyannote[1267].speaker SPEAKER_31
transcript.pyannote[1267].start 8018.57534375
transcript.pyannote[1267].end 8019.95909375
transcript.pyannote[1268].speaker SPEAKER_31
transcript.pyannote[1268].start 8021.10659375
transcript.pyannote[1268].end 8034.20159375
transcript.pyannote[1269].speaker SPEAKER_31
transcript.pyannote[1269].start 8034.89346875
transcript.pyannote[1269].end 8036.47971875
transcript.pyannote[1270].speaker SPEAKER_16
transcript.pyannote[1270].start 8037.12096875
transcript.pyannote[1270].end 8097.60096875
transcript.pyannote[1271].speaker SPEAKER_31
transcript.pyannote[1271].start 8097.02721875
transcript.pyannote[1271].end 8098.12409375
transcript.pyannote[1272].speaker SPEAKER_16
transcript.pyannote[1272].start 8098.12409375
transcript.pyannote[1272].end 8099.06909375
transcript.pyannote[1273].speaker SPEAKER_31
transcript.pyannote[1273].start 8098.51221875
transcript.pyannote[1273].end 8098.78221875
transcript.pyannote[1274].speaker SPEAKER_31
transcript.pyannote[1274].start 8099.06909375
transcript.pyannote[1274].end 8125.79909375
transcript.pyannote[1275].speaker SPEAKER_16
transcript.pyannote[1275].start 8101.21221875
transcript.pyannote[1275].end 8103.62534375
transcript.pyannote[1276].speaker SPEAKER_16
transcript.pyannote[1276].start 8104.63784375
transcript.pyannote[1276].end 8104.85721875
transcript.pyannote[1277].speaker SPEAKER_16
transcript.pyannote[1277].start 8122.96409375
transcript.pyannote[1277].end 8127.13221875
transcript.pyannote[1278].speaker SPEAKER_31
transcript.pyannote[1278].start 8126.60909375
transcript.pyannote[1278].end 8126.64284375
transcript.pyannote[1279].speaker SPEAKER_26
transcript.pyannote[1279].start 8126.64284375
transcript.pyannote[1279].end 8131.90784375
transcript.pyannote[1280].speaker SPEAKER_07
transcript.pyannote[1280].start 8139.55221875
transcript.pyannote[1280].end 8143.60221875
transcript.pyannote[1281].speaker SPEAKER_07
transcript.pyannote[1281].start 8144.02409375
transcript.pyannote[1281].end 8144.96909375
transcript.pyannote[1282].speaker SPEAKER_08
transcript.pyannote[1282].start 8148.68159375
transcript.pyannote[1282].end 8149.18784375
transcript.pyannote[1283].speaker SPEAKER_07
transcript.pyannote[1283].start 8149.18784375
transcript.pyannote[1283].end 8157.37221875
transcript.pyannote[1284].speaker SPEAKER_07
transcript.pyannote[1284].start 8157.52409375
transcript.pyannote[1284].end 8167.12596875
transcript.pyannote[1285].speaker SPEAKER_16
transcript.pyannote[1285].start 8167.31159375
transcript.pyannote[1285].end 8184.67596875
transcript.pyannote[1286].speaker SPEAKER_07
transcript.pyannote[1286].start 8174.26409375
transcript.pyannote[1286].end 8174.66909375
transcript.pyannote[1287].speaker SPEAKER_00
transcript.pyannote[1287].start 8174.66909375
transcript.pyannote[1287].end 8174.70284375
transcript.pyannote[1288].speaker SPEAKER_07
transcript.pyannote[1288].start 8182.83659375
transcript.pyannote[1288].end 8182.97159375
transcript.pyannote[1289].speaker SPEAKER_07
transcript.pyannote[1289].start 8184.76034375
transcript.pyannote[1289].end 8194.64909375
transcript.pyannote[1290].speaker SPEAKER_16
transcript.pyannote[1290].start 8187.47721875
transcript.pyannote[1290].end 8190.27846875
transcript.pyannote[1291].speaker SPEAKER_16
transcript.pyannote[1291].start 8194.75034375
transcript.pyannote[1291].end 8201.58471875
transcript.pyannote[1292].speaker SPEAKER_07
transcript.pyannote[1292].start 8200.69034375
transcript.pyannote[1292].end 8204.38596875
transcript.pyannote[1293].speaker SPEAKER_16
transcript.pyannote[1293].start 8204.75721875
transcript.pyannote[1293].end 8216.85659375
transcript.pyannote[1294].speaker SPEAKER_07
transcript.pyannote[1294].start 8209.41471875
transcript.pyannote[1294].end 8210.57909375
transcript.pyannote[1295].speaker SPEAKER_07
transcript.pyannote[1295].start 8216.36721875
transcript.pyannote[1295].end 8216.72159375
transcript.pyannote[1296].speaker SPEAKER_07
transcript.pyannote[1296].start 8217.10971875
transcript.pyannote[1296].end 8218.98284375
transcript.pyannote[1297].speaker SPEAKER_16
transcript.pyannote[1297].start 8218.47659375
transcript.pyannote[1297].end 8220.56909375
transcript.pyannote[1298].speaker SPEAKER_07
transcript.pyannote[1298].start 8220.95721875
transcript.pyannote[1298].end 8223.26909375
transcript.pyannote[1299].speaker SPEAKER_16
transcript.pyannote[1299].start 8222.93159375
transcript.pyannote[1299].end 8224.68659375
transcript.pyannote[1300].speaker SPEAKER_07
transcript.pyannote[1300].start 8223.85971875
transcript.pyannote[1300].end 8226.96471875
transcript.pyannote[1301].speaker SPEAKER_16
transcript.pyannote[1301].start 8227.16721875
transcript.pyannote[1301].end 8238.38909375
transcript.pyannote[1302].speaker SPEAKER_07
transcript.pyannote[1302].start 8233.95096875
transcript.pyannote[1302].end 8235.06471875
transcript.pyannote[1303].speaker SPEAKER_07
transcript.pyannote[1303].start 8237.68034375
transcript.pyannote[1303].end 8238.13596875
transcript.pyannote[1304].speaker SPEAKER_07
transcript.pyannote[1304].start 8238.38909375
transcript.pyannote[1304].end 8261.00159375
transcript.pyannote[1305].speaker SPEAKER_07
transcript.pyannote[1305].start 8261.47409375
transcript.pyannote[1305].end 8310.81659375
transcript.pyannote[1306].speaker SPEAKER_16
transcript.pyannote[1306].start 8311.30596875
transcript.pyannote[1306].end 8331.91034375
transcript.pyannote[1307].speaker SPEAKER_34
transcript.pyannote[1307].start 8315.64284375
transcript.pyannote[1307].end 8315.69346875
transcript.pyannote[1308].speaker SPEAKER_07
transcript.pyannote[1308].start 8315.69346875
transcript.pyannote[1308].end 8315.96346875
transcript.pyannote[1309].speaker SPEAKER_34
transcript.pyannote[1309].start 8315.96346875
transcript.pyannote[1309].end 8316.14909375
transcript.pyannote[1310].speaker SPEAKER_34
transcript.pyannote[1310].start 8319.08534375
transcript.pyannote[1310].end 8319.55784375
transcript.pyannote[1311].speaker SPEAKER_34
transcript.pyannote[1311].start 8321.66721875
transcript.pyannote[1311].end 8322.03846875
transcript.pyannote[1312].speaker SPEAKER_34
transcript.pyannote[1312].start 8324.80596875
transcript.pyannote[1312].end 8325.19409375
transcript.pyannote[1313].speaker SPEAKER_07
transcript.pyannote[1313].start 8329.49721875
transcript.pyannote[1313].end 8329.81784375
transcript.pyannote[1314].speaker SPEAKER_07
transcript.pyannote[1314].start 8332.01159375
transcript.pyannote[1314].end 8337.20909375
transcript.pyannote[1315].speaker SPEAKER_16
transcript.pyannote[1315].start 8334.13784375
transcript.pyannote[1315].end 8334.76221875
transcript.pyannote[1316].speaker SPEAKER_16
transcript.pyannote[1316].start 8337.20909375
transcript.pyannote[1316].end 8340.70221875
transcript.pyannote[1317].speaker SPEAKER_07
transcript.pyannote[1317].start 8340.58409375
transcript.pyannote[1317].end 8343.95909375
transcript.pyannote[1318].speaker SPEAKER_16
transcript.pyannote[1318].start 8341.19159375
transcript.pyannote[1318].end 8342.84534375
transcript.pyannote[1319].speaker SPEAKER_16
transcript.pyannote[1319].start 8343.90846875
transcript.pyannote[1319].end 8349.93284375
transcript.pyannote[1320].speaker SPEAKER_07
transcript.pyannote[1320].start 8349.64596875
transcript.pyannote[1320].end 8381.08409375
transcript.pyannote[1321].speaker SPEAKER_07
transcript.pyannote[1321].start 8381.30346875
transcript.pyannote[1321].end 8388.86346875
transcript.pyannote[1322].speaker SPEAKER_16
transcript.pyannote[1322].start 8388.81284375
transcript.pyannote[1322].end 8393.75721875
transcript.pyannote[1323].speaker SPEAKER_07
transcript.pyannote[1323].start 8392.25534375
transcript.pyannote[1323].end 8393.01471875
transcript.pyannote[1324].speaker SPEAKER_07
transcript.pyannote[1324].start 8393.74034375
transcript.pyannote[1324].end 8400.28784375
transcript.pyannote[1325].speaker SPEAKER_26
transcript.pyannote[1325].start 8400.76034375
transcript.pyannote[1325].end 8402.46471875
transcript.pyannote[1326].speaker SPEAKER_14
transcript.pyannote[1326].start 8408.65784375
transcript.pyannote[1326].end 8409.29909375
transcript.pyannote[1327].speaker SPEAKER_07
transcript.pyannote[1327].start 8409.29909375
transcript.pyannote[1327].end 8427.03471875
transcript.pyannote[1328].speaker SPEAKER_07
transcript.pyannote[1328].start 8427.15284375
transcript.pyannote[1328].end 8434.64534375
transcript.pyannote[1329].speaker SPEAKER_13
transcript.pyannote[1329].start 8435.84346875
transcript.pyannote[1329].end 8436.36659375
transcript.pyannote[1330].speaker SPEAKER_07
transcript.pyannote[1330].start 8436.38346875
transcript.pyannote[1330].end 8438.56034375
transcript.pyannote[1331].speaker SPEAKER_13
transcript.pyannote[1331].start 8438.74596875
transcript.pyannote[1331].end 8441.04096875
transcript.pyannote[1332].speaker SPEAKER_13
transcript.pyannote[1332].start 8441.31096875
transcript.pyannote[1332].end 8469.03659375
transcript.pyannote[1333].speaker SPEAKER_07
transcript.pyannote[1333].start 8443.96034375
transcript.pyannote[1333].end 8444.21346875
transcript.pyannote[1334].speaker SPEAKER_07
transcript.pyannote[1334].start 8445.74909375
transcript.pyannote[1334].end 8446.10346875
transcript.pyannote[1335].speaker SPEAKER_00
transcript.pyannote[1335].start 8446.10346875
transcript.pyannote[1335].end 8446.13721875
transcript.pyannote[1336].speaker SPEAKER_00
transcript.pyannote[1336].start 8448.28034375
transcript.pyannote[1336].end 8448.66846875
transcript.pyannote[1337].speaker SPEAKER_00
transcript.pyannote[1337].start 8451.99284375
transcript.pyannote[1337].end 8452.43159375
transcript.pyannote[1338].speaker SPEAKER_00
transcript.pyannote[1338].start 8454.13596875
transcript.pyannote[1338].end 8454.52409375
transcript.pyannote[1339].speaker SPEAKER_00
transcript.pyannote[1339].start 8457.13971875
transcript.pyannote[1339].end 8457.47721875
transcript.pyannote[1340].speaker SPEAKER_07
transcript.pyannote[1340].start 8464.42971875
transcript.pyannote[1340].end 8464.69971875
transcript.pyannote[1341].speaker SPEAKER_07
transcript.pyannote[1341].start 8469.03659375
transcript.pyannote[1341].end 8469.07034375
transcript.pyannote[1342].speaker SPEAKER_07
transcript.pyannote[1342].start 8469.12096875
transcript.pyannote[1342].end 8477.08596875
transcript.pyannote[1343].speaker SPEAKER_13
transcript.pyannote[1343].start 8477.74409375
transcript.pyannote[1343].end 8482.13159375
transcript.pyannote[1344].speaker SPEAKER_13
transcript.pyannote[1344].start 8482.67159375
transcript.pyannote[1344].end 8507.78159375
transcript.pyannote[1345].speaker SPEAKER_07
transcript.pyannote[1345].start 8483.92034375
transcript.pyannote[1345].end 8484.29159375
transcript.pyannote[1346].speaker SPEAKER_00
transcript.pyannote[1346].start 8493.91034375
transcript.pyannote[1346].end 8494.02846875
transcript.pyannote[1347].speaker SPEAKER_27
transcript.pyannote[1347].start 8494.02846875
transcript.pyannote[1347].end 8494.26471875
transcript.pyannote[1348].speaker SPEAKER_27
transcript.pyannote[1348].start 8494.90596875
transcript.pyannote[1348].end 8495.20971875
transcript.pyannote[1349].speaker SPEAKER_07
transcript.pyannote[1349].start 8502.88784375
transcript.pyannote[1349].end 8503.30971875
transcript.pyannote[1350].speaker SPEAKER_07
transcript.pyannote[1350].start 8504.69346875
transcript.pyannote[1350].end 8504.98034375
transcript.pyannote[1351].speaker SPEAKER_07
transcript.pyannote[1351].start 8505.31784375
transcript.pyannote[1351].end 8505.70596875
transcript.pyannote[1352].speaker SPEAKER_07
transcript.pyannote[1352].start 8507.17409375
transcript.pyannote[1352].end 8512.69221875
transcript.pyannote[1353].speaker SPEAKER_13
transcript.pyannote[1353].start 8511.34221875
transcript.pyannote[1353].end 8514.73409375
transcript.pyannote[1354].speaker SPEAKER_07
transcript.pyannote[1354].start 8515.12221875
transcript.pyannote[1354].end 8518.34534375
transcript.pyannote[1355].speaker SPEAKER_13
transcript.pyannote[1355].start 8518.91909375
transcript.pyannote[1355].end 8521.75409375
transcript.pyannote[1356].speaker SPEAKER_07
transcript.pyannote[1356].start 8521.38284375
transcript.pyannote[1356].end 8540.08034375
transcript.pyannote[1357].speaker SPEAKER_13
transcript.pyannote[1357].start 8540.41784375
transcript.pyannote[1357].end 8554.72784375
transcript.pyannote[1358].speaker SPEAKER_07
transcript.pyannote[1358].start 8554.18784375
transcript.pyannote[1358].end 8557.41096875
transcript.pyannote[1359].speaker SPEAKER_13
transcript.pyannote[1359].start 8557.54596875
transcript.pyannote[1359].end 8565.76409375
transcript.pyannote[1360].speaker SPEAKER_07
transcript.pyannote[1360].start 8562.54096875
transcript.pyannote[1360].end 8562.86159375
transcript.pyannote[1361].speaker SPEAKER_07
transcript.pyannote[1361].start 8565.89909375
transcript.pyannote[1361].end 8571.88971875
transcript.pyannote[1362].speaker SPEAKER_13
transcript.pyannote[1362].start 8565.94971875
transcript.pyannote[1362].end 8566.06784375
transcript.pyannote[1363].speaker SPEAKER_07
transcript.pyannote[1363].start 8572.73346875
transcript.pyannote[1363].end 8608.37346875
transcript.pyannote[1364].speaker SPEAKER_00
transcript.pyannote[1364].start 8574.72471875
transcript.pyannote[1364].end 8574.74159375
transcript.pyannote[1365].speaker SPEAKER_06
transcript.pyannote[1365].start 8574.74159375
transcript.pyannote[1365].end 8574.99471875
transcript.pyannote[1366].speaker SPEAKER_08
transcript.pyannote[1366].start 8574.99471875
transcript.pyannote[1366].end 8575.02846875
transcript.pyannote[1367].speaker SPEAKER_00
transcript.pyannote[1367].start 8575.02846875
transcript.pyannote[1367].end 8575.06221875
transcript.pyannote[1368].speaker SPEAKER_06
transcript.pyannote[1368].start 8583.90471875
transcript.pyannote[1368].end 8584.36034375
transcript.pyannote[1369].speaker SPEAKER_00
transcript.pyannote[1369].start 8593.28721875
transcript.pyannote[1369].end 8593.33784375
transcript.pyannote[1370].speaker SPEAKER_06
transcript.pyannote[1370].start 8593.33784375
transcript.pyannote[1370].end 8593.45596875
transcript.pyannote[1371].speaker SPEAKER_00
transcript.pyannote[1371].start 8593.45596875
transcript.pyannote[1371].end 8593.60784375
transcript.pyannote[1372].speaker SPEAKER_00
transcript.pyannote[1372].start 8598.82221875
transcript.pyannote[1372].end 8598.85596875
transcript.pyannote[1373].speaker SPEAKER_27
transcript.pyannote[1373].start 8598.85596875
transcript.pyannote[1373].end 8599.02471875
transcript.pyannote[1374].speaker SPEAKER_06
transcript.pyannote[1374].start 8599.02471875
transcript.pyannote[1374].end 8599.34534375
transcript.pyannote[1375].speaker SPEAKER_27
transcript.pyannote[1375].start 8599.34534375
transcript.pyannote[1375].end 8599.51409375
transcript.pyannote[1376].speaker SPEAKER_00
transcript.pyannote[1376].start 8599.51409375
transcript.pyannote[1376].end 8599.53096875
transcript.pyannote[1377].speaker SPEAKER_07
transcript.pyannote[1377].start 8608.45784375
transcript.pyannote[1377].end 8630.05784375
transcript.pyannote[1378].speaker SPEAKER_00
transcript.pyannote[1378].start 8613.80721875
transcript.pyannote[1378].end 8613.90846875
transcript.pyannote[1379].speaker SPEAKER_27
transcript.pyannote[1379].start 8619.12284375
transcript.pyannote[1379].end 8619.56159375
transcript.pyannote[1380].speaker SPEAKER_07
transcript.pyannote[1380].start 8630.14221875
transcript.pyannote[1380].end 8635.39034375
transcript.pyannote[1381].speaker SPEAKER_27
transcript.pyannote[1381].start 8635.39034375
transcript.pyannote[1381].end 8635.72784375
transcript.pyannote[1382].speaker SPEAKER_07
transcript.pyannote[1382].start 8635.72784375
transcript.pyannote[1382].end 8644.28346875
transcript.pyannote[1383].speaker SPEAKER_27
transcript.pyannote[1383].start 8644.11471875
transcript.pyannote[1383].end 8644.72221875
transcript.pyannote[1384].speaker SPEAKER_07
transcript.pyannote[1384].start 8644.50284375
transcript.pyannote[1384].end 8650.96596875
transcript.pyannote[1385].speaker SPEAKER_06
transcript.pyannote[1385].start 8650.96596875
transcript.pyannote[1385].end 8651.05034375
transcript.pyannote[1386].speaker SPEAKER_07
transcript.pyannote[1386].start 8651.05034375
transcript.pyannote[1386].end 8651.10096875
transcript.pyannote[1387].speaker SPEAKER_06
transcript.pyannote[1387].start 8651.10096875
transcript.pyannote[1387].end 8651.35409375
transcript.pyannote[1388].speaker SPEAKER_07
transcript.pyannote[1388].start 8651.35409375
transcript.pyannote[1388].end 8651.47221875
transcript.pyannote[1389].speaker SPEAKER_06
transcript.pyannote[1389].start 8651.47221875
transcript.pyannote[1389].end 8651.64096875
transcript.pyannote[1390].speaker SPEAKER_07
transcript.pyannote[1390].start 8651.64096875
transcript.pyannote[1390].end 8651.70846875
transcript.pyannote[1391].speaker SPEAKER_06
transcript.pyannote[1391].start 8651.70846875
transcript.pyannote[1391].end 8658.37409375
transcript.pyannote[1392].speaker SPEAKER_06
transcript.pyannote[1392].start 8658.49221875
transcript.pyannote[1392].end 8667.38534375
transcript.pyannote[1393].speaker SPEAKER_07
transcript.pyannote[1393].start 8663.45346875
transcript.pyannote[1393].end 8663.92596875
transcript.pyannote[1394].speaker SPEAKER_07
transcript.pyannote[1394].start 8665.61346875
transcript.pyannote[1394].end 8665.95096875
transcript.pyannote[1395].speaker SPEAKER_06
transcript.pyannote[1395].start 8667.58784375
transcript.pyannote[1395].end 8674.67534375
transcript.pyannote[1396].speaker SPEAKER_06
transcript.pyannote[1396].start 8675.33346875
transcript.pyannote[1396].end 8677.32471875
transcript.pyannote[1397].speaker SPEAKER_07
transcript.pyannote[1397].start 8675.75534375
transcript.pyannote[1397].end 8677.10534375
transcript.pyannote[1398].speaker SPEAKER_07
transcript.pyannote[1398].start 8677.32471875
transcript.pyannote[1398].end 8677.79721875
transcript.pyannote[1399].speaker SPEAKER_06
transcript.pyannote[1399].start 8677.79721875
transcript.pyannote[1399].end 8694.75659375
transcript.pyannote[1400].speaker SPEAKER_07
transcript.pyannote[1400].start 8681.50971875
transcript.pyannote[1400].end 8681.91471875
transcript.pyannote[1401].speaker SPEAKER_07
transcript.pyannote[1401].start 8684.81721875
transcript.pyannote[1401].end 8685.23909375
transcript.pyannote[1402].speaker SPEAKER_00
transcript.pyannote[1402].start 8685.23909375
transcript.pyannote[1402].end 8685.25596875
transcript.pyannote[1403].speaker SPEAKER_27
transcript.pyannote[1403].start 8693.42346875
transcript.pyannote[1403].end 8694.03096875
transcript.pyannote[1404].speaker SPEAKER_27
transcript.pyannote[1404].start 8694.75659375
transcript.pyannote[1404].end 8695.61721875
transcript.pyannote[1405].speaker SPEAKER_06
transcript.pyannote[1405].start 8695.09409375
transcript.pyannote[1405].end 8695.26284375
transcript.pyannote[1406].speaker SPEAKER_06
transcript.pyannote[1406].start 8695.61721875
transcript.pyannote[1406].end 8700.56159375
transcript.pyannote[1407].speaker SPEAKER_27
transcript.pyannote[1407].start 8699.48159375
transcript.pyannote[1407].end 8699.49846875
transcript.pyannote[1408].speaker SPEAKER_07
transcript.pyannote[1408].start 8699.49846875
transcript.pyannote[1408].end 8699.73471875
transcript.pyannote[1409].speaker SPEAKER_27
transcript.pyannote[1409].start 8700.47721875
transcript.pyannote[1409].end 8700.49409375
transcript.pyannote[1410].speaker SPEAKER_07
transcript.pyannote[1410].start 8700.49409375
transcript.pyannote[1410].end 8704.79721875
transcript.pyannote[1411].speaker SPEAKER_06
transcript.pyannote[1411].start 8705.03346875
transcript.pyannote[1411].end 8706.50159375
transcript.pyannote[1412].speaker SPEAKER_07
transcript.pyannote[1412].start 8705.84346875
transcript.pyannote[1412].end 8707.02471875
transcript.pyannote[1413].speaker SPEAKER_07
transcript.pyannote[1413].start 8707.29471875
transcript.pyannote[1413].end 8713.94346875
transcript.pyannote[1414].speaker SPEAKER_06
transcript.pyannote[1414].start 8708.27346875
transcript.pyannote[1414].end 8710.07909375
transcript.pyannote[1415].speaker SPEAKER_06
transcript.pyannote[1415].start 8713.77471875
transcript.pyannote[1415].end 8728.69221875
transcript.pyannote[1416].speaker SPEAKER_07
transcript.pyannote[1416].start 8724.16971875
transcript.pyannote[1416].end 8724.52409375
transcript.pyannote[1417].speaker SPEAKER_07
transcript.pyannote[1417].start 8728.69221875
transcript.pyannote[1417].end 8730.22784375
transcript.pyannote[1418].speaker SPEAKER_06
transcript.pyannote[1418].start 8729.63721875
transcript.pyannote[1418].end 8744.36909375
transcript.pyannote[1419].speaker SPEAKER_19
transcript.pyannote[1419].start 8738.85096875
transcript.pyannote[1419].end 8739.15471875
transcript.pyannote[1420].speaker SPEAKER_27
transcript.pyannote[1420].start 8739.15471875
transcript.pyannote[1420].end 8739.17159375
transcript.pyannote[1421].speaker SPEAKER_27
transcript.pyannote[1421].start 8742.05721875
transcript.pyannote[1421].end 8742.34409375
transcript.pyannote[1422].speaker SPEAKER_27
transcript.pyannote[1422].start 8744.06534375
transcript.pyannote[1422].end 8744.41971875
transcript.pyannote[1423].speaker SPEAKER_06
transcript.pyannote[1423].start 8744.41971875
transcript.pyannote[1423].end 8749.61721875
transcript.pyannote[1424].speaker SPEAKER_06
transcript.pyannote[1424].start 8750.12346875
transcript.pyannote[1424].end 8773.66409375
transcript.pyannote[1425].speaker SPEAKER_27
transcript.pyannote[1425].start 8758.42596875
transcript.pyannote[1425].end 8758.96596875
transcript.pyannote[1426].speaker SPEAKER_00
transcript.pyannote[1426].start 8758.96596875
transcript.pyannote[1426].end 8759.30346875
transcript.pyannote[1427].speaker SPEAKER_00
transcript.pyannote[1427].start 8760.13034375
transcript.pyannote[1427].end 8760.58596875
transcript.pyannote[1428].speaker SPEAKER_00
transcript.pyannote[1428].start 8763.18471875
transcript.pyannote[1428].end 8763.62346875
transcript.pyannote[1429].speaker SPEAKER_27
transcript.pyannote[1429].start 8773.56284375
transcript.pyannote[1429].end 8773.95096875
transcript.pyannote[1430].speaker SPEAKER_07
transcript.pyannote[1430].start 8773.95096875
transcript.pyannote[1430].end 8773.96784375
transcript.pyannote[1431].speaker SPEAKER_27
transcript.pyannote[1431].start 8773.96784375
transcript.pyannote[1431].end 8773.98471875
transcript.pyannote[1432].speaker SPEAKER_06
transcript.pyannote[1432].start 8773.98471875
transcript.pyannote[1432].end 8779.09784375
transcript.pyannote[1433].speaker SPEAKER_07
transcript.pyannote[1433].start 8777.88284375
transcript.pyannote[1433].end 8784.44721875
transcript.pyannote[1434].speaker SPEAKER_06
transcript.pyannote[1434].start 8783.51909375
transcript.pyannote[1434].end 8784.63284375
transcript.pyannote[1435].speaker SPEAKER_07
transcript.pyannote[1435].start 8784.85221875
transcript.pyannote[1435].end 8786.79284375
transcript.pyannote[1436].speaker SPEAKER_06
transcript.pyannote[1436].start 8786.64096875
transcript.pyannote[1436].end 8791.95659375
transcript.pyannote[1437].speaker SPEAKER_07
transcript.pyannote[1437].start 8787.14721875
transcript.pyannote[1437].end 8787.60284375
transcript.pyannote[1438].speaker SPEAKER_07
transcript.pyannote[1438].start 8790.33659375
transcript.pyannote[1438].end 8790.69096875
transcript.pyannote[1439].speaker SPEAKER_07
transcript.pyannote[1439].start 8791.92284375
transcript.pyannote[1439].end 8798.11596875
transcript.pyannote[1440].speaker SPEAKER_06
transcript.pyannote[1440].start 8795.60159375
transcript.pyannote[1440].end 8796.04034375
transcript.pyannote[1441].speaker SPEAKER_06
transcript.pyannote[1441].start 8798.11596875
transcript.pyannote[1441].end 8808.27471875
transcript.pyannote[1442].speaker SPEAKER_07
transcript.pyannote[1442].start 8806.23284375
transcript.pyannote[1442].end 8806.73909375
transcript.pyannote[1443].speaker SPEAKER_07
transcript.pyannote[1443].start 8807.46471875
transcript.pyannote[1443].end 8808.93284375
transcript.pyannote[1444].speaker SPEAKER_06
transcript.pyannote[1444].start 8809.50659375
transcript.pyannote[1444].end 8813.57346875
transcript.pyannote[1445].speaker SPEAKER_07
transcript.pyannote[1445].start 8813.42159375
transcript.pyannote[1445].end 8814.50159375
transcript.pyannote[1446].speaker SPEAKER_06
transcript.pyannote[1446].start 8813.89409375
transcript.pyannote[1446].end 8815.41284375
transcript.pyannote[1447].speaker SPEAKER_07
transcript.pyannote[1447].start 8814.92346875
transcript.pyannote[1447].end 8817.28596875
transcript.pyannote[1448].speaker SPEAKER_07
transcript.pyannote[1448].start 8818.04534375
transcript.pyannote[1448].end 8819.54721875
transcript.pyannote[1449].speaker SPEAKER_07
transcript.pyannote[1449].start 8819.69909375
transcript.pyannote[1449].end 8825.40284375
transcript.pyannote[1450].speaker SPEAKER_06
transcript.pyannote[1450].start 8824.44096875
transcript.pyannote[1450].end 8826.11159375
transcript.pyannote[1451].speaker SPEAKER_07
transcript.pyannote[1451].start 8826.11159375
transcript.pyannote[1451].end 8826.78659375
transcript.pyannote[1452].speaker SPEAKER_06
transcript.pyannote[1452].start 8826.28034375
transcript.pyannote[1452].end 8830.07721875
transcript.pyannote[1453].speaker SPEAKER_07
transcript.pyannote[1453].start 8827.79909375
transcript.pyannote[1453].end 8828.30534375
transcript.pyannote[1454].speaker SPEAKER_07
transcript.pyannote[1454].start 8829.57096875
transcript.pyannote[1454].end 8844.06659375
transcript.pyannote[1455].speaker SPEAKER_06
transcript.pyannote[1455].start 8832.13596875
transcript.pyannote[1455].end 8832.65909375
transcript.pyannote[1456].speaker SPEAKER_06
transcript.pyannote[1456].start 8834.34659375
transcript.pyannote[1456].end 8834.75159375
transcript.pyannote[1457].speaker SPEAKER_00
transcript.pyannote[1457].start 8839.03784375
transcript.pyannote[1457].end 8839.05471875
transcript.pyannote[1458].speaker SPEAKER_06
transcript.pyannote[1458].start 8839.05471875
transcript.pyannote[1458].end 8840.08409375
transcript.pyannote[1459].speaker SPEAKER_06
transcript.pyannote[1459].start 8844.11721875
transcript.pyannote[1459].end 8851.00221875
transcript.pyannote[1460].speaker SPEAKER_07
transcript.pyannote[1460].start 8844.87659375
transcript.pyannote[1460].end 8845.51784375
transcript.pyannote[1461].speaker SPEAKER_07
transcript.pyannote[1461].start 8851.13721875
transcript.pyannote[1461].end 8852.08221875
transcript.pyannote[1462].speaker SPEAKER_26
transcript.pyannote[1462].start 8852.08221875
transcript.pyannote[1462].end 8852.13284375
transcript.pyannote[1463].speaker SPEAKER_06
transcript.pyannote[1463].start 8852.13284375
transcript.pyannote[1463].end 8854.37721875
transcript.pyannote[1464].speaker SPEAKER_26
transcript.pyannote[1464].start 8854.98471875
transcript.pyannote[1464].end 8857.98846875
transcript.pyannote[1465].speaker SPEAKER_26
transcript.pyannote[1465].start 8860.55346875
transcript.pyannote[1465].end 8865.24471875
transcript.pyannote[1466].speaker SPEAKER_26
transcript.pyannote[1466].start 8867.70846875
transcript.pyannote[1466].end 8868.01221875
transcript.pyannote[1467].speaker SPEAKER_26
transcript.pyannote[1467].start 8869.42971875
transcript.pyannote[1467].end 8869.68284375
transcript.pyannote[1468].speaker SPEAKER_26
transcript.pyannote[1468].start 8870.47596875
transcript.pyannote[1468].end 8873.83409375
transcript.pyannote[1469].speaker SPEAKER_26
transcript.pyannote[1469].start 8874.89721875
transcript.pyannote[1469].end 8877.74909375
transcript.pyannote[1470].speaker SPEAKER_05
transcript.pyannote[1470].start 8882.60909375
transcript.pyannote[1470].end 8883.70596875
transcript.pyannote[1471].speaker SPEAKER_05
transcript.pyannote[1471].start 8883.97596875
transcript.pyannote[1471].end 8884.02659375
transcript.pyannote[1472].speaker SPEAKER_05
transcript.pyannote[1472].start 8884.38096875
transcript.pyannote[1472].end 8886.42284375
transcript.pyannote[1473].speaker SPEAKER_05
transcript.pyannote[1473].start 8887.73909375
transcript.pyannote[1473].end 8889.13971875
transcript.pyannote[1474].speaker SPEAKER_07
transcript.pyannote[1474].start 8889.44346875
transcript.pyannote[1474].end 8890.64159375
transcript.pyannote[1475].speaker SPEAKER_05
transcript.pyannote[1475].start 8898.37034375
transcript.pyannote[1475].end 8903.80409375
transcript.pyannote[1476].speaker SPEAKER_14
transcript.pyannote[1476].start 8898.38721875
transcript.pyannote[1476].end 8899.06221875
transcript.pyannote[1477].speaker SPEAKER_14
transcript.pyannote[1477].start 8900.53034375
transcript.pyannote[1477].end 8900.76659375
transcript.pyannote[1478].speaker SPEAKER_05
transcript.pyannote[1478].start 8904.07409375
transcript.pyannote[1478].end 8916.71346875
transcript.pyannote[1479].speaker SPEAKER_05
transcript.pyannote[1479].start 8917.05096875
transcript.pyannote[1479].end 8923.34534375
transcript.pyannote[1480].speaker SPEAKER_05
transcript.pyannote[1480].start 8923.95284375
transcript.pyannote[1480].end 8932.52534375
transcript.pyannote[1481].speaker SPEAKER_05
transcript.pyannote[1481].start 8932.67721875
transcript.pyannote[1481].end 8938.65096875
transcript.pyannote[1482].speaker SPEAKER_05
transcript.pyannote[1482].start 8939.27534375
transcript.pyannote[1482].end 8944.28721875
transcript.pyannote[1483].speaker SPEAKER_05
transcript.pyannote[1483].start 8944.81034375
transcript.pyannote[1483].end 8951.03721875
transcript.pyannote[1484].speaker SPEAKER_05
transcript.pyannote[1484].start 8951.59409375
transcript.pyannote[1484].end 8954.68221875
transcript.pyannote[1485].speaker SPEAKER_13
transcript.pyannote[1485].start 8955.28971875
transcript.pyannote[1485].end 8969.43096875
transcript.pyannote[1486].speaker SPEAKER_05
transcript.pyannote[1486].start 8957.19659375
transcript.pyannote[1486].end 8958.79971875
transcript.pyannote[1487].speaker SPEAKER_05
transcript.pyannote[1487].start 8960.35221875
transcript.pyannote[1487].end 8960.97659375
transcript.pyannote[1488].speaker SPEAKER_00
transcript.pyannote[1488].start 8960.97659375
transcript.pyannote[1488].end 8961.02721875
transcript.pyannote[1489].speaker SPEAKER_00
transcript.pyannote[1489].start 8966.86596875
transcript.pyannote[1489].end 8967.35534375
transcript.pyannote[1490].speaker SPEAKER_13
transcript.pyannote[1490].start 8969.54909375
transcript.pyannote[1490].end 9000.00846875
transcript.pyannote[1491].speaker SPEAKER_00
transcript.pyannote[1491].start 8983.90971875
transcript.pyannote[1491].end 8984.36534375
transcript.pyannote[1492].speaker SPEAKER_05
transcript.pyannote[1492].start 8992.46534375
transcript.pyannote[1492].end 8992.90409375
transcript.pyannote[1493].speaker SPEAKER_05
transcript.pyannote[1493].start 8997.76409375
transcript.pyannote[1493].end 9003.11346875
transcript.pyannote[1494].speaker SPEAKER_13
transcript.pyannote[1494].start 9001.56096875
transcript.pyannote[1494].end 9002.05034375
transcript.pyannote[1495].speaker SPEAKER_05
transcript.pyannote[1495].start 9003.58596875
transcript.pyannote[1495].end 9015.61784375
transcript.pyannote[1496].speaker SPEAKER_05
transcript.pyannote[1496].start 9015.70221875
transcript.pyannote[1496].end 9016.05659375
transcript.pyannote[1497].speaker SPEAKER_05
transcript.pyannote[1497].start 9016.47846875
transcript.pyannote[1497].end 9024.67971875
transcript.pyannote[1498].speaker SPEAKER_27
transcript.pyannote[1498].start 9023.95409375
transcript.pyannote[1498].end 9024.79784375
transcript.pyannote[1499].speaker SPEAKER_05
transcript.pyannote[1499].start 9025.13534375
transcript.pyannote[1499].end 9031.15971875
transcript.pyannote[1500].speaker SPEAKER_05
transcript.pyannote[1500].start 9031.39596875
transcript.pyannote[1500].end 9037.58909375
transcript.pyannote[1501].speaker SPEAKER_00
transcript.pyannote[1501].start 9036.45846875
transcript.pyannote[1501].end 9036.82971875
transcript.pyannote[1502].speaker SPEAKER_05
transcript.pyannote[1502].start 9037.74096875
transcript.pyannote[1502].end 9043.03971875
transcript.pyannote[1503].speaker SPEAKER_05
transcript.pyannote[1503].start 9043.32659375
transcript.pyannote[1503].end 9063.34034375
transcript.pyannote[1504].speaker SPEAKER_05
transcript.pyannote[1504].start 9063.52596875
transcript.pyannote[1504].end 9067.93034375
transcript.pyannote[1505].speaker SPEAKER_05
transcript.pyannote[1505].start 9067.99784375
transcript.pyannote[1505].end 9078.96659375
transcript.pyannote[1506].speaker SPEAKER_05
transcript.pyannote[1506].start 9079.35471875
transcript.pyannote[1506].end 9087.77534375
transcript.pyannote[1507].speaker SPEAKER_05
transcript.pyannote[1507].start 9088.29846875
transcript.pyannote[1507].end 9090.12096875
transcript.pyannote[1508].speaker SPEAKER_13
transcript.pyannote[1508].start 9088.66971875
transcript.pyannote[1508].end 9089.39534375
transcript.pyannote[1509].speaker SPEAKER_13
transcript.pyannote[1509].start 9090.05346875
transcript.pyannote[1509].end 9093.96846875
transcript.pyannote[1510].speaker SPEAKER_05
transcript.pyannote[1510].start 9093.24284375
transcript.pyannote[1510].end 9093.69846875
transcript.pyannote[1511].speaker SPEAKER_05
transcript.pyannote[1511].start 9094.66034375
transcript.pyannote[1511].end 9100.95471875
transcript.pyannote[1512].speaker SPEAKER_13
transcript.pyannote[1512].start 9100.68471875
transcript.pyannote[1512].end 9101.81534375
transcript.pyannote[1513].speaker SPEAKER_05
transcript.pyannote[1513].start 9102.00096875
transcript.pyannote[1513].end 9104.93721875
transcript.pyannote[1514].speaker SPEAKER_13
transcript.pyannote[1514].start 9102.45659375
transcript.pyannote[1514].end 9104.88659375
transcript.pyannote[1515].speaker SPEAKER_05
transcript.pyannote[1515].start 9105.39284375
transcript.pyannote[1515].end 9131.46471875
transcript.pyannote[1516].speaker SPEAKER_13
transcript.pyannote[1516].start 9125.91284375
transcript.pyannote[1516].end 9128.78159375
transcript.pyannote[1517].speaker SPEAKER_13
transcript.pyannote[1517].start 9131.09346875
transcript.pyannote[1517].end 9131.88659375
transcript.pyannote[1518].speaker SPEAKER_05
transcript.pyannote[1518].start 9131.76846875
transcript.pyannote[1518].end 9132.08909375
transcript.pyannote[1519].speaker SPEAKER_13
transcript.pyannote[1519].start 9131.95409375
transcript.pyannote[1519].end 9133.45596875
transcript.pyannote[1520].speaker SPEAKER_05
transcript.pyannote[1520].start 9133.45596875
transcript.pyannote[1520].end 9149.36909375
transcript.pyannote[1521].speaker SPEAKER_13
transcript.pyannote[1521].start 9135.12659375
transcript.pyannote[1521].end 9135.51471875
transcript.pyannote[1522].speaker SPEAKER_08
transcript.pyannote[1522].start 9144.69471875
transcript.pyannote[1522].end 9145.03221875
transcript.pyannote[1523].speaker SPEAKER_05
transcript.pyannote[1523].start 9149.97659375
transcript.pyannote[1523].end 9155.61284375
transcript.pyannote[1524].speaker SPEAKER_00
transcript.pyannote[1524].start 9152.38971875
transcript.pyannote[1524].end 9152.74409375
transcript.pyannote[1525].speaker SPEAKER_05
transcript.pyannote[1525].start 9156.52409375
transcript.pyannote[1525].end 9167.74596875
transcript.pyannote[1526].speaker SPEAKER_05
transcript.pyannote[1526].start 9168.04971875
transcript.pyannote[1526].end 9170.00721875
transcript.pyannote[1527].speaker SPEAKER_05
transcript.pyannote[1527].start 9170.36159375
transcript.pyannote[1527].end 9172.97721875
transcript.pyannote[1528].speaker SPEAKER_05
transcript.pyannote[1528].start 9173.48346875
transcript.pyannote[1528].end 9176.55471875
transcript.pyannote[1529].speaker SPEAKER_05
transcript.pyannote[1529].start 9176.90909375
transcript.pyannote[1529].end 9180.92534375
transcript.pyannote[1530].speaker SPEAKER_05
transcript.pyannote[1530].start 9180.97596875
transcript.pyannote[1530].end 9189.58221875
transcript.pyannote[1531].speaker SPEAKER_05
transcript.pyannote[1531].start 9189.83534375
transcript.pyannote[1531].end 9198.00284375
transcript.pyannote[1532].speaker SPEAKER_05
transcript.pyannote[1532].start 9198.23909375
transcript.pyannote[1532].end 9212.97096875
transcript.pyannote[1533].speaker SPEAKER_05
transcript.pyannote[1533].start 9213.89909375
transcript.pyannote[1533].end 9219.60284375
transcript.pyannote[1534].speaker SPEAKER_05
transcript.pyannote[1534].start 9219.67034375
transcript.pyannote[1534].end 9221.56034375
transcript.pyannote[1535].speaker SPEAKER_05
transcript.pyannote[1535].start 9221.67846875
transcript.pyannote[1535].end 9224.29409375
transcript.pyannote[1536].speaker SPEAKER_05
transcript.pyannote[1536].start 9224.51346875
transcript.pyannote[1536].end 9228.00659375
transcript.pyannote[1537].speaker SPEAKER_05
transcript.pyannote[1537].start 9228.34409375
transcript.pyannote[1537].end 9231.60096875
transcript.pyannote[1538].speaker SPEAKER_05
transcript.pyannote[1538].start 9231.78659375
transcript.pyannote[1538].end 9236.62971875
transcript.pyannote[1539].speaker SPEAKER_05
transcript.pyannote[1539].start 9237.27096875
transcript.pyannote[1539].end 9250.63596875
transcript.pyannote[1540].speaker SPEAKER_05
transcript.pyannote[1540].start 9251.29409375
transcript.pyannote[1540].end 9261.58784375
transcript.pyannote[1541].speaker SPEAKER_13
transcript.pyannote[1541].start 9261.82409375
transcript.pyannote[1541].end 9278.04096875
transcript.pyannote[1542].speaker SPEAKER_00
transcript.pyannote[1542].start 9273.97409375
transcript.pyannote[1542].end 9274.34534375
transcript.pyannote[1543].speaker SPEAKER_13
transcript.pyannote[1543].start 9278.51346875
transcript.pyannote[1543].end 9293.51534375
transcript.pyannote[1544].speaker SPEAKER_00
transcript.pyannote[1544].start 9284.75721875
transcript.pyannote[1544].end 9285.14534375
transcript.pyannote[1545].speaker SPEAKER_00
transcript.pyannote[1545].start 9285.90471875
transcript.pyannote[1545].end 9286.32659375
transcript.pyannote[1546].speaker SPEAKER_13
transcript.pyannote[1546].start 9293.90346875
transcript.pyannote[1546].end 9313.00596875
transcript.pyannote[1547].speaker SPEAKER_05
transcript.pyannote[1547].start 9312.87096875
transcript.pyannote[1547].end 9330.97784375
transcript.pyannote[1548].speaker SPEAKER_13
transcript.pyannote[1548].start 9330.97784375
transcript.pyannote[1548].end 9331.46721875
transcript.pyannote[1549].speaker SPEAKER_05
transcript.pyannote[1549].start 9331.63596875
transcript.pyannote[1549].end 9333.39096875
transcript.pyannote[1550].speaker SPEAKER_13
transcript.pyannote[1550].start 9333.62721875
transcript.pyannote[1550].end 9336.86721875
transcript.pyannote[1551].speaker SPEAKER_05
transcript.pyannote[1551].start 9335.75346875
transcript.pyannote[1551].end 9345.15284375
transcript.pyannote[1552].speaker SPEAKER_13
transcript.pyannote[1552].start 9337.69409375
transcript.pyannote[1552].end 9339.12846875
transcript.pyannote[1553].speaker SPEAKER_13
transcript.pyannote[1553].start 9345.00096875
transcript.pyannote[1553].end 9348.91596875
transcript.pyannote[1554].speaker SPEAKER_05
transcript.pyannote[1554].start 9345.30471875
transcript.pyannote[1554].end 9346.35096875
transcript.pyannote[1555].speaker SPEAKER_05
transcript.pyannote[1555].start 9347.71784375
transcript.pyannote[1555].end 9352.62846875
transcript.pyannote[1556].speaker SPEAKER_13
transcript.pyannote[1556].start 9350.33346875
transcript.pyannote[1556].end 9350.90721875
transcript.pyannote[1557].speaker SPEAKER_13
transcript.pyannote[1557].start 9351.83534375
transcript.pyannote[1557].end 9352.42596875
transcript.pyannote[1558].speaker SPEAKER_05
transcript.pyannote[1558].start 9353.26971875
transcript.pyannote[1558].end 9355.49721875
transcript.pyannote[1559].speaker SPEAKER_05
transcript.pyannote[1559].start 9355.81784375
transcript.pyannote[1559].end 9359.36159375
transcript.pyannote[1560].speaker SPEAKER_05
transcript.pyannote[1560].start 9359.83409375
transcript.pyannote[1560].end 9386.98596875
transcript.pyannote[1561].speaker SPEAKER_05
transcript.pyannote[1561].start 9387.54284375
transcript.pyannote[1561].end 9405.09284375
transcript.pyannote[1562].speaker SPEAKER_27
transcript.pyannote[1562].start 9404.56971875
transcript.pyannote[1562].end 9405.04221875
transcript.pyannote[1563].speaker SPEAKER_27
transcript.pyannote[1563].start 9405.09284375
transcript.pyannote[1563].end 9405.22784375
transcript.pyannote[1564].speaker SPEAKER_05
transcript.pyannote[1564].start 9405.22784375
transcript.pyannote[1564].end 9409.07534375
transcript.pyannote[1565].speaker SPEAKER_27
transcript.pyannote[1565].start 9405.24471875
transcript.pyannote[1565].end 9405.37971875
transcript.pyannote[1566].speaker SPEAKER_27
transcript.pyannote[1566].start 9406.07159375
transcript.pyannote[1566].end 9406.81409375
transcript.pyannote[1567].speaker SPEAKER_07
transcript.pyannote[1567].start 9410.25659375
transcript.pyannote[1567].end 9411.94409375
transcript.pyannote[1568].speaker SPEAKER_05
transcript.pyannote[1568].start 9417.44534375
transcript.pyannote[1568].end 9418.67721875
transcript.pyannote[1569].speaker SPEAKER_29
transcript.pyannote[1569].start 9417.51284375
transcript.pyannote[1569].end 9417.78284375
transcript.pyannote[1570].speaker SPEAKER_05
transcript.pyannote[1570].start 9418.89659375
transcript.pyannote[1570].end 9424.12784375
transcript.pyannote[1571].speaker SPEAKER_05
transcript.pyannote[1571].start 9424.39784375
transcript.pyannote[1571].end 9426.89534375
transcript.pyannote[1572].speaker SPEAKER_05
transcript.pyannote[1572].start 9427.62096875
transcript.pyannote[1572].end 9433.59471875
transcript.pyannote[1573].speaker SPEAKER_05
transcript.pyannote[1573].start 9433.67909375
transcript.pyannote[1573].end 9453.03471875
transcript.pyannote[1574].speaker SPEAKER_05
transcript.pyannote[1574].start 9454.28346875
transcript.pyannote[1574].end 9456.62909375
transcript.pyannote[1575].speaker SPEAKER_05
transcript.pyannote[1575].start 9457.92846875
transcript.pyannote[1575].end 9457.94534375
transcript.pyannote[1576].speaker SPEAKER_03
transcript.pyannote[1576].start 9457.94534375
transcript.pyannote[1576].end 9458.24909375
transcript.pyannote[1577].speaker SPEAKER_03
transcript.pyannote[1577].start 9459.00846875
transcript.pyannote[1577].end 9461.84346875
transcript.pyannote[1578].speaker SPEAKER_03
transcript.pyannote[1578].start 9462.02909375
transcript.pyannote[1578].end 9464.40846875
transcript.pyannote[1579].speaker SPEAKER_03
transcript.pyannote[1579].start 9464.83034375
transcript.pyannote[1579].end 9470.04471875
transcript.pyannote[1580].speaker SPEAKER_03
transcript.pyannote[1580].start 9470.55096875
transcript.pyannote[1580].end 9476.18721875
transcript.pyannote[1581].speaker SPEAKER_02
transcript.pyannote[1581].start 9475.51221875
transcript.pyannote[1581].end 9476.54159375
transcript.pyannote[1582].speaker SPEAKER_03
transcript.pyannote[1582].start 9476.54159375
transcript.pyannote[1582].end 9480.69284375
transcript.pyannote[1583].speaker SPEAKER_03
transcript.pyannote[1583].start 9480.92909375
transcript.pyannote[1583].end 9484.77659375
transcript.pyannote[1584].speaker SPEAKER_03
transcript.pyannote[1584].start 9485.18159375
transcript.pyannote[1584].end 9488.16846875
transcript.pyannote[1585].speaker SPEAKER_03
transcript.pyannote[1585].start 9488.35409375
transcript.pyannote[1585].end 9491.84721875
transcript.pyannote[1586].speaker SPEAKER_05
transcript.pyannote[1586].start 9493.01159375
transcript.pyannote[1586].end 9497.82096875
transcript.pyannote[1587].speaker SPEAKER_03
transcript.pyannote[1587].start 9496.92659375
transcript.pyannote[1587].end 9498.91784375
transcript.pyannote[1588].speaker SPEAKER_05
transcript.pyannote[1588].start 9498.34409375
transcript.pyannote[1588].end 9502.12409375
transcript.pyannote[1589].speaker SPEAKER_03
transcript.pyannote[1589].start 9502.12409375
transcript.pyannote[1589].end 9502.52909375
transcript.pyannote[1590].speaker SPEAKER_05
transcript.pyannote[1590].start 9502.52909375
transcript.pyannote[1590].end 9503.25471875
transcript.pyannote[1591].speaker SPEAKER_03
transcript.pyannote[1591].start 9504.26721875
transcript.pyannote[1591].end 9511.69221875
transcript.pyannote[1592].speaker SPEAKER_05
transcript.pyannote[1592].start 9511.91159375
transcript.pyannote[1592].end 9512.28284375
transcript.pyannote[1593].speaker SPEAKER_05
transcript.pyannote[1593].start 9512.50221875
transcript.pyannote[1593].end 9513.44721875
transcript.pyannote[1594].speaker SPEAKER_03
transcript.pyannote[1594].start 9512.56971875
transcript.pyannote[1594].end 9514.71284375
transcript.pyannote[1595].speaker SPEAKER_05
transcript.pyannote[1595].start 9513.80159375
transcript.pyannote[1595].end 9514.03784375
transcript.pyannote[1596].speaker SPEAKER_05
transcript.pyannote[1596].start 9514.78034375
transcript.pyannote[1596].end 9515.21909375
transcript.pyannote[1597].speaker SPEAKER_03
transcript.pyannote[1597].start 9515.21909375
transcript.pyannote[1597].end 9515.70846875
transcript.pyannote[1598].speaker SPEAKER_05
transcript.pyannote[1598].start 9515.70846875
transcript.pyannote[1598].end 9515.72534375
transcript.pyannote[1599].speaker SPEAKER_05
transcript.pyannote[1599].start 9515.79284375
transcript.pyannote[1599].end 9543.61971875
transcript.pyannote[1600].speaker SPEAKER_07
transcript.pyannote[1600].start 9541.93221875
transcript.pyannote[1600].end 9542.75909375
transcript.pyannote[1601].speaker SPEAKER_07
transcript.pyannote[1601].start 9544.49721875
transcript.pyannote[1601].end 9549.00284375
transcript.pyannote[1602].speaker SPEAKER_27
transcript.pyannote[1602].start 9562.19909375
transcript.pyannote[1602].end 9564.07221875
transcript.pyannote[1603].speaker SPEAKER_27
transcript.pyannote[1603].start 9564.96659375
transcript.pyannote[1603].end 9565.03409375
transcript.pyannote[1604].speaker SPEAKER_07
transcript.pyannote[1604].start 10169.86784375
transcript.pyannote[1604].end 10180.24596875
transcript.pyannote[1605].speaker SPEAKER_07
transcript.pyannote[1605].start 10181.02221875
transcript.pyannote[1605].end 10184.31284375
transcript.pyannote[1606].speaker SPEAKER_11
transcript.pyannote[1606].start 10189.29096875
transcript.pyannote[1606].end 10196.59784375
transcript.pyannote[1607].speaker SPEAKER_07
transcript.pyannote[1607].start 10196.91846875
transcript.pyannote[1607].end 10199.85471875
transcript.pyannote[1608].speaker SPEAKER_11
transcript.pyannote[1608].start 10205.40659375
transcript.pyannote[1608].end 10205.77784375
transcript.pyannote[1609].speaker SPEAKER_10
transcript.pyannote[1609].start 10205.77784375
transcript.pyannote[1609].end 10206.04784375
transcript.pyannote[1610].speaker SPEAKER_11
transcript.pyannote[1610].start 10206.43596875
transcript.pyannote[1610].end 10212.19034375
transcript.pyannote[1611].speaker SPEAKER_11
transcript.pyannote[1611].start 10212.71346875
transcript.pyannote[1611].end 10215.61596875
transcript.pyannote[1612].speaker SPEAKER_11
transcript.pyannote[1612].start 10216.02096875
transcript.pyannote[1612].end 10223.12534375
transcript.pyannote[1613].speaker SPEAKER_11
transcript.pyannote[1613].start 10223.96909375
transcript.pyannote[1613].end 10224.55971875
transcript.pyannote[1614].speaker SPEAKER_11
transcript.pyannote[1614].start 10225.21784375
transcript.pyannote[1614].end 10227.58034375
transcript.pyannote[1615].speaker SPEAKER_11
transcript.pyannote[1615].start 10228.32284375
transcript.pyannote[1615].end 10228.94721875
transcript.pyannote[1616].speaker SPEAKER_11
transcript.pyannote[1616].start 10229.30159375
transcript.pyannote[1616].end 10233.60471875
transcript.pyannote[1617].speaker SPEAKER_11
transcript.pyannote[1617].start 10233.62159375
transcript.pyannote[1617].end 10236.49034375
transcript.pyannote[1618].speaker SPEAKER_11
transcript.pyannote[1618].start 10236.92909375
transcript.pyannote[1618].end 10238.46471875
transcript.pyannote[1619].speaker SPEAKER_11
transcript.pyannote[1619].start 10238.93721875
transcript.pyannote[1619].end 10242.43034375
transcript.pyannote[1620].speaker SPEAKER_11
transcript.pyannote[1620].start 10243.15596875
transcript.pyannote[1620].end 10245.38346875
transcript.pyannote[1621].speaker SPEAKER_11
transcript.pyannote[1621].start 10245.88971875
transcript.pyannote[1621].end 10254.83346875
transcript.pyannote[1622].speaker SPEAKER_11
transcript.pyannote[1622].start 10255.32284375
transcript.pyannote[1622].end 10257.17909375
transcript.pyannote[1623].speaker SPEAKER_11
transcript.pyannote[1623].start 10257.36471875
transcript.pyannote[1623].end 10263.52409375
transcript.pyannote[1624].speaker SPEAKER_11
transcript.pyannote[1624].start 10263.70971875
transcript.pyannote[1624].end 10265.63346875
transcript.pyannote[1625].speaker SPEAKER_11
transcript.pyannote[1625].start 10266.10596875
transcript.pyannote[1625].end 10268.82284375
transcript.pyannote[1626].speaker SPEAKER_11
transcript.pyannote[1626].start 10269.36284375
transcript.pyannote[1626].end 10274.89784375
transcript.pyannote[1627].speaker SPEAKER_11
transcript.pyannote[1627].start 10275.15096875
transcript.pyannote[1627].end 10282.22159375
transcript.pyannote[1628].speaker SPEAKER_11
transcript.pyannote[1628].start 10283.25096875
transcript.pyannote[1628].end 10289.56221875
transcript.pyannote[1629].speaker SPEAKER_11
transcript.pyannote[1629].start 10290.69284375
transcript.pyannote[1629].end 10295.35034375
transcript.pyannote[1630].speaker SPEAKER_11
transcript.pyannote[1630].start 10295.70471875
transcript.pyannote[1630].end 10297.08846875
transcript.pyannote[1631].speaker SPEAKER_11
transcript.pyannote[1631].start 10297.15596875
transcript.pyannote[1631].end 10301.18909375
transcript.pyannote[1632].speaker SPEAKER_11
transcript.pyannote[1632].start 10301.76284375
transcript.pyannote[1632].end 10305.12096875
transcript.pyannote[1633].speaker SPEAKER_11
transcript.pyannote[1633].start 10306.30221875
transcript.pyannote[1633].end 10307.12909375
transcript.pyannote[1634].speaker SPEAKER_11
transcript.pyannote[1634].start 10307.87159375
transcript.pyannote[1634].end 10308.17534375
transcript.pyannote[1635].speaker SPEAKER_11
transcript.pyannote[1635].start 10308.46221875
transcript.pyannote[1635].end 10310.77409375
transcript.pyannote[1636].speaker SPEAKER_11
transcript.pyannote[1636].start 10311.36471875
transcript.pyannote[1636].end 10311.76971875
transcript.pyannote[1637].speaker SPEAKER_11
transcript.pyannote[1637].start 10312.46159375
transcript.pyannote[1637].end 10314.21659375
transcript.pyannote[1638].speaker SPEAKER_11
transcript.pyannote[1638].start 10314.99284375
transcript.pyannote[1638].end 10316.27534375
transcript.pyannote[1639].speaker SPEAKER_11
transcript.pyannote[1639].start 10316.95034375
transcript.pyannote[1639].end 10332.00284375
transcript.pyannote[1640].speaker SPEAKER_11
transcript.pyannote[1640].start 10332.59346875
transcript.pyannote[1640].end 10338.55034375
transcript.pyannote[1641].speaker SPEAKER_11
transcript.pyannote[1641].start 10339.05659375
transcript.pyannote[1641].end 10339.09034375
transcript.pyannote[1642].speaker SPEAKER_10
transcript.pyannote[1642].start 10339.36034375
transcript.pyannote[1642].end 10390.72784375
transcript.pyannote[1643].speaker SPEAKER_00
transcript.pyannote[1643].start 10351.02096875
transcript.pyannote[1643].end 10351.56096875
transcript.pyannote[1644].speaker SPEAKER_11
transcript.pyannote[1644].start 10387.09971875
transcript.pyannote[1644].end 10387.65659375
transcript.pyannote[1645].speaker SPEAKER_11
transcript.pyannote[1645].start 10388.12909375
transcript.pyannote[1645].end 10391.68971875
transcript.pyannote[1646].speaker SPEAKER_10
transcript.pyannote[1646].start 10391.11596875
transcript.pyannote[1646].end 10410.87659375
transcript.pyannote[1647].speaker SPEAKER_11
transcript.pyannote[1647].start 10392.71909375
transcript.pyannote[1647].end 10393.14096875
transcript.pyannote[1648].speaker SPEAKER_11
transcript.pyannote[1648].start 10410.91034375
transcript.pyannote[1648].end 10420.15784375
transcript.pyannote[1649].speaker SPEAKER_10
transcript.pyannote[1649].start 10415.41596875
transcript.pyannote[1649].end 10415.77034375
transcript.pyannote[1650].speaker SPEAKER_11
transcript.pyannote[1650].start 10420.44471875
transcript.pyannote[1650].end 10421.25471875
transcript.pyannote[1651].speaker SPEAKER_11
transcript.pyannote[1651].start 10421.42346875
transcript.pyannote[1651].end 10422.82409375
transcript.pyannote[1652].speaker SPEAKER_11
transcript.pyannote[1652].start 10423.21221875
transcript.pyannote[1652].end 10425.23721875
transcript.pyannote[1653].speaker SPEAKER_11
transcript.pyannote[1653].start 10425.45659375
transcript.pyannote[1653].end 10431.19409375
transcript.pyannote[1654].speaker SPEAKER_11
transcript.pyannote[1654].start 10431.73409375
transcript.pyannote[1654].end 10438.53471875
transcript.pyannote[1655].speaker SPEAKER_11
transcript.pyannote[1655].start 10439.10846875
transcript.pyannote[1655].end 10444.69409375
transcript.pyannote[1656].speaker SPEAKER_11
transcript.pyannote[1656].start 10445.20034375
transcript.pyannote[1656].end 10458.24471875
transcript.pyannote[1657].speaker SPEAKER_11
transcript.pyannote[1657].start 10458.97034375
transcript.pyannote[1657].end 10475.52471875
transcript.pyannote[1658].speaker SPEAKER_11
transcript.pyannote[1658].start 10475.79471875
transcript.pyannote[1658].end 10476.41909375
transcript.pyannote[1659].speaker SPEAKER_11
transcript.pyannote[1659].start 10476.63846875
transcript.pyannote[1659].end 10481.34659375
transcript.pyannote[1660].speaker SPEAKER_11
transcript.pyannote[1660].start 10481.97096875
transcript.pyannote[1660].end 10496.77034375
transcript.pyannote[1661].speaker SPEAKER_03
transcript.pyannote[1661].start 10497.85034375
transcript.pyannote[1661].end 10504.46534375
transcript.pyannote[1662].speaker SPEAKER_03
transcript.pyannote[1662].start 10504.60034375
transcript.pyannote[1662].end 10518.92721875
transcript.pyannote[1663].speaker SPEAKER_03
transcript.pyannote[1663].start 10520.47971875
transcript.pyannote[1663].end 10524.14159375
transcript.pyannote[1664].speaker SPEAKER_11
transcript.pyannote[1664].start 10523.60159375
transcript.pyannote[1664].end 10536.62909375
transcript.pyannote[1665].speaker SPEAKER_11
transcript.pyannote[1665].start 10537.30409375
transcript.pyannote[1665].end 10539.02534375
transcript.pyannote[1666].speaker SPEAKER_11
transcript.pyannote[1666].start 10539.37971875
transcript.pyannote[1666].end 10540.29096875
transcript.pyannote[1667].speaker SPEAKER_03
transcript.pyannote[1667].start 10541.57346875
transcript.pyannote[1667].end 10546.90596875
transcript.pyannote[1668].speaker SPEAKER_03
transcript.pyannote[1668].start 10548.15471875
transcript.pyannote[1668].end 10553.01471875
transcript.pyannote[1669].speaker SPEAKER_11
transcript.pyannote[1669].start 10552.37346875
transcript.pyannote[1669].end 10561.65471875
transcript.pyannote[1670].speaker SPEAKER_11
transcript.pyannote[1670].start 10562.14409375
transcript.pyannote[1670].end 10569.72096875
transcript.pyannote[1671].speaker SPEAKER_11
transcript.pyannote[1671].start 10570.15971875
transcript.pyannote[1671].end 10595.18534375
transcript.pyannote[1672].speaker SPEAKER_11
transcript.pyannote[1672].start 10595.30346875
transcript.pyannote[1672].end 10597.95284375
transcript.pyannote[1673].speaker SPEAKER_13
transcript.pyannote[1673].start 10599.31971875
transcript.pyannote[1673].end 10599.62346875
transcript.pyannote[1674].speaker SPEAKER_13
transcript.pyannote[1674].start 10599.97784375
transcript.pyannote[1674].end 10634.97659375
transcript.pyannote[1675].speaker SPEAKER_11
transcript.pyannote[1675].start 10607.68971875
transcript.pyannote[1675].end 10608.88784375
transcript.pyannote[1676].speaker SPEAKER_11
transcript.pyannote[1676].start 10633.67721875
transcript.pyannote[1676].end 10648.03784375
transcript.pyannote[1677].speaker SPEAKER_13
transcript.pyannote[1677].start 10648.62846875
transcript.pyannote[1677].end 10663.61346875
transcript.pyannote[1678].speaker SPEAKER_11
transcript.pyannote[1678].start 10662.73596875
transcript.pyannote[1678].end 10701.91971875
transcript.pyannote[1679].speaker SPEAKER_13
transcript.pyannote[1679].start 10664.81159375
transcript.pyannote[1679].end 10665.16596875
transcript.pyannote[1680].speaker SPEAKER_00
transcript.pyannote[1680].start 10672.89471875
transcript.pyannote[1680].end 10673.31659375
transcript.pyannote[1681].speaker SPEAKER_11
transcript.pyannote[1681].start 10702.39221875
transcript.pyannote[1681].end 10706.30721875
transcript.pyannote[1682].speaker SPEAKER_11
transcript.pyannote[1682].start 10706.57721875
transcript.pyannote[1682].end 10710.42471875
transcript.pyannote[1683].speaker SPEAKER_11
transcript.pyannote[1683].start 10710.91409375
transcript.pyannote[1683].end 10713.58034375
transcript.pyannote[1684].speaker SPEAKER_11
transcript.pyannote[1684].start 10715.31846875
transcript.pyannote[1684].end 10717.56284375
transcript.pyannote[1685].speaker SPEAKER_16
transcript.pyannote[1685].start 10715.35221875
transcript.pyannote[1685].end 10715.77409375
transcript.pyannote[1686].speaker SPEAKER_16
transcript.pyannote[1686].start 10715.82471875
transcript.pyannote[1686].end 10716.16221875
transcript.pyannote[1687].speaker SPEAKER_16
transcript.pyannote[1687].start 10717.79909375
transcript.pyannote[1687].end 10727.41784375
transcript.pyannote[1688].speaker SPEAKER_11
transcript.pyannote[1688].start 10718.74409375
transcript.pyannote[1688].end 10719.06471875
transcript.pyannote[1689].speaker SPEAKER_16
transcript.pyannote[1689].start 10727.58659375
transcript.pyannote[1689].end 10735.48409375
transcript.pyannote[1690].speaker SPEAKER_11
transcript.pyannote[1690].start 10735.45034375
transcript.pyannote[1690].end 10735.46721875
transcript.pyannote[1691].speaker SPEAKER_11
transcript.pyannote[1691].start 10735.48409375
transcript.pyannote[1691].end 10735.88909375
transcript.pyannote[1692].speaker SPEAKER_16
transcript.pyannote[1692].start 10735.50096875
transcript.pyannote[1692].end 10735.63596875
transcript.pyannote[1693].speaker SPEAKER_16
transcript.pyannote[1693].start 10735.80471875
transcript.pyannote[1693].end 10751.53221875
transcript.pyannote[1694].speaker SPEAKER_11
transcript.pyannote[1694].start 10750.70534375
transcript.pyannote[1694].end 10758.38346875
transcript.pyannote[1695].speaker SPEAKER_11
transcript.pyannote[1695].start 10758.83909375
transcript.pyannote[1695].end 10781.35034375
transcript.pyannote[1696].speaker SPEAKER_11
transcript.pyannote[1696].start 10781.83971875
transcript.pyannote[1696].end 10783.91534375
transcript.pyannote[1697].speaker SPEAKER_11
transcript.pyannote[1697].start 10784.32034375
transcript.pyannote[1697].end 10785.60284375
transcript.pyannote[1698].speaker SPEAKER_16
transcript.pyannote[1698].start 10785.73784375
transcript.pyannote[1698].end 10799.08596875
transcript.pyannote[1699].speaker SPEAKER_11
transcript.pyannote[1699].start 10796.77409375
transcript.pyannote[1699].end 10797.07784375
transcript.pyannote[1700].speaker SPEAKER_11
transcript.pyannote[1700].start 10798.56284375
transcript.pyannote[1700].end 10809.24471875
transcript.pyannote[1701].speaker SPEAKER_11
transcript.pyannote[1701].start 10809.61596875
transcript.pyannote[1701].end 10815.23534375
transcript.pyannote[1702].speaker SPEAKER_16
transcript.pyannote[1702].start 10815.23534375
transcript.pyannote[1702].end 10817.02409375
transcript.pyannote[1703].speaker SPEAKER_11
transcript.pyannote[1703].start 10817.02409375
transcript.pyannote[1703].end 10818.03659375
transcript.pyannote[1704].speaker SPEAKER_16
transcript.pyannote[1704].start 10818.66096875
transcript.pyannote[1704].end 10818.93096875
transcript.pyannote[1705].speaker SPEAKER_16
transcript.pyannote[1705].start 10819.40346875
transcript.pyannote[1705].end 10819.94346875
transcript.pyannote[1706].speaker SPEAKER_11
transcript.pyannote[1706].start 10819.42034375
transcript.pyannote[1706].end 10820.24721875
transcript.pyannote[1707].speaker SPEAKER_16
transcript.pyannote[1707].start 10820.24721875
transcript.pyannote[1707].end 10826.33909375
transcript.pyannote[1708].speaker SPEAKER_11
transcript.pyannote[1708].start 10825.32659375
transcript.pyannote[1708].end 10829.35971875
transcript.pyannote[1709].speaker SPEAKER_16
transcript.pyannote[1709].start 10829.51159375
transcript.pyannote[1709].end 10833.56159375
transcript.pyannote[1710].speaker SPEAKER_11
transcript.pyannote[1710].start 10830.59159375
transcript.pyannote[1710].end 10831.04721875
transcript.pyannote[1711].speaker SPEAKER_11
transcript.pyannote[1711].start 10832.59971875
transcript.pyannote[1711].end 10833.51096875
transcript.pyannote[1712].speaker SPEAKER_11
transcript.pyannote[1712].start 10833.56159375
transcript.pyannote[1712].end 10839.97409375
transcript.pyannote[1713].speaker SPEAKER_16
transcript.pyannote[1713].start 10837.81409375
transcript.pyannote[1713].end 10841.12159375
transcript.pyannote[1714].speaker SPEAKER_11
transcript.pyannote[1714].start 10841.12159375
transcript.pyannote[1714].end 10842.87659375
transcript.pyannote[1715].speaker SPEAKER_11
transcript.pyannote[1715].start 10843.21409375
transcript.pyannote[1715].end 10860.89909375
transcript.pyannote[1716].speaker SPEAKER_16
transcript.pyannote[1716].start 10843.24784375
transcript.pyannote[1716].end 10843.48409375
transcript.pyannote[1717].speaker SPEAKER_00
transcript.pyannote[1717].start 10849.94721875
transcript.pyannote[1717].end 10850.45346875
transcript.pyannote[1718].speaker SPEAKER_16
transcript.pyannote[1718].start 10852.93409375
transcript.pyannote[1718].end 10853.60909375
transcript.pyannote[1719].speaker SPEAKER_00
transcript.pyannote[1719].start 10853.60909375
transcript.pyannote[1719].end 10853.64284375
transcript.pyannote[1720].speaker SPEAKER_16
transcript.pyannote[1720].start 10860.56159375
transcript.pyannote[1720].end 10874.92221875
transcript.pyannote[1721].speaker SPEAKER_11
transcript.pyannote[1721].start 10873.75784375
transcript.pyannote[1721].end 10880.44034375
transcript.pyannote[1722].speaker SPEAKER_16
transcript.pyannote[1722].start 10876.99784375
transcript.pyannote[1722].end 10878.04409375
transcript.pyannote[1723].speaker SPEAKER_16
transcript.pyannote[1723].start 10881.13221875
transcript.pyannote[1723].end 10885.33409375
transcript.pyannote[1724].speaker SPEAKER_11
transcript.pyannote[1724].start 10881.14909375
transcript.pyannote[1724].end 10882.12784375
transcript.pyannote[1725].speaker SPEAKER_11
transcript.pyannote[1725].start 10885.30034375
transcript.pyannote[1725].end 10885.31721875
transcript.pyannote[1726].speaker SPEAKER_11
transcript.pyannote[1726].start 10885.33409375
transcript.pyannote[1726].end 10900.28534375
transcript.pyannote[1727].speaker SPEAKER_16
transcript.pyannote[1727].start 10886.09346875
transcript.pyannote[1727].end 10886.66721875
transcript.pyannote[1728].speaker SPEAKER_16
transcript.pyannote[1728].start 10888.28721875
transcript.pyannote[1728].end 10888.84409375
transcript.pyannote[1729].speaker SPEAKER_16
transcript.pyannote[1729].start 10889.72159375
transcript.pyannote[1729].end 10890.34596875
transcript.pyannote[1730].speaker SPEAKER_16
transcript.pyannote[1730].start 10891.67909375
transcript.pyannote[1730].end 10892.13471875
transcript.pyannote[1731].speaker SPEAKER_16
transcript.pyannote[1731].start 10896.84284375
transcript.pyannote[1731].end 10903.06971875
transcript.pyannote[1732].speaker SPEAKER_11
transcript.pyannote[1732].start 10901.82096875
transcript.pyannote[1732].end 10903.03596875
transcript.pyannote[1733].speaker SPEAKER_16
transcript.pyannote[1733].start 10903.50846875
transcript.pyannote[1733].end 10910.88284375
transcript.pyannote[1734].speaker SPEAKER_11
transcript.pyannote[1734].start 10903.67721875
transcript.pyannote[1734].end 10905.12846875
transcript.pyannote[1735].speaker SPEAKER_11
transcript.pyannote[1735].start 10910.93346875
transcript.pyannote[1735].end 10915.82721875
transcript.pyannote[1736].speaker SPEAKER_16
transcript.pyannote[1736].start 10913.41409375
transcript.pyannote[1736].end 10913.68409375
transcript.pyannote[1737].speaker SPEAKER_16
transcript.pyannote[1737].start 10914.62909375
transcript.pyannote[1737].end 10919.37096875
transcript.pyannote[1738].speaker SPEAKER_11
transcript.pyannote[1738].start 10918.00409375
transcript.pyannote[1738].end 10918.79721875
transcript.pyannote[1739].speaker SPEAKER_07
transcript.pyannote[1739].start 10918.91534375
transcript.pyannote[1739].end 10924.12971875
transcript.pyannote[1740].speaker SPEAKER_22
transcript.pyannote[1740].start 10933.42784375
transcript.pyannote[1740].end 10938.03471875
transcript.pyannote[1741].speaker SPEAKER_07
transcript.pyannote[1741].start 10938.03471875
transcript.pyannote[1741].end 10938.10221875
transcript.pyannote[1742].speaker SPEAKER_07
transcript.pyannote[1742].start 10938.54096875
transcript.pyannote[1742].end 10941.56159375
transcript.pyannote[1743].speaker SPEAKER_14
transcript.pyannote[1743].start 10945.42596875
transcript.pyannote[1743].end 10945.44284375
transcript.pyannote[1744].speaker SPEAKER_16
transcript.pyannote[1744].start 10945.44284375
transcript.pyannote[1744].end 10946.50596875
transcript.pyannote[1745].speaker SPEAKER_22
transcript.pyannote[1745].start 10947.60284375
transcript.pyannote[1745].end 10954.63971875
transcript.pyannote[1746].speaker SPEAKER_22
transcript.pyannote[1746].start 10954.89284375
transcript.pyannote[1746].end 10966.78971875
transcript.pyannote[1747].speaker SPEAKER_22
transcript.pyannote[1747].start 10967.75159375
transcript.pyannote[1747].end 10970.02971875
transcript.pyannote[1748].speaker SPEAKER_22
transcript.pyannote[1748].start 10970.43471875
transcript.pyannote[1748].end 10977.21846875
transcript.pyannote[1749].speaker SPEAKER_22
transcript.pyannote[1749].start 10978.18034375
transcript.pyannote[1749].end 10980.42471875
transcript.pyannote[1750].speaker SPEAKER_22
transcript.pyannote[1750].start 10981.08284375
transcript.pyannote[1750].end 10985.90909375
transcript.pyannote[1751].speaker SPEAKER_22
transcript.pyannote[1751].start 10986.12846875
transcript.pyannote[1751].end 10989.30096875
transcript.pyannote[1752].speaker SPEAKER_22
transcript.pyannote[1752].start 10990.22909375
transcript.pyannote[1752].end 10991.44409375
transcript.pyannote[1753].speaker SPEAKER_22
transcript.pyannote[1753].start 10992.03471875
transcript.pyannote[1753].end 10993.28346875
transcript.pyannote[1754].speaker SPEAKER_22
transcript.pyannote[1754].start 10994.12721875
transcript.pyannote[1754].end 10995.05534375
transcript.pyannote[1755].speaker SPEAKER_22
transcript.pyannote[1755].start 10995.51096875
transcript.pyannote[1755].end 11007.82971875
transcript.pyannote[1756].speaker SPEAKER_22
transcript.pyannote[1756].start 11009.11221875
transcript.pyannote[1756].end 11015.84534375
transcript.pyannote[1757].speaker SPEAKER_22
transcript.pyannote[1757].start 11016.53721875
transcript.pyannote[1757].end 11025.00846875
transcript.pyannote[1758].speaker SPEAKER_22
transcript.pyannote[1758].start 11025.97034375
transcript.pyannote[1758].end 11029.32846875
transcript.pyannote[1759].speaker SPEAKER_22
transcript.pyannote[1759].start 11030.08784375
transcript.pyannote[1759].end 11031.94409375
transcript.pyannote[1760].speaker SPEAKER_22
transcript.pyannote[1760].start 11034.03659375
transcript.pyannote[1760].end 11035.20096875
transcript.pyannote[1761].speaker SPEAKER_22
transcript.pyannote[1761].start 11035.99409375
transcript.pyannote[1761].end 11037.66471875
transcript.pyannote[1762].speaker SPEAKER_22
transcript.pyannote[1762].start 11038.28909375
transcript.pyannote[1762].end 11039.89221875
transcript.pyannote[1763].speaker SPEAKER_22
transcript.pyannote[1763].start 11040.39846875
transcript.pyannote[1763].end 11041.73159375
transcript.pyannote[1764].speaker SPEAKER_22
transcript.pyannote[1764].start 11042.18721875
transcript.pyannote[1764].end 11043.50346875
transcript.pyannote[1765].speaker SPEAKER_22
transcript.pyannote[1765].start 11044.63409375
transcript.pyannote[1765].end 11049.57846875
transcript.pyannote[1766].speaker SPEAKER_22
transcript.pyannote[1766].start 11050.21971875
transcript.pyannote[1766].end 11051.46846875
transcript.pyannote[1767].speaker SPEAKER_22
transcript.pyannote[1767].start 11051.87346875
transcript.pyannote[1767].end 11054.32034375
transcript.pyannote[1768].speaker SPEAKER_22
transcript.pyannote[1768].start 11055.36659375
transcript.pyannote[1768].end 11057.25659375
transcript.pyannote[1769].speaker SPEAKER_22
transcript.pyannote[1769].start 11058.30284375
transcript.pyannote[1769].end 11059.07909375
transcript.pyannote[1770].speaker SPEAKER_22
transcript.pyannote[1770].start 11059.72034375
transcript.pyannote[1770].end 11061.30659375
transcript.pyannote[1771].speaker SPEAKER_22
transcript.pyannote[1771].start 11061.98159375
transcript.pyannote[1771].end 11063.50034375
transcript.pyannote[1772].speaker SPEAKER_22
transcript.pyannote[1772].start 11064.73221875
transcript.pyannote[1772].end 11073.76034375
transcript.pyannote[1773].speaker SPEAKER_22
transcript.pyannote[1773].start 11074.31721875
transcript.pyannote[1773].end 11080.08846875
transcript.pyannote[1774].speaker SPEAKER_22
transcript.pyannote[1774].start 11080.84784375
transcript.pyannote[1774].end 11086.82159375
transcript.pyannote[1775].speaker SPEAKER_22
transcript.pyannote[1775].start 11087.26034375
transcript.pyannote[1775].end 11088.91409375
transcript.pyannote[1776].speaker SPEAKER_22
transcript.pyannote[1776].start 11089.01534375
transcript.pyannote[1776].end 11093.08221875
transcript.pyannote[1777].speaker SPEAKER_22
transcript.pyannote[1777].start 11093.45346875
transcript.pyannote[1777].end 11096.20409375
transcript.pyannote[1778].speaker SPEAKER_22
transcript.pyannote[1778].start 11096.54159375
transcript.pyannote[1778].end 11097.94221875
transcript.pyannote[1779].speaker SPEAKER_22
transcript.pyannote[1779].start 11098.49909375
transcript.pyannote[1779].end 11099.68034375
transcript.pyannote[1780].speaker SPEAKER_13
transcript.pyannote[1780].start 11103.76409375
transcript.pyannote[1780].end 11103.93284375
transcript.pyannote[1781].speaker SPEAKER_13
transcript.pyannote[1781].start 11103.96659375
transcript.pyannote[1781].end 11104.08471875
transcript.pyannote[1782].speaker SPEAKER_13
transcript.pyannote[1782].start 11104.10159375
transcript.pyannote[1782].end 11104.13534375
transcript.pyannote[1783].speaker SPEAKER_16
transcript.pyannote[1783].start 11104.13534375
transcript.pyannote[1783].end 11104.27034375
transcript.pyannote[1784].speaker SPEAKER_22
transcript.pyannote[1784].start 11105.19846875
transcript.pyannote[1784].end 11109.46784375
transcript.pyannote[1785].speaker SPEAKER_16
transcript.pyannote[1785].start 11110.32846875
transcript.pyannote[1785].end 11114.98596875
transcript.pyannote[1786].speaker SPEAKER_22
transcript.pyannote[1786].start 11114.49659375
transcript.pyannote[1786].end 11122.44471875
transcript.pyannote[1787].speaker SPEAKER_22
transcript.pyannote[1787].start 11123.17034375
transcript.pyannote[1787].end 11125.33034375
transcript.pyannote[1788].speaker SPEAKER_22
transcript.pyannote[1788].start 11125.93784375
transcript.pyannote[1788].end 11135.10096875
transcript.pyannote[1789].speaker SPEAKER_22
transcript.pyannote[1789].start 11136.19784375
transcript.pyannote[1789].end 11138.71221875
transcript.pyannote[1790].speaker SPEAKER_13
transcript.pyannote[1790].start 11138.17221875
transcript.pyannote[1790].end 11139.75846875
transcript.pyannote[1791].speaker SPEAKER_13
transcript.pyannote[1791].start 11140.50096875
transcript.pyannote[1791].end 11143.26846875
transcript.pyannote[1792].speaker SPEAKER_22
transcript.pyannote[1792].start 11142.98159375
transcript.pyannote[1792].end 11145.90096875
transcript.pyannote[1793].speaker SPEAKER_22
transcript.pyannote[1793].start 11148.63471875
transcript.pyannote[1793].end 11150.25471875
transcript.pyannote[1794].speaker SPEAKER_22
transcript.pyannote[1794].start 11150.71034375
transcript.pyannote[1794].end 11151.57096875
transcript.pyannote[1795].speaker SPEAKER_22
transcript.pyannote[1795].start 11152.44846875
transcript.pyannote[1795].end 11153.86596875
transcript.pyannote[1796].speaker SPEAKER_22
transcript.pyannote[1796].start 11154.18659375
transcript.pyannote[1796].end 11187.04221875
transcript.pyannote[1797].speaker SPEAKER_22
transcript.pyannote[1797].start 11187.64971875
transcript.pyannote[1797].end 11189.33721875
transcript.pyannote[1798].speaker SPEAKER_22
transcript.pyannote[1798].start 11189.79284375
transcript.pyannote[1798].end 11191.56471875
transcript.pyannote[1799].speaker SPEAKER_22
transcript.pyannote[1799].start 11192.59409375
transcript.pyannote[1799].end 11194.14659375
transcript.pyannote[1800].speaker SPEAKER_22
transcript.pyannote[1800].start 11194.60221875
transcript.pyannote[1800].end 11197.03221875
transcript.pyannote[1801].speaker SPEAKER_22
transcript.pyannote[1801].start 11197.16721875
transcript.pyannote[1801].end 11201.80784375
transcript.pyannote[1802].speaker SPEAKER_22
transcript.pyannote[1802].start 11202.43221875
transcript.pyannote[1802].end 11205.25034375
transcript.pyannote[1803].speaker SPEAKER_22
transcript.pyannote[1803].start 11205.70596875
transcript.pyannote[1803].end 11211.08909375
transcript.pyannote[1804].speaker SPEAKER_22
transcript.pyannote[1804].start 11211.61221875
transcript.pyannote[1804].end 11217.58596875
transcript.pyannote[1805].speaker SPEAKER_22
transcript.pyannote[1805].start 11218.64909375
transcript.pyannote[1805].end 11220.04971875
transcript.pyannote[1806].speaker SPEAKER_22
transcript.pyannote[1806].start 11220.53909375
transcript.pyannote[1806].end 11227.91346875
transcript.pyannote[1807].speaker SPEAKER_22
transcript.pyannote[1807].start 11228.50409375
transcript.pyannote[1807].end 11233.09409375
transcript.pyannote[1808].speaker SPEAKER_22
transcript.pyannote[1808].start 11233.54971875
transcript.pyannote[1808].end 11236.73909375
transcript.pyannote[1809].speaker SPEAKER_22
transcript.pyannote[1809].start 11237.11034375
transcript.pyannote[1809].end 11240.33346875
transcript.pyannote[1810].speaker SPEAKER_22
transcript.pyannote[1810].start 11241.12659375
transcript.pyannote[1810].end 11241.95346875
transcript.pyannote[1811].speaker SPEAKER_22
transcript.pyannote[1811].start 11242.20659375
transcript.pyannote[1811].end 11246.88096875
transcript.pyannote[1812].speaker SPEAKER_22
transcript.pyannote[1812].start 11246.94846875
transcript.pyannote[1812].end 11246.99909375
transcript.pyannote[1813].speaker SPEAKER_22
transcript.pyannote[1813].start 11247.13409375
transcript.pyannote[1813].end 11251.63971875
transcript.pyannote[1814].speaker SPEAKER_22
transcript.pyannote[1814].start 11252.34846875
transcript.pyannote[1814].end 11255.82471875
transcript.pyannote[1815].speaker SPEAKER_22
transcript.pyannote[1815].start 11255.99346875
transcript.pyannote[1815].end 11260.46534375
transcript.pyannote[1816].speaker SPEAKER_22
transcript.pyannote[1816].start 11261.25846875
transcript.pyannote[1816].end 11262.59159375
transcript.pyannote[1817].speaker SPEAKER_22
transcript.pyannote[1817].start 11263.33409375
transcript.pyannote[1817].end 11264.11034375
transcript.pyannote[1818].speaker SPEAKER_22
transcript.pyannote[1818].start 11264.80221875
transcript.pyannote[1818].end 11268.02534375
transcript.pyannote[1819].speaker SPEAKER_22
transcript.pyannote[1819].start 11268.64971875
transcript.pyannote[1819].end 11272.53096875
transcript.pyannote[1820].speaker SPEAKER_22
transcript.pyannote[1820].start 11272.75034375
transcript.pyannote[1820].end 11274.37034375
transcript.pyannote[1821].speaker SPEAKER_22
transcript.pyannote[1821].start 11274.70784375
transcript.pyannote[1821].end 11277.66096875
transcript.pyannote[1822].speaker SPEAKER_22
transcript.pyannote[1822].start 11278.87596875
transcript.pyannote[1822].end 11280.25971875
transcript.pyannote[1823].speaker SPEAKER_22
transcript.pyannote[1823].start 11281.96409375
transcript.pyannote[1823].end 11283.16221875
transcript.pyannote[1824].speaker SPEAKER_22
transcript.pyannote[1824].start 11284.36034375
transcript.pyannote[1824].end 11288.27534375
transcript.pyannote[1825].speaker SPEAKER_22
transcript.pyannote[1825].start 11288.86596875
transcript.pyannote[1825].end 11293.84409375
transcript.pyannote[1826].speaker SPEAKER_22
transcript.pyannote[1826].start 11294.19846875
transcript.pyannote[1826].end 11298.77159375
transcript.pyannote[1827].speaker SPEAKER_22
transcript.pyannote[1827].start 11299.27784375
transcript.pyannote[1827].end 11301.85971875
transcript.pyannote[1828].speaker SPEAKER_22
transcript.pyannote[1828].start 11301.97784375
transcript.pyannote[1828].end 11304.61034375
transcript.pyannote[1829].speaker SPEAKER_22
transcript.pyannote[1829].start 11305.67346875
transcript.pyannote[1829].end 11310.63471875
transcript.pyannote[1830].speaker SPEAKER_22
transcript.pyannote[1830].start 11311.47846875
transcript.pyannote[1830].end 11316.94596875
transcript.pyannote[1831].speaker SPEAKER_22
transcript.pyannote[1831].start 11317.75596875
transcript.pyannote[1831].end 11319.88221875
transcript.pyannote[1832].speaker SPEAKER_22
transcript.pyannote[1832].start 11323.20659375
transcript.pyannote[1832].end 11325.07971875
transcript.pyannote[1833].speaker SPEAKER_22
transcript.pyannote[1833].start 11326.76721875
transcript.pyannote[1833].end 11327.77971875
transcript.pyannote[1834].speaker SPEAKER_22
transcript.pyannote[1834].start 11328.40409375
transcript.pyannote[1834].end 11329.88909375
transcript.pyannote[1835].speaker SPEAKER_22
transcript.pyannote[1835].start 11331.07034375
transcript.pyannote[1835].end 11336.41971875
transcript.pyannote[1836].speaker SPEAKER_22
transcript.pyannote[1836].start 11338.78221875
transcript.pyannote[1836].end 11340.03096875
transcript.pyannote[1837].speaker SPEAKER_07
transcript.pyannote[1837].start 11340.03096875
transcript.pyannote[1837].end 11340.33471875
transcript.pyannote[1838].speaker SPEAKER_07
transcript.pyannote[1838].start 11340.80721875
transcript.pyannote[1838].end 11342.69721875
transcript.pyannote[1839].speaker SPEAKER_13
transcript.pyannote[1839].start 11342.69721875
transcript.pyannote[1839].end 11348.90721875
transcript.pyannote[1840].speaker SPEAKER_22
transcript.pyannote[1840].start 11347.97909375
transcript.pyannote[1840].end 11349.34596875
transcript.pyannote[1841].speaker SPEAKER_22
transcript.pyannote[1841].start 11350.29096875
transcript.pyannote[1841].end 11351.47221875
transcript.pyannote[1842].speaker SPEAKER_13
transcript.pyannote[1842].start 11350.39221875
transcript.pyannote[1842].end 11352.97409375
transcript.pyannote[1843].speaker SPEAKER_22
transcript.pyannote[1843].start 11352.65346875
transcript.pyannote[1843].end 11354.99909375
transcript.pyannote[1844].speaker SPEAKER_22
transcript.pyannote[1844].start 11355.67409375
transcript.pyannote[1844].end 11356.93971875
transcript.pyannote[1845].speaker SPEAKER_22
transcript.pyannote[1845].start 11357.05784375
transcript.pyannote[1845].end 11361.04034375
transcript.pyannote[1846].speaker SPEAKER_22
transcript.pyannote[1846].start 11361.93471875
transcript.pyannote[1846].end 11363.63909375
transcript.pyannote[1847].speaker SPEAKER_22
transcript.pyannote[1847].start 11364.07784375
transcript.pyannote[1847].end 11366.10284375
transcript.pyannote[1848].speaker SPEAKER_22
transcript.pyannote[1848].start 11366.69346875
transcript.pyannote[1848].end 11370.99659375
transcript.pyannote[1849].speaker SPEAKER_22
transcript.pyannote[1849].start 11371.89096875
transcript.pyannote[1849].end 11373.89909375
transcript.pyannote[1850].speaker SPEAKER_22
transcript.pyannote[1850].start 11375.41784375
transcript.pyannote[1850].end 11376.78471875
transcript.pyannote[1851].speaker SPEAKER_22
transcript.pyannote[1851].start 11377.83096875
transcript.pyannote[1851].end 11378.72534375
transcript.pyannote[1852].speaker SPEAKER_22
transcript.pyannote[1852].start 11379.67034375
transcript.pyannote[1852].end 11381.15534375
transcript.pyannote[1853].speaker SPEAKER_22
transcript.pyannote[1853].start 11382.47159375
transcript.pyannote[1853].end 11383.70346875
transcript.pyannote[1854].speaker SPEAKER_22
transcript.pyannote[1854].start 11384.95221875
transcript.pyannote[1854].end 11387.26409375
transcript.pyannote[1855].speaker SPEAKER_22
transcript.pyannote[1855].start 11388.42846875
transcript.pyannote[1855].end 11391.82034375
transcript.pyannote[1856].speaker SPEAKER_22
transcript.pyannote[1856].start 11393.01846875
transcript.pyannote[1856].end 11395.16159375
transcript.pyannote[1857].speaker SPEAKER_22
transcript.pyannote[1857].start 11396.20784375
transcript.pyannote[1857].end 11398.95846875
transcript.pyannote[1858].speaker SPEAKER_22
transcript.pyannote[1858].start 11399.21159375
transcript.pyannote[1858].end 11399.26221875
transcript.pyannote[1859].speaker SPEAKER_07
transcript.pyannote[1859].start 11399.26221875
transcript.pyannote[1859].end 11400.22409375
transcript.pyannote[1860].speaker SPEAKER_22
transcript.pyannote[1860].start 11400.22409375
transcript.pyannote[1860].end 11401.20284375
transcript.pyannote[1861].speaker SPEAKER_22
transcript.pyannote[1861].start 11402.09721875
transcript.pyannote[1861].end 11404.45971875
transcript.pyannote[1862].speaker SPEAKER_22
transcript.pyannote[1862].start 11405.26971875
transcript.pyannote[1862].end 11406.75471875
transcript.pyannote[1863].speaker SPEAKER_22
transcript.pyannote[1863].start 11407.36221875
transcript.pyannote[1863].end 11408.88096875
transcript.pyannote[1864].speaker SPEAKER_22
transcript.pyannote[1864].start 11409.30284375
transcript.pyannote[1864].end 11410.23096875
transcript.pyannote[1865].speaker SPEAKER_22
transcript.pyannote[1865].start 11411.09159375
transcript.pyannote[1865].end 11411.27721875
transcript.pyannote[1866].speaker SPEAKER_07
transcript.pyannote[1866].start 11411.41221875
transcript.pyannote[1866].end 11417.31846875
transcript.pyannote[1867].speaker SPEAKER_04
transcript.pyannote[1867].start 11426.54909375
transcript.pyannote[1867].end 11431.13909375
transcript.pyannote[1868].speaker SPEAKER_07
transcript.pyannote[1868].start 11431.61159375
transcript.pyannote[1868].end 11433.99096875
transcript.pyannote[1869].speaker SPEAKER_04
transcript.pyannote[1869].start 11441.97284375
transcript.pyannote[1869].end 11462.15534375
transcript.pyannote[1870].speaker SPEAKER_06
transcript.pyannote[1870].start 11462.54346875
transcript.pyannote[1870].end 11467.03221875
transcript.pyannote[1871].speaker SPEAKER_04
transcript.pyannote[1871].start 11467.03221875
transcript.pyannote[1871].end 11473.03971875
transcript.pyannote[1872].speaker SPEAKER_06
transcript.pyannote[1872].start 11467.45409375
transcript.pyannote[1872].end 11469.46221875
transcript.pyannote[1873].speaker SPEAKER_07
transcript.pyannote[1873].start 11472.51659375
transcript.pyannote[1873].end 11472.63471875
transcript.pyannote[1874].speaker SPEAKER_04
transcript.pyannote[1874].start 11473.52909375
transcript.pyannote[1874].end 11497.94721875
transcript.pyannote[1875].speaker SPEAKER_04
transcript.pyannote[1875].start 11498.13284375
transcript.pyannote[1875].end 11499.46596875
transcript.pyannote[1876].speaker SPEAKER_04
transcript.pyannote[1876].start 11499.75284375
transcript.pyannote[1876].end 11500.42784375
transcript.pyannote[1877].speaker SPEAKER_04
transcript.pyannote[1877].start 11500.95096875
transcript.pyannote[1877].end 11508.47721875
transcript.pyannote[1878].speaker SPEAKER_04
transcript.pyannote[1878].start 11508.69659375
transcript.pyannote[1878].end 11530.58346875
transcript.pyannote[1879].speaker SPEAKER_27
transcript.pyannote[1879].start 11530.58346875
transcript.pyannote[1879].end 11530.97159375
transcript.pyannote[1880].speaker SPEAKER_04
transcript.pyannote[1880].start 11530.83659375
transcript.pyannote[1880].end 11542.10909375
transcript.pyannote[1881].speaker SPEAKER_04
transcript.pyannote[1881].start 11542.32846875
transcript.pyannote[1881].end 11550.07409375
transcript.pyannote[1882].speaker SPEAKER_06
transcript.pyannote[1882].start 11543.45909375
transcript.pyannote[1882].end 11543.96534375
transcript.pyannote[1883].speaker SPEAKER_06
transcript.pyannote[1883].start 11550.25971875
transcript.pyannote[1883].end 11556.79034375
transcript.pyannote[1884].speaker SPEAKER_04
transcript.pyannote[1884].start 11555.84534375
transcript.pyannote[1884].end 11556.25034375
transcript.pyannote[1885].speaker SPEAKER_06
transcript.pyannote[1885].start 11556.97596875
transcript.pyannote[1885].end 11557.56659375
transcript.pyannote[1886].speaker SPEAKER_04
transcript.pyannote[1886].start 11557.12784375
transcript.pyannote[1886].end 11583.45284375
transcript.pyannote[1887].speaker SPEAKER_04
transcript.pyannote[1887].start 11583.63846875
transcript.pyannote[1887].end 11584.48221875
transcript.pyannote[1888].speaker SPEAKER_04
transcript.pyannote[1888].start 11585.96721875
transcript.pyannote[1888].end 11594.15159375
transcript.pyannote[1889].speaker SPEAKER_04
transcript.pyannote[1889].start 11594.42159375
transcript.pyannote[1889].end 11595.58596875
transcript.pyannote[1890].speaker SPEAKER_04
transcript.pyannote[1890].start 11596.09221875
transcript.pyannote[1890].end 11598.99471875
transcript.pyannote[1891].speaker SPEAKER_03
transcript.pyannote[1891].start 11600.37846875
transcript.pyannote[1891].end 11607.87096875
transcript.pyannote[1892].speaker SPEAKER_03
transcript.pyannote[1892].start 11608.44471875
transcript.pyannote[1892].end 11615.71784375
transcript.pyannote[1893].speaker SPEAKER_04
transcript.pyannote[1893].start 11615.88659375
transcript.pyannote[1893].end 11624.25659375
transcript.pyannote[1894].speaker SPEAKER_04
transcript.pyannote[1894].start 11624.96534375
transcript.pyannote[1894].end 11634.02721875
transcript.pyannote[1895].speaker SPEAKER_04
transcript.pyannote[1895].start 11634.61784375
transcript.pyannote[1895].end 11645.77221875
transcript.pyannote[1896].speaker SPEAKER_04
transcript.pyannote[1896].start 11646.83534375
transcript.pyannote[1896].end 11650.71659375
transcript.pyannote[1897].speaker SPEAKER_04
transcript.pyannote[1897].start 11651.20596875
transcript.pyannote[1897].end 11680.80471875
transcript.pyannote[1898].speaker SPEAKER_03
transcript.pyannote[1898].start 11681.49659375
transcript.pyannote[1898].end 11689.00596875
transcript.pyannote[1899].speaker SPEAKER_03
transcript.pyannote[1899].start 11689.46159375
transcript.pyannote[1899].end 11695.19909375
transcript.pyannote[1900].speaker SPEAKER_03
transcript.pyannote[1900].start 11695.51971875
transcript.pyannote[1900].end 11710.38659375
transcript.pyannote[1901].speaker SPEAKER_04
transcript.pyannote[1901].start 11708.37846875
transcript.pyannote[1901].end 11745.46971875
transcript.pyannote[1902].speaker SPEAKER_04
transcript.pyannote[1902].start 11746.12784375
transcript.pyannote[1902].end 11758.36221875
transcript.pyannote[1903].speaker SPEAKER_04
transcript.pyannote[1903].start 11759.05409375
transcript.pyannote[1903].end 11787.03284375
transcript.pyannote[1904].speaker SPEAKER_04
transcript.pyannote[1904].start 11787.57284375
transcript.pyannote[1904].end 11788.92284375
transcript.pyannote[1905].speaker SPEAKER_07
transcript.pyannote[1905].start 11790.39096875
transcript.pyannote[1905].end 11795.03159375
transcript.pyannote[1906].speaker SPEAKER_07
transcript.pyannote[1906].start 11796.14534375
transcript.pyannote[1906].end 11799.70596875
transcript.pyannote[1907].speaker SPEAKER_29
transcript.pyannote[1907].start 11809.35846875
transcript.pyannote[1907].end 11813.62784375
transcript.pyannote[1908].speaker SPEAKER_29
transcript.pyannote[1908].start 11813.84721875
transcript.pyannote[1908].end 11815.82159375
transcript.pyannote[1909].speaker SPEAKER_07
transcript.pyannote[1909].start 11816.32784375
transcript.pyannote[1909].end 11817.84659375
transcript.pyannote[1910].speaker SPEAKER_16
transcript.pyannote[1910].start 11822.04846875
transcript.pyannote[1910].end 11822.58846875
transcript.pyannote[1911].speaker SPEAKER_29
transcript.pyannote[1911].start 11822.90909375
transcript.pyannote[1911].end 11823.61784375
transcript.pyannote[1912].speaker SPEAKER_29
transcript.pyannote[1912].start 11824.27596875
transcript.pyannote[1912].end 11824.86659375
transcript.pyannote[1913].speaker SPEAKER_29
transcript.pyannote[1913].start 11825.62596875
transcript.pyannote[1913].end 11827.81971875
transcript.pyannote[1914].speaker SPEAKER_29
transcript.pyannote[1914].start 11827.93784375
transcript.pyannote[1914].end 11837.06721875
transcript.pyannote[1915].speaker SPEAKER_29
transcript.pyannote[1915].start 11837.62409375
transcript.pyannote[1915].end 11843.31096875
transcript.pyannote[1916].speaker SPEAKER_29
transcript.pyannote[1916].start 11843.34471875
transcript.pyannote[1916].end 11847.73221875
transcript.pyannote[1917].speaker SPEAKER_29
transcript.pyannote[1917].start 11848.00221875
transcript.pyannote[1917].end 11857.60409375
transcript.pyannote[1918].speaker SPEAKER_29
transcript.pyannote[1918].start 11857.87409375
transcript.pyannote[1918].end 11859.51096875
transcript.pyannote[1919].speaker SPEAKER_29
transcript.pyannote[1919].start 11859.69659375
transcript.pyannote[1919].end 11870.59784375
transcript.pyannote[1920].speaker SPEAKER_29
transcript.pyannote[1920].start 11870.74971875
transcript.pyannote[1920].end 11872.36971875
transcript.pyannote[1921].speaker SPEAKER_29
transcript.pyannote[1921].start 11872.60596875
transcript.pyannote[1921].end 11873.34846875
transcript.pyannote[1922].speaker SPEAKER_29
transcript.pyannote[1922].start 11874.24284375
transcript.pyannote[1922].end 11875.71096875
transcript.pyannote[1923].speaker SPEAKER_16
transcript.pyannote[1923].start 11875.54221875
transcript.pyannote[1923].end 11881.70159375
transcript.pyannote[1924].speaker SPEAKER_29
transcript.pyannote[1924].start 11882.56221875
transcript.pyannote[1924].end 11884.14846875
transcript.pyannote[1925].speaker SPEAKER_16
transcript.pyannote[1925].start 11884.46909375
transcript.pyannote[1925].end 11891.52284375
transcript.pyannote[1926].speaker SPEAKER_16
transcript.pyannote[1926].start 11891.72534375
transcript.pyannote[1926].end 11898.30659375
transcript.pyannote[1927].speaker SPEAKER_29
transcript.pyannote[1927].start 11898.42471875
transcript.pyannote[1927].end 11900.09534375
transcript.pyannote[1928].speaker SPEAKER_13
transcript.pyannote[1928].start 11900.16284375
transcript.pyannote[1928].end 11900.31471875
transcript.pyannote[1929].speaker SPEAKER_16
transcript.pyannote[1929].start 11900.31471875
transcript.pyannote[1929].end 11900.38221875
transcript.pyannote[1930].speaker SPEAKER_16
transcript.pyannote[1930].start 11900.87159375
transcript.pyannote[1930].end 11900.88846875
transcript.pyannote[1931].speaker SPEAKER_13
transcript.pyannote[1931].start 11900.88846875
transcript.pyannote[1931].end 11929.98096875
transcript.pyannote[1932].speaker SPEAKER_29
transcript.pyannote[1932].start 11929.60971875
transcript.pyannote[1932].end 11947.36221875
transcript.pyannote[1933].speaker SPEAKER_29
transcript.pyannote[1933].start 11947.49721875
transcript.pyannote[1933].end 11957.26784375
transcript.pyannote[1934].speaker SPEAKER_16
transcript.pyannote[1934].start 11957.26784375
transcript.pyannote[1934].end 11960.81159375
transcript.pyannote[1935].speaker SPEAKER_29
transcript.pyannote[1935].start 11960.76096875
transcript.pyannote[1935].end 11962.09409375
transcript.pyannote[1936].speaker SPEAKER_16
transcript.pyannote[1936].start 11960.84534375
transcript.pyannote[1936].end 11960.87909375
transcript.pyannote[1937].speaker SPEAKER_29
transcript.pyannote[1937].start 11963.27534375
transcript.pyannote[1937].end 11966.11034375
transcript.pyannote[1938].speaker SPEAKER_29
transcript.pyannote[1938].start 11967.24096875
transcript.pyannote[1938].end 11969.16471875
transcript.pyannote[1939].speaker SPEAKER_07
transcript.pyannote[1939].start 11969.16471875
transcript.pyannote[1939].end 11970.41346875
transcript.pyannote[1940].speaker SPEAKER_29
transcript.pyannote[1940].start 11972.97846875
transcript.pyannote[1940].end 11975.13846875
transcript.pyannote[1941].speaker SPEAKER_29
transcript.pyannote[1941].start 11976.21846875
transcript.pyannote[1941].end 11979.13784375
transcript.pyannote[1942].speaker SPEAKER_29
transcript.pyannote[1942].start 11979.67784375
transcript.pyannote[1942].end 11980.99409375
transcript.pyannote[1943].speaker SPEAKER_29
transcript.pyannote[1943].start 11981.39909375
transcript.pyannote[1943].end 11984.04846875
transcript.pyannote[1944].speaker SPEAKER_29
transcript.pyannote[1944].start 11984.31846875
transcript.pyannote[1944].end 11986.88346875
transcript.pyannote[1945].speaker SPEAKER_13
transcript.pyannote[1945].start 11988.38534375
transcript.pyannote[1945].end 11990.64659375
transcript.pyannote[1946].speaker SPEAKER_29
transcript.pyannote[1946].start 11990.73096875
transcript.pyannote[1946].end 11996.89034375
transcript.pyannote[1947].speaker SPEAKER_13
transcript.pyannote[1947].start 11997.00846875
transcript.pyannote[1947].end 12003.57284375
transcript.pyannote[1948].speaker SPEAKER_29
transcript.pyannote[1948].start 12009.07409375
transcript.pyannote[1948].end 12010.27221875
transcript.pyannote[1949].speaker SPEAKER_13
transcript.pyannote[1949].start 12009.69846875
transcript.pyannote[1949].end 12011.97659375
transcript.pyannote[1950].speaker SPEAKER_29
transcript.pyannote[1950].start 12012.26346875
transcript.pyannote[1950].end 12012.56721875
transcript.pyannote[1951].speaker SPEAKER_29
transcript.pyannote[1951].start 12015.33471875
transcript.pyannote[1951].end 12017.46096875
transcript.pyannote[1952].speaker SPEAKER_29
transcript.pyannote[1952].start 12017.86596875
transcript.pyannote[1952].end 12021.71346875
transcript.pyannote[1953].speaker SPEAKER_27
transcript.pyannote[1953].start 12023.33346875
transcript.pyannote[1953].end 12024.39659375
transcript.pyannote[1954].speaker SPEAKER_13
transcript.pyannote[1954].start 12024.39659375
transcript.pyannote[1954].end 12024.46409375
transcript.pyannote[1955].speaker SPEAKER_13
transcript.pyannote[1955].start 12025.18971875
transcript.pyannote[1955].end 12025.88159375
transcript.pyannote[1956].speaker SPEAKER_27
transcript.pyannote[1956].start 12025.88159375
transcript.pyannote[1956].end 12026.03346875
transcript.pyannote[1957].speaker SPEAKER_13
transcript.pyannote[1957].start 12026.03346875
transcript.pyannote[1957].end 12026.21909375
transcript.pyannote[1958].speaker SPEAKER_27
transcript.pyannote[1958].start 12026.21909375
transcript.pyannote[1958].end 12026.23596875
transcript.pyannote[1959].speaker SPEAKER_13
transcript.pyannote[1959].start 12026.23596875
transcript.pyannote[1959].end 12026.47221875
transcript.pyannote[1960].speaker SPEAKER_27
transcript.pyannote[1960].start 12026.47221875
transcript.pyannote[1960].end 12026.60721875
transcript.pyannote[1961].speaker SPEAKER_13
transcript.pyannote[1961].start 12026.60721875
transcript.pyannote[1961].end 12026.69159375
transcript.pyannote[1962].speaker SPEAKER_29
transcript.pyannote[1962].start 12026.77596875
transcript.pyannote[1962].end 12028.69971875
transcript.pyannote[1963].speaker SPEAKER_29
transcript.pyannote[1963].start 12029.35784375
transcript.pyannote[1963].end 12030.16784375
transcript.pyannote[1964].speaker SPEAKER_13
transcript.pyannote[1964].start 12029.54346875
transcript.pyannote[1964].end 12039.16221875
transcript.pyannote[1965].speaker SPEAKER_13
transcript.pyannote[1965].start 12039.88784375
transcript.pyannote[1965].end 12040.20846875
transcript.pyannote[1966].speaker SPEAKER_29
transcript.pyannote[1966].start 12041.52471875
transcript.pyannote[1966].end 12046.24971875
transcript.pyannote[1967].speaker SPEAKER_13
transcript.pyannote[1967].start 12046.68846875
transcript.pyannote[1967].end 12051.41346875
transcript.pyannote[1968].speaker SPEAKER_29
transcript.pyannote[1968].start 12051.70034375
transcript.pyannote[1968].end 12056.86409375
transcript.pyannote[1969].speaker SPEAKER_13
transcript.pyannote[1969].start 12053.45534375
transcript.pyannote[1969].end 12054.23159375
transcript.pyannote[1970].speaker SPEAKER_13
transcript.pyannote[1970].start 12056.71221875
transcript.pyannote[1970].end 12062.80409375
transcript.pyannote[1971].speaker SPEAKER_29
transcript.pyannote[1971].start 12057.10034375
transcript.pyannote[1971].end 12057.77534375
transcript.pyannote[1972].speaker SPEAKER_29
transcript.pyannote[1972].start 12059.24346875
transcript.pyannote[1972].end 12060.12096875
transcript.pyannote[1973].speaker SPEAKER_13
transcript.pyannote[1973].start 12062.85471875
transcript.pyannote[1973].end 12071.34284375
transcript.pyannote[1974].speaker SPEAKER_29
transcript.pyannote[1974].start 12068.94659375
transcript.pyannote[1974].end 12069.28409375
transcript.pyannote[1975].speaker SPEAKER_29
transcript.pyannote[1975].start 12071.15721875
transcript.pyannote[1975].end 12076.91159375
transcript.pyannote[1976].speaker SPEAKER_13
transcript.pyannote[1976].start 12077.08034375
transcript.pyannote[1976].end 12079.64534375
transcript.pyannote[1977].speaker SPEAKER_29
transcript.pyannote[1977].start 12079.64534375
transcript.pyannote[1977].end 12087.22221875
transcript.pyannote[1978].speaker SPEAKER_29
transcript.pyannote[1978].start 12087.67784375
transcript.pyannote[1978].end 12088.23471875
transcript.pyannote[1979].speaker SPEAKER_13
transcript.pyannote[1979].start 12087.88034375
transcript.pyannote[1979].end 12096.43596875
transcript.pyannote[1980].speaker SPEAKER_13
transcript.pyannote[1980].start 12096.80721875
transcript.pyannote[1980].end 12096.82409375
transcript.pyannote[1981].speaker SPEAKER_29
transcript.pyannote[1981].start 12096.82409375
transcript.pyannote[1981].end 12106.62846875
transcript.pyannote[1982].speaker SPEAKER_29
transcript.pyannote[1982].start 12107.15159375
transcript.pyannote[1982].end 12108.07971875
transcript.pyannote[1983].speaker SPEAKER_29
transcript.pyannote[1983].start 12108.51846875
transcript.pyannote[1983].end 12112.39971875
transcript.pyannote[1984].speaker SPEAKER_29
transcript.pyannote[1984].start 12113.02409375
transcript.pyannote[1984].end 12113.51346875
transcript.pyannote[1985].speaker SPEAKER_13
transcript.pyannote[1985].start 12113.42909375
transcript.pyannote[1985].end 12117.88409375
transcript.pyannote[1986].speaker SPEAKER_29
transcript.pyannote[1986].start 12117.44534375
transcript.pyannote[1986].end 12128.97096875
transcript.pyannote[1987].speaker SPEAKER_13
transcript.pyannote[1987].start 12127.87409375
transcript.pyannote[1987].end 12134.65784375
transcript.pyannote[1988].speaker SPEAKER_29
transcript.pyannote[1988].start 12134.65784375
transcript.pyannote[1988].end 12137.35784375
transcript.pyannote[1989].speaker SPEAKER_13
transcript.pyannote[1989].start 12137.05409375
transcript.pyannote[1989].end 12137.34096875
transcript.pyannote[1990].speaker SPEAKER_13
transcript.pyannote[1990].start 12137.35784375
transcript.pyannote[1990].end 12142.13346875
transcript.pyannote[1991].speaker SPEAKER_13
transcript.pyannote[1991].start 12142.53846875
transcript.pyannote[1991].end 12148.03971875
transcript.pyannote[1992].speaker SPEAKER_29
transcript.pyannote[1992].start 12147.65159375
transcript.pyannote[1992].end 12150.85784375
transcript.pyannote[1993].speaker SPEAKER_13
transcript.pyannote[1993].start 12150.85784375
transcript.pyannote[1993].end 12150.94221875
transcript.pyannote[1994].speaker SPEAKER_29
transcript.pyannote[1994].start 12150.94221875
transcript.pyannote[1994].end 12156.57846875
transcript.pyannote[1995].speaker SPEAKER_13
transcript.pyannote[1995].start 12156.91596875
transcript.pyannote[1995].end 12161.52284375
transcript.pyannote[1996].speaker SPEAKER_29
transcript.pyannote[1996].start 12162.29909375
transcript.pyannote[1996].end 12165.01596875
transcript.pyannote[1997].speaker SPEAKER_29
transcript.pyannote[1997].start 12165.47159375
transcript.pyannote[1997].end 12182.56596875
transcript.pyannote[1998].speaker SPEAKER_29
transcript.pyannote[1998].start 12183.03846875
transcript.pyannote[1998].end 12184.25346875
transcript.pyannote[1999].speaker SPEAKER_29
transcript.pyannote[1999].start 12184.92846875
transcript.pyannote[1999].end 12186.80159375
transcript.pyannote[2000].speaker SPEAKER_13
transcript.pyannote[2000].start 12186.80159375
transcript.pyannote[2000].end 12206.39346875
transcript.pyannote[2001].speaker SPEAKER_29
transcript.pyannote[2001].start 12190.73346875
transcript.pyannote[2001].end 12191.15534375
transcript.pyannote[2002].speaker SPEAKER_29
transcript.pyannote[2002].start 12207.57471875
transcript.pyannote[2002].end 12209.71784375
transcript.pyannote[2003].speaker SPEAKER_13
transcript.pyannote[2003].start 12209.65034375
transcript.pyannote[2003].end 12209.68409375
transcript.pyannote[2004].speaker SPEAKER_13
transcript.pyannote[2004].start 12209.71784375
transcript.pyannote[2004].end 12209.80221875
transcript.pyannote[2005].speaker SPEAKER_29
transcript.pyannote[2005].start 12211.82721875
transcript.pyannote[2005].end 12212.85659375
transcript.pyannote[2006].speaker SPEAKER_10
transcript.pyannote[2006].start 12214.47659375
transcript.pyannote[2006].end 12214.96596875
transcript.pyannote[2007].speaker SPEAKER_27
transcript.pyannote[2007].start 12214.96596875
transcript.pyannote[2007].end 12214.98284375
transcript.pyannote[2008].speaker SPEAKER_29
transcript.pyannote[2008].start 12215.53971875
transcript.pyannote[2008].end 12216.29909375
transcript.pyannote[2009].speaker SPEAKER_29
transcript.pyannote[2009].start 12216.68721875
transcript.pyannote[2009].end 12245.94846875
transcript.pyannote[2010].speaker SPEAKER_29
transcript.pyannote[2010].start 12246.31971875
transcript.pyannote[2010].end 12251.02784375
transcript.pyannote[2011].speaker SPEAKER_29
transcript.pyannote[2011].start 12251.23034375
transcript.pyannote[2011].end 12261.27096875
transcript.pyannote[2012].speaker SPEAKER_10
transcript.pyannote[2012].start 12261.43971875
transcript.pyannote[2012].end 12294.85221875
transcript.pyannote[2013].speaker SPEAKER_29
transcript.pyannote[2013].start 12267.58221875
transcript.pyannote[2013].end 12267.95346875
transcript.pyannote[2014].speaker SPEAKER_29
transcript.pyannote[2014].start 12294.95346875
transcript.pyannote[2014].end 12298.95284375
transcript.pyannote[2015].speaker SPEAKER_29
transcript.pyannote[2015].start 12299.30721875
transcript.pyannote[2015].end 12303.34034375
transcript.pyannote[2016].speaker SPEAKER_29
transcript.pyannote[2016].start 12303.86346875
transcript.pyannote[2016].end 12311.91284375
transcript.pyannote[2017].speaker SPEAKER_27
transcript.pyannote[2017].start 12311.91284375
transcript.pyannote[2017].end 12313.41471875
transcript.pyannote[2018].speaker SPEAKER_29
transcript.pyannote[2018].start 12312.41909375
transcript.pyannote[2018].end 12315.84471875
transcript.pyannote[2019].speaker SPEAKER_07
transcript.pyannote[2019].start 12316.51971875
transcript.pyannote[2019].end 12318.07221875
transcript.pyannote[2020].speaker SPEAKER_06
transcript.pyannote[2020].start 12327.96096875
transcript.pyannote[2020].end 12328.95659375
transcript.pyannote[2021].speaker SPEAKER_29
transcript.pyannote[2021].start 12329.83409375
transcript.pyannote[2021].end 12331.01534375
transcript.pyannote[2022].speaker SPEAKER_06
transcript.pyannote[2022].start 12331.06596875
transcript.pyannote[2022].end 12331.52159375
transcript.pyannote[2023].speaker SPEAKER_29
transcript.pyannote[2023].start 12335.92596875
transcript.pyannote[2023].end 12336.56721875
transcript.pyannote[2024].speaker SPEAKER_29
transcript.pyannote[2024].start 12338.81159375
transcript.pyannote[2024].end 12339.85784375
transcript.pyannote[2025].speaker SPEAKER_29
transcript.pyannote[2025].start 12340.93784375
transcript.pyannote[2025].end 12341.89971875
transcript.pyannote[2026].speaker SPEAKER_29
transcript.pyannote[2026].start 12343.28346875
transcript.pyannote[2026].end 12358.70721875
transcript.pyannote[2027].speaker SPEAKER_29
transcript.pyannote[2027].start 12359.04471875
transcript.pyannote[2027].end 12361.37346875
transcript.pyannote[2028].speaker SPEAKER_29
transcript.pyannote[2028].start 12361.55909375
transcript.pyannote[2028].end 12364.79909375
transcript.pyannote[2029].speaker SPEAKER_29
transcript.pyannote[2029].start 12365.05221875
transcript.pyannote[2029].end 12366.41909375
transcript.pyannote[2030].speaker SPEAKER_29
transcript.pyannote[2030].start 12366.58784375
transcript.pyannote[2030].end 12369.45659375
transcript.pyannote[2031].speaker SPEAKER_29
transcript.pyannote[2031].start 12369.92909375
transcript.pyannote[2031].end 12370.35096875
transcript.pyannote[2032].speaker SPEAKER_29
transcript.pyannote[2032].start 12370.57034375
transcript.pyannote[2032].end 12374.13096875
transcript.pyannote[2033].speaker SPEAKER_06
transcript.pyannote[2033].start 12375.07596875
transcript.pyannote[2033].end 12379.90221875
transcript.pyannote[2034].speaker SPEAKER_29
transcript.pyannote[2034].start 12380.20596875
transcript.pyannote[2034].end 12385.92659375
transcript.pyannote[2035].speaker SPEAKER_06
transcript.pyannote[2035].start 12386.88846875
transcript.pyannote[2035].end 12391.42784375
transcript.pyannote[2036].speaker SPEAKER_29
transcript.pyannote[2036].start 12390.12846875
transcript.pyannote[2036].end 12390.33096875
transcript.pyannote[2037].speaker SPEAKER_06
transcript.pyannote[2037].start 12391.63034375
transcript.pyannote[2037].end 12394.81971875
transcript.pyannote[2038].speaker SPEAKER_29
transcript.pyannote[2038].start 12394.34721875
transcript.pyannote[2038].end 12396.40596875
transcript.pyannote[2039].speaker SPEAKER_06
transcript.pyannote[2039].start 12397.65471875
transcript.pyannote[2039].end 12402.83534375
transcript.pyannote[2040].speaker SPEAKER_29
transcript.pyannote[2040].start 12404.08409375
transcript.pyannote[2040].end 12414.98534375
transcript.pyannote[2041].speaker SPEAKER_29
transcript.pyannote[2041].start 12416.11596875
transcript.pyannote[2041].end 12416.48721875
transcript.pyannote[2042].speaker SPEAKER_29
transcript.pyannote[2042].start 12417.61784375
transcript.pyannote[2042].end 12421.56659375
transcript.pyannote[2043].speaker SPEAKER_29
transcript.pyannote[2043].start 12421.95471875
transcript.pyannote[2043].end 12423.60846875
transcript.pyannote[2044].speaker SPEAKER_29
transcript.pyannote[2044].start 12424.41846875
transcript.pyannote[2044].end 12424.97534375
transcript.pyannote[2045].speaker SPEAKER_29
transcript.pyannote[2045].start 12426.08909375
transcript.pyannote[2045].end 12430.81409375
transcript.pyannote[2046].speaker SPEAKER_29
transcript.pyannote[2046].start 12430.96596875
transcript.pyannote[2046].end 12443.92596875
transcript.pyannote[2047].speaker SPEAKER_29
transcript.pyannote[2047].start 12444.46596875
transcript.pyannote[2047].end 12447.31784375
transcript.pyannote[2048].speaker SPEAKER_29
transcript.pyannote[2048].start 12447.41909375
transcript.pyannote[2048].end 12451.03034375
transcript.pyannote[2049].speaker SPEAKER_29
transcript.pyannote[2049].start 12451.41846875
transcript.pyannote[2049].end 12454.65846875
transcript.pyannote[2050].speaker SPEAKER_29
transcript.pyannote[2050].start 12454.82721875
transcript.pyannote[2050].end 12458.18534375
transcript.pyannote[2051].speaker SPEAKER_29
transcript.pyannote[2051].start 12458.79284375
transcript.pyannote[2051].end 12459.33284375
transcript.pyannote[2052].speaker SPEAKER_29
transcript.pyannote[2052].start 12460.24409375
transcript.pyannote[2052].end 12460.85159375
transcript.pyannote[2053].speaker SPEAKER_29
transcript.pyannote[2053].start 12460.96971875
transcript.pyannote[2053].end 12461.12159375
transcript.pyannote[2054].speaker SPEAKER_29
transcript.pyannote[2054].start 12461.17221875
transcript.pyannote[2054].end 12467.41596875
transcript.pyannote[2055].speaker SPEAKER_06
transcript.pyannote[2055].start 12467.50034375
transcript.pyannote[2055].end 12467.51721875
transcript.pyannote[2056].speaker SPEAKER_07
transcript.pyannote[2056].start 12467.51721875
transcript.pyannote[2056].end 12467.66909375
transcript.pyannote[2057].speaker SPEAKER_06
transcript.pyannote[2057].start 12467.66909375
transcript.pyannote[2057].end 12468.32721875
transcript.pyannote[2058].speaker SPEAKER_07
transcript.pyannote[2058].start 12468.32721875
transcript.pyannote[2058].end 12473.77784375
transcript.pyannote[2059].speaker SPEAKER_25
transcript.pyannote[2059].start 12487.81784375
transcript.pyannote[2059].end 12487.90221875
transcript.pyannote[2060].speaker SPEAKER_07
transcript.pyannote[2060].start 12487.90221875
transcript.pyannote[2060].end 12487.91909375
transcript.pyannote[2061].speaker SPEAKER_25
transcript.pyannote[2061].start 12487.91909375
transcript.pyannote[2061].end 12487.98659375
transcript.pyannote[2062].speaker SPEAKER_07
transcript.pyannote[2062].start 12487.98659375
transcript.pyannote[2062].end 12488.00346875
transcript.pyannote[2063].speaker SPEAKER_25
transcript.pyannote[2063].start 12488.00346875
transcript.pyannote[2063].end 12488.05409375
transcript.pyannote[2064].speaker SPEAKER_07
transcript.pyannote[2064].start 12488.05409375
transcript.pyannote[2064].end 12488.08784375
transcript.pyannote[2065].speaker SPEAKER_25
transcript.pyannote[2065].start 12488.08784375
transcript.pyannote[2065].end 12488.10471875
transcript.pyannote[2066].speaker SPEAKER_25
transcript.pyannote[2066].start 12489.60659375
transcript.pyannote[2066].end 12491.36159375
transcript.pyannote[2067].speaker SPEAKER_07
transcript.pyannote[2067].start 12491.56409375
transcript.pyannote[2067].end 12492.91409375
transcript.pyannote[2068].speaker SPEAKER_16
transcript.pyannote[2068].start 12500.06909375
transcript.pyannote[2068].end 12500.71034375
transcript.pyannote[2069].speaker SPEAKER_25
transcript.pyannote[2069].start 12500.91284375
transcript.pyannote[2069].end 12514.58159375
transcript.pyannote[2070].speaker SPEAKER_25
transcript.pyannote[2070].start 12515.54346875
transcript.pyannote[2070].end 12516.62346875
transcript.pyannote[2071].speaker SPEAKER_16
transcript.pyannote[2071].start 12515.79659375
transcript.pyannote[2071].end 12523.47471875
transcript.pyannote[2072].speaker SPEAKER_25
transcript.pyannote[2072].start 12519.40784375
transcript.pyannote[2072].end 12520.62284375
transcript.pyannote[2073].speaker SPEAKER_25
transcript.pyannote[2073].start 12522.46221875
transcript.pyannote[2073].end 12527.64284375
transcript.pyannote[2074].speaker SPEAKER_16
transcript.pyannote[2074].start 12523.89659375
transcript.pyannote[2074].end 12524.36909375
transcript.pyannote[2075].speaker SPEAKER_27
transcript.pyannote[2075].start 12525.06096875
transcript.pyannote[2075].end 12525.09471875
transcript.pyannote[2076].speaker SPEAKER_16
transcript.pyannote[2076].start 12525.09471875
transcript.pyannote[2076].end 12525.49971875
transcript.pyannote[2077].speaker SPEAKER_27
transcript.pyannote[2077].start 12525.49971875
transcript.pyannote[2077].end 12525.61784375
transcript.pyannote[2078].speaker SPEAKER_16
transcript.pyannote[2078].start 12527.44034375
transcript.pyannote[2078].end 12527.45721875
transcript.pyannote[2079].speaker SPEAKER_27
transcript.pyannote[2079].start 12527.45721875
transcript.pyannote[2079].end 12527.62596875
transcript.pyannote[2080].speaker SPEAKER_27
transcript.pyannote[2080].start 12527.64284375
transcript.pyannote[2080].end 12527.84534375
transcript.pyannote[2081].speaker SPEAKER_25
transcript.pyannote[2081].start 12527.98034375
transcript.pyannote[2081].end 12529.19534375
transcript.pyannote[2082].speaker SPEAKER_27
transcript.pyannote[2082].start 12529.19534375
transcript.pyannote[2082].end 12529.73534375
transcript.pyannote[2083].speaker SPEAKER_25
transcript.pyannote[2083].start 12529.56659375
transcript.pyannote[2083].end 12534.74721875
transcript.pyannote[2084].speaker SPEAKER_25
transcript.pyannote[2084].start 12535.32096875
transcript.pyannote[2084].end 12543.97784375
transcript.pyannote[2085].speaker SPEAKER_25
transcript.pyannote[2085].start 12544.34909375
transcript.pyannote[2085].end 12545.47971875
transcript.pyannote[2086].speaker SPEAKER_25
transcript.pyannote[2086].start 12545.74971875
transcript.pyannote[2086].end 12547.20096875
transcript.pyannote[2087].speaker SPEAKER_16
transcript.pyannote[2087].start 12548.60159375
transcript.pyannote[2087].end 12549.46221875
transcript.pyannote[2088].speaker SPEAKER_25
transcript.pyannote[2088].start 12549.51284375
transcript.pyannote[2088].end 12557.57909375
transcript.pyannote[2089].speaker SPEAKER_16
transcript.pyannote[2089].start 12558.86159375
transcript.pyannote[2089].end 12565.20659375
transcript.pyannote[2090].speaker SPEAKER_25
transcript.pyannote[2090].start 12559.68846875
transcript.pyannote[2090].end 12559.97534375
transcript.pyannote[2091].speaker SPEAKER_25
transcript.pyannote[2091].start 12565.37534375
transcript.pyannote[2091].end 12572.83409375
transcript.pyannote[2092].speaker SPEAKER_16
transcript.pyannote[2092].start 12566.35409375
transcript.pyannote[2092].end 12566.74221875
transcript.pyannote[2093].speaker SPEAKER_25
transcript.pyannote[2093].start 12573.44159375
transcript.pyannote[2093].end 12576.64784375
transcript.pyannote[2094].speaker SPEAKER_25
transcript.pyannote[2094].start 12576.85034375
transcript.pyannote[2094].end 12579.31409375
transcript.pyannote[2095].speaker SPEAKER_25
transcript.pyannote[2095].start 12579.55034375
transcript.pyannote[2095].end 12582.19971875
transcript.pyannote[2096].speaker SPEAKER_25
transcript.pyannote[2096].start 12582.68909375
transcript.pyannote[2096].end 12607.91721875
transcript.pyannote[2097].speaker SPEAKER_25
transcript.pyannote[2097].start 12608.55846875
transcript.pyannote[2097].end 12613.01346875
transcript.pyannote[2098].speaker SPEAKER_25
transcript.pyannote[2098].start 12613.75596875
transcript.pyannote[2098].end 12619.88159375
transcript.pyannote[2099].speaker SPEAKER_25
transcript.pyannote[2099].start 12620.50596875
transcript.pyannote[2099].end 12628.03221875
transcript.pyannote[2100].speaker SPEAKER_25
transcript.pyannote[2100].start 12628.18409375
transcript.pyannote[2100].end 12635.08596875
transcript.pyannote[2101].speaker SPEAKER_16
transcript.pyannote[2101].start 12636.40221875
transcript.pyannote[2101].end 12641.31284375
transcript.pyannote[2102].speaker SPEAKER_25
transcript.pyannote[2102].start 12637.27971875
transcript.pyannote[2102].end 12637.36409375
transcript.pyannote[2103].speaker SPEAKER_16
transcript.pyannote[2103].start 12641.51534375
transcript.pyannote[2103].end 12650.86409375
transcript.pyannote[2104].speaker SPEAKER_25
transcript.pyannote[2104].start 12649.07534375
transcript.pyannote[2104].end 12651.67409375
transcript.pyannote[2105].speaker SPEAKER_16
transcript.pyannote[2105].start 12650.93159375
transcript.pyannote[2105].end 12651.37034375
transcript.pyannote[2106].speaker SPEAKER_25
transcript.pyannote[2106].start 12652.06221875
transcript.pyannote[2106].end 12652.68659375
transcript.pyannote[2107].speaker SPEAKER_16
transcript.pyannote[2107].start 12652.11284375
transcript.pyannote[2107].end 12655.79159375
transcript.pyannote[2108].speaker SPEAKER_25
transcript.pyannote[2108].start 12653.73284375
transcript.pyannote[2108].end 12654.37409375
transcript.pyannote[2109].speaker SPEAKER_25
transcript.pyannote[2109].start 12655.18409375
transcript.pyannote[2109].end 12659.53784375
transcript.pyannote[2110].speaker SPEAKER_16
transcript.pyannote[2110].start 12656.93909375
transcript.pyannote[2110].end 12657.46221875
transcript.pyannote[2111].speaker SPEAKER_16
transcript.pyannote[2111].start 12659.80784375
transcript.pyannote[2111].end 12662.22096875
transcript.pyannote[2112].speaker SPEAKER_25
transcript.pyannote[2112].start 12660.11159375
transcript.pyannote[2112].end 12674.72534375
transcript.pyannote[2113].speaker SPEAKER_11
transcript.pyannote[2113].start 12662.22096875
transcript.pyannote[2113].end 12662.23784375
transcript.pyannote[2114].speaker SPEAKER_25
transcript.pyannote[2114].start 12675.34971875
transcript.pyannote[2114].end 12686.75721875
transcript.pyannote[2115].speaker SPEAKER_16
transcript.pyannote[2115].start 12686.75721875
transcript.pyannote[2115].end 12694.09784375
transcript.pyannote[2116].speaker SPEAKER_25
transcript.pyannote[2116].start 12690.65534375
transcript.pyannote[2116].end 12691.81971875
transcript.pyannote[2117].speaker SPEAKER_25
transcript.pyannote[2117].start 12693.30471875
transcript.pyannote[2117].end 12697.55721875
transcript.pyannote[2118].speaker SPEAKER_16
transcript.pyannote[2118].start 12697.55721875
transcript.pyannote[2118].end 12714.43221875
transcript.pyannote[2119].speaker SPEAKER_27
transcript.pyannote[2119].start 12713.72346875
transcript.pyannote[2119].end 12713.97659375
transcript.pyannote[2120].speaker SPEAKER_00
transcript.pyannote[2120].start 12713.97659375
transcript.pyannote[2120].end 12714.06096875
transcript.pyannote[2121].speaker SPEAKER_16
transcript.pyannote[2121].start 12714.93846875
transcript.pyannote[2121].end 12725.67096875
transcript.pyannote[2122].speaker SPEAKER_25
transcript.pyannote[2122].start 12723.69659375
transcript.pyannote[2122].end 12728.74221875
transcript.pyannote[2123].speaker SPEAKER_16
transcript.pyannote[2123].start 12728.80971875
transcript.pyannote[2123].end 12730.59846875
transcript.pyannote[2124].speaker SPEAKER_25
transcript.pyannote[2124].start 12729.46784375
transcript.pyannote[2124].end 12748.40159375
transcript.pyannote[2125].speaker SPEAKER_16
transcript.pyannote[2125].start 12746.88284375
transcript.pyannote[2125].end 12747.28784375
transcript.pyannote[2126].speaker SPEAKER_16
transcript.pyannote[2126].start 12747.97971875
transcript.pyannote[2126].end 12748.36784375
transcript.pyannote[2127].speaker SPEAKER_16
transcript.pyannote[2127].start 12748.40159375
transcript.pyannote[2127].end 12748.41846875
transcript.pyannote[2128].speaker SPEAKER_16
transcript.pyannote[2128].start 12748.63784375
transcript.pyannote[2128].end 12757.32846875
transcript.pyannote[2129].speaker SPEAKER_25
transcript.pyannote[2129].start 12750.07221875
transcript.pyannote[2129].end 12751.27034375
transcript.pyannote[2130].speaker SPEAKER_16
transcript.pyannote[2130].start 12757.56471875
transcript.pyannote[2130].end 12760.99034375
transcript.pyannote[2131].speaker SPEAKER_16
transcript.pyannote[2131].start 12762.30659375
transcript.pyannote[2131].end 12767.65596875
transcript.pyannote[2132].speaker SPEAKER_25
transcript.pyannote[2132].start 12768.97221875
transcript.pyannote[2132].end 12783.55221875
transcript.pyannote[2133].speaker SPEAKER_16
transcript.pyannote[2133].start 12771.97596875
transcript.pyannote[2133].end 12773.69721875
transcript.pyannote[2134].speaker SPEAKER_18
transcript.pyannote[2134].start 12773.69721875
transcript.pyannote[2134].end 12773.74784375
transcript.pyannote[2135].speaker SPEAKER_16
transcript.pyannote[2135].start 12778.35471875
transcript.pyannote[2135].end 12780.44721875
transcript.pyannote[2136].speaker SPEAKER_16
transcript.pyannote[2136].start 12781.59471875
transcript.pyannote[2136].end 12782.16846875
transcript.pyannote[2137].speaker SPEAKER_16
transcript.pyannote[2137].start 12783.06284375
transcript.pyannote[2137].end 12785.02034375
transcript.pyannote[2138].speaker SPEAKER_25
transcript.pyannote[2138].start 12784.49721875
transcript.pyannote[2138].end 12789.67784375
transcript.pyannote[2139].speaker SPEAKER_16
transcript.pyannote[2139].start 12790.30221875
transcript.pyannote[2139].end 12796.69784375
transcript.pyannote[2140].speaker SPEAKER_25
transcript.pyannote[2140].start 12794.55471875
transcript.pyannote[2140].end 12795.98909375
transcript.pyannote[2141].speaker SPEAKER_25
transcript.pyannote[2141].start 12796.83284375
transcript.pyannote[2141].end 12799.56659375
transcript.pyannote[2142].speaker SPEAKER_16
transcript.pyannote[2142].start 12799.38096875
transcript.pyannote[2142].end 12803.71784375
transcript.pyannote[2143].speaker SPEAKER_25
transcript.pyannote[2143].start 12799.65096875
transcript.pyannote[2143].end 12801.11909375
transcript.pyannote[2144].speaker SPEAKER_25
transcript.pyannote[2144].start 12801.59159375
transcript.pyannote[2144].end 12811.36221875
transcript.pyannote[2145].speaker SPEAKER_25
transcript.pyannote[2145].start 12811.93596875
transcript.pyannote[2145].end 12813.69096875
transcript.pyannote[2146].speaker SPEAKER_25
transcript.pyannote[2146].start 12815.24346875
transcript.pyannote[2146].end 12821.60534375
transcript.pyannote[2147].speaker SPEAKER_25
transcript.pyannote[2147].start 12822.46596875
transcript.pyannote[2147].end 12830.97096875
transcript.pyannote[2148].speaker SPEAKER_25
transcript.pyannote[2148].start 12831.54471875
transcript.pyannote[2148].end 12837.83909375
transcript.pyannote[2149].speaker SPEAKER_25
transcript.pyannote[2149].start 12838.85159375
transcript.pyannote[2149].end 12844.01534375
transcript.pyannote[2150].speaker SPEAKER_25
transcript.pyannote[2150].start 12844.72409375
transcript.pyannote[2150].end 12845.28096875
transcript.pyannote[2151].speaker SPEAKER_25
transcript.pyannote[2151].start 12845.48346875
transcript.pyannote[2151].end 12846.15846875
transcript.pyannote[2152].speaker SPEAKER_07
transcript.pyannote[2152].start 12846.68159375
transcript.pyannote[2152].end 12850.88346875
transcript.pyannote[2153].speaker SPEAKER_09
transcript.pyannote[2153].start 12861.81846875
transcript.pyannote[2153].end 12868.24784375
transcript.pyannote[2154].speaker SPEAKER_00
transcript.pyannote[2154].start 12862.86471875
transcript.pyannote[2154].end 12863.23596875
transcript.pyannote[2155].speaker SPEAKER_33
transcript.pyannote[2155].start 12863.23596875
transcript.pyannote[2155].end 12863.35409375
transcript.pyannote[2156].speaker SPEAKER_00
transcript.pyannote[2156].start 12863.35409375
transcript.pyannote[2156].end 12863.47221875
transcript.pyannote[2157].speaker SPEAKER_07
transcript.pyannote[2157].start 12867.79221875
transcript.pyannote[2157].end 12869.47971875
transcript.pyannote[2158].speaker SPEAKER_14
transcript.pyannote[2158].start 12876.48284375
transcript.pyannote[2158].end 12876.53346875
transcript.pyannote[2159].speaker SPEAKER_09
transcript.pyannote[2159].start 12876.53346875
transcript.pyannote[2159].end 12977.02409375
transcript.pyannote[2160].speaker SPEAKER_01
transcript.pyannote[2160].start 12878.13659375
transcript.pyannote[2160].end 12878.62596875
transcript.pyannote[2161].speaker SPEAKER_00
transcript.pyannote[2161].start 12892.41284375
transcript.pyannote[2161].end 12892.91909375
transcript.pyannote[2162].speaker SPEAKER_13
transcript.pyannote[2162].start 12977.02409375
transcript.pyannote[2162].end 12977.68221875
transcript.pyannote[2163].speaker SPEAKER_09
transcript.pyannote[2163].start 12977.68221875
transcript.pyannote[2163].end 12977.88471875
transcript.pyannote[2164].speaker SPEAKER_13
transcript.pyannote[2164].start 12977.88471875
transcript.pyannote[2164].end 13024.40909375
transcript.pyannote[2165].speaker SPEAKER_14
transcript.pyannote[2165].start 13009.64346875
transcript.pyannote[2165].end 13009.96409375
transcript.pyannote[2166].speaker SPEAKER_00
transcript.pyannote[2166].start 13009.96409375
transcript.pyannote[2166].end 13011.44909375
transcript.pyannote[2167].speaker SPEAKER_00
transcript.pyannote[2167].start 13014.62159375
transcript.pyannote[2167].end 13014.85784375
transcript.pyannote[2168].speaker SPEAKER_09
transcript.pyannote[2168].start 13023.51471875
transcript.pyannote[2168].end 13054.02471875
transcript.pyannote[2169].speaker SPEAKER_00
transcript.pyannote[2169].start 13035.88409375
transcript.pyannote[2169].end 13036.45784375
transcript.pyannote[2170].speaker SPEAKER_13
transcript.pyannote[2170].start 13054.02471875
transcript.pyannote[2170].end 13054.41284375
transcript.pyannote[2171].speaker SPEAKER_09
transcript.pyannote[2171].start 13054.41284375
transcript.pyannote[2171].end 13054.46346875
transcript.pyannote[2172].speaker SPEAKER_13
transcript.pyannote[2172].start 13054.80096875
transcript.pyannote[2172].end 13076.72159375
transcript.pyannote[2173].speaker SPEAKER_09
transcript.pyannote[2173].start 13076.33346875
transcript.pyannote[2173].end 13162.02471875
transcript.pyannote[2174].speaker SPEAKER_00
transcript.pyannote[2174].start 13088.23034375
transcript.pyannote[2174].end 13088.26409375
transcript.pyannote[2175].speaker SPEAKER_17
transcript.pyannote[2175].start 13088.26409375
transcript.pyannote[2175].end 13088.48346875
transcript.pyannote[2176].speaker SPEAKER_00
transcript.pyannote[2176].start 13088.48346875
transcript.pyannote[2176].end 13088.53409375
transcript.pyannote[2177].speaker SPEAKER_10
transcript.pyannote[2177].start 13162.02471875
transcript.pyannote[2177].end 13162.64909375
transcript.pyannote[2178].speaker SPEAKER_09
transcript.pyannote[2178].start 13162.64909375
transcript.pyannote[2178].end 13162.69971875
transcript.pyannote[2179].speaker SPEAKER_10
transcript.pyannote[2179].start 13163.35784375
transcript.pyannote[2179].end 13171.94721875
transcript.pyannote[2180].speaker SPEAKER_10
transcript.pyannote[2180].start 13172.26784375
transcript.pyannote[2180].end 13174.29284375
transcript.pyannote[2181].speaker SPEAKER_09
transcript.pyannote[2181].start 13174.29284375
transcript.pyannote[2181].end 13174.63034375
transcript.pyannote[2182].speaker SPEAKER_10
transcript.pyannote[2182].start 13174.63034375
transcript.pyannote[2182].end 13174.96784375
transcript.pyannote[2183].speaker SPEAKER_09
transcript.pyannote[2183].start 13174.96784375
transcript.pyannote[2183].end 13185.41346875
transcript.pyannote[2184].speaker SPEAKER_10
transcript.pyannote[2184].start 13185.88596875
transcript.pyannote[2184].end 13192.12971875
transcript.pyannote[2185].speaker SPEAKER_09
transcript.pyannote[2185].start 13191.35346875
transcript.pyannote[2185].end 13204.70159375
transcript.pyannote[2186].speaker SPEAKER_09
transcript.pyannote[2186].start 13205.15721875
transcript.pyannote[2186].end 13205.17409375
transcript.pyannote[2187].speaker SPEAKER_10
transcript.pyannote[2187].start 13205.17409375
transcript.pyannote[2187].end 13209.40971875
transcript.pyannote[2188].speaker SPEAKER_09
transcript.pyannote[2188].start 13205.29221875
transcript.pyannote[2188].end 13206.22034375
transcript.pyannote[2189].speaker SPEAKER_09
transcript.pyannote[2189].start 13207.97534375
transcript.pyannote[2189].end 13209.44346875
transcript.pyannote[2190].speaker SPEAKER_10
transcript.pyannote[2190].start 13209.44346875
transcript.pyannote[2190].end 13209.54471875
transcript.pyannote[2191].speaker SPEAKER_10
transcript.pyannote[2191].start 13209.96659375
transcript.pyannote[2191].end 13211.36721875
transcript.pyannote[2192].speaker SPEAKER_09
transcript.pyannote[2192].start 13210.52346875
transcript.pyannote[2192].end 13212.70034375
transcript.pyannote[2193].speaker SPEAKER_10
transcript.pyannote[2193].start 13212.22784375
transcript.pyannote[2193].end 13213.12221875
transcript.pyannote[2194].speaker SPEAKER_09
transcript.pyannote[2194].start 13213.12221875
transcript.pyannote[2194].end 13221.20534375
transcript.pyannote[2195].speaker SPEAKER_10
transcript.pyannote[2195].start 13213.30784375
transcript.pyannote[2195].end 13213.72971875
transcript.pyannote[2196].speaker SPEAKER_07
transcript.pyannote[2196].start 13216.17659375
transcript.pyannote[2196].end 13218.58971875
transcript.pyannote[2197].speaker SPEAKER_07
transcript.pyannote[2197].start 13221.27284375
transcript.pyannote[2197].end 13226.97659375
transcript.pyannote[2198].speaker SPEAKER_12
transcript.pyannote[2198].start 13236.83159375
transcript.pyannote[2198].end 13237.03409375
transcript.pyannote[2199].speaker SPEAKER_18
transcript.pyannote[2199].start 13237.86096875
transcript.pyannote[2199].end 13241.48909375
transcript.pyannote[2200].speaker SPEAKER_07
transcript.pyannote[2200].start 13241.86034375
transcript.pyannote[2200].end 13243.76721875
transcript.pyannote[2201].speaker SPEAKER_16
transcript.pyannote[2201].start 13250.71971875
transcript.pyannote[2201].end 13251.27659375
transcript.pyannote[2202].speaker SPEAKER_18
transcript.pyannote[2202].start 13252.69409375
transcript.pyannote[2202].end 13253.58846875
transcript.pyannote[2203].speaker SPEAKER_16
transcript.pyannote[2203].start 13255.69784375
transcript.pyannote[2203].end 13255.76534375
transcript.pyannote[2204].speaker SPEAKER_19
transcript.pyannote[2204].start 13255.76534375
transcript.pyannote[2204].end 13256.57534375
transcript.pyannote[2205].speaker SPEAKER_18
transcript.pyannote[2205].start 13259.69721875
transcript.pyannote[2205].end 13265.62034375
transcript.pyannote[2206].speaker SPEAKER_18
transcript.pyannote[2206].start 13266.34596875
transcript.pyannote[2206].end 13271.15534375
transcript.pyannote[2207].speaker SPEAKER_00
transcript.pyannote[2207].start 13269.80534375
transcript.pyannote[2207].end 13270.19346875
transcript.pyannote[2208].speaker SPEAKER_27
transcript.pyannote[2208].start 13270.19346875
transcript.pyannote[2208].end 13270.24409375
transcript.pyannote[2209].speaker SPEAKER_00
transcript.pyannote[2209].start 13270.24409375
transcript.pyannote[2209].end 13270.39596875
transcript.pyannote[2210].speaker SPEAKER_18
transcript.pyannote[2210].start 13271.67846875
transcript.pyannote[2210].end 13273.93971875
transcript.pyannote[2211].speaker SPEAKER_18
transcript.pyannote[2211].start 13274.24346875
transcript.pyannote[2211].end 13276.42034375
transcript.pyannote[2212].speaker SPEAKER_18
transcript.pyannote[2212].start 13276.80846875
transcript.pyannote[2212].end 13279.82909375
transcript.pyannote[2213].speaker SPEAKER_18
transcript.pyannote[2213].start 13280.08221875
transcript.pyannote[2213].end 13281.49971875
transcript.pyannote[2214].speaker SPEAKER_18
transcript.pyannote[2214].start 13281.66846875
transcript.pyannote[2214].end 13289.48159375
transcript.pyannote[2215].speaker SPEAKER_18
transcript.pyannote[2215].start 13289.81909375
transcript.pyannote[2215].end 13297.75034375
transcript.pyannote[2216].speaker SPEAKER_18
transcript.pyannote[2216].start 13298.59409375
transcript.pyannote[2216].end 13300.18034375
transcript.pyannote[2217].speaker SPEAKER_18
transcript.pyannote[2217].start 13301.09159375
transcript.pyannote[2217].end 13302.32346875
transcript.pyannote[2218].speaker SPEAKER_18
transcript.pyannote[2218].start 13302.59346875
transcript.pyannote[2218].end 13303.70721875
transcript.pyannote[2219].speaker SPEAKER_18
transcript.pyannote[2219].start 13304.46659375
transcript.pyannote[2219].end 13310.89596875
transcript.pyannote[2220].speaker SPEAKER_18
transcript.pyannote[2220].start 13311.41909375
transcript.pyannote[2220].end 13316.22846875
transcript.pyannote[2221].speaker SPEAKER_18
transcript.pyannote[2221].start 13316.53221875
transcript.pyannote[2221].end 13323.70409375
transcript.pyannote[2222].speaker SPEAKER_18
transcript.pyannote[2222].start 13324.09221875
transcript.pyannote[2222].end 13331.02784375
transcript.pyannote[2223].speaker SPEAKER_18
transcript.pyannote[2223].start 13331.41596875
transcript.pyannote[2223].end 13332.63096875
transcript.pyannote[2224].speaker SPEAKER_18
transcript.pyannote[2224].start 13334.21721875
transcript.pyannote[2224].end 13335.44909375
transcript.pyannote[2225].speaker SPEAKER_18
transcript.pyannote[2225].start 13336.61346875
transcript.pyannote[2225].end 13341.54096875
transcript.pyannote[2226].speaker SPEAKER_06
transcript.pyannote[2226].start 13342.16534375
transcript.pyannote[2226].end 13352.22284375
transcript.pyannote[2227].speaker SPEAKER_06
transcript.pyannote[2227].start 13352.52659375
transcript.pyannote[2227].end 13353.99471875
transcript.pyannote[2228].speaker SPEAKER_06
transcript.pyannote[2228].start 13354.63596875
transcript.pyannote[2228].end 13361.30159375
transcript.pyannote[2229].speaker SPEAKER_18
transcript.pyannote[2229].start 13360.28909375
transcript.pyannote[2229].end 13368.16971875
transcript.pyannote[2230].speaker SPEAKER_18
transcript.pyannote[2230].start 13368.81096875
transcript.pyannote[2230].end 13381.18034375
transcript.pyannote[2231].speaker SPEAKER_18
transcript.pyannote[2231].start 13381.63596875
transcript.pyannote[2231].end 13383.32346875
transcript.pyannote[2232].speaker SPEAKER_18
transcript.pyannote[2232].start 13383.99846875
transcript.pyannote[2232].end 13399.87784375
transcript.pyannote[2233].speaker SPEAKER_06
transcript.pyannote[2233].start 13399.94534375
transcript.pyannote[2233].end 13403.33721875
transcript.pyannote[2234].speaker SPEAKER_18
transcript.pyannote[2234].start 13402.59471875
transcript.pyannote[2234].end 13406.22284375
transcript.pyannote[2235].speaker SPEAKER_18
transcript.pyannote[2235].start 13406.56034375
transcript.pyannote[2235].end 13408.72034375
transcript.pyannote[2236].speaker SPEAKER_18
transcript.pyannote[2236].start 13409.49659375
transcript.pyannote[2236].end 13413.12471875
transcript.pyannote[2237].speaker SPEAKER_18
transcript.pyannote[2237].start 13413.56346875
transcript.pyannote[2237].end 13418.87909375
transcript.pyannote[2238].speaker SPEAKER_18
transcript.pyannote[2238].start 13419.60471875
transcript.pyannote[2238].end 13422.01784375
transcript.pyannote[2239].speaker SPEAKER_18
transcript.pyannote[2239].start 13422.59159375
transcript.pyannote[2239].end 13424.61659375
transcript.pyannote[2240].speaker SPEAKER_18
transcript.pyannote[2240].start 13424.78534375
transcript.pyannote[2240].end 13451.02596875
transcript.pyannote[2241].speaker SPEAKER_06
transcript.pyannote[2241].start 13451.34659375
transcript.pyannote[2241].end 13459.63221875
transcript.pyannote[2242].speaker SPEAKER_18
transcript.pyannote[2242].start 13458.97409375
transcript.pyannote[2242].end 13461.38721875
transcript.pyannote[2243].speaker SPEAKER_06
transcript.pyannote[2243].start 13461.48846875
transcript.pyannote[2243].end 13465.04909375
transcript.pyannote[2244].speaker SPEAKER_06
transcript.pyannote[2244].start 13465.26846875
transcript.pyannote[2244].end 13465.63971875
transcript.pyannote[2245].speaker SPEAKER_06
transcript.pyannote[2245].start 13465.80846875
transcript.pyannote[2245].end 13471.07346875
transcript.pyannote[2246].speaker SPEAKER_18
transcript.pyannote[2246].start 13470.38159375
transcript.pyannote[2246].end 13472.52471875
transcript.pyannote[2247].speaker SPEAKER_06
transcript.pyannote[2247].start 13472.94659375
transcript.pyannote[2247].end 13474.07721875
transcript.pyannote[2248].speaker SPEAKER_18
transcript.pyannote[2248].start 13474.07721875
transcript.pyannote[2248].end 13474.65096875
transcript.pyannote[2249].speaker SPEAKER_06
transcript.pyannote[2249].start 13474.65096875
transcript.pyannote[2249].end 13480.59096875
transcript.pyannote[2250].speaker SPEAKER_18
transcript.pyannote[2250].start 13478.38034375
transcript.pyannote[2250].end 13485.41721875
transcript.pyannote[2251].speaker SPEAKER_06
transcript.pyannote[2251].start 13485.72096875
transcript.pyannote[2251].end 13490.41221875
transcript.pyannote[2252].speaker SPEAKER_18
transcript.pyannote[2252].start 13489.83846875
transcript.pyannote[2252].end 13500.38534375
transcript.pyannote[2253].speaker SPEAKER_16
transcript.pyannote[2253].start 13501.81971875
transcript.pyannote[2253].end 13508.18159375
transcript.pyannote[2254].speaker SPEAKER_18
transcript.pyannote[2254].start 13507.37159375
transcript.pyannote[2254].end 13519.35284375
transcript.pyannote[2255].speaker SPEAKER_18
transcript.pyannote[2255].start 13520.43284375
transcript.pyannote[2255].end 13522.01909375
transcript.pyannote[2256].speaker SPEAKER_18
transcript.pyannote[2256].start 13523.06534375
transcript.pyannote[2256].end 13524.53346875
transcript.pyannote[2257].speaker SPEAKER_18
transcript.pyannote[2257].start 13525.15784375
transcript.pyannote[2257].end 13533.42659375
transcript.pyannote[2258].speaker SPEAKER_18
transcript.pyannote[2258].start 13534.03409375
transcript.pyannote[2258].end 13541.71221875
transcript.pyannote[2259].speaker SPEAKER_18
transcript.pyannote[2259].start 13542.11721875
transcript.pyannote[2259].end 13545.54284375
transcript.pyannote[2260].speaker SPEAKER_16
transcript.pyannote[2260].start 13547.14596875
transcript.pyannote[2260].end 13553.45721875
transcript.pyannote[2261].speaker SPEAKER_18
transcript.pyannote[2261].start 13553.45721875
transcript.pyannote[2261].end 13553.99721875
transcript.pyannote[2262].speaker SPEAKER_16
transcript.pyannote[2262].start 13553.99721875
transcript.pyannote[2262].end 13558.75596875
transcript.pyannote[2263].speaker SPEAKER_18
transcript.pyannote[2263].start 13555.41471875
transcript.pyannote[2263].end 13557.72659375
transcript.pyannote[2264].speaker SPEAKER_18
transcript.pyannote[2264].start 13559.43096875
transcript.pyannote[2264].end 13560.84846875
transcript.pyannote[2265].speaker SPEAKER_07
transcript.pyannote[2265].start 13559.97096875
transcript.pyannote[2265].end 13559.98784375
transcript.pyannote[2266].speaker SPEAKER_16
transcript.pyannote[2266].start 13559.98784375
transcript.pyannote[2266].end 13560.03846875
transcript.pyannote[2267].speaker SPEAKER_07
transcript.pyannote[2267].start 13560.03846875
transcript.pyannote[2267].end 13561.48971875
transcript.pyannote[2268].speaker SPEAKER_18
transcript.pyannote[2268].start 13562.08034375
transcript.pyannote[2268].end 13563.43034375
transcript.pyannote[2269].speaker SPEAKER_18
transcript.pyannote[2269].start 13563.56534375
transcript.pyannote[2269].end 13564.89846875
transcript.pyannote[2270].speaker SPEAKER_18
transcript.pyannote[2270].start 13565.53971875
transcript.pyannote[2270].end 13575.54659375
transcript.pyannote[2271].speaker SPEAKER_18
transcript.pyannote[2271].start 13576.06971875
transcript.pyannote[2271].end 13579.59659375
transcript.pyannote[2272].speaker SPEAKER_03
transcript.pyannote[2272].start 13582.61721875
transcript.pyannote[2272].end 13583.59596875
transcript.pyannote[2273].speaker SPEAKER_18
transcript.pyannote[2273].start 13582.70159375
transcript.pyannote[2273].end 13583.03909375
transcript.pyannote[2274].speaker SPEAKER_03
transcript.pyannote[2274].start 13584.25409375
transcript.pyannote[2274].end 13586.43096875
transcript.pyannote[2275].speaker SPEAKER_18
transcript.pyannote[2275].start 13584.96284375
transcript.pyannote[2275].end 13585.90784375
transcript.pyannote[2276].speaker SPEAKER_03
transcript.pyannote[2276].start 13587.20721875
transcript.pyannote[2276].end 13588.23659375
transcript.pyannote[2277].speaker SPEAKER_03
transcript.pyannote[2277].start 13589.06346875
transcript.pyannote[2277].end 13595.86409375
transcript.pyannote[2278].speaker SPEAKER_18
transcript.pyannote[2278].start 13591.10534375
transcript.pyannote[2278].end 13591.42596875
transcript.pyannote[2279].speaker SPEAKER_03
transcript.pyannote[2279].start 13596.30284375
transcript.pyannote[2279].end 13600.26846875
transcript.pyannote[2280].speaker SPEAKER_18
transcript.pyannote[2280].start 13600.26846875
transcript.pyannote[2280].end 13617.91971875
transcript.pyannote[2281].speaker SPEAKER_18
transcript.pyannote[2281].start 13618.79721875
transcript.pyannote[2281].end 13622.39159375
transcript.pyannote[2282].speaker SPEAKER_18
transcript.pyannote[2282].start 13622.67846875
transcript.pyannote[2282].end 13623.18471875
transcript.pyannote[2283].speaker SPEAKER_18
transcript.pyannote[2283].start 13624.12971875
transcript.pyannote[2283].end 13625.14221875
transcript.pyannote[2284].speaker SPEAKER_18
transcript.pyannote[2284].start 13625.46284375
transcript.pyannote[2284].end 13627.89284375
transcript.pyannote[2285].speaker SPEAKER_18
transcript.pyannote[2285].start 13628.17971875
transcript.pyannote[2285].end 13628.95596875
transcript.pyannote[2286].speaker SPEAKER_18
transcript.pyannote[2286].start 13629.42846875
transcript.pyannote[2286].end 13634.17034375
transcript.pyannote[2287].speaker SPEAKER_18
transcript.pyannote[2287].start 13634.74409375
transcript.pyannote[2287].end 13641.05534375
transcript.pyannote[2288].speaker SPEAKER_18
transcript.pyannote[2288].start 13641.61221875
transcript.pyannote[2288].end 13649.17221875
transcript.pyannote[2289].speaker SPEAKER_16
transcript.pyannote[2289].start 13649.61096875
transcript.pyannote[2289].end 13658.79096875
transcript.pyannote[2290].speaker SPEAKER_16
transcript.pyannote[2290].start 13658.95971875
transcript.pyannote[2290].end 13665.01784375
transcript.pyannote[2291].speaker SPEAKER_18
transcript.pyannote[2291].start 13663.17846875
transcript.pyannote[2291].end 13665.97971875
transcript.pyannote[2292].speaker SPEAKER_16
transcript.pyannote[2292].start 13665.45659375
transcript.pyannote[2292].end 13673.52284375
transcript.pyannote[2293].speaker SPEAKER_18
transcript.pyannote[2293].start 13671.27846875
transcript.pyannote[2293].end 13674.28221875
transcript.pyannote[2294].speaker SPEAKER_16
transcript.pyannote[2294].start 13674.36659375
transcript.pyannote[2294].end 13680.71159375
transcript.pyannote[2295].speaker SPEAKER_18
transcript.pyannote[2295].start 13679.46284375
transcript.pyannote[2295].end 13684.89659375
transcript.pyannote[2296].speaker SPEAKER_18
transcript.pyannote[2296].start 13685.16659375
transcript.pyannote[2296].end 13693.18221875
transcript.pyannote[2297].speaker SPEAKER_18
transcript.pyannote[2297].start 13693.57034375
transcript.pyannote[2297].end 13694.93721875
transcript.pyannote[2298].speaker SPEAKER_18
transcript.pyannote[2298].start 13695.76409375
transcript.pyannote[2298].end 13701.16409375
transcript.pyannote[2299].speaker SPEAKER_18
transcript.pyannote[2299].start 13701.80534375
transcript.pyannote[2299].end 13707.30659375
transcript.pyannote[2300].speaker SPEAKER_18
transcript.pyannote[2300].start 13707.59346875
transcript.pyannote[2300].end 13715.25471875
transcript.pyannote[2301].speaker SPEAKER_18
transcript.pyannote[2301].start 13716.33471875
transcript.pyannote[2301].end 13719.55784375
transcript.pyannote[2302].speaker SPEAKER_18
transcript.pyannote[2302].start 13720.57034375
transcript.pyannote[2302].end 13725.17721875
transcript.pyannote[2303].speaker SPEAKER_18
transcript.pyannote[2303].start 13726.22346875
transcript.pyannote[2303].end 13727.37096875
transcript.pyannote[2304].speaker SPEAKER_18
transcript.pyannote[2304].start 13728.04596875
transcript.pyannote[2304].end 13729.56471875
transcript.pyannote[2305].speaker SPEAKER_18
transcript.pyannote[2305].start 13730.56034375
transcript.pyannote[2305].end 13738.55909375
transcript.pyannote[2306].speaker SPEAKER_18
transcript.pyannote[2306].start 13739.20034375
transcript.pyannote[2306].end 13747.99221875
transcript.pyannote[2307].speaker SPEAKER_18
transcript.pyannote[2307].start 13748.51534375
transcript.pyannote[2307].end 13759.18034375
transcript.pyannote[2308].speaker SPEAKER_18
transcript.pyannote[2308].start 13759.58534375
transcript.pyannote[2308].end 13768.56284375
transcript.pyannote[2309].speaker SPEAKER_18
transcript.pyannote[2309].start 13769.27159375
transcript.pyannote[2309].end 13780.00409375
transcript.pyannote[2310].speaker SPEAKER_18
transcript.pyannote[2310].start 13780.76346875
transcript.pyannote[2310].end 13784.29034375
transcript.pyannote[2311].speaker SPEAKER_18
transcript.pyannote[2311].start 13785.23534375
transcript.pyannote[2311].end 13785.94409375
transcript.pyannote[2312].speaker SPEAKER_06
transcript.pyannote[2312].start 13785.94409375
transcript.pyannote[2312].end 13787.27721875
transcript.pyannote[2313].speaker SPEAKER_16
transcript.pyannote[2313].start 13787.27721875
transcript.pyannote[2313].end 13787.29409375
transcript.pyannote[2314].speaker SPEAKER_06
transcript.pyannote[2314].start 13787.29409375
transcript.pyannote[2314].end 13787.37846875
transcript.pyannote[2315].speaker SPEAKER_06
transcript.pyannote[2315].start 13787.88471875
transcript.pyannote[2315].end 13788.62721875
transcript.pyannote[2316].speaker SPEAKER_07
transcript.pyannote[2316].start 13789.08284375
transcript.pyannote[2316].end 13792.74471875
transcript.pyannote[2317].speaker SPEAKER_21
transcript.pyannote[2317].start 13799.98409375
transcript.pyannote[2317].end 13803.42659375
transcript.pyannote[2318].speaker SPEAKER_21
transcript.pyannote[2318].start 13804.47284375
transcript.pyannote[2318].end 13808.05034375
transcript.pyannote[2319].speaker SPEAKER_21
transcript.pyannote[2319].start 13809.01221875
transcript.pyannote[2319].end 13811.05409375
transcript.pyannote[2320].speaker SPEAKER_21
transcript.pyannote[2320].start 13811.37471875
transcript.pyannote[2320].end 13813.80471875
transcript.pyannote[2321].speaker SPEAKER_21
transcript.pyannote[2321].start 13814.22659375
transcript.pyannote[2321].end 13817.51721875
transcript.pyannote[2322].speaker SPEAKER_21
transcript.pyannote[2322].start 13818.07409375
transcript.pyannote[2322].end 13819.86284375
transcript.pyannote[2323].speaker SPEAKER_21
transcript.pyannote[2323].start 13820.67284375
transcript.pyannote[2323].end 13822.83284375
transcript.pyannote[2324].speaker SPEAKER_21
transcript.pyannote[2324].start 13823.42346875
transcript.pyannote[2324].end 13824.28409375
transcript.pyannote[2325].speaker SPEAKER_21
transcript.pyannote[2325].start 13824.53721875
transcript.pyannote[2325].end 13824.55409375
transcript.pyannote[2326].speaker SPEAKER_07
transcript.pyannote[2326].start 13824.55409375
transcript.pyannote[2326].end 13825.36409375
transcript.pyannote[2327].speaker SPEAKER_07
transcript.pyannote[2327].start 13825.80284375
transcript.pyannote[2327].end 13831.38846875
transcript.pyannote[2328].speaker SPEAKER_21
transcript.pyannote[2328].start 13831.96221875
transcript.pyannote[2328].end 13844.88846875
transcript.pyannote[2329].speaker SPEAKER_27
transcript.pyannote[2329].start 13832.19846875
transcript.pyannote[2329].end 13832.24909375
transcript.pyannote[2330].speaker SPEAKER_21
transcript.pyannote[2330].start 13845.88409375
transcript.pyannote[2330].end 13849.22534375
transcript.pyannote[2331].speaker SPEAKER_21
transcript.pyannote[2331].start 13849.96784375
transcript.pyannote[2331].end 13850.82846875
transcript.pyannote[2332].speaker SPEAKER_21
transcript.pyannote[2332].start 13851.26721875
transcript.pyannote[2332].end 13854.13596875
transcript.pyannote[2333].speaker SPEAKER_21
transcript.pyannote[2333].start 13855.11471875
transcript.pyannote[2333].end 13856.12721875
transcript.pyannote[2334].speaker SPEAKER_21
transcript.pyannote[2334].start 13856.32971875
transcript.pyannote[2334].end 13859.67096875
transcript.pyannote[2335].speaker SPEAKER_21
transcript.pyannote[2335].start 13860.16034375
transcript.pyannote[2335].end 13863.99096875
transcript.pyannote[2336].speaker SPEAKER_13
transcript.pyannote[2336].start 13865.20596875
transcript.pyannote[2336].end 13878.84096875
transcript.pyannote[2337].speaker SPEAKER_21
transcript.pyannote[2337].start 13867.70346875
transcript.pyannote[2337].end 13868.86784375
transcript.pyannote[2338].speaker SPEAKER_21
transcript.pyannote[2338].start 13874.35221875
transcript.pyannote[2338].end 13875.76971875
transcript.pyannote[2339].speaker SPEAKER_21
transcript.pyannote[2339].start 13879.17846875
transcript.pyannote[2339].end 13880.03909375
transcript.pyannote[2340].speaker SPEAKER_13
transcript.pyannote[2340].start 13880.30909375
transcript.pyannote[2340].end 13882.13159375
transcript.pyannote[2341].speaker SPEAKER_21
transcript.pyannote[2341].start 13881.72659375
transcript.pyannote[2341].end 13898.02784375
transcript.pyannote[2342].speaker SPEAKER_13
transcript.pyannote[2342].start 13898.23034375
transcript.pyannote[2342].end 13901.72346875
transcript.pyannote[2343].speaker SPEAKER_21
transcript.pyannote[2343].start 13900.22159375
transcript.pyannote[2343].end 13923.42471875
transcript.pyannote[2344].speaker SPEAKER_21
transcript.pyannote[2344].start 13926.44534375
transcript.pyannote[2344].end 13941.78471875
transcript.pyannote[2345].speaker SPEAKER_02
transcript.pyannote[2345].start 13943.99534375
transcript.pyannote[2345].end 13947.69096875
transcript.pyannote[2346].speaker SPEAKER_21
transcript.pyannote[2346].start 13947.06659375
transcript.pyannote[2346].end 13947.53909375
transcript.pyannote[2347].speaker SPEAKER_02
transcript.pyannote[2347].start 13947.99471875
transcript.pyannote[2347].end 13950.91409375
transcript.pyannote[2348].speaker SPEAKER_21
transcript.pyannote[2348].start 13950.91409375
transcript.pyannote[2348].end 13952.78721875
transcript.pyannote[2349].speaker SPEAKER_21
transcript.pyannote[2349].start 13953.47909375
transcript.pyannote[2349].end 13959.95909375
transcript.pyannote[2350].speaker SPEAKER_21
transcript.pyannote[2350].start 13960.60034375
transcript.pyannote[2350].end 13969.47659375
transcript.pyannote[2351].speaker SPEAKER_02
transcript.pyannote[2351].start 13970.15159375
transcript.pyannote[2351].end 13970.97846875
transcript.pyannote[2352].speaker SPEAKER_21
transcript.pyannote[2352].start 13970.97846875
transcript.pyannote[2352].end 13972.36221875
transcript.pyannote[2353].speaker SPEAKER_02
transcript.pyannote[2353].start 13972.90221875
transcript.pyannote[2353].end 13975.14659375
transcript.pyannote[2354].speaker SPEAKER_21
transcript.pyannote[2354].start 13975.66971875
transcript.pyannote[2354].end 13993.59096875
transcript.pyannote[2355].speaker SPEAKER_21
transcript.pyannote[2355].start 13994.02971875
transcript.pyannote[2355].end 14001.04971875
transcript.pyannote[2356].speaker SPEAKER_21
transcript.pyannote[2356].start 14001.37034375
transcript.pyannote[2356].end 14001.92721875
transcript.pyannote[2357].speaker SPEAKER_21
transcript.pyannote[2357].start 14003.09159375
transcript.pyannote[2357].end 14011.25909375
transcript.pyannote[2358].speaker SPEAKER_21
transcript.pyannote[2358].start 14012.05221875
transcript.pyannote[2358].end 14016.28784375
transcript.pyannote[2359].speaker SPEAKER_21
transcript.pyannote[2359].start 14016.76034375
transcript.pyannote[2359].end 14042.95034375
transcript.pyannote[2360].speaker SPEAKER_21
transcript.pyannote[2360].start 14043.59159375
transcript.pyannote[2360].end 14058.77909375
transcript.pyannote[2361].speaker SPEAKER_21
transcript.pyannote[2361].start 14058.93096875
transcript.pyannote[2361].end 14074.92846875
transcript.pyannote[2362].speaker SPEAKER_21
transcript.pyannote[2362].start 14075.16471875
transcript.pyannote[2362].end 14076.68346875
transcript.pyannote[2363].speaker SPEAKER_21
transcript.pyannote[2363].start 14077.08846875
transcript.pyannote[2363].end 14092.22534375
transcript.pyannote[2364].speaker SPEAKER_21
transcript.pyannote[2364].start 14092.73159375
transcript.pyannote[2364].end 14106.29909375
transcript.pyannote[2365].speaker SPEAKER_21
transcript.pyannote[2365].start 14106.97409375
transcript.pyannote[2365].end 14108.07096875
transcript.pyannote[2366].speaker SPEAKER_16
transcript.pyannote[2366].start 14108.72909375
transcript.pyannote[2366].end 14123.19096875
transcript.pyannote[2367].speaker SPEAKER_21
transcript.pyannote[2367].start 14115.61409375
transcript.pyannote[2367].end 14118.31409375
transcript.pyannote[2368].speaker SPEAKER_21
transcript.pyannote[2368].start 14120.87909375
transcript.pyannote[2368].end 14148.55409375
transcript.pyannote[2369].speaker SPEAKER_16
transcript.pyannote[2369].start 14126.43096875
transcript.pyannote[2369].end 14128.06784375
transcript.pyannote[2370].speaker SPEAKER_27
transcript.pyannote[2370].start 14128.06784375
transcript.pyannote[2370].end 14128.15221875
transcript.pyannote[2371].speaker SPEAKER_16
transcript.pyannote[2371].start 14128.15221875
transcript.pyannote[2371].end 14128.16909375
transcript.pyannote[2372].speaker SPEAKER_16
transcript.pyannote[2372].start 14128.67534375
transcript.pyannote[2372].end 14128.96221875
transcript.pyannote[2373].speaker SPEAKER_27
transcript.pyannote[2373].start 14128.96221875
transcript.pyannote[2373].end 14129.63721875
transcript.pyannote[2374].speaker SPEAKER_16
transcript.pyannote[2374].start 14129.63721875
transcript.pyannote[2374].end 14129.68784375
transcript.pyannote[2375].speaker SPEAKER_27
transcript.pyannote[2375].start 14129.68784375
transcript.pyannote[2375].end 14129.70471875
transcript.pyannote[2376].speaker SPEAKER_16
transcript.pyannote[2376].start 14148.79034375
transcript.pyannote[2376].end 14151.33846875
transcript.pyannote[2377].speaker SPEAKER_21
transcript.pyannote[2377].start 14149.87034375
transcript.pyannote[2377].end 14158.40909375
transcript.pyannote[2378].speaker SPEAKER_21
transcript.pyannote[2378].start 14158.79721875
transcript.pyannote[2378].end 14159.79284375
transcript.pyannote[2379].speaker SPEAKER_21
transcript.pyannote[2379].start 14160.82221875
transcript.pyannote[2379].end 14165.59784375
transcript.pyannote[2380].speaker SPEAKER_21
transcript.pyannote[2380].start 14166.28971875
transcript.pyannote[2380].end 14171.43659375
transcript.pyannote[2381].speaker SPEAKER_13
transcript.pyannote[2381].start 14171.48721875
transcript.pyannote[2381].end 14172.39846875
transcript.pyannote[2382].speaker SPEAKER_21
transcript.pyannote[2382].start 14172.39846875
transcript.pyannote[2382].end 14177.27534375
transcript.pyannote[2383].speaker SPEAKER_13
transcript.pyannote[2383].start 14177.73096875
transcript.pyannote[2383].end 14178.03471875
transcript.pyannote[2384].speaker SPEAKER_13
transcript.pyannote[2384].start 14178.45659375
transcript.pyannote[2384].end 14178.49034375
transcript.pyannote[2385].speaker SPEAKER_21
transcript.pyannote[2385].start 14178.49034375
transcript.pyannote[2385].end 14179.45221875
transcript.pyannote[2386].speaker SPEAKER_13
transcript.pyannote[2386].start 14178.84471875
transcript.pyannote[2386].end 14179.36784375
transcript.pyannote[2387].speaker SPEAKER_27
transcript.pyannote[2387].start 14179.36784375
transcript.pyannote[2387].end 14180.46471875
transcript.pyannote[2388].speaker SPEAKER_21
transcript.pyannote[2388].start 14179.94159375
transcript.pyannote[2388].end 14180.58284375
transcript.pyannote[2389].speaker SPEAKER_27
transcript.pyannote[2389].start 14180.58284375
transcript.pyannote[2389].end 14181.86534375
transcript.pyannote[2390].speaker SPEAKER_21
transcript.pyannote[2390].start 14181.89909375
transcript.pyannote[2390].end 14184.39659375
transcript.pyannote[2391].speaker SPEAKER_27
transcript.pyannote[2391].start 14184.00846875
transcript.pyannote[2391].end 14184.58221875
transcript.pyannote[2392].speaker SPEAKER_21
transcript.pyannote[2392].start 14184.58221875
transcript.pyannote[2392].end 14192.80034375
transcript.pyannote[2393].speaker SPEAKER_21
transcript.pyannote[2393].start 14195.38221875
transcript.pyannote[2393].end 14198.33534375
transcript.pyannote[2394].speaker SPEAKER_24
transcript.pyannote[2394].start 14199.46596875
transcript.pyannote[2394].end 14210.26596875
transcript.pyannote[2395].speaker SPEAKER_24
transcript.pyannote[2395].start 14211.16034375
transcript.pyannote[2395].end 14219.96909375
transcript.pyannote[2396].speaker SPEAKER_21
transcript.pyannote[2396].start 14219.96909375
transcript.pyannote[2396].end 14220.79596875
transcript.pyannote[2397].speaker SPEAKER_21
transcript.pyannote[2397].start 14221.62284375
transcript.pyannote[2397].end 14222.88846875
transcript.pyannote[2398].speaker SPEAKER_24
transcript.pyannote[2398].start 14222.88846875
transcript.pyannote[2398].end 14223.04034375
transcript.pyannote[2399].speaker SPEAKER_21
transcript.pyannote[2399].start 14223.04034375
transcript.pyannote[2399].end 14223.14159375
transcript.pyannote[2400].speaker SPEAKER_21
transcript.pyannote[2400].start 14223.41159375
transcript.pyannote[2400].end 14224.57596875
transcript.pyannote[2401].speaker SPEAKER_24
transcript.pyannote[2401].start 14224.57596875
transcript.pyannote[2401].end 14225.06534375
transcript.pyannote[2402].speaker SPEAKER_21
transcript.pyannote[2402].start 14225.06534375
transcript.pyannote[2402].end 14235.94971875
transcript.pyannote[2403].speaker SPEAKER_24
transcript.pyannote[2403].start 14227.68096875
transcript.pyannote[2403].end 14228.81159375
transcript.pyannote[2404].speaker SPEAKER_21
transcript.pyannote[2404].start 14237.24909375
transcript.pyannote[2404].end 14239.03784375
transcript.pyannote[2405].speaker SPEAKER_24
transcript.pyannote[2405].start 14239.03784375
transcript.pyannote[2405].end 14240.97846875
transcript.pyannote[2406].speaker SPEAKER_24
transcript.pyannote[2406].start 14241.72096875
transcript.pyannote[2406].end 14242.36221875
transcript.pyannote[2407].speaker SPEAKER_24
transcript.pyannote[2407].start 14242.76721875
transcript.pyannote[2407].end 14248.97721875
transcript.pyannote[2408].speaker SPEAKER_21
transcript.pyannote[2408].start 14248.97721875
transcript.pyannote[2408].end 14258.79846875
transcript.pyannote[2409].speaker SPEAKER_24
transcript.pyannote[2409].start 14252.63909375
transcript.pyannote[2409].end 14254.98471875
transcript.pyannote[2410].speaker SPEAKER_21
transcript.pyannote[2410].start 14259.55784375
transcript.pyannote[2410].end 14267.75909375
transcript.pyannote[2411].speaker SPEAKER_21
transcript.pyannote[2411].start 14268.29909375
transcript.pyannote[2411].end 14269.95284375
transcript.pyannote[2412].speaker SPEAKER_21
transcript.pyannote[2412].start 14270.45909375
transcript.pyannote[2412].end 14283.03096875
transcript.pyannote[2413].speaker SPEAKER_21
transcript.pyannote[2413].start 14284.58346875
transcript.pyannote[2413].end 14287.04721875
transcript.pyannote[2414].speaker SPEAKER_06
transcript.pyannote[2414].start 14287.31721875
transcript.pyannote[2414].end 14291.16471875
transcript.pyannote[2415].speaker SPEAKER_06
transcript.pyannote[2415].start 14291.56971875
transcript.pyannote[2415].end 14293.29096875
transcript.pyannote[2416].speaker SPEAKER_06
transcript.pyannote[2416].start 14294.06721875
transcript.pyannote[2416].end 14299.97346875
transcript.pyannote[2417].speaker SPEAKER_21
transcript.pyannote[2417].start 14299.97346875
transcript.pyannote[2417].end 14302.79159375
transcript.pyannote[2418].speaker SPEAKER_06
transcript.pyannote[2418].start 14303.02784375
transcript.pyannote[2418].end 14304.00659375
transcript.pyannote[2419].speaker SPEAKER_21
transcript.pyannote[2419].start 14303.56784375
transcript.pyannote[2419].end 14304.98534375
transcript.pyannote[2420].speaker SPEAKER_06
transcript.pyannote[2420].start 14305.13721875
transcript.pyannote[2420].end 14315.14409375
transcript.pyannote[2421].speaker SPEAKER_21
transcript.pyannote[2421].start 14308.25909375
transcript.pyannote[2421].end 14308.44471875
transcript.pyannote[2422].speaker SPEAKER_06
transcript.pyannote[2422].start 14315.32971875
transcript.pyannote[2422].end 14316.91596875
transcript.pyannote[2423].speaker SPEAKER_06
transcript.pyannote[2423].start 14316.94971875
transcript.pyannote[2423].end 14316.96659375
transcript.pyannote[2424].speaker SPEAKER_21
transcript.pyannote[2424].start 14316.96659375
transcript.pyannote[2424].end 14317.03409375
transcript.pyannote[2425].speaker SPEAKER_06
transcript.pyannote[2425].start 14317.03409375
transcript.pyannote[2425].end 14318.16471875
transcript.pyannote[2426].speaker SPEAKER_21
transcript.pyannote[2426].start 14318.16471875
transcript.pyannote[2426].end 14318.46846875
transcript.pyannote[2427].speaker SPEAKER_06
transcript.pyannote[2427].start 14318.46846875
transcript.pyannote[2427].end 14318.53596875
transcript.pyannote[2428].speaker SPEAKER_21
transcript.pyannote[2428].start 14318.53596875
transcript.pyannote[2428].end 14318.55284375
transcript.pyannote[2429].speaker SPEAKER_06
transcript.pyannote[2429].start 14318.55284375
transcript.pyannote[2429].end 14318.82284375
transcript.pyannote[2430].speaker SPEAKER_21
transcript.pyannote[2430].start 14318.82284375
transcript.pyannote[2430].end 14318.83971875
transcript.pyannote[2431].speaker SPEAKER_06
transcript.pyannote[2431].start 14318.83971875
transcript.pyannote[2431].end 14318.97471875
transcript.pyannote[2432].speaker SPEAKER_21
transcript.pyannote[2432].start 14318.97471875
transcript.pyannote[2432].end 14319.14346875
transcript.pyannote[2433].speaker SPEAKER_06
transcript.pyannote[2433].start 14319.14346875
transcript.pyannote[2433].end 14319.95346875
transcript.pyannote[2434].speaker SPEAKER_21
transcript.pyannote[2434].start 14319.95346875
transcript.pyannote[2434].end 14339.02221875
transcript.pyannote[2435].speaker SPEAKER_21
transcript.pyannote[2435].start 14339.91659375
transcript.pyannote[2435].end 14355.39096875
transcript.pyannote[2436].speaker SPEAKER_21
transcript.pyannote[2436].start 14355.57659375
transcript.pyannote[2436].end 14366.27534375
transcript.pyannote[2437].speaker SPEAKER_21
transcript.pyannote[2437].start 14367.33846875
transcript.pyannote[2437].end 14368.31721875
transcript.pyannote[2438].speaker SPEAKER_21
transcript.pyannote[2438].start 14368.89096875
transcript.pyannote[2438].end 14378.88096875
transcript.pyannote[2439].speaker SPEAKER_21
transcript.pyannote[2439].start 14379.30284375
transcript.pyannote[2439].end 14381.31096875
transcript.pyannote[2440].speaker SPEAKER_16
transcript.pyannote[2440].start 14382.08721875
transcript.pyannote[2440].end 14391.38534375
transcript.pyannote[2441].speaker SPEAKER_21
transcript.pyannote[2441].start 14390.10284375
transcript.pyannote[2441].end 14413.12034375
transcript.pyannote[2442].speaker SPEAKER_21
transcript.pyannote[2442].start 14414.14971875
transcript.pyannote[2442].end 14418.13221875
transcript.pyannote[2443].speaker SPEAKER_21
transcript.pyannote[2443].start 14418.31784375
transcript.pyannote[2443].end 14420.20784375
transcript.pyannote[2444].speaker SPEAKER_03
transcript.pyannote[2444].start 14421.72659375
transcript.pyannote[2444].end 14425.55721875
transcript.pyannote[2445].speaker SPEAKER_03
transcript.pyannote[2445].start 14426.01284375
transcript.pyannote[2445].end 14429.01659375
transcript.pyannote[2446].speaker SPEAKER_03
transcript.pyannote[2446].start 14429.32034375
transcript.pyannote[2446].end 14432.77971875
transcript.pyannote[2447].speaker SPEAKER_03
transcript.pyannote[2447].start 14432.84721875
transcript.pyannote[2447].end 14438.63534375
transcript.pyannote[2448].speaker SPEAKER_21
transcript.pyannote[2448].start 14438.63534375
transcript.pyannote[2448].end 14445.04784375
transcript.pyannote[2449].speaker SPEAKER_20
transcript.pyannote[2449].start 14444.33909375
transcript.pyannote[2449].end 14444.37284375
transcript.pyannote[2450].speaker SPEAKER_27
transcript.pyannote[2450].start 14444.37284375
transcript.pyannote[2450].end 14444.84534375
transcript.pyannote[2451].speaker SPEAKER_21
transcript.pyannote[2451].start 14445.16596875
transcript.pyannote[2451].end 14447.52846875
transcript.pyannote[2452].speaker SPEAKER_21
transcript.pyannote[2452].start 14449.31721875
transcript.pyannote[2452].end 14449.94159375
transcript.pyannote[2453].speaker SPEAKER_21
transcript.pyannote[2453].start 14451.12284375
transcript.pyannote[2453].end 14452.01721875
transcript.pyannote[2454].speaker SPEAKER_21
transcript.pyannote[2454].start 14453.58659375
transcript.pyannote[2454].end 14456.45534375
transcript.pyannote[2455].speaker SPEAKER_03
transcript.pyannote[2455].start 14457.83909375
transcript.pyannote[2455].end 14458.26096875
transcript.pyannote[2456].speaker SPEAKER_03
transcript.pyannote[2456].start 14458.48034375
transcript.pyannote[2456].end 14459.66159375
transcript.pyannote[2457].speaker SPEAKER_03
transcript.pyannote[2457].start 14459.98221875
transcript.pyannote[2457].end 14463.42471875
transcript.pyannote[2458].speaker SPEAKER_21
transcript.pyannote[2458].start 14462.59784375
transcript.pyannote[2458].end 14463.20534375
transcript.pyannote[2459].speaker SPEAKER_21
transcript.pyannote[2459].start 14464.20096875
transcript.pyannote[2459].end 14464.38659375
transcript.pyannote[2460].speaker SPEAKER_03
transcript.pyannote[2460].start 14464.38659375
transcript.pyannote[2460].end 14464.97721875
transcript.pyannote[2461].speaker SPEAKER_21
transcript.pyannote[2461].start 14464.97721875
transcript.pyannote[2461].end 14466.09096875
transcript.pyannote[2462].speaker SPEAKER_03
transcript.pyannote[2462].start 14466.09096875
transcript.pyannote[2462].end 14468.09909375
transcript.pyannote[2463].speaker SPEAKER_21
transcript.pyannote[2463].start 14466.29346875
transcript.pyannote[2463].end 14468.72346875
transcript.pyannote[2464].speaker SPEAKER_03
transcript.pyannote[2464].start 14468.38596875
transcript.pyannote[2464].end 14473.87034375
transcript.pyannote[2465].speaker SPEAKER_03
transcript.pyannote[2465].start 14474.20784375
transcript.pyannote[2465].end 14476.89096875
transcript.pyannote[2466].speaker SPEAKER_21
transcript.pyannote[2466].start 14477.56596875
transcript.pyannote[2466].end 14478.78096875
transcript.pyannote[2467].speaker SPEAKER_03
transcript.pyannote[2467].start 14479.23659375
transcript.pyannote[2467].end 14480.51909375
transcript.pyannote[2468].speaker SPEAKER_03
transcript.pyannote[2468].start 14481.26159375
transcript.pyannote[2468].end 14481.48096875
transcript.pyannote[2469].speaker SPEAKER_03
transcript.pyannote[2469].start 14481.61596875
transcript.pyannote[2469].end 14487.79221875
transcript.pyannote[2470].speaker SPEAKER_21
transcript.pyannote[2470].start 14486.77971875
transcript.pyannote[2470].end 14491.96034375
transcript.pyannote[2471].speaker SPEAKER_03
transcript.pyannote[2471].start 14491.80846875
transcript.pyannote[2471].end 14495.70659375
transcript.pyannote[2472].speaker SPEAKER_21
transcript.pyannote[2472].start 14496.38159375
transcript.pyannote[2472].end 14500.98846875
transcript.pyannote[2473].speaker SPEAKER_07
transcript.pyannote[2473].start 14500.98846875
transcript.pyannote[2473].end 14501.00534375
transcript.pyannote[2474].speaker SPEAKER_21
transcript.pyannote[2474].start 14501.00534375
transcript.pyannote[2474].end 14501.02221875
transcript.pyannote[2475].speaker SPEAKER_07
transcript.pyannote[2475].start 14501.02221875
transcript.pyannote[2475].end 14501.05596875
transcript.pyannote[2476].speaker SPEAKER_07
transcript.pyannote[2476].start 14501.34284375
transcript.pyannote[2476].end 14506.72596875
transcript.pyannote[2477].speaker SPEAKER_07
transcript.pyannote[2477].start 14506.77659375
transcript.pyannote[2477].end 14510.48909375
transcript.pyannote[2478].speaker SPEAKER_08
transcript.pyannote[2478].start 14536.81409375
transcript.pyannote[2478].end 14540.86409375
transcript.pyannote[2479].speaker SPEAKER_07
transcript.pyannote[2479].start 14541.33659375
transcript.pyannote[2479].end 14542.38284375
transcript.pyannote[2480].speaker SPEAKER_08
transcript.pyannote[2480].start 14541.35346875
transcript.pyannote[2480].end 14541.77534375
transcript.pyannote[2481].speaker SPEAKER_08
transcript.pyannote[2481].start 14542.73721875
transcript.pyannote[2481].end 14542.85534375
transcript.pyannote[2482].speaker SPEAKER_07
transcript.pyannote[2482].start 14545.01534375
transcript.pyannote[2482].end 14545.99409375
transcript.pyannote[2483].speaker SPEAKER_08
transcript.pyannote[2483].start 14545.13346875
transcript.pyannote[2483].end 14546.48346875
transcript.pyannote[2484].speaker SPEAKER_08
transcript.pyannote[2484].start 14549.62221875
transcript.pyannote[2484].end 14553.60471875
transcript.pyannote[2485].speaker SPEAKER_08
transcript.pyannote[2485].start 14553.94221875
transcript.pyannote[2485].end 14557.70534375
transcript.pyannote[2486].speaker SPEAKER_08
transcript.pyannote[2486].start 14558.59971875
transcript.pyannote[2486].end 14560.82721875
transcript.pyannote[2487].speaker SPEAKER_08
transcript.pyannote[2487].start 14561.09721875
transcript.pyannote[2487].end 14561.35034375
transcript.pyannote[2488].speaker SPEAKER_08
transcript.pyannote[2488].start 14561.87346875
transcript.pyannote[2488].end 14562.86909375
transcript.pyannote[2489].speaker SPEAKER_08
transcript.pyannote[2489].start 14563.64534375
transcript.pyannote[2489].end 14564.64096875
transcript.pyannote[2490].speaker SPEAKER_08
transcript.pyannote[2490].start 14565.19784375
transcript.pyannote[2490].end 14566.12596875
transcript.pyannote[2491].speaker SPEAKER_08
transcript.pyannote[2491].start 14566.61534375
transcript.pyannote[2491].end 14567.83034375
transcript.pyannote[2492].speaker SPEAKER_08
transcript.pyannote[2492].start 14568.15096875
transcript.pyannote[2492].end 14569.31534375
transcript.pyannote[2493].speaker SPEAKER_08
transcript.pyannote[2493].start 14570.02409375
transcript.pyannote[2493].end 14571.99846875
transcript.pyannote[2494].speaker SPEAKER_08
transcript.pyannote[2494].start 14572.80846875
transcript.pyannote[2494].end 14575.32284375
transcript.pyannote[2495].speaker SPEAKER_08
transcript.pyannote[2495].start 14575.62659375
transcript.pyannote[2495].end 14576.79096875
transcript.pyannote[2496].speaker SPEAKER_08
transcript.pyannote[2496].start 14577.80346875
transcript.pyannote[2496].end 14580.72284375
transcript.pyannote[2497].speaker SPEAKER_08
transcript.pyannote[2497].start 14580.85784375
transcript.pyannote[2497].end 14582.39346875
transcript.pyannote[2498].speaker SPEAKER_08
transcript.pyannote[2498].start 14583.42284375
transcript.pyannote[2498].end 14584.24971875
transcript.pyannote[2499].speaker SPEAKER_08
transcript.pyannote[2499].start 14585.92034375
transcript.pyannote[2499].end 14589.90284375
transcript.pyannote[2500].speaker SPEAKER_08
transcript.pyannote[2500].start 14590.89846875
transcript.pyannote[2500].end 14591.23596875
transcript.pyannote[2501].speaker SPEAKER_08
transcript.pyannote[2501].start 14591.64096875
transcript.pyannote[2501].end 14592.16409375
transcript.pyannote[2502].speaker SPEAKER_08
transcript.pyannote[2502].start 14592.63659375
transcript.pyannote[2502].end 14595.33659375
transcript.pyannote[2503].speaker SPEAKER_08
transcript.pyannote[2503].start 14595.53909375
transcript.pyannote[2503].end 14597.47971875
transcript.pyannote[2504].speaker SPEAKER_08
transcript.pyannote[2504].start 14599.09971875
transcript.pyannote[2504].end 14599.94346875
transcript.pyannote[2505].speaker SPEAKER_08
transcript.pyannote[2505].start 14601.46221875
transcript.pyannote[2505].end 14604.87096875
transcript.pyannote[2506].speaker SPEAKER_08
transcript.pyannote[2506].start 14605.41096875
transcript.pyannote[2506].end 14607.11534375
transcript.pyannote[2507].speaker SPEAKER_08
transcript.pyannote[2507].start 14607.60471875
transcript.pyannote[2507].end 14609.91659375
transcript.pyannote[2508].speaker SPEAKER_08
transcript.pyannote[2508].start 14610.37221875
transcript.pyannote[2508].end 14617.51034375
transcript.pyannote[2509].speaker SPEAKER_08
transcript.pyannote[2509].start 14618.94471875
transcript.pyannote[2509].end 14619.87284375
transcript.pyannote[2510].speaker SPEAKER_16
transcript.pyannote[2510].start 14620.83471875
transcript.pyannote[2510].end 14626.90971875
transcript.pyannote[2511].speaker SPEAKER_16
transcript.pyannote[2511].start 14627.21346875
transcript.pyannote[2511].end 14630.38596875
transcript.pyannote[2512].speaker SPEAKER_16
transcript.pyannote[2512].start 14630.58846875
transcript.pyannote[2512].end 14640.94971875
transcript.pyannote[2513].speaker SPEAKER_08
transcript.pyannote[2513].start 14639.44784375
transcript.pyannote[2513].end 14641.47284375
transcript.pyannote[2514].speaker SPEAKER_16
transcript.pyannote[2514].start 14641.25346875
transcript.pyannote[2514].end 14655.63096875
transcript.pyannote[2515].speaker SPEAKER_08
transcript.pyannote[2515].start 14653.80846875
transcript.pyannote[2515].end 14661.55409375
transcript.pyannote[2516].speaker SPEAKER_16
transcript.pyannote[2516].start 14661.67221875
transcript.pyannote[2516].end 14662.80284375
transcript.pyannote[2517].speaker SPEAKER_08
transcript.pyannote[2517].start 14662.26284375
transcript.pyannote[2517].end 14664.11909375
transcript.pyannote[2518].speaker SPEAKER_16
transcript.pyannote[2518].start 14665.85721875
transcript.pyannote[2518].end 14676.28596875
transcript.pyannote[2519].speaker SPEAKER_16
transcript.pyannote[2519].start 14676.45471875
transcript.pyannote[2519].end 14682.42846875
transcript.pyannote[2520].speaker SPEAKER_08
transcript.pyannote[2520].start 14682.15846875
transcript.pyannote[2520].end 14686.73159375
transcript.pyannote[2521].speaker SPEAKER_08
transcript.pyannote[2521].start 14686.91721875
transcript.pyannote[2521].end 14690.69721875
transcript.pyannote[2522].speaker SPEAKER_08
transcript.pyannote[2522].start 14691.15284375
transcript.pyannote[2522].end 14692.90784375
transcript.pyannote[2523].speaker SPEAKER_08
transcript.pyannote[2523].start 14693.36346875
transcript.pyannote[2523].end 14699.35409375
transcript.pyannote[2524].speaker SPEAKER_08
transcript.pyannote[2524].start 14699.87721875
transcript.pyannote[2524].end 14701.04159375
transcript.pyannote[2525].speaker SPEAKER_08
transcript.pyannote[2525].start 14701.68284375
transcript.pyannote[2525].end 14707.28534375
transcript.pyannote[2526].speaker SPEAKER_08
transcript.pyannote[2526].start 14707.65659375
transcript.pyannote[2526].end 14709.46221875
transcript.pyannote[2527].speaker SPEAKER_08
transcript.pyannote[2527].start 14709.66471875
transcript.pyannote[2527].end 14711.16659375
transcript.pyannote[2528].speaker SPEAKER_08
transcript.pyannote[2528].start 14711.57159375
transcript.pyannote[2528].end 14712.78659375
transcript.pyannote[2529].speaker SPEAKER_08
transcript.pyannote[2529].start 14713.74846875
transcript.pyannote[2529].end 14714.30534375
transcript.pyannote[2530].speaker SPEAKER_08
transcript.pyannote[2530].start 14714.76096875
transcript.pyannote[2530].end 14716.36409375
transcript.pyannote[2531].speaker SPEAKER_08
transcript.pyannote[2531].start 14717.05596875
transcript.pyannote[2531].end 14718.38909375
transcript.pyannote[2532].speaker SPEAKER_08
transcript.pyannote[2532].start 14719.23284375
transcript.pyannote[2532].end 14728.83471875
transcript.pyannote[2533].speaker SPEAKER_08
transcript.pyannote[2533].start 14729.45909375
transcript.pyannote[2533].end 14733.44159375
transcript.pyannote[2534].speaker SPEAKER_08
transcript.pyannote[2534].start 14734.36971875
transcript.pyannote[2534].end 14737.10346875
transcript.pyannote[2535].speaker SPEAKER_08
transcript.pyannote[2535].start 14737.13721875
transcript.pyannote[2535].end 14740.03971875
transcript.pyannote[2536].speaker SPEAKER_08
transcript.pyannote[2536].start 14740.59659375
transcript.pyannote[2536].end 14743.14471875
transcript.pyannote[2537].speaker SPEAKER_08
transcript.pyannote[2537].start 14743.80284375
transcript.pyannote[2537].end 14748.29159375
transcript.pyannote[2538].speaker SPEAKER_08
transcript.pyannote[2538].start 14748.59534375
transcript.pyannote[2538].end 14770.73534375
transcript.pyannote[2539].speaker SPEAKER_16
transcript.pyannote[2539].start 14771.81534375
transcript.pyannote[2539].end 14801.71784375
transcript.pyannote[2540].speaker SPEAKER_08
transcript.pyannote[2540].start 14801.43096875
transcript.pyannote[2540].end 14802.64596875
transcript.pyannote[2541].speaker SPEAKER_16
transcript.pyannote[2541].start 14802.96659375
transcript.pyannote[2541].end 14805.86909375
transcript.pyannote[2542].speaker SPEAKER_08
transcript.pyannote[2542].start 14806.71284375
transcript.pyannote[2542].end 14811.42096875
transcript.pyannote[2543].speaker SPEAKER_16
transcript.pyannote[2543].start 14808.56909375
transcript.pyannote[2543].end 14813.19284375
transcript.pyannote[2544].speaker SPEAKER_08
transcript.pyannote[2544].start 14811.99471875
transcript.pyannote[2544].end 14815.03221875
transcript.pyannote[2545].speaker SPEAKER_08
transcript.pyannote[2545].start 14815.60596875
transcript.pyannote[2545].end 14816.63534375
transcript.pyannote[2546].speaker SPEAKER_16
transcript.pyannote[2546].start 14816.90534375
transcript.pyannote[2546].end 14820.16221875
transcript.pyannote[2547].speaker SPEAKER_08
transcript.pyannote[2547].start 14820.87096875
transcript.pyannote[2547].end 14823.70596875
transcript.pyannote[2548].speaker SPEAKER_08
transcript.pyannote[2548].start 14824.19534375
transcript.pyannote[2548].end 14829.25784375
transcript.pyannote[2549].speaker SPEAKER_08
transcript.pyannote[2549].start 14829.62909375
transcript.pyannote[2549].end 14830.52346875
transcript.pyannote[2550].speaker SPEAKER_08
transcript.pyannote[2550].start 14830.96221875
transcript.pyannote[2550].end 14836.09221875
transcript.pyannote[2551].speaker SPEAKER_16
transcript.pyannote[2551].start 14837.13846875
transcript.pyannote[2551].end 14839.72034375
transcript.pyannote[2552].speaker SPEAKER_08
transcript.pyannote[2552].start 14839.19721875
transcript.pyannote[2552].end 14840.98596875
transcript.pyannote[2553].speaker SPEAKER_08
transcript.pyannote[2553].start 14841.22221875
transcript.pyannote[2553].end 14842.62284375
transcript.pyannote[2554].speaker SPEAKER_08
transcript.pyannote[2554].start 14843.39909375
transcript.pyannote[2554].end 14845.64346875
transcript.pyannote[2555].speaker SPEAKER_08
transcript.pyannote[2555].start 14845.77846875
transcript.pyannote[2555].end 14846.63909375
transcript.pyannote[2556].speaker SPEAKER_08
transcript.pyannote[2556].start 14846.99346875
transcript.pyannote[2556].end 14851.60034375
transcript.pyannote[2557].speaker SPEAKER_06
transcript.pyannote[2557].start 14851.60034375
transcript.pyannote[2557].end 14851.61721875
transcript.pyannote[2558].speaker SPEAKER_06
transcript.pyannote[2558].start 14853.67596875
transcript.pyannote[2558].end 14861.57346875
transcript.pyannote[2559].speaker SPEAKER_08
transcript.pyannote[2559].start 14858.28284375
transcript.pyannote[2559].end 14858.82284375
transcript.pyannote[2560].speaker SPEAKER_08
transcript.pyannote[2560].start 14862.24846875
transcript.pyannote[2560].end 14864.44221875
transcript.pyannote[2561].speaker SPEAKER_06
transcript.pyannote[2561].start 14862.55221875
transcript.pyannote[2561].end 14865.69096875
transcript.pyannote[2562].speaker SPEAKER_08
transcript.pyannote[2562].start 14865.03284375
transcript.pyannote[2562].end 14865.74159375
transcript.pyannote[2563].speaker SPEAKER_06
transcript.pyannote[2563].start 14865.74159375
transcript.pyannote[2563].end 14866.97346875
transcript.pyannote[2564].speaker SPEAKER_08
transcript.pyannote[2564].start 14866.97346875
transcript.pyannote[2564].end 14867.02409375
transcript.pyannote[2565].speaker SPEAKER_06
transcript.pyannote[2565].start 14867.02409375
transcript.pyannote[2565].end 14867.39534375
transcript.pyannote[2566].speaker SPEAKER_08
transcript.pyannote[2566].start 14867.39534375
transcript.pyannote[2566].end 14867.63159375
transcript.pyannote[2567].speaker SPEAKER_06
transcript.pyannote[2567].start 14867.63159375
transcript.pyannote[2567].end 14867.96909375
transcript.pyannote[2568].speaker SPEAKER_08
transcript.pyannote[2568].start 14867.96909375
transcript.pyannote[2568].end 14868.18846875
transcript.pyannote[2569].speaker SPEAKER_06
transcript.pyannote[2569].start 14868.18846875
transcript.pyannote[2569].end 14868.96471875
transcript.pyannote[2570].speaker SPEAKER_08
transcript.pyannote[2570].start 14868.96471875
transcript.pyannote[2570].end 14869.03221875
transcript.pyannote[2571].speaker SPEAKER_06
transcript.pyannote[2571].start 14869.03221875
transcript.pyannote[2571].end 14873.04846875
transcript.pyannote[2572].speaker SPEAKER_08
transcript.pyannote[2572].start 14872.47471875
transcript.pyannote[2572].end 14881.03034375
transcript.pyannote[2573].speaker SPEAKER_06
transcript.pyannote[2573].start 14873.99346875
transcript.pyannote[2573].end 14875.02284375
transcript.pyannote[2574].speaker SPEAKER_06
transcript.pyannote[2574].start 14881.03034375
transcript.pyannote[2574].end 14883.59534375
transcript.pyannote[2575].speaker SPEAKER_06
transcript.pyannote[2575].start 14883.88221875
transcript.pyannote[2575].end 14890.04159375
transcript.pyannote[2576].speaker SPEAKER_06
transcript.pyannote[2576].start 14890.32846875
transcript.pyannote[2576].end 14895.39096875
transcript.pyannote[2577].speaker SPEAKER_06
transcript.pyannote[2577].start 14896.03221875
transcript.pyannote[2577].end 14896.47096875
transcript.pyannote[2578].speaker SPEAKER_06
transcript.pyannote[2578].start 14897.04471875
transcript.pyannote[2578].end 14901.46596875
transcript.pyannote[2579].speaker SPEAKER_06
transcript.pyannote[2579].start 14901.70221875
transcript.pyannote[2579].end 14906.84909375
transcript.pyannote[2580].speaker SPEAKER_06
transcript.pyannote[2580].start 14906.96721875
transcript.pyannote[2580].end 14910.35909375
transcript.pyannote[2581].speaker SPEAKER_06
transcript.pyannote[2581].start 14910.51096875
transcript.pyannote[2581].end 14913.76784375
transcript.pyannote[2582].speaker SPEAKER_06
transcript.pyannote[2582].start 14913.88596875
transcript.pyannote[2582].end 14915.77596875
transcript.pyannote[2583].speaker SPEAKER_06
transcript.pyannote[2583].start 14915.86034375
transcript.pyannote[2583].end 14919.23534375
transcript.pyannote[2584].speaker SPEAKER_06
transcript.pyannote[2584].start 14919.38721875
transcript.pyannote[2584].end 14931.30096875
transcript.pyannote[2585].speaker SPEAKER_07
transcript.pyannote[2585].start 14930.10284375
transcript.pyannote[2585].end 14932.73534375
transcript.pyannote[2586].speaker SPEAKER_08
transcript.pyannote[2586].start 14931.30096875
transcript.pyannote[2586].end 14931.80721875
transcript.pyannote[2587].speaker SPEAKER_06
transcript.pyannote[2587].start 14931.80721875
transcript.pyannote[2587].end 14931.87471875
transcript.pyannote[2588].speaker SPEAKER_08
transcript.pyannote[2588].start 14931.87471875
transcript.pyannote[2588].end 14931.97596875
transcript.pyannote[2589].speaker SPEAKER_06
transcript.pyannote[2589].start 14931.97596875
transcript.pyannote[2589].end 14932.07721875
transcript.pyannote[2590].speaker SPEAKER_08
transcript.pyannote[2590].start 14932.07721875
transcript.pyannote[2590].end 14932.17846875
transcript.pyannote[2591].speaker SPEAKER_06
transcript.pyannote[2591].start 14932.17846875
transcript.pyannote[2591].end 14932.22909375
transcript.pyannote[2592].speaker SPEAKER_08
transcript.pyannote[2592].start 14932.22909375
transcript.pyannote[2592].end 14932.38096875
transcript.pyannote[2593].speaker SPEAKER_06
transcript.pyannote[2593].start 14932.38096875
transcript.pyannote[2593].end 14932.39784375
transcript.pyannote[2594].speaker SPEAKER_08
transcript.pyannote[2594].start 14932.39784375
transcript.pyannote[2594].end 14932.58346875
transcript.pyannote[2595].speaker SPEAKER_06
transcript.pyannote[2595].start 14932.58346875
transcript.pyannote[2595].end 14933.14034375
transcript.pyannote[2596].speaker SPEAKER_08
transcript.pyannote[2596].start 14932.73534375
transcript.pyannote[2596].end 14945.47596875
transcript.pyannote[2597].speaker SPEAKER_07
transcript.pyannote[2597].start 14933.14034375
transcript.pyannote[2597].end 14933.17409375
transcript.pyannote[2598].speaker SPEAKER_07
transcript.pyannote[2598].start 14941.74659375
transcript.pyannote[2598].end 14941.86471875
transcript.pyannote[2599].speaker SPEAKER_06
transcript.pyannote[2599].start 14941.86471875
transcript.pyannote[2599].end 14942.45534375
transcript.pyannote[2600].speaker SPEAKER_07
transcript.pyannote[2600].start 14942.45534375
transcript.pyannote[2600].end 14942.52284375
transcript.pyannote[2601].speaker SPEAKER_06
transcript.pyannote[2601].start 14944.42971875
transcript.pyannote[2601].end 14944.44659375
transcript.pyannote[2602].speaker SPEAKER_07
transcript.pyannote[2602].start 14944.44659375
transcript.pyannote[2602].end 14944.53096875
transcript.pyannote[2603].speaker SPEAKER_06
transcript.pyannote[2603].start 14944.53096875
transcript.pyannote[2603].end 14944.96971875
transcript.pyannote[2604].speaker SPEAKER_07
transcript.pyannote[2604].start 14945.30721875
transcript.pyannote[2604].end 14945.35784375
transcript.pyannote[2605].speaker SPEAKER_07
transcript.pyannote[2605].start 14945.47596875
transcript.pyannote[2605].end 14950.30221875
transcript.pyannote[2606].speaker SPEAKER_23
transcript.pyannote[2606].start 14971.29471875
transcript.pyannote[2606].end 14978.73659375
transcript.pyannote[2607].speaker SPEAKER_16
transcript.pyannote[2607].start 14984.96346875
transcript.pyannote[2607].end 14985.48659375
transcript.pyannote[2608].speaker SPEAKER_16
transcript.pyannote[2608].start 14985.65534375
transcript.pyannote[2608].end 14985.70596875
transcript.pyannote[2609].speaker SPEAKER_23
transcript.pyannote[2609].start 14985.70596875
transcript.pyannote[2609].end 14985.72284375
transcript.pyannote[2610].speaker SPEAKER_16
transcript.pyannote[2610].start 14985.72284375
transcript.pyannote[2610].end 14985.77346875
transcript.pyannote[2611].speaker SPEAKER_23
transcript.pyannote[2611].start 14985.77346875
transcript.pyannote[2611].end 14986.02659375
transcript.pyannote[2612].speaker SPEAKER_23
transcript.pyannote[2612].start 14986.39784375
transcript.pyannote[2612].end 15000.06659375
transcript.pyannote[2613].speaker SPEAKER_23
transcript.pyannote[2613].start 15000.70784375
transcript.pyannote[2613].end 15006.42846875
transcript.pyannote[2614].speaker SPEAKER_23
transcript.pyannote[2614].start 15007.96409375
transcript.pyannote[2614].end 15009.11159375
transcript.pyannote[2615].speaker SPEAKER_23
transcript.pyannote[2615].start 15010.56284375
transcript.pyannote[2615].end 15011.28846875
transcript.pyannote[2616].speaker SPEAKER_02
transcript.pyannote[2616].start 15012.60471875
transcript.pyannote[2616].end 15018.62909375
transcript.pyannote[2617].speaker SPEAKER_23
transcript.pyannote[2617].start 15016.45221875
transcript.pyannote[2617].end 15020.94096875
transcript.pyannote[2618].speaker SPEAKER_02
transcript.pyannote[2618].start 15020.21534375
transcript.pyannote[2618].end 15027.82596875
transcript.pyannote[2619].speaker SPEAKER_23
transcript.pyannote[2619].start 15021.61596875
transcript.pyannote[2619].end 15022.42596875
transcript.pyannote[2620].speaker SPEAKER_23
transcript.pyannote[2620].start 15026.62784375
transcript.pyannote[2620].end 15026.79659375
transcript.pyannote[2621].speaker SPEAKER_27
transcript.pyannote[2621].start 15026.79659375
transcript.pyannote[2621].end 15026.91471875
transcript.pyannote[2622].speaker SPEAKER_02
transcript.pyannote[2622].start 15027.87659375
transcript.pyannote[2622].end 15037.44471875
transcript.pyannote[2623].speaker SPEAKER_23
transcript.pyannote[2623].start 15028.02846875
transcript.pyannote[2623].end 15028.09596875
transcript.pyannote[2624].speaker SPEAKER_27
transcript.pyannote[2624].start 15028.09596875
transcript.pyannote[2624].end 15028.16346875
transcript.pyannote[2625].speaker SPEAKER_23
transcript.pyannote[2625].start 15028.16346875
transcript.pyannote[2625].end 15028.19721875
transcript.pyannote[2626].speaker SPEAKER_23
transcript.pyannote[2626].start 15036.85409375
transcript.pyannote[2626].end 15045.10596875
transcript.pyannote[2627].speaker SPEAKER_23
transcript.pyannote[2627].start 15045.73034375
transcript.pyannote[2627].end 15049.42596875
transcript.pyannote[2628].speaker SPEAKER_23
transcript.pyannote[2628].start 15050.03346875
transcript.pyannote[2628].end 15058.31909375
transcript.pyannote[2629].speaker SPEAKER_23
transcript.pyannote[2629].start 15058.82534375
transcript.pyannote[2629].end 15064.95096875
transcript.pyannote[2630].speaker SPEAKER_23
transcript.pyannote[2630].start 15065.47409375
transcript.pyannote[2630].end 15071.09346875
transcript.pyannote[2631].speaker SPEAKER_23
transcript.pyannote[2631].start 15071.27909375
transcript.pyannote[2631].end 15072.40971875
transcript.pyannote[2632].speaker SPEAKER_23
transcript.pyannote[2632].start 15072.94971875
transcript.pyannote[2632].end 15079.46346875
transcript.pyannote[2633].speaker SPEAKER_23
transcript.pyannote[2633].start 15079.83471875
transcript.pyannote[2633].end 15080.94846875
transcript.pyannote[2634].speaker SPEAKER_27
transcript.pyannote[2634].start 15081.01596875
transcript.pyannote[2634].end 15081.42096875
transcript.pyannote[2635].speaker SPEAKER_23
transcript.pyannote[2635].start 15081.35346875
transcript.pyannote[2635].end 15085.94346875
transcript.pyannote[2636].speaker SPEAKER_27
transcript.pyannote[2636].start 15082.60221875
transcript.pyannote[2636].end 15082.61909375
transcript.pyannote[2637].speaker SPEAKER_23
transcript.pyannote[2637].start 15086.29784375
transcript.pyannote[2637].end 15090.11159375
transcript.pyannote[2638].speaker SPEAKER_02
transcript.pyannote[2638].start 15090.04409375
transcript.pyannote[2638].end 15090.53346875
transcript.pyannote[2639].speaker SPEAKER_23
transcript.pyannote[2639].start 15090.41534375
transcript.pyannote[2639].end 15090.98909375
transcript.pyannote[2640].speaker SPEAKER_02
transcript.pyannote[2640].start 15090.85409375
transcript.pyannote[2640].end 15091.17471875
transcript.pyannote[2641].speaker SPEAKER_23
transcript.pyannote[2641].start 15091.07346875
transcript.pyannote[2641].end 15110.64846875
transcript.pyannote[2642].speaker SPEAKER_28
transcript.pyannote[2642].start 15105.83909375
transcript.pyannote[2642].end 15106.98659375
transcript.pyannote[2643].speaker SPEAKER_23
transcript.pyannote[2643].start 15111.07034375
transcript.pyannote[2643].end 15113.24721875
transcript.pyannote[2644].speaker SPEAKER_28
transcript.pyannote[2644].start 15113.24721875
transcript.pyannote[2644].end 15113.85471875
transcript.pyannote[2645].speaker SPEAKER_23
transcript.pyannote[2645].start 15114.10784375
transcript.pyannote[2645].end 15124.30034375
transcript.pyannote[2646].speaker SPEAKER_23
transcript.pyannote[2646].start 15124.75596875
transcript.pyannote[2646].end 15125.85284375
transcript.pyannote[2647].speaker SPEAKER_23
transcript.pyannote[2647].start 15126.24096875
transcript.pyannote[2647].end 15130.49346875
transcript.pyannote[2648].speaker SPEAKER_23
transcript.pyannote[2648].start 15131.05034375
transcript.pyannote[2648].end 15131.72534375
transcript.pyannote[2649].speaker SPEAKER_23
transcript.pyannote[2649].start 15132.16409375
transcript.pyannote[2649].end 15136.09596875
transcript.pyannote[2650].speaker SPEAKER_23
transcript.pyannote[2650].start 15136.65284375
transcript.pyannote[2650].end 15137.76659375
transcript.pyannote[2651].speaker SPEAKER_16
transcript.pyannote[2651].start 15139.01534375
transcript.pyannote[2651].end 15143.16659375
transcript.pyannote[2652].speaker SPEAKER_23
transcript.pyannote[2652].start 15140.56784375
transcript.pyannote[2652].end 15141.10784375
transcript.pyannote[2653].speaker SPEAKER_23
transcript.pyannote[2653].start 15141.98534375
transcript.pyannote[2653].end 15146.81159375
transcript.pyannote[2654].speaker SPEAKER_16
transcript.pyannote[2654].start 15147.92534375
transcript.pyannote[2654].end 15151.73909375
transcript.pyannote[2655].speaker SPEAKER_16
transcript.pyannote[2655].start 15152.07659375
transcript.pyannote[2655].end 15153.91596875
transcript.pyannote[2656].speaker SPEAKER_23
transcript.pyannote[2656].start 15153.03846875
transcript.pyannote[2656].end 15156.00846875
transcript.pyannote[2657].speaker SPEAKER_23
transcript.pyannote[2657].start 15156.75096875
transcript.pyannote[2657].end 15160.10909375
transcript.pyannote[2658].speaker SPEAKER_23
transcript.pyannote[2658].start 15160.83471875
transcript.pyannote[2658].end 15162.58971875
transcript.pyannote[2659].speaker SPEAKER_23
transcript.pyannote[2659].start 15162.97784375
transcript.pyannote[2659].end 15163.99034375
transcript.pyannote[2660].speaker SPEAKER_23
transcript.pyannote[2660].start 15164.17596875
transcript.pyannote[2660].end 15166.92659375
transcript.pyannote[2661].speaker SPEAKER_23
transcript.pyannote[2661].start 15167.33159375
transcript.pyannote[2661].end 15169.10346875
transcript.pyannote[2662].speaker SPEAKER_23
transcript.pyannote[2662].start 15169.62659375
transcript.pyannote[2662].end 15170.89221875
transcript.pyannote[2663].speaker SPEAKER_23
transcript.pyannote[2663].start 15171.46596875
transcript.pyannote[2663].end 15177.08534375
transcript.pyannote[2664].speaker SPEAKER_23
transcript.pyannote[2664].start 15177.59159375
transcript.pyannote[2664].end 15180.83159375
transcript.pyannote[2665].speaker SPEAKER_23
transcript.pyannote[2665].start 15181.45596875
transcript.pyannote[2665].end 15183.68346875
transcript.pyannote[2666].speaker SPEAKER_23
transcript.pyannote[2666].start 15187.54784375
transcript.pyannote[2666].end 15187.96971875
transcript.pyannote[2667].speaker SPEAKER_23
transcript.pyannote[2667].start 15188.98221875
transcript.pyannote[2667].end 15204.20346875
transcript.pyannote[2668].speaker SPEAKER_23
transcript.pyannote[2668].start 15205.03034375
transcript.pyannote[2668].end 15208.65846875
transcript.pyannote[2669].speaker SPEAKER_23
transcript.pyannote[2669].start 15209.38409375
transcript.pyannote[2669].end 15210.73409375
transcript.pyannote[2670].speaker SPEAKER_23
transcript.pyannote[2670].start 15210.93659375
transcript.pyannote[2670].end 15211.96596875
transcript.pyannote[2671].speaker SPEAKER_23
transcript.pyannote[2671].start 15213.61971875
transcript.pyannote[2671].end 15227.60909375
transcript.pyannote[2672].speaker SPEAKER_23
transcript.pyannote[2672].start 15228.73971875
transcript.pyannote[2672].end 15229.63409375
transcript.pyannote[2673].speaker SPEAKER_23
transcript.pyannote[2673].start 15230.14034375
transcript.pyannote[2673].end 15239.47221875
transcript.pyannote[2674].speaker SPEAKER_23
transcript.pyannote[2674].start 15240.65346875
transcript.pyannote[2674].end 15243.33659375
transcript.pyannote[2675].speaker SPEAKER_23
transcript.pyannote[2675].start 15243.94409375
transcript.pyannote[2675].end 15245.78346875
transcript.pyannote[2676].speaker SPEAKER_23
transcript.pyannote[2676].start 15246.15471875
transcript.pyannote[2676].end 15248.19659375
transcript.pyannote[2677].speaker SPEAKER_23
transcript.pyannote[2677].start 15249.15846875
transcript.pyannote[2677].end 15250.39034375
transcript.pyannote[2678].speaker SPEAKER_23
transcript.pyannote[2678].start 15251.87534375
transcript.pyannote[2678].end 15252.76971875
transcript.pyannote[2679].speaker SPEAKER_23
transcript.pyannote[2679].start 15254.77784375
transcript.pyannote[2679].end 15256.68471875
transcript.pyannote[2680].speaker SPEAKER_23
transcript.pyannote[2680].start 15257.29221875
transcript.pyannote[2680].end 15257.74784375
transcript.pyannote[2681].speaker SPEAKER_23
transcript.pyannote[2681].start 15258.35534375
transcript.pyannote[2681].end 15264.56534375
transcript.pyannote[2682].speaker SPEAKER_23
transcript.pyannote[2682].start 15266.03346875
transcript.pyannote[2682].end 15267.29909375
transcript.pyannote[2683].speaker SPEAKER_23
transcript.pyannote[2683].start 15268.41284375
transcript.pyannote[2683].end 15269.32409375
transcript.pyannote[2684].speaker SPEAKER_23
transcript.pyannote[2684].start 15270.20159375
transcript.pyannote[2684].end 15280.02284375
transcript.pyannote[2685].speaker SPEAKER_13
transcript.pyannote[2685].start 15274.65659375
transcript.pyannote[2685].end 15276.59721875
transcript.pyannote[2686].speaker SPEAKER_23
transcript.pyannote[2686].start 15280.64721875
transcript.pyannote[2686].end 15283.24596875
transcript.pyannote[2687].speaker SPEAKER_23
transcript.pyannote[2687].start 15284.24159375
transcript.pyannote[2687].end 15292.72971875
transcript.pyannote[2688].speaker SPEAKER_23
transcript.pyannote[2688].start 15293.52284375
transcript.pyannote[2688].end 15296.99909375
transcript.pyannote[2689].speaker SPEAKER_23
transcript.pyannote[2689].start 15297.77534375
transcript.pyannote[2689].end 15300.25596875
transcript.pyannote[2690].speaker SPEAKER_23
transcript.pyannote[2690].start 15300.81284375
transcript.pyannote[2690].end 15302.80409375
transcript.pyannote[2691].speaker SPEAKER_23
transcript.pyannote[2691].start 15303.51284375
transcript.pyannote[2691].end 15304.96409375
transcript.pyannote[2692].speaker SPEAKER_23
transcript.pyannote[2692].start 15305.87534375
transcript.pyannote[2692].end 15307.07346875
transcript.pyannote[2693].speaker SPEAKER_16
transcript.pyannote[2693].start 15308.32221875
transcript.pyannote[2693].end 15320.53971875
transcript.pyannote[2694].speaker SPEAKER_16
transcript.pyannote[2694].start 15320.70846875
transcript.pyannote[2694].end 15323.91471875
transcript.pyannote[2695].speaker SPEAKER_16
transcript.pyannote[2695].start 15324.23534375
transcript.pyannote[2695].end 15339.92909375
transcript.pyannote[2696].speaker SPEAKER_23
transcript.pyannote[2696].start 15336.65534375
transcript.pyannote[2696].end 15337.27971875
transcript.pyannote[2697].speaker SPEAKER_23
transcript.pyannote[2697].start 15339.11909375
transcript.pyannote[2697].end 15345.56534375
transcript.pyannote[2698].speaker SPEAKER_23
transcript.pyannote[2698].start 15345.88596875
transcript.pyannote[2698].end 15346.39221875
transcript.pyannote[2699].speaker SPEAKER_15
transcript.pyannote[2699].start 15345.90284375
transcript.pyannote[2699].end 15347.48909375
transcript.pyannote[2700].speaker SPEAKER_23
transcript.pyannote[2700].start 15346.61159375
transcript.pyannote[2700].end 15355.57221875
transcript.pyannote[2701].speaker SPEAKER_23
transcript.pyannote[2701].start 15356.44971875
transcript.pyannote[2701].end 15363.31784375
transcript.pyannote[2702].speaker SPEAKER_23
transcript.pyannote[2702].start 15363.55409375
transcript.pyannote[2702].end 15364.53284375
transcript.pyannote[2703].speaker SPEAKER_16
transcript.pyannote[2703].start 15365.41034375
transcript.pyannote[2703].end 15370.48971875
transcript.pyannote[2704].speaker SPEAKER_23
transcript.pyannote[2704].start 15367.19909375
transcript.pyannote[2704].end 15369.47721875
transcript.pyannote[2705].speaker SPEAKER_23
transcript.pyannote[2705].start 15370.48971875
transcript.pyannote[2705].end 15377.03721875
transcript.pyannote[2706].speaker SPEAKER_23
transcript.pyannote[2706].start 15377.42534375
transcript.pyannote[2706].end 15387.58409375
transcript.pyannote[2707].speaker SPEAKER_23
transcript.pyannote[2707].start 15387.95534375
transcript.pyannote[2707].end 15389.37284375
transcript.pyannote[2708].speaker SPEAKER_23
transcript.pyannote[2708].start 15390.21659375
transcript.pyannote[2708].end 15399.75096875
transcript.pyannote[2709].speaker SPEAKER_23
transcript.pyannote[2709].start 15400.08846875
transcript.pyannote[2709].end 15404.69534375
transcript.pyannote[2710].speaker SPEAKER_23
transcript.pyannote[2710].start 15405.33659375
transcript.pyannote[2710].end 15429.21471875
transcript.pyannote[2711].speaker SPEAKER_26
transcript.pyannote[2711].start 15416.20409375
transcript.pyannote[2711].end 15416.23784375
transcript.pyannote[2712].speaker SPEAKER_07
transcript.pyannote[2712].start 15420.32159375
transcript.pyannote[2712].end 15421.68846875
transcript.pyannote[2713].speaker SPEAKER_07
transcript.pyannote[2713].start 15423.07221875
transcript.pyannote[2713].end 15424.21971875
transcript.pyannote[2714].speaker SPEAKER_07
transcript.pyannote[2714].start 15424.27034375
transcript.pyannote[2714].end 15424.37159375
transcript.pyannote[2715].speaker SPEAKER_07
transcript.pyannote[2715].start 15425.55284375
transcript.pyannote[2715].end 15427.40909375
transcript.pyannote[2716].speaker SPEAKER_07
transcript.pyannote[2716].start 15427.66221875
transcript.pyannote[2716].end 15432.67409375
transcript.pyannote[2717].speaker SPEAKER_00
transcript.pyannote[2717].start 15429.21471875
transcript.pyannote[2717].end 15429.29909375
transcript.pyannote[2718].speaker SPEAKER_23
transcript.pyannote[2718].start 15429.29909375
transcript.pyannote[2718].end 15429.31596875
transcript.pyannote[2719].speaker SPEAKER_00
transcript.pyannote[2719].start 15429.31596875
transcript.pyannote[2719].end 15429.41721875
transcript.pyannote[2720].speaker SPEAKER_23
transcript.pyannote[2720].start 15430.12596875
transcript.pyannote[2720].end 15430.26096875
transcript.pyannote[2721].speaker SPEAKER_00
transcript.pyannote[2721].start 15430.26096875
transcript.pyannote[2721].end 15430.31159375
transcript.pyannote[2722].speaker SPEAKER_23
transcript.pyannote[2722].start 15430.31159375
transcript.pyannote[2722].end 15430.63221875
transcript.pyannote[2723].speaker SPEAKER_07
transcript.pyannote[2723].start 15434.09159375
transcript.pyannote[2723].end 15450.42659375
transcript.pyannote[2724].speaker SPEAKER_15
transcript.pyannote[2724].start 15458.81346875
transcript.pyannote[2724].end 15461.49659375
transcript.pyannote[2725].speaker SPEAKER_07
transcript.pyannote[2725].start 15462.35721875
transcript.pyannote[2725].end 15463.50471875
transcript.pyannote[2726].speaker SPEAKER_15
transcript.pyannote[2726].start 15463.77471875
transcript.pyannote[2726].end 15464.41596875
transcript.pyannote[2727].speaker SPEAKER_15
transcript.pyannote[2727].start 15468.88784375
transcript.pyannote[2727].end 15485.59409375
transcript.pyannote[2728].speaker SPEAKER_15
transcript.pyannote[2728].start 15485.74596875
transcript.pyannote[2728].end 15487.46721875
transcript.pyannote[2729].speaker SPEAKER_16
transcript.pyannote[2729].start 15487.46721875
transcript.pyannote[2729].end 15487.51784375
transcript.pyannote[2730].speaker SPEAKER_27
transcript.pyannote[2730].start 15487.51784375
transcript.pyannote[2730].end 15487.83846875
transcript.pyannote[2731].speaker SPEAKER_16
transcript.pyannote[2731].start 15487.83846875
transcript.pyannote[2731].end 15488.04096875
transcript.pyannote[2732].speaker SPEAKER_33
transcript.pyannote[2732].start 15488.04096875
transcript.pyannote[2732].end 15488.14221875
transcript.pyannote[2733].speaker SPEAKER_15
transcript.pyannote[2733].start 15488.41221875
transcript.pyannote[2733].end 15490.30221875
transcript.pyannote[2734].speaker SPEAKER_15
transcript.pyannote[2734].start 15490.90971875
transcript.pyannote[2734].end 15492.17534375
transcript.pyannote[2735].speaker SPEAKER_15
transcript.pyannote[2735].start 15492.56346875
transcript.pyannote[2735].end 15494.47034375
transcript.pyannote[2736].speaker SPEAKER_16
transcript.pyannote[2736].start 15492.74909375
transcript.pyannote[2736].end 15495.33096875
transcript.pyannote[2737].speaker SPEAKER_15
transcript.pyannote[2737].start 15495.33096875
transcript.pyannote[2737].end 15508.03784375
transcript.pyannote[2738].speaker SPEAKER_16
transcript.pyannote[2738].start 15499.95471875
transcript.pyannote[2738].end 15500.05596875
transcript.pyannote[2739].speaker SPEAKER_16
transcript.pyannote[2739].start 15500.14034375
transcript.pyannote[2739].end 15500.20784375
transcript.pyannote[2740].speaker SPEAKER_16
transcript.pyannote[2740].start 15508.03784375
transcript.pyannote[2740].end 15513.60659375
transcript.pyannote[2741].speaker SPEAKER_27
transcript.pyannote[2741].start 15512.25659375
transcript.pyannote[2741].end 15512.71221875
transcript.pyannote[2742].speaker SPEAKER_16
transcript.pyannote[2742].start 15514.97346875
transcript.pyannote[2742].end 15515.80034375
transcript.pyannote[2743].speaker SPEAKER_33
transcript.pyannote[2743].start 15517.48784375
transcript.pyannote[2743].end 15521.40284375
transcript.pyannote[2744].speaker SPEAKER_15
transcript.pyannote[2744].start 15521.50409375
transcript.pyannote[2744].end 15532.94534375
transcript.pyannote[2745].speaker SPEAKER_33
transcript.pyannote[2745].start 15531.19034375
transcript.pyannote[2745].end 15534.98721875
transcript.pyannote[2746].speaker SPEAKER_15
transcript.pyannote[2746].start 15535.15596875
transcript.pyannote[2746].end 15575.79096875
transcript.pyannote[2747].speaker SPEAKER_33
transcript.pyannote[2747].start 15538.05846875
transcript.pyannote[2747].end 15540.96096875
transcript.pyannote[2748].speaker SPEAKER_00
transcript.pyannote[2748].start 15546.22596875
transcript.pyannote[2748].end 15548.06534375
transcript.pyannote[2749].speaker SPEAKER_27
transcript.pyannote[2749].start 15571.28534375
transcript.pyannote[2749].end 15571.77471875
transcript.pyannote[2750].speaker SPEAKER_27
transcript.pyannote[2750].start 15572.14596875
transcript.pyannote[2750].end 15572.24721875
transcript.pyannote[2751].speaker SPEAKER_00
transcript.pyannote[2751].start 15572.31471875
transcript.pyannote[2751].end 15572.34846875
transcript.pyannote[2752].speaker SPEAKER_15
transcript.pyannote[2752].start 15575.94284375
transcript.pyannote[2752].end 15580.19534375
transcript.pyannote[2753].speaker SPEAKER_15
transcript.pyannote[2753].start 15580.73534375
transcript.pyannote[2753].end 15583.24971875
transcript.pyannote[2754].speaker SPEAKER_15
transcript.pyannote[2754].start 15583.55346875
transcript.pyannote[2754].end 15592.88534375
transcript.pyannote[2755].speaker SPEAKER_33
transcript.pyannote[2755].start 15593.54346875
transcript.pyannote[2755].end 15621.52221875
transcript.pyannote[2756].speaker SPEAKER_15
transcript.pyannote[2756].start 15620.30721875
transcript.pyannote[2756].end 15667.87784375
transcript.pyannote[2757].speaker SPEAKER_33
transcript.pyannote[2757].start 15627.07409375
transcript.pyannote[2757].end 15627.49596875
transcript.pyannote[2758].speaker SPEAKER_00
transcript.pyannote[2758].start 15645.90659375
transcript.pyannote[2758].end 15646.37909375
transcript.pyannote[2759].speaker SPEAKER_15
transcript.pyannote[2759].start 15668.70471875
transcript.pyannote[2759].end 15675.04971875
transcript.pyannote[2760].speaker SPEAKER_33
transcript.pyannote[2760].start 15675.75846875
transcript.pyannote[2760].end 15692.44784375
transcript.pyannote[2761].speaker SPEAKER_15
transcript.pyannote[2761].start 15692.73471875
transcript.pyannote[2761].end 15722.43471875
transcript.pyannote[2762].speaker SPEAKER_16
transcript.pyannote[2762].start 15719.16096875
transcript.pyannote[2762].end 15723.02534375
transcript.pyannote[2763].speaker SPEAKER_07
transcript.pyannote[2763].start 15723.97034375
transcript.pyannote[2763].end 15737.31846875
transcript.pyannote[2764].speaker SPEAKER_07
transcript.pyannote[2764].start 15737.52096875
transcript.pyannote[2764].end 15767.03534375
transcript.pyannote[2765].speaker SPEAKER_07
transcript.pyannote[2765].start 15767.44034375
transcript.pyannote[2765].end 15775.37159375
transcript.whisperx[0].start 1366.121
transcript.whisperx[0].end 1371.786
transcript.whisperx[0].text 好 我們要準備開會囉 請所有的與會的官員 我們先請入座好 我們要開會了 請主任秘書報告出席委員人數報告委員會出席委員與主法定人數現在開始開會 請議事人員宣讀上次會議議事錄
transcript.whisperx[1].start 1389.212
transcript.whisperx[1].end 1406.836
transcript.whisperx[1].text 立法院第十一屆第四會期財政委員會第七次全體委員會議議事錄時間中華民國一百二十四年十一月十二日星期三九十至十二時三十六分地點群行樓九樓大禮堂出席委員林德福委員等十四人列席委員洪孟凱委員等八人
transcript.whisperx[2].start 1407.356
transcript.whisperx[2].end 1435.636
transcript.whisperx[2].text 列席官員金管會主委彭金龍率所屬單位代表主席李昭吉委員昆城報告四項一 宣讀上市會議議事錄決定 議事錄確定二 邀請金融監督管理委員會彭主任委員金龍就推動普惠金融與金融科技概況及相關措施進行專題報告並被質詢經金管會彭主委提出報告後 藉由委員林德福等18人提出質詢經經金管會彭主委及相關人員予以答覆
transcript.whisperx[3].start 1436.158
transcript.whisperx[3].end 1436.738
transcript.whisperx[3].text 請問各位委員對上次議事錄有異議
transcript.whisperx[4].start 1463.786
transcript.whisperx[4].end 1489.927
transcript.whisperx[4].text 好 那我們沒有議事 議事錄確定請議事人員宣讀今日議程報告事項二 邀請財政部莊部長翠雲行政院主計總處陳主計長淑芝中央銀行副總裁國家發展委員會業主任委員俊賢經濟部次長 勞動部次長衛生福利部次長就經濟成長讓全民共享政府如何縮短所得差距即改善相對貧窮化之對策
transcript.whisperx[5].start 1492.229
transcript.whisperx[5].end 1510.896
transcript.whisperx[5].text 進行專題報告並備質詢討論四項審查本月民進黨黨團擬具財政收支劃分法第16條之一未分配款運用暫行條例草案案宣讀完畢好我們先介紹在場的委員林德福委員還有鐘嘉斌委員
transcript.whisperx[6].start 1521.186
transcript.whisperx[6].end 1545.996
transcript.whisperx[6].text 好 那與會的官員財政部部長莊翠雲綜合規劃司司長李瓊玲法制處處長姚瑩國庫署署長陳伯承負稅署署長宋秀玲管務署署長彭英偉國有財產署署長曾國基
transcript.whisperx[7].start 1549.193
transcript.whisperx[7].end 1578.144
transcript.whisperx[7].text 財政資訊中心主任張文希行政院主計總署主計長陳淑芝地方統計推展中心執行長李嘉航基金預算處處長潘清紅綜合統計處處長蔡玉泰國事普查處處長潘寧欣中央銀行副總裁嚴忠大
transcript.whisperx[8].start 1580.214
transcript.whisperx[8].end 1607.527
transcript.whisperx[8].text 國家發展委員會副主任委員高仙貴經濟發展處處長陳美菊人力發展處處長謝嘉怡經濟部政務次長何金昌綜合規劃師司長林碧玉副司長許嘉玲中小及新創企業署副署長戴婉容
transcript.whisperx[9].start 1609.684
transcript.whisperx[9].end 1635.375
transcript.whisperx[9].text 產業發展署副署長陳佩莉商業發展署副署長劉雅君投資促進司檢任秘書趙立軍勞動部政務次長李建宏勞動福祉退休司司長黃維琛勞動條件及就業評等司副司長王金榮
transcript.whisperx[10].start 1638.534
transcript.whisperx[10].end 1664.812
transcript.whisperx[10].text 勞動關係師專門委員許根奎綜合規劃師科長易永嘉勞動力發展署組長黃巧婷衛生福利部政務市長呂健德社會救助及社公司副市長楊雅蘭社會保險師檢論視察蔣翠萍法務部參事廖江憲
transcript.whisperx[11].start 1669.676
transcript.whisperx[11].end 1695.456
transcript.whisperx[11].text 今日议程安排一审查本院民进党党团领据财政收支划分法第十六条之一未分配款运用暂行条例草案二邀请财政部庄部长翠云行政院主纪总处陈主纪长淑芝中央银行副总裁国家发展委员会业主任委员俊贤经济部次长劳动部次长
transcript.whisperx[12].start 1696.016
transcript.whisperx[12].end 1722.275
transcript.whisperx[12].text 卫生福利部次长就经济成长让全民共享政府如何缩短所得差距及改善相对贫穷化之对策进行专题报告将先请提案党团代表说明提案要旨后再请财政部庄部长回应党团提案内容并进行专题报告那现在请民进党党团代表钟嘉斌委员说明提案要旨
transcript.whisperx[13].start 1725.582
transcript.whisperx[13].end 1747.816
transcript.whisperx[13].text 好 主席 在黨委員先進 列席的政府監事長官員會長 工作夥伴 媒體記者女士先生民主進步黨黨團鑒於立法院第十一屆第二會期第十四次會議三讀通過的《財政收支劃分法》第十六條之一的修正之統籌分配稅款的分配方式
transcript.whisperx[14].start 1748.516
transcript.whisperx[14].end 1762.899
transcript.whisperx[14].text 由於計算公司自有無法分配的統籌分配稅那麼這是普通統籌那根據我們相關部會的說明以及根據法律條文的解釋財化法第16條之一明文規定
transcript.whisperx[15].start 1764.24
transcript.whisperx[15].end 1791.659
transcript.whisperx[15].text 这该笔普通统筹要给地方的必须在年度开始前四个月由行政院直接核算之后交给各地方政府筹编各地方政府的预算现在已经是11月14号那么在这种情况之下不管未来我们的财政收支划分法如何修改纵使有行政院版对于整个财政收支做完整的配套规划送进本院审议
transcript.whisperx[16].start 1794.1
transcript.whisperx[16].end 1815.763
transcript.whisperx[16].text 目前明年度這個普通統籌的345億因為現有的法令無法分配出去的事實我再強調一次接下來不論財政收支劃分法採用行政院的版本還是任何委員的提案的修正內容都不足以改變已經無法在年度開始前四個月送達給地方政府
transcript.whisperx[17].start 1817.044
transcript.whisperx[17].end 1843.101
transcript.whisperx[17].text 目前各地方政府也將明年度的預算已經編列完畢無法進行這345億的接收跟分配因此民主進步黨在這裡提出負責任的提出不要讓這345億人民辛苦的稅金無法用在人民的身上更重要的這是屬於普通統籌是要用在每個地方政府對人民的生活照顧上因此我們提出的暫行條例暫行條例因為
transcript.whisperx[18].start 1845.763
transcript.whisperx[18].end 1870.724
transcript.whisperx[18].text 只要財政收支劃分法經過修正之後後年度或許就沒有這345億那這345億的內容包括給孕婦坐月子政府補助10萬給適用國民年金保險的這些被保險人國保年金月領不足8000的部分不管是哪一個公司涉算補足8000以及對於勞退字體目前部分不普及
transcript.whisperx[19].start 1871.444
transcript.whisperx[19].end 1883.298
transcript.whisperx[19].text 對於1048萬的勞工當中僅有750萬的勞工因為有雇主依法必須提撥雇主應提的勞退6%但是字體的部分這將近750萬的勞工 受雇勞工
transcript.whisperx[20].start 1886.161
transcript.whisperx[20].end 1912.444
transcript.whisperx[20].text 只有不到兩成有自提因此也希望從這個款項當中雲芝部分的獎勵金鼓勵這748萬的勞工受僱勞工能夠自提1到6%那麼雖然金額有限但是我們也認為應該善用每一分稅金讓這明年度的345億的普通統籌可以真正用在人民的身上儘管如此我們也希望未來能夠由政府籌措正式的裁員
transcript.whisperx[21].start 1913.684
transcript.whisperx[21].end 1931.229
transcript.whisperx[21].text 來進行分配但是今天我們並沒有以無裁員的情況之下違反憲法的規定違反財政局的規定提出這個方案再次強調一次這個暫行條例是在已有裁員的情況之下負責任的提出分配的規定以上說明 謝謝
transcript.whisperx[22].start 1932.995
transcript.whisperx[22].end 1955.733
transcript.whisperx[22].text 好 謝謝總委員的說明現在請財政部莊部長回應黨團提案內容並進行專題報告因為今天與會的部會相當的多所以在莊部長報告完之後我們接下來會請主計總署還有國發會做報告其餘相關部會的報告請與會的委員來做參考並請做專案報告的官員檢要說明 謝謝
transcript.whisperx[23].start 1966.319
transcript.whisperx[23].end 1983.275
transcript.whisperx[23].text 請施召委我是不是就專題報告以及民進黨團的提案做一併的報告就一併說明好謝謝主席各位委員先進大家好今天貴委員會邀本部就有關經濟成長讓全民共享政府如何縮短所得差距以及改善相對貧窮化的對策
transcript.whisperx[24].start 1985.237
transcript.whisperx[24].end 2010.595
transcript.whisperx[24].text 进行专题报告 仅就本部有关改善所得分配的相关政策简要做下面的说明首先是在建立合理的税制强化租税移转效果方面本部持续推动扩大税基提高税率以及防度税避税的措施包括了实施房地合一税制个人未上市贵股票交易所得记录基本所得额课税以及个人受控
transcript.whisperx[25].start 2011.195
transcript.whisperx[25].end 2032.262
transcript.whisperx[25].text 外国企业的制度以维护租税的公平适度提高高所得者的租税负担另外我们实施房屋税差别税率2.0对非自住的住家用房屋按房屋所有人全国总持有户数以全数累进的方式来课征持有户数越多那么适用的税率就越高来抑制囤房的情形
transcript.whisperx[26].start 2033.522
transcript.whisperx[26].end 2052.642
transcript.whisperx[26].text 并且合理的调整中锁税的免税额扣除额以及课税急剧的金额来减轻薪资所得还有育儿家庭高龄及身障家庭的租税负担增加民众可支配所得另外在房屋租金的支出也改列为特别扣除额并提高扣除的上限此外在114年的8月14号
transcript.whisperx[27].start 2054.764
transcript.whisperx[27].end 2070.184
transcript.whisperx[27].text 贵委员会也审查通过了长照特别扣除额每人提高为18万元如果经过修法程序完成那么民众最快可以在115年的5月申报114年度的中锁税时就可以试用
transcript.whisperx[28].start 2070.905
transcript.whisperx[28].end 2089.318
transcript.whisperx[28].text 另外为了使小规模营业人负担合理的税负从114年1月1日起我们调高了小规模营业人销售货物劳务的营业税的起征点另外本部也每年都会订定维护租税公平重点工作计划来专案加强查核维护租税的公平
transcript.whisperx[29].start 2090.868
transcript.whisperx[29].end 2108.754
transcript.whisperx[29].text 那麼在照顧弱勢縮小所得差距方面呢我們以公益彩券盈餘來益助國民年金健保責任準備以及地方社福的財源並且運用回饋金來補助機關辦理弱勢族群就業服務及推展社會福利同時提高
transcript.whisperx[30].start 2109.494
transcript.whisperx[30].end 2123.826
transcript.whisperx[30].text 移證稅的稅率以及菸品稅額所增加的稅收作為長照基金的裁員另外房地合一稅的稅收我們扣除中央統籌分配給地方的餘額作為長照服務以及住宅政策的支出裁員
transcript.whisperx[31].start 2124.787
transcript.whisperx[31].end 2144.37
transcript.whisperx[31].text 另外再提供国有不动产作为新建社宅设置长照设施来缓解弱势族群居住的负担我们并配合内政部的推动包租贷款的制度我们来办理国有非公用不动产出租管理办法的修正来提升包租业的投标意愿扩大租赁住宅市场的供给
transcript.whisperx[32].start 2145.111
transcript.whisperx[32].end 2172.508
transcript.whisperx[32].text 那么为减轻国人的消费负担从110年的12月1日起那么目前是14到115年的3月31日我们调降大宗物资的进口关税还有相关的货物税以及免征进口黄小玉的营业税另外也修正了购买符合能源效率的电冰箱冷气机及除湿机购买小型汽机车及中古汽机车太旧换新的货物税的课税规定
transcript.whisperx[33].start 2173.228
transcript.whisperx[33].end 2186.301
transcript.whisperx[33].text 那麼對於中小企業徵僱青年及高齡本國籍的基層員工薪資方面以及調高本國籍基層員工薪資水準的薪資費用都可以從當年度的盈利事業所得額中加成減除
transcript.whisperx[34].start 2187.062
transcript.whisperx[34].end 2208.653
transcript.whisperx[34].text 本部各項的施政將會秉持賴總統所宣示的經濟優先、民生優先、弱勢優先、青年優先的原則來兼照顧民生與弱勢強化經濟的韌性並持續合理化稅制結構提升稅收的公平以及效率來減輕中低所得者的負擔擴大社會投資促進包容性的成長
transcript.whisperx[35].start 2209.333
transcript.whisperx[35].end 2220.144
transcript.whisperx[35].text 来缩小贫富差距持续壮大台湾另外有关民进党团损逆剧的财政收支划分法第16条之一未分配款运用战刑条例的草案
transcript.whisperx[36].start 2221.462
transcript.whisperx[36].end 2247.69
transcript.whisperx[36].text 那麼是針對新版財化法分配公式的問題所衍生的未分配款項作為發放老年生活的補助金產後照護津貼以及自願提繳獎勵金的經費上述沒有分配的款項性質上是屬於普通的統籌稅款原則上需要透過修法程序來做處理而且各委員及黨團也有相關的提案我們尊重大院審議的結果以上報告敬請各位委員指教 謝謝
transcript.whisperx[37].start 2249.38
transcript.whisperx[37].end 2256.096
transcript.whisperx[37].text 好 谢谢庄部长的报告接下来请行政院主计总促成主计长进行专题报告
transcript.whisperx[38].start 2262.541
transcript.whisperx[38].end 2283.788
transcript.whisperx[38].text 主席各位委員女士先生今天應邀貴席對於經濟成長讓全民共享政府如果縮短所得差距還有改善相對貧窮化的對策提出專庭報告僅就本總署最近十年的針對我國經濟成長所得分配狀態還有政府所得從分配效果檢要報告如下
transcript.whisperx[39].start 2284.508
transcript.whisperx[39].end 2304.775
transcript.whisperx[39].text 近年來我們國內的一個經濟從110年的經濟成長達6.72111年 112年間因為全球產業鏈的一個調整成長晃緩但隨即在人工智慧AI高速運算等所需加速擴大的一個帶動下近年國內的一個
transcript.whisperx[40].start 2306.855
transcript.whisperx[40].end 2330.541
transcript.whisperx[40].text 產業鏈更加壯大所以113年經濟成長率回到4.84那114年前三季雖然因為關稅措施增添全球貿易不確定性但是成長率仍然分別成長5.45 8.01還有7.04那政府對改善所得分配的一個努力和成果所得分配的一個衡量方式
transcript.whisperx[41].start 2332.341
transcript.whisperx[41].end 2354.032
transcript.whisperx[41].text 我們主計總處就是運業按照家庭收支的一個調查按國際常用的衡量所得分配的指標花布基尼敘述所得佔比還有五分會差距倍數來做一個衡量那我國所得分配的一個概況近十年來我國整體家庭所得明顯提升每戶可支配所得由103年的83萬到
transcript.whisperx[42].start 2357.555
transcript.whisperx[42].end 2372.35
transcript.whisperx[42].text 13年的98.5萬 增加18.6每人的一個所得綜會數由103年26萬提高到35.6萬 增加36.8那家庭可自備所得我們如果按五分位來分的話
transcript.whisperx[43].start 2373.271
transcript.whisperx[43].end 2393.112
transcript.whisperx[43].text 它的差距倍數是103年是6.05有擴大到113年的6.14那集體係數也由0.336略增到0.341但是因為以每戶計算容易受戶內人數消長的影響所以國際間都是以每人的單位來衡量
transcript.whisperx[44].start 2393.652
transcript.whisperx[44].end 2398.357
transcript.whisperx[44].text 我國每人差距有103.98降到113年的3.92吉尼係數也103年的0.282降到113年的0.277我表一是我國所得分配的一個請請請參閱
transcript.whisperx[45].start 2410.45
transcript.whisperx[45].end 2426.356
transcript.whisperx[45].text 政府也持續推動社會福利措施和落實照顧勞工基層的一個措施主要是調漲基本工資還有提升低所得家庭收入等措施來使經濟成果能夠讓全民來共享
transcript.whisperx[46].start 2427.276
transcript.whisperx[46].end 2450.066
transcript.whisperx[46].text 所以政府在加強社會福利措施和調整工資方面主要是第一個就是發放中低收入生活津貼中低收入老人生活津貼等中央政府預算的編列從一百零三年的四千兩百一十八億到一百一十四年的八千零六十一億每一年平均增加六點一百分比
transcript.whisperx[47].start 2450.726
transcript.whisperx[47].end 2456.431
transcript.whisperx[47].text 近年來也是持續調上基本工資由103年的19273調到每公時115元調整到114年的28590元和公時190元調高幅度達到48.3和65.2
transcript.whisperx[48].start 2474.588
transcript.whisperx[48].end 2492.617
transcript.whisperx[48].text 那这里面就是社会支出的和基本工资的一个调整情形是表二请参阅那我们如果是以112年度按时等分的第一个分会第二个分会来看比102年增加30.4所以并没有所谓说
transcript.whisperx[49].start 2493.477
transcript.whisperx[49].end 2518.801
transcript.whisperx[49].text 集中在高位的一个情形所以这个部分中位数的政府低位数的政府明显有增加请参考十分位分界点全年总薪资的一个表第四个是政府所得重分配的一个效果我们总共有推动各项振兴方案还有社务措施还有调上基本工资这些等等来提升
transcript.whisperx[50].start 2519.361
transcript.whisperx[50].end 2526.372
transcript.whisperx[50].text 低所得家庭的一个收入所以移转支出的部分由原来的五分位介于7.2到7.63降低到
transcript.whisperx[51].start 2530.49
transcript.whisperx[51].end 2553.962
transcript.whisperx[51].text 6.05到6.15那從分被效果達到1.16到1.48被效果選住那我國貧窮率的說明OECD定義的貧窮率是每人可支配所得50%為貧窮限那這個包括當年度因為我們家庭收支調查僅包括當年度經常性所得沒有包括歷年的一個財務累積所以如果說以
transcript.whisperx[52].start 2555.603
transcript.whisperx[52].end 2580.917
transcript.whisperx[52].text 以我家庭受知的所得來評估並沒有辦法顯現真正的貧窮那我國社會救助法是明定最低生活率標準是14220這個部分是以家庭受知平均每人每月可支配所得的綜會數60%來定制所以雖然說我們社會救助法對家庭所得在
transcript.whisperx[53].start 2582.078
transcript.whisperx[53].end 2598.315
transcript.whisperx[53].text 低收入只有1.13還有中低收入是1.14兩個合起來大概2點多所以這個部分但是因為我們本身是沒有把它放入所謂的一個財務的一個計算所以這個部分
transcript.whisperx[54].start 2599.015
transcript.whisperx[54].end 2627.886
transcript.whisperx[54].text 整个是有一点整个是有偏低那结于我们国内经济成长表现量也会使经济成长能够让全民共享政府持续推动社会福利措施和调高基本工资照顾弱势族群有效提升所得家庭收入减缓所得差距扩大趋势以上报告请请各位委员指教谢谢好谢谢陈主席长的报告接下来我们请国发会高副主委先贵进行专题报告
transcript.whisperx[55].start 2632.506
transcript.whisperx[55].end 2648.531
transcript.whisperx[55].text 主席 各位委員先進 大家好今天陳蒙國委員會邀請本會列席那國發會緊就今日的議程進行報告首先說明我國的所得分配的現況那根據主計處的推估我國歷年的經濟係數維持在0.35以下
transcript.whisperx[56].start 2651.492
transcript.whisperx[56].end 2669.27
transcript.whisperx[56].text 低於國際的警戒線0.4那就五分位的每戶每人可支配的所得差距來說113年我們大概是6.14比我們的亞林還有英美都來得好其中政府的移轉收支發揮了所得從分配的效益
transcript.whisperx[57].start 2670.13
transcript.whisperx[57].end 2697.927
transcript.whisperx[57].text 基於其實薪資是構成我國所得的重要項目我們可以發現近年來我國的薪資其實上是持續的穩健成長今年受惠於AI產業的發展我們預估今年的經濟成長率渴望突破5如果扣除了物價的因素以後實質的薪資可以成長到達1.87%顯示我們的經濟成果已經逐漸反映在民眾所得的提升
transcript.whisperx[58].start 2698.888
transcript.whisperx[58].end 2706.018
transcript.whisperx[58].text 政府會持續的縮減所得的差距行政團隊會由四個面向著手一個是社福、租稅、產業還有薪資採多元併進的方式由各部會擬定具體的措施來落實推動
transcript.whisperx[59].start 2714.871
transcript.whisperx[59].end 2729.188
transcript.whisperx[59].text 第一個在強化全營的社會照顧裡面我想衛福部會跟相關部會會持續推動各項的脫貧措施包括完善低收入戶的補助等等的然後來保障弱勢族群的基本生活
transcript.whisperx[60].start 2730.028
transcript.whisperx[60].end 2754.4
transcript.whisperx[60].text 同时政府会持续推动少子女化对策2.0还有长照3.0等计划来解清家庭的照顾负担第三个内政部也会持续的推动百万住户的家庭支持的措施加速建设社宅同时也115年也编列了预算推动婚育宅来满足国人的居住需求
transcript.whisperx[61].start 2755.28
transcript.whisperx[61].end 2780.627
transcript.whisperx[61].text 第二個是財政部會進行減輕民眾租稅負擔的各項措施剛才莊部長已經報告過了我這部分就不再重述第三個是行政團隊會推動多元產業的創新發展第一個包括我們將在五大信賴產業基礎上推動AI新十大建設其中最重要的就是希望把百工百業導入AI促進
transcript.whisperx[62].start 2782.407
transcript.whisperx[62].end 2801.355
transcript.whisperx[62].text 百萬家產業的業者的AI轉型然後提升它的附加價值第二個就是經濟部也在推動中小企業多元的振興發展方案然後協助中小企業落實數位經營及雙軸的轉型然後讓它可以
transcript.whisperx[63].start 2803.036
transcript.whisperx[63].end 2813.068
transcript.whisperx[63].text 順利的轉型升級那第三個呢是交通部還有金管會會分別推動觀光的新品牌的3.0還有藉由會展經濟等帶動我們國內的這些國民旅遊還有國際觀光的發展然後來活絡國內的消費
transcript.whisperx[64].start 2821.178
transcript.whisperx[64].end 2848.778
transcript.whisperx[64].text 然后亚洲资产管理中心的推动也会让我们的金融业重新的振兴第四个是我们会推动我们本会还有相关部会会推动六大区域产业及生活圈依据各地的特色跟资源形成六大区域的定位同时搭配在各县市推动生活圈的各项重要建设我们希望透过这个措施可以推动
transcript.whisperx[65].start 2849.298
transcript.whisperx[65].end 2866.075
transcript.whisperx[65].text 台灣全面的均衡發展縮小城鄉的差距提高人均的GDP第四個我們會希望能鼓勵企業提升薪資我想金發會已經提出了三大面向跟八大的創新措施透過薪資的透明化
transcript.whisperx[66].start 2866.816
transcript.whisperx[66].end 2877.764
transcript.whisperx[66].text 政府作為加薪的引擎以及修法提供企業加薪的租稅優惠等等我們希望可以鼓勵企業提高薪資同時我們政府已經明年將連續十年來調降最低的工資希望這會有助於提高基層的勞工所的保障其生活水準跟購買力
transcript.whisperx[67].start 2893.755
transcript.whisperx[67].end 2915.931
transcript.whisperx[67].text 那結餘部分呢我們近年來我們經濟成長量力實質薪資持續成長那我想行政團會會持續由我剛剛說的四個面向多元並進的方式致力打造企業與勞工共榮成長與分配並進的永續發展模式實現全民共享的繁榮願景以上報告敬請指教
transcript.whisperx[68].start 2917.25
transcript.whisperx[68].end 2941.242
transcript.whisperx[68].text 好 谢谢高副组委的报告因为今天与会的人员比较多所以请大家在谈话的时候尽量压低声音好 现在开始询答先做以下的宣告一 每位出席委员发言时间八分钟必要时的延长两分钟每位列席委员发言时间五分钟二 今日上午十点截止发言登记三
transcript.whisperx[69].start 2942.082
transcript.whisperx[69].end 2952.269
transcript.whisperx[69].text 本次會議委員若有相關修正動議請敬送主席台 必便議事人員整理現已登記順序 請登記第一位林德福委員質詢謝謝主席 與會的各部會首長是不是請那個主計長 陳主計長好 請主計長
transcript.whisperx[70].start 2975.359
transcript.whisperx[70].end 3002.135
transcript.whisperx[70].text 委員好 署議長我想台青院上週二公布最新GDP預測5.94%比先前評估增加了差不多將近3個百分點那院長張建一表示今年出口實際情況比預估的多了非常多再加上行政院普發現金1萬元正式上路
transcript.whisperx[71].start 3003.295
transcript.whisperx[71].end 3015.77
transcript.whisperx[71].text 讓民間消費對GDP貢獻再創造超過0.3%到0.4%估計能帶動今年經濟成長率有機會突破6%那我請問主計長你認為今年經濟成長率有沒有突破6%的可能
transcript.whisperx[72].start 3024.763
transcript.whisperx[72].end 3045.148
transcript.whisperx[72].text 是 我們本來是初估差不多5但是因為它第三季我們本來是才估1.72它成長到7.64所以這個部分我們現在就是說應該是要做調整那我們大概在11月的部分11月底的時候有沒有辦法你認為有沒有辦法突破6%
transcript.whisperx[73].start 3047.909
transcript.whisperx[73].end 3055.112
transcript.whisperx[73].text 應該是比較趨近我們的估計是5.5%以上5.5%以上主席長展望主計總數2026年經濟成長率一估值就是2.81%那我請問主席長預測明年經濟成長萎縮超過50%換句話說差不多
transcript.whisperx[74].start 3071.238
transcript.whisperx[74].end 3078.569
transcript.whisperx[74].text 差不多50%而已那你認為目前衰退的船產業明年有沒有好轉的可能
transcript.whisperx[75].start 3079.825
transcript.whisperx[75].end 3108.227
transcript.whisperx[75].text 因為傳產它並沒有全部衰退它只是它成長的比較少而已跟AI整個一個比起來它是成長的比較少但是因為你為什麼我們明年會比較才2.81那主要是因為前面的基期就比較高比較高所以這個部分明年的部分相對的就會比較低這是以往的一個趨勢就是這樣但是並不是說我們的狀況就是不好那你認為它依然還是都有投資都有在增加並不是
transcript.whisperx[76].start 3108.567
transcript.whisperx[76].end 3137.341
transcript.whisperx[76].text 那你認為那些船產業有沒有辦法脫離谷底有沒有辦法因為明年如果關稅它整個一個那個關稅的一個政策它整個透明整個明瞭以後那整個船廠的方面它這個方面它比較好能夠做因應而且我們也有做一個那個所謂特別預算的一個資源所以這個部分呢船廠這部分也可以得到很大的協助所以這個部分也應該是對於整個GDP會有影響
transcript.whisperx[77].start 3137.901
transcript.whisperx[77].end 3166.121
transcript.whisperx[77].text 因為那些船產業幾乎可以說他們以目前整個狀況你沒有辦法跟鄰近國家包括韓國日本他們來競爭對不對因為我們第一個人家15%我們20%在疊加他們沒有疊加我們又疊加幾乎沒有競爭力所以說很多人現在這些傳統產業包括水五金包括有一些工具區等等
transcript.whisperx[78].start 3168.763
transcript.whisperx[78].end 3187.651
transcript.whisperx[78].text 這個幾乎現在很多都失業就是無薪假等等我認為這個很嚴重但是我們經濟部的一些補助的措施都已經有整個那個補助當然是短暫的你要是說以長期來看這些我們這個
transcript.whisperx[79].start 3192.079
transcript.whisperx[79].end 3221.209
transcript.whisperx[79].text 整個關稅的疊加包括關稅比人家高根本一點競爭力都沒有那多少當然就會影響到傳產的惡化也會影響到我們整個經濟的成長以目前整個出口暢旺是電子產業已經到了面臨反轉向下的時刻所以說才會拖累整個經濟成長的預估你再看一看
transcript.whisperx[80].start 3222.505
transcript.whisperx[80].end 3239.908
transcript.whisperx[80].text 並不是說拖累而是說它本身積極墊高的必然現象所以這個部分以整個狀況來看是穩定的在成長所以並沒有說狀況非常的不好主計長因為從英國央行對科技股
transcript.whisperx[81].start 3240.609
transcript.whisperx[81].end 3266.358
transcript.whisperx[81].text 破裂風險的提醒再到國際貨幣基金IMF對整個金融環境收緊的一個警示全球整個金融市場與科技圈的正圍繞著AI投資泡沫這個展開密集的討論那主席長經濟部長 龔部長 龔明星曾表示說他預期AI龍井
transcript.whisperx[82].start 3267.658
transcript.whisperx[82].end 3282.216
transcript.whisperx[82].text 應可持續三到四年沒有AI泡沫的餘力那我請問處紀長針對工部長表示對AI泡沫與火的看法你是贊同還是保留或者是有不同的看法
transcript.whisperx[83].start 3283.167
transcript.whisperx[83].end 3298.37
transcript.whisperx[83].text 一般現在如果說整個我們從獲利穩健還有整個一個科技巨頭來做主導的一個狀況下它實際運用價值已經有提高還有它算力的需求所以它會持續它整個一個獲利還是會持續
transcript.whisperx[84].start 3298.65
transcript.whisperx[84].end 3314.46
transcript.whisperx[84].text 所以說主席長是樂觀看待就對了主席長你認為台灣在全球AI領域是站在什麼地位能夠足以讓工部長敢說出和國際各調研機構不同的論調
transcript.whisperx[85].start 3315.686
transcript.whisperx[85].end 3343.361
transcript.whisperx[85].text 事實上我們的地位還是真的是算頂尖我覺得這個趨勢發展的趨勢整個是很好的一個趨勢所以說主席長還是非常非常的樂觀當然主席長今天的議題是經濟成長讓全民共享但是所謂全民共享的背後要如何分配並創造出公平的一個共享模式恐怕是一大難題
transcript.whisperx[86].start 3344.562
transcript.whisperx[86].end 3359.492
transcript.whisperx[86].text 光是普發一萬元的政策我想朝野就對立沒有共識更不用說對政府提出縮短所得差距及改善相對貧窮化的政策
transcript.whisperx[87].start 3360.543
transcript.whisperx[87].end 3370.448
transcript.whisperx[87].text 能夠有高度期待的共識主計長 去年4月底主計總署公布家庭財富分配統計結果顯示110年時每戶的家庭平均財富是1638萬元
transcript.whisperx[88].start 3377.625
transcript.whisperx[88].end 3403.613
transcript.whisperx[88].text 而前百分之二十的家庭平均財富是五千一百三十三萬元後面的百分之二十家庭平均財富只有七十七萬差距高達六十六點九倍我請問主計長過了三年多你認為家戶的這些貧富差距應該是縮小還是更大
transcript.whisperx[89].start 3404.892
transcript.whisperx[89].end 3427.352
transcript.whisperx[89].text 因為我們會利用所謂的移轉支出等於是說政府會做一些的社會福利還有租稅的一個措施來減短 來縮短整個的家庭所的 家戶所的差短目前來講 當初因為我們110年度的家庭因為家庭的貧富的
transcript.whisperx[90].start 3430.811
transcript.whisperx[90].end 3458.082
transcript.whisperx[90].text 数据它跟当初三十年前它的是有差距的是它两个调查的方式是不一样所以不能用去做比较但是我们跟其他的相关的国外的比较我们的相关的数据还是也是不错的我们如果我们是低于澳洲也低于英国 法国 日本和德国那这个本身显示我们的一个财务分配是比较平均的
transcript.whisperx[91].start 3459.142
transcript.whisperx[91].end 3478.413
transcript.whisperx[91].text 事實上中產階級消失是台灣社會當前一項嚴峻的議題主要的原因包括薪資停滯通膨壓力產業結構失衡以及財富分配不均等那我請問主席你認為透過政府政策能夠讓消失的中產階級重見光明嗎
transcript.whisperx[92].start 3481.355
transcript.whisperx[92].end 3500.307
transcript.whisperx[92].text 我要跟委員報告我們中產階級並沒有消失整個一個它還是呈現成長的一個狀態所以這個部分我們本身尤其像中低收入第一級第二級的這個部分它成長也是更大它成長大於全體的一個成長所以
transcript.whisperx[93].start 3501.748
transcript.whisperx[93].end 3525.81
transcript.whisperx[93].text 他只是说他的成长速度不如第五分会的那么高但是他还是继续成长所以这个部分我要跟委员说明了主席长因为面对AI时代的新工业革命产业结构恐怕又要大洗牌那我请问主席长政府能够保证贫富差距能够缩小改善还是依旧
transcript.whisperx[94].start 3526.511
transcript.whisperx[94].end 3545.693
transcript.whisperx[94].text 只能如同储求相对一般继续上演AI世代屏幕差距拉大的戏码你认为呢事实上我们的社会支出从原来的4000多亿到成长到现在的8000多亿政府是尽力在做希望能够缩短这整个的一个屏幕差距
transcript.whisperx[95].start 3546.093
transcript.whisperx[95].end 3564.567
transcript.whisperx[95].text 所以這個本身部分譬如說像薪資的一個調整薪資的透明化包括鼓勵那個相關的一個企業能夠加薪這部分種種的作為我們都是在提升相關的一個貧富的一個差距然後來刺激我們的經濟的一個成長
transcript.whisperx[96].start 3567.95
transcript.whisperx[96].end 3591.751
transcript.whisperx[96].text 想要縮小貧富差距可以透過稅制改革增加社會福利支出提升教育機會以及改善就業以薪資結構等多種的政策和措施來實現那我請問這個主席長就以往政府推動這些政策措施的經驗你認為現階段政府有沒有突破困難度
transcript.whisperx[97].start 3592.472
transcript.whisperx[97].end 3608.401
transcript.whisperx[97].text 的能力換句話說要推動這些政策包括財政部長都一樣政府就必須要克服這個既得利益的阻力雖然政策方針確定但是從政策執行的數十年
transcript.whisperx[98].start 3610.302
transcript.whisperx[98].end 3626.534
transcript.whisperx[98].text 來發展結果能趨向極端貧富差距的走勢可以看出如果不是政策失靈不然就是政策取高合寡導致整個貧富差距不但沒有緩和甚至於還持續的惡化
transcript.whisperx[99].start 3627.375
transcript.whisperx[99].end 3644.762
transcript.whisperx[99].text 那我請問包括財政部莊部長這要解決貧富差距的問題政府是不是已經面臨如同處求相對的這個境地部長你也上啊把最後一題做說明跟委員報告對於有關所得差距的部分其實政府持續的努力第一個我們對於高所得高資產者
transcript.whisperx[100].start 3656.994
transcript.whisperx[100].end 3685.192
transcript.whisperx[100].text 有關在稅制的部分去做合理的一個增加負擔那第二部分對於譬如說育兒家庭有家庭有身障或者有長照需要的話還有免稅有標準扣除在稅制的部分就減輕中低收入家庭的一個租稅負擔我想這個部分持續都在努力因為不要讓它持續這個持續的這個貧富差距越大越大我認為這個是很重要的那政府也透過移轉支出來協助 謝謝
transcript.whisperx[101].start 3687.374
transcript.whisperx[101].end 3704.424
transcript.whisperx[101].text 謝謝林委員接下來我們請吳秉瑞委員主席麻煩請主計長請主計長委員好
transcript.whisperx[102].start 3716.503
transcript.whisperx[102].end 3735.456
transcript.whisperx[102].text 非常早 您的報告早上我有研讀看了現在的問題是社會上的信任度不夠你跟他講說台灣這些年的基尼係數如果抽掉戶數上面因為戶有人數的問題
transcript.whisperx[103].start 3737.526
transcript.whisperx[103].end 3761.431
transcript.whisperx[103].text 照世界的標準用人來計算我們都在很安全的範圍內他就說他不會去接受的因為他已經先有答案了他就說講得最極端的有一些人認為台灣民不聊生你還跟他講說我們的經濟發展不錯然後他就跟你講說中產階級要消滅了有的人不是在對話
transcript.whisperx[104].start 3762.95
transcript.whisperx[104].end 3779.898
transcript.whisperx[104].text 他是先有結論然後才要來跟你講一些真的到最後講不過你的時候說你都引用冰冷的數字啊你不去顧個別人的這個感受啦但是因為我們是討論政策我們不是在討論個人的救濟啊
transcript.whisperx[105].start 3781.058
transcript.whisperx[105].end 3802.939
transcript.whisperx[105].text 所以我是要讓你了解要有信心還是要照回答你講的他也聽不懂照我繼續念就他的結論就繼續講這樣你了解嗎但是我們該做的事情要做的是我覺得有一樣東西就是說如果你一定要用這個收入的十等分或五等分去分那當然就是
transcript.whisperx[106].start 3803.993
transcript.whisperx[106].end 3826.141
transcript.whisperx[106].text 最高跟最低之間就是會有倍數的差距是一定有的但是如果你想想看如果是整體都能夠拉伸的話整體都能夠拉伸的話當然他的希望是說那個高所得的這個拉伸的比例要降低然後低所得拉伸的比例要升高有逐漸在做到如果從你的報告上面來看但是事實上
transcript.whisperx[107].start 3827.654
transcript.whisperx[107].end 3847.944
transcript.whisperx[107].text 有既定看法的人是不會接受你這樣的講法你覺得呢是 謝謝委員指導但是事實上我們經濟成長是優於亞洲四小龍整個狀況是很好包括我們整個GDP的一個成長都是很好然後我們的一個貧富差距其實在整個裡面算平均的並不是很大
transcript.whisperx[108].start 3848.843
transcript.whisperx[108].end 3877.062
transcript.whisperx[108].text 如果你从好的方面来讲台湾的经济成长率高然后CPI就是物价指数上涨的比例也是低这样就是一点多那一点多其实是符合全世界2%的CPI在2%以内这个1%以上2%以内是一个最好的这个区间低于1%国际的学者就认为就是通缩了有通缩的危险了那高于2%就被认为是这个通货膨胀那我们台湾
transcript.whisperx[109].start 3878.137
transcript.whisperx[109].end 3900.555
transcript.whisperx[109].text 央行在處理匯率也很嚴謹然後大家也很保守所以說控制在一點多然後政府對於那種大宗物資如果國際之間的價格有漲有在很大的變動說我們台灣這邊就是用一些稅收的方式減免他的稅讓他能夠讓這個大宗物資不要漲價這個政策是都有對應
transcript.whisperx[110].start 3902.162
transcript.whisperx[110].end 3926.235
transcript.whisperx[110].text 但是在這樣的狀況下我們先不講說我們的國民購買力是人家的幾倍光今年預估的國民所得GDP相對比起來GDP就已經勝過韓國跟日本那日本原因當然是因為日幣大幅貶值的原因那我們先不管日本那個原因我們就贏過韓國這樣子也能夠講成說台灣民不聊生
transcript.whisperx[111].start 3927.714
transcript.whisperx[111].end 3955.118
transcript.whisperx[111].text 這我也不知道怎麼跟他對話因為你如果跟他講說我看到的數字不是這樣他就跟你講說沒有沒有你這個冰冷的數字你要沒有溫度所以你們講這個都不可信第二個就是明明我們的薪資成長跟我們的最低工資的成長比CPI還要高然後他就跟你講說沒有喔收入在萎縮喔
transcript.whisperx[112].start 3957.608
transcript.whisperx[112].end 3976.065
transcript.whisperx[112].text 我假設我的薪資成長是2然後我的CPI是1.5我實質的收入當然是指總數相來看還是有0.5的增加他也不跟你講他說沒有 就是所得都在萎縮大家都在貧窮化都活不下去
transcript.whisperx[113].start 3977.076
transcript.whisperx[113].end 3996.286
transcript.whisperx[113].text 跟委員報告我們每次公布的時候都有把那個平均的薪資扣掉實質就是CPI的一個成長的因素然後去算然後平均的一個那個所得然後也有去算每人的然後所以我們扣除以後每人薪資都實際成長是1.87%
transcript.whisperx[114].start 3999.147
transcript.whisperx[114].end 4020.628
transcript.whisperx[114].text 是啦 但是你這1.87人家跟你說這數字我個人沒有漲薪水所以我扣掉CPI之後我的薪水是在萎縮就是從個人的角度來看事情他永遠有話講但是如果你從總體的整體的數字來看事實上成長然後他就開始跟你講說你那個是冰冷的數字我感受不到
transcript.whisperx[115].start 4021.809
transcript.whisperx[115].end 4032.253
transcript.whisperx[115].text 但是我們中位數也是增加的你從統計數字跟他講道理他就跟你講說我不要跟你講這個我要跟你講我的感受所以我是覺得這個事情的討論
transcript.whisperx[116].start 4036.181
transcript.whisperx[116].end 4060.744
transcript.whisperx[116].text 這很不容易啦但是要繼續大刀闊斧的往這方面能夠來進步這是更好啦是 我們提供數據給相關的部會來做參考很困難啦 因為為什麼這個最低工資的上漲都只有3%多 4%多因為要考量到經營者啊他一方面講說啊 經營者這個環境很不好啊我們的這個關稅比人家高啊
transcript.whisperx[117].start 4061.605
transcript.whisperx[117].end 4078.374
transcript.whisperx[117].text 同時他就要求說你薪資要給人家賬我也不知道就以經營者的角度要怎麼講經營者說那我經營者怎麼辦經營者總是企業要能夠賺錢才有辦法維持企業的存在企業的存在才有辦法提供工作機會
transcript.whisperx[118].start 4079.693
transcript.whisperx[118].end 4094.707
transcript.whisperx[118].text 是我們要鼓勵企業加薪但是企業遭遇到譬如相關的一個困難譬如說關稅的一個問題這個部分我們要來協助所以這個部分我在經濟部這方面也編列相當多的一個預算包括特別預算回過頭來一個感想就是
transcript.whisperx[119].start 4098.687
transcript.whisperx[119].end 4124.892
transcript.whisperx[119].text 從自己的角度來看事情對自己都要最好對自己政府的照顧永遠不夠那都是需要大政府但當政府的管理或是處罰行政處罰到他的身上說你這個政府這是亂七八糟的你不要來管我所以我是覺得基本上人都有這樣子的特性講到利益的時候要極大化講到不好的地方的時候你都不要來給我管制
transcript.whisperx[120].start 4126.232
transcript.whisperx[120].end 4133.077
transcript.whisperx[120].text 賺錢自己本事高 賠錢政府害的簡單來講就是這樣 又回到這一句你請回座 請財政部長我也好部長 我要跟你請教你知不知道加熱菸現在已經有兩家可以販售一家是美國公司 一家是日本公司
transcript.whisperx[121].start 4151.278
transcript.whisperx[121].end 4170.006
transcript.whisperx[121].text 健康風險評估 衛福部已經通過兩家大概有14個品項加熱菸通過了但大概都是屬於專人進口國內的產製部分還沒有通過那菸菌跟菸碎的問題大概是可以得到一部分的紓解因為以前有一些吸脂菸的如果替代成加熱菸你加熱菸不讓它合法化你菸菌跟菸碎是漏掉了
transcript.whisperx[122].start 4173.587
transcript.whisperx[122].end 4202.641
transcript.whisperx[122].text 那現在既然已經有合法的那價格會比這個原來走私的還要低所以大家基本上我認為大部分會去走合法的路當那個加熱菸經過健康風險評估可以在正常的管道上面去銷售的話那讓稅讓國家納入管理然後稅也可以按正常的來收取我覺得這是一個好的這個是你對整個國家的這個稅捐的部分那你底下有一間菸酒公司
transcript.whisperx[123].start 4203.663
transcript.whisperx[123].end 4212.17
transcript.whisperx[123].text 你的菸酒公司設備什麼都已經準備好了現在他就是在跟國健署在申請這個
transcript.whisperx[124].start 4214.117
transcript.whisperx[124].end 4235.76
transcript.whisperx[124].text 核准嘛就你知道你的菸酒公司遇到的困境你了解嗎了解我們菸酒公司董事長也多次的反應那當然必須要符合衛福部讓他通過健康風險評估我們會積極的去跟衛福部溝通你有跟衛福部溝通嗎有的我們有跟他最近審核多不合理你知道嗎
transcript.whisperx[125].start 4236.961
transcript.whisperx[125].end 4264.473
transcript.whisperx[125].text 對於你們菸酒公司多不合理他說你們菸酒公司不能夠拿外國這個加熱菸的這些資料健康風險評估來橋接啦所以要用他自己的產品去做死人體實驗那沒有得到核准你菸酒公司哪來的產品啊那也沒辦法實驗嘛這顯然不可行嘛那你們財政部為什麼不跟衛福部反應說你這個這麼離譜呢
transcript.whisperx[126].start 4268.124
transcript.whisperx[126].end 4291.62
transcript.whisperx[126].text 我們也多次有跟衛福部去溝通全人類台灣的人吸加熱菸跟外國人吸加熱菸在健康風險名顧上面是不一樣的嗎那同樣在審查的程序上前年說可以可以這樣子橋接過來那對自己菸酒公司我們供股的那今年跟他講說不可以
transcript.whisperx[127].start 4293.066
transcript.whisperx[127].end 4321.609
transcript.whisperx[127].text 那我想請問現在核准那兩家的這個資料是外國來的還是在台灣做人體實驗的外國他們都是從外國對啊那為什麼進口商可以用外國的這個健康的這一些的指標這一些的實驗然後來做報告就可以通過台灣的廠商而且是公股的這不是私人全部都是公家的百分之百公股他說不可以
transcript.whisperx[128].start 4323.261
transcript.whisperx[128].end 4350.226
transcript.whisperx[128].text 這樣子的審查標準你財政部能接受嗎我想這個部分我們會再進一步跟衛福部再來做溝通你不趕快溝通的話我要再往上去衝了我就跟你講我在這邊為了這個事情我已經講過很多次了這是為了公家的利益跟個人私人無關如果你想想看只有日本跟美國的廠商可以在台灣賣加熱煙那台灣的煙酒公司要做加熱煙被這樣子的方式刁難這樣子給它拒絕
transcript.whisperx[129].start 4353.252
transcript.whisperx[129].end 4370.741
transcript.whisperx[129].text 兩三年後市場都被佔滿了那台灣煙酒公司台灣的煙公司要賣給誰還是乾脆煙酒公司關起來算了應該要有一個合理的標準來做審核對啊 那你遭遇到不合理的標準你要據理力爭啊不是說那是衛福部的煙火讓衛福部去處理啊不會 是好不好 加油謝謝 謝謝委員 謝謝謝謝委員接下來我們請賴世保委員
transcript.whisperx[130].start 4391.978
transcript.whisperx[130].end 4399.503
transcript.whisperx[130].text 謝謝主席以及各位先進有請財政部的莊部長主計總署的主計長還有莊銀朗的言副總裁一起好不好三個一起請莊部長 陳主計長 言副總裁
transcript.whisperx[131].start 4409.554
transcript.whisperx[131].end 4422.426
transcript.whisperx[131].text 委員好好 三位長官好先請教兩位兩位女士這個今天有個題目統籌分配稅款所以有剩345億來分配可是實際的情況我們很快就刪除了
transcript.whisperx[132].start 4427.851
transcript.whisperx[132].end 4433.173
transcript.whisperx[132].text 離島條例要改這個財務法16條是3離島要支付這個2.5%就220億所以實際上只有剩125億啦沒有345億啦我這樣算法對吧那個部長這樣講對嗎
transcript.whisperx[133].start 4449.618
transcript.whisperx[133].end 4469.742
transcript.whisperx[133].text 委員因為16條之一除了離島當然也有本島這個整個分母的問題所以會有345億沒有辦法做分配是這樣子但離島221億是法定的2.5%如果用計算如果你把它變成分母把它調整的話它大概就是221億吧這個對吧本島是225 離島是12119
transcript.whisperx[134].start 4479.905
transcript.whisperx[134].end 4495.322
transcript.whisperx[134].text 你倒要再給他220億啦120120還220120可是我們算都是220你們算每次就算的跟我們不一樣奇怪咧 你把我少算這麼多
transcript.whisperx[135].start 4497.216
transcript.whisperx[135].end 4502.382
transcript.whisperx[135].text 跑啦 就算你對好不好 也沒有345啊 也剩下200多而已啊 對不對這個我比較關心的 卓院長不斷的說年底要送出行政院盤的財劃法 請問財政部你送給行政院沒有
transcript.whisperx[136].start 4519.711
transcript.whisperx[136].end 4539.315
transcript.whisperx[136].text 財政部已經開過試試會那都有大的架構什麼時候可以送給財政部行政院什麼時候我們近期送什麼時候可以送什麼時候問你問什麼時候可以送近期已經送了已經送了但是因為那個內容還需要再進一步整理我知道內容我沒問你你已經送了好 已經送了那我就問主計長
transcript.whisperx[137].start 4547.267
transcript.whisperx[137].end 4567.981
transcript.whisperx[137].text 你剛才這樣說我嘴角轉破 說我這家你讚這樣喔我讚就我讚 我請問你現在台灣的工資 平均工資多少錢平均薪資平均薪資大概是四萬七左右平均薪資四萬八吧 四萬一講得這麼客氣四萬七八啦平均多少
transcript.whisperx[138].start 4575.829
transcript.whisperx[138].end 4589.443
transcript.whisperx[138].text 四萬八啦 不是四萬一啦喔四萬八啦 我跟你講啦喔但是今天就主席英明排這個題目三分之二領不到這個錢
transcript.whisperx[139].start 4591.317
transcript.whisperx[139].end 4618.359
transcript.whisperx[139].text 所以你要看的不是平均薪資你的薪資一年一千萬啊金控 董事長 總經理你不要急 你不要急喔要看中位數中位數只有三萬多而已啊三萬多啦所以沒有想像過 歐華站 杜華站三萬多其實辛苦啦還是辛苦啦所以貧富差距非常的嚴重
transcript.whisperx[140].start 4619.5
transcript.whisperx[140].end 4624.362
transcript.whisperx[140].text 非常嚴重非常嚴重靠什麼呢最好的方式就是稅制了來 我們看第二張那個 來 莊部長我幫你統計了一下黃帝和一稅減少了133億代表在央行副總裁你就有角色那個主計程可以清回的
transcript.whisperx[141].start 4642.793
transcript.whisperx[141].end 4650.318
transcript.whisperx[141].text 那個央行副總裁這個角色然後黃帝河一歲少了133億曾教授少了5.5%但是以左稅佔角增加了4800多億這什麼意思我們的產業很賺錢
transcript.whisperx[142].start 4660.784
transcript.whisperx[142].end 4680.469
transcript.whisperx[142].text 銀索稅賺很多 站腳但是呢 集中在AI概念股你看股票市場就好啦大部分漲的都是AI概念股啊非AI概念股跌的都比漲的多啊很清楚來看啦 對不對所以今年到現在為止是負的馬拉斯0.2我就先問副總裁先問副總裁 來來來 副總裁
transcript.whisperx[143].start 4687.051
transcript.whisperx[143].end 4695.099
transcript.whisperx[143].text 這邊那個數據做一個說明銀索稅的佔角是4881增加715不是增加增加715總數是4881增加700多 總數4881也是很多啦 因為其他都減少來 副總裁 我就問你
transcript.whisperx[144].start 4711.214
transcript.whisperx[144].end 4722.962
transcript.whisperx[144].text 黃帝合一減少了133億代表房地產不好嘛這時候你的第七波的信用廣至有沒有考慮要鬆短一點 有沒有
transcript.whisperx[145].start 4725.067
transcript.whisperx[145].end 4751.599
transcript.whisperx[145].text 報告委員我們在上一次理事會的時候我們也的確做了一點點調整怎麼調整我們每一次的理事會之前我們都會去檢討當前的房地產政策我們在下一次理事會我們會做一些內部的檢討所以進一步的鬆綁是可以預期的是不是這個我們要等理事會開會才知道上一次有沒有鬆綁一定
transcript.whisperx[146].start 4753.982
transcript.whisperx[146].end 4769.168
transcript.whisperx[146].text 上一次開會有沒有鬆綁一點上一次有啊上一次我們對那個我們的換屋的那個從一年改成18個月然後我們放寬了一些確定不會有第八波的信用管制的是不是這個都是由理事會來決定目前沒有嘛那我再回到財政部的莊部長
transcript.whisperx[147].start 4778.891
transcript.whisperx[147].end 4794.97
transcript.whisperx[147].text 健保署在衛福部打你的主意啊說鼓勵加租金加利息你知道有人現金鼓勵最多的領多少錢你知道嗎不要講名字幾十億吧有沒有
transcript.whisperx[148].start 4800.543
transcript.whisperx[148].end 4807.385
transcript.whisperx[148].text 這個個人的資料我們沒有個人資料我沒有講名字啊我所知道是幾十億啊幾十年前就幾十億啊現在更多啦一個人就領幾十億的現金鼓勵要課要課他們啊你不要課這個純鼓足而且他憑什麼
transcript.whisperx[149].start 4823.247
transcript.whisperx[149].end 4827.411
transcript.whisperx[149].text 衛福部憑什麼要求你把這個稅的資料給他做一個統計 攬傘部長啊你聽好以後喔如果這個要做的話等於他成立第二個國稅局喔健保署就變成第二個國稅局喔因為你要把股利加租金加利息要大於兩萬 這要攬傘現在的補充法會是救援課稅沒問題
transcript.whisperx[150].start 4852.603
transcript.whisperx[150].end 4857.171
transcript.whisperx[150].text 對不對 但是你這個Lamsam就要經過你啊你睡 你就要給這個衛福部啊他侵占你地盤啊 你要講話啊你要反對啊
transcript.whisperx[151].start 4865.083
transcript.whisperx[151].end 4889.367
transcript.whisperx[151].text 你有沒有反對我問你你有沒有反對報告有關補充保費這個部分目前來說會是暫緩然後衛福部會重新再來思考他要跟你討論啊對不對你要反對啊當然會有跨部會來做一個討論因為這個我再講一遍這是三個把它加總年度加總這只有你才有的資料
transcript.whisperx[152].start 4891.038
transcript.whisperx[152].end 4895.061
transcript.whisperx[152].text 他怎麼可以來佔你的地盤呢 他變成第二個國稅局啊對不對 你地盤變成瓜分了 你都不知道對不對 你要大聲講話 拍桌說反對 不可以這樣子除非修法 修法當然可以 對不對我們是反對對純苦族這樣子的剝削因為他已經教了嘛 現在目前已經教了啊
transcript.whisperx[153].start 4916.667
transcript.whisperx[153].end 4923.549
transcript.whisperx[153].text 目前已經交了 你還進一步交 這沒有道理好 這個你可以請回了我們問副總裁 那個部長先不要走來來來 部長等一下 兩位一起聽說台美關稅確定了 差不多確定了但是呢 美國要求我們投資3500億美金到5000億美金副總裁 這會不會動到我們的外匯存底
transcript.whisperx[154].start 4946.96
transcript.whisperx[154].end 4952.452
transcript.whisperx[154].text 那個報告委員因為整個案子我們我們也還沒有定案所以我也不知道最後那你如果要投資美國會不會動到外匯存底我就問你
transcript.whisperx[155].start 4958.497
transcript.whisperx[155].end 4978.452
transcript.whisperx[155].text 外匯存底是央行自己在保管運用的那會不會影響其實是我們在看我們在外匯市場有沒有做很大的調節要看當時候的外匯市場的供需情況吧今天我是廠商我要投資美國我用台幣跟你買美金就動到你的外匯存底難道不是嗎那要看央行有沒有進去干預你們會進去干預嗎我們看市場的情況
transcript.whisperx[156].start 4985.002
transcript.whisperx[156].end 5003.283
transcript.whisperx[156].text 這個部長啊這個你有沒有聽說這個確定了要投資3千億美金的物權我想這個有關台美關稅談判我們有行政院的經貿談判小組在持續進行那最後的一個結果我想在適當時機談判團隊會外說3千億美金是什麼概念就10兆新台幣以上
transcript.whisperx[157].start 5006.24
transcript.whisperx[157].end 5025.151
transcript.whisperx[157].text 然後我們的size比韓國也不如 比日本也不如為什麼我們投資金額要比照韓國跟日本日本五千五 韓國三千五為什麼要比照這樣子 太敲得起我們了最後一個小問題 問一下副總裁 你再講一下現在你的外匯存底的配置有沒有大幅的改變 有沒有
transcript.whisperx[158].start 5034.073
transcript.whisperx[158].end 5039.155
transcript.whisperx[158].text 你說外匯存底的改變有沒有大幅改變因為我們主要持有的還是以美元計價的為主有八成接近八成差不多八成有沒有買一點黃金跟加密貨幣目前沒有目前都沒有買我跟你數字你看全世界其他國家的央行
transcript.whisperx[159].start 5058.863
transcript.whisperx[159].end 5078.634
transcript.whisperx[159].text 平均的配置美元46黃金20%歐元小於20%那個報告委員那個其實你的資料是平均的其實各國央行的差異還很大的什麼意思各國央行持有譬如說美國德國義大利他們的傳統的國家他持有
transcript.whisperx[160].start 5079.856
transcript.whisperx[160].end 5088.863
transcript.whisperx[160].text 環境的數量是以台灣來講持有美元的資產美元計價的資產大概全世界第一我們占八成全世界第一 對吧比較高對啊 就全世界第一你贊成嗎好了你就同意我這一點就好了好 謝謝賴委員接下來我們請郭國文委員
transcript.whisperx[161].start 5112.191
transcript.whisperx[161].end 5118.422
transcript.whisperx[161].text 主席 有請主計長跟勞動部李建宏次長請主計長 勞動部次長
transcript.whisperx[162].start 5130.017
transcript.whisperx[162].end 5151.186
transcript.whisperx[162].text 委員好主席長好 主席長我上一次的時候根據國庫調查的貧富差距的時候是從資產面的時候來就教於您過去30年最後面收入20%的家庭其實財富不增反減今天我想說從所得面所得面的部分特別把D4到D7的部分
transcript.whisperx[163].start 5152.466
transcript.whisperx[163].end 5177.216
transcript.whisperx[163].text 這個中位數這個上下的比例的這個部分把它匡列出來你去看實質的成長率這10年而且是到2023的統計的部分它的這個成長比例都是在個位數而是最少的那相對而言D1 D2 D2 D3的部分的話因為有基本新知識的架構把它撐起但是呢 D8 D9那因為高所得產業的這個紅利
transcript.whisperx[164].start 5178.937
transcript.whisperx[164].end 5205.714
transcript.whisperx[164].text 那現階段的最大的問題就是D10到D7的部分要怎麼處理那過往政府所處理的大概是透過這個稅免的部分來稅減的部分來減少負擔但是最關鍵的部分應該還是在於中低這個增加收入否則的話這10年來他們所增加的這個部分只有到3到6%而且如果還在像CPI的話恐怕實質增加財富非常有限吧
transcript.whisperx[165].start 5207.107
transcript.whisperx[165].end 5235.416
transcript.whisperx[165].text 它是事實上是差不多平均其實都是差不多4%以上這是來自於您所以說這是一個很大的問題我是覺得從一個從一個現在今天我們要討論這個M化兩極化的社會的情況底下要怎麼面對怎麼處理就出現一個很大的問題最近當然政府有處理中小企業的部分的這個抵稅的修法成效也都還沒出現那勞動部最近有一個這個雇主加薪企圖
transcript.whisperx[166].start 5236.736
transcript.whisperx[166].end 5254.951
transcript.whisperx[166].text 那個政策目標是想要幫本勞加薪那個我請次長理事一下 理事你這個增加移工的額度可以增加的部分那最多額度也是大概10%然後預估要4年才會大概有受惠的勞工朋友大概只有20萬對不對對
transcript.whisperx[167].start 5257.393
transcript.whisperx[167].end 5278.662
transcript.whisperx[167].text 这个案子这个利益是良善但是相对而言效果相对有限你也知道受雇者的比例相当高 政策如果是这样子的话我是不是有一个可能性因为我们就案基金其实过去长期以来一直受到相当程度的诟病然后经常出现的是重复补助或例行补助那也没有达到一定的效果
transcript.whisperx[168].start 5279.122
transcript.whisperx[168].end 5301.62
transcript.whisperx[168].text 那救安基金的部分之前我在救教育会部的时候就有特别提到我再举一个例子好了最近健保费有在收取一部分的保费去奖励一些医护人员提高薪资我请李次能不能回去了解一下也就是从收费过来的部分给从业人员多一点薪资然后防止他的流动率
transcript.whisperx[169].start 5303.241
transcript.whisperx[169].end 5327.277
transcript.whisperx[169].text 增加這個就職的比例另外一個部分有沒有可能透過救安基金的方式來因為引進移工相關的這個費用當中來比照辦理提出這個政策的可能性市長你的看法你是說拿救安基金來做什麼請問就是類似像保費的部分來刺激 鼓勵 雇主來增加薪資的可能性
transcript.whisperx[170].start 5329.096
transcript.whisperx[170].end 5348.026
transcript.whisperx[170].text 你說拿救安基金的錢出來有沒有一個鼓勵的方式就比較保費的方式補助 雇主什麼用什麼方式都可以就是說至少你不要重複老是在補助一些特定團體 例行性的團體把這個救安基金達到另一種薪資提升達到就業安定的目的
transcript.whisperx[171].start 5349.166
transcript.whisperx[171].end 5377.521
transcript.whisperx[171].text 跟委員說明那個接班基金依照法律規定它是要協助以促進跟協助本國國民失業國民就業為主要目標那所以如果跟這個目標比較無關的話這個照現在的規定是有困難的有一個方向上一個是促進就業嘛那防止離職嘛就是防止流動這種雙向的思考當中有沒有一個擴大解釋的可能是不是請理事回去思考一下好不好
transcript.whisperx[172].start 5378.581
transcript.whisperx[172].end 5388.625
transcript.whisperx[172].text 只要能夠達到這個目標好不好 是麻煩理事回去思考一下另外一個部分我想要請財政部跟衛福部兩位請衛福部理事長
transcript.whisperx[173].start 5395.802
transcript.whisperx[173].end 5414.59
transcript.whisperx[173].text 委員好部長剛剛在討論這一個有關於補充保費的部分補充保費的部分就我這邊相關的數據當中理事也在這邊就價因為最近爭議非常的大而且對一些純穀族跟小蜘族的部分相對剝削感
transcript.whisperx[174].start 5416.591
transcript.whisperx[174].end 5444.95
transcript.whisperx[174].text 其实就这一个卫福部当中的第二项当中就有提到说如果把这1000万的天花板打开到5000万的部分的话就可以增加6亿的补充保费的来源事实上本席去了解一下这两年补充保费的部分大概鼓励的部分其实已经有占两成但是就上市柜的股息的发放去年一整年大概有2.3兆
transcript.whisperx[175].start 5446.591
transcript.whisperx[175].end 5466.987
transcript.whisperx[175].text 外資的部分拿走8000法人的部分拿走5000大約約莫還有自然人的部分大概剩下一兆如果這一兆拿出來的話 憨不啷噹我們從這一兆拿到的這個2.11%就有200多億了 那個就打開了就可以Cover這個你在補充百貨來源那個市長這裡頭有什麼顧慮嗎
transcript.whisperx[176].start 5470.646
transcript.whisperx[176].end 5486.661
transcript.whisperx[176].text 感謝委員對於這個議題的關心那我跟委員報告就是說這個議題我們現在補充保費我們現在目前是這個暫緩但是我們現在也跟財政部這邊在積極研議那剛剛委員剛剛所說的這個部分主要大概就是說就是把那個天花板那個部分把它打開
transcript.whisperx[177].start 5489.163
transcript.whisperx[177].end 5512.131
transcript.whisperx[177].text 這個我們再來研議也跟財政部這邊我們來討論次長 我再給你一個參考去年十大股東自然人的收入就一共拿了305億就這十個人就可以有6.4億的補充保護費如果最高收入的話一個家庭的股利大概是2900億就這一person而已一person的家庭而已只有2900億
transcript.whisperx[178].start 5514.966
transcript.whisperx[178].end 5539.529
transcript.whisperx[178].text 就有50到60亿了 对不对你从这个今天我们讨论这个两极化的社会当中你就应该思考这个问题对不对 你怎么一直给小知足刚刚我一开始所PO的这个第4到第8的这群人当中一直找这群人给他去取得他的财富他当然相对不满你看他实质的所得也不过是个位数而已
transcript.whisperx[179].start 5540.809
transcript.whisperx[179].end 5559.823
transcript.whisperx[179].text 這引起反彈相對的剝奪感就是從這邊而來市長 回去好好思考一下從這個角度來看而且還有一個角度可以看的是法人大股東有沒有可能做一個對象這個部分你也請那個跟部長好好討論一下好不好畢竟這個財政部
transcript.whisperx[180].start 5560.603
transcript.whisperx[180].end 5571.187
transcript.whisperx[180].text 科稅比較有經驗怎麼用他會比較清楚 好不好好好思考一下不然M型社會就會一直持續發生就是你們這種政策搞成這樣子好 謝謝市長你稍等一下我再問一下部長部長 你在這邊站那麼久不好意思 部長
transcript.whisperx[181].start 5578.829
transcript.whisperx[181].end 5607.248
transcript.whisperx[181].text 部長 這個補充保惠的部分我們現在我們在討論這些補充保惠我們就不免想到我們現在最大很大的一個收入的部分來源總共在明年度大概有760幾億就是房地合一稅的這個稅源在房地合一稅的稅源當中目前為止就從上一次我本席跟你質詢之後好不容易從百分之百都給長照現在有10%那明年是不是多10%就2成
transcript.whisperx[182].start 5609.089
transcript.whisperx[182].end 5627.045
transcript.whisperx[182].text 對不對住宅的部分就變兩層那住宅的部分現在社會住宅已經卡關8個月原因在什麼原因在說經費不足即便變了兩層明年也大概是191億而已一棟社會住宅補助的10億沒有算多了所以挺多大概20棟
transcript.whisperx[183].start 5628.306
transcript.whisperx[183].end 5654.506
transcript.whisperx[183].text 这样的情况底下你在20%老实讲现在的社会住宅的部分20%相对还是比较低就从住宅基金你本来的钱就来自于房地产你还只有两成这个部分请部长回去思考一下为什么做这样的思考呢也跟次长有相关次长你看最近年的长照制度长照预算从300多亿到800多亿审计部多次指出质询率不佳
transcript.whisperx[184].start 5655.166
transcript.whisperx[184].end 5679.422
transcript.whisperx[184].text 特別在112年113年有23項執行率不到一半或不到八成連民間團體都出來講為了衝執行率又衝KPI很多補助都太過於腐爛了就是錢太多錢太多你應該把錢挪在有需要的地方就你現在他已經沒有那個執行能量了沒有那個量能你一直給他他當然會變成這種結果那個部長這是你們兩部的事情是要處理一下好不好
transcript.whisperx[185].start 5685.168
transcript.whisperx[185].end 5704.927
transcript.whisperx[185].text 对 我们也会邀同内政部一起来讨论做一个怎么样的对 找内政部来内政部也是很困扰另外还有那个李赤我再问你一下国民年金的部分一直强调现在4049的低标其实是不够是希望提到8000提到8000的部分也可以有助于今天M型社化形成的结果
transcript.whisperx[186].start 5705.667
transcript.whisperx[186].end 5721.025
transcript.whisperx[186].text 市長我想聽聽您的看法非常感謝委員對於我們國民年金的受保人的一利益的關心為本部我們覺得就是說應該要朝向支持我們的整個保障國民的退休福祉我想8000其實老實說也是
transcript.whisperx[187].start 5721.866
transcript.whisperx[187].end 5737.812
transcript.whisperx[187].text 老實說恐怕也不太夠但是我們覺得應該朝這個目標是不夠如果再加上還有其他的幾夫的話加總起來的話比較有可能接近最低生活費而已沒錯 也降低我們老人品種一般的先是在1萬5 1萬6所以說這個部分真的需要調
transcript.whisperx[188].start 5742.234
transcript.whisperx[188].end 5759.605
transcript.whisperx[188].text 次長請衛福部回去慎重思考最後一個問題想要問一下那個次長請回我最後一個問題想要問一下那個部長財政部長部長 那個最近有在談到我們財政部所屬公股銀行底下的這一些頭性診病的問題我是第一個要提醒一下那個勞工權益要顧好
transcript.whisperx[189].start 5760.385
transcript.whisperx[189].end 5787.072
transcript.whisperx[189].text 那第二个的部分呢有一些部分的公股银行有在做分行的这个整并对不对对 这个有一条街都比7-11还多这个我都举过例子但最后我本席要提醒一下其实你们海外分行更多啦海外分行出现问题的更多啦我跟你夯不啷当算起来总共呢你这些分行这个八大公股银行加起来大概100从子行分行加起来134间
transcript.whisperx[190].start 5789.233
transcript.whisperx[190].end 5807.767
transcript.whisperx[190].text 需要整顿的搞不好是这边那个部长你要不要回去思考一下没有错 现在有关海外分行的部分因为海外分行主要是服务我们的台商我们的侨胞然后那需要不要做调整随着产业的一些移动我们会做一些调整然后我们想各个金控还有银行也都在做这方面的思考
transcript.whisperx[191].start 5807.847
transcript.whisperx[191].end 5823.929
transcript.whisperx[191].text 昨天我才問過金管會金管會在中國的曝險也從46%降到15%就一整 足足少了20幾%這樣曝險越高就是業務量一直萎縮的情況底下海外分行的據點的重要性就相對的減少嘛 是不是
transcript.whisperx[192].start 5824.77
transcript.whisperx[192].end 5842.218
transcript.whisperx[192].text 是不是一同思考一下好不好是公股航庫的其實曝險的比例更低對 更低所以說海外航空需要實質要設的可能性再加上現在網路 電子支付越來越盛行實體銀行就更不需要的情況底下應該慎重思考一下好不好是的好 謝謝部長 謝謝主席好 謝謝郭委員接下來我們請李彥秀委員
transcript.whisperx[193].start 5855.66
transcript.whisperx[193].end 5861.705
transcript.whisperx[193].text 谢谢赵伟 我会邀请财政部长以及主席长来 请财政部长 请主席长谢谢 主席长 部长 两位早安对于才化法的修正民进党团提出来的战刑条例我看到目前为止
transcript.whisperx[194].start 5880.822
transcript.whisperx[194].end 5892.127
transcript.whisperx[194].text 我的看法是康他人之慨用社福為名對地方進行財政上的鬥爭但是我更遺憾的是
transcript.whisperx[195].start 5893.55
transcript.whisperx[195].end 5919.75
transcript.whisperx[195].text 部長主席長你們都非常清楚知道統籌稅款是地方政府的稅客收入從第8條我們收入為國稅之後第8條我們垂直分配完之後中央留中央的按照比例地方留地方的地方即便分配不完他還是屬於該分配給地方的稅客收入依法有據
transcript.whisperx[196].start 5922.52
transcript.whisperx[196].end 5941.137
transcript.whisperx[196].text 部長我有沒有說錯我到目前我有沒有說錯分配到地方按照公式分配完之後分配即便分配不完他還要是地方的稅收對不對地方應該分配的地方課稅收入我們的報告裡面說他基本性質上是屬於統籌稅款
transcript.whisperx[197].start 5943.078
transcript.whisperx[197].end 5968.834
transcript.whisperx[197].text 統籌稅款 對 但中央分配中央按照公示第8條垂直分配完之後中央統籌分配給地方或分配給地方各縣市然後再水平分配再來分所以你們才會有在今年8月27號你們開完會之後你們說這還是屬於地方政府的裁員中央不能挪作他用財政部進一步表示白紙黑字寫在這裡
transcript.whisperx[198].start 5970.629
transcript.whisperx[198].end 5990.717
transcript.whisperx[198].text 我沒說錯但今天還是沒有錯嘛但是我更遺憾的是你們兩位都是從基層公務員幹上來的不管各政黨對於各樣事務有不同的意見你們按照道理你應該是依法告訴他們
transcript.whisperx[199].start 5992.406
transcript.whisperx[199].end 6003.547
transcript.whisperx[199].text 法源的依據在哪裡但是我更遺憾的是你剛剛既然知道財政部既然有說這還是屬於地方的稅款你怎麼只能說中央立場尊重
transcript.whisperx[200].start 6005.418
transcript.whisperx[200].end 6034.781
transcript.whisperx[200].text 你应该依法说明我再次强调因为我今天好几个议题要问不管中央要照顾长辈的生活辅助或者是做劳退的奖励或者甚至对父幼的照顾我都支持都非常好但是这属于中央要做这属于中央全国一致性的事务中央自己来做用自己的钱你要用那个税金剩余也好你要用什么钱中央的钱我都没有意见
transcript.whisperx[201].start 6035.521
transcript.whisperx[201].end 6052.535
transcript.whisperx[201].text 但是如果只屬於中央的事務那請你們用中央的錢來做不要慷他人之慨這是我要再一次強調的中央跟地方其實到現在包括一直在喊市權要轉移到現在才劃法暫時不做天天在想辦法鬥地方
transcript.whisperx[202].start 6053.596
transcript.whisperx[202].end 6075.126
transcript.whisperx[202].text 所以我只想說主席長跟部長你們曾其林你們按照公務員來說你們應該是依法行政不管黨團各政黨有什麼樣的失誤如果依法無據或指責罪你們應該告訴他們哪裡不對你不要風往哪裡倒你就往哪裡倒這是我要提醒你的地方那第二點兩位請我請國發會副主委時間先暫停請國發會高副主委
transcript.whisperx[203].start 6085.031
transcript.whisperx[203].end 6103.402
transcript.whisperx[203].text 副主委我們今天討論是經濟成長對於整個整理國家的財務分配的影響關稅戰的關係我們本來一開始說今年經濟成長保三有點困難但是我們今年AI還是不錯第三季可以達到7.64全年更可以保五破六
transcript.whisperx[204].start 6104.723
transcript.whisperx[204].end 6128.781
transcript.whisperx[204].text 我有看到幾個數據包括我們今年在台灣破百萬美元的人大概超過75萬人在全球排名也是第15名足跡處也說明年GDP可能破4萬美金對於目前的經濟態勢包括在貧富上的分配這樣的說法副主委你的看法是什麼
transcript.whisperx[205].start 6129.83
transcript.whisperx[205].end 6140.615
transcript.whisperx[205].text 我想大家都知道其實我們今年的經濟成長非常好那當然是跟AI的創新運用發展對 你直接回答我就是所有全民的經濟共享這樣的成績
transcript.whisperx[206].start 6142.113
transcript.whisperx[206].end 6166.776
transcript.whisperx[206].text 大家有感嗎其實我想落差會不會很大基本上就是我們可以發現當然就是AI的發展會比傳產來得好然後高所得的人的所得的增加的確是比一些中資所得增加會高所以在美國關稅戰之後其實財務分配恐怕會更不平均AI好 好的人好在金字塔頂端那個落差非常大我有幾個數據
transcript.whisperx[207].start 6167.677
transcript.whisperx[207].end 6173.642
transcript.whisperx[207].text 包括我們今年的民間消費實質成長已經連續兩年低於1%第三季也只有0.92%還是低於1%的水準也就是說過去幾年雖然財富的成長但是是不是多數民眾有感我打了一個問號包括這幾年我們最高的113年家庭的收支調查當中
transcript.whisperx[208].start 6189.375
transcript.whisperx[208].end 6217.883
transcript.whisperx[208].text 全国最高的20%家户的平均收支是235万但是最低标的20%只有38.4万差距有6倍之多所以包括我们看到经常性的薪资有七成劳工他的领的经常性薪资是低于我们的平均薪资也就我们常在讲的我们国家常在说台湾说政府也好总统也好常在讲说我们经济成长数字非常漂亮但是
transcript.whisperx[209].start 6218.783
transcript.whisperx[209].end 6238.585
transcript.whisperx[209].text 多數的七成勞工是感受不到的因為七成勞工他領的薪水是低於平均薪資的好那我的重點問題就來了副主委我們之前有提一個AI產業計畫包容性的成長四年包括美國的橋水的基金會創辦人也提到就是說提到美國的一個現象就是說
transcript.whisperx[210].start 6238.965
transcript.whisperx[210].end 6264.946
transcript.whisperx[210].text 美国因为AI的发展贫富差距会越来越大因为AI用的人少七成劳工未来工作在哪里可能不知道所以我们提了一个国家发展计划对于未来如何确保AI科技的发展红利未来对于中低技术的劳工怎么去做这一块的处理这是我第一个问题对于产业人力再造薪资结构的改变你们后续要怎么做处理
transcript.whisperx[211].start 6266.217
transcript.whisperx[211].end 6287.964
transcript.whisperx[211].text 我想AI的發展是國際的趨勢很多國家其實面對的跟我們問題也非常的類似我想就政府來說其實是不是貧富差距未來發展下去只會越來越大均衡台灣沒有同意未來AI的發展貧富差距會越來越大因為其實AI能做的就是固定那一些人
transcript.whisperx[212].start 6288.564
transcript.whisperx[212].end 6301.649
transcript.whisperx[212].text 所以人力所以我們AI的新十大建設裡面其實最重要的是創新運用裡面要百工百業富能也就是說不只我們只有一個護國神山我們要有護國群山也就是我們會讓中小微體驗但是實際的動作是什麼我們看到美國現在的狀況就是預估未來的狀況其實是貧富差距越來越大
transcript.whisperx[213].start 6310.578
transcript.whisperx[213].end 6322.664
transcript.whisperx[213].text 怎麼辦我想第一個我們一定要讓所有的產業不只是只有半導體跟伺服器相關產業起來我們其他的傳產還有一些服務業也要跟著起來傳產都快活不下去了然後第二個我們還是要其實我們有一些政策性的譬如說我們內需產業包括我們的觀光還有我們的這些金融產業我們也相對一些措施
transcript.whisperx[214].start 6337.07
transcript.whisperx[214].end 6351.874
transcript.whisperx[214].text 所以我覺得你們應該去做更精準的研調政府應該有更多的工具包括未來中低階層的技術勞工怎麼辦下一步在AI產業發展之後這些人怎麼辦這些才是經濟中弱勢的弱勢時間先暫停你請回我要請你用書面再更精準的回應我主席我想邀請衛福部的政次跟勞動部的政次請勞動部李政次衛福部李政次
transcript.whisperx[215].start 6367.112
transcript.whisperx[215].end 6388.34
transcript.whisperx[215].text 主席你時間一直在跑再還給李委員3秒鐘拜託兩位政策我關注到明年國民年金保費要上調就是說我們現在因為通膨CPI已經到達6.79%所以每一年的我們保費的金額會從43塊漲到84塊
transcript.whisperx[216].start 6391.081
transcript.whisperx[216].end 6419.492
transcript.whisperx[216].text 那這樣的保費的漲幅會有270萬人受影響但是我要提醒兩位的就是說我們現在根據以前舊的數據我現在有的手邊有的我們有最新的數據等一下我要請你們提供新的數據就是說國民年金的保費台灣將就100萬人沒有繳這個保費那他沒有繳保費有很多不同的原因是經濟還各方面的原因我不清楚你們應該有更清楚的言調
transcript.whisperx[217].start 6420.932
transcript.whisperx[217].end 6438.642
transcript.whisperx[217].text 在337萬台灣被保險人當中有240萬人有很多不同的因素他領國民年金包括家庭主婦或主夫不同的因素或要照顧長照家庭的人士所以他就開始請領國民年金這個保費的
transcript.whisperx[218].start 6441.123
transcript.whisperx[218].end 6451.168
transcript.whisperx[218].text 漲幅我有幾個問題要請教就是說我們今年國民年金的2024年精算報告當中我們國民年金的潛藏負債是多達6320億相較於2023年我們是減少了797億
transcript.whisperx[219].start 6458.451
transcript.whisperx[219].end 6487.731
transcript.whisperx[219].text 所以我們今年比去年又減少了負債的狀況減少了所以我有幾個問題要請教就是說我們長國民年金的保費它的必要性跟急迫性是不是需要今年處理那你們有沒有評估過我目前我舊的數據有台灣有100萬人沒有繳首期的保費如果保費再漲會不會有更多人繳不起那這些人數字大概有多少因為大家都知道國民年金影響是老人的經濟生活安全
transcript.whisperx[220].start 6488.571
transcript.whisperx[220].end 6510.669
transcript.whisperx[220].text 辛苦的人中低收入戶 家都沒戶買便當都買不起 三餐都吃不飽他怎麼有錢去繳這個保費 這是我的問題所以我兩個問題今年有沒有漲的必要性跟急迫性目前我舊的數據有100萬人連首期都繳不起這個漲幅之後 會不會有更多人繳不起
transcript.whisperx[221].start 6511.269
transcript.whisperx[221].end 6538.094
transcript.whisperx[221].text 或不願意繳你們有沒有做過精準的評估那另外繳保費你們有沒有跟NGO團體做過溝通因為NGO團體就在講說繳不起的人更繳不起你請回應我非常感謝林燕秀委員對這個問題的關心陳副委員剛剛所說的國民年金確實是沒有參加其他所有職業別的一個民眾所以這裡面主要有三類一個當然就是說無一定雇主還有另外就是所謂家庭主婦或主婦另外就是學生主
transcript.whisperx[222].start 6538.254
transcript.whisperx[222].end 6552.59
transcript.whisperx[222].text 你直接回應我不想占用別人的時間我想重點現在是這樣現在目前這個部分我們在調的部分其實是根據國民年金法它裡面還有一個CPI的部分所以我剛問說有沒有必要因為我看到新聞你們說今年要漲
transcript.whisperx[223].start 6553.391
transcript.whisperx[223].end 6568.359
transcript.whisperx[223].text 我擔心的是漲不漲是你們做政治判斷跟決定但去年跟今年的負債今年沒有去年負債的那麼高所以有沒有漲的必要性跟急迫性然後另外我的問題是漲了之後會不會有更多人繳不起保費
transcript.whisperx[224].start 6569.178
transcript.whisperx[224].end 6592.299
transcript.whisperx[224].text 是 包委員 我們現在目前這個部分當然有做一些相關的評估那這個其實 你有沒有擔心有更多人繳不起保費那有沒有跟之前決定我從新聞上看到要繳保費你們有沒有跟NGO團體溝通過就是有NGO的那個團體這裡邊我們都有做相關的討論他們支持嗎那我們現在當然就是各方的一些我們現在都有一些各方的一些意見當然我們都會來評估
transcript.whisperx[225].start 6595.222
transcript.whisperx[225].end 6610.339
transcript.whisperx[225].text 他們不支持所以有沒有繳的必要性跟急迫性我希望你們評估清楚會不會有更多弱勢團體繳不起保費那就失去國民年金當時設立的意義現在台灣有一百萬人連收起保費都繳不起
transcript.whisperx[226].start 6610.859
transcript.whisperx[226].end 6633.485
transcript.whisperx[226].text 以上就是今天講貧富差距我講說AI的發展未來如果政府沒有更多的工具去保障基層技術勞工台灣有更多人生活的會更困苦貧富差距只會越來越大謝謝好 感謝委員 謝謝好 謝謝李委員接下來我們請鍾嘉斌委員等一下在本席質詢結束之後我們休息十分鐘
transcript.whisperx[227].start 6644.079
transcript.whisperx[227].end 6665.055
transcript.whisperx[227].text 主席在場的委員先進列席的政務機關事長官員會長工作夥伴媒體記者女士先生依序要請這幾位首長來接受質詢第一位是我們的陳祖濟長第二位是莊部長那麼第三位是衛福部的呂次長再來是勞動部的李次長然後經濟部的何次長
transcript.whisperx[228].start 6665.595
transcript.whisperx[228].end 6690.345
transcript.whisperx[228].text 以及國發會的高副主委那我問了我就請不再問了就請他們先回座休息好 那就請剛剛中委員要求的與會的次長還有副主委因為這樣可以節省時間我不用再秒數暫停高副主委 何次長 李次長好 呂次長那麼陳主席長我們去年國人的經常性平均薪資跟中位數分別是多少
transcript.whisperx[229].start 6691.907
transcript.whisperx[229].end 6710.993
transcript.whisperx[229].text 9月是48,000一到9月是47,00047這是平均經常性的平均薪資那中位數呢中位數是38,00038,000好那大家都很清楚知道平均薪資是全部的薪資的平均但是中位數意思說有一半的人的薪水不到38,000但是平均薪水是在48,00047,000好當月是
transcript.whisperx[230].start 6715.54
transcript.whisperx[230].end 6729.699
transcript.whisperx[230].text 好那沒關係這不是重點重點是什麼重點是什麼叫做縮短所得差距怎麼樣減少相對的貧窮感假設說十年前我你還沒結束我十年前月領三萬
transcript.whisperx[231].start 6730.78
transcript.whisperx[231].end 6752.928
transcript.whisperx[231].text 我跟另外一位月領3萬 10年後我領到了5萬我應該很開心吧 超過我們運薪資啦但是另外那位跟我同時進來的呢他領到了10萬 因為他進入了台積電的關聯產業他不是在那邊做晶片 他可能幫他們工廠做維護我呢 漲了2萬塊的薪水但是你覺得 我有沒有相對的貧窮感他領10萬 我領5萬
transcript.whisperx[232].start 6757.25
transcript.whisperx[232].end 6774.738
transcript.whisperx[232].text 我只多了2萬 他多了7萬主席長知道原因了是那你認為這就是我們國人相對貧窮感的原因是是所得的增加因為產業別沒有平均的照顧到每個人好 那麼接下來我要請教一下我們的請回 請回 請呂次長
transcript.whisperx[233].start 6780.209
transcript.whisperx[233].end 6796.938
transcript.whisperx[233].text 剛剛我們的委員剛剛是李彥秀委員提到了我們的國民年金保險國保年金有200多萬人對不對請問他們平均每個月可以領多少錢報告委員我們現在目前有這個A4 B4還有另外大概是多少錢大概4000上下吧大概4096
transcript.whisperx[234].start 6798.619
transcript.whisperx[234].end 6820.977
transcript.whisperx[234].text 那請問你知道目前年金在進行改革現階段的公教退休人員大概平均月領多少大概5萬8是教育人員5萬1是公務人員那你覺得同樣是退休人員退休生活所需要的基礎物質基礎差不多吧那你覺得這樣會不會有相對的貧窮感
transcript.whisperx[235].start 6821.798
transcript.whisperx[235].end 6837.672
transcript.whisperx[235].text 包委員這個應該會造成不光相對貧窮感而且相對剝奪感相對剝奪感所以我們我很認同剛剛那個那個李燕祐委員所說的我們對於這208萬的國保年金的這個月薪月薪的
transcript.whisperx[236].start 6838.683
transcript.whisperx[236].end 6864.433
transcript.whisperx[236].text 年金的月領人我們覺得很辛苦謝謝請回來我們請勞動部次長所有人國民都應該有平衡的保護謝謝所以衛福部支持讓所有的年金族都能夠有一個比較公平的年金制度來請問一下目前次長我們勞動人口勞保是不是1048萬48萬對不對這當中有多少人是受雇的可以有他雇主幫他勞退幫他提撥的
transcript.whisperx[237].start 6866.624
transcript.whisperx[237].end 6882.261
transcript.whisperx[237].text 受雇者大概是854萬目前有雇主幫他做勞退提撥的多少大概770多萬大概770萬請問這770萬受雇者 雇主幫他提撥勞退6%的有多少自己有自提 1到6%
transcript.whisperx[238].start 6885.039
transcript.whisperx[238].end 6897.648
transcript.whisperx[238].text 全部129萬但其中受僱勞工115萬好 所以非常少不到兩成所以相對的這些受僱的上班族有將近超過八成他自己沒有自行提撥為什麼你知道嗎
transcript.whisperx[239].start 6898.729
transcript.whisperx[239].end 6923.382
transcript.whisperx[239].text 你覺得什麼原因根據我們的數據大概就是比較低薪他覺得自己的薪水少我才月領三萬 五萬我怎麼會去提這些自提的是不是都是平均月薪資比較高的你們的統計大概九成左右都是比較高薪的月薪都很高 謝謝請回現在我們要請教財政部長
transcript.whisperx[240].start 6925.686
transcript.whisperx[240].end 6933.404
transcript.whisperx[240].text 剛剛有李議員要問到說財化法現在是不是有行政院版即將推出會的
transcript.whisperx[241].start 6935.052
transcript.whisperx[241].end 6954.984
transcript.whisperx[241].text 裡面有沒有包括對16條之一公式的一些調整我們是重新規劃讓它在水平分配更為合理所以你行政院的版本未來會不會比現在這些受到16條之一公式錯誤影響這幾個縣市你們的版本有沒有讓未來這幾個縣市可以得到的統籌分配更多
transcript.whisperx[242].start 6956.042
transcript.whisperx[242].end 6975.766
transcript.whisperx[242].text 我们的公司会做一个合理的分配不合理的分配所以保证这几个受到这个16条之一受影响的县市它可以更得到更多的合理分配16条之一这样的一个分母的问题事实上每个县市我只问你行政院版以后会不会比只修16条之一你觉得更好
transcript.whisperx[243].start 6976.726
transcript.whisperx[243].end 7001.442
transcript.whisperx[243].text 當然謝謝請回我們現在請經濟部跟國發會先請經濟部次長我們往下看今天我的主題來了很快的音樂時間有限往下看好來次長 何次長傳產是不是變成傳產在第二季電子業跟傳產是兩樣情是不是經濟部有沒有看到這個現象
transcript.whisperx[244].start 7003.904
transcript.whisperx[244].end 7028.172
transcript.whisperx[244].text 那你們哪些政策工具我們來看一下你們政策工具融資給他低利貸款給他還款展延地租的減免租金的減免水電房租運費行銷費用你們都有補貼哪一個最有效第一個融資的部分你覺得第一個有效我告訴你通通有效但是通通都不夠用往下看四大基金能做什麼來四大基金高副主委四大基金能做是不是這些
transcript.whisperx[245].start 7029.918
transcript.whisperx[245].end 7042.047
transcript.whisperx[245].text 穩健股是以基金投資收益來支持產業多元佈局執行各種策略投資是不是這樣子基金有它的運用的對那你瞭解他們目前持股是不是以半導體資通金融這個龍頭股為主
transcript.whisperx[246].start 7044.157
transcript.whisperx[246].end 7069.948
transcript.whisperx[246].text 我覺得他們會按照那個他在股市在那個我了解我了解大概是這樣的情況往下看那麼協助傳產有一個叫CITD這是經濟部負責對不對是不是說寫的製造業跟技術服務他上限是200萬研發是1000萬他目前的補助上限低其成短就一年規模小是不是這樣子是那麼是從到90年到110年4655萬投入多少錢
transcript.whisperx[247].start 7073.902
transcript.whisperx[247].end 7095.66
transcript.whisperx[247].text 不到60億啊這是不是傳產可以得到的是不是目前傳產可以得到嗎還有沒有其他傳產可以得到往下看來 產業再造基金有沒有這個東西這是誰負責的來 國發會你說你們怎麼進行產業再造基金我們有投資一個VC然後他是要協助那個傳產產業做轉型是不是創業投資事業可以申請
transcript.whisperx[248].start 7097.404
transcript.whisperx[248].end 7112.075
transcript.whisperx[248].text 我們沒有這個基金的名稱我們沒有這個基金只是有一幾個名字是不是以創業投資為主是好 那這樣問題來了現在面臨轉型困境遇到了這個關稅衝擊的他不是要新創他不是要創業投資 他要轉型何市長是不是這樣子
transcript.whisperx[249].start 7115.577
transcript.whisperx[249].end 7129.442
transcript.whisperx[249].text 跟委員報告 我們這一個我們投的這個VC不是火星創它是投資上市櫃公司裡面需要上市櫃公司 更好目標是30億 上市櫃公司何市長 請你告訴高副主委我們的傳產
transcript.whisperx[250].start 7130.842
transcript.whisperx[250].end 7158.859
transcript.whisperx[250].text 有多少是在上市櫃 市長請說我們的中小企業你過去來自於中小企業的照顧的這個團體我們是不是幾成都是中小企業九成以上大概九成八以上九成八高副主委兩趴的上市櫃可以得到委員我跟您報告我剛剛講的只是這一檔基金還有沒有我們來看一下非常多元的投資方式很多元我後面就有來看一下國發基金投資的業務融資的業務其他業務有這麼多是不是是的
transcript.whisperx[251].start 7159.659
transcript.whisperx[251].end 7167.314
transcript.whisperx[251].text 沒有冤枉嘛都幫你寫出來了你們這邊有個百億主題投資對他是包括資本支出的融資周轉的融資利息的補貼信用的保證有沒有
transcript.whisperx[252].start 7168.41
transcript.whisperx[252].end 7186.024
transcript.whisperx[252].text 但是融資業務都有你們輔導轉型的對象就不限定上市貴了對不對是當然很好就這樣往下看所以有沒有個天使創投目前國發基金有在對新創事業有這樣的一個基金對不對我們現在我們的額度增加到100億對這是對新創對新創傳產要轉型的看得到這不是對他的對不對
transcript.whisperx[253].start 7192.049
transcript.whisperx[253].end 7205.258
transcript.whisperx[253].text 是另外的嗎對 另外的有好 往下看所以我認為新創產業需要天使基金國發也準備好了傳統產業的轉型需要轉型投資資金何市長你同不同意
transcript.whisperx[254].start 7207.525
transcript.whisperx[254].end 7226.059
transcript.whisperx[254].text 跟委員報告 其實國際基金給經濟部的100億裡面我們其實也有做這方面的投資這方面 哪方面 傳產對不對轉型對不對 大概多少我們經濟部有製造業 有服務業 也有中小企業總共有300億我告訴你 現在傳產分兩種 私私有兩種
transcript.whisperx[255].start 7230.402
transcript.whisperx[255].end 7244.093
transcript.whisperx[255].text 常常有的他真的是老闆說我要收起來為什麼 做不下去了可能我是連特登連我的用地都不是符合的我要去特登特登要輔導我我看關稅衝擊我做不下去了我們有沒有輔導退場 會不會
transcript.whisperx[256].start 7245.834
transcript.whisperx[256].end 7271.573
transcript.whisperx[256].text 福島退場之後 勞動部 衛護部要接手要照顧所有人家的勞工但是另外有一些 他不是沒有競爭力他只是撐不過去這個沿東他已經看準了未來的市場投資佈局 買了機器 擴充了土地 借了錢現在美國市場既有手上的訂單縮減了未來的訂單還在努力市長換成是你 你會怎麼辦
transcript.whisperx[257].start 7272.898
transcript.whisperx[257].end 7282.357
transcript.whisperx[257].text 把新買的廠房賣掉先還新界的錢把員工就叫他們回家吃自己你覺得要面臨轉型的企業主他會這樣做嗎
transcript.whisperx[258].start 7284.198
transcript.whisperx[258].end 7309.799
transcript.whisperx[258].text 如果是你你會這樣做嗎跟委員報告其實員工是企業最重要的資產一般來講企業主基本上都船產顧了200到300萬是 其實企業主當然珍惜他的員工對 10年 20年縱使是二三十人的船產都有二三十個家庭靠他照顧對不對所以這些船產的企業主需要什麼需要經濟部跟國發會的支持往下看
transcript.whisperx[259].start 7310.66
transcript.whisperx[259].end 7327.016
transcript.whisperx[259].text 是不是我可以來請經濟部跟國外思考一下我們在國發基金給傳產的部分現有的投資有生物科技文化創意半導體航太未來如果傳產部分如果有是投資而非借貸政府來參與請問兩位請問高副主委你認為這樣的方向符不符合我們支持傳統中小企業來轉型
transcript.whisperx[260].start 7336.277
transcript.whisperx[260].end 7350.076
transcript.whisperx[260].text 我們國發基金其實一直以來都用不同的管道支持傳產的轉型升級那譬如說我們剛剛講到次長講到了我們匡列一個三個百億基金還有我們很多的VC還有直投我們都支持傳統產業轉型升級
transcript.whisperx[261].start 7351.772
transcript.whisperx[261].end 7376.238
transcript.whisperx[261].text 好我們看一下很快的我的30秒回顧一下下一頁台積電成立初期我們開發基金的投資方式現在台積電我們政府的持股就成為我們國發基金協助其他新創產業的一個基礎往下看所以隱形冠軍遭遇寒冬產值減少訂單不配看好他借不到錢市長要不要支持這些隱形冠軍渡過難關
transcript.whisperx[262].start 7377.759
transcript.whisperx[262].end 7385.935
transcript.whisperx[262].text 當然要好 高副主委我們是不是比照我們護國神山來守護傳產的隱形冠軍 要不要
transcript.whisperx[263].start 7386.824
transcript.whisperx[263].end 7414.002
transcript.whisperx[263].text 我們一直都在這樣做所以最後的兩個要求請看我就不再重述主席站起來了希望我們國發會跟經濟部攜手幫助這些不是上市櫃中小企業占我們九成八的中小企業當中有未來競爭轉型能力的協助他們度過寒冬用你們手中的政策工具增加在我們傳產中小企業的身上好不好好謝謝兩位謝謝主席謝謝總委員接下來我們請王世堅委員
transcript.whisperx[264].start 7437.779
transcript.whisperx[264].end 7441.283
transcript.whisperx[264].text 謝謝主席 我請衛福部女次長請女次長
transcript.whisperx[265].start 7450.39
transcript.whisperx[265].end 7474.758
transcript.whisperx[265].text 王委員好 理事長我很高興你今天做了這一份報告我三個禮拜前提出我是針對主技術他們的統計我認為這幾年我們國家經濟情勢一片大好確實整個社會財富是成長的但是社會財富分配的不均導致我們國內有相當數字的
transcript.whisperx[266].start 7481.716
transcript.whisperx[266].end 7497.641
transcript.whisperx[266].text 這個貧窮黑數那我估計是大概貧窮黑數有250萬所以我在意的是我們怎麼拉低這個貧富差距以外那怎麼樣對中低收入戶跟低收入戶這些貧窮黑數
transcript.whisperx[267].start 7499.341
transcript.whisperx[267].end 7523.857
transcript.whisperx[267].text 我們社會怎麼樣去救助他們那你今天提的這個報告是很不錯我們根據社會救助法那麼給中低收入戶低收入戶來增加他們的生活輔助急難救助這個急難紓困等等這些都很好那這個甚至食物的補給這些都有你都寫得很詳細
transcript.whisperx[268].start 7525.39
transcript.whisperx[268].end 7552.823
transcript.whisperx[268].text 不過我們社會上有貧窮黑數相對的也有假低收黑數這些假低收黑數啊這個其實財稅單位他們查不到為什麼財稅單位是依法你有收入你有財產那財稅單位會登錄所以他們有辦法去查查對 據以來對他們
transcript.whisperx[269].start 7557.886
transcript.whisperx[269].end 7564.132
transcript.whisperx[269].text 這個徵稅但是很多所謂的假低收這一個部分比方說
transcript.whisperx[270].start 7566.311
transcript.whisperx[270].end 7592.696
transcript.whisperx[270].text 這個在我們的檢調單位他們已經去查光這兩三年這個資料我一查數十件之多都已經被起訴了都已經被起訴的這一個部分所謂的假低收就是說財產放他的名下然後他名下沒有任何的財產或者透過假離婚或者他的收入都是現金的這個部分
transcript.whisperx[271].start 7594.336
transcript.whisperx[271].end 7619.011
transcript.whisperx[271].text 這些人他們住透天豪宅開特斯拉生活很優渥這樣的情況下還可以領取中低收甚至低收的補助這樣子的案例好多我光是查查幾件比方說有夫妻
transcript.whisperx[272].start 7619.972
transcript.whisperx[272].end 7646.893
transcript.whisperx[272].text 就我剛剛講的住豪宅開名車的假低收去詐領補助這個每年啊 每年喔經常性的就領十幾萬查獲他八年領了一百多萬那也有這個因為我們對於中低收 低收這個給付沒有附審機制所以導致
transcript.whisperx[273].start 7649.588
transcript.whisperx[273].end 7675.333
transcript.whisperx[273].text 很多在這個崗位上社福人員他堅守制度比方說在台中和平區公所抓到的就是這樣他用這個因為沒有附審機制沒有去查查所以竟然把沒有資格的用他自己的父親自己的弟弟炸零用這樣炸零的技能也是非常龐大那因為自首所以
transcript.whisperx[274].start 7676.277
transcript.whisperx[274].end 7691.91
transcript.whisperx[274].text 把它減輕其罪都100多萬以上這樣子的例子我想其他我就不用再念了太多太多所以我是希望衛福單位在我們對低收中低收弱勢貧窮黑數的部分
transcript.whisperx[275].start 7694.452
transcript.whisperx[275].end 7714.592
transcript.whisperx[275].text 我們甚至很多找不到的貧窮歸宿都要透過訪源去實際了解來補助他們來接住他們結果這樣的情況下是對的相對我們也要透過我們的這些訪源實際去了解去調查
transcript.whisperx[276].start 7716.053
transcript.whisperx[276].end 7732.167
transcript.whisperx[276].text 有沒有假低收的因為假低收啊它佔據了我們社會的資源它也是擴大貧富差距的幫兇之一元兇之一啦因為它用到了我們社會
transcript.whisperx[277].start 7733.948
transcript.whisperx[277].end 7751.978
transcript.whisperx[277].text 那個難得的大家辛苦擠出來的這些救助的金額所以我希望說在這個部分你們去落實好不好這個是這個情況你曉得嗎包委員我過去在台中擔任過社會局局長你剛 委員剛才說的問題我了解尤其甚至還有一個那裡每個廟宇 每個柱子都過去修理在那裡
transcript.whisperx[278].start 7760.163
transcript.whisperx[278].end 7772.729
transcript.whisperx[278].text 類似像這個情況我了解但是這個部分我們在地方的社會局還有公所那邊跟委員報告我們現在都有那個所謂的資產調查社工都會去當然就是說我們現在第一我們現在社會救助大概主要三個要件嘛動產不動產還有誰算所得社工
transcript.whisperx[279].start 7775.53
transcript.whisperx[279].end 7793.061
transcript.whisperx[279].text 我們會用社工去做調查因為社工他應該深入去了解一方面也了解說對於低收中低收這樣我們的補助夠不夠是不是他的情況還更嚴重需要幫助那我認為檢舉制度我們要做調整因為
transcript.whisperx[280].start 7794.062
transcript.whisperx[280].end 7810.015
transcript.whisperx[280].text 你們一再的說這個檢舉必須實名具名檢舉是沒錯奇怪人家財稅單位人家有的匿名檢舉人家也是去查財不是嗎那你知道現在社會上大家
transcript.whisperx[281].start 7811.274
transcript.whisperx[281].end 7825.853
transcript.whisperx[281].text 大家就是不希望說把透露個人的資料出去所以是不是既然有這樣的情況有接到這樣的檢舉不管是實名匿名都應該去了解去調查好不好
transcript.whisperx[282].start 7827.033
transcript.whisperx[282].end 7852.94
transcript.whisperx[282].text 那我們對低收入的補助本來社會的制度可能我們甚至在教育上面你看台大 清大 交大都有希望入學續日計畫這本來設計很好是要給中低收的家庭能夠不要把他們的優秀的子弟們把它埋沒掉所以讓他們可以透過他們的努力
transcript.whisperx[283].start 7853.92
transcript.whisperx[283].end 7874.381
transcript.whisperx[283].text 他們的聰明才智可以創造未來子弟們他們的新的命運可以去改變他家庭的命運這本來很好啊結果這樣的制度如果有假低收假中低收的話他們也會享用到這個制度的漏洞好不好
transcript.whisperx[284].start 7874.901
transcript.whisperx[284].end 7885.249
transcript.whisperx[284].text OK 好 鮑委員我們一定會來這部分來交代你具體的做 過一陣子這個確實要精準要精準去 好不好 好時間暫停 你請回OK 非常感謝委員 謝謝主席我請我請財政部長來 莊部長請委員好莊部長 老問題啦我去年提到現在我不曉得這一年來這個成績做得怎麼樣就是說我們國內
transcript.whisperx[285].start 7904.676
transcript.whisperx[285].end 7917.084
transcript.whisperx[285].text 受險業可運用資金有35兆那麼他們已經把這裡面的7成25兆拿去海外購買海外的債券基金那這有兩大風險一個戰爭風險一個
transcript.whisperx[286].start 7919.725
transcript.whisperx[286].end 7944.298
transcript.whisperx[286].text 這個匯率的風險結果這兩個風險在這一年多來我們都碰到了我相信你都很清楚所以我當時我具體建議因為他們要去海外他們是說國內利息低國內市場小他們是用這兩個理由我是認為國內利息低低不能當他藉口因為國內利息低我承認
transcript.whisperx[287].start 7945.439
transcript.whisperx[287].end 7963.46
transcript.whisperx[287].text 但是這些保險公司也是以這個低利息當作期望值去做成他的商品來賣給保險的民眾們所以利息低他不能當藉口好啦 另外一個他說市場小那市場小我認為這個就必須
transcript.whisperx[288].start 7965.402
transcript.whisperx[288].end 7975.758
transcript.whisperx[288].text 總部長必須你財政部來去規劃這些規劃哪一些規劃是不是我們國內需要建設那的
transcript.whisperx[289].start 7980.22
transcript.whisperx[289].end 8005.966
transcript.whisperx[289].text 資金我們不要說每一筆都用預算大家變一形式預算編了就有不是我們有自償性的建設比方像社會住宅比方說交通的各項建設啊我們鐵公路高速公路的修建等等這一些捷運捷運等通車以後售票那就有自償性嘛所以我們是不是來
transcript.whisperx[290].start 8007.847
transcript.whisperx[290].end 8017.899
transcript.whisperx[290].text 設需要的交通建設基金 設宅基金 長照債券這些可以設這些需要的建設的債券 公債然後鼓勵
transcript.whisperx[291].start 8021.252
transcript.whisperx[291].end 8036.267
transcript.whisperx[291].text 甚至具體要求這些保險公司把在海外的這25兆一部分一部分挪回來買我們的建設公債表示對我們台灣對我們自己國家有信心那這個部分你做了沒
transcript.whisperx[292].start 8037.128
transcript.whisperx[292].end 8062.016
transcript.whisperx[292].text 跟委員報告謝謝委員的指教行政院有一個兆元投資方案在這裡面很重要的就提出更大的案源所謂就是要有投資的標的那第二個部分就是要放寬保險業投資國內的公共建設跟基礎建設那金管會呢對於這相關保險業投資的相關的項目都有做法令的調整那我想這個部分我們可以把它羅列又提供給委員也就是說把法規鬆綁
transcript.whisperx[293].start 8063.656
transcript.whisperx[293].end 8090.049
transcript.whisperx[293].text 讓保險業可以有更多的資金投資到國內的公共建設跟基礎建設而同樣的我們在這邊也施出更大的一個案源讓他們可以投資那另外剛剛委員提到的就是發公債的部分對於有自償性的乙類公債那財政部這個部分也一直在請地方政府也好中央政府也好能夠發行乙類公債讓保險業可以也透過公債的模式來投入公共建設那這個部分大概有1494億大家從
transcript.whisperx[294].start 8092.59
transcript.whisperx[294].end 8115.455
transcript.whisperx[294].text 今年也會發70億的民航交通部民航局這邊會發所以委員您所...今年會發好 那今年現在已經11月了是 我也許可以把資料整理提供給委員但是我再提醒你其實為什麼你的重責大任在你身上因為中央政府建設公債條例第四條就寫得很清楚授權其實直接就是授權財政部只要你核准
transcript.whisperx[295].start 8119.616
transcript.whisperx[295].end 8131.923
transcript.whisperx[295].text 報請行政院 那就可以發行了好不好所以重責大任就在財政部是 謝謝委員提示好 謝謝王委員 謝謝莊部長接下來有請李坤臣召委質詢謝謝主席我們先請財政部莊部長有請莊部長
transcript.whisperx[296].start 8148.717
transcript.whisperx[296].end 8165.223
transcript.whisperx[296].text 委員好部長好普發現金昨天1月12號已經陸續入帳了對不對請教一下部長手邊上有數字嗎就是從昨天入帳到現在有多少人已經領到普發現金一萬塊了
transcript.whisperx[297].start 8167.529
transcript.whisperx[297].end 8182.734
transcript.whisperx[297].text 我到昨天的數字 今天我們在統計已經超過1000萬人已經領到了現金那這裡面包括直接入帳還有登記入帳就是原來有去網站去登記入帳的這樣合計起來超過1000萬人
transcript.whisperx[298].start 8184.815
transcript.whisperx[298].end 8202.671
transcript.whisperx[298].text 就是那個網路登記的然後還有包含直接入帳的那直接入帳的部分的話是入到他們各自的帳戶就對了對 直接入帳比如說有勞保年金的災保年金 國民年金他們都原來都有固定政府有固定的那固定的帳戶是銀行還是郵局
transcript.whisperx[299].start 8206.231
transcript.whisperx[299].end 8218.563
transcript.whisperx[299].text 應該有銀行也有是不是都有銀行跟郵局應該都有都是固定輸入進入他的帳號那這個部分就有大概有400多萬的人都是直接入帳了400多萬的人直接入帳458萬
transcript.whisperx[300].start 8221.007
transcript.whisperx[300].end 8231.15
transcript.whisperx[300].text 有458萬人是直接入帳是直接入帳的所以大概有600萬人是登記登記有六天的時間就是11月5號到11月10號有588萬人去做預登記了當然陸續這兩天都可以不管身分證號的尾數都可以再繼續做其實我們也有在做宣傳現在有五種領取的方式對不對但是很多人還是第一個會搞不清楚狀況
transcript.whisperx[301].start 8248.717
transcript.whisperx[301].end 8253.904
transcript.whisperx[301].text 就是說到底是線上登記郵局領ATM領有些人就是說這個可不可以帶領有些人就想說這個會有詐騙的問題所以也不敢在線上登記
transcript.whisperx[302].start 8262.102
transcript.whisperx[302].end 8282.356
transcript.whisperx[302].text 我們有沒有想到就是說我們乾脆就是譬如說單一帳戶我們每個國民都有一個單一的帳戶譬如說像郵局我們出生之後我們就有一個單一的帳戶那這個單一的帳戶就是以後不管像是這一種的普發現金或是像您講的就是說有一些我們是有一些津貼
transcript.whisperx[303].start 8283.657
transcript.whisperx[303].end 8310.495
transcript.whisperx[303].text 要匯給這一些需要的人那我們是不是就乾脆我們就乾脆比如說郵局因為郵局是國營的也比較沒有爭議那我們出生之後每個人在郵局有一個帳戶然後以後有類似這一種津貼或是說這種福利的話我們就直接匯到那個帳戶那也不會有說到底有幾種領取的方式也避免這個被詐騙以後有沒有機會朝這種方式去做
transcript.whisperx[304].start 8311.345
transcript.whisperx[304].end 8336.489
transcript.whisperx[304].text 我想委員您這個建議也就是說每一個國民就如同健保卡一樣人生就給他一個健保然後我們政府是不是給他一個帳號以後相關的津貼或什麼都直接入帳戶我想這個部分也許可以我們跨部會來討論看看也成為一個國家的基礎建設然後當然還要考慮其他的問題我想這個部分要從長的研議之前有沒有想過這方面的就是說因為這個普發現金也不是第一次
transcript.whisperx[305].start 8337.71
transcript.whisperx[305].end 8357.208
transcript.whisperx[305].text 之前倒沒有這樣子的一個規劃那你覺得實際上可行嗎委員的建議我想應該還是要跨部會大家一起來討論要考慮的因素可能也比較多沒關係 你們討論一下去思考一下 跨部會想一下我是覺得說你有一個單一的帳戶每個國民都有
transcript.whisperx[306].start 8358.248
transcript.whisperx[306].end 8372.999
transcript.whisperx[306].text 那類似這種津貼你就直接匯進去第一個不用怕詐騙時間到就匯進去然後呢 這個也是這種方式就不用說我還要去ATM或是去郵局或是去哪裡 也很方便然後呢 也不會有什麼帶領的問題這小孩子到底要給誰領這個是自己領還是給家長領
transcript.whisperx[307].start 8378.485
transcript.whisperx[307].end 8397.81
transcript.whisperx[307].text 那郵局的營業時間第一個 它據點多營業時間長然後它也是國營的比較不會衍生一些爭議我覺得你們研究一下好不好我想這個部分要跨部會大家一起來研議思考一下做一個政權的準備好 謝謝部長那我們接下來請這個主席總處陳主席長還有衛福部呂市長陳主席長 呂市長
transcript.whisperx[308].start 8408.703
transcript.whisperx[308].end 8421.591
transcript.whisperx[308].text 委員好主席長好 您之前在立法院有提過說我們全台灣的低收入戶只佔1.13%如果加上中低收入戶只佔2.26%如果採取相對貧窮率來計算全台有7.57%是屬於貧窮的範圍高於低收入戶的統計高很多 對不對
transcript.whisperx[309].start 8435.905
transcript.whisperx[309].end 8464.094
transcript.whisperx[309].text 沒錯這個中間有落差嘛是不是因為當初這個家庭所得他只計算經常性收入財富沒有算進去所以他裡面會有一些隱藏性的所得所以在衛福部他在設計的時候他會把財產和一些相關的數據設計在裡面所以他的數據這當中就會有一點落差但是他對如果說有一些貧窮的黑術他本身沒有辦法得到救助他也另外也有其他的一個
transcript.whisperx[310].start 8464.594
transcript.whisperx[310].end 8475.947
transcript.whisperx[310].text 方式的一個做一些補助的一個方式這個要由衛福部來說明好 那主計長我問你你認為說我們在統計的這個數字上面有沒有沒有算進去的大家講的貧窮黑數
transcript.whisperx[311].start 8477.973
transcript.whisperx[311].end 8506.348
transcript.whisperx[311].text 就是因為當初這個部分是沒有把財富算進來財富沒有算進來包括譬如說你的資產一些相關的負債如果說整個算進來的部分還是會有譬如說有的他明明是失業但是因為他是屬於有能力去工作的我們把它視為他是有所得這個部分他可能就是
transcript.whisperx[312].start 8507.508
transcript.whisperx[312].end 8517.94
transcript.whisperx[312].text 這個就是現在大家有在詬病的就是說虛擬收入的部分對不對對 這個是這樣那我先問主席長妳認為這個虛擬收入合理嗎
transcript.whisperx[313].start 8519.173
transcript.whisperx[313].end 8539.724
transcript.whisperx[313].text 这个部分我要看他怎么就是说我们现在是假设就是说你其实是有工作能力的你只是现在没有工作但是我就假定你你如果去工作你就有这些收入是不是但实际上不是每个人都愿意去可以找工作就可以找到工作或是找到合适的工作或是说找到的工作可以维持我的基本生活
transcript.whisperx[314].start 8540.464
transcript.whisperx[314].end 8564.244
transcript.whisperx[314].text 但是跟委員報告事實上我們有相當的措施譬如說你失業整個有可以領失業的一個救濟所以整個可以領到長達六個月所以這本身都是有互相一個救濟的一個措施在讓他不至於說那當然就是屬於社會救濟的部分對 這個是失業的時候你就會有領到失業救助可以長達六個月做一個正當
transcript.whisperx[315].start 8565.95
transcript.whisperx[315].end 8570.901
transcript.whisperx[315].text 好 我知道我們當然有一些社會福利做得還不錯啦那主席想請回我就問這一個理事長
transcript.whisperx[316].start 8572.776
transcript.whisperx[316].end 8599.119
transcript.whisperx[316].text 那市長 因為現在社會救助法正在討論那我先問好了社會救助法大家比較關心就是我剛有提到一個就是虛擬收入的制度是沒錯就是說你只要去工作你就有收入了你只是現在沒有去工作而已所以我就把你這個年紀你可能找到的工作按照你是哪個類型的你每個月可以收入多少就把它當成是一個虛擬的收入是不是是沒錯
transcript.whisperx[317].start 8600.18
transcript.whisperx[317].end 8614.461
transcript.whisperx[317].text 那也因為有這個虛擬收入的制度其實啊我們這個很多的這個屬於貧窮的人就沒有把它算進去你看我們貧窮率好像很低其實實際上不是那回事的這個您也當過社會局局長您應該很清楚了解還有另外一個
transcript.whisperx[318].start 8615.723
transcript.whisperx[318].end 8632.939
transcript.whisperx[318].text 我們所得還是採取家戶的計算你採取家戶計算很多人覺得說我家戶計算其實我跟我的家人其實已經都沒有任何的關係了只有血緣在而已然後也把家人的財產共同計算進去
transcript.whisperx[319].start 8635.842
transcript.whisperx[319].end 8651.249
transcript.whisperx[319].text 那在這種情況之下你就是領不到一些相關的就算我們有中低收入的補助相關的社會救助的津貼我也領不到那在這種情況之下我們社會救助法有沒有至少針對這兩點外界一直在質疑的有做出調整或修正
transcript.whisperx[320].start 8652.029
transcript.whisperx[320].end 8674.35
transcript.whisperx[320].text 非常感謝委員的關心剛剛委員確實有指出兩個重點我們現在目前有一個就是所謂的設算所得那設算所得的那個部分我想我先跟委員報告我們現在目前就是我們講那個虛擬收入對沒錯我們這個部分我們確實有在檢討很簡單我們現在目前就是說我們的檢討方式現在就是說會以一定的這一個就是這個所得我們現在可能打個折扣
transcript.whisperx[321].start 8676.57
transcript.whisperx[321].end 8704.257
transcript.whisperx[321].text 你這個折扣要怎麼打包委員 這個我再向委員來報告我們現在目前主要是參考勞動部他那邊有關於薪資薪資的這個數據還有其實最重要事實上是有關於無一定雇主的所謂的非典型就業者他們的薪資按照這兩個指數我們現在先去做一些作業推算這是第一個重點另外第二個剛委員你做了一些改變那跟現在的制度有什麼不一樣嗎
transcript.whisperx[322].start 8705.277
transcript.whisperx[322].end 8726.65
transcript.whisperx[322].text 對 沒錯如果說不一樣會因為你這樣子設算會因為這樣而放寬不會放寬 對 沒錯放寬的大概範圍會多大跟委員報告現在剛剛就是說其實在貧窮裡面我也趁這個機會解釋一下就是說有相對貧窮跟絕對貧窮我們現在目前有進入社會救助的叫做所謂的絕對貧窮跟委員報告我們現在低收中 低收總共占了二點
transcript.whisperx[323].start 8727.67
transcript.whisperx[323].end 8739.478
transcript.whisperx[323].text 大概2.4%這就屬於絕對貧窮的對 沒錯我們現在目前根據這一個我們現在目前其實民團這邊還有各界大概有很多像這一個人極合一還有剛剛委員剛剛所說的有關於這個有關於戶數的問題這部分我們都有檢討那預估這一個部分的話大概一定是會放寬但是我也要跟委員報告
transcript.whisperx[324].start 8750.725
transcript.whisperx[324].end 8772.934
transcript.whisperx[324].text 臺灣真的在這個部分我要利用這個機會要說我們的相對貧窮我們的相對貧窮率真的只有7.54這裡面當然會有黑數的問題黑數的部分我們現在目前其實也有八大津貼除了社會救助之外我們對老人生活老人身心障礙還有困境的部分事實上再加上去的話我們會到8%
transcript.whisperx[325].start 8774.495
transcript.whisperx[325].end 8784.423
transcript.whisperx[325].text 8%的部分我跟委員報告這個部分我們是比日本 韓國跟美國都還比他們還高我知道我們有一些社會的福利在我們現在是談的是社會救助對 沒錯兩個概念是應該是不一樣的當然 沒錯我現在就釐清就是說有一個就是絕對貧窮跟相對貧窮就是兩個不能夠混淆在一起好 第一個你提到就是說虛擬制度會做修改就對了是 沒錯那家戶所得呢
transcript.whisperx[326].start 8798.174
transcript.whisperx[326].end 8813.347
transcript.whisperx[326].text 加護所的這邊我們也會一併就是剛剛委員說就是說像有一些可能是嫁出去的女兒或者說等等那些我們這個是覺得那財產也一起算對 所以這個我們覺得應該有值得來商榷之處那社會救助法
transcript.whisperx[327].start 8818.126
transcript.whisperx[327].end 8843.627
transcript.whisperx[327].text 今年會送出來嗎我們現在正在努力當中那有辦法年底送到立法院來嗎我們會努力會努力我們努力朝這個方向因為我知道現在大家對這個問題非常關心就是說經濟成長率很高然後這個看起來數字都不錯但是還是有很多社會下貧窮人需要我們去協助除了社會津貼社會福利之外社會救助法的確需要改變
transcript.whisperx[328].start 8844.147
transcript.whisperx[328].end 8857.919
transcript.whisperx[328].text 沒錯 沒錯 有些與時俱進剛委員說的一些該鬆應該要合理的我們要把它合理化好 謝謝次長好 非常感謝昆城委員 謝謝好 謝謝昆城召委 謝謝呂次長那麼我們再請林市民委員質詢 林召委
transcript.whisperx[329].start 8870.706
transcript.whisperx[329].end 8876.491
transcript.whisperx[329].text 我是不用上洗手間的 但是場下可能有人需要好好好 那我們讓他啦謝謝 請主席長
transcript.whisperx[330].start 8898.573
transcript.whisperx[330].end 8920.984
transcript.whisperx[330].text 委員好是 主席我們在主席總處的心情平台的網站可以查詢到從101年到112年我們每年度的全年總薪資的分布以全年薪資60萬為例101年有超過7成的壽星者但是到了112年同樣全年薪資60萬只剩下6成
transcript.whisperx[331].start 8924.565
transcript.whisperx[331].end 8943.194
transcript.whisperx[331].text 這個現象表示說我們整體的薪資結構被往上拉但中位數的族群被擠下去整體的薪資結構不再是平均往上而是差距越來越明顯為什麼同樣全年薪資60萬
transcript.whisperx[332].start 8945.576
transcript.whisperx[332].end 8954.346
transcript.whisperx[332].text 到了112年會從101年的七成降到六成主席長為什麼有這個現象可以請你說明一下嗎
transcript.whisperx[333].start 8955.536
transcript.whisperx[333].end 8984.726
transcript.whisperx[333].text 它有成长只是成长的成长的幅度没有那么高是这样子对这个部分因为我们现在好像D1 D2和这个部分我们就是有所谓的低薪的调薪基本工资的一个保障所以它的成长幅度就会比较高还要包括我们政府也保障低薪的部分有一个做一些的政策所以这个部分31,000以下的部分我们都调到31,000这是最基本
transcript.whisperx[334].start 8985.306
transcript.whisperx[334].end 9002.932
transcript.whisperx[334].text 基本的一個低薪的一個調整中位數的部分一般是比較平穩比較平穩是這樣子高薪的部分比較特殊因為它是有一些的比較AI的或者是私通業的市長 我知道妳就回答到這裡其實我們看到一個現象就是說
transcript.whisperx[335].start 9004.412
transcript.whisperx[335].end 9024.357
transcript.whisperx[335].text 這個高薪者其實他的平均數越來越高就是因為中位數就是我們剛才講的平均60萬薪資的這個族群就他竟然掉了一層所以這個現象當然都有上升但是他掉了一層我想你要觀察到這個現象我請你要注意 要去注意
transcript.whisperx[336].start 9025.357
transcript.whisperx[336].end 9041.274
transcript.whisperx[336].text 我們再看主席總數薪資分布的資料我們整理出來你剛才講的D1到D9雖然我們所有的實質的成長率都有成長剛才主席講的但是我們看到實質的成長卻落差很大
transcript.whisperx[337].start 9043.436
transcript.whisperx[337].end 9050.562
transcript.whisperx[337].text 我們看D1是從23.2萬我的表是2023現在實質到2024是提升到31.6萬那D9從101萬提高到到2024是提高到127.9萬但是我們要去看這個通膨率
transcript.whisperx[338].start 9064.252
transcript.whisperx[338].end 9087.067
transcript.whisperx[338].text 這11年間通膨率成長了13.7%所以我們以這個購買率來講的話等於說101年的100元到了112年底大概已經變成113元了因為通膨增成長了13%所以主席講扣掉通膨之後我們整體薪資仍然是成長嗎
transcript.whisperx[339].start 9088.388
transcript.whisperx[339].end 9101.701
transcript.whisperx[339].text 你认为扣除空还是成长吗是的 成长1.78我记得 是这样成长1.78所以11年成长1.78但是我们从这个这是年 年增1.78 14年
transcript.whisperx[340].start 9105.484
transcript.whisperx[340].end 9131.552
transcript.whisperx[340].text 我想今天召委排这个专题政府要如何缩短我们整个所得的差距即改善相对贫穷化的对策其实刚才你讲虽然有成长但是我们看到就是说实质上我们中位数的这个族群的薪资停滞不前虽然有成长但是它幅度很低中位数也有成长它很低但是跟我们的通膨区再加以比较的话后组通膨也是成长
transcript.whisperx[341].start 9133.533
transcript.whisperx[341].end 9155.216
transcript.whisperx[341].text 就成長不多但是我們看到就是說越有錢的人他越有錢他所得越高那低薪族剛才你們用很多政策去加以這個去加以彌補但是這個中位數的我們就一直覺得奇怪為什麼他的所得就有增加但是他的幅度很低你可以看 你可以看出來我們看那個表
transcript.whisperx[342].start 9156.57
transcript.whisperx[342].end 9171.118
transcript.whisperx[342].text 我們看到最低薪資的D1 D3的30%的族群換算實質薪資後它是最低三個十分位的成長率D1是成長19.8% D2成長17.2%D3成長11.4%反而中位數收入的族群就D4到D7
transcript.whisperx[343].start 9181.664
transcript.whisperx[343].end 9197.033
transcript.whisperx[343].text 實質成長都很低 不到7%其中最低的低6%只有3.8%所以我們低薪階層或者領最低基本工資的階層向來我們就剛才講最需要被照顧
transcript.whisperx[344].start 9198.394
transcript.whisperx[344].end 9225.672
transcript.whisperx[344].text 但是最低薪資他不但也有提高從100年1月1日的18780元到2023年的1月1號是26400元到這個明年1月1號我們基本工資已經調高到29500元所以組長我要請問你從這個現象是否反映出基本工資雖然經過幾次的調高
transcript.whisperx[345].start 9228.434
transcript.whisperx[345].end 9250.185
transcript.whisperx[345].text 後來確實也有讓我們的低薪族受惠但是整個中位數的階層被卡在原地薪水幾乎不太動沒什麼動所以這樣的結構是否會讓我們的社會結構這種結構讓我們薪資的結構陷入一個中位數它是一個天坑
transcript.whisperx[346].start 9251.306
transcript.whisperx[346].end 9277.273
transcript.whisperx[346].text 他的所得永遠就是停留在那個階段沒有辦法再往上拉即便你把基本工資往上調你那個中位數的他的薪資就不動了報告委員我們政府這方面來做的部分包括我們公務人員的部分我們是帶頭加薪連續好幾年都做調薪第二個我們也鼓勵企業來做調薪然後也像金管會他也鼓勵就是說
transcript.whisperx[347].start 9278.573
transcript.whisperx[347].end 9287.977
transcript.whisperx[347].text 公司如果獲利要分配分配給那個這樣的話他會給他一些稅務方面的一個優待所以這個部分那包括產業他要賺錢所以我們都會輔導產業讓他賺錢然後讓他能夠把
transcript.whisperx[348].start 9294.139
transcript.whisperx[348].end 9312.193
transcript.whisperx[348].text 員工的薪資調整所以這個部分主要是要鼓勵企業對員工加薪所以這個部分我們也在經濟部做很大的一個努力所以這個部分包括公務人員帶頭加薪然後再來就是要鼓勵企業加薪然後也鼓勵所謂企業要分紅
transcript.whisperx[349].start 9313.214
transcript.whisperx[349].end 9333.016
transcript.whisperx[349].text 市長我想你要用很這個現象你看到了我剛才都點出來了當然你認為說你剛才是提到如何這個企業要怎麼做政府要怎麼做讓這個我一直關心的這個中介中位數的這些族群讓它的成長性讓我們看到不是這個成長率那麼低
transcript.whisperx[350].start 9333.697
transcript.whisperx[350].end 9352.339
transcript.whisperx[350].text 刚刚我们在讲的就是针对我们会觉得说平复的差距就会越拉越高虽然你一直照顾低薪的族群但是中位数的你也要去照顾他有 所以这个部分政府也有带头来做 谢谢否则 主席长我看到一个社会现象就是说
transcript.whisperx[351].start 9353.34
transcript.whisperx[351].end 9377.162
transcript.whisperx[351].text 高薪階層遙遙領先中低薪資階層卻望塵莫及這個中位數的族群就是一直被這個壓縮減少所以這個現象就反映出我們雖然看起來是平等但實質是不均所以所得差距在數字上你看是平穩 但實際上越拉越開
transcript.whisperx[352].start 9378.163
transcript.whisperx[352].end 9403.982
transcript.whisperx[352].text 就我剛才一開始點出來的你平均60萬的這個族群竟然過了11年之後減少了一成所以這個現象我希望政府要看到這個現象對中位數的族群要如何的讓他請這些企業界要去幫他們加薪讓貧富所的差距不要再繼續擴大我覺得我們要去努力
transcript.whisperx[353].start 9404.562
transcript.whisperx[353].end 9411.546
transcript.whisperx[353].text 是 謝謝你請為時間暫停一下我們現在請央行我們請央行 嚴副總裁副總裁我想房價持續還是高漲房貸的壓力全面擴散所以我們目前的房市政策是不是仍然微微達效果
transcript.whisperx[354].start 9433.178
transcript.whisperx[354].end 9456.347
transcript.whisperx[354].text 讓我們年輕人的薪水全部就被這些貸款或者通膨吃光了尤其我們家戶負債比高達可支配所得的1.55倍在這樣艱困的環境下我們如何讓年輕人共享經濟的成長所以你打房打房的成效到底如何
transcript.whisperx[355].start 9459.333
transcript.whisperx[355].end 9475.263
transcript.whisperx[355].text 報告委員 如果比較在去年我們看到去年下半年或去年七八月 九月 十月的時候整個房地產大家對於房地產的那種購買的熱潮或者是炒作熱潮現在是相對的平淡 平穩很多
transcript.whisperx[356].start 9476.624
transcript.whisperx[356].end 9503.013
transcript.whisperx[356].text 其實我們也一直在注意說到底我們的政策它實際執行的效果上次剛才我也在回答委員的時候我們每一季我們都會去檢視我們的過去的政策的效果情形我們會做適當的調整所以打房的政策還是會滾動式的做一個檢查是 我們一直都是這樣子做未來還會不會提出其他的管制措施有沒有可能
transcript.whisperx[357].start 9504.349
transcript.whisperx[357].end 9532.198
transcript.whisperx[357].text 我刚才回答的意思是说这个房地产政策基本上还是由我们的货币政策理事会这边在讨论的所以我没办法在这边抱歉其实总监我还是希望你们对房市的热度你要持续去观察它因为年轻人现在真的买不起这个房子房贷的压力太大了我们刚才一直讲薪资又没有它的涨幅跟不上房价的涨幅
transcript.whisperx[358].start 9532.978
transcript.whisperx[358].end 9542.769
transcript.whisperx[358].text 所以造成整個我們年輕人可以說吃不消了所以希望央行在這個方面持續密切的做觀察是 謝謝委員指示以上 謝謝好 謝謝林思敏在位我們現在休息十分鐘
transcript.whisperx[359].start 10169.892
transcript.whisperx[359].end 10184.043
transcript.whisperx[359].text 好 我們休息時間已經到了那我們請與會的官員請陸續就座接下來要開始質詢了好 接下來我們請下一位賴會員委員謝謝主席我們請國花會副主委 央行副總裁還有我們的主計長
transcript.whisperx[360].start 10196.96
transcript.whisperx[360].end 10199.762
transcript.whisperx[360].text 好 請陳竺介長然後沿岳副總裁高岳副主委委員好是 三位好我想在這裡要很誠摯的跟大家感謝身為執政黨的委員我必須要肯定就是整個行政團隊在國家財政穩定跟經濟發展上面的貢獻
transcript.whisperx[361].start 10224.022
transcript.whisperx[361].end 10245.078
transcript.whisperx[361].text 那我要跟大家做一個說明我是來自於非常偏鄉的一個區立委當然熟知主計長他非常了解在我的選區裡頭我們很多的農民 漁民還有就是基層的勞工也相當的多
transcript.whisperx[362].start 10245.953
transcript.whisperx[362].end 10268.606
transcript.whisperx[362].text 那今天站在這裡其實不是來要漂亮的一個數字而是要來一個答案所以特別跟副主委做一個探討就是說台灣這幾年不管在GBT還是在股市的一個指數裡頭這個突破27000點其實這個數字都非常的漂亮
transcript.whisperx[363].start 10269.426
transcript.whisperx[363].end 10288.78
transcript.whisperx[363].text 可是當我回到選區的時候,我的選民拉著我的手告訴我說委員,如果這樣,你都說有夠好有夠好,可是我們確實都面臨到非常多的一個困境我想在這裡就是要跟你做一個探討,這個是我們執政的一個危機
transcript.whisperx[364].start 10290.728
transcript.whisperx[364].end 10304.639
transcript.whisperx[364].text 我不知道那個戶主委你對於我這些想法上我讓你看到一個台南市的中守稅的一個結算申報我們有37個區最有錢的這個是中西區101
transcript.whisperx[365].start 10310.476
transcript.whisperx[365].end 10331.125
transcript.whisperx[365].text 這個101萬個人最最貧窮的是柳營區65.8萬你看光是一個台南37個區差距就這麼大那你如果用全國來比的話那我們從這個數字裡頭我們可以看得到政府的亮眼的數據跟人民這個冰冷的感受
transcript.whisperx[366].start 10333.054
transcript.whisperx[366].end 10353.124
transcript.whisperx[366].text 回答我對於這樣子的一個社會氛圍你有什麼樣的一個感覺報告委員我覺得我們近年來因為台灣半導體產業的發展那跟傳產之間的確有一個非常比較大的落差就是我們的ICT產業其實因為數位轉型還有AI
transcript.whisperx[367].start 10356.546
transcript.whisperx[367].end 10373.921
transcript.whisperx[367].text 創新運用的發展得非常好那我們產產某個程度上受到比如說大陸內捲還有一些關稅的一些效應其實事實上它會比較辛苦一點我們其實政府已經有注意到所謂產業分佈的兩極化的問題還有一個所以我們現在全力想要做的一件事情除了維持我們在III半導體的競爭優勢以外均衡台灣
transcript.whisperx[368].start 10384.87
transcript.whisperx[368].end 10391.632
transcript.whisperx[368].text 是當前政府施政的重點之一怎麼均衡 怎麼均衡台灣這個80%跟20%如何均衡是 所以第一個我們在產業發展中間我們一定要全力讓我們的傳產跟中小微企業都可以有AI賦能或者是我們儘量用不同的政策工具協助它可以轉型升級
transcript.whisperx[369].start 10410.996
transcript.whisperx[369].end 10428.455
transcript.whisperx[369].text 好用不同的政策工具讓他轉型升級謝謝副主委那接著我請教那個我們的央行副總裁我們來講這個物價那我也不跟那個副總裁計較就是說這個GPT多穩定我也不問你說額外增進多少錢我想這些
transcript.whisperx[370].start 10431.938
transcript.whisperx[370].end 10456.531
transcript.whisperx[370].text 這些情況就是通膨通膨這個怪獸其實已經悄悄的就是降臨在我們市周圍它數字的平均成長是增加的可是在偏鄉是下降的我們從109年到104年的那個全國的農林業普查裡頭我以台南市台南市各區的農業收入為例你看這個5年當中
transcript.whisperx[371].start 10459.025
transcript.whisperx[371].end 10481.002
transcript.whisperx[371].text 五年當中其實它總計它是升上來的它是升了10%可是如果你用每一個區來看的話這個柳營區它是降了12%六甲這是暴跌到17.34%斜甲這個龍躍跟榆木躍非常發達的一個地方是富士山
transcript.whisperx[372].start 10482.063
transcript.whisperx[372].end 10496.233
transcript.whisperx[372].text 所以在這裡我想請問就是副總裁你覺得台灣現在的通貨膨脹這麼嚴重那這些報告上的數據真的是符合到台灣人民的一個感受嗎
transcript.whisperx[373].start 10497.881
transcript.whisperx[373].end 10517.335
transcript.whisperx[373].text 那個報告委其實如果我們去比較台灣的通貨膨脹跟其他國家通貨膨脹其實我們可以看到我們在我們的圖裡面也看到其實我們相對其他國家來講我們試著讓它通貨膨脹已經控制到相對的比人家是平緩很多的一個情況當然我也知道就是說這個對
transcript.whisperx[374].start 10520.906
transcript.whisperx[374].end 10546.662
transcript.whisperx[374].text 這個所得差距這邊還是會影響到所以副總裁你覺得這個通膨膨脹如果比起其他國家裡頭的話我們相信的是穩定的一個通膨所以這個是大家應該要接受也應該是可以接受的是不是這樣子我們也看到就是最近這幾年其實通膨已經慢慢在下降了
transcript.whisperx[375].start 10548.188
transcript.whisperx[375].end 10568.101
transcript.whisperx[375].text 其實是我們預期今年和明年其實跟前兩年比我們的通膨低卷主委你現在就是貧富鹹酥差那麼多20%的日積超過80%超過所以說如果你是這樣子跟我回答的話那我本席是覺得很遺憾來 主席長
transcript.whisperx[376].start 10570.282
transcript.whisperx[376].end 10597.468
transcript.whisperx[376].text 我想這個你的報告整體的成長10%有沒有看到背後就是在農業上就很多大農戶其實是賺錢的可是小農民反而是在退整體的平均數是不是被少數的高收入把它拉高了掩蓋了基層基層這些農民我是針對的農漁民來跟你講他們實際的一個困境我不知道主計長你的看法是怎麼樣
transcript.whisperx[377].start 10600.251
transcript.whisperx[377].end 10625.836
transcript.whisperx[377].text 本身這個部分他下降的部分因為因素是很多啦有可能就是說他的農地被徵收了然後資源我當然知道那這樣子他收入就會下降所以等於說經營的面積減少那不見得說他是他收入是這樣但總體來講他就是減少的那這個部分的我們也必須要深入去了解他到底是衰退的原因是什麼所以我們今年在114年我們
transcript.whisperx[378].start 10627.256
transcript.whisperx[378].end 10647.505
transcript.whisperx[378].text 也又再一次五年的一次的一個農林普查我們今年就會再展開針對這個部分你有什麼好的方法還是說我們只要看這個科技業的20%那其他的百工百業的80%我們就是自我感覺良好就覺得說這個通膨的情況不嚴重
transcript.whisperx[379].start 10648.683
transcript.whisperx[379].end 10663.865
transcript.whisperx[379].text 因為這幾個區大部分都是屬於農業區農業區的部分我們在農業部裡面有很多相關的一個補助和一個整個是在提升它一個相關收入的一些的措施在做所以這個要跨部
transcript.whisperx[380].start 10664.245
transcript.whisperx[380].end 10680.263
transcript.whisperx[380].text 我跟你講農民的收入的問題出現了很大的很大的一個困難的時候好那三位都請回那我們接著就是請財政部部長因為財政部他的護稅在他身上所以他可以用
transcript.whisperx[381].start 10680.723
transcript.whisperx[381].end 10700.041
transcript.whisperx[381].text 用最好的一個互稅的一個手法那是一個跨部會的手法所以在這裡我想請教部長部長剛剛在我的質詢的內容裡頭你已經發現到龍一鳴勞工慢慢已經是入不敷出那感覺努力的工作他也換不到溫飽甚至說他的收入在遞減請問部長
transcript.whisperx[382].start 10702.463
transcript.whisperx[382].end 10712.724
transcript.whisperx[382].text 你感覺到今天的報告中的經濟的一個數據有沒有重大的一個落差跟現有的一個環境因為你不能告訴我說你遇到的都好人
transcript.whisperx[383].start 10715.353
transcript.whisperx[383].end 10720.655
transcript.whisperx[383].text 不然你們家打掃了歐巴桑你問問他所以對於有關我們中低收入的民眾我們在付稅部分就盡量就減輕他們的負擔所以事實上有44%的申報戶在中所稅申報的時候是並沒有要達到繳稅的門檻
transcript.whisperx[384].start 10736.301
transcript.whisperx[384].end 10757.55
transcript.whisperx[384].text 然後適用5%的稅率的部分大概佔36%所以在這個部分其實是對於中低收入所得者他的付稅負擔基本上是蠻低的幾乎44%就全部申報戶裡面是不用繳稅的所以部長你看到了問題的一個核心有錢的人 收入的人其實他可以結稅
transcript.whisperx[385].start 10758.911
transcript.whisperx[385].end 10781.057
transcript.whisperx[385].text 他不需要繳那麼多的稅可是你在這個中低下層的這些農漁民的時候他每一條稅他都跑不掉所以就是說有沒有辦法跟農業部做一個合作就是建立農漁民所得的一個追蹤的一個機制我們讓稅制讓稅制跟補貼跟金融的一個輔助可以精準的對焦
transcript.whisperx[386].start 10781.897
transcript.whisperx[386].end 10795.267
transcript.whisperx[386].text 我覺得這個其實是財政部可以做的我想委員這樣一個建議跟農業部去合作然後讓政府的相關的補助補貼可以更精準我想這個部分我們是可以跟農業部一起來討論沒有錯
transcript.whisperx[387].start 10797.349
transcript.whisperx[387].end 10816.685
transcript.whisperx[387].text 部長謝謝你我跟你講榮英明的收入在下降可是成本在上升了財政部你可以在能源稅在用油的補貼還有就是隆基的一個折舊抵稅的一個政策上我建議應該要有一個積極跨部會的合作的一個調整方案好的是謝謝委員
transcript.whisperx[388].start 10819.504
transcript.whisperx[388].end 10840.858
transcript.whisperx[388].text 做得到吗我们再跟农业部再来讨论那事实上目前来说农业迷几乎大概都没有相关不是 有没有这样的一个决心钱都在你身上钱都在我身上钱不是都在我身上因为刚才央行副总裁他告诉我说这个通盘如果比起外国来我们算是基本上算是还好的是平稳的 对
transcript.whisperx[389].start 10841.178
transcript.whisperx[389].end 10865.672
transcript.whisperx[389].text 那我為什麼要跟國外比呢我的國內我的農移民就是狀況這麼慘啊所以我就回到財政部裡頭所有的那個稅在你的身上是不是可以用一個比較合理的有錢人跟一般的農民他有一個不同的一個稅制的方式現在就有區別譬如說是用40%所得稅率的人他其實
transcript.whisperx[390].start 10866.793
transcript.whisperx[390].end 10869.656
transcript.whisperx[390].text 只占了我們的1%但是他繳的稅是繳了全部英納稅額的50%的大概是這樣子那所以當然我跟你講那個交你那個40%的你就是給他再收到80%他也沒差啦
transcript.whisperx[391].start 10881.189
transcript.whisperx[391].end 10910.416
transcript.whisperx[391].text 互稅的部分還要考慮其他的因素是所以部長我想就是要拜託你一個跨部會跨部會的一個合作那我們建立一個可以讓稅制更更好更周全的一個機制然後可以精準的對焦來幫助這些人我們在相關政策討論的時候都會跟部委一起討論三個月後提出來三個月後對委員這邊的一個提議我們來做一個給一個完整的書面報告給委員
transcript.whisperx[392].start 10910.976
transcript.whisperx[392].end 10919.239
transcript.whisperx[392].text 好 我們希望不是一個量力的數字是個讓人民有感的一個數字而是有一個比較具體實際的數字好 謝謝謝謝賴委員接下來我們請黃國昌委員謝謝主席麻煩有請財政部部長還有主席總書主席長
transcript.whisperx[393].start 10939.298
transcript.whisperx[393].end 10966.228
transcript.whisperx[393].text 請莊部長請陳主席長委員好兩位好時間的關係不宜問候2016年我第一次踏入立法院加入財政委員會在財政委員會質詢的時候針對有關於所得分配不均到底要怎麼衡量的事情跟當時的主席長石素美石主席長有過意見的交換
transcript.whisperx[394].start 10967.813
transcript.whisperx[394].end 10980.001
transcript.whisperx[394].text 在那一次諮詢以後我以前在中研院的前輩朱金義院士寫了一篇文章補上一堂課所得分配不均的衡量
transcript.whisperx[395].start 10981.147
transcript.whisperx[395].end 11007.232
transcript.whisperx[395].text 朱金醫院士大概是國內經濟學界在討論貧富不均學界的態度我想這個大家不會否認他討論有關於所得分配不均的問題大概超過了10年跟世界上面研究的頂尖團隊在進行跨國的比較
transcript.whisperx[396].start 11009.158
transcript.whisperx[396].end 11031.576
transcript.whisperx[396].text 他呼籲了超過十年結果我今天看到主計總書跟財政部的報告我必須要老實的講你們還在用早就被學界揚棄可以說是時期時代的時期時代的家戶調查所的五等份的方式來衡量貧富不均
transcript.whisperx[397].start 11034.259
transcript.whisperx[397].end 11054.026
transcript.whisperx[397].text 過了這麼多年一點長進都沒有一點長進都沒有我們來看一看當初民進黨是怎麼在批評馬政府貧富差距創歷史新高2011年民進黨發言人陳其邁召開記者會發表馬總統您破紀錄了貧富差距篇
transcript.whisperx[398].start 11064.79
transcript.whisperx[398].end 11075.741
transcript.whisperx[398].text 台灣所得最高的前5%跟最低的前5%有75倍的差距創歷史新高民進黨要請問馬總統你富了誰 窮了誰
transcript.whisperx[399].start 11081.025
transcript.whisperx[399].end 11099.434
transcript.whisperx[399].text 這是當初民進黨對馬英九所提出來的批評來請教一下知不知道現在我們用民進黨當年相同的基準前5%跟後5%差距到幾倍了主席長知不知道66點多倍來來來財政部部長知不知道
transcript.whisperx[400].start 11110.612
transcript.whisperx[400].end 11134.782
transcript.whisperx[400].text 委員我們的資料是屬於課稅資料課稅資料這個是我問你知不知道就好了我說用相同的基準嘛用民進黨當年一模一樣的基準一模一樣的財稅收支資料來衡量現在的貧富差距當年痛罵馬英九啊因為達到75倍現在達到幾倍了知不知道
transcript.whisperx[401].start 11136.266
transcript.whisperx[401].end 11143.396
transcript.whisperx[401].text 知道就說知道 不知道就說不知道現在是100多倍現在是100多多少倍來我秀數字給你看當年喔
transcript.whisperx[402].start 11152.686
transcript.whisperx[402].end 11167.295
transcript.whisperx[402].text 馬英九說沒有啦我們要用家戶所得啊用五等份啊來進行比較啊痛批民進黨啊說民進黨混淆視聽結果呢民進黨那時候怎麼回擊的
transcript.whisperx[403].start 11167.995
transcript.whisperx[403].end 11191.272
transcript.whisperx[403].text 五等份太粗糙了啦世界上沒有人在這樣比啊這已經是世界上面學界經濟學界在衡量貧富差距還用家戶所得的調查五等份這是世界的笑話當初民進黨是這樣回擊的來看一下結果你們搞到今天啊民進黨執政了以後
transcript.whisperx[404].start 11192.642
transcript.whisperx[404].end 11216.753
transcript.whisperx[404].text 完全沒有要改進啊還是繼續用五等份啊還是繼續用當年民進黨痛批的五等份來進行所謂貧富差距的比較所以看起來好像增加的不多感覺差一點點都是零點幾零點幾個百分數在動因為你的調查方法卻有問題嘛
transcript.whisperx[405].start 11218.737
transcript.whisperx[405].end 11239.883
transcript.whisperx[405].text 租金醫院是倡議這件事情我說超過十年我敢說他是在台灣最有資格講貧富差距到底要怎麼衡量的專家他發表過的論文他參與過的data的研究那時候他去歐盟以前我還去
transcript.whisperx[406].start 11241.189
transcript.whisperx[406].end 11258.275
transcript.whisperx[406].text 台大聽他告別以前的演說他又再強調了一次不要再搞這種無等份加護所得的了來 我給你看當初民進黨痛批馬英九75倍現在我看到最新的data到2023年 150倍150倍
transcript.whisperx[407].start 11263.396
transcript.whisperx[407].end 11287.337
transcript.whisperx[407].text 如果當年民進黨在痛批馬英九75倍是窮了誰 富了誰 向財團靠攏那我現在的問題就來了那現在民進黨的150倍算叫什麼叫做照顧基層的民眾嗎如果民進黨當年批判馬英九的75倍
transcript.whisperx[408].start 11288.979
transcript.whisperx[408].end 11315.494
transcript.whisperx[408].text 是窮了誰富了誰向財團靠攏我再問一個問題啊民進黨執政這幾年過來現在已經飆到150倍啊青出於藍更勝於藍啊結果今天交這種官方報告還用民進黨過去痛批的標準在文過是非啊交這種報告出來你們不會覺得丟臉喔你是在打臉當年的陳錫邁嗎
transcript.whisperx[409].start 11318.01
transcript.whisperx[409].end 11339.995
transcript.whisperx[409].text 還是在打臉當年的蔡英文這樣子的標準會不會太可笑還是當年陳其邁 蔡英文用這樣的方式來批評當初的執政黨根本就不公平 不正確 不對現在民進黨的態度是什麼
transcript.whisperx[410].start 11341.211
transcript.whisperx[410].end 11360.922
transcript.whisperx[410].text 主席長簡要回答就好我們一般是用吉尼係數這是所謂世界也是通用的一個係數所以朱敬義是錯的所以當年民進黨是錯的濁是清非 勢是非非完全看民進黨佔什麼位置
transcript.whisperx[411].start 11361.994
transcript.whisperx[411].end 11387.035
transcript.whisperx[411].text 我如果站在野黨 基尼係數是大錯特錯我如果站執政黨 一定要用五等分位用基尼係數啊連朱金月式都是錯的民進黨好厲害好厲害標準變來變去今天這個報告我會邀請所有在網路上面
transcript.whisperx[412].start 11388.819
transcript.whisperx[412].end 11416.397
transcript.whisperx[412].text 關心這個議題的台灣人民跟年輕人看一看看你們看得下去看不下去主席站起來了啦要救你沒有關係啦時間到了我聽得懂啦但是我希望你們自己回去好好想一想雙標程這個樣子雙標程這個樣子丟人現眼好 謝謝黃委員其實我已經延長兩分鐘了來 接下來請羅廷維委員
transcript.whisperx[413].start 11426.902
transcript.whisperx[413].end 11432.477
transcript.whisperx[413].text 謝謝主席有請衛福部次長 央行副總裁來請嚴副總裁呂次長
transcript.whisperx[414].start 11442.011
transcript.whisperx[414].end 11460.65
transcript.whisperx[414].text 好 今天的主題經濟成長全民共享如何縮短所得差距相對貧窮化的對策現狀真的是如此嗎我們來探討一下想先請教一下 衛福部次長你認為經濟成長讓全民共享是以科技電子業為主還是所有的產業都應該與路俱瞻的成長
transcript.whisperx[415].start 11462.608
transcript.whisperx[415].end 11489.489
transcript.whisperx[415].text 包委員這個我想大家都知道經濟成長理論告訴我們一路必須要進展一路進展 謝謝全國上千萬的小資族 對不起全國上千萬的小資族薪水的薪資平時都是省吃儉用好不容易想買一點ETF或上市股票賺點股息或好不容易拿到了獎金想要共享那麼一點點經濟成長的時候卻一下被補充健保保費狠狠的抽一刀
transcript.whisperx[416].start 11490.45
transcript.whisperx[416].end 11500.238
transcript.whisperx[416].text 奖金不到手补充的宝费先来收割这难道不是与共享经济果实的经济呢精神背道而驰吗 您觉得呢
transcript.whisperx[417].start 11501.264
transcript.whisperx[417].end 11530.182
transcript.whisperx[417].text 包委員關於這個問題我們都在廣徵各方的意見謝謝好 謝謝你因為我知道最近有說要就是暫緩但是補充保費的一個設計本意就是說要補這個漏洞但實際上中低薪與非固定收入的族群變成懲罰性的一個課稅我想希望這個一定要再思考出讓這些勞工小資族能夠真正受惠的一個健保改革我們支持改革
transcript.whisperx[418].start 11530.922
transcript.whisperx[418].end 11549.802
transcript.whisperx[418].text 我們也支持健保應該要想辦法補漏洞但是不要有懲罰性的或者是拿小資族來開刀這個部分我還是要帶到希望衛福部一定要深切的反映到裡面內部去做檢討因為這一次的暫緩我們很擔心又再一次的重啟整個樣的計畫這部分可以嗎
transcript.whisperx[419].start 11550.345
transcript.whisperx[419].end 11572.733
transcript.whisperx[419].text 是 報告委員我們現在都會來廣徵各方的意見也非常感謝委員對於這個議題的關心謝謝謝謝市長今年4月央行楊總裁曾經說過百年免息債換債的惡霸美債形同倒債10月美國政府關門美債兩個月暴漲一兆現已38兆據公開的揭露
transcript.whisperx[420].start 11573.453
transcript.whisperx[420].end 11598.553
transcript.whisperx[420].text 我國外會存底約80%甚至高達九成都是美債和歐債這樣的一個資產結構萬一歐美債性平下調利率動盪台灣會不會一夕的資產大幅的縮水央行是不是應該更積極的調整整個資產的結構多元的佈局我想分散風險副總裁您怎麼說
transcript.whisperx[421].start 11600.424
transcript.whisperx[421].end 11623.495
transcript.whisperx[421].text 那個報告委員其實我們一直在做資產結構的調整我們會視國際的經濟情況的情況我們經常也在做這一方面的調整我們並不是永遠是維持在那個固定的水準我想在這邊還是要提醒滾動式的檢討政府一邊呼籲要全民共享經濟成果一邊卻讓全民的國家資產
transcript.whisperx[422].start 11625.574
transcript.whisperx[422].end 11645.519
transcript.whisperx[422].text 曝險在這樣子的債務風險極高的一個歐美市場我想這樣子的政策是否會有點矛盾我還是希望你們要好好的檢討央行打房打了七八波結果一年來陸續有建商倒著倒死的死傷的傷整個建業愁雲慘霧一般的民眾還是買不起
transcript.whisperx[423].start 11646.872
transcript.whisperx[423].end 11674.599
transcript.whisperx[423].text 到底在这一次呢我们看到连台北市房租都直直涨打房到最后结果不但没有全民共享经济成果反倒是压缩了一大票的民众产业年轻人的生存空间央行是不是该调整打房的措施不然打房继续这样下去既影响了经济成果更没有让全民共享这样的打房有意义吗我先请问副总裁您认为这一波的打房
transcript.whisperx[424].start 11675.399
transcript.whisperx[424].end 11680.591
transcript.whisperx[424].text 有打到痛点有让所谓的房价下调吗
transcript.whisperx[425].start 11681.516
transcript.whisperx[425].end 11707.787
transcript.whisperx[425].text 那個報告委員央行的角度是看我們的我們不希望我們的信用多過度的集中在房地產這是我們一向的原則所以我們每一次也都會在理事會開會之前我們會檢視我們過去的政策的效果情形然後我們也在試單的時候我們會做了一些調整從過去的幾次經驗我們並不是一直在打而且打盤並不是央行的目的央行在管控他那個金融我們不希望金融資金融
transcript.whisperx[426].start 11708.447
transcript.whisperx[426].end 11729.606
transcript.whisperx[426].text 但是你们政策上的执行跟实际上的我们实务上遇到的状况就有很大的差距当然央行有央行的策略但是政府赖总统说的要协助青年能够买房要打房让房价不要这么高我们看不到今天如果你是在打击这些投资客
transcript.whisperx[427].start 11730.407
transcript.whisperx[427].end 11758.017
transcript.whisperx[427].text 甚至是二亿炒房的建商我们支持这样的打房拜托你多打你打100波我也支持但现在的打房就本席所看到从2016年到现在整个房价的上升是百分之百幅度是百分之百之高而现在我们看到的有的建商倒了中小建商倒了大建商还是一样有办法在这个产业上继续的存活在
transcript.whisperx[428].start 11759.15
transcript.whisperx[428].end 11788.77
transcript.whisperx[428].text 所以你根本就不是让整个整体的房价下降我们看到的是民众还是买不起房房价并没有降只是比较少人买了这样的打房政策我认为要检讨拜托真正打到痛点打到投资客打到炒房真正让房价下跌才是我们希望看到的我们希望央行这边真的要好好的去探讨一下谢谢委员的指导
transcript.whisperx[429].start 11791.512
transcript.whisperx[429].end 11798.496
transcript.whisperx[429].text 謝謝羅委員接下來我們請顏寬恆委員12點我們就開放會場用餐謝謝主席各位烈士官員大家早主席有請財政部莊部長主席處陳主席長來請莊部長陳主席長
transcript.whisperx[430].start 11822.082
transcript.whisperx[430].end 11841.24
transcript.whisperx[430].text 委員好部長好 主委長吉尼係數是國際間最常用來衡量財富分配比較均衡程度的統計指標財政部最新公布的資料台灣112年每戶吉尼係數是0.339每年每人係數是0.272
transcript.whisperx[431].start 11848.146
transcript.whisperx[431].end 11865.379
transcript.whisperx[431].text 但這個數據保持一個懷疑的態度110年主計總數公布的數據台灣吉尼系數是0.606那短短的兩三年這個系數突然縮小到0.339根本是不可能的
transcript.whisperx[432].start 11866.179
transcript.whisperx[432].end 11880.754
transcript.whisperx[432].text 主席長還有部長可不可以分別跟我們說明一下你們各自的算法是怎麼算不然為什麼差距這麼大無法理解是部長先相關的數據財政部長基本上都是依據主席總書的公告因為這是有主席總書的權責不好意思 再說一下
transcript.whisperx[433].start 11884.54
transcript.whisperx[433].end 11899.786
transcript.whisperx[433].text 也就是說相關的數據這些所得都是我們是根據主計總處這邊所公布的資料那在8月15號的時候他也相關也有相關的公告我想這個部分跟委員做這樣的一個說明好 那請主席講
transcript.whisperx[434].start 11901.179
transcript.whisperx[434].end 11927.576
transcript.whisperx[434].text 跟委員報告因為剛剛您講的那個0.606是屬於財富的部分有包括家庭財富所得的部分那這個部分是我們每個家戶所得的一個分配情形113年度的經理係數是0.341加每戶的部分那每人的部分是0.277這個部分那如果說是五等分的差別倍數就是3.92這個部分
transcript.whisperx[435].start 11929.657
transcript.whisperx[435].end 11956.918
transcript.whisperx[435].text 不是 那兩者就是說剛剛部長你說是依照主席總書提供的資料去做這個計算那你要清楚的說明啊不然說民眾看到這些數據誤以為說我國的評估差距會有改善事實上沒有改善嘛 對不對從75倍到150倍評估差距那麼大然後用這樣子的一個數據沒有清楚的說明造成誤解那透明的數據解釋對於提高民眾的信任跟理解是非常重要的好不好 部長
transcript.whisperx[436].start 11957.338
transcript.whisperx[436].end 11986.597
transcript.whisperx[436].text 好的 我想我們可以再做進一步的說明謝謝委員長部長你先請回部長先請回那請國發會副主委主席不好意思有請請高副主委主席長我再請教主席長是113年我國薪水佔GDP比重是多少那還有國發會副主委你怎麼定義低薪勞工這兩個請那個主席長先回應
transcript.whisperx[437].start 11991.665
transcript.whisperx[437].end 12002.815
transcript.whisperx[437].text 那個我說主席長是請教你說薪水佔GDP的比重是多少這個部分薪水佔GDP的比重這個部分好像43%左右確實的數據是多少43%左右
transcript.whisperx[438].start 12016.496
transcript.whisperx[438].end 12035.143
transcript.whisperx[438].text 從1990年的百分之我們薪資佔GDP的比例薪資佔GDP的比例到底是多少我們現在是用受雇報酬佔GDP的部分是百分之40.3
transcript.whisperx[439].start 12041.553
transcript.whisperx[439].end 12049.352
transcript.whisperx[439].text 那好那妳剛剛說我國經常性薪資中位數是多少3.8萬是不是這個是在9月份的時候是3萬8啦3萬8
transcript.whisperx[440].start 12051.755
transcript.whisperx[440].end 12076.817
transcript.whisperx[440].text 有一些余數你沒有講啦就是37.多37274因為這是111年的113年度的那我們的部分現在到9月份平均是47,0001到9月的平均是47,000然後它的中位是38,000左右那低於這個低於平均數的有多少佔了多少70%有69.多將近七成啦
transcript.whisperx[441].start 12079.679
transcript.whisperx[441].end 12096.324
transcript.whisperx[441].text 好 所以這個代表說勞動者所得未能隨著經濟成長同步增長對不對是不是這樣子但是我們中位數也是到3萬8中位數就是表示有50以上的部分
transcript.whisperx[442].start 12097.204
transcript.whisperx[442].end 12113.165
transcript.whisperx[442].text 所以說反映出這個收入分配的不均台灣薪資成長未能有效反映出生產力的提升造成收入集中在少數的部分超過七成的壽星的這些階級它是低薪的比中位數低 對不對
transcript.whisperx[443].start 12113.766
transcript.whisperx[443].end 12136.718
transcript.whisperx[443].text 因為他有一部分就是說基層勞動者他的這個收入收入停滯增長停滯不是收入停滯加劇的這個貧富差距對不對其實貧富差距算跟各國比起來我們算也不是很高的部分不是很高是多高還不夠低
transcript.whisperx[444].start 12139.735
transcript.whisperx[444].end 12144.778
transcript.whisperx[444].text 三萬八是否足以支撐民眾的基本生活夠不夠到底夠不夠三萬八是中位數這樣子就看你的
transcript.whisperx[445].start 12162.538
transcript.whisperx[445].end 12178.308
transcript.whisperx[445].text 對嘛 所以就是每個這個都有不同的環境還有不同的所在地還有這些支出都不同還有現在這個通膨所以到底夠不夠那我想就是說有很大的進步空間不是在這邊大家在這邊爭執我們要的是說怎麼樣來處理薪資成長跟經濟結構之間的這個矛盾問題要如何來解決 對不對
transcript.whisperx[446].start 12189.184
transcript.whisperx[446].end 12206.451
transcript.whisperx[446].text 衛福部方面他也有針對中低收入戶的部分有特別給予給他一些的輔助還有低薪的部分我們有保障基本工資所以這個部分還有我們也鼓勵企業加薪這些措施等等都是在提升我們整個薪資的一個水平這個好了 主席長妳請回請國發會委員好
transcript.whisperx[447].start 12215.74
transcript.whisperx[447].end 12231.197
transcript.whisperx[447].text 副主委經濟成長模式從勞力密集走向資本化 知識化那貧富差距惡化是一個我們看到的結果所以所得從分配是指政府透過稅收還有透過社會福利支出等方式
transcript.whisperx[448].start 12232.698
transcript.whisperx[448].end 12260.797
transcript.whisperx[448].text 例如房屋津貼還有育兒津貼中低收入補助或長照支出但是我們台灣的製衡機制不完備以上市貴高階主管跟基層倍數的持續擴張來擴大比例所以目前沒有辦法避免請問國發會針對這一類的現象有什麼具體的政策或調整這種製衡不平等的一個收入分配有什麼辦法
transcript.whisperx[449].start 12262.02
transcript.whisperx[449].end 12274.798
transcript.whisperx[449].text 我想這個問題可能要從多元併進的方式我們今天報告裡面也有講到除了用租稅的這些手段還有一個社福的支出的平衡以外我想產業結構的均衡發展也非常的重要
transcript.whisperx[450].start 12277.361
transcript.whisperx[450].end 12294.379
transcript.whisperx[450].text 然後薪資水準鼓勵企業提升薪資水準願意把經濟成長的成果分享給員工也很重要所以我們目前政府事實上是四個面向齊頭併進的方式我們希望可以達到我們剛才委員希望達到的目標
transcript.whisperx[451].start 12295.14
transcript.whisperx[451].end 12317.106
transcript.whisperx[451].text 對啦 我也建議國發會就考慮加大對這些技術教育跟技能訓練這個部分然後尤其在對於中小企業的這些領域製造更多高薪的機會那希望國發會可以在更注重這方面的發展好不好好 是的 謝謝委員主席有請衛福部衛福部 呂次長
transcript.whisperx[452].start 12328.341
transcript.whisperx[452].end 12331.184
transcript.whisperx[452].text 委員你好次長好委員好這個衛福部好像很狀況外
transcript.whisperx[453].start 12343.314
transcript.whisperx[453].end 12367.46
transcript.whisperx[453].text 我們的主題是要縮短貧富差距但是衛福部還提出健保補充 保費調整要將利息 股息 出金等補充保費要增加然後把現行的每月結算改為年度計算一年累計超過兩萬就要收取然後發現方向不對就在當日七個小時之內就匆匆忙忙的這樣子的急轉彎喊卡
transcript.whisperx[454].start 12368.94
transcript.whisperx[454].end 12395.221
transcript.whisperx[454].text 是因為被這個政策本身就有問題還是受到什麼樣的一個責難包委員 我們現在目前都會來多方來廣正各方意見當初在構思的時候 在討論的時候不是有請教了專家學者嗎是哪一位專家包委員 因為我們這個是有關於財務方面有關健保的部分我想其實平常我們大概都會有沒有徵詢金管會 當初
transcript.whisperx[455].start 12397.714
transcript.whisperx[455].end 12414.889
transcript.whisperx[455].text 不過委員因為這不是我負責的業務啦我負責社會福利 這是兩對啦 所以說儘管會作為中華民國這個掌管所有投資人相關事務的機構但是你們好像沒有詢問嘛我問過主委啦 他說沒有 不知道看報才知道的 對吧
transcript.whisperx[456].start 12417.702
transcript.whisperx[456].end 12433.073
transcript.whisperx[456].text 所以說在制定政策應該要更謹慎更嚴謹不然的話我想簽一法動全身的這樣子的一個政策你只要一條掌小資族的錢你們也要搶
transcript.whisperx[457].start 12433.914
transcript.whisperx[457].end 12450.645
transcript.whisperx[457].text 那導致我們很多民眾會把這些資金全部都移轉到另外的一個投資或者是國外那就連這些房價什麼的也會跟著漲對不對那簽一法動全身所以我們看到衛福部
transcript.whisperx[458].start 12451.805
transcript.whisperx[458].end 12470.479
transcript.whisperx[458].text 這樣子的一個草率的行為然後就當日七個小時之內就被打槍我想這部分我們不樂意我們不想再看到這樣的情況好不好 請衛部好好檢討 謝謝非常感謝委員 謝謝謝謝顏委員接下來我們請葉元之委員
transcript.whisperx[459].start 12487.85
transcript.whisperx[459].end 12493.034
transcript.whisperx[459].text 主席要慢慢請財政部長來 請莊部長委員好財政部長請教一下我看到應該是財政部發出來的數據到10月為止我們現在的稅收是3,884億對吧
transcript.whisperx[460].start 12516.715
transcript.whisperx[460].end 12528.84
transcript.whisperx[460].text 這是全國的到10月底的總稅收那中央大概是2兆4613億我沒有在分中央地方啦不要每次都在浪費我們時間好不好妳是在拖時間喔沒有我問妳說我們現在稅收是3兆2684億年減0.2%嘛對不對
transcript.whisperx[461].start 12535.407
transcript.whisperx[461].end 12557.136
transcript.whisperx[461].text 沒錯嘛這是你們發布的數據啦那財政部也講就是說如果全年要達標就是達到本來的預估非常困難嘛對吧有挑戰性很有挑戰性那我想問一下因為按照各項數據都顯示我們今年的經濟成長率是不錯啊現在經濟成長率多少主計總數的推發布的是4.45但今年可能會超過5%
transcript.whisperx[462].start 12565.527
transcript.whisperx[462].end 12567.269
transcript.whisperx[462].text 超過5%在經濟成長5%的情況之下我們的預期的稅收居然無法達標像我們現在現在在普發1萬
transcript.whisperx[463].start 12577.191
transcript.whisperx[463].end 12602.342
transcript.whisperx[463].text 卓院長雖然一開始很反對都說一下說這個是什麼大家拿去買遙控飛機跟冰箱一下就沒了民進黨說這個是配合中共窮台策略毀線亂政 掏空國庫再留子孫 罵得很慘但現在發的時候很高興就說這個叫做什麼行政院發還是政府相挺我這個態度批辯讓大家也是很訝異但是我今天不是要跟你討論這個
transcript.whisperx[464].start 12603.342
transcript.whisperx[464].end 12612.719
transcript.whisperx[464].text 重點是後來態度批辯之後院長的講法是說這叫做我們將經濟果實跟大家分享
transcript.whisperx[465].start 12613.98
transcript.whisperx[465].end 12630.268
transcript.whisperx[465].text 換言之 稅收有沒有超出預期跟經濟果實正相關經濟要成長 稅收才會變多才有辦法跟大家一起共享但現在財政部講說經濟成長率你剛剛說主計總數的統計是5%可是我們的稅收會不如預期為什麼會這樣
transcript.whisperx[466].start 12636.445
transcript.whisperx[466].end 12658.817
transcript.whisperx[466].text 跟委员报告最主要是因为我们114年的税收比113年的实征数也就是我们的预算数比实征数成长很多以中央来说就超过了947我们在讲预期预期就是预算数你在年初的时候你年初的时候预期的经济成长率也不是5%
transcript.whisperx[467].start 12660.375
transcript.whisperx[467].end 12667.28
transcript.whisperx[467].text 對啊 你在年初的時候那時候我看很多預期經濟成長率的2%但現在實際上是5%所以我們的經濟成長有超出預期所以理論上來講稅收也應該超過預期所以會比你的預算數增加
transcript.whisperx[468].start 12675.684
transcript.whisperx[468].end 12697.271
transcript.whisperx[468].text 時收會比預算數增加但現在是經濟成長超出預期但是稅收並沒有超出預期甚至於達標都困難所以為什麼會有這樣落差預算數的編列是在去年就開始籌編的是在去年的上半年開始籌編那你預估那你那時候去年上半年預估今年經濟成長率多少
transcript.whisperx[469].start 12697.651
transcript.whisperx[469].end 12714.002
transcript.whisperx[469].text 我們不是預估今年成長率我們是看整個上市櫃公司的一個財報所以我們在去年的上半年就開始預估然後到下半年送進立法院審議的通過以後這是您所謂的預期其實就是預算數就是預算數那我們
transcript.whisperx[470].start 12715.804
transcript.whisperx[470].end 12731.437
transcript.whisperx[470].text 114年的预算数比113年的实增数就增加了947亿947亿就增加了那你一定有一个预估一定是预估才会有预算对 没有错那我现在讲的是说
transcript.whisperx[471].start 12732.378
transcript.whisperx[471].end 12760.738
transcript.whisperx[471].text 经济成长超出预期那为什么税收没有超出预期这么简单就问这么简单的问题而已我刚刚也讲院长讲说要经济成长有果实才能够全民共享团税于民那现在为什么税收没有成长问的问题就这么简单跟委员报告像中所税金所税它的税收今年的收入会到明年才会实现所以那个税收它是递延的
transcript.whisperx[472].start 12762.352
transcript.whisperx[472].end 12787.183
transcript.whisperx[472].text 也就是說今年他賺的錢要到明年的中所稅跟銀所稅繳納的時候去實現的所以是意思是說去年的經濟比較差是不是所以我們今年還稅於是因為去年超徵去年超徵是因為前年經濟比較好前年的經濟比較好所以去年超徵然後今年普發所以我們是因為所以你預計明年應該會超徵是嗎
transcript.whisperx[473].start 12790.459
transcript.whisperx[473].end 12813.543
transcript.whisperx[473].text 所謂的超徵是第一個我在編預算的時候我們要以各個稅務來分析他的收入的情況部長不要一直玩文字遊戲啦不是文字遊戲我必須要把它說清楚現在的問題就是全民看到了經濟成長但是稅收沒有成長就是可能有一些人他賺錢沒有想像中那麼多啦
transcript.whisperx[474].start 12815.507
transcript.whisperx[474].end 12829.461
transcript.whisperx[474].text 應該是這樣 有一些人因為我看到你今年的十月的稅收最多也是證交稅沒有玩股票的這些人也許他繳的稅不多因為他經濟受到衝擊所以今天大家才會來這邊討論這個題目
transcript.whisperx[475].start 12831.601
transcript.whisperx[475].end 12848.035
transcript.whisperx[475].text 所以我覺得應該要因為來不及了其他部會我認為應該要稍微要注意一下不要被那個數字好像就被他迷幻了啦好 謝謝好 謝謝葉委員接下來我們請楊瓊英委員
transcript.whisperx[476].start 12862.435
transcript.whisperx[476].end 12867.041
transcript.whisperx[476].text 謝謝主席 楊瓊發言首先請主席總處請陳主席長
transcript.whisperx[477].start 12876.479
transcript.whisperx[477].end 12891.946
transcript.whisperx[477].text 委員好主席長好主席長我們根據主計總署11月11號所做的公佈今年前9個月你全體受雇員工經常薪的薪資平均是47,751元所公佈的是如此
transcript.whisperx[478].start 12892.706
transcript.whisperx[478].end 12920.856
transcript.whisperx[478].text 但是我們看到高達將近七成的員工他的薪資是低於這樣子的一個平均值那顯示在我們整個平均的薪資他已經失真了數字看起來很亮眼但是掩蓋了薪資分配嚴重偏斜的一個現實所以政府以平均薪資作為政績的指標但是實際上實質薪資年增只有多少
transcript.whisperx[479].start 12923.659
transcript.whisperx[479].end 12932.61
transcript.whisperx[479].text 1.21%落後的物價指數民眾所受到的是它不是加薪而是生活越來越困難因為你的物價指數在這個10月份是1.48%所以在這樣的情況之下本席要請教
transcript.whisperx[480].start 12939.278
transcript.whisperx[480].end 12954.317
transcript.whisperx[480].text 如果我們長期是以平均數來作為公布的一個指標而不是揭露整個中位數或者是分位數的一個變化那等於是人民的生活呢
transcript.whisperx[481].start 12955.178
transcript.whisperx[481].end 12976.331
transcript.whisperx[481].text 我們只有用統計這樣子的一個淡化低薪的一個樣態因為民眾顯示出來他的生活是困苦的所以本期要請教主計長當七成的受僱者薪資是低於平均值的時候那麼這個平均數還能夠代表全民嗎請做說明
transcript.whisperx[482].start 12977.992
transcript.whisperx[482].end 12996.204
transcript.whisperx[482].text 我也要跟委員再說明一下我們會有公佈所謂的中位數那中位數就是50%以上這個數字那以往中位數我們都是按年報一年報一次就是去年就是將近52萬又有分全國和全體的部分
transcript.whisperx[483].start 12996.664
transcript.whisperx[483].end 13011.815
transcript.whisperx[483].text 那今年我們開始就公佈按月公佈中位數那目前中位數就是38,000那就是50%以上的人民就是說他是達到38,00038,000這個水準這個部分那所以就是說74%47,000沒有達到但是50%有達到38,000
transcript.whisperx[484].start 13023.544
transcript.whisperx[484].end 13051.843
transcript.whisperx[484].text 所以換句話說如果僅以平均數為主的指標是沒有辦法展現我們人民生活的樣態因為這個會影響到資源的分配的這個問題那所以 既然我們現在中位數但是分位數呢因為如果我們揭露產業的薪資方向那分位數是不是可以更明確在整個你的數字量化出來之後可以讓資源分配
transcript.whisperx[485].start 13052.523
transcript.whisperx[485].end 13075.264
transcript.whisperx[485].text 比較不會傾斜 請做說明分位數的話我們是按計公佈是沒有每月但是我們有按計公佈來做一個比較就是整個一個是 所以這個部分也是說我們在比較的時候不是只有單一就是平均數還會看中位數然後三個月一次三個月計一次的一個分位數這樣來看
transcript.whisperx[486].start 13076.365
transcript.whisperx[486].end 13095.564
transcript.whisperx[486].text 所以主要目標也就是政府公布數字是要結果論讓民眾在政府的資源可以受到照顧而且據實能夠受到照顧而不是顯性的黑數所以在這樣的情況之下我們看到民間的學者跟公民團體來預估
transcript.whisperx[487].start 13097.085
transcript.whisperx[487].end 13120.129
transcript.whisperx[487].text 年收入低於可支配所得中位數六成是貧窮縣那實際上生活在貧窮縣以下的人口約佔總人口的12到13%他大概是280萬到300萬人但是我們看到現在政府所分配資源的部分低收入戶的25.9萬人中低收入戶的24.2萬人換句話說大概50萬人他是獲得的補助所以
transcript.whisperx[488].start 13127.25
transcript.whisperx[488].end 13146.956
transcript.whisperx[488].text 還有超過250萬的人他是貧窮黑素但是政府是沒有看到的他是沒有得到資源的一個協助所以本期要跟你討論的就是說針對這樣的一個現象針對這樣的現象我們是不是有你源頭國發會今天有在這邊嗎國發會 來 高副座 謝謝
transcript.whisperx[489].start 13150.797
transcript.whisperx[489].end 13161.675
transcript.whisperx[489].text 所以主席長在這邊他的數字出來告訴說我們還有250萬人是得不到政府的一個協助我們該當怎麼辦你要經濟方案要怎麼做來 請
transcript.whisperx[490].start 13163.57
transcript.whisperx[490].end 13176.414
transcript.whisperx[490].text 我想我們最近幾年連續十年調高那個最低薪資基本工資就是一個做法就是針對這些在貧窮線以下的你答非所問本期是告訴你有組計長出來的250萬人他得不到政府的資源他政府也沒有看到這個我們國防會這一塊要怎麼去做
transcript.whisperx[491].start 13185.919
transcript.whisperx[491].end 13200.586
transcript.whisperx[491].text 好 我想這可能要跨部會包括那個衛福等等的就是我們可能要再統計一下好 你拿一個跨部會本期暫許請你將實際的數字我們已經量化出來給你要怎麼樣去照顧這250萬人的貧窮黑線
transcript.whisperx[492].start 13205.528
transcript.whisperx[492].end 13206.99
transcript.whisperx[492].text 謝謝楊委員接下來我們請黃珊珊委員
transcript.whisperx[493].start 13237.861
transcript.whisperx[493].end 13242.925
transcript.whisperx[493].text 好 謝謝主席我想請衛福部還有財政部好 那請莊部長呂次長委員好衛福部
transcript.whisperx[494].start 13259.758
transcript.whisperx[494].end 13270.364
transcript.whisperx[494].text 好 兩位好我想今天看到一個很傷心的新聞也就是有一位80歲的母親照顧重度身心障礙的孩子超過50年
transcript.whisperx[495].start 13271.761
transcript.whisperx[495].end 13299.97
transcript.whisperx[495].text 然後因為他自己的身體也沒有辦法再負荷所以他帶著讓孩子早點離開人世那台北地院雖然極盡所能的減刑還是判了兩年半然後希望見請總統賴清德來特赦我想這個案子是長照的悲歌也是我們衛福部長期以來我們希望接下去人民不應該無助到這種程度啦
transcript.whisperx[496].start 13301.289
transcript.whisperx[496].end 13310.674
transcript.whisperx[496].text 也就是說衛福部最近我看到部長開始在擔心將來的健保所以找了很多方法找錢然後還沒出師就生先死就丟起來了
transcript.whisperx[497].start 13317.857
transcript.whisperx[497].end 13332.229
transcript.whisperx[497].text 接下來健保當然是台灣人最重要的後盾但是長照政府做了這麼多的長照我們還是沒有辦法挽回這樣的生命所以次長看到這個案子我們應該做些什麼除了請求總統特赦之外還有多少長照被割證在上演
transcript.whisperx[498].start 13342.539
transcript.whisperx[498].end 13367.757
transcript.whisperx[498].text 非常感謝委員對於這個案子的關心那我覺得那個真的是也非常遺憾啦那個有出現這個漏洞那衛福部責無旁貸那我跟委員報告現在他這個案子我們現在目前會來做一些這個裡面有一些有關於高負荷家庭的一個我們的長照2.0一般的民眾大部分都可以cover到現在cover不到的就都重症
transcript.whisperx[499].start 13368.871
transcript.whisperx[499].end 13382.443
transcript.whisperx[499].text 叫做這種長期照顧最嚴重的是他可能也沒有能力也沒有辦法或根本不想請外籍移工所以弄得自己身心俱疲最後只能選擇
transcript.whisperx[500].start 13384.096
transcript.whisperx[500].end 13399.7
transcript.whisperx[500].text 把自己的孩子先送走我覺得這個才是我們今天要碰到的問題就是長照不剛剛只是每一天的這種簡單的喘息服務而已其實最嚴重的是這種重症的長期照護對吧
transcript.whisperx[501].start 13400.02
transcript.whisperx[501].end 13418.45
transcript.whisperx[501].text 沒錯 特別是七到八級這個重點所以除了你們在找健保的裁員其實我們在這一次立法院黨團台灣民眾黨已經提出了長照保險法提出了一年了長照保險其實就是跟健保的概念一樣我們年輕的時候出一點
transcript.whisperx[502].start 13419.671
transcript.whisperx[502].end 13434.603
transcript.whisperx[502].text 然後share這些可能尤其是像這種重症沒有辦法被現有的所謂的長照2.0照顧到的人他也許將來我們老的時候因為少子化的關係我們怎麼樣照顧我們自己
transcript.whisperx[503].start 13435.263
transcript.whisperx[503].end 13446.847
transcript.whisperx[503].text 所以長照保險是我們推動的我不知道衛福部有沒有想過要不要推動之前的邱太元部長說他去日本看過他們也正在考慮市長 你在衛福部這麼久你們的態度咧
transcript.whisperx[504].start 13451.388
transcript.whisperx[504].end 13464.632
transcript.whisperx[504].text 包委員有關於財務的部分我想我們現在當然是稅收制我們這個有關於你們現在的稅收就是花光就沒了包委員我們現在目前2033億我們按照這個估計其實即使在10年後我們現在目前也大概有剩餘還可以撐著住但是10年後呢
transcript.whisperx[505].start 13473.234
transcript.whisperx[505].end 13499.541
transcript.whisperx[505].text 七百七十四不知道我們十年之後我們估計還可以剩還有七百七十四七百七十四你覺得台灣人那時候我們現在超高齡社會那時候還可以撐多久這樣的長照杯羹還會不會存在包委員我們現在目前就是各方的意見我們都會來請聽長照保險是台灣必須要走的路所以我想財政部長在這我們現在每一年要溢出到所謂的長照2.0大概要多少錢部長
transcript.whisperx[506].start 13502.152
transcript.whisperx[506].end 13521.637
transcript.whisperx[506].text 這個部分因為長照是各個有相關的稅源這個統計的數字我們會再提供給你們我們每年900多億有兩種稅一種是房地合一稅一種是菸酒稅我們常常說這兩個稅都是不公不義的稅結果我們拿去做長照
transcript.whisperx[507].start 13523.086
transcript.whisperx[507].end 13544.767
transcript.whisperx[507].text 而且不穩定的稅來源並不正當的稅為什麼一個是炒作房地一個是鼓勵人家又喝酒又抽煙不好啦我要說的是對政府非常認真的在走裁員走長照但是它不是一個長久之計尤其是房地合一稅去年的狀況怎麼樣
transcript.whisperx[508].start 13547.98
transcript.whisperx[508].end 13555.905
transcript.whisperx[508].text 去年還行 但今年的房地合一所以其實跟預算數是低的差很多對 因為跟房地產的交易的狀況有關係我們請嚴副總裁
transcript.whisperx[509].start 13562.136
transcript.whisperx[509].end 13579.046
transcript.whisperx[509].text 副總裁 你們第七次信用管制然後現在台灣說什麼房地產急凍然後房地合一稅目前也算 剛剛部長已經說了房地合一稅不好那是不是在央行打房成效著住的關係呢我想我們的 我們對房地產的政策這是你滿意的結果嗎
transcript.whisperx[510].start 13589.093
transcript.whisperx[510].end 13617.619
transcript.whisperx[510].text 因為這是交易量的減少交易量減少有很多原因我想我們注重的是我們對於金融機構授信不要過度集中房地產這是我們的原則所以其實現在的問題就是我們兩個的政策真的就叫做左手打右手我們這邊拚了命的在讓年輕人買房推了新清安然後讓金融機構拚命的借錢給民眾來買房子然後我們的央行做信用管制然後現在
transcript.whisperx[511].start 13618.874
transcript.whisperx[511].end 13640.235
transcript.whisperx[511].text 房地合一稅不夠了然後我們的長照的錢可能也會不足對吧這是一個雞生蛋蛋生雞的問題所以莊部長接下去你的房地合一稅不好易租不到長照的錢還有現在我們上次問的住宅基金也需要這些相關的房地合一稅的撥補
transcript.whisperx[512].start 13641.897
transcript.whisperx[512].end 13643.341
transcript.whisperx[512].text 現在房地合一稅的數量會顯然減少你會預期達到我們預算額度會短處多少
transcript.whisperx[513].start 13649.993
transcript.whisperx[513].end 13673.969
transcript.whisperx[513].text 这个部分要等到年底才真正的会出来但是跟委员报告房地合一税的目的是希望就是说在房地交易的时候必须要克相关的税收而且要抑制所谓的短期交易就是不能投机就是在所谓抑制炒房那新清安基本上是辅助他只要不炒房这个税就收不到对啊
transcript.whisperx[514].start 13674.869
transcript.whisperx[514].end 13700.641
transcript.whisperx[514].text 對 所以至於長照的裁員究竟要以稅收制或保險制當然是有衛福部去做評估我要講的是這三件事情其實是卡在一起政府要有長治久安的政策尤其是我還是要強調長照不應該建立在不穩定的裁員不公益的裁員炒作房地產的不應該是長照長期依靠的裁員
transcript.whisperx[515].start 13702.081
transcript.whisperx[515].end 13729.389
transcript.whisperx[515].text 衛福部必須要去正視的是我們怎麼樣讓長照成為將來百姓自己掏錢我願意自己掏錢養我自己的未來我們不要再看到一個母親要殺死自己的孩子來解決她的問題然後今天大家社會再來討論這件事這件事已經討論了快十幾二十年了長照保險可能是唯一的方法
transcript.whisperx[516].start 13731.195
transcript.whisperx[516].end 13747.7
transcript.whisperx[516].text 當年大家說健保健保我們現在花盡了力氣來補健保但是健保讓台灣成為最安全的地方之一同樣的長照如果依照現在這樣的制度或現在這樣的財源不穩定的情況下我們的未來的老年其實是非常可怕的
transcript.whisperx[517].start 13748.584
transcript.whisperx[517].end 13767.411
transcript.whisperx[517].text 而且現在21世紀2025年還有今天這樣的悲哀我覺得衛福部要把長照保險納入你們未來10年20年的考慮第二個裁員的部分這個稅不穩定菸酒稅更不穩定更不應該拿來做長照的裁員好嗎
transcript.whisperx[518].start 13769.412
transcript.whisperx[518].end 13784.045
transcript.whisperx[518].text 我希望這政策不要自己打自己第二個政策不要說出來第二天就不見了第三要推新政策可以先跟大家溝通最重要的是不要推出來一個惹人笑話好嗎好 謝謝非常感謝黃委員 謝謝謝謝委員好 謝謝黃委員接下來我們請羅明財委員
transcript.whisperx[519].start 13800.277
transcript.whisperx[519].end 13819.486
transcript.whisperx[519].text 主席各位主略習慣的好主席可否請財政部中央部長主計總署陳主計長央行原副總裁國家發展委員會也一起來一下經濟部何次長勞動部李次長
transcript.whisperx[520].start 13823.816
transcript.whisperx[520].end 13848.997
transcript.whisperx[520].text 衛福部呂次長好 那請中部長 陳主席長嚴副總裁 何次長 李次長 呂次長委員好今天這個議題非常非常的重要經濟成長讓全民共享政府如何縮短所得差距及改善相對貧窮化之對策我們每個人在這邊其實責任重大
transcript.whisperx[521].start 13850.014
transcript.whisperx[521].end 13878.388
transcript.whisperx[521].text 第一个问题就是普发现金大家都领到了没开始领了那今年的税收继续超增明年的经济成长率来那个主席长多少今年是比较好一点是今年多少现在目前我们初估是4.5左右但是我们还要再修正大概差不多将近6 去近于6
transcript.whisperx[522].start 13879.212
transcript.whisperx[522].end 13897.823
transcript.whisperx[522].text 六到七啊趨近六啦趨近六所以今年的表現非常的亮麗可以看到今年雖說還是繼續超增的那就會衍生很多問題接著我問第二個問題那你明年的經濟成長率你預計是多少
transcript.whisperx[523].start 13898.545
transcript.whisperx[523].end 13923.161
transcript.whisperx[523].text 预计是2.81因为今年基金高了你是2.81嘛事实上你低估了有很多的研究数据报告大概可以成长6继续持续的成长有赖各部会大家要多认真一点为什么因为现在AI的时代已经来临了经济部
transcript.whisperx[524].start 13926.502
transcript.whisperx[524].end 13941.345
transcript.whisperx[524].text 你們第一線你們最清楚現在整個全世界川普總統都在推AI他現在全世界已經到處到處募集了幾兆美元準備要到美國投資
transcript.whisperx[525].start 13945.386
transcript.whisperx[525].end 13969.12
transcript.whisperx[525].text 目前他陸陸續續 陸陸續續大概大概有一兩兆美元左右你吃米不知道米多少他已經獲得了全世界包括日本很多國家18兆的美元其實繼續在成長我請問一個最簡單的問題他收了20兆的美元以後他投資美國對台灣有沒有影響
transcript.whisperx[526].start 13970.38
transcript.whisperx[526].end 13993.108
transcript.whisperx[526].text 當然會有影響影響什麼 哪個產業當然我們的自動訊半導體產業我們的台積電半導體相關AI周邊大概45間這個以後都是台灣變成是AI的重症所以你剛剛講說2%多你看著辦好了明年你編是這樣編可是明年經濟成長率可能要6%以上
transcript.whisperx[527].start 13994.13
transcript.whisperx[527].end 14021.111
transcript.whisperx[527].text 所以這些經濟的成長成果你要給全民 繞回來這個議題部長 經濟持續在成長可是台灣的貧富懸殊越來越大富者越富 貧者越貧集中就是在好在半導體以及AI相關還有這些生物科技方面
transcript.whisperx[528].start 14021.471
transcript.whisperx[528].end 14042.332
transcript.whisperx[528].text 可能ICT的產業可能會比較好這些會集聚的好其他的傳產的部分是產的一大糊塗包括央行一直打房的房地產現在越來越差所以其中這些好的部分我們要怎麼樣來看待未來就是要持續
transcript.whisperx[529].start 14043.693
transcript.whisperx[529].end 14057.024
transcript.whisperx[529].text 把好的經濟成果照顧需要照顧的剛剛講的孤苦的老人莫忘世上苦人多很多很多的小老百姓一樣需要這一萬塊所以部長 總部長
transcript.whisperx[530].start 14060.146
transcript.whisperx[530].end 14076.018
transcript.whisperx[530].text 今年如果稅收持續反正就是稅收超增你講稅季剩餘也可以如果今年的稅收持續超增今年要不要普發現金End 我還沒講完
transcript.whisperx[531].start 14077.559
transcript.whisperx[531].end 14091.69
transcript.whisperx[531].text 我在這裡預告明年如果造成的情況明年台灣的經濟成長率還是會持續成長經濟會還是會大爆發可是產業各方面持續嚴重失衡
transcript.whisperx[532].start 14092.831
transcript.whisperx[532].end 14107.906
transcript.whisperx[532].text 中層低層還是需要你的這一萬塊本席主張只要稅收繼續超徵持續普發現金要變成常態化部長能不能做得到
transcript.whisperx[533].start 14109.126
transcript.whisperx[533].end 14137.175
transcript.whisperx[533].text 跟委員報告沒有所謂的稅收超增是時增數超過預算數那至於什麼原因我們大概已經講過反正意思一樣就是稅收超增預算數的編列的時候持續的好 錢就多出來了那今年也稅收超增明年我預計也會持續超增你要不要還稅於民照顧人民其實不是還稅的概念最重要的精神就是普發現金讓人民有感你不要客氣
transcript.whisperx[534].start 14138.255
transcript.whisperx[534].end 14158.032
transcript.whisperx[534].text 你之前都講說怎麼樣什麼自愛難行還有什麼違憲什麼講一大堆那個大家聽不進去的那請問今年發了沒現在正在執行正在發了那我告訴你發你就大方一點不要遮遮掩掩川普準備要發每個人2000塊美金你知道為什麼因為社會基層苦哈哈的人一大堆主席長
transcript.whisperx[535].start 14166.365
transcript.whisperx[535].end 14175.992
transcript.whisperx[535].text 以前一個雞腿便當70塊現在一個雞腿便當多少錢130好130 漲那麼多你的薪資漲了多少今天漲多少給你調10%便當已經漲了100%了你漲10%那個杯水車薪所以勞動部
transcript.whisperx[536].start 14195.567
transcript.whisperx[536].end 14203.93
transcript.whisperx[536].text 現在基本薪資明年會不會再調漲我們已經確定 院長已經核定明年會調漲到2萬9500塊月薪2萬多2萬95002萬9500 OK那漲幅是幾%
transcript.whisperx[537].start 14211.369
transcript.whisperx[537].end 14230.222
transcript.whisperx[537].text 過去10年來累計基本工資月薪已經累計調高了47%你不要算10年去年跟今年比的話漲幾%將近4%去年跟今年對 去年跟今年漲10%4%去年跟今年比漲4%可是我們的便當錢已經漲90%了那差了80%你要不要補給我們
transcript.whisperx[538].start 14241.752
transcript.whisperx[538].end 14253.403
transcript.whisperx[538].text 不知道委員講那個便當90%調漲是以哪一個來算 舉例啦舉例啦 舉例剛剛竹汽廠不講給你聽嗎我現在要跟你們滾滾出工我要跟你們這些官員講的是說社會一直在改變
transcript.whisperx[539].start 14259.685
transcript.whisperx[539].end 14281.722
transcript.whisperx[539].text 所有的基層小老百姓壓力是很大不管房子漲 不管物價漲他們有個希望所以我們政府能做的就是所以說超徵你趕快來給這些需要的人再來講一些孤獨的老人孤老死的這誰負責 衛福部
transcript.whisperx[540].start 14284.762
transcript.whisperx[540].end 14302.512
transcript.whisperx[540].text 現在孤獨老人 台灣有多少包委員 我們現在目前的估計應該全台灣有大概70萬70萬 明年會不會更多按照我們現在目前高齡人口5%的成長當然是會增加好 你講得很好那我請教你再過5年的台灣是什麼樣的光景
transcript.whisperx[541].start 14303.112
transcript.whisperx[541].end 14311.759
transcript.whisperx[541].text 包圍我們現在 古老的部分有多少包圍因為我們現在目前的那個現在是19.64嘛對 按照現在那個國發會的統計呢我們現在會到24然後現在接下來到2050預計會到大概4343是多少人口要多一半啊
transcript.whisperx[542].start 14318.51
transcript.whisperx[542].end 14322.311
transcript.whisperx[542].text 要炒一半所以現在台灣面對的問題因為大家都常常講政治我比較不喜歡講那個我們拉回來講現實面遇到這些問題台灣怎麼辦所以央行你要把市場做大把餅做大比如說
transcript.whisperx[543].start 14339.96
transcript.whisperx[543].end 14365.935
transcript.whisperx[543].text 本席所提的保險法146條之事你就把它對海外的比例條件一半就會回來13兆13兆留在台灣投資不是很好嗎央行對外匯的這些錢回來的態度是怎麼樣另外一個很重要新加坡沒有移政稅泰國沒有移政稅杜拜沒有移政稅莊部長
transcript.whisperx[544].start 14368.973
transcript.whisperx[544].end 14380.411
transcript.whisperx[544].text 本席準備提一個國家的十年競爭方案其中有一項就是移政稅要調降到10%你贊不贊成央行的態度是怎麼樣 請說明
transcript.whisperx[545].start 14382.488
transcript.whisperx[545].end 14407.819
transcript.whisperx[545].text 怡政稅其實就有世代公平的部分那當然委員說您要提一個十年的方案那我們來拜讀可以啦我來提希望你也準備一下方案不要說沒對策什麼的趕快提出來這個都是扶國立民的讓台灣脫胎換骨讓台灣站得住你看連揮打現在都在落戶在台灣我們要對台灣有信心
transcript.whisperx[546].start 14408.979
transcript.whisperx[546].end 14419.767
transcript.whisperx[546].text 要好好把市場做大 把餅做大來 央行現在一些錢 匯錢匯進來你們都擋來擋去你們真的是自由化嗎
transcript.whisperx[547].start 14422.495
transcript.whisperx[547].end 14443.804
transcript.whisperx[547].text 委員 我覺得您的問題好像不是很明確因為我們的外匯已經自由化我們還是有一些管理那些管理我們也會隨著時空環境做調整所以我不覺得說我們有真的在擋人家擋人家一定是不符合我們的規定好 你不擋我們就說一聲謝謝你現在外匯存底是6000多億美元6000多億這些
transcript.whisperx[548].start 14451.141
transcript.whisperx[548].end 14480.134
transcript.whisperx[548].text 外匯存底你有百分之幾要拿來做主權基金我們沒有要就是說這個案子是國發會在主導沒有 行政院行政院那邊已經跟你講了你大概拿多少比例要出來做主權基金我講這個我們沒有討論到央行的外匯存底到底是怎麼去比率是怎樣至少我不知道所以副總裁還不知道你回去問總裁
transcript.whisperx[549].start 14481.748
transcript.whisperx[549].end 14495.635
transcript.whisperx[549].text 我想我們在這邊已經講過我們要用有償支付的方式大概是外匯存底的百分之多少要拿來當作主權基金抱歉 因為目前我們也沒有討論到這個議題過你回去問總裁有來跟我講一下訊息好不好謝謝再回應我們委員來 謝謝謝謝盧委員接下來我們請邱志維委員
transcript.whisperx[550].start 14537.138
transcript.whisperx[550].end 14545.486
transcript.whisperx[550].text 謝主席 是不是請財政部莊部長金管會沒有金管會那就莊部長
transcript.whisperx[551].start 14549.656
transcript.whisperx[551].end 14576.571
transcript.whisperx[551].text 委員好 部長好幾個問題請教就是說這個所謂賴總統的整個政策大運也是均衡台灣均衡台灣 均衡台灣叫世代均衡區域均衡產業均衡所得均衡各部位各施其職產業均衡是經濟部世代均衡可能國發會做長期規劃所得均衡當然這個今天的主題是財政部來主政
transcript.whisperx[552].start 14577.847
transcript.whisperx[552].end 14596.445
transcript.whisperx[552].text 那有很多的方式可以達到 可是我看到你的報告通常是比較長期性而且正在做的你看那個高市這個首相 日本新任的首相他就任首相之後成立一個國家經濟成長戰略部國家經濟成長
transcript.whisperx[553].start 14601.796
transcript.whisperx[553].end 14617.382
transcript.whisperx[553].text 這個你的所得才能均衡成長之外所得才能均衡所以地方創生他們也同時在所以應該有一個專職的機關啊怎麼樣讓國家整體的新智能夠成長是跨部位的協調而不是單做你這個財政部的主管業務而已部長您同意嗎我想委員對這個部分非常的重視那當然就財政部來講我們是透過稅制的部分來做一個所謂的均衡性比如說對於
transcript.whisperx[554].start 14630.663
transcript.whisperx[554].end 14648.021
transcript.whisperx[554].text 中低收入戶我們減輕他在租稅的負擔所以這個部分在所得稅制優化裡面呢不斷的在往前推進那這個部分在我們的報告裡面也都有寫到可是用租稅的手段嘛對這是租稅手段那當然還有所謂的移轉性政府有移轉性的支出那就透過社會福利的方式來輔助我們中低收入戶
transcript.whisperx[555].start 14651.525
transcript.whisperx[555].end 14663.885
transcript.whisperx[555].text 讓他們可以獲得比較多的政府的補償這是疑轉性的支出你說出了這個付稅政策應該所有的各種世代各種所得都能夠受惠特別是相對低的所得
transcript.whisperx[556].start 14665.862
transcript.whisperx[556].end 14690.475
transcript.whisperx[556].text 所得在租稅負擔上給予減輕那另外政府所收的稅收呢然後透過移轉性的支出給需要輔助跟補助的民眾可以獲得他們生活上一定的必須的一些所得這個部分是另外有其他部會再來做譬如說衛福部所以你知道高市首相上台短短一個月他的內閣的滿意度接近八成 七成多
transcript.whisperx[557].start 14691.235
transcript.whisperx[557].end 14718.112
transcript.whisperx[557].text 就是說他間集旅集一決定政策馬上由他的部大臣馬上對外公佈整個細節整個政策內涵讓所有民眾都了解一清二楚然後間集旅集這才是一個政府該有的效率跟效果那前天我看了一個文章關於這個TISATISA您了解嗎那個金管會跟財政部有不同立場
transcript.whisperx[558].start 14719.284
transcript.whisperx[558].end 14733.219
transcript.whisperx[558].text 金款會希望能夠這個是屬於這個低風險或者是長期投資特別對年輕人比較一定的吸引力對不對他為了這個養老這個退休第三支柱
transcript.whisperx[559].start 14734.497
transcript.whisperx[559].end 14759.346
transcript.whisperx[559].text 我覺得利益良善 但為什麼開戶那麼少經管會是希望說這個能夠有租稅優惠包括這個綜合所得稅的扣除額等等財政部好像反對 這我沒有特定立場我只要先請教部長這個如果對青年在未來的儲蓄有更多的幫助我覺得經管會他講也有道理但你如果從租稅公平的角度來看
transcript.whisperx[560].start 14762.188
transcript.whisperx[560].end 14770.456
transcript.whisperx[560].text 這個已經有在置入上面已經有設計了不需要再從綜合所得稅綜合所得稅扣除而來處理那我想請教您的意見
transcript.whisperx[561].start 14772.034
transcript.whisperx[561].end 14800.859
transcript.whisperx[561].text 從委員說就是所謂的TISA那TISA這個部分呢是金管會目前在推動的一個新的一個措施希望有這個退休制度第三支柱那對於這個TISA的投資他所獲得的租稅優惠的部分我們也都把它整理出來給了金管會然後讓他在推動這個TISA的時候可以讓投資的民眾可以理解也就是說我們現在其實我們的優惠租稅的優惠制度其實是比日本或其他國家NISA更好那一個讓他們可以理解來做這方面的投資
transcript.whisperx[562].start 14801.539
transcript.whisperx[562].end 14819.761
transcript.whisperx[562].text 日本沒有租稅優惠嗎日本有 但他們沒有我們這麼好所以你說現行現行不需要另外再加相關的租稅優惠都已經羅列出來了可是為什麼的誘因還是不夠那個開戶的這個數量還是不多對 那我覺得可以再多加以宣導跟推廣
transcript.whisperx[563].start 14821.133
transcript.whisperx[563].end 14835.305
transcript.whisperx[563].text 另外一個議題就是兒少帳戶兒少帳戶這個部分有很多低收入的家庭我們也協助他們這個部分將近有四層位開戶這個是衛福部主管還是財政部來協助
transcript.whisperx[564].start 14837.536
transcript.whisperx[564].end 14851.546
transcript.whisperx[564].text 應該是衛福部的部分衛福部那個女市長在市長這個應該對於孩童的未來這帳戶應該是要每一個需要住的家庭應該要開戶為什麼開戶率那麼低呢謝謝 我們現在目前的兒童帳戶現在目前開戶率大概是八成有八成的嗎已經有八成的 包委員我們現在已經
transcript.whisperx[565].start 14862.304
transcript.whisperx[565].end 14883.462
transcript.whisperx[565].text 那另外兩層沒有開戶的原因是什麼已經六層了那另外兩層沒有開戶的原因是什麼呢另外兩層沒有開戶的原因是什麼報告委員 我更正不是八層是六層對嘛 我說我掌握是四層從2018到現在還有四層沒有開戶沒錯那有沒有區域別它們集中在非都會區呢還是集中在中南部
transcript.whisperx[566].start 14884.142
transcript.whisperx[566].end 14894.984
transcript.whisperx[566].text 包委員現在我們按照我們現在目前的區域分布其實基本上大概沒有特定的區域上的差異那你未來有沒有什麼具體的做法在對待的時間之內讓這個市城能夠順利開戶包委員我們現在目前是這樣主要我們現在目前在地方政府這邊我們有那個社安網社安網這邊我們會來針對這些家庭會來有一些更多的一些鼓勵
transcript.whisperx[567].start 14909.827
transcript.whisperx[567].end 14926.944
transcript.whisperx[567].text 因為這裡面我想我也知道現在目前就是說它是Matching Fund的概念現在你存一筆政府也跟你存一筆現在目前我們會社工我們有一個脫貧社工來社安網那邊我們來加強對於這些社會救助的家庭他們來鼓勵他們在做這部分的遊說
transcript.whisperx[568].start 14930.067
transcript.whisperx[568].end 14949.055
transcript.whisperx[568].text 是不是那個完整資料再給邱委員就是說好的政策需要質詢力當然當然所以你從2018年才六成 經過七年才六成恐怕還有這個努力的空間當然 沒錯再請市長努力好 謝謝OK 非常感謝邱委員 謝謝好 謝謝邱委員接下來我們請張祺凱委員
transcript.whisperx[569].start 14971.383
transcript.whisperx[569].end 14973.286
transcript.whisperx[569].text 請財政部莊部長跟經濟部的何次長好 來請莊部長 何次長
transcript.whisperx[570].start 14985
transcript.whisperx[570].end 15011.022
transcript.whisperx[570].text 委員好兩位好何次長是有去美國參加關稅談判的今天最重磅的消息是剛剛傳出來美國媒體說我們在關稅談判裡面對美國的擴大投資是3500億到5500億美金就是介在日本跟日本跟南韓之間大概是多少錢
transcript.whisperx[571].start 15012.585
transcript.whisperx[571].end 15018.948
transcript.whisperx[571].text 因為還沒有簽訂而且你去參加嘛 對不對外國的媒體都提出來了這整個金額就在這之間還要再經過最後一個總結會議去做確認我想這應該是已經進入到最後階段了後續如果有進一步消息我想我們行政院談判辦公室
transcript.whisperx[572].start 15037.277
transcript.whisperx[572].end 15064.364
transcript.whisperx[572].text 現在這裡面有幾個很重要的啦幾個很重要的第一個賴清德總統一直在講說我們擴大投資的同時我們要換回來兩個就是20加N這個事情不能再抵加了第二個就是232條款對半導體我們這些資訊業的這個要有一個最惠國的優惠我這要去力爭好不好第二個也很重要你看南韓光是一個3500億喔他們總統李在平都直接講了本來美國要求他說你馬上要給我錢
transcript.whisperx[573].start 15065.504
transcript.whisperx[573].end 15083.522
transcript.whisperx[573].text 他說我要破產了我的存體才4100億你現在要我投資3500億我沒有辦法那麼台灣老實講要超過3500億也是一個很大的一個負擔目前看起來這個方案應該就是鄭麗金講的那個台灣模式嘛對嘛 沒有錯嘛就是我們的半導體產業園區過去然後
transcript.whisperx[574].start 15086.725
transcript.whisperx[574].end 15110.095
transcript.whisperx[574].text 產業自己過去 可是由政府來做擔保這包緊啦那這個老蔣 我一直在提醒會不會造成護國神山變成半屏山我們的產業過去之後半導體過去之後到底有多少人才會被帶走多少先進的技術會被帶走會不會空洞化這個我們自己要注意好不好要去努力接下來來談大家很關心的一萬年的這個普發一萬年的問題
transcript.whisperx[575].start 15111.135
transcript.whisperx[575].end 15135.906
transcript.whisperx[575].text 那個部長 我看了一下是這一次是普花1萬在112年的時候有普花了6千塊錢那前5天的登記是459萬7千人我就看了這一次的這個登記人數差不多前5天登記也是456萬5千人所以不一定如果照去年 照上次12年的話12年後來沒有去領的人是0.3%
transcript.whisperx[576].start 15139.088
transcript.whisperx[576].end 15158.078
transcript.whisperx[576].text 没错0.3% 领取率99.7%登记的人前5天这么近所以后来应该没有领的人大概也是0.3%左右吧当然这个是112年那个时候的经验大概7万人所以表示普发现金本来就该发因为是超增人民的税收嘛5283亿
transcript.whisperx[577].start 15160.865
transcript.whisperx[577].end 15183.223
transcript.whisperx[577].text 本來就應該還稅於民嘛大家也認為說這麼多人去登記他表示大家也認為要去領啊可是我們就要問為什麼出現之前左院長什麼還要去定一個說不領的一個選項那時候連民進黨的人還有一些親力的媒體都炸鍋了說根本是情的存也要有極限我要跟大家討論一個大家看一下 來
transcript.whisperx[578].start 15187.557
transcript.whisperx[578].end 15211.152
transcript.whisperx[578].text 你看 我們當然感謝現在不是只有在野黨南跟北的這個奴隸後來民進黨也都一起支持了可是大家要問的一個非常重要的你看 現在連戴清德總統他都下令說他們所有的黨公子要去幫忙發這1萬塊錢連各個立委都講說普派1萬塊他們要設這個變民服務站可是你看下一張民進黨是不是有一點神經錯亂
transcript.whisperx[579].start 15213.663
transcript.whisperx[579].end 15237.864
transcript.whisperx[579].text 打臉的自己 你看最右邊那一張當初藍白極力推動要普發現金 還稅移民的時候民進黨還上去舉牌子 說什麼普發現金會債留子孫 還說是違憲的結果你現在 自己打自己的嘴巴短短兩三個月 連最近最紅的沈伯陽說什麼普發一萬塊 是癱瘓台灣的這個三招
transcript.whisperx[580].start 15240.711
transcript.whisperx[580].end 15267.083
transcript.whisperx[580].text 掏空台灣 跟中共還是同路人可是你看現在賴清德總統跟卓院長變成什麼 掏空台灣變成中共同路人嗎我們看一下我要談一個比較專業的問題我們依照公債法的規定公共債務法第12條的規定當政府有超收的時候要做一個很重要的事情
transcript.whisperx[581].start 15268.444
transcript.whisperx[581].end 15296.621
transcript.whisperx[581].text 还债我们甚至明定就是说至少要5到6%我要跟你讨论一个重点是我们卓院长还在讲说我们没有钱可以去还债来看一下左边我帮大家逗一个统计这是黄耀辉黄教授的统计我们在108年109年都超收的状况之下我们还债本来规定5到6%你应该还更多
transcript.whisperx[582].start 15297.827
transcript.whisperx[582].end 15320.378
transcript.whisperx[582].text 可是我的統計跟黃教授的統計我們過去7年超徵那麼多錢還債只有5.4%顯然偏低對不對我想這樣跟委員報告第一個數字上的部分您剛剛提說113年我們超出預算數是5000多億這是全國數但中央是3757億這是數字上的不同
transcript.whisperx[583].start 15320.834
transcript.whisperx[583].end 15344.687
transcript.whisperx[583].text 因为那是全国数是包含地方政府的税收那另外对还债的部分呢其实这几年来我们积极的还债除了预算的编列我们还了之外我们还有增加还债总共还了1兆0733亿元对嘛这么多年部长我们还了那么多的钱并不是说没有还债浪费了很多部长我现在跟你讨论是旧法对吗公债法的第12条就是要还底线就是5%
transcript.whisperx[584].start 15345.948
transcript.whisperx[584].end 15364.358
transcript.whisperx[584].text 都一定是要達到的事實上你看106年跟107年竟然都還是不符合就是違法的喔 連5%都不到然後到了108年開始所以說增加那麼多了超過6%的也只有兩次我今天是要跟你討論就是說以後如果還有超增像今年一定又超增嘛 對不對到目前超增多少
transcript.whisperx[585].start 15365.495
transcript.whisperx[585].end 15388.478
transcript.whisperx[585].text 明年要達到贏算是具有挑戰性的所以搞不好明年要再普發一萬塊一次我們台灣民眾黨還特別開了檢討年年超增的共享經濟成果這個公聽會我們做了三點建議非常重要這個是所有專家寫者一起有共識的第一個 增加還債的比例
transcript.whisperx[586].start 15390.287
transcript.whisperx[586].end 15404.526
transcript.whisperx[586].text 公債法第十二條也明確 明確被認定了應該有如果是超增比較多應該要增加超過6%這是一個第二個要還稅移民所以我剛剛講今年如果又超增都要考慮明年是不是應該再發六千塊又一萬塊這是一個另外更重要的
transcript.whisperx[587].start 15405.587
transcript.whisperx[587].end 15427.921
transcript.whisperx[587].text 連你都超徵這是不對的 為什麼會這樣表示你的意固出的狀況所以你應該提出一個常態化的機制包括要修法 要把它訂好 甚至這個錢要怎麼用應該把它明定下來 譬如說勞保現在勞工或者說退休公務員你們在講說撥補等錢不夠 明定撥補勞工多少錢比例是多少 撥補退休的金融價是多少錢這樣就可以解決危機 好不好 謝謝謝謝張委員 謝謝
transcript.whisperx[588].start 15434.37
transcript.whisperx[588].end 15450.016
transcript.whisperx[588].text 接下來我們請林楚英委員林楚英委員林楚英委員不在場下一位徐欣盈委員徐欣盈委員徐欣盈委員不在場接下來我們請翁曉琳委員好主席好這邊有請部長
transcript.whisperx[589].start 15462.346
transcript.whisperx[589].end 15464.427
transcript.whisperx[589].text 請莊部長委員好市部長好我想我在今天這邊的這個質詢我討論一個跟待真人獎金制度有關的議題我想請教部長您知不知道我們現在有哪些項目是有合法待真人獎金的現在有哪幾種稅是有
transcript.whisperx[590].start 15488.484
transcript.whisperx[590].end 15513.358
transcript.whisperx[590].text 政交稅跟齊交稅還有一個娛樂稅應該還有一個娛樂稅娛樂稅屬於地方稅屬於地方稅好所以如果說就中央說的話主要是政交稅跟齊交稅那每年政交稅的這個齊交稅貸贈人獎金呢那政府要編多少錢的預算來支付您知道嗎大概我們在預算裡面會編這個是不是請負稅署這邊來做一個說明好謝謝抱歉
transcript.whisperx[591].start 15517.843
transcript.whisperx[591].end 15532.112
transcript.whisperx[591].text 委員不好意思可以麻煩因為剛才我在找資料不好意思我是說你現在財政部每年要編多少的預算來支付證交稅跟期交稅的代徵獎金我們是用預算數去呈現但是最多是2400萬
transcript.whisperx[592].start 15535.234
transcript.whisperx[592].end 15560.737
transcript.whisperx[592].text 是每一个戴真人可以收最高2400万但是就财政部我们重要预算来讲每年要支付多少钱所以这数字您没有对目前我现在手上没有好没关系我告诉你其实从104年到现在114年我们看到其实就我们中央我们核发出去的戴真奖金是不断的偏高114年我们当时是编了2亿7千万的
transcript.whisperx[593].start 15562.958
transcript.whisperx[593].end 15569
transcript.whisperx[593].text 預算來支付待真人獎金104年那個時候大概是1億所以就說短短的這10年其實也成長了大概兩倍多那問題就是說到底現在還有沒有必要要去核發待真人獎金不知道財政部的看法什麼
transcript.whisperx[594].start 15580.799
transcript.whisperx[594].end 15590.23
transcript.whisperx[594].text 因為這個制度當然是全球獨步哪個國家是對於就是要幫忙收的這個代收的業者還要去核發這個獎金的
transcript.whisperx[595].start 15593.564
transcript.whisperx[595].end 15617.9
transcript.whisperx[595].text 跟委員報告因為我們為什麼貸真獎金會這幾年增加這麼多主要是因為證交稅整個稅收成長的關係那另外到底該不該給予貸真獎金其實它有它的歷史背景我想委員都很清楚知道說當時是因為我們的券商在貸真這個所謂的證交稅的時候它有一些成本
transcript.whisperx[596].start 15618.32
transcript.whisperx[596].end 15621.324
transcript.whisperx[596].text 所以就像他們我同意就是說當時他有他的這個代真合法代真獎金的當時的歷史環境可是我們現在已經都進入到數位化時代了很多都是電腦這個或是說他的這個上傳
transcript.whisperx[597].start 15633.659
transcript.whisperx[597].end 15645.668
transcript.whisperx[597].text 非常的方便所以其实就代证业者的成本来说已经是趋近于零或是已经很低了而且更何况我们现在很多的什么7-11一些代收业者他们基本上我们政府也不会给他们核发这个奖金的
transcript.whisperx[598].start 15651.132
transcript.whisperx[598].end 15674.829
transcript.whisperx[598].text 所以本席的建議是說其實財政部是不是應該要去檢討到底還要不要發這個獎金雖然說整個的預算大概2.7億在我們整體裝預算來說不是個大數目但是本席的看法是說這個事情是不是可以當審則審對不對更何況我們有這麼多的代售業者我們也沒有給人家的什麼店或代售業者有任何獎金
transcript.whisperx[599].start 15675.822
transcript.whisperx[599].end 15691.696
transcript.whisperx[599].text 跟委員報告因為他們這些券商或期貨交易商他還是有系統維護跟相關的一些成本那但是我們現在因為剛好委員也有提案要廢除這所謂的證交稅跟起交稅代徵獎金所以我們現在同步在研議當中
transcript.whisperx[600].start 15692.837
transcript.whisperx[600].end 15713.459
transcript.whisperx[600].text 是的 因為本期確實是有近期提出了相關法案因為我希望財政部可以去檢討這個制度如果要發的話那是不是就要公平性所有的幫政府代收稅款的那就都要發那麼如果說只是少數的業者而且像證交稅 期交稅這些證券商坦白說他們也很有錢的所以在這個部分來說是不是還有
transcript.whisperx[601].start 15714.019
transcript.whisperx[601].end 15722.165
transcript.whisperx[601].text 必要要去給他們這樣的獎金這確實財政部需要再進行檢討我們來做一個檢討謝謝委員指教 謝謝謝謝文委員接下來請蘇清泉委員蘇清泉委員 蘇清泉委員不在場下一位王宏威委員王宏威委員 王宏威委員不在場
transcript.whisperx[602].start 15737.574
transcript.whisperx[602].end 15764.226
transcript.whisperx[602].text 好 今日登记发言委员均已询答完毕本次会议作如下决定一 说明报告及询答完毕二 委员咨询未及答复或请补充资讯请相关部会于一周以内以书面答复委员另要求席限者从其锁定三 委员陈玉珍黄威所提书面咨询列入记录刊登公报并请相关部会以书面答复四 财政收支划分法第16条之一未分配款运用占行条例草案
transcript.whisperx[603].start 15765.006
transcript.whisperx[603].end 15775.192
transcript.whisperx[603].text 令则其继续审查本次会议议程已经行完毕唐佑不在场委员补题书面质询已并列入记录刊登公报并请议事人员协助处理散会谢谢