iVOD / 16904

Field Value
IVOD_ID 16904
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16904
日期 2025-09-15
影片種類 Full
開始時間 2025-09-15T13:50:15+08:00
結束時間 2025-09-15T17:06:00+08:00
影片長度 03:15:45
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/b73ade72829c64ede905a66c5752e8af30fcb42745d8fe5e1771dcf01385b395709ba70b6474f07d5ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-09-15T14:00:00+08:00
會議名稱 駭客的終極完美武器:人工智能大未來(事由:駭客的終極完美武器:人工智能大未來)
委員名稱 完整會議
委員發言時間 13:50:15 - 17:06:00
transcript.pyannote[0].speaker SPEAKER_05
transcript.pyannote[0].start 32.29596875
transcript.pyannote[0].end 33.71346875
transcript.pyannote[1].speaker SPEAKER_05
transcript.pyannote[1].start 37.20659375
transcript.pyannote[1].end 38.52284375
transcript.pyannote[2].speaker SPEAKER_05
transcript.pyannote[2].start 53.81159375
transcript.pyannote[2].end 54.95909375
transcript.pyannote[3].speaker SPEAKER_05
transcript.pyannote[3].start 65.18534375
transcript.pyannote[3].end 65.59034375
transcript.pyannote[4].speaker SPEAKER_05
transcript.pyannote[4].start 82.26284375
transcript.pyannote[4].end 82.60034375
transcript.pyannote[5].speaker SPEAKER_05
transcript.pyannote[5].start 87.71346875
transcript.pyannote[5].end 88.03409375
transcript.pyannote[6].speaker SPEAKER_05
transcript.pyannote[6].start 142.52346875
transcript.pyannote[6].end 142.91159375
transcript.pyannote[7].speaker SPEAKER_05
transcript.pyannote[7].start 147.88971875
transcript.pyannote[7].end 148.29471875
transcript.pyannote[8].speaker SPEAKER_05
transcript.pyannote[8].start 157.86284375
transcript.pyannote[8].end 158.30159375
transcript.pyannote[9].speaker SPEAKER_05
transcript.pyannote[9].start 216.19971875
transcript.pyannote[9].end 216.60471875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 774.50909375
transcript.pyannote[10].end 798.57284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 798.85971875
transcript.pyannote[11].end 800.26034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 800.56409375
transcript.pyannote[12].end 828.08721875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 828.30659375
transcript.pyannote[13].end 847.99971875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 853.66971875
transcript.pyannote[14].end 857.04471875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 858.19221875
transcript.pyannote[15].end 872.28284375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 872.72159375
transcript.pyannote[16].end 882.37409375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 882.67784375
transcript.pyannote[17].end 890.47409375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 891.90846875
transcript.pyannote[18].end 899.43471875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 900.59909375
transcript.pyannote[19].end 901.86471875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 902.62409375
transcript.pyannote[20].end 905.17221875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 907.06221875
transcript.pyannote[21].end 953.92409375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 954.56534375
transcript.pyannote[22].end 967.55909375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 968.38596875
transcript.pyannote[23].end 969.93846875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 971.28846875
transcript.pyannote[24].end 974.05596875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 975.28784375
transcript.pyannote[25].end 976.87409375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 977.56596875
transcript.pyannote[26].end 983.86034375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 984.43409375
transcript.pyannote[27].end 990.93096875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 991.67346875
transcript.pyannote[28].end 1008.16034375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 1009.94909375
transcript.pyannote[29].end 1025.81159375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 1026.48659375
transcript.pyannote[30].end 1037.70846875
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 1039.21034375
transcript.pyannote[31].end 1051.37721875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 1062.32909375
transcript.pyannote[32].end 1063.03784375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 1064.01659375
transcript.pyannote[33].end 1064.30346875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 1068.03284375
transcript.pyannote[34].end 1070.61471875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 1071.98159375
transcript.pyannote[35].end 1077.41534375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 1078.29284375
transcript.pyannote[36].end 1079.44034375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 1080.01409375
transcript.pyannote[37].end 1084.26659375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 1085.04284375
transcript.pyannote[38].end 1102.71096875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 1103.16659375
transcript.pyannote[39].end 1104.02721875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 1104.71909375
transcript.pyannote[40].end 1109.15721875
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 1110.72659375
transcript.pyannote[41].end 1119.31596875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 1119.61971875
transcript.pyannote[42].end 1125.27284375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 1126.18409375
transcript.pyannote[43].end 1127.56784375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 1128.02346875
transcript.pyannote[44].end 1129.87971875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 1130.09909375
transcript.pyannote[45].end 1138.77284375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 1139.17784375
transcript.pyannote[46].end 1141.59096875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 1141.82721875
transcript.pyannote[47].end 1143.63284375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 1143.85221875
transcript.pyannote[48].end 1148.34096875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 1148.83034375
transcript.pyannote[49].end 1150.02846875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 1151.07471875
transcript.pyannote[50].end 1155.56346875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 1156.66034375
transcript.pyannote[51].end 1166.26221875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 1168.25346875
transcript.pyannote[52].end 1178.61471875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 1179.74534375
transcript.pyannote[53].end 1182.95159375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 1183.57596875
transcript.pyannote[54].end 1188.06471875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 1188.90846875
transcript.pyannote[55].end 1192.35096875
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 1195.18596875
transcript.pyannote[56].end 1196.35034375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 1196.89034375
transcript.pyannote[57].end 1208.97284375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 1209.96846875
transcript.pyannote[58].end 1217.96721875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 1220.36346875
transcript.pyannote[59].end 1221.54471875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 1222.55721875
transcript.pyannote[60].end 1226.91096875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 1227.90659375
transcript.pyannote[61].end 1232.32784375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 1232.95221875
transcript.pyannote[62].end 1238.30159375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 1238.68971875
transcript.pyannote[63].end 1247.05971875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 1248.19034375
transcript.pyannote[64].end 1248.93284375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 1250.62034375
transcript.pyannote[65].end 1252.52721875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 1253.60721875
transcript.pyannote[66].end 1256.34096875
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 1256.76284375
transcript.pyannote[67].end 1259.42909375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 1260.50909375
transcript.pyannote[68].end 1269.72284375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 1270.61721875
transcript.pyannote[69].end 1271.84909375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 1272.97971875
transcript.pyannote[70].end 1285.11284375
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 1286.90159375
transcript.pyannote[71].end 1303.55721875
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 1304.38409375
transcript.pyannote[72].end 1310.00346875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 1312.19721875
transcript.pyannote[73].end 1322.50784375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 1323.70596875
transcript.pyannote[74].end 1324.92096875
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 1325.22471875
transcript.pyannote[75].end 1332.29534375
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 1334.32034375
transcript.pyannote[76].end 1350.72284375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 1351.36409375
transcript.pyannote[77].end 1352.19096875
transcript.pyannote[78].speaker SPEAKER_03
transcript.pyannote[78].start 1354.78971875
transcript.pyannote[78].end 1356.27471875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 1357.16909375
transcript.pyannote[79].end 1369.82534375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 1370.82096875
transcript.pyannote[80].end 1380.67596875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 1382.43096875
transcript.pyannote[81].end 1400.50409375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 1401.98909375
transcript.pyannote[82].end 1409.44784375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 1409.90346875
transcript.pyannote[83].end 1421.88471875
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 1422.88034375
transcript.pyannote[84].end 1429.02284375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 1429.69784375
transcript.pyannote[85].end 1441.91534375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 1442.69159375
transcript.pyannote[86].end 1457.67659375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 1458.73971875
transcript.pyannote[87].end 1459.66784375
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 1460.22471875
transcript.pyannote[88].end 1465.00034375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 1467.43034375
transcript.pyannote[89].end 1475.85096875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 1476.61034375
transcript.pyannote[90].end 1499.52659375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 1500.47159375
transcript.pyannote[91].end 1515.76034375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 1516.38471875
transcript.pyannote[92].end 1525.53096875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 1529.46284375
transcript.pyannote[93].end 1534.59284375
transcript.pyannote[94].speaker SPEAKER_05
transcript.pyannote[94].start 1538.00159375
transcript.pyannote[94].end 1538.08596875
transcript.pyannote[95].speaker SPEAKER_05
transcript.pyannote[95].start 1543.43534375
transcript.pyannote[95].end 1544.71784375
transcript.pyannote[96].speaker SPEAKER_04
transcript.pyannote[96].start 1577.92784375
transcript.pyannote[96].end 1579.36221875
transcript.pyannote[97].speaker SPEAKER_04
transcript.pyannote[97].start 1580.45909375
transcript.pyannote[97].end 1581.26909375
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 1582.39971875
transcript.pyannote[98].end 1582.70346875
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 1583.59784375
transcript.pyannote[99].end 1585.04909375
transcript.pyannote[100].speaker SPEAKER_04
transcript.pyannote[100].start 1585.52159375
transcript.pyannote[100].end 1586.63534375
transcript.pyannote[101].speaker SPEAKER_04
transcript.pyannote[101].start 1587.31034375
transcript.pyannote[101].end 1590.02721875
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 1590.88784375
transcript.pyannote[102].end 1592.81159375
transcript.pyannote[103].speaker SPEAKER_04
transcript.pyannote[103].start 1592.96346875
transcript.pyannote[103].end 1594.75221875
transcript.pyannote[104].speaker SPEAKER_04
transcript.pyannote[104].start 1595.66346875
transcript.pyannote[104].end 1596.94596875
transcript.pyannote[105].speaker SPEAKER_04
transcript.pyannote[105].start 1597.40159375
transcript.pyannote[105].end 1598.29596875
transcript.pyannote[106].speaker SPEAKER_04
transcript.pyannote[106].start 1599.44346875
transcript.pyannote[106].end 1600.25346875
transcript.pyannote[107].speaker SPEAKER_04
transcript.pyannote[107].start 1603.25721875
transcript.pyannote[107].end 1603.79721875
transcript.pyannote[108].speaker SPEAKER_04
transcript.pyannote[108].start 1603.94909375
transcript.pyannote[108].end 1605.28221875
transcript.pyannote[109].speaker SPEAKER_04
transcript.pyannote[109].start 1605.99096875
transcript.pyannote[109].end 1607.13846875
transcript.pyannote[110].speaker SPEAKER_04
transcript.pyannote[110].start 1607.59409375
transcript.pyannote[110].end 1609.41659375
transcript.pyannote[111].speaker SPEAKER_04
transcript.pyannote[111].start 1610.27721875
transcript.pyannote[111].end 1610.90159375
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 1611.74534375
transcript.pyannote[112].end 1614.14159375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 1614.64784375
transcript.pyannote[113].end 1621.02659375
transcript.pyannote[114].speaker SPEAKER_04
transcript.pyannote[114].start 1621.36409375
transcript.pyannote[114].end 1625.12721875
transcript.pyannote[115].speaker SPEAKER_04
transcript.pyannote[115].start 1625.48159375
transcript.pyannote[115].end 1628.68784375
transcript.pyannote[116].speaker SPEAKER_10
transcript.pyannote[116].start 1628.68784375
transcript.pyannote[116].end 1629.41346875
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 1629.16034375
transcript.pyannote[117].end 1636.83846875
transcript.pyannote[118].speaker SPEAKER_08
transcript.pyannote[118].start 1637.04096875
transcript.pyannote[118].end 1639.08284375
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 1644.90471875
transcript.pyannote[119].end 1646.72721875
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 1649.68034375
transcript.pyannote[120].end 1650.13596875
transcript.pyannote[121].speaker SPEAKER_04
transcript.pyannote[121].start 1655.83971875
transcript.pyannote[121].end 1657.18971875
transcript.pyannote[122].speaker SPEAKER_04
transcript.pyannote[122].start 1658.40471875
transcript.pyannote[122].end 1660.00784375
transcript.pyannote[123].speaker SPEAKER_04
transcript.pyannote[123].start 1660.37909375
transcript.pyannote[123].end 1663.06221875
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 1664.39534375
transcript.pyannote[124].end 1666.80846875
transcript.pyannote[125].speaker SPEAKER_04
transcript.pyannote[125].start 1666.87596875
transcript.pyannote[125].end 1669.12034375
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 1670.57159375
transcript.pyannote[126].end 1671.49971875
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 1672.10721875
transcript.pyannote[127].end 1672.93409375
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 1674.35159375
transcript.pyannote[128].end 1676.42721875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 1683.05909375
transcript.pyannote[129].end 1749.49596875
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 1750.50846875
transcript.pyannote[130].end 1760.12721875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 1761.15659375
transcript.pyannote[131].end 1768.27784375
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 1768.71659375
transcript.pyannote[132].end 1813.80659375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 1815.12284375
transcript.pyannote[133].end 1817.73846875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 1819.74659375
transcript.pyannote[134].end 1869.46034375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 1870.35471875
transcript.pyannote[135].end 1882.87596875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 1882.97721875
transcript.pyannote[136].end 1888.32659375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 1889.49096875
transcript.pyannote[137].end 1891.78596875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 1894.43534375
transcript.pyannote[138].end 1895.39721875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 1896.12284375
transcript.pyannote[139].end 1899.44721875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 1900.17284375
transcript.pyannote[140].end 1900.72971875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 1903.66596875
transcript.pyannote[141].end 1905.08346875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 1905.96096875
transcript.pyannote[142].end 1908.86346875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 1912.82909375
transcript.pyannote[143].end 1918.80284375
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 1919.95034375
transcript.pyannote[144].end 1922.58284375
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 1924.86096875
transcript.pyannote[145].end 1925.38409375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 1925.87346875
transcript.pyannote[146].end 1936.40346875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 1937.85471875
transcript.pyannote[147].end 1939.13721875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 1939.74471875
transcript.pyannote[148].end 1941.73596875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 1942.39409375
transcript.pyannote[149].end 1944.09846875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 1944.79034375
transcript.pyannote[150].end 1975.08096875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 1975.63784375
transcript.pyannote[151].end 1978.11846875
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 1979.73846875
transcript.pyannote[152].end 1981.00409375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 1982.55659375
transcript.pyannote[153].end 1983.33284375
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 1983.70409375
transcript.pyannote[154].end 1987.53471875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 1988.10846875
transcript.pyannote[155].end 1990.26846875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 1991.29784375
transcript.pyannote[156].end 1992.00659375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 1993.06971875
transcript.pyannote[157].end 1993.35659375
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 1994.62221875
transcript.pyannote[158].end 1996.90034375
transcript.pyannote[159].speaker SPEAKER_03
transcript.pyannote[159].start 1997.42346875
transcript.pyannote[159].end 2003.83596875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 2003.97096875
transcript.pyannote[160].end 2018.21346875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 2019.04034375
transcript.pyannote[161].end 2027.25846875
transcript.pyannote[162].speaker SPEAKER_03
transcript.pyannote[162].start 2028.15284375
transcript.pyannote[162].end 2034.07596875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 2034.75096875
transcript.pyannote[163].end 2073.95159375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 2076.26346875
transcript.pyannote[164].end 2081.49471875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 2082.28784375
transcript.pyannote[165].end 2083.21596875
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 2083.77284375
transcript.pyannote[166].end 2085.40971875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 2087.94096875
transcript.pyannote[167].end 2090.35409375
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 2091.06284375
transcript.pyannote[168].end 2105.91284375
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 2107.00971875
transcript.pyannote[169].end 2112.69659375
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 2112.89909375
transcript.pyannote[170].end 2114.56971875
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 2115.29534375
transcript.pyannote[171].end 2134.29659375
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 2134.90409375
transcript.pyannote[172].end 2143.15596875
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 2143.94909375
transcript.pyannote[173].end 2158.15784375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 2158.91721875
transcript.pyannote[174].end 2162.03909375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 2162.39346875
transcript.pyannote[175].end 2169.02534375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 2169.48096875
transcript.pyannote[176].end 2175.25221875
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 2175.62346875
transcript.pyannote[177].end 2176.53471875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 2177.86784375
transcript.pyannote[178].end 2179.42034375
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 2180.92221875
transcript.pyannote[179].end 2183.97659375
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 2184.97221875
transcript.pyannote[180].end 2186.32221875
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 2186.82846875
transcript.pyannote[181].end 2194.28721875
transcript.pyannote[182].speaker SPEAKER_03
transcript.pyannote[182].start 2195.51909375
transcript.pyannote[182].end 2198.64096875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 2198.82659375
transcript.pyannote[183].end 2202.04971875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 2204.07471875
transcript.pyannote[184].end 2204.91846875
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 2208.68159375
transcript.pyannote[185].end 2209.81221875
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 2210.31846875
transcript.pyannote[186].end 2211.14534375
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 2213.28846875
transcript.pyannote[187].end 2213.54159375
transcript.pyannote[188].speaker SPEAKER_03
transcript.pyannote[188].start 2214.35159375
transcript.pyannote[188].end 2217.74346875
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 2219.21159375
transcript.pyannote[189].end 2235.86721875
transcript.pyannote[190].speaker SPEAKER_03
transcript.pyannote[190].start 2236.10346875
transcript.pyannote[190].end 2243.83221875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 2244.76034375
transcript.pyannote[191].end 2255.62784375
transcript.pyannote[192].speaker SPEAKER_03
transcript.pyannote[192].start 2256.67409375
transcript.pyannote[192].end 2265.65159375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 2266.46159375
transcript.pyannote[193].end 2271.10221875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 2272.63784375
transcript.pyannote[194].end 2274.44346875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 2275.69221875
transcript.pyannote[195].end 2280.85596875
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 2282.07096875
transcript.pyannote[196].end 2282.18909375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 2282.61096875
transcript.pyannote[197].end 2301.37596875
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 2302.21971875
transcript.pyannote[198].end 2306.43846875
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 2306.86034375
transcript.pyannote[199].end 2309.27346875
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 2309.61096875
transcript.pyannote[200].end 2323.81971875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 2324.98409375
transcript.pyannote[201].end 2329.03409375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 2329.57409375
transcript.pyannote[202].end 2332.67909375
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 2333.80971875
transcript.pyannote[203].end 2334.68721875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 2335.63221875
transcript.pyannote[204].end 2339.88471875
transcript.pyannote[205].speaker SPEAKER_03
transcript.pyannote[205].start 2339.96909375
transcript.pyannote[205].end 2340.01971875
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 2340.28971875
transcript.pyannote[206].end 2351.29221875
transcript.pyannote[207].speaker SPEAKER_03
transcript.pyannote[207].start 2352.25409375
transcript.pyannote[207].end 2352.79409375
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 2353.31721875
transcript.pyannote[208].end 2363.35784375
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 2364.55596875
transcript.pyannote[209].end 2369.02784375
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 2369.63534375
transcript.pyannote[210].end 2374.36034375
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 2375.33909375
transcript.pyannote[211].end 2392.60221875
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 2393.05784375
transcript.pyannote[212].end 2394.93096875
transcript.pyannote[213].speaker SPEAKER_03
transcript.pyannote[213].start 2395.67346875
transcript.pyannote[213].end 2402.22096875
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 2402.72721875
transcript.pyannote[214].end 2419.41659375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 2419.46721875
transcript.pyannote[215].end 2435.14409375
transcript.pyannote[216].speaker SPEAKER_03
transcript.pyannote[216].start 2435.54909375
transcript.pyannote[216].end 2466.85221875
transcript.pyannote[217].speaker SPEAKER_03
transcript.pyannote[217].start 2468.18534375
transcript.pyannote[217].end 2469.26534375
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 2469.70409375
transcript.pyannote[218].end 2476.01534375
transcript.pyannote[219].speaker SPEAKER_03
transcript.pyannote[219].start 2476.80846875
transcript.pyannote[219].end 2483.65971875
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 2484.11534375
transcript.pyannote[220].end 2491.81034375
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 2492.63721875
transcript.pyannote[221].end 2493.54846875
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 2495.21909375
transcript.pyannote[222].end 2495.74221875
transcript.pyannote[223].speaker SPEAKER_03
transcript.pyannote[223].start 2496.19784375
transcript.pyannote[223].end 2498.18909375
transcript.pyannote[224].speaker SPEAKER_03
transcript.pyannote[224].start 2499.13409375
transcript.pyannote[224].end 2522.06721875
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 2522.75909375
transcript.pyannote[225].end 2528.59784375
transcript.pyannote[226].speaker SPEAKER_03
transcript.pyannote[226].start 2528.93534375
transcript.pyannote[226].end 2533.32284375
transcript.pyannote[227].speaker SPEAKER_03
transcript.pyannote[227].start 2534.94284375
transcript.pyannote[227].end 2536.12409375
transcript.pyannote[228].speaker SPEAKER_03
transcript.pyannote[228].start 2537.62596875
transcript.pyannote[228].end 2537.69346875
transcript.pyannote[229].speaker SPEAKER_03
transcript.pyannote[229].start 2539.11096875
transcript.pyannote[229].end 2541.03471875
transcript.pyannote[230].speaker SPEAKER_03
transcript.pyannote[230].start 2542.67159375
transcript.pyannote[230].end 2543.83596875
transcript.pyannote[231].speaker SPEAKER_03
transcript.pyannote[231].start 2543.97096875
transcript.pyannote[231].end 2549.47221875
transcript.pyannote[232].speaker SPEAKER_03
transcript.pyannote[232].start 2551.69971875
transcript.pyannote[232].end 2560.64346875
transcript.pyannote[233].speaker SPEAKER_03
transcript.pyannote[233].start 2562.12846875
transcript.pyannote[233].end 2569.30034375
transcript.pyannote[234].speaker SPEAKER_03
transcript.pyannote[234].start 2569.80659375
transcript.pyannote[234].end 2580.28596875
transcript.pyannote[235].speaker SPEAKER_03
transcript.pyannote[235].start 2580.97784375
transcript.pyannote[235].end 2585.31471875
transcript.pyannote[236].speaker SPEAKER_03
transcript.pyannote[236].start 2591.76096875
transcript.pyannote[236].end 2593.73534375
transcript.pyannote[237].speaker SPEAKER_03
transcript.pyannote[237].start 2594.64659375
transcript.pyannote[237].end 2599.35471875
transcript.pyannote[238].speaker SPEAKER_03
transcript.pyannote[238].start 2599.91159375
transcript.pyannote[238].end 2605.41284375
transcript.pyannote[239].speaker SPEAKER_03
transcript.pyannote[239].start 2606.35784375
transcript.pyannote[239].end 2612.21346875
transcript.pyannote[240].speaker SPEAKER_03
transcript.pyannote[240].start 2613.91784375
transcript.pyannote[240].end 2621.91659375
transcript.pyannote[241].speaker SPEAKER_03
transcript.pyannote[241].start 2622.79409375
transcript.pyannote[241].end 2625.27471875
transcript.pyannote[242].speaker SPEAKER_03
transcript.pyannote[242].start 2625.81471875
transcript.pyannote[242].end 2630.67471875
transcript.pyannote[243].speaker SPEAKER_03
transcript.pyannote[243].start 2630.96159375
transcript.pyannote[243].end 2634.74159375
transcript.pyannote[244].speaker SPEAKER_03
transcript.pyannote[244].start 2634.85971875
transcript.pyannote[244].end 2642.26784375
transcript.pyannote[245].speaker SPEAKER_03
transcript.pyannote[245].start 2642.84159375
transcript.pyannote[245].end 2657.60721875
transcript.pyannote[246].speaker SPEAKER_03
transcript.pyannote[246].start 2662.31534375
transcript.pyannote[246].end 2662.85534375
transcript.pyannote[247].speaker SPEAKER_03
transcript.pyannote[247].start 2663.64846875
transcript.pyannote[247].end 2671.17471875
transcript.pyannote[248].speaker SPEAKER_03
transcript.pyannote[248].start 2671.56284375
transcript.pyannote[248].end 2676.30471875
transcript.pyannote[249].speaker SPEAKER_03
transcript.pyannote[249].start 2677.04721875
transcript.pyannote[249].end 2682.78471875
transcript.pyannote[250].speaker SPEAKER_03
transcript.pyannote[250].start 2683.05471875
transcript.pyannote[250].end 2690.14221875
transcript.pyannote[251].speaker SPEAKER_03
transcript.pyannote[251].start 2690.63159375
transcript.pyannote[251].end 2697.85409375
transcript.pyannote[252].speaker SPEAKER_03
transcript.pyannote[252].start 2699.22096875
transcript.pyannote[252].end 2702.35971875
transcript.pyannote[253].speaker SPEAKER_03
transcript.pyannote[253].start 2703.23721875
transcript.pyannote[253].end 2724.73596875
transcript.pyannote[254].speaker SPEAKER_03
transcript.pyannote[254].start 2724.92159375
transcript.pyannote[254].end 2728.16159375
transcript.pyannote[255].speaker SPEAKER_03
transcript.pyannote[255].start 2728.43159375
transcript.pyannote[255].end 2732.86971875
transcript.pyannote[256].speaker SPEAKER_03
transcript.pyannote[256].start 2733.49409375
transcript.pyannote[256].end 2736.51471875
transcript.pyannote[257].speaker SPEAKER_03
transcript.pyannote[257].start 2736.97034375
transcript.pyannote[257].end 2737.81409375
transcript.pyannote[258].speaker SPEAKER_03
transcript.pyannote[258].start 2738.65784375
transcript.pyannote[258].end 2741.50971875
transcript.pyannote[259].speaker SPEAKER_03
transcript.pyannote[259].start 2743.28159375
transcript.pyannote[259].end 2746.74096875
transcript.pyannote[260].speaker SPEAKER_03
transcript.pyannote[260].start 2746.97721875
transcript.pyannote[260].end 2758.94159375
transcript.pyannote[261].speaker SPEAKER_03
transcript.pyannote[261].start 2759.70096875
transcript.pyannote[261].end 2760.51096875
transcript.pyannote[262].speaker SPEAKER_03
transcript.pyannote[262].start 2760.89909375
transcript.pyannote[262].end 2761.81034375
transcript.pyannote[263].speaker SPEAKER_03
transcript.pyannote[263].start 2763.22784375
transcript.pyannote[263].end 2770.41659375
transcript.pyannote[264].speaker SPEAKER_03
transcript.pyannote[264].start 2774.82096875
transcript.pyannote[264].end 2775.14159375
transcript.pyannote[265].speaker SPEAKER_03
transcript.pyannote[265].start 2776.94721875
transcript.pyannote[265].end 2777.90909375
transcript.pyannote[266].speaker SPEAKER_03
transcript.pyannote[266].start 2778.92159375
transcript.pyannote[266].end 2783.05596875
transcript.pyannote[267].speaker SPEAKER_03
transcript.pyannote[267].start 2787.94971875
transcript.pyannote[267].end 2791.91534375
transcript.pyannote[268].speaker SPEAKER_03
transcript.pyannote[268].start 2794.44659375
transcript.pyannote[268].end 2796.47159375
transcript.pyannote[269].speaker SPEAKER_03
transcript.pyannote[269].start 2797.43346875
transcript.pyannote[269].end 2800.03221875
transcript.pyannote[270].speaker SPEAKER_03
transcript.pyannote[270].start 2800.58909375
transcript.pyannote[270].end 2808.87471875
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 2817.12659375
transcript.pyannote[271].end 2817.78471875
transcript.pyannote[272].speaker SPEAKER_03
transcript.pyannote[272].start 2819.64096875
transcript.pyannote[272].end 2826.15471875
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 2826.71159375
transcript.pyannote[273].end 2829.39471875
transcript.pyannote[274].speaker SPEAKER_03
transcript.pyannote[274].start 2831.40284375
transcript.pyannote[274].end 2843.11409375
transcript.pyannote[275].speaker SPEAKER_03
transcript.pyannote[275].start 2843.29971875
transcript.pyannote[275].end 2843.55284375
transcript.pyannote[276].speaker SPEAKER_03
transcript.pyannote[276].start 2844.64971875
transcript.pyannote[276].end 2850.25221875
transcript.pyannote[277].speaker SPEAKER_03
transcript.pyannote[277].start 2851.83846875
transcript.pyannote[277].end 2853.18846875
transcript.pyannote[278].speaker SPEAKER_03
transcript.pyannote[278].start 2856.63096875
transcript.pyannote[278].end 2866.03034375
transcript.pyannote[279].speaker SPEAKER_03
transcript.pyannote[279].start 2866.06409375
transcript.pyannote[279].end 2870.82284375
transcript.pyannote[280].speaker SPEAKER_03
transcript.pyannote[280].start 2871.48096875
transcript.pyannote[280].end 2874.88971875
transcript.pyannote[281].speaker SPEAKER_03
transcript.pyannote[281].start 2875.15971875
transcript.pyannote[281].end 2887.90034375
transcript.pyannote[282].speaker SPEAKER_03
transcript.pyannote[282].start 2887.96784375
transcript.pyannote[282].end 2888.03534375
transcript.pyannote[283].speaker SPEAKER_03
transcript.pyannote[283].start 2888.59221875
transcript.pyannote[283].end 2890.54971875
transcript.pyannote[284].speaker SPEAKER_03
transcript.pyannote[284].start 2894.32971875
transcript.pyannote[284].end 2904.64034375
transcript.pyannote[285].speaker SPEAKER_03
transcript.pyannote[285].start 2905.38284375
transcript.pyannote[285].end 2926.03784375
transcript.pyannote[286].speaker SPEAKER_03
transcript.pyannote[286].start 2926.44284375
transcript.pyannote[286].end 2927.60721875
transcript.pyannote[287].speaker SPEAKER_03
transcript.pyannote[287].start 2928.04596875
transcript.pyannote[287].end 2946.77721875
transcript.pyannote[288].speaker SPEAKER_03
transcript.pyannote[288].start 2949.13971875
transcript.pyannote[288].end 2963.68596875
transcript.pyannote[289].speaker SPEAKER_03
transcript.pyannote[289].start 2963.82096875
transcript.pyannote[289].end 2979.12659375
transcript.pyannote[290].speaker SPEAKER_03
transcript.pyannote[290].start 2980.24034375
transcript.pyannote[290].end 2988.08721875
transcript.pyannote[291].speaker SPEAKER_03
transcript.pyannote[291].start 2989.04909375
transcript.pyannote[291].end 3005.01284375
transcript.pyannote[292].speaker SPEAKER_03
transcript.pyannote[292].start 3005.24909375
transcript.pyannote[292].end 3015.07034375
transcript.pyannote[293].speaker SPEAKER_03
transcript.pyannote[293].start 3015.89721875
transcript.pyannote[293].end 3039.38721875
transcript.pyannote[294].speaker SPEAKER_03
transcript.pyannote[294].start 3040.88909375
transcript.pyannote[294].end 3044.04471875
transcript.pyannote[295].speaker SPEAKER_03
transcript.pyannote[295].start 3045.00659375
transcript.pyannote[295].end 3058.03409375
transcript.pyannote[296].speaker SPEAKER_03
transcript.pyannote[296].start 3058.77659375
transcript.pyannote[296].end 3063.75471875
transcript.pyannote[297].speaker SPEAKER_03
transcript.pyannote[297].start 3063.99096875
transcript.pyannote[297].end 3065.96534375
transcript.pyannote[298].speaker SPEAKER_03
transcript.pyannote[298].start 3068.66534375
transcript.pyannote[298].end 3083.56596875
transcript.pyannote[299].speaker SPEAKER_03
transcript.pyannote[299].start 3083.97096875
transcript.pyannote[299].end 3088.18971875
transcript.pyannote[300].speaker SPEAKER_03
transcript.pyannote[300].start 3089.60721875
transcript.pyannote[300].end 3090.13034375
transcript.pyannote[301].speaker SPEAKER_03
transcript.pyannote[301].start 3091.71659375
transcript.pyannote[301].end 3097.25159375
transcript.pyannote[302].speaker SPEAKER_03
transcript.pyannote[302].start 3098.28096875
transcript.pyannote[302].end 3112.00034375
transcript.pyannote[303].speaker SPEAKER_03
transcript.pyannote[303].start 3112.79346875
transcript.pyannote[303].end 3114.53159375
transcript.pyannote[304].speaker SPEAKER_03
transcript.pyannote[304].start 3115.08846875
transcript.pyannote[304].end 3116.06721875
transcript.pyannote[305].speaker SPEAKER_03
transcript.pyannote[305].start 3116.52284375
transcript.pyannote[305].end 3132.23346875
transcript.pyannote[306].speaker SPEAKER_03
transcript.pyannote[306].start 3134.29221875
transcript.pyannote[306].end 3135.72659375
transcript.pyannote[307].speaker SPEAKER_03
transcript.pyannote[307].start 3136.18221875
transcript.pyannote[307].end 3147.43784375
transcript.pyannote[308].speaker SPEAKER_03
transcript.pyannote[308].start 3147.80909375
transcript.pyannote[308].end 3153.10784375
transcript.pyannote[309].speaker SPEAKER_03
transcript.pyannote[309].start 3154.37346875
transcript.pyannote[309].end 3158.47409375
transcript.pyannote[310].speaker SPEAKER_03
transcript.pyannote[310].start 3159.25034375
transcript.pyannote[310].end 3172.76721875
transcript.pyannote[311].speaker SPEAKER_03
transcript.pyannote[311].start 3173.10471875
transcript.pyannote[311].end 3183.92159375
transcript.pyannote[312].speaker SPEAKER_03
transcript.pyannote[312].start 3185.37284375
transcript.pyannote[312].end 3188.98409375
transcript.pyannote[313].speaker SPEAKER_03
transcript.pyannote[313].start 3189.27096875
transcript.pyannote[313].end 3207.49596875
transcript.pyannote[314].speaker SPEAKER_03
transcript.pyannote[314].start 3208.40721875
transcript.pyannote[314].end 3209.53784375
transcript.pyannote[315].speaker SPEAKER_03
transcript.pyannote[315].start 3209.99346875
transcript.pyannote[315].end 3218.38034375
transcript.pyannote[316].speaker SPEAKER_03
transcript.pyannote[316].start 3218.56596875
transcript.pyannote[316].end 3219.46034375
transcript.pyannote[317].speaker SPEAKER_03
transcript.pyannote[317].start 3219.93284375
transcript.pyannote[317].end 3263.70659375
transcript.pyannote[318].speaker SPEAKER_03
transcript.pyannote[318].start 3264.70221875
transcript.pyannote[318].end 3273.61221875
transcript.pyannote[319].speaker SPEAKER_03
transcript.pyannote[319].start 3273.91596875
transcript.pyannote[319].end 3278.86034375
transcript.pyannote[320].speaker SPEAKER_03
transcript.pyannote[320].start 3280.64909375
transcript.pyannote[320].end 3280.98659375
transcript.pyannote[321].speaker SPEAKER_03
transcript.pyannote[321].start 3282.04971875
transcript.pyannote[321].end 3283.31534375
transcript.pyannote[322].speaker SPEAKER_03
transcript.pyannote[322].start 3283.63596875
transcript.pyannote[322].end 3285.40784375
transcript.pyannote[323].speaker SPEAKER_03
transcript.pyannote[323].start 3286.25159375
transcript.pyannote[323].end 3286.99409375
transcript.pyannote[324].speaker SPEAKER_03
transcript.pyannote[324].start 3287.60159375
transcript.pyannote[324].end 3290.16659375
transcript.pyannote[325].speaker SPEAKER_03
transcript.pyannote[325].start 3290.92596875
transcript.pyannote[325].end 3292.73159375
transcript.pyannote[326].speaker SPEAKER_03
transcript.pyannote[326].start 3294.04784375
transcript.pyannote[326].end 3300.46034375
transcript.pyannote[327].speaker SPEAKER_03
transcript.pyannote[327].start 3301.06784375
transcript.pyannote[327].end 3312.88034375
transcript.pyannote[328].speaker SPEAKER_03
transcript.pyannote[328].start 3313.67346875
transcript.pyannote[328].end 3322.49909375
transcript.pyannote[329].speaker SPEAKER_03
transcript.pyannote[329].start 3323.52846875
transcript.pyannote[329].end 3330.17721875
transcript.pyannote[330].speaker SPEAKER_03
transcript.pyannote[330].start 3330.39659375
transcript.pyannote[330].end 3333.01221875
transcript.pyannote[331].speaker SPEAKER_03
transcript.pyannote[331].start 3333.46784375
transcript.pyannote[331].end 3346.22534375
transcript.pyannote[332].speaker SPEAKER_03
transcript.pyannote[332].start 3350.52846875
transcript.pyannote[332].end 3351.23721875
transcript.pyannote[333].speaker SPEAKER_03
transcript.pyannote[333].start 3353.95409375
transcript.pyannote[333].end 3355.84409375
transcript.pyannote[334].speaker SPEAKER_03
transcript.pyannote[334].start 3357.49784375
transcript.pyannote[334].end 3358.49346875
transcript.pyannote[335].speaker SPEAKER_03
transcript.pyannote[335].start 3361.22721875
transcript.pyannote[335].end 3361.66596875
transcript.pyannote[336].speaker SPEAKER_03
transcript.pyannote[336].start 3362.72909375
transcript.pyannote[336].end 3363.74159375
transcript.pyannote[337].speaker SPEAKER_03
transcript.pyannote[337].start 3364.43346875
transcript.pyannote[337].end 3378.32159375
transcript.pyannote[338].speaker SPEAKER_03
transcript.pyannote[338].start 3380.41409375
transcript.pyannote[338].end 3383.70471875
transcript.pyannote[339].speaker SPEAKER_03
transcript.pyannote[339].start 3384.51471875
transcript.pyannote[339].end 3389.76284375
transcript.pyannote[340].speaker SPEAKER_03
transcript.pyannote[340].start 3391.07909375
transcript.pyannote[340].end 3392.31096875
transcript.pyannote[341].speaker SPEAKER_03
transcript.pyannote[341].start 3393.34034375
transcript.pyannote[341].end 3406.13159375
transcript.pyannote[342].speaker SPEAKER_03
transcript.pyannote[342].start 3406.78971875
transcript.pyannote[342].end 3415.34534375
transcript.pyannote[343].speaker SPEAKER_03
transcript.pyannote[343].start 3415.46346875
transcript.pyannote[343].end 3416.54346875
transcript.pyannote[344].speaker SPEAKER_03
transcript.pyannote[344].start 3417.85971875
transcript.pyannote[344].end 3418.95659375
transcript.pyannote[345].speaker SPEAKER_03
transcript.pyannote[345].start 3419.46284375
transcript.pyannote[345].end 3438.98721875
transcript.pyannote[346].speaker SPEAKER_03
transcript.pyannote[346].start 3439.72971875
transcript.pyannote[346].end 3445.75409375
transcript.pyannote[347].speaker SPEAKER_03
transcript.pyannote[347].start 3445.80471875
transcript.pyannote[347].end 3458.69721875
transcript.pyannote[348].speaker SPEAKER_03
transcript.pyannote[348].start 3459.00096875
transcript.pyannote[348].end 3467.50596875
transcript.pyannote[349].speaker SPEAKER_03
transcript.pyannote[349].start 3468.02909375
transcript.pyannote[349].end 3469.51409375
transcript.pyannote[350].speaker SPEAKER_03
transcript.pyannote[350].start 3470.34096875
transcript.pyannote[350].end 3470.61096875
transcript.pyannote[351].speaker SPEAKER_03
transcript.pyannote[351].start 3470.86409375
transcript.pyannote[351].end 3513.99659375
transcript.pyannote[352].speaker SPEAKER_03
transcript.pyannote[352].start 3517.89471875
transcript.pyannote[352].end 3522.60284375
transcript.pyannote[353].speaker SPEAKER_03
transcript.pyannote[353].start 3522.83909375
transcript.pyannote[353].end 3534.66846875
transcript.pyannote[354].speaker SPEAKER_03
transcript.pyannote[354].start 3535.91721875
transcript.pyannote[354].end 3541.04721875
transcript.pyannote[355].speaker SPEAKER_03
transcript.pyannote[355].start 3541.57034375
transcript.pyannote[355].end 3557.36534375
transcript.pyannote[356].speaker SPEAKER_03
transcript.pyannote[356].start 3558.14159375
transcript.pyannote[356].end 3579.21846875
transcript.pyannote[357].speaker SPEAKER_03
transcript.pyannote[357].start 3580.01159375
transcript.pyannote[357].end 3586.52534375
transcript.pyannote[358].speaker SPEAKER_03
transcript.pyannote[358].start 3588.75284375
transcript.pyannote[358].end 3591.92534375
transcript.pyannote[359].speaker SPEAKER_03
transcript.pyannote[359].start 3593.12346875
transcript.pyannote[359].end 3595.87409375
transcript.pyannote[360].speaker SPEAKER_03
transcript.pyannote[360].start 3598.94534375
transcript.pyannote[360].end 3603.95721875
transcript.pyannote[361].speaker SPEAKER_03
transcript.pyannote[361].start 3604.83471875
transcript.pyannote[361].end 3606.45471875
transcript.pyannote[362].speaker SPEAKER_03
transcript.pyannote[362].start 3607.72034375
transcript.pyannote[362].end 3610.50471875
transcript.pyannote[363].speaker SPEAKER_03
transcript.pyannote[363].start 3610.74096875
transcript.pyannote[363].end 3611.63534375
transcript.pyannote[364].speaker SPEAKER_03
transcript.pyannote[364].start 3612.83346875
transcript.pyannote[364].end 3628.24034375
transcript.pyannote[365].speaker SPEAKER_03
transcript.pyannote[365].start 3629.18534375
transcript.pyannote[365].end 3634.21409375
transcript.pyannote[366].speaker SPEAKER_03
transcript.pyannote[366].start 3635.22659375
transcript.pyannote[366].end 3636.81284375
transcript.pyannote[367].speaker SPEAKER_03
transcript.pyannote[367].start 3637.08284375
transcript.pyannote[367].end 3638.34846875
transcript.pyannote[368].speaker SPEAKER_03
transcript.pyannote[368].start 3639.63096875
transcript.pyannote[368].end 3641.06534375
transcript.pyannote[369].speaker SPEAKER_03
transcript.pyannote[369].start 3644.65971875
transcript.pyannote[369].end 3665.02784375
transcript.pyannote[370].speaker SPEAKER_03
transcript.pyannote[370].start 3665.70284375
transcript.pyannote[370].end 3667.45784375
transcript.pyannote[371].speaker SPEAKER_03
transcript.pyannote[371].start 3670.37721875
transcript.pyannote[371].end 3671.79471875
transcript.pyannote[372].speaker SPEAKER_03
transcript.pyannote[372].start 3672.08159375
transcript.pyannote[372].end 3673.24596875
transcript.pyannote[373].speaker SPEAKER_03
transcript.pyannote[373].start 3673.78596875
transcript.pyannote[373].end 3674.57909375
transcript.pyannote[374].speaker SPEAKER_03
transcript.pyannote[374].start 3677.78534375
transcript.pyannote[374].end 3679.01721875
transcript.pyannote[375].speaker SPEAKER_03
transcript.pyannote[375].start 3680.23221875
transcript.pyannote[375].end 3681.39659375
transcript.pyannote[376].speaker SPEAKER_03
transcript.pyannote[376].start 3682.98284375
transcript.pyannote[376].end 3689.29409375
transcript.pyannote[377].speaker SPEAKER_03
transcript.pyannote[377].start 3690.05346875
transcript.pyannote[377].end 3696.56721875
transcript.pyannote[378].speaker SPEAKER_03
transcript.pyannote[378].start 3697.44471875
transcript.pyannote[378].end 3698.62596875
transcript.pyannote[379].speaker SPEAKER_03
transcript.pyannote[379].start 3701.17409375
transcript.pyannote[379].end 3701.62971875
transcript.pyannote[380].speaker SPEAKER_03
transcript.pyannote[380].start 3704.04284375
transcript.pyannote[380].end 3721.57596875
transcript.pyannote[381].speaker SPEAKER_03
transcript.pyannote[381].start 3721.93034375
transcript.pyannote[381].end 3734.21534375
transcript.pyannote[382].speaker SPEAKER_03
transcript.pyannote[382].start 3734.45159375
transcript.pyannote[382].end 3738.82221875
transcript.pyannote[383].speaker SPEAKER_03
transcript.pyannote[383].start 3740.13846875
transcript.pyannote[383].end 3745.38659375
transcript.pyannote[384].speaker SPEAKER_03
transcript.pyannote[384].start 3746.01096875
transcript.pyannote[384].end 3749.48721875
transcript.pyannote[385].speaker SPEAKER_03
transcript.pyannote[385].start 3750.16221875
transcript.pyannote[385].end 3753.87471875
transcript.pyannote[386].speaker SPEAKER_03
transcript.pyannote[386].start 3754.43159375
transcript.pyannote[386].end 3760.94534375
transcript.pyannote[387].speaker SPEAKER_03
transcript.pyannote[387].start 3761.16471875
transcript.pyannote[387].end 3762.59909375
transcript.pyannote[388].speaker SPEAKER_03
transcript.pyannote[388].start 3763.54409375
transcript.pyannote[388].end 3772.63971875
transcript.pyannote[389].speaker SPEAKER_03
transcript.pyannote[389].start 3773.39909375
transcript.pyannote[389].end 3774.47909375
transcript.pyannote[390].speaker SPEAKER_03
transcript.pyannote[390].start 3775.55909375
transcript.pyannote[390].end 3777.02721875
transcript.pyannote[391].speaker SPEAKER_03
transcript.pyannote[391].start 3777.61784375
transcript.pyannote[391].end 3811.55346875
transcript.pyannote[392].speaker SPEAKER_03
transcript.pyannote[392].start 3812.85284375
transcript.pyannote[392].end 3817.15596875
transcript.pyannote[393].speaker SPEAKER_03
transcript.pyannote[393].start 3817.45971875
transcript.pyannote[393].end 3820.31159375
transcript.pyannote[394].speaker SPEAKER_03
transcript.pyannote[394].start 3822.79221875
transcript.pyannote[394].end 3826.09971875
transcript.pyannote[395].speaker SPEAKER_03
transcript.pyannote[395].start 3828.10784375
transcript.pyannote[395].end 3830.84159375
transcript.pyannote[396].speaker SPEAKER_03
transcript.pyannote[396].start 3830.97659375
transcript.pyannote[396].end 3832.90034375
transcript.pyannote[397].speaker SPEAKER_03
transcript.pyannote[397].start 3833.59221875
transcript.pyannote[397].end 3837.59159375
transcript.pyannote[398].speaker SPEAKER_03
transcript.pyannote[398].start 3838.33409375
transcript.pyannote[398].end 3842.87346875
transcript.pyannote[399].speaker SPEAKER_03
transcript.pyannote[399].start 3844.56096875
transcript.pyannote[399].end 3849.40409375
transcript.pyannote[400].speaker SPEAKER_03
transcript.pyannote[400].start 3851.00721875
transcript.pyannote[400].end 3852.03659375
transcript.pyannote[401].speaker SPEAKER_03
transcript.pyannote[401].start 3852.93096875
transcript.pyannote[401].end 3853.96034375
transcript.pyannote[402].speaker SPEAKER_03
transcript.pyannote[402].start 3854.33159375
transcript.pyannote[402].end 3855.81659375
transcript.pyannote[403].speaker SPEAKER_03
transcript.pyannote[403].start 3856.98096875
transcript.pyannote[403].end 3858.26346875
transcript.pyannote[404].speaker SPEAKER_03
transcript.pyannote[404].start 3858.56721875
transcript.pyannote[404].end 3859.49534375
transcript.pyannote[405].speaker SPEAKER_03
transcript.pyannote[405].start 3860.44034375
transcript.pyannote[405].end 3869.19846875
transcript.pyannote[406].speaker SPEAKER_03
transcript.pyannote[406].start 3870.22784375
transcript.pyannote[406].end 3883.60971875
transcript.pyannote[407].speaker SPEAKER_03
transcript.pyannote[407].start 3884.67284375
transcript.pyannote[407].end 3886.20846875
transcript.pyannote[408].speaker SPEAKER_03
transcript.pyannote[408].start 3888.52034375
transcript.pyannote[408].end 3889.71846875
transcript.pyannote[409].speaker SPEAKER_03
transcript.pyannote[409].start 3892.58721875
transcript.pyannote[409].end 3896.02971875
transcript.pyannote[410].speaker SPEAKER_03
transcript.pyannote[410].start 3897.09284375
transcript.pyannote[410].end 3904.45034375
transcript.pyannote[411].speaker SPEAKER_03
transcript.pyannote[411].start 3905.86784375
transcript.pyannote[411].end 3918.77721875
transcript.pyannote[412].speaker SPEAKER_03
transcript.pyannote[412].start 3919.97534375
transcript.pyannote[412].end 3921.89909375
transcript.pyannote[413].speaker SPEAKER_03
transcript.pyannote[413].start 3923.50221875
transcript.pyannote[413].end 3925.03784375
transcript.pyannote[414].speaker SPEAKER_03
transcript.pyannote[414].start 3926.16846875
transcript.pyannote[414].end 3928.12596875
transcript.pyannote[415].speaker SPEAKER_03
transcript.pyannote[415].start 3929.47596875
transcript.pyannote[415].end 3937.03596875
transcript.pyannote[416].speaker SPEAKER_03
transcript.pyannote[416].start 3938.30159375
transcript.pyannote[416].end 3944.51159375
transcript.pyannote[417].speaker SPEAKER_03
transcript.pyannote[417].start 3944.89971875
transcript.pyannote[417].end 3959.90159375
transcript.pyannote[418].speaker SPEAKER_03
transcript.pyannote[418].start 3962.31471875
transcript.pyannote[418].end 3963.24284375
transcript.pyannote[419].speaker SPEAKER_03
transcript.pyannote[419].start 3966.56721875
transcript.pyannote[419].end 3969.82409375
transcript.pyannote[420].speaker SPEAKER_03
transcript.pyannote[420].start 3970.75221875
transcript.pyannote[420].end 3971.86596875
transcript.pyannote[421].speaker SPEAKER_03
transcript.pyannote[421].start 3971.96721875
transcript.pyannote[421].end 3972.01784375
transcript.pyannote[422].speaker SPEAKER_03
transcript.pyannote[422].start 3972.13596875
transcript.pyannote[422].end 3987.74534375
transcript.pyannote[423].speaker SPEAKER_03
transcript.pyannote[423].start 3988.99409375
transcript.pyannote[423].end 3992.18346875
transcript.pyannote[424].speaker SPEAKER_03
transcript.pyannote[424].start 3992.82471875
transcript.pyannote[424].end 3995.38971875
transcript.pyannote[425].speaker SPEAKER_03
transcript.pyannote[425].start 3995.44034375
transcript.pyannote[425].end 3999.03471875
transcript.pyannote[426].speaker SPEAKER_03
transcript.pyannote[426].start 3999.87846875
transcript.pyannote[426].end 4002.79784375
transcript.pyannote[427].speaker SPEAKER_03
transcript.pyannote[427].start 4004.87346875
transcript.pyannote[427].end 4008.75471875
transcript.pyannote[428].speaker SPEAKER_03
transcript.pyannote[428].start 4009.27784375
transcript.pyannote[428].end 4018.93034375
transcript.pyannote[429].speaker SPEAKER_03
transcript.pyannote[429].start 4020.49971875
transcript.pyannote[429].end 4023.65534375
transcript.pyannote[430].speaker SPEAKER_03
transcript.pyannote[430].start 4025.08971875
transcript.pyannote[430].end 4026.05159375
transcript.pyannote[431].speaker SPEAKER_03
transcript.pyannote[431].start 4026.96284375
transcript.pyannote[431].end 4028.39721875
transcript.pyannote[432].speaker SPEAKER_03
transcript.pyannote[432].start 4028.93721875
transcript.pyannote[432].end 4032.75096875
transcript.pyannote[433].speaker SPEAKER_03
transcript.pyannote[433].start 4033.54409375
transcript.pyannote[433].end 4037.10471875
transcript.pyannote[434].speaker SPEAKER_03
transcript.pyannote[434].start 4037.81346875
transcript.pyannote[434].end 4038.97784375
transcript.pyannote[435].speaker SPEAKER_03
transcript.pyannote[435].start 4039.95659375
transcript.pyannote[435].end 4041.52596875
transcript.pyannote[436].speaker SPEAKER_03
transcript.pyannote[436].start 4043.12909375
transcript.pyannote[436].end 4045.39034375
transcript.pyannote[437].speaker SPEAKER_03
transcript.pyannote[437].start 4046.31846875
transcript.pyannote[437].end 4063.68284375
transcript.pyannote[438].speaker SPEAKER_03
transcript.pyannote[438].start 4064.45909375
transcript.pyannote[438].end 4069.50471875
transcript.pyannote[439].speaker SPEAKER_03
transcript.pyannote[439].start 4070.53409375
transcript.pyannote[439].end 4077.63846875
transcript.pyannote[440].speaker SPEAKER_03
transcript.pyannote[440].start 4078.26284375
transcript.pyannote[440].end 4079.10659375
transcript.pyannote[441].speaker SPEAKER_03
transcript.pyannote[441].start 4080.11909375
transcript.pyannote[441].end 4087.54409375
transcript.pyannote[442].speaker SPEAKER_03
transcript.pyannote[442].start 4087.94909375
transcript.pyannote[442].end 4093.16346875
transcript.pyannote[443].speaker SPEAKER_03
transcript.pyannote[443].start 4094.12534375
transcript.pyannote[443].end 4095.22221875
transcript.pyannote[444].speaker SPEAKER_03
transcript.pyannote[444].start 4095.74534375
transcript.pyannote[444].end 4101.90471875
transcript.pyannote[445].speaker SPEAKER_03
transcript.pyannote[445].start 4102.86659375
transcript.pyannote[445].end 4104.23346875
transcript.pyannote[446].speaker SPEAKER_03
transcript.pyannote[446].start 4105.65096875
transcript.pyannote[446].end 4110.34221875
transcript.pyannote[447].speaker SPEAKER_03
transcript.pyannote[447].start 4110.88221875
transcript.pyannote[447].end 4116.80534375
transcript.pyannote[448].speaker SPEAKER_03
transcript.pyannote[448].start 4118.08784375
transcript.pyannote[448].end 4121.53034375
transcript.pyannote[449].speaker SPEAKER_03
transcript.pyannote[449].start 4122.05346875
transcript.pyannote[449].end 4123.33596875
transcript.pyannote[450].speaker SPEAKER_03
transcript.pyannote[450].start 4123.55534375
transcript.pyannote[450].end 4130.50784375
transcript.pyannote[451].speaker SPEAKER_03
transcript.pyannote[451].start 4132.17846875
transcript.pyannote[451].end 4134.81096875
transcript.pyannote[452].speaker SPEAKER_03
transcript.pyannote[452].start 4136.46471875
transcript.pyannote[452].end 4144.98659375
transcript.pyannote[453].speaker SPEAKER_03
transcript.pyannote[453].start 4145.67846875
transcript.pyannote[453].end 4157.98034375
transcript.pyannote[454].speaker SPEAKER_03
transcript.pyannote[454].start 4158.94221875
transcript.pyannote[454].end 4169.11784375
transcript.pyannote[455].speaker SPEAKER_03
transcript.pyannote[455].start 4172.71221875
transcript.pyannote[455].end 4173.92721875
transcript.pyannote[456].speaker SPEAKER_03
transcript.pyannote[456].start 4173.97784375
transcript.pyannote[456].end 4174.12971875
transcript.pyannote[457].speaker SPEAKER_03
transcript.pyannote[457].start 4174.39971875
transcript.pyannote[457].end 4203.39096875
transcript.pyannote[458].speaker SPEAKER_03
transcript.pyannote[458].start 4204.75784375
transcript.pyannote[458].end 4206.29346875
transcript.pyannote[459].speaker SPEAKER_03
transcript.pyannote[459].start 4207.71096875
transcript.pyannote[459].end 4212.55409375
transcript.pyannote[460].speaker SPEAKER_03
transcript.pyannote[460].start 4214.35971875
transcript.pyannote[460].end 4228.46721875
transcript.pyannote[461].speaker SPEAKER_03
transcript.pyannote[461].start 4230.34034375
transcript.pyannote[461].end 4244.24534375
transcript.pyannote[462].speaker SPEAKER_03
transcript.pyannote[462].start 4246.35471875
transcript.pyannote[462].end 4250.65784375
transcript.pyannote[463].speaker SPEAKER_03
transcript.pyannote[463].start 4250.96159375
transcript.pyannote[463].end 4261.08659375
transcript.pyannote[464].speaker SPEAKER_03
transcript.pyannote[464].start 4261.71096875
transcript.pyannote[464].end 4267.70159375
transcript.pyannote[465].speaker SPEAKER_03
transcript.pyannote[465].start 4268.37659375
transcript.pyannote[465].end 4271.27909375
transcript.pyannote[466].speaker SPEAKER_03
transcript.pyannote[466].start 4271.78534375
transcript.pyannote[466].end 4275.34596875
transcript.pyannote[467].speaker SPEAKER_03
transcript.pyannote[467].start 4276.71284375
transcript.pyannote[467].end 4277.75909375
transcript.pyannote[468].speaker SPEAKER_03
transcript.pyannote[468].start 4279.46346875
transcript.pyannote[468].end 4279.91909375
transcript.pyannote[469].speaker SPEAKER_03
transcript.pyannote[469].start 4281.03284375
transcript.pyannote[469].end 4283.37846875
transcript.pyannote[470].speaker SPEAKER_03
transcript.pyannote[470].start 4284.54284375
transcript.pyannote[470].end 4286.75346875
transcript.pyannote[471].speaker SPEAKER_03
transcript.pyannote[471].start 4287.39471875
transcript.pyannote[471].end 4289.30159375
transcript.pyannote[472].speaker SPEAKER_03
transcript.pyannote[472].start 4289.92596875
transcript.pyannote[472].end 4290.87096875
transcript.pyannote[473].speaker SPEAKER_03
transcript.pyannote[473].start 4290.97221875
transcript.pyannote[473].end 4299.15659375
transcript.pyannote[474].speaker SPEAKER_03
transcript.pyannote[474].start 4300.28721875
transcript.pyannote[474].end 4301.35034375
transcript.pyannote[475].speaker SPEAKER_03
transcript.pyannote[475].start 4301.72159375
transcript.pyannote[475].end 4311.54284375
transcript.pyannote[476].speaker SPEAKER_03
transcript.pyannote[476].start 4312.77471875
transcript.pyannote[476].end 4314.32721875
transcript.pyannote[477].speaker SPEAKER_03
transcript.pyannote[477].start 4320.89159375
transcript.pyannote[477].end 4324.35096875
transcript.pyannote[478].speaker SPEAKER_03
transcript.pyannote[478].start 4326.19034375
transcript.pyannote[478].end 4328.95784375
transcript.pyannote[479].speaker SPEAKER_03
transcript.pyannote[479].start 4329.49784375
transcript.pyannote[479].end 4330.69596875
transcript.pyannote[480].speaker SPEAKER_03
transcript.pyannote[480].start 4332.67034375
transcript.pyannote[480].end 4335.28596875
transcript.pyannote[481].speaker SPEAKER_03
transcript.pyannote[481].start 4338.22221875
transcript.pyannote[481].end 4339.92659375
transcript.pyannote[482].speaker SPEAKER_03
transcript.pyannote[482].start 4341.27659375
transcript.pyannote[482].end 4344.14534375
transcript.pyannote[483].speaker SPEAKER_03
transcript.pyannote[483].start 4345.30971875
transcript.pyannote[483].end 4349.10659375
transcript.pyannote[484].speaker SPEAKER_03
transcript.pyannote[484].start 4351.94159375
transcript.pyannote[484].end 4365.79596875
transcript.pyannote[485].speaker SPEAKER_03
transcript.pyannote[485].start 4366.38659375
transcript.pyannote[485].end 4368.51284375
transcript.pyannote[486].speaker SPEAKER_03
transcript.pyannote[486].start 4368.61409375
transcript.pyannote[486].end 4370.06534375
transcript.pyannote[487].speaker SPEAKER_03
transcript.pyannote[487].start 4371.33096875
transcript.pyannote[487].end 4374.52034375
transcript.pyannote[488].speaker SPEAKER_03
transcript.pyannote[488].start 4375.31346875
transcript.pyannote[488].end 4375.92096875
transcript.pyannote[489].speaker SPEAKER_03
transcript.pyannote[489].start 4377.77721875
transcript.pyannote[489].end 4380.56159375
transcript.pyannote[490].speaker SPEAKER_03
transcript.pyannote[490].start 4381.60784375
transcript.pyannote[490].end 4382.40096875
transcript.pyannote[491].speaker SPEAKER_03
transcript.pyannote[491].start 4384.47659375
transcript.pyannote[491].end 4384.98284375
transcript.pyannote[492].speaker SPEAKER_03
transcript.pyannote[492].start 4387.59846875
transcript.pyannote[492].end 4388.81346875
transcript.pyannote[493].speaker SPEAKER_03
transcript.pyannote[493].start 4390.38284375
transcript.pyannote[493].end 4398.66846875
transcript.pyannote[494].speaker SPEAKER_03
transcript.pyannote[494].start 4399.54596875
transcript.pyannote[494].end 4414.09221875
transcript.pyannote[495].speaker SPEAKER_03
transcript.pyannote[495].start 4415.03721875
transcript.pyannote[495].end 4417.18034375
transcript.pyannote[496].speaker SPEAKER_03
transcript.pyannote[496].start 4417.68659375
transcript.pyannote[496].end 4430.98409375
transcript.pyannote[497].speaker SPEAKER_03
transcript.pyannote[497].start 4431.89534375
transcript.pyannote[497].end 4437.73409375
transcript.pyannote[498].speaker SPEAKER_03
transcript.pyannote[498].start 4439.38784375
transcript.pyannote[498].end 4440.77159375
transcript.pyannote[499].speaker SPEAKER_03
transcript.pyannote[499].start 4443.53909375
transcript.pyannote[499].end 4446.50909375
transcript.pyannote[500].speaker SPEAKER_03
transcript.pyannote[500].start 4449.24284375
transcript.pyannote[500].end 4452.44909375
transcript.pyannote[501].speaker SPEAKER_03
transcript.pyannote[501].start 4452.90471875
transcript.pyannote[501].end 4456.56659375
transcript.pyannote[502].speaker SPEAKER_03
transcript.pyannote[502].start 4458.50721875
transcript.pyannote[502].end 4459.08096875
transcript.pyannote[503].speaker SPEAKER_03
transcript.pyannote[503].start 4459.31721875
transcript.pyannote[503].end 4460.93721875
transcript.pyannote[504].speaker SPEAKER_03
transcript.pyannote[504].start 4462.10159375
transcript.pyannote[504].end 4462.87784375
transcript.pyannote[505].speaker SPEAKER_03
transcript.pyannote[505].start 4463.46846875
transcript.pyannote[505].end 4466.47221875
transcript.pyannote[506].speaker SPEAKER_03
transcript.pyannote[506].start 4466.96159375
transcript.pyannote[506].end 4473.17159375
transcript.pyannote[507].speaker SPEAKER_03
transcript.pyannote[507].start 4473.81284375
transcript.pyannote[507].end 4484.69721875
transcript.pyannote[508].speaker SPEAKER_03
transcript.pyannote[508].start 4485.27096875
transcript.pyannote[508].end 4486.31721875
transcript.pyannote[509].speaker SPEAKER_03
transcript.pyannote[509].start 4486.95846875
transcript.pyannote[509].end 4493.10096875
transcript.pyannote[510].speaker SPEAKER_03
transcript.pyannote[510].start 4494.56909375
transcript.pyannote[510].end 4496.61096875
transcript.pyannote[511].speaker SPEAKER_03
transcript.pyannote[511].start 4498.80471875
transcript.pyannote[511].end 4500.08721875
transcript.pyannote[512].speaker SPEAKER_06
transcript.pyannote[512].start 4499.90159375
transcript.pyannote[512].end 4506.02721875
transcript.pyannote[513].speaker SPEAKER_07
transcript.pyannote[513].start 4506.02721875
transcript.pyannote[513].end 4507.71471875
transcript.pyannote[514].speaker SPEAKER_06
transcript.pyannote[514].start 4507.71471875
transcript.pyannote[514].end 4507.78221875
transcript.pyannote[515].speaker SPEAKER_07
transcript.pyannote[515].start 4508.67659375
transcript.pyannote[515].end 4512.62534375
transcript.pyannote[516].speaker SPEAKER_07
transcript.pyannote[516].start 4512.89534375
transcript.pyannote[516].end 4516.86096875
transcript.pyannote[517].speaker SPEAKER_07
transcript.pyannote[517].start 4517.04659375
transcript.pyannote[517].end 4524.82596875
transcript.pyannote[518].speaker SPEAKER_07
transcript.pyannote[518].start 4525.28159375
transcript.pyannote[518].end 4533.33096875
transcript.pyannote[519].speaker SPEAKER_07
transcript.pyannote[519].start 4533.75284375
transcript.pyannote[519].end 4542.03846875
transcript.pyannote[520].speaker SPEAKER_08
transcript.pyannote[520].start 4542.03846875
transcript.pyannote[520].end 4545.10971875
transcript.pyannote[521].speaker SPEAKER_08
transcript.pyannote[521].start 4545.83534375
transcript.pyannote[521].end 4548.16409375
transcript.pyannote[522].speaker SPEAKER_08
transcript.pyannote[522].start 4548.26534375
transcript.pyannote[522].end 4549.32846875
transcript.pyannote[523].speaker SPEAKER_08
transcript.pyannote[523].start 4550.54346875
transcript.pyannote[523].end 4550.56034375
transcript.pyannote[524].speaker SPEAKER_08
transcript.pyannote[524].start 4550.57721875
transcript.pyannote[524].end 4550.83034375
transcript.pyannote[525].speaker SPEAKER_08
transcript.pyannote[525].start 4550.84721875
transcript.pyannote[525].end 4558.82909375
transcript.pyannote[526].speaker SPEAKER_08
transcript.pyannote[526].start 4559.11596875
transcript.pyannote[526].end 4567.75596875
transcript.pyannote[527].speaker SPEAKER_08
transcript.pyannote[527].start 4567.97534375
transcript.pyannote[527].end 4571.97471875
transcript.pyannote[528].speaker SPEAKER_09
transcript.pyannote[528].start 4571.97471875
transcript.pyannote[528].end 4579.65284375
transcript.pyannote[529].speaker SPEAKER_03
transcript.pyannote[529].start 4579.04534375
transcript.pyannote[529].end 4579.23096875
transcript.pyannote[530].speaker SPEAKER_03
transcript.pyannote[530].start 4579.43346875
transcript.pyannote[530].end 4580.59784375
transcript.pyannote[531].speaker SPEAKER_09
transcript.pyannote[531].start 4580.59784375
transcript.pyannote[531].end 4581.74534375
transcript.pyannote[532].speaker SPEAKER_03
transcript.pyannote[532].start 4581.42471875
transcript.pyannote[532].end 4582.55534375
transcript.pyannote[533].speaker SPEAKER_09
transcript.pyannote[533].start 4582.55534375
transcript.pyannote[533].end 4582.58909375
transcript.pyannote[534].speaker SPEAKER_09
transcript.pyannote[534].start 4582.62284375
transcript.pyannote[534].end 4584.25971875
transcript.pyannote[535].speaker SPEAKER_03
transcript.pyannote[535].start 4584.36096875
transcript.pyannote[535].end 4587.21284375
transcript.pyannote[536].speaker SPEAKER_09
transcript.pyannote[536].start 4585.08659375
transcript.pyannote[536].end 4585.10346875
transcript.pyannote[537].speaker SPEAKER_09
transcript.pyannote[537].start 4587.21284375
transcript.pyannote[537].end 4588.51221875
transcript.pyannote[538].speaker SPEAKER_03
transcript.pyannote[538].start 4589.49096875
transcript.pyannote[538].end 4591.48221875
transcript.pyannote[539].speaker SPEAKER_03
transcript.pyannote[539].start 4593.62534375
transcript.pyannote[539].end 4597.70909375
transcript.pyannote[540].speaker SPEAKER_03
transcript.pyannote[540].start 4598.31659375
transcript.pyannote[540].end 4599.34596875
transcript.pyannote[541].speaker SPEAKER_03
transcript.pyannote[541].start 4601.62409375
transcript.pyannote[541].end 4603.37909375
transcript.pyannote[542].speaker SPEAKER_03
transcript.pyannote[542].start 4603.66596875
transcript.pyannote[542].end 4605.60659375
transcript.pyannote[543].speaker SPEAKER_03
transcript.pyannote[543].start 4606.06221875
transcript.pyannote[543].end 4607.78346875
transcript.pyannote[544].speaker SPEAKER_03
transcript.pyannote[544].start 4609.25159375
transcript.pyannote[544].end 4614.73596875
transcript.pyannote[545].speaker SPEAKER_03
transcript.pyannote[545].start 4615.59659375
transcript.pyannote[545].end 4622.46471875
transcript.pyannote[546].speaker SPEAKER_03
transcript.pyannote[546].start 4626.39659375
transcript.pyannote[546].end 4627.03784375
transcript.pyannote[547].speaker SPEAKER_03
transcript.pyannote[547].start 4627.84784375
transcript.pyannote[547].end 4629.58596875
transcript.pyannote[548].speaker SPEAKER_03
transcript.pyannote[548].start 4630.10909375
transcript.pyannote[548].end 4631.74596875
transcript.pyannote[549].speaker SPEAKER_03
transcript.pyannote[549].start 4632.35346875
transcript.pyannote[549].end 4633.99034375
transcript.pyannote[550].speaker SPEAKER_03
transcript.pyannote[550].start 4636.53846875
transcript.pyannote[550].end 4640.04846875
transcript.pyannote[551].speaker SPEAKER_03
transcript.pyannote[551].start 4640.60534375
transcript.pyannote[551].end 4647.79409375
transcript.pyannote[552].speaker SPEAKER_03
transcript.pyannote[552].start 4652.62034375
transcript.pyannote[552].end 4653.98721875
transcript.pyannote[553].speaker SPEAKER_03
transcript.pyannote[553].start 4654.76346875
transcript.pyannote[553].end 4656.53534375
transcript.pyannote[554].speaker SPEAKER_03
transcript.pyannote[554].start 4656.88971875
transcript.pyannote[554].end 4657.90221875
transcript.pyannote[555].speaker SPEAKER_03
transcript.pyannote[555].start 4659.35346875
transcript.pyannote[555].end 4680.12659375
transcript.pyannote[556].speaker SPEAKER_03
transcript.pyannote[556].start 4680.93659375
transcript.pyannote[556].end 4681.78034375
transcript.pyannote[557].speaker SPEAKER_03
transcript.pyannote[557].start 4681.86471875
transcript.pyannote[557].end 4684.93596875
transcript.pyannote[558].speaker SPEAKER_03
transcript.pyannote[558].start 4685.64471875
transcript.pyannote[558].end 4688.49659375
transcript.pyannote[559].speaker SPEAKER_03
transcript.pyannote[559].start 4689.37409375
transcript.pyannote[559].end 4690.62284375
transcript.pyannote[560].speaker SPEAKER_03
transcript.pyannote[560].start 4691.61846875
transcript.pyannote[560].end 4692.52971875
transcript.pyannote[561].speaker SPEAKER_03
transcript.pyannote[561].start 4693.01909375
transcript.pyannote[561].end 4694.11596875
transcript.pyannote[562].speaker SPEAKER_03
transcript.pyannote[562].start 4694.65596875
transcript.pyannote[562].end 4695.11159375
transcript.pyannote[563].speaker SPEAKER_03
transcript.pyannote[563].start 4695.85409375
transcript.pyannote[563].end 4702.26659375
transcript.pyannote[564].speaker SPEAKER_03
transcript.pyannote[564].start 4702.73909375
transcript.pyannote[564].end 4707.66659375
transcript.pyannote[565].speaker SPEAKER_03
transcript.pyannote[565].start 4708.08846875
transcript.pyannote[565].end 4718.14596875
transcript.pyannote[566].speaker SPEAKER_03
transcript.pyannote[566].start 4719.47909375
transcript.pyannote[566].end 4725.41909375
transcript.pyannote[567].speaker SPEAKER_03
transcript.pyannote[567].start 4726.26284375
transcript.pyannote[567].end 4727.64659375
transcript.pyannote[568].speaker SPEAKER_06
transcript.pyannote[568].start 4727.59596875
transcript.pyannote[568].end 4734.66659375
transcript.pyannote[569].speaker SPEAKER_03
transcript.pyannote[569].start 4733.55284375
transcript.pyannote[569].end 4735.89846875
transcript.pyannote[570].speaker SPEAKER_07
transcript.pyannote[570].start 4736.35409375
transcript.pyannote[570].end 4737.56909375
transcript.pyannote[571].speaker SPEAKER_03
transcript.pyannote[571].start 4737.56909375
transcript.pyannote[571].end 4739.66159375
transcript.pyannote[572].speaker SPEAKER_07
transcript.pyannote[572].start 4737.58596875
transcript.pyannote[572].end 4738.53096875
transcript.pyannote[573].speaker SPEAKER_07
transcript.pyannote[573].start 4738.73346875
transcript.pyannote[573].end 4741.58534375
transcript.pyannote[574].speaker SPEAKER_03
transcript.pyannote[574].start 4740.11721875
transcript.pyannote[574].end 4741.72034375
transcript.pyannote[575].speaker SPEAKER_07
transcript.pyannote[575].start 4741.68659375
transcript.pyannote[575].end 4742.37846875
transcript.pyannote[576].speaker SPEAKER_03
transcript.pyannote[576].start 4743.50909375
transcript.pyannote[576].end 4747.05284375
transcript.pyannote[577].speaker SPEAKER_03
transcript.pyannote[577].start 4747.81221875
transcript.pyannote[577].end 4758.84846875
transcript.pyannote[578].speaker SPEAKER_03
transcript.pyannote[578].start 4760.14784375
transcript.pyannote[578].end 4760.38409375
transcript.pyannote[579].speaker SPEAKER_03
transcript.pyannote[579].start 4760.78909375
transcript.pyannote[579].end 4761.70034375
transcript.pyannote[580].speaker SPEAKER_03
transcript.pyannote[580].start 4762.66221875
transcript.pyannote[580].end 4766.76284375
transcript.pyannote[581].speaker SPEAKER_03
transcript.pyannote[581].start 4767.77534375
transcript.pyannote[581].end 4771.82534375
transcript.pyannote[582].speaker SPEAKER_03
transcript.pyannote[582].start 4772.56784375
transcript.pyannote[582].end 4777.39409375
transcript.pyannote[583].speaker SPEAKER_03
transcript.pyannote[583].start 4778.81159375
transcript.pyannote[583].end 4779.90846875
transcript.pyannote[584].speaker SPEAKER_03
transcript.pyannote[584].start 4780.54971875
transcript.pyannote[584].end 4782.08534375
transcript.pyannote[585].speaker SPEAKER_03
transcript.pyannote[585].start 4783.60409375
transcript.pyannote[585].end 4784.19471875
transcript.pyannote[586].speaker SPEAKER_03
transcript.pyannote[586].start 4784.75159375
transcript.pyannote[586].end 4790.30346875
transcript.pyannote[587].speaker SPEAKER_03
transcript.pyannote[587].start 4791.28221875
transcript.pyannote[587].end 4800.37784375
transcript.pyannote[588].speaker SPEAKER_03
transcript.pyannote[588].start 4801.20471875
transcript.pyannote[588].end 4803.51659375
transcript.pyannote[589].speaker SPEAKER_03
transcript.pyannote[589].start 4805.65971875
transcript.pyannote[589].end 4807.68471875
transcript.pyannote[590].speaker SPEAKER_03
transcript.pyannote[590].start 4808.17409375
transcript.pyannote[590].end 4810.94159375
transcript.pyannote[591].speaker SPEAKER_03
transcript.pyannote[591].start 4812.56159375
transcript.pyannote[591].end 4815.17721875
transcript.pyannote[592].speaker SPEAKER_03
transcript.pyannote[592].start 4816.29096875
transcript.pyannote[592].end 4816.76346875
transcript.pyannote[593].speaker SPEAKER_03
transcript.pyannote[593].start 4818.50159375
transcript.pyannote[593].end 4823.17596875
transcript.pyannote[594].speaker SPEAKER_03
transcript.pyannote[594].start 4824.00284375
transcript.pyannote[594].end 4825.77471875
transcript.pyannote[595].speaker SPEAKER_03
transcript.pyannote[595].start 4826.28096875
transcript.pyannote[595].end 4827.24284375
transcript.pyannote[596].speaker SPEAKER_03
transcript.pyannote[596].start 4827.74909375
transcript.pyannote[596].end 4830.55034375
transcript.pyannote[597].speaker SPEAKER_03
transcript.pyannote[597].start 4831.63034375
transcript.pyannote[597].end 4833.65534375
transcript.pyannote[598].speaker SPEAKER_03
transcript.pyannote[598].start 4836.30471875
transcript.pyannote[598].end 4839.03846875
transcript.pyannote[599].speaker SPEAKER_03
transcript.pyannote[599].start 4839.96659375
transcript.pyannote[599].end 4845.51846875
transcript.pyannote[600].speaker SPEAKER_03
transcript.pyannote[600].start 4846.21034375
transcript.pyannote[600].end 4855.64346875
transcript.pyannote[601].speaker SPEAKER_03
transcript.pyannote[601].start 4857.60096875
transcript.pyannote[601].end 4865.02596875
transcript.pyannote[602].speaker SPEAKER_03
transcript.pyannote[602].start 4878.32346875
transcript.pyannote[602].end 4878.49221875
transcript.pyannote[603].speaker SPEAKER_03
transcript.pyannote[603].start 4880.93909375
transcript.pyannote[603].end 4889.96721875
transcript.pyannote[604].speaker SPEAKER_03
transcript.pyannote[604].start 4890.35534375
transcript.pyannote[604].end 4893.67971875
transcript.pyannote[605].speaker SPEAKER_00
transcript.pyannote[605].start 4892.90346875
transcript.pyannote[605].end 4893.79784375
transcript.pyannote[606].speaker SPEAKER_00
transcript.pyannote[606].start 4895.18159375
transcript.pyannote[606].end 4898.59034375
transcript.pyannote[607].speaker SPEAKER_00
transcript.pyannote[607].start 4899.43409375
transcript.pyannote[607].end 4903.68659375
transcript.pyannote[608].speaker SPEAKER_00
transcript.pyannote[608].start 4905.00284375
transcript.pyannote[608].end 4912.25909375
transcript.pyannote[609].speaker SPEAKER_00
transcript.pyannote[609].start 4913.08596875
transcript.pyannote[609].end 4921.65846875
transcript.pyannote[610].speaker SPEAKER_03
transcript.pyannote[610].start 4923.98721875
transcript.pyannote[610].end 4929.55596875
transcript.pyannote[611].speaker SPEAKER_03
transcript.pyannote[611].start 4931.41221875
transcript.pyannote[611].end 4944.55784375
transcript.pyannote[612].speaker SPEAKER_03
transcript.pyannote[612].start 4945.24971875
transcript.pyannote[612].end 4955.32409375
transcript.pyannote[613].speaker SPEAKER_03
transcript.pyannote[613].start 4955.56034375
transcript.pyannote[613].end 4958.27721875
transcript.pyannote[614].speaker SPEAKER_03
transcript.pyannote[614].start 4958.42909375
transcript.pyannote[614].end 4965.36471875
transcript.pyannote[615].speaker SPEAKER_03
transcript.pyannote[615].start 4966.05659375
transcript.pyannote[615].end 4970.44409375
transcript.pyannote[616].speaker SPEAKER_03
transcript.pyannote[616].start 4971.05159375
transcript.pyannote[616].end 4975.59096875
transcript.pyannote[617].speaker SPEAKER_03
transcript.pyannote[617].start 4976.06346875
transcript.pyannote[617].end 4980.51846875
transcript.pyannote[618].speaker SPEAKER_03
transcript.pyannote[618].start 4980.87284375
transcript.pyannote[618].end 4986.71159375
transcript.pyannote[619].speaker SPEAKER_03
transcript.pyannote[619].start 4987.60596875
transcript.pyannote[619].end 4992.24659375
transcript.pyannote[620].speaker SPEAKER_03
transcript.pyannote[620].start 4992.60096875
transcript.pyannote[620].end 4994.06909375
transcript.pyannote[621].speaker SPEAKER_03
transcript.pyannote[621].start 4995.26721875
transcript.pyannote[621].end 5006.92784375
transcript.pyannote[622].speaker SPEAKER_03
transcript.pyannote[622].start 5007.51846875
transcript.pyannote[622].end 5008.48034375
transcript.pyannote[623].speaker SPEAKER_03
transcript.pyannote[623].start 5008.96971875
transcript.pyannote[623].end 5009.03721875
transcript.pyannote[624].speaker SPEAKER_03
transcript.pyannote[624].start 5009.23971875
transcript.pyannote[624].end 5011.07909375
transcript.pyannote[625].speaker SPEAKER_03
transcript.pyannote[625].start 5011.45034375
transcript.pyannote[625].end 5013.45846875
transcript.pyannote[626].speaker SPEAKER_03
transcript.pyannote[626].start 5014.06596875
transcript.pyannote[626].end 5020.10721875
transcript.pyannote[627].speaker SPEAKER_03
transcript.pyannote[627].start 5021.18721875
transcript.pyannote[627].end 5022.23346875
transcript.pyannote[628].speaker SPEAKER_03
transcript.pyannote[628].start 5022.68909375
transcript.pyannote[628].end 5035.56471875
transcript.pyannote[629].speaker SPEAKER_03
transcript.pyannote[629].start 5035.95284375
transcript.pyannote[629].end 5050.21221875
transcript.pyannote[630].speaker SPEAKER_03
transcript.pyannote[630].start 5050.65096875
transcript.pyannote[630].end 5053.45221875
transcript.pyannote[631].speaker SPEAKER_03
transcript.pyannote[631].start 5054.59971875
transcript.pyannote[631].end 5058.73409375
transcript.pyannote[632].speaker SPEAKER_03
transcript.pyannote[632].start 5059.86471875
transcript.pyannote[632].end 5061.94034375
transcript.pyannote[633].speaker SPEAKER_03
transcript.pyannote[633].start 5061.97409375
transcript.pyannote[633].end 5062.02471875
transcript.pyannote[634].speaker SPEAKER_03
transcript.pyannote[634].start 5062.29471875
transcript.pyannote[634].end 5062.96971875
transcript.pyannote[635].speaker SPEAKER_03
transcript.pyannote[635].start 5063.56034375
transcript.pyannote[635].end 5066.68221875
transcript.pyannote[636].speaker SPEAKER_03
transcript.pyannote[636].start 5068.21784375
transcript.pyannote[636].end 5069.77034375
transcript.pyannote[637].speaker SPEAKER_03
transcript.pyannote[637].start 5070.90096875
transcript.pyannote[637].end 5072.03159375
transcript.pyannote[638].speaker SPEAKER_03
transcript.pyannote[638].start 5073.02721875
transcript.pyannote[638].end 5074.39409375
transcript.pyannote[639].speaker SPEAKER_03
transcript.pyannote[639].start 5075.23784375
transcript.pyannote[639].end 5079.52409375
transcript.pyannote[640].speaker SPEAKER_03
transcript.pyannote[640].start 5080.14846875
transcript.pyannote[640].end 5081.31284375
transcript.pyannote[641].speaker SPEAKER_03
transcript.pyannote[641].start 5081.80221875
transcript.pyannote[641].end 5083.37159375
transcript.pyannote[642].speaker SPEAKER_03
transcript.pyannote[642].start 5085.27846875
transcript.pyannote[642].end 5086.34159375
transcript.pyannote[643].speaker SPEAKER_03
transcript.pyannote[643].start 5087.06721875
transcript.pyannote[643].end 5090.02034375
transcript.pyannote[644].speaker SPEAKER_03
transcript.pyannote[644].start 5091.26909375
transcript.pyannote[644].end 5093.95221875
transcript.pyannote[645].speaker SPEAKER_03
transcript.pyannote[645].start 5093.96909375
transcript.pyannote[645].end 5094.00284375
transcript.pyannote[646].speaker SPEAKER_03
transcript.pyannote[646].start 5094.71159375
transcript.pyannote[646].end 5096.70284375
transcript.pyannote[647].speaker SPEAKER_03
transcript.pyannote[647].start 5097.02346875
transcript.pyannote[647].end 5103.60471875
transcript.pyannote[648].speaker SPEAKER_03
transcript.pyannote[648].start 5104.34721875
transcript.pyannote[648].end 5118.75846875
transcript.pyannote[649].speaker SPEAKER_03
transcript.pyannote[649].start 5119.26471875
transcript.pyannote[649].end 5122.15034375
transcript.pyannote[650].speaker SPEAKER_03
transcript.pyannote[650].start 5122.55534375
transcript.pyannote[650].end 5136.73034375
transcript.pyannote[651].speaker SPEAKER_03
transcript.pyannote[651].start 5137.38846875
transcript.pyannote[651].end 5142.65346875
transcript.pyannote[652].speaker SPEAKER_03
transcript.pyannote[652].start 5142.97409375
transcript.pyannote[652].end 5144.29034375
transcript.pyannote[653].speaker SPEAKER_03
transcript.pyannote[653].start 5146.04534375
transcript.pyannote[653].end 5154.65159375
transcript.pyannote[654].speaker SPEAKER_05
transcript.pyannote[654].start 5147.37846875
transcript.pyannote[654].end 5147.58096875
transcript.pyannote[655].speaker SPEAKER_03
transcript.pyannote[655].start 5155.84971875
transcript.pyannote[655].end 5158.02659375
transcript.pyannote[656].speaker SPEAKER_03
transcript.pyannote[656].start 5159.42721875
transcript.pyannote[656].end 5168.69159375
transcript.pyannote[657].speaker SPEAKER_03
transcript.pyannote[657].start 5170.32846875
transcript.pyannote[657].end 5171.08784375
transcript.pyannote[658].speaker SPEAKER_03
transcript.pyannote[658].start 5171.62784375
transcript.pyannote[658].end 5177.24721875
transcript.pyannote[659].speaker SPEAKER_03
transcript.pyannote[659].start 5178.14159375
transcript.pyannote[659].end 5180.82471875
transcript.pyannote[660].speaker SPEAKER_03
transcript.pyannote[660].start 5181.48284375
transcript.pyannote[660].end 5186.66346875
transcript.pyannote[661].speaker SPEAKER_03
transcript.pyannote[661].start 5187.40596875
transcript.pyannote[661].end 5188.57034375
transcript.pyannote[662].speaker SPEAKER_03
transcript.pyannote[662].start 5189.56596875
transcript.pyannote[662].end 5191.94534375
transcript.pyannote[663].speaker SPEAKER_03
transcript.pyannote[663].start 5192.18159375
transcript.pyannote[663].end 5194.39221875
transcript.pyannote[664].speaker SPEAKER_03
transcript.pyannote[664].start 5195.35409375
transcript.pyannote[664].end 5204.06159375
transcript.pyannote[665].speaker SPEAKER_03
transcript.pyannote[665].start 5204.31471875
transcript.pyannote[665].end 5214.01784375
transcript.pyannote[666].speaker SPEAKER_03
transcript.pyannote[666].start 5216.56596875
transcript.pyannote[666].end 5223.92346875
transcript.pyannote[667].speaker SPEAKER_03
transcript.pyannote[667].start 5224.69971875
transcript.pyannote[667].end 5227.41659375
transcript.pyannote[668].speaker SPEAKER_03
transcript.pyannote[668].start 5228.49659375
transcript.pyannote[668].end 5230.92659375
transcript.pyannote[669].speaker SPEAKER_03
transcript.pyannote[669].start 5232.05721875
transcript.pyannote[669].end 5256.86346875
transcript.pyannote[670].speaker SPEAKER_03
transcript.pyannote[670].start 5257.65659375
transcript.pyannote[670].end 5259.46221875
transcript.pyannote[671].speaker SPEAKER_03
transcript.pyannote[671].start 5260.44096875
transcript.pyannote[671].end 5275.18971875
transcript.pyannote[672].speaker SPEAKER_03
transcript.pyannote[672].start 5275.52721875
transcript.pyannote[672].end 5278.39596875
transcript.pyannote[673].speaker SPEAKER_03
transcript.pyannote[673].start 5279.47596875
transcript.pyannote[673].end 5299.21971875
transcript.pyannote[674].speaker SPEAKER_03
transcript.pyannote[674].start 5299.81034375
transcript.pyannote[674].end 5302.27409375
transcript.pyannote[675].speaker SPEAKER_03
transcript.pyannote[675].start 5303.26971875
transcript.pyannote[675].end 5307.80909375
transcript.pyannote[676].speaker SPEAKER_03
transcript.pyannote[676].start 5308.87221875
transcript.pyannote[676].end 5309.91846875
transcript.pyannote[677].speaker SPEAKER_03
transcript.pyannote[677].start 5310.66096875
transcript.pyannote[677].end 5318.72721875
transcript.pyannote[678].speaker SPEAKER_03
transcript.pyannote[678].start 5319.53721875
transcript.pyannote[678].end 5326.16909375
transcript.pyannote[679].speaker SPEAKER_03
transcript.pyannote[679].start 5327.29971875
transcript.pyannote[679].end 5331.77159375
transcript.pyannote[680].speaker SPEAKER_03
transcript.pyannote[680].start 5332.91909375
transcript.pyannote[680].end 5344.14096875
transcript.pyannote[681].speaker SPEAKER_03
transcript.pyannote[681].start 5347.24596875
transcript.pyannote[681].end 5348.84909375
transcript.pyannote[682].speaker SPEAKER_03
transcript.pyannote[682].start 5350.30034375
transcript.pyannote[682].end 5351.38034375
transcript.pyannote[683].speaker SPEAKER_03
transcript.pyannote[683].start 5353.87784375
transcript.pyannote[683].end 5354.24909375
transcript.pyannote[684].speaker SPEAKER_03
transcript.pyannote[684].start 5355.37971875
transcript.pyannote[684].end 5358.18096875
transcript.pyannote[685].speaker SPEAKER_03
transcript.pyannote[685].start 5358.85596875
transcript.pyannote[685].end 5372.84534375
transcript.pyannote[686].speaker SPEAKER_03
transcript.pyannote[686].start 5374.17846875
transcript.pyannote[686].end 5376.32159375
transcript.pyannote[687].speaker SPEAKER_03
transcript.pyannote[687].start 5376.62534375
transcript.pyannote[687].end 5379.51096875
transcript.pyannote[688].speaker SPEAKER_03
transcript.pyannote[688].start 5380.05096875
transcript.pyannote[688].end 5392.90971875
transcript.pyannote[689].speaker SPEAKER_03
transcript.pyannote[689].start 5393.92221875
transcript.pyannote[689].end 5396.43659375
transcript.pyannote[690].speaker SPEAKER_03
transcript.pyannote[690].start 5397.26346875
transcript.pyannote[690].end 5409.44721875
transcript.pyannote[691].speaker SPEAKER_03
transcript.pyannote[691].start 5410.17284375
transcript.pyannote[691].end 5410.62846875
transcript.pyannote[692].speaker SPEAKER_03
transcript.pyannote[692].start 5411.40471875
transcript.pyannote[692].end 5415.03284375
transcript.pyannote[693].speaker SPEAKER_03
transcript.pyannote[693].start 5415.75846875
transcript.pyannote[693].end 5418.23909375
transcript.pyannote[694].speaker SPEAKER_03
transcript.pyannote[694].start 5418.50909375
transcript.pyannote[694].end 5419.77471875
transcript.pyannote[695].speaker SPEAKER_03
transcript.pyannote[695].start 5419.85909375
transcript.pyannote[695].end 5421.12471875
transcript.pyannote[696].speaker SPEAKER_03
transcript.pyannote[696].start 5424.31409375
transcript.pyannote[696].end 5425.59659375
transcript.pyannote[697].speaker SPEAKER_03
transcript.pyannote[697].start 5426.15346875
transcript.pyannote[697].end 5432.11034375
transcript.pyannote[698].speaker SPEAKER_03
transcript.pyannote[698].start 5432.95409375
transcript.pyannote[698].end 5434.89471875
transcript.pyannote[699].speaker SPEAKER_03
transcript.pyannote[699].start 5435.58659375
transcript.pyannote[699].end 5438.26971875
transcript.pyannote[700].speaker SPEAKER_03
transcript.pyannote[700].start 5438.87721875
transcript.pyannote[700].end 5451.71909375
transcript.pyannote[701].speaker SPEAKER_03
transcript.pyannote[701].start 5452.52909375
transcript.pyannote[701].end 5469.69096875
transcript.pyannote[702].speaker SPEAKER_03
transcript.pyannote[702].start 5470.11284375
transcript.pyannote[702].end 5470.70346875
transcript.pyannote[703].speaker SPEAKER_03
transcript.pyannote[703].start 5470.82159375
transcript.pyannote[703].end 5474.95596875
transcript.pyannote[704].speaker SPEAKER_03
transcript.pyannote[704].start 5475.76596875
transcript.pyannote[704].end 5476.28909375
transcript.pyannote[705].speaker SPEAKER_03
transcript.pyannote[705].start 5476.79534375
transcript.pyannote[705].end 5487.30846875
transcript.pyannote[706].speaker SPEAKER_03
transcript.pyannote[706].start 5488.05096875
transcript.pyannote[706].end 5490.22784375
transcript.pyannote[707].speaker SPEAKER_03
transcript.pyannote[707].start 5495.74596875
transcript.pyannote[707].end 5496.18471875
transcript.pyannote[708].speaker SPEAKER_03
transcript.pyannote[708].start 5497.95659375
transcript.pyannote[708].end 5499.25596875
transcript.pyannote[709].speaker SPEAKER_03
transcript.pyannote[709].start 5499.52596875
transcript.pyannote[709].end 5501.82096875
transcript.pyannote[710].speaker SPEAKER_03
transcript.pyannote[710].start 5502.74909375
transcript.pyannote[710].end 5504.11596875
transcript.pyannote[711].speaker SPEAKER_03
transcript.pyannote[711].start 5506.68096875
transcript.pyannote[711].end 5507.27159375
transcript.pyannote[712].speaker SPEAKER_03
transcript.pyannote[712].start 5507.77784375
transcript.pyannote[712].end 5509.75221875
transcript.pyannote[713].speaker SPEAKER_03
transcript.pyannote[713].start 5509.83659375
transcript.pyannote[713].end 5513.44784375
transcript.pyannote[714].speaker SPEAKER_03
transcript.pyannote[714].start 5513.78534375
transcript.pyannote[714].end 5525.12534375
transcript.pyannote[715].speaker SPEAKER_03
transcript.pyannote[715].start 5525.66534375
transcript.pyannote[715].end 5531.16659375
transcript.pyannote[716].speaker SPEAKER_03
transcript.pyannote[716].start 5531.40284375
transcript.pyannote[716].end 5538.42284375
transcript.pyannote[717].speaker SPEAKER_03
transcript.pyannote[717].start 5538.79409375
transcript.pyannote[717].end 5542.84409375
transcript.pyannote[718].speaker SPEAKER_03
transcript.pyannote[718].start 5545.30784375
transcript.pyannote[718].end 5547.75471875
transcript.pyannote[719].speaker SPEAKER_03
transcript.pyannote[719].start 5550.38721875
transcript.pyannote[719].end 5553.96471875
transcript.pyannote[720].speaker SPEAKER_03
transcript.pyannote[720].start 5555.26409375
transcript.pyannote[720].end 5567.70096875
transcript.pyannote[721].speaker SPEAKER_03
transcript.pyannote[721].start 5569.20284375
transcript.pyannote[721].end 5570.55284375
transcript.pyannote[722].speaker SPEAKER_03
transcript.pyannote[722].start 5572.96596875
transcript.pyannote[722].end 5583.64784375
transcript.pyannote[723].speaker SPEAKER_03
transcript.pyannote[723].start 5583.90096875
transcript.pyannote[723].end 5585.90909375
transcript.pyannote[724].speaker SPEAKER_03
transcript.pyannote[724].start 5586.48284375
transcript.pyannote[724].end 5588.50784375
transcript.pyannote[725].speaker SPEAKER_03
transcript.pyannote[725].start 5588.96346875
transcript.pyannote[725].end 5591.03909375
transcript.pyannote[726].speaker SPEAKER_03
transcript.pyannote[726].start 5591.71409375
transcript.pyannote[726].end 5592.91221875
transcript.pyannote[727].speaker SPEAKER_03
transcript.pyannote[727].start 5595.08909375
transcript.pyannote[727].end 5595.91596875
transcript.pyannote[728].speaker SPEAKER_03
transcript.pyannote[728].start 5598.31221875
transcript.pyannote[728].end 5603.69534375
transcript.pyannote[729].speaker SPEAKER_03
transcript.pyannote[729].start 5604.35346875
transcript.pyannote[729].end 5610.74909375
transcript.pyannote[730].speaker SPEAKER_03
transcript.pyannote[730].start 5611.82909375
transcript.pyannote[730].end 5626.71284375
transcript.pyannote[731].speaker SPEAKER_03
transcript.pyannote[731].start 5627.55659375
transcript.pyannote[731].end 5653.99971875
transcript.pyannote[732].speaker SPEAKER_03
transcript.pyannote[732].start 5655.50159375
transcript.pyannote[732].end 5669.60909375
transcript.pyannote[733].speaker SPEAKER_03
transcript.pyannote[733].start 5670.62159375
transcript.pyannote[733].end 5674.63784375
transcript.pyannote[734].speaker SPEAKER_03
transcript.pyannote[734].start 5675.81909375
transcript.pyannote[734].end 5676.54471875
transcript.pyannote[735].speaker SPEAKER_03
transcript.pyannote[735].start 5676.69659375
transcript.pyannote[735].end 5681.05034375
transcript.pyannote[736].speaker SPEAKER_03
transcript.pyannote[736].start 5681.35409375
transcript.pyannote[736].end 5683.59846875
transcript.pyannote[737].speaker SPEAKER_03
transcript.pyannote[737].start 5684.07096875
transcript.pyannote[737].end 5686.82159375
transcript.pyannote[738].speaker SPEAKER_03
transcript.pyannote[738].start 5687.36159375
transcript.pyannote[738].end 5699.32596875
transcript.pyannote[739].speaker SPEAKER_03
transcript.pyannote[739].start 5699.62971875
transcript.pyannote[739].end 5711.47596875
transcript.pyannote[740].speaker SPEAKER_03
transcript.pyannote[740].start 5711.88096875
transcript.pyannote[740].end 5714.96909375
transcript.pyannote[741].speaker SPEAKER_03
transcript.pyannote[741].start 5715.20534375
transcript.pyannote[741].end 5724.95909375
transcript.pyannote[742].speaker SPEAKER_03
transcript.pyannote[742].start 5727.91221875
transcript.pyannote[742].end 5731.84409375
transcript.pyannote[743].speaker SPEAKER_03
transcript.pyannote[743].start 5733.58221875
transcript.pyannote[743].end 5738.17221875
transcript.pyannote[744].speaker SPEAKER_03
transcript.pyannote[744].start 5739.03284375
transcript.pyannote[744].end 5748.63471875
transcript.pyannote[745].speaker SPEAKER_03
transcript.pyannote[745].start 5749.27596875
transcript.pyannote[745].end 5752.71846875
transcript.pyannote[746].speaker SPEAKER_03
transcript.pyannote[746].start 5753.76471875
transcript.pyannote[746].end 5765.77971875
transcript.pyannote[747].speaker SPEAKER_03
transcript.pyannote[747].start 5766.21846875
transcript.pyannote[747].end 5768.46284375
transcript.pyannote[748].speaker SPEAKER_03
transcript.pyannote[748].start 5770.21784375
transcript.pyannote[748].end 5771.14596875
transcript.pyannote[749].speaker SPEAKER_03
transcript.pyannote[749].start 5774.41971875
transcript.pyannote[749].end 5775.93846875
transcript.pyannote[750].speaker SPEAKER_03
transcript.pyannote[750].start 5777.01846875
transcript.pyannote[750].end 5779.00971875
transcript.pyannote[751].speaker SPEAKER_03
transcript.pyannote[751].start 5779.58346875
transcript.pyannote[751].end 5780.20784375
transcript.pyannote[752].speaker SPEAKER_03
transcript.pyannote[752].start 5780.71409375
transcript.pyannote[752].end 5812.00034375
transcript.pyannote[753].speaker SPEAKER_03
transcript.pyannote[753].start 5813.85659375
transcript.pyannote[753].end 5814.26159375
transcript.pyannote[754].speaker SPEAKER_03
transcript.pyannote[754].start 5815.76346875
transcript.pyannote[754].end 5817.24846875
transcript.pyannote[755].speaker SPEAKER_03
transcript.pyannote[755].start 5818.00784375
transcript.pyannote[755].end 5829.11159375
transcript.pyannote[756].speaker SPEAKER_03
transcript.pyannote[756].start 5829.75284375
transcript.pyannote[756].end 5839.79346875
transcript.pyannote[757].speaker SPEAKER_03
transcript.pyannote[757].start 5842.32471875
transcript.pyannote[757].end 5843.11784375
transcript.pyannote[758].speaker SPEAKER_03
transcript.pyannote[758].start 5844.28221875
transcript.pyannote[758].end 5849.78346875
transcript.pyannote[759].speaker SPEAKER_03
transcript.pyannote[759].start 5853.66471875
transcript.pyannote[759].end 5858.03534375
transcript.pyannote[760].speaker SPEAKER_03
transcript.pyannote[760].start 5859.19971875
transcript.pyannote[760].end 5867.09721875
transcript.pyannote[761].speaker SPEAKER_03
transcript.pyannote[761].start 5867.31659375
transcript.pyannote[761].end 5874.21846875
transcript.pyannote[762].speaker SPEAKER_03
transcript.pyannote[762].start 5877.89721875
transcript.pyannote[762].end 5882.36909375
transcript.pyannote[763].speaker SPEAKER_03
transcript.pyannote[763].start 5883.02721875
transcript.pyannote[763].end 5904.03659375
transcript.pyannote[764].speaker SPEAKER_03
transcript.pyannote[764].start 5904.28971875
transcript.pyannote[764].end 5905.65659375
transcript.pyannote[765].speaker SPEAKER_03
transcript.pyannote[765].start 5906.14596875
transcript.pyannote[765].end 5907.00659375
transcript.pyannote[766].speaker SPEAKER_03
transcript.pyannote[766].start 5909.75721875
transcript.pyannote[766].end 5917.18221875
transcript.pyannote[767].speaker SPEAKER_03
transcript.pyannote[767].start 5917.92471875
transcript.pyannote[767].end 5920.13534375
transcript.pyannote[768].speaker SPEAKER_03
transcript.pyannote[768].start 5921.23221875
transcript.pyannote[768].end 5922.70034375
transcript.pyannote[769].speaker SPEAKER_03
transcript.pyannote[769].start 5923.42596875
transcript.pyannote[769].end 5923.88159375
transcript.pyannote[770].speaker SPEAKER_03
transcript.pyannote[770].start 5924.52284375
transcript.pyannote[770].end 5925.92346875
transcript.pyannote[771].speaker SPEAKER_03
transcript.pyannote[771].start 5926.61534375
transcript.pyannote[771].end 5939.82846875
transcript.pyannote[772].speaker SPEAKER_03
transcript.pyannote[772].start 5940.14909375
transcript.pyannote[772].end 5940.94221875
transcript.pyannote[773].speaker SPEAKER_03
transcript.pyannote[773].start 5941.36409375
transcript.pyannote[773].end 5944.92471875
transcript.pyannote[774].speaker SPEAKER_03
transcript.pyannote[774].start 5945.48159375
transcript.pyannote[774].end 5971.72221875
transcript.pyannote[775].speaker SPEAKER_03
transcript.pyannote[775].start 5973.89909375
transcript.pyannote[775].end 5977.15596875
transcript.pyannote[776].speaker SPEAKER_03
transcript.pyannote[776].start 5977.64534375
transcript.pyannote[776].end 5980.21034375
transcript.pyannote[777].speaker SPEAKER_03
transcript.pyannote[777].start 5981.08784375
transcript.pyannote[777].end 5982.91034375
transcript.pyannote[778].speaker SPEAKER_03
transcript.pyannote[778].start 5983.06221875
transcript.pyannote[778].end 5986.48784375
transcript.pyannote[779].speaker SPEAKER_03
transcript.pyannote[779].start 5986.55534375
transcript.pyannote[779].end 5993.42346875
transcript.pyannote[780].speaker SPEAKER_03
transcript.pyannote[780].start 5994.38534375
transcript.pyannote[780].end 5997.47346875
transcript.pyannote[781].speaker SPEAKER_03
transcript.pyannote[781].start 5997.97971875
transcript.pyannote[781].end 6000.25784375
transcript.pyannote[782].speaker SPEAKER_03
transcript.pyannote[782].start 6002.16471875
transcript.pyannote[782].end 6003.24471875
transcript.pyannote[783].speaker SPEAKER_03
transcript.pyannote[783].start 6005.47221875
transcript.pyannote[783].end 6005.89409375
transcript.pyannote[784].speaker SPEAKER_03
transcript.pyannote[784].start 6007.53096875
transcript.pyannote[784].end 6009.04971875
transcript.pyannote[785].speaker SPEAKER_03
transcript.pyannote[785].start 6010.50096875
transcript.pyannote[785].end 6019.83284375
transcript.pyannote[786].speaker SPEAKER_03
transcript.pyannote[786].start 6020.17034375
transcript.pyannote[786].end 6029.58659375
transcript.pyannote[787].speaker SPEAKER_03
transcript.pyannote[787].start 6030.22784375
transcript.pyannote[787].end 6039.62721875
transcript.pyannote[788].speaker SPEAKER_03
transcript.pyannote[788].start 6040.08284375
transcript.pyannote[788].end 6042.56346875
transcript.pyannote[789].speaker SPEAKER_03
transcript.pyannote[789].start 6044.16659375
transcript.pyannote[789].end 6053.80221875
transcript.pyannote[790].speaker SPEAKER_03
transcript.pyannote[790].start 6055.03409375
transcript.pyannote[790].end 6055.75971875
transcript.pyannote[791].speaker SPEAKER_03
transcript.pyannote[791].start 6056.97471875
transcript.pyannote[791].end 6066.54284375
transcript.pyannote[792].speaker SPEAKER_03
transcript.pyannote[792].start 6067.67346875
transcript.pyannote[792].end 6074.81159375
transcript.pyannote[793].speaker SPEAKER_03
transcript.pyannote[793].start 6075.09846875
transcript.pyannote[793].end 6080.44784375
transcript.pyannote[794].speaker SPEAKER_03
transcript.pyannote[794].start 6081.30846875
transcript.pyannote[794].end 6087.97409375
transcript.pyannote[795].speaker SPEAKER_03
transcript.pyannote[795].start 6088.85159375
transcript.pyannote[795].end 6090.97784375
transcript.pyannote[796].speaker SPEAKER_03
transcript.pyannote[796].start 6091.72034375
transcript.pyannote[796].end 6093.62721875
transcript.pyannote[797].speaker SPEAKER_03
transcript.pyannote[797].start 6094.31909375
transcript.pyannote[797].end 6097.08659375
transcript.pyannote[798].speaker SPEAKER_03
transcript.pyannote[798].start 6097.59284375
transcript.pyannote[798].end 6101.82846875
transcript.pyannote[799].speaker SPEAKER_03
transcript.pyannote[799].start 6101.96346875
transcript.pyannote[799].end 6114.07971875
transcript.pyannote[800].speaker SPEAKER_03
transcript.pyannote[800].start 6115.61534375
transcript.pyannote[800].end 6120.86346875
transcript.pyannote[801].speaker SPEAKER_05
transcript.pyannote[801].start 6370.90034375
transcript.pyannote[801].end 6371.25471875
transcript.pyannote[802].speaker SPEAKER_05
transcript.pyannote[802].start 6455.17409375
transcript.pyannote[802].end 6455.59596875
transcript.pyannote[803].speaker SPEAKER_03
transcript.pyannote[803].start 6692.35221875
transcript.pyannote[803].end 6695.72721875
transcript.pyannote[804].speaker SPEAKER_03
transcript.pyannote[804].start 6703.00034375
transcript.pyannote[804].end 6703.92846875
transcript.pyannote[805].speaker SPEAKER_03
transcript.pyannote[805].start 6704.23221875
transcript.pyannote[805].end 6704.55284375
transcript.pyannote[806].speaker SPEAKER_03
transcript.pyannote[806].start 6704.68784375
transcript.pyannote[806].end 6705.46409375
transcript.pyannote[807].speaker SPEAKER_03
transcript.pyannote[807].start 6706.18971875
transcript.pyannote[807].end 6708.40034375
transcript.pyannote[808].speaker SPEAKER_03
transcript.pyannote[808].start 6710.15534375
transcript.pyannote[808].end 6712.55159375
transcript.pyannote[809].speaker SPEAKER_03
transcript.pyannote[809].start 6713.71596875
transcript.pyannote[809].end 6714.40784375
transcript.pyannote[810].speaker SPEAKER_03
transcript.pyannote[810].start 6714.45846875
transcript.pyannote[810].end 6715.30221875
transcript.pyannote[811].speaker SPEAKER_03
transcript.pyannote[811].start 6715.33596875
transcript.pyannote[811].end 6716.31471875
transcript.pyannote[812].speaker SPEAKER_03
transcript.pyannote[812].start 6716.95596875
transcript.pyannote[812].end 6717.02346875
transcript.pyannote[813].speaker SPEAKER_03
transcript.pyannote[813].start 6717.73221875
transcript.pyannote[813].end 6721.59659375
transcript.pyannote[814].speaker SPEAKER_03
transcript.pyannote[814].start 6722.17034375
transcript.pyannote[814].end 6725.74784375
transcript.pyannote[815].speaker SPEAKER_03
transcript.pyannote[815].start 6728.00909375
transcript.pyannote[815].end 6735.43409375
transcript.pyannote[816].speaker SPEAKER_03
transcript.pyannote[816].start 6736.51409375
transcript.pyannote[816].end 6738.48846875
transcript.pyannote[817].speaker SPEAKER_03
transcript.pyannote[817].start 6741.12096875
transcript.pyannote[817].end 6748.17471875
transcript.pyannote[818].speaker SPEAKER_03
transcript.pyannote[818].start 6748.54596875
transcript.pyannote[818].end 6753.60846875
transcript.pyannote[819].speaker SPEAKER_05
transcript.pyannote[819].start 6754.80659375
transcript.pyannote[819].end 6755.04284375
transcript.pyannote[820].speaker SPEAKER_03
transcript.pyannote[820].start 6755.58284375
transcript.pyannote[820].end 6761.75909375
transcript.pyannote[821].speaker SPEAKER_03
transcript.pyannote[821].start 6764.23971875
transcript.pyannote[821].end 6766.26471875
transcript.pyannote[822].speaker SPEAKER_03
transcript.pyannote[822].start 6766.48409375
transcript.pyannote[822].end 6771.12471875
transcript.pyannote[823].speaker SPEAKER_03
transcript.pyannote[823].start 6772.67721875
transcript.pyannote[823].end 6773.06534375
transcript.pyannote[824].speaker SPEAKER_03
transcript.pyannote[824].start 6774.33096875
transcript.pyannote[824].end 6776.76096875
transcript.pyannote[825].speaker SPEAKER_03
transcript.pyannote[825].start 6779.84909375
transcript.pyannote[825].end 6789.28221875
transcript.pyannote[826].speaker SPEAKER_03
transcript.pyannote[826].start 6789.51846875
transcript.pyannote[826].end 6791.59409375
transcript.pyannote[827].speaker SPEAKER_03
transcript.pyannote[827].start 6791.84721875
transcript.pyannote[827].end 6797.44971875
transcript.pyannote[828].speaker SPEAKER_03
transcript.pyannote[828].start 6798.00659375
transcript.pyannote[828].end 6801.93846875
transcript.pyannote[829].speaker SPEAKER_03
transcript.pyannote[829].start 6802.61346875
transcript.pyannote[829].end 6803.84534375
transcript.pyannote[830].speaker SPEAKER_03
transcript.pyannote[830].start 6803.98034375
transcript.pyannote[830].end 6805.21221875
transcript.pyannote[831].speaker SPEAKER_03
transcript.pyannote[831].start 6808.65471875
transcript.pyannote[831].end 6808.92471875
transcript.pyannote[832].speaker SPEAKER_03
transcript.pyannote[832].start 6811.10159375
transcript.pyannote[832].end 6816.14721875
transcript.pyannote[833].speaker SPEAKER_03
transcript.pyannote[833].start 6818.05409375
transcript.pyannote[833].end 6825.15846875
transcript.pyannote[834].speaker SPEAKER_03
transcript.pyannote[834].start 6826.18784375
transcript.pyannote[834].end 6829.98471875
transcript.pyannote[835].speaker SPEAKER_03
transcript.pyannote[835].start 6832.46534375
transcript.pyannote[835].end 6833.37659375
transcript.pyannote[836].speaker SPEAKER_03
transcript.pyannote[836].start 6833.51159375
transcript.pyannote[836].end 6838.48971875
transcript.pyannote[837].speaker SPEAKER_03
transcript.pyannote[837].start 6838.91159375
transcript.pyannote[837].end 6848.76659375
transcript.pyannote[838].speaker SPEAKER_03
transcript.pyannote[838].start 6850.01534375
transcript.pyannote[838].end 6858.94221875
transcript.pyannote[839].speaker SPEAKER_03
transcript.pyannote[839].start 6860.25846875
transcript.pyannote[839].end 6863.12721875
transcript.pyannote[840].speaker SPEAKER_03
transcript.pyannote[840].start 6863.88659375
transcript.pyannote[840].end 6874.60221875
transcript.pyannote[841].speaker SPEAKER_03
transcript.pyannote[841].start 6876.13784375
transcript.pyannote[841].end 6882.02721875
transcript.pyannote[842].speaker SPEAKER_03
transcript.pyannote[842].start 6882.87096875
transcript.pyannote[842].end 6891.76409375
transcript.pyannote[843].speaker SPEAKER_03
transcript.pyannote[843].start 6893.01284375
transcript.pyannote[843].end 6897.19784375
transcript.pyannote[844].speaker SPEAKER_03
transcript.pyannote[844].start 6897.41721875
transcript.pyannote[844].end 6905.90534375
transcript.pyannote[845].speaker SPEAKER_03
transcript.pyannote[845].start 6907.72784375
transcript.pyannote[845].end 6908.60534375
transcript.pyannote[846].speaker SPEAKER_03
transcript.pyannote[846].start 6911.72721875
transcript.pyannote[846].end 6921.90284375
transcript.pyannote[847].speaker SPEAKER_03
transcript.pyannote[847].start 6924.23159375
transcript.pyannote[847].end 6926.44221875
transcript.pyannote[848].speaker SPEAKER_03
transcript.pyannote[848].start 6926.81346875
transcript.pyannote[848].end 6927.65721875
transcript.pyannote[849].speaker SPEAKER_03
transcript.pyannote[849].start 6928.06221875
transcript.pyannote[849].end 6933.69846875
transcript.pyannote[850].speaker SPEAKER_03
transcript.pyannote[850].start 6934.42409375
transcript.pyannote[850].end 6946.84409375
transcript.pyannote[851].speaker SPEAKER_03
transcript.pyannote[851].start 6948.58221875
transcript.pyannote[851].end 6949.05471875
transcript.pyannote[852].speaker SPEAKER_03
transcript.pyannote[852].start 6949.32471875
transcript.pyannote[852].end 6963.14534375
transcript.pyannote[853].speaker SPEAKER_03
transcript.pyannote[853].start 6963.80346875
transcript.pyannote[853].end 6965.67659375
transcript.pyannote[854].speaker SPEAKER_03
transcript.pyannote[854].start 6966.28409375
transcript.pyannote[854].end 6967.00971875
transcript.pyannote[855].speaker SPEAKER_03
transcript.pyannote[855].start 6967.71846875
transcript.pyannote[855].end 6974.92409375
transcript.pyannote[856].speaker SPEAKER_03
transcript.pyannote[856].start 6976.24034375
transcript.pyannote[856].end 6982.83846875
transcript.pyannote[857].speaker SPEAKER_03
transcript.pyannote[857].start 6986.38221875
transcript.pyannote[857].end 6989.14971875
transcript.pyannote[858].speaker SPEAKER_03
transcript.pyannote[858].start 6989.80784375
transcript.pyannote[858].end 6991.00596875
transcript.pyannote[859].speaker SPEAKER_03
transcript.pyannote[859].start 6992.38971875
transcript.pyannote[859].end 6996.10221875
transcript.pyannote[860].speaker SPEAKER_03
transcript.pyannote[860].start 6996.52409375
transcript.pyannote[860].end 7002.02534375
transcript.pyannote[861].speaker SPEAKER_03
transcript.pyannote[861].start 7004.37096875
transcript.pyannote[861].end 7008.11721875
transcript.pyannote[862].speaker SPEAKER_03
transcript.pyannote[862].start 7010.85096875
transcript.pyannote[862].end 7011.81284375
transcript.pyannote[863].speaker SPEAKER_03
transcript.pyannote[863].start 7013.09534375
transcript.pyannote[863].end 7014.68159375
transcript.pyannote[864].speaker SPEAKER_03
transcript.pyannote[864].start 7017.43221875
transcript.pyannote[864].end 7025.54909375
transcript.pyannote[865].speaker SPEAKER_03
transcript.pyannote[865].start 7027.38846875
transcript.pyannote[865].end 7030.81409375
transcript.pyannote[866].speaker SPEAKER_03
transcript.pyannote[866].start 7031.37096875
transcript.pyannote[866].end 7031.72534375
transcript.pyannote[867].speaker SPEAKER_03
transcript.pyannote[867].start 7032.70409375
transcript.pyannote[867].end 7039.85909375
transcript.pyannote[868].speaker SPEAKER_03
transcript.pyannote[868].start 7041.96846875
transcript.pyannote[868].end 7050.47346875
transcript.pyannote[869].speaker SPEAKER_03
transcript.pyannote[869].start 7052.02596875
transcript.pyannote[869].end 7061.17221875
transcript.pyannote[870].speaker SPEAKER_03
transcript.pyannote[870].start 7061.22284375
transcript.pyannote[870].end 7068.02346875
transcript.pyannote[871].speaker SPEAKER_03
transcript.pyannote[871].start 7068.14159375
transcript.pyannote[871].end 7069.66034375
transcript.pyannote[872].speaker SPEAKER_03
transcript.pyannote[872].start 7071.61784375
transcript.pyannote[872].end 7072.02284375
transcript.pyannote[873].speaker SPEAKER_03
transcript.pyannote[873].start 7072.30971875
transcript.pyannote[873].end 7075.90409375
transcript.pyannote[874].speaker SPEAKER_03
transcript.pyannote[874].start 7076.84909375
transcript.pyannote[874].end 7083.43034375
transcript.pyannote[875].speaker SPEAKER_03
transcript.pyannote[875].start 7083.78471875
transcript.pyannote[875].end 7085.74221875
transcript.pyannote[876].speaker SPEAKER_03
transcript.pyannote[876].start 7085.99534375
transcript.pyannote[876].end 7088.29034375
transcript.pyannote[877].speaker SPEAKER_03
transcript.pyannote[877].start 7089.26909375
transcript.pyannote[877].end 7091.49659375
transcript.pyannote[878].speaker SPEAKER_03
transcript.pyannote[878].start 7092.89721875
transcript.pyannote[878].end 7095.41159375
transcript.pyannote[879].speaker SPEAKER_03
transcript.pyannote[879].start 7096.47471875
transcript.pyannote[879].end 7106.48159375
transcript.pyannote[880].speaker SPEAKER_03
transcript.pyannote[880].start 7107.34221875
transcript.pyannote[880].end 7132.09784375
transcript.pyannote[881].speaker SPEAKER_03
transcript.pyannote[881].start 7132.23284375
transcript.pyannote[881].end 7135.00034375
transcript.pyannote[882].speaker SPEAKER_03
transcript.pyannote[882].start 7135.92846875
transcript.pyannote[882].end 7152.58409375
transcript.pyannote[883].speaker SPEAKER_03
transcript.pyannote[883].start 7152.90471875
transcript.pyannote[883].end 7159.73909375
transcript.pyannote[884].speaker SPEAKER_03
transcript.pyannote[884].start 7160.90346875
transcript.pyannote[884].end 7176.63096875
transcript.pyannote[885].speaker SPEAKER_03
transcript.pyannote[885].start 7177.42409375
transcript.pyannote[885].end 7178.43659375
transcript.pyannote[886].speaker SPEAKER_03
transcript.pyannote[886].start 7179.17909375
transcript.pyannote[886].end 7188.07221875
transcript.pyannote[887].speaker SPEAKER_03
transcript.pyannote[887].start 7189.42221875
transcript.pyannote[887].end 7192.96596875
transcript.pyannote[888].speaker SPEAKER_03
transcript.pyannote[888].start 7193.30346875
transcript.pyannote[888].end 7195.46346875
transcript.pyannote[889].speaker SPEAKER_03
transcript.pyannote[889].start 7196.42534375
transcript.pyannote[889].end 7197.52221875
transcript.pyannote[890].speaker SPEAKER_03
transcript.pyannote[890].start 7198.28159375
transcript.pyannote[890].end 7221.60284375
transcript.pyannote[891].speaker SPEAKER_03
transcript.pyannote[891].start 7222.27784375
transcript.pyannote[891].end 7226.46284375
transcript.pyannote[892].speaker SPEAKER_03
transcript.pyannote[892].start 7227.32346875
transcript.pyannote[892].end 7232.35221875
transcript.pyannote[893].speaker SPEAKER_03
transcript.pyannote[893].start 7234.00596875
transcript.pyannote[893].end 7235.28846875
transcript.pyannote[894].speaker SPEAKER_03
transcript.pyannote[894].start 7235.74409375
transcript.pyannote[894].end 7252.65284375
transcript.pyannote[895].speaker SPEAKER_03
transcript.pyannote[895].start 7253.14221875
transcript.pyannote[895].end 7267.18221875
transcript.pyannote[896].speaker SPEAKER_03
transcript.pyannote[896].start 7267.63784375
transcript.pyannote[896].end 7268.93721875
transcript.pyannote[897].speaker SPEAKER_03
transcript.pyannote[897].start 7269.25784375
transcript.pyannote[897].end 7270.11846875
transcript.pyannote[898].speaker SPEAKER_03
transcript.pyannote[898].start 7271.29971875
transcript.pyannote[898].end 7276.42971875
transcript.pyannote[899].speaker SPEAKER_03
transcript.pyannote[899].start 7277.99909375
transcript.pyannote[899].end 7278.82596875
transcript.pyannote[900].speaker SPEAKER_03
transcript.pyannote[900].start 7279.46721875
transcript.pyannote[900].end 7294.03034375
transcript.pyannote[901].speaker SPEAKER_03
transcript.pyannote[901].start 7294.11471875
transcript.pyannote[901].end 7295.29596875
transcript.pyannote[902].speaker SPEAKER_03
transcript.pyannote[902].start 7296.00471875
transcript.pyannote[902].end 7297.69221875
transcript.pyannote[903].speaker SPEAKER_03
transcript.pyannote[903].start 7298.87346875
transcript.pyannote[903].end 7306.80471875
transcript.pyannote[904].speaker SPEAKER_03
transcript.pyannote[904].start 7308.59346875
transcript.pyannote[904].end 7311.61409375
transcript.pyannote[905].speaker SPEAKER_03
transcript.pyannote[905].start 7312.12034375
transcript.pyannote[905].end 7318.26284375
transcript.pyannote[906].speaker SPEAKER_03
transcript.pyannote[906].start 7318.61721875
transcript.pyannote[906].end 7319.98409375
transcript.pyannote[907].speaker SPEAKER_03
transcript.pyannote[907].start 7320.52409375
transcript.pyannote[907].end 7321.85721875
transcript.pyannote[908].speaker SPEAKER_03
transcript.pyannote[908].start 7322.51534375
transcript.pyannote[908].end 7323.25784375
transcript.pyannote[909].speaker SPEAKER_03
transcript.pyannote[909].start 7323.51096875
transcript.pyannote[909].end 7325.04659375
transcript.pyannote[910].speaker SPEAKER_03
transcript.pyannote[910].start 7325.80596875
transcript.pyannote[910].end 7329.33284375
transcript.pyannote[911].speaker SPEAKER_03
transcript.pyannote[911].start 7330.37909375
transcript.pyannote[911].end 7333.88909375
transcript.pyannote[912].speaker SPEAKER_03
transcript.pyannote[912].start 7335.01971875
transcript.pyannote[912].end 7338.04034375
transcript.pyannote[913].speaker SPEAKER_03
transcript.pyannote[913].start 7338.49596875
transcript.pyannote[913].end 7345.12784375
transcript.pyannote[914].speaker SPEAKER_03
transcript.pyannote[914].start 7345.68471875
transcript.pyannote[914].end 7350.37596875
transcript.pyannote[915].speaker SPEAKER_03
transcript.pyannote[915].start 7351.23659375
transcript.pyannote[915].end 7369.93409375
transcript.pyannote[916].speaker SPEAKER_03
transcript.pyannote[916].start 7370.92971875
transcript.pyannote[916].end 7391.93909375
transcript.pyannote[917].speaker SPEAKER_03
transcript.pyannote[917].start 7393.86284375
transcript.pyannote[917].end 7399.60034375
transcript.pyannote[918].speaker SPEAKER_03
transcript.pyannote[918].start 7400.00534375
transcript.pyannote[918].end 7402.43534375
transcript.pyannote[919].speaker SPEAKER_03
transcript.pyannote[919].start 7402.85721875
transcript.pyannote[919].end 7421.43659375
transcript.pyannote[920].speaker SPEAKER_03
transcript.pyannote[920].start 7421.97659375
transcript.pyannote[920].end 7429.89096875
transcript.pyannote[921].speaker SPEAKER_03
transcript.pyannote[921].start 7431.67971875
transcript.pyannote[921].end 7437.48471875
transcript.pyannote[922].speaker SPEAKER_03
transcript.pyannote[922].start 7441.82159375
transcript.pyannote[922].end 7450.41096875
transcript.pyannote[923].speaker SPEAKER_00
transcript.pyannote[923].start 7442.00721875
transcript.pyannote[923].end 7442.64846875
transcript.pyannote[924].speaker SPEAKER_03
transcript.pyannote[924].start 7452.63846875
transcript.pyannote[924].end 7455.91221875
transcript.pyannote[925].speaker SPEAKER_03
transcript.pyannote[925].start 7456.48596875
transcript.pyannote[925].end 7457.27909375
transcript.pyannote[926].speaker SPEAKER_03
transcript.pyannote[926].start 7458.49409375
transcript.pyannote[926].end 7461.26159375
transcript.pyannote[927].speaker SPEAKER_03
transcript.pyannote[927].start 7461.88596875
transcript.pyannote[927].end 7465.98659375
transcript.pyannote[928].speaker SPEAKER_03
transcript.pyannote[928].start 7466.99909375
transcript.pyannote[928].end 7468.23096875
transcript.pyannote[929].speaker SPEAKER_03
transcript.pyannote[929].start 7472.14596875
transcript.pyannote[929].end 7473.90096875
transcript.pyannote[930].speaker SPEAKER_03
transcript.pyannote[930].start 7475.25096875
transcript.pyannote[930].end 7476.11159375
transcript.pyannote[931].speaker SPEAKER_03
transcript.pyannote[931].start 7477.56284375
transcript.pyannote[931].end 7478.37284375
transcript.pyannote[932].speaker SPEAKER_03
transcript.pyannote[932].start 7479.01409375
transcript.pyannote[932].end 7481.24159375
transcript.pyannote[933].speaker SPEAKER_03
transcript.pyannote[933].start 7481.35971875
transcript.pyannote[933].end 7483.31721875
transcript.pyannote[934].speaker SPEAKER_03
transcript.pyannote[934].start 7484.27909375
transcript.pyannote[934].end 7487.04659375
transcript.pyannote[935].speaker SPEAKER_03
transcript.pyannote[935].start 7487.97471875
transcript.pyannote[935].end 7489.20659375
transcript.pyannote[936].speaker SPEAKER_03
transcript.pyannote[936].start 7490.32034375
transcript.pyannote[936].end 7493.54346875
transcript.pyannote[937].speaker SPEAKER_03
transcript.pyannote[937].start 7494.31971875
transcript.pyannote[937].end 7496.39534375
transcript.pyannote[938].speaker SPEAKER_03
transcript.pyannote[938].start 7498.06596875
transcript.pyannote[938].end 7498.87596875
transcript.pyannote[939].speaker SPEAKER_03
transcript.pyannote[939].start 7500.37784375
transcript.pyannote[939].end 7502.65596875
transcript.pyannote[940].speaker SPEAKER_03
transcript.pyannote[940].start 7503.55034375
transcript.pyannote[940].end 7505.84534375
transcript.pyannote[941].speaker SPEAKER_03
transcript.pyannote[941].start 7506.77346875
transcript.pyannote[941].end 7507.17846875
transcript.pyannote[942].speaker SPEAKER_03
transcript.pyannote[942].start 7507.49909375
transcript.pyannote[942].end 7507.93784375
transcript.pyannote[943].speaker SPEAKER_03
transcript.pyannote[943].start 7508.25846875
transcript.pyannote[943].end 7508.64659375
transcript.pyannote[944].speaker SPEAKER_03
transcript.pyannote[944].start 7509.91221875
transcript.pyannote[944].end 7513.55721875
transcript.pyannote[945].speaker SPEAKER_03
transcript.pyannote[945].start 7514.21534375
transcript.pyannote[945].end 7516.83096875
transcript.pyannote[946].speaker SPEAKER_03
transcript.pyannote[946].start 7517.75909375
transcript.pyannote[946].end 7518.92346875
transcript.pyannote[947].speaker SPEAKER_03
transcript.pyannote[947].start 7520.50971875
transcript.pyannote[947].end 7530.95534375
transcript.pyannote[948].speaker SPEAKER_03
transcript.pyannote[948].start 7532.45721875
transcript.pyannote[948].end 7534.63409375
transcript.pyannote[949].speaker SPEAKER_03
transcript.pyannote[949].start 7535.69721875
transcript.pyannote[949].end 7537.73909375
transcript.pyannote[950].speaker SPEAKER_03
transcript.pyannote[950].start 7539.71346875
transcript.pyannote[950].end 7542.54846875
transcript.pyannote[951].speaker SPEAKER_03
transcript.pyannote[951].start 7544.45534375
transcript.pyannote[951].end 7548.75846875
transcript.pyannote[952].speaker SPEAKER_03
transcript.pyannote[952].start 7549.31534375
transcript.pyannote[952].end 7552.36971875
transcript.pyannote[953].speaker SPEAKER_03
transcript.pyannote[953].start 7553.97284375
transcript.pyannote[953].end 7572.04596875
transcript.pyannote[954].speaker SPEAKER_03
transcript.pyannote[954].start 7577.76659375
transcript.pyannote[954].end 7585.42784375
transcript.pyannote[955].speaker SPEAKER_03
transcript.pyannote[955].start 7585.96784375
transcript.pyannote[955].end 7588.76909375
transcript.pyannote[956].speaker SPEAKER_03
transcript.pyannote[956].start 7590.74346875
transcript.pyannote[956].end 7591.70534375
transcript.pyannote[957].speaker SPEAKER_03
transcript.pyannote[957].start 7593.46034375
transcript.pyannote[957].end 7594.92846875
transcript.pyannote[958].speaker SPEAKER_03
transcript.pyannote[958].start 7599.18096875
transcript.pyannote[958].end 7601.71221875
transcript.pyannote[959].speaker SPEAKER_03
transcript.pyannote[959].start 7604.41221875
transcript.pyannote[959].end 7612.78221875
transcript.pyannote[960].speaker SPEAKER_03
transcript.pyannote[960].start 7614.52034375
transcript.pyannote[960].end 7620.67971875
transcript.pyannote[961].speaker SPEAKER_03
transcript.pyannote[961].start 7622.67096875
transcript.pyannote[961].end 7624.59471875
transcript.pyannote[962].speaker SPEAKER_03
transcript.pyannote[962].start 7628.49284375
transcript.pyannote[962].end 7629.15096875
transcript.pyannote[963].speaker SPEAKER_03
transcript.pyannote[963].start 7634.38221875
transcript.pyannote[963].end 7667.87909375
transcript.pyannote[964].speaker SPEAKER_03
transcript.pyannote[964].start 7669.04346875
transcript.pyannote[964].end 7669.76909375
transcript.pyannote[965].speaker SPEAKER_03
transcript.pyannote[965].start 7672.04721875
transcript.pyannote[965].end 7672.50284375
transcript.pyannote[966].speaker SPEAKER_03
transcript.pyannote[966].start 7673.27909375
transcript.pyannote[966].end 7674.39284375
transcript.pyannote[967].speaker SPEAKER_03
transcript.pyannote[967].start 7675.91159375
transcript.pyannote[967].end 7678.32471875
transcript.pyannote[968].speaker SPEAKER_03
transcript.pyannote[968].start 7679.10096875
transcript.pyannote[968].end 7681.56471875
transcript.pyannote[969].speaker SPEAKER_03
transcript.pyannote[969].start 7681.86846875
transcript.pyannote[969].end 7684.58534375
transcript.pyannote[970].speaker SPEAKER_03
transcript.pyannote[970].start 7684.73721875
transcript.pyannote[970].end 7687.87596875
transcript.pyannote[971].speaker SPEAKER_03
transcript.pyannote[971].start 7689.25971875
transcript.pyannote[971].end 7690.71096875
transcript.pyannote[972].speaker SPEAKER_03
transcript.pyannote[972].start 7691.92596875
transcript.pyannote[972].end 7693.90034375
transcript.pyannote[973].speaker SPEAKER_03
transcript.pyannote[973].start 7694.35596875
transcript.pyannote[973].end 7700.41409375
transcript.pyannote[974].speaker SPEAKER_03
transcript.pyannote[974].start 7701.66284375
transcript.pyannote[974].end 7704.80159375
transcript.pyannote[975].speaker SPEAKER_03
transcript.pyannote[975].start 7705.45971875
transcript.pyannote[975].end 7706.67471875
transcript.pyannote[976].speaker SPEAKER_03
transcript.pyannote[976].start 7707.67034375
transcript.pyannote[976].end 7717.66034375
transcript.pyannote[977].speaker SPEAKER_03
transcript.pyannote[977].start 7718.80784375
transcript.pyannote[977].end 7720.44471875
transcript.pyannote[978].speaker SPEAKER_03
transcript.pyannote[978].start 7721.25471875
transcript.pyannote[978].end 7724.78159375
transcript.pyannote[979].speaker SPEAKER_03
transcript.pyannote[979].start 7725.22034375
transcript.pyannote[979].end 7727.17784375
transcript.pyannote[980].speaker SPEAKER_03
transcript.pyannote[980].start 7729.27034375
transcript.pyannote[980].end 7730.21534375
transcript.pyannote[981].speaker SPEAKER_03
transcript.pyannote[981].start 7731.71721875
transcript.pyannote[981].end 7734.94034375
transcript.pyannote[982].speaker SPEAKER_03
transcript.pyannote[982].start 7734.95721875
transcript.pyannote[982].end 7737.06659375
transcript.pyannote[983].speaker SPEAKER_03
transcript.pyannote[983].start 7737.74159375
transcript.pyannote[983].end 7743.22596875
transcript.pyannote[984].speaker SPEAKER_03
transcript.pyannote[984].start 7743.88409375
transcript.pyannote[984].end 7750.70159375
transcript.pyannote[985].speaker SPEAKER_03
transcript.pyannote[985].start 7751.56221875
transcript.pyannote[985].end 7754.44784375
transcript.pyannote[986].speaker SPEAKER_03
transcript.pyannote[986].start 7755.57846875
transcript.pyannote[986].end 7765.43346875
transcript.pyannote[987].speaker SPEAKER_03
transcript.pyannote[987].start 7766.93534375
transcript.pyannote[987].end 7774.96784375
transcript.pyannote[988].speaker SPEAKER_03
transcript.pyannote[988].start 7775.59221875
transcript.pyannote[988].end 7778.57909375
transcript.pyannote[989].speaker SPEAKER_03
transcript.pyannote[989].start 7779.28784375
transcript.pyannote[989].end 7780.92471875
transcript.pyannote[990].speaker SPEAKER_03
transcript.pyannote[990].start 7781.17784375
transcript.pyannote[990].end 7783.97909375
transcript.pyannote[991].speaker SPEAKER_03
transcript.pyannote[991].start 7785.58221875
transcript.pyannote[991].end 7794.79596875
transcript.pyannote[992].speaker SPEAKER_03
transcript.pyannote[992].start 7795.42034375
transcript.pyannote[992].end 7795.62284375
transcript.pyannote[993].speaker SPEAKER_03
transcript.pyannote[993].start 7797.41159375
transcript.pyannote[993].end 7802.28846875
transcript.pyannote[994].speaker SPEAKER_03
transcript.pyannote[994].start 7803.28409375
transcript.pyannote[994].end 7811.72159375
transcript.pyannote[995].speaker SPEAKER_03
transcript.pyannote[995].start 7812.37971875
transcript.pyannote[995].end 7817.52659375
transcript.pyannote[996].speaker SPEAKER_03
transcript.pyannote[996].start 7819.24784375
transcript.pyannote[996].end 7820.68221875
transcript.pyannote[997].speaker SPEAKER_03
transcript.pyannote[997].start 7821.93096875
transcript.pyannote[997].end 7823.29784375
transcript.pyannote[998].speaker SPEAKER_03
transcript.pyannote[998].start 7825.06971875
transcript.pyannote[998].end 7827.46596875
transcript.pyannote[999].speaker SPEAKER_03
transcript.pyannote[999].start 7828.32659375
transcript.pyannote[999].end 7829.72721875
transcript.pyannote[1000].speaker SPEAKER_03
transcript.pyannote[1000].start 7830.79034375
transcript.pyannote[1000].end 7837.48971875
transcript.pyannote[1001].speaker SPEAKER_03
transcript.pyannote[1001].start 7838.63721875
transcript.pyannote[1001].end 7844.23971875
transcript.pyannote[1002].speaker SPEAKER_03
transcript.pyannote[1002].start 7845.25221875
transcript.pyannote[1002].end 7851.10784375
transcript.pyannote[1003].speaker SPEAKER_03
transcript.pyannote[1003].start 7851.83346875
transcript.pyannote[1003].end 7866.59909375
transcript.pyannote[1004].speaker SPEAKER_03
transcript.pyannote[1004].start 7866.95346875
transcript.pyannote[1004].end 7869.14721875
transcript.pyannote[1005].speaker SPEAKER_03
transcript.pyannote[1005].start 7870.15971875
transcript.pyannote[1005].end 7870.91909375
transcript.pyannote[1006].speaker SPEAKER_03
transcript.pyannote[1006].start 7871.57721875
transcript.pyannote[1006].end 7876.25159375
transcript.pyannote[1007].speaker SPEAKER_03
transcript.pyannote[1007].start 7877.77034375
transcript.pyannote[1007].end 7880.04846875
transcript.pyannote[1008].speaker SPEAKER_03
transcript.pyannote[1008].start 7880.21721875
transcript.pyannote[1008].end 7882.05659375
transcript.pyannote[1009].speaker SPEAKER_03
transcript.pyannote[1009].start 7883.59221875
transcript.pyannote[1009].end 7886.37659375
transcript.pyannote[1010].speaker SPEAKER_03
transcript.pyannote[1010].start 7887.13596875
transcript.pyannote[1010].end 7889.54909375
transcript.pyannote[1011].speaker SPEAKER_03
transcript.pyannote[1011].start 7893.85221875
transcript.pyannote[1011].end 7895.75909375
transcript.pyannote[1012].speaker SPEAKER_03
transcript.pyannote[1012].start 7895.87721875
transcript.pyannote[1012].end 7897.05846875
transcript.pyannote[1013].speaker SPEAKER_03
transcript.pyannote[1013].start 7897.95284375
transcript.pyannote[1013].end 7898.57721875
transcript.pyannote[1014].speaker SPEAKER_03
transcript.pyannote[1014].start 7901.15909375
transcript.pyannote[1014].end 7901.88471875
transcript.pyannote[1015].speaker SPEAKER_03
transcript.pyannote[1015].start 7903.15034375
transcript.pyannote[1015].end 7905.64784375
transcript.pyannote[1016].speaker SPEAKER_03
transcript.pyannote[1016].start 7905.86721875
transcript.pyannote[1016].end 7906.39034375
transcript.pyannote[1017].speaker SPEAKER_03
transcript.pyannote[1017].start 7909.24221875
transcript.pyannote[1017].end 7912.02659375
transcript.pyannote[1018].speaker SPEAKER_03
transcript.pyannote[1018].start 7912.65096875
transcript.pyannote[1018].end 7917.37596875
transcript.pyannote[1019].speaker SPEAKER_03
transcript.pyannote[1019].start 7918.33784375
transcript.pyannote[1019].end 7928.20971875
transcript.pyannote[1020].speaker SPEAKER_03
transcript.pyannote[1020].start 7929.76221875
transcript.pyannote[1020].end 7930.52159375
transcript.pyannote[1021].speaker SPEAKER_03
transcript.pyannote[1021].start 7931.07846875
transcript.pyannote[1021].end 7933.69409375
transcript.pyannote[1022].speaker SPEAKER_03
transcript.pyannote[1022].start 7933.84596875
transcript.pyannote[1022].end 7938.87471875
transcript.pyannote[1023].speaker SPEAKER_03
transcript.pyannote[1023].start 7939.38096875
transcript.pyannote[1023].end 7942.35096875
transcript.pyannote[1024].speaker SPEAKER_03
transcript.pyannote[1024].start 7942.65471875
transcript.pyannote[1024].end 7946.24909375
transcript.pyannote[1025].speaker SPEAKER_03
transcript.pyannote[1025].start 7947.95346875
transcript.pyannote[1025].end 7950.55221875
transcript.pyannote[1026].speaker SPEAKER_03
transcript.pyannote[1026].start 7951.07534375
transcript.pyannote[1026].end 7953.69096875
transcript.pyannote[1027].speaker SPEAKER_03
transcript.pyannote[1027].start 7954.38284375
transcript.pyannote[1027].end 7955.34471875
transcript.pyannote[1028].speaker SPEAKER_03
transcript.pyannote[1028].start 7956.13784375
transcript.pyannote[1028].end 7964.49096875
transcript.pyannote[1029].speaker SPEAKER_03
transcript.pyannote[1029].start 7965.90846875
transcript.pyannote[1029].end 7966.07721875
transcript.pyannote[1030].speaker SPEAKER_03
transcript.pyannote[1030].start 7967.59596875
transcript.pyannote[1030].end 7969.95846875
transcript.pyannote[1031].speaker SPEAKER_03
transcript.pyannote[1031].start 7971.74721875
transcript.pyannote[1031].end 7989.21284375
transcript.pyannote[1032].speaker SPEAKER_03
transcript.pyannote[1032].start 7990.32659375
transcript.pyannote[1032].end 7992.13221875
transcript.pyannote[1033].speaker SPEAKER_03
transcript.pyannote[1033].start 7993.24596875
transcript.pyannote[1033].end 7995.82784375
transcript.pyannote[1034].speaker SPEAKER_03
transcript.pyannote[1034].start 7996.57034375
transcript.pyannote[1034].end 7998.81471875
transcript.pyannote[1035].speaker SPEAKER_03
transcript.pyannote[1035].start 8001.54846875
transcript.pyannote[1035].end 8002.03784375
transcript.pyannote[1036].speaker SPEAKER_03
transcript.pyannote[1036].start 8003.15159375
transcript.pyannote[1036].end 8004.33284375
transcript.pyannote[1037].speaker SPEAKER_03
transcript.pyannote[1037].start 8005.15971875
transcript.pyannote[1037].end 8005.96971875
transcript.pyannote[1038].speaker SPEAKER_03
transcript.pyannote[1038].start 8007.69096875
transcript.pyannote[1038].end 8008.61909375
transcript.pyannote[1039].speaker SPEAKER_03
transcript.pyannote[1039].start 8009.74971875
transcript.pyannote[1039].end 8010.03659375
transcript.pyannote[1040].speaker SPEAKER_03
transcript.pyannote[1040].start 8010.20534375
transcript.pyannote[1040].end 8027.09721875
transcript.pyannote[1041].speaker SPEAKER_03
transcript.pyannote[1041].start 8027.68784375
transcript.pyannote[1041].end 8035.18034375
transcript.pyannote[1042].speaker SPEAKER_03
transcript.pyannote[1042].start 8035.95659375
transcript.pyannote[1042].end 8038.31909375
transcript.pyannote[1043].speaker SPEAKER_03
transcript.pyannote[1043].start 8039.04471875
transcript.pyannote[1043].end 8041.93034375
transcript.pyannote[1044].speaker SPEAKER_03
transcript.pyannote[1044].start 8042.97659375
transcript.pyannote[1044].end 8045.84534375
transcript.pyannote[1045].speaker SPEAKER_03
transcript.pyannote[1045].start 8046.99284375
transcript.pyannote[1045].end 8047.24596875
transcript.pyannote[1046].speaker SPEAKER_03
transcript.pyannote[1046].start 8047.61721875
transcript.pyannote[1046].end 8052.79784375
transcript.pyannote[1047].speaker SPEAKER_03
transcript.pyannote[1047].start 8053.11846875
transcript.pyannote[1047].end 8056.74659375
transcript.pyannote[1048].speaker SPEAKER_03
transcript.pyannote[1048].start 8057.37096875
transcript.pyannote[1048].end 8061.52221875
transcript.pyannote[1049].speaker SPEAKER_03
transcript.pyannote[1049].start 8061.74159375
transcript.pyannote[1049].end 8064.98159375
transcript.pyannote[1050].speaker SPEAKER_03
transcript.pyannote[1050].start 8065.26846875
transcript.pyannote[1050].end 8067.25971875
transcript.pyannote[1051].speaker SPEAKER_03
transcript.pyannote[1051].start 8068.08659375
transcript.pyannote[1051].end 8080.94534375
transcript.pyannote[1052].speaker SPEAKER_03
transcript.pyannote[1052].start 8081.82284375
transcript.pyannote[1052].end 8088.35346875
transcript.pyannote[1053].speaker SPEAKER_03
transcript.pyannote[1053].start 8089.24784375
transcript.pyannote[1053].end 8090.69909375
transcript.pyannote[1054].speaker SPEAKER_03
transcript.pyannote[1054].start 8091.00284375
transcript.pyannote[1054].end 8094.47909375
transcript.pyannote[1055].speaker SPEAKER_03
transcript.pyannote[1055].start 8096.35221875
transcript.pyannote[1055].end 8098.09034375
transcript.pyannote[1056].speaker SPEAKER_03
transcript.pyannote[1056].start 8098.93409375
transcript.pyannote[1056].end 8101.80284375
transcript.pyannote[1057].speaker SPEAKER_03
transcript.pyannote[1057].start 8102.73096875
transcript.pyannote[1057].end 8104.33409375
transcript.pyannote[1058].speaker SPEAKER_03
transcript.pyannote[1058].start 8104.57034375
transcript.pyannote[1058].end 8106.08909375
transcript.pyannote[1059].speaker SPEAKER_03
transcript.pyannote[1059].start 8106.84846875
transcript.pyannote[1059].end 8115.03284375
transcript.pyannote[1060].speaker SPEAKER_03
transcript.pyannote[1060].start 8115.85971875
transcript.pyannote[1060].end 8120.80409375
transcript.pyannote[1061].speaker SPEAKER_03
transcript.pyannote[1061].start 8121.78284375
transcript.pyannote[1061].end 8123.68971875
transcript.pyannote[1062].speaker SPEAKER_03
transcript.pyannote[1062].start 8125.03971875
transcript.pyannote[1062].end 8125.91721875
transcript.pyannote[1063].speaker SPEAKER_03
transcript.pyannote[1063].start 8126.96346875
transcript.pyannote[1063].end 8127.58784375
transcript.pyannote[1064].speaker SPEAKER_03
transcript.pyannote[1064].start 8127.89159375
transcript.pyannote[1064].end 8137.18971875
transcript.pyannote[1065].speaker SPEAKER_03
transcript.pyannote[1065].start 8137.96596875
transcript.pyannote[1065].end 8139.33284375
transcript.pyannote[1066].speaker SPEAKER_03
transcript.pyannote[1066].start 8139.99096875
transcript.pyannote[1066].end 8153.76096875
transcript.pyannote[1067].speaker SPEAKER_03
transcript.pyannote[1067].start 8153.82846875
transcript.pyannote[1067].end 8156.37659375
transcript.pyannote[1068].speaker SPEAKER_03
transcript.pyannote[1068].start 8157.23721875
transcript.pyannote[1068].end 8163.98721875
transcript.pyannote[1069].speaker SPEAKER_03
transcript.pyannote[1069].start 8164.49346875
transcript.pyannote[1069].end 8165.72534375
transcript.pyannote[1070].speaker SPEAKER_03
transcript.pyannote[1070].start 8166.51846875
transcript.pyannote[1070].end 8170.12971875
transcript.pyannote[1071].speaker SPEAKER_03
transcript.pyannote[1071].start 8171.83409375
transcript.pyannote[1071].end 8175.81659375
transcript.pyannote[1072].speaker SPEAKER_03
transcript.pyannote[1072].start 8177.26784375
transcript.pyannote[1072].end 8182.58346875
transcript.pyannote[1073].speaker SPEAKER_03
transcript.pyannote[1073].start 8185.06409375
transcript.pyannote[1073].end 8196.74159375
transcript.pyannote[1074].speaker SPEAKER_03
transcript.pyannote[1074].start 8197.72034375
transcript.pyannote[1074].end 8198.00721875
transcript.pyannote[1075].speaker SPEAKER_03
transcript.pyannote[1075].start 8198.98596875
transcript.pyannote[1075].end 8201.39909375
transcript.pyannote[1076].speaker SPEAKER_03
transcript.pyannote[1076].start 8202.27659375
transcript.pyannote[1076].end 8203.64346875
transcript.pyannote[1077].speaker SPEAKER_03
transcript.pyannote[1077].start 8204.14971875
transcript.pyannote[1077].end 8205.98909375
transcript.pyannote[1078].speaker SPEAKER_03
transcript.pyannote[1078].start 8206.96784375
transcript.pyannote[1078].end 8207.89596875
transcript.pyannote[1079].speaker SPEAKER_03
transcript.pyannote[1079].start 8209.06034375
transcript.pyannote[1079].end 8211.05159375
transcript.pyannote[1080].speaker SPEAKER_03
transcript.pyannote[1080].start 8211.69284375
transcript.pyannote[1080].end 8213.51534375
transcript.pyannote[1081].speaker SPEAKER_03
transcript.pyannote[1081].start 8215.79346875
transcript.pyannote[1081].end 8216.99159375
transcript.pyannote[1082].speaker SPEAKER_03
transcript.pyannote[1082].start 8219.87721875
transcript.pyannote[1082].end 8221.10909375
transcript.pyannote[1083].speaker SPEAKER_03
transcript.pyannote[1083].start 8222.69534375
transcript.pyannote[1083].end 8223.53909375
transcript.pyannote[1084].speaker SPEAKER_03
transcript.pyannote[1084].start 8223.92721875
transcript.pyannote[1084].end 8225.32784375
transcript.pyannote[1085].speaker SPEAKER_03
transcript.pyannote[1085].start 8225.93534375
transcript.pyannote[1085].end 8226.40784375
transcript.pyannote[1086].speaker SPEAKER_03
transcript.pyannote[1086].start 8228.01096875
transcript.pyannote[1086].end 8228.77034375
transcript.pyannote[1087].speaker SPEAKER_03
transcript.pyannote[1087].start 8229.83346875
transcript.pyannote[1087].end 8234.00159375
transcript.pyannote[1088].speaker SPEAKER_03
transcript.pyannote[1088].start 8236.75221875
transcript.pyannote[1088].end 8241.84846875
transcript.pyannote[1089].speaker SPEAKER_03
transcript.pyannote[1089].start 8243.18159375
transcript.pyannote[1089].end 8244.43034375
transcript.pyannote[1090].speaker SPEAKER_03
transcript.pyannote[1090].start 8246.72534375
transcript.pyannote[1090].end 8251.90596875
transcript.pyannote[1091].speaker SPEAKER_03
transcript.pyannote[1091].start 8253.15471875
transcript.pyannote[1091].end 8254.40346875
transcript.pyannote[1092].speaker SPEAKER_03
transcript.pyannote[1092].start 8256.88409375
transcript.pyannote[1092].end 8258.03159375
transcript.pyannote[1093].speaker SPEAKER_03
transcript.pyannote[1093].start 8258.94284375
transcript.pyannote[1093].end 8264.34284375
transcript.pyannote[1094].speaker SPEAKER_03
transcript.pyannote[1094].start 8265.28784375
transcript.pyannote[1094].end 8265.52409375
transcript.pyannote[1095].speaker SPEAKER_03
transcript.pyannote[1095].start 8267.53221875
transcript.pyannote[1095].end 8273.94471875
transcript.pyannote[1096].speaker SPEAKER_03
transcript.pyannote[1096].start 8274.26534375
transcript.pyannote[1096].end 8278.23096875
transcript.pyannote[1097].speaker SPEAKER_03
transcript.pyannote[1097].start 8278.53471875
transcript.pyannote[1097].end 8292.42284375
transcript.pyannote[1098].speaker SPEAKER_03
transcript.pyannote[1098].start 8293.21596875
transcript.pyannote[1098].end 8298.98721875
transcript.pyannote[1099].speaker SPEAKER_03
transcript.pyannote[1099].start 8300.86034375
transcript.pyannote[1099].end 8302.73346875
transcript.pyannote[1100].speaker SPEAKER_03
transcript.pyannote[1100].start 8304.35346875
transcript.pyannote[1100].end 8305.63596875
transcript.pyannote[1101].speaker SPEAKER_03
transcript.pyannote[1101].start 8305.99034375
transcript.pyannote[1101].end 8319.11909375
transcript.pyannote[1102].speaker SPEAKER_03
transcript.pyannote[1102].start 8319.33846875
transcript.pyannote[1102].end 8320.46909375
transcript.pyannote[1103].speaker SPEAKER_03
transcript.pyannote[1103].start 8321.31284375
transcript.pyannote[1103].end 8326.59471875
transcript.pyannote[1104].speaker SPEAKER_03
transcript.pyannote[1104].start 8329.17659375
transcript.pyannote[1104].end 8330.77971875
transcript.pyannote[1105].speaker SPEAKER_03
transcript.pyannote[1105].start 8331.82596875
transcript.pyannote[1105].end 8336.34846875
transcript.pyannote[1106].speaker SPEAKER_03
transcript.pyannote[1106].start 8339.13284375
transcript.pyannote[1106].end 8348.44784375
transcript.pyannote[1107].speaker SPEAKER_03
transcript.pyannote[1107].start 8349.94971875
transcript.pyannote[1107].end 8363.71971875
transcript.pyannote[1108].speaker SPEAKER_03
transcript.pyannote[1108].start 8364.41159375
transcript.pyannote[1108].end 8365.76159375
transcript.pyannote[1109].speaker SPEAKER_03
transcript.pyannote[1109].start 8368.17471875
transcript.pyannote[1109].end 8370.11534375
transcript.pyannote[1110].speaker SPEAKER_03
transcript.pyannote[1110].start 8370.82409375
transcript.pyannote[1110].end 8380.15596875
transcript.pyannote[1111].speaker SPEAKER_03
transcript.pyannote[1111].start 8380.52721875
transcript.pyannote[1111].end 8386.23096875
transcript.pyannote[1112].speaker SPEAKER_03
transcript.pyannote[1112].start 8387.19284375
transcript.pyannote[1112].end 8390.68596875
transcript.pyannote[1113].speaker SPEAKER_03
transcript.pyannote[1113].start 8391.31034375
transcript.pyannote[1113].end 8393.87534375
transcript.pyannote[1114].speaker SPEAKER_03
transcript.pyannote[1114].start 8395.09034375
transcript.pyannote[1114].end 8410.27784375
transcript.pyannote[1115].speaker SPEAKER_03
transcript.pyannote[1115].start 8410.58159375
transcript.pyannote[1115].end 8414.61471875
transcript.pyannote[1116].speaker SPEAKER_03
transcript.pyannote[1116].start 8415.13784375
transcript.pyannote[1116].end 8417.36534375
transcript.pyannote[1117].speaker SPEAKER_03
transcript.pyannote[1117].start 8418.22596875
transcript.pyannote[1117].end 8421.55034375
transcript.pyannote[1118].speaker SPEAKER_03
transcript.pyannote[1118].start 8423.84534375
transcript.pyannote[1118].end 8431.60784375
transcript.pyannote[1119].speaker SPEAKER_03
transcript.pyannote[1119].start 8432.38409375
transcript.pyannote[1119].end 8435.59034375
transcript.pyannote[1120].speaker SPEAKER_03
transcript.pyannote[1120].start 8437.81784375
transcript.pyannote[1120].end 8440.73721875
transcript.pyannote[1121].speaker SPEAKER_03
transcript.pyannote[1121].start 8441.54721875
transcript.pyannote[1121].end 8442.01971875
transcript.pyannote[1122].speaker SPEAKER_03
transcript.pyannote[1122].start 8442.27284375
transcript.pyannote[1122].end 8443.45409375
transcript.pyannote[1123].speaker SPEAKER_03
transcript.pyannote[1123].start 8445.52971875
transcript.pyannote[1123].end 8448.02721875
transcript.pyannote[1124].speaker SPEAKER_03
transcript.pyannote[1124].start 8449.63034375
transcript.pyannote[1124].end 8450.91284375
transcript.pyannote[1125].speaker SPEAKER_03
transcript.pyannote[1125].start 8451.67221875
transcript.pyannote[1125].end 8454.03471875
transcript.pyannote[1126].speaker SPEAKER_03
transcript.pyannote[1126].start 8454.55784375
transcript.pyannote[1126].end 8459.33346875
transcript.pyannote[1127].speaker SPEAKER_03
transcript.pyannote[1127].start 8460.64971875
transcript.pyannote[1127].end 8466.53909375
transcript.pyannote[1128].speaker SPEAKER_03
transcript.pyannote[1128].start 8467.24784375
transcript.pyannote[1128].end 8473.28909375
transcript.pyannote[1129].speaker SPEAKER_03
transcript.pyannote[1129].start 8473.54221875
transcript.pyannote[1129].end 8483.53221875
transcript.pyannote[1130].speaker SPEAKER_03
transcript.pyannote[1130].start 8485.57409375
transcript.pyannote[1130].end 8486.82284375
transcript.pyannote[1131].speaker SPEAKER_03
transcript.pyannote[1131].start 8488.17284375
transcript.pyannote[1131].end 8489.26971875
transcript.pyannote[1132].speaker SPEAKER_03
transcript.pyannote[1132].start 8490.04596875
transcript.pyannote[1132].end 8492.12159375
transcript.pyannote[1133].speaker SPEAKER_03
transcript.pyannote[1133].start 8493.26909375
transcript.pyannote[1133].end 8493.72471875
transcript.pyannote[1134].speaker SPEAKER_03
transcript.pyannote[1134].start 8494.33221875
transcript.pyannote[1134].end 8498.90534375
transcript.pyannote[1135].speaker SPEAKER_03
transcript.pyannote[1135].start 8499.37784375
transcript.pyannote[1135].end 8508.37221875
transcript.pyannote[1136].speaker SPEAKER_03
transcript.pyannote[1136].start 8509.55346875
transcript.pyannote[1136].end 8513.16471875
transcript.pyannote[1137].speaker SPEAKER_03
transcript.pyannote[1137].start 8514.07596875
transcript.pyannote[1137].end 8515.13909375
transcript.pyannote[1138].speaker SPEAKER_03
transcript.pyannote[1138].start 8515.83096875
transcript.pyannote[1138].end 8527.99784375
transcript.pyannote[1139].speaker SPEAKER_03
transcript.pyannote[1139].start 8528.36909375
transcript.pyannote[1139].end 8542.78034375
transcript.pyannote[1140].speaker SPEAKER_03
transcript.pyannote[1140].start 8542.99971875
transcript.pyannote[1140].end 8548.99034375
transcript.pyannote[1141].speaker SPEAKER_03
transcript.pyannote[1141].start 8549.78346875
transcript.pyannote[1141].end 8551.16721875
transcript.pyannote[1142].speaker SPEAKER_03
transcript.pyannote[1142].start 8551.84221875
transcript.pyannote[1142].end 8558.00159375
transcript.pyannote[1143].speaker SPEAKER_03
transcript.pyannote[1143].start 8558.35596875
transcript.pyannote[1143].end 8563.87409375
transcript.pyannote[1144].speaker SPEAKER_03
transcript.pyannote[1144].start 8565.08909375
transcript.pyannote[1144].end 8569.61159375
transcript.pyannote[1145].speaker SPEAKER_03
transcript.pyannote[1145].start 8571.75471875
transcript.pyannote[1145].end 8582.35221875
transcript.pyannote[1146].speaker SPEAKER_03
transcript.pyannote[1146].start 8583.44909375
transcript.pyannote[1146].end 8587.00971875
transcript.pyannote[1147].speaker SPEAKER_03
transcript.pyannote[1147].start 8587.73534375
transcript.pyannote[1147].end 8593.92846875
transcript.pyannote[1148].speaker SPEAKER_03
transcript.pyannote[1148].start 8594.67096875
transcript.pyannote[1148].end 8601.52221875
transcript.pyannote[1149].speaker SPEAKER_03
transcript.pyannote[1149].start 8602.45034375
transcript.pyannote[1149].end 8603.32784375
transcript.pyannote[1150].speaker SPEAKER_03
transcript.pyannote[1150].start 8604.66096875
transcript.pyannote[1150].end 8609.70659375
transcript.pyannote[1151].speaker SPEAKER_03
transcript.pyannote[1151].start 8610.61784375
transcript.pyannote[1151].end 8613.31784375
transcript.pyannote[1152].speaker SPEAKER_03
transcript.pyannote[1152].start 8615.41034375
transcript.pyannote[1152].end 8616.20346875
transcript.pyannote[1153].speaker SPEAKER_03
transcript.pyannote[1153].start 8617.46909375
transcript.pyannote[1153].end 8621.21534375
transcript.pyannote[1154].speaker SPEAKER_03
transcript.pyannote[1154].start 8621.73846875
transcript.pyannote[1154].end 8625.85596875
transcript.pyannote[1155].speaker SPEAKER_03
transcript.pyannote[1155].start 8626.22721875
transcript.pyannote[1155].end 8631.77909375
transcript.pyannote[1156].speaker SPEAKER_03
transcript.pyannote[1156].start 8632.90971875
transcript.pyannote[1156].end 8634.44534375
transcript.pyannote[1157].speaker SPEAKER_03
transcript.pyannote[1157].start 8636.14971875
transcript.pyannote[1157].end 8638.39409375
transcript.pyannote[1158].speaker SPEAKER_03
transcript.pyannote[1158].start 8638.61346875
transcript.pyannote[1158].end 8648.78909375
transcript.pyannote[1159].speaker SPEAKER_03
transcript.pyannote[1159].start 8650.15596875
transcript.pyannote[1159].end 8654.13846875
transcript.pyannote[1160].speaker SPEAKER_03
transcript.pyannote[1160].start 8654.34096875
transcript.pyannote[1160].end 8655.08346875
transcript.pyannote[1161].speaker SPEAKER_03
transcript.pyannote[1161].start 8655.82596875
transcript.pyannote[1161].end 8656.53471875
transcript.pyannote[1162].speaker SPEAKER_03
transcript.pyannote[1162].start 8657.36159375
transcript.pyannote[1162].end 8660.44971875
transcript.pyannote[1163].speaker SPEAKER_03
transcript.pyannote[1163].start 8661.90096875
transcript.pyannote[1163].end 8682.58971875
transcript.pyannote[1164].speaker SPEAKER_03
transcript.pyannote[1164].start 8683.24784375
transcript.pyannote[1164].end 8707.12596875
transcript.pyannote[1165].speaker SPEAKER_00
transcript.pyannote[1165].start 8698.41846875
transcript.pyannote[1165].end 8698.53659375
transcript.pyannote[1166].speaker SPEAKER_03
transcript.pyannote[1166].start 8707.31159375
transcript.pyannote[1166].end 8714.29784375
transcript.pyannote[1167].speaker SPEAKER_03
transcript.pyannote[1167].start 8715.54659375
transcript.pyannote[1167].end 8715.90096875
transcript.pyannote[1168].speaker SPEAKER_03
transcript.pyannote[1168].start 8716.82909375
transcript.pyannote[1168].end 8718.24659375
transcript.pyannote[1169].speaker SPEAKER_03
transcript.pyannote[1169].start 8722.88721875
transcript.pyannote[1169].end 8733.36659375
transcript.pyannote[1170].speaker SPEAKER_03
transcript.pyannote[1170].start 8733.77159375
transcript.pyannote[1170].end 8751.35534375
transcript.pyannote[1171].speaker SPEAKER_03
transcript.pyannote[1171].start 8752.01346875
transcript.pyannote[1171].end 8768.85471875
transcript.pyannote[1172].speaker SPEAKER_03
transcript.pyannote[1172].start 8768.87159375
transcript.pyannote[1172].end 8768.88846875
transcript.pyannote[1173].speaker SPEAKER_03
transcript.pyannote[1173].start 8768.90534375
transcript.pyannote[1173].end 8771.95971875
transcript.pyannote[1174].speaker SPEAKER_03
transcript.pyannote[1174].start 8772.51659375
transcript.pyannote[1174].end 8772.85409375
transcript.pyannote[1175].speaker SPEAKER_03
transcript.pyannote[1175].start 8773.78221875
transcript.pyannote[1175].end 8774.57534375
transcript.pyannote[1176].speaker SPEAKER_03
transcript.pyannote[1176].start 8774.87909375
transcript.pyannote[1176].end 8775.21659375
transcript.pyannote[1177].speaker SPEAKER_03
transcript.pyannote[1177].start 8776.66784375
transcript.pyannote[1177].end 8777.74784375
transcript.pyannote[1178].speaker SPEAKER_03
transcript.pyannote[1178].start 8778.28784375
transcript.pyannote[1178].end 8779.51971875
transcript.pyannote[1179].speaker SPEAKER_03
transcript.pyannote[1179].start 8779.89096875
transcript.pyannote[1179].end 8781.25784375
transcript.pyannote[1180].speaker SPEAKER_03
transcript.pyannote[1180].start 8782.60784375
transcript.pyannote[1180].end 8785.15596875
transcript.pyannote[1181].speaker SPEAKER_03
transcript.pyannote[1181].start 8787.24846875
transcript.pyannote[1181].end 8792.27721875
transcript.pyannote[1182].speaker SPEAKER_03
transcript.pyannote[1182].start 8793.22221875
transcript.pyannote[1182].end 8798.03159375
transcript.pyannote[1183].speaker SPEAKER_03
transcript.pyannote[1183].start 8799.02721875
transcript.pyannote[1183].end 8802.26721875
transcript.pyannote[1184].speaker SPEAKER_03
transcript.pyannote[1184].start 8802.63846875
transcript.pyannote[1184].end 8803.90409375
transcript.pyannote[1185].speaker SPEAKER_03
transcript.pyannote[1185].start 8805.62534375
transcript.pyannote[1185].end 8807.51534375
transcript.pyannote[1186].speaker SPEAKER_03
transcript.pyannote[1186].start 8808.13971875
transcript.pyannote[1186].end 8816.59409375
transcript.pyannote[1187].speaker SPEAKER_03
transcript.pyannote[1187].start 8820.79596875
transcript.pyannote[1187].end 8830.66784375
transcript.pyannote[1188].speaker SPEAKER_03
transcript.pyannote[1188].start 8831.95034375
transcript.pyannote[1188].end 8833.09784375
transcript.pyannote[1189].speaker SPEAKER_03
transcript.pyannote[1189].start 8834.07659375
transcript.pyannote[1189].end 8834.56596875
transcript.pyannote[1190].speaker SPEAKER_03
transcript.pyannote[1190].start 8834.97096875
transcript.pyannote[1190].end 8836.52346875
transcript.pyannote[1191].speaker SPEAKER_03
transcript.pyannote[1191].start 8836.82721875
transcript.pyannote[1191].end 8838.51471875
transcript.pyannote[1192].speaker SPEAKER_03
transcript.pyannote[1192].start 8842.26096875
transcript.pyannote[1192].end 8843.45909375
transcript.pyannote[1193].speaker SPEAKER_03
transcript.pyannote[1193].start 8851.10346875
transcript.pyannote[1193].end 8857.83659375
transcript.pyannote[1194].speaker SPEAKER_10
transcript.pyannote[1194].start 8854.20846875
transcript.pyannote[1194].end 8854.86659375
transcript.pyannote[1195].speaker SPEAKER_10
transcript.pyannote[1195].start 8857.98846875
transcript.pyannote[1195].end 8858.27534375
transcript.pyannote[1196].speaker SPEAKER_10
transcript.pyannote[1196].start 8858.51159375
transcript.pyannote[1196].end 8861.83596875
transcript.pyannote[1197].speaker SPEAKER_10
transcript.pyannote[1197].start 8862.54471875
transcript.pyannote[1197].end 8865.10971875
transcript.pyannote[1198].speaker SPEAKER_10
transcript.pyannote[1198].start 8865.66659375
transcript.pyannote[1198].end 8869.26096875
transcript.pyannote[1199].speaker SPEAKER_03
transcript.pyannote[1199].start 8869.26096875
transcript.pyannote[1199].end 8879.75721875
transcript.pyannote[1200].speaker SPEAKER_10
transcript.pyannote[1200].start 8879.25096875
transcript.pyannote[1200].end 8881.93409375
transcript.pyannote[1201].speaker SPEAKER_03
transcript.pyannote[1201].start 8882.35596875
transcript.pyannote[1201].end 8884.51596875
transcript.pyannote[1202].speaker SPEAKER_03
transcript.pyannote[1202].start 8886.15284375
transcript.pyannote[1202].end 8888.17784375
transcript.pyannote[1203].speaker SPEAKER_03
transcript.pyannote[1203].start 8890.03409375
transcript.pyannote[1203].end 8897.00346875
transcript.pyannote[1204].speaker SPEAKER_11
transcript.pyannote[1204].start 8891.82284375
transcript.pyannote[1204].end 8891.94096875
transcript.pyannote[1205].speaker SPEAKER_11
transcript.pyannote[1205].start 8891.95784375
transcript.pyannote[1205].end 8891.97471875
transcript.pyannote[1206].speaker SPEAKER_11
transcript.pyannote[1206].start 8897.42534375
transcript.pyannote[1206].end 8909.72721875
transcript.pyannote[1207].speaker SPEAKER_03
transcript.pyannote[1207].start 8908.84971875
transcript.pyannote[1207].end 8912.19096875
transcript.pyannote[1208].speaker SPEAKER_11
transcript.pyannote[1208].start 8912.19096875
transcript.pyannote[1208].end 8912.69721875
transcript.pyannote[1209].speaker SPEAKER_03
transcript.pyannote[1209].start 8913.96284375
transcript.pyannote[1209].end 8918.48534375
transcript.pyannote[1210].speaker SPEAKER_03
transcript.pyannote[1210].start 8918.97471875
transcript.pyannote[1210].end 8921.18534375
transcript.pyannote[1211].speaker SPEAKER_03
transcript.pyannote[1211].start 8922.31596875
transcript.pyannote[1211].end 8940.72659375
transcript.pyannote[1212].speaker SPEAKER_00
transcript.pyannote[1212].start 8933.55471875
transcript.pyannote[1212].end 8933.87534375
transcript.pyannote[1213].speaker SPEAKER_03
transcript.pyannote[1213].start 8940.89534375
transcript.pyannote[1213].end 8941.03034375
transcript.pyannote[1214].speaker SPEAKER_03
transcript.pyannote[1214].start 8941.68846875
transcript.pyannote[1214].end 8954.59784375
transcript.pyannote[1215].speaker SPEAKER_03
transcript.pyannote[1215].start 8959.17096875
transcript.pyannote[1215].end 8959.66034375
transcript.pyannote[1216].speaker SPEAKER_11
transcript.pyannote[1216].start 8961.76971875
transcript.pyannote[1216].end 8964.60471875
transcript.pyannote[1217].speaker SPEAKER_11
transcript.pyannote[1217].start 8964.84096875
transcript.pyannote[1217].end 8970.03846875
transcript.pyannote[1218].speaker SPEAKER_03
transcript.pyannote[1218].start 8970.79784375
transcript.pyannote[1218].end 8971.52346875
transcript.pyannote[1219].speaker SPEAKER_03
transcript.pyannote[1219].start 8972.43471875
transcript.pyannote[1219].end 8973.70034375
transcript.pyannote[1220].speaker SPEAKER_11
transcript.pyannote[1220].start 8973.70034375
transcript.pyannote[1220].end 8976.97409375
transcript.pyannote[1221].speaker SPEAKER_10
transcript.pyannote[1221].start 8976.97409375
transcript.pyannote[1221].end 8978.83034375
transcript.pyannote[1222].speaker SPEAKER_11
transcript.pyannote[1222].start 8978.83034375
transcript.pyannote[1222].end 8978.84721875
transcript.pyannote[1223].speaker SPEAKER_03
transcript.pyannote[1223].start 8979.77534375
transcript.pyannote[1223].end 8981.14221875
transcript.pyannote[1224].speaker SPEAKER_03
transcript.pyannote[1224].start 8982.05346875
transcript.pyannote[1224].end 8985.61409375
transcript.pyannote[1225].speaker SPEAKER_03
transcript.pyannote[1225].start 8986.57596875
transcript.pyannote[1225].end 8992.11096875
transcript.pyannote[1226].speaker SPEAKER_03
transcript.pyannote[1226].start 8994.45659375
transcript.pyannote[1226].end 8995.84034375
transcript.pyannote[1227].speaker SPEAKER_03
transcript.pyannote[1227].start 8998.37159375
transcript.pyannote[1227].end 8999.77221875
transcript.pyannote[1228].speaker SPEAKER_03
transcript.pyannote[1228].start 9002.32034375
transcript.pyannote[1228].end 9005.74596875
transcript.pyannote[1229].speaker SPEAKER_03
transcript.pyannote[1229].start 9006.64034375
transcript.pyannote[1229].end 9007.31534375
transcript.pyannote[1230].speaker SPEAKER_03
transcript.pyannote[1230].start 9008.81721875
transcript.pyannote[1230].end 9013.84596875
transcript.pyannote[1231].speaker SPEAKER_03
transcript.pyannote[1231].start 9014.97659375
transcript.pyannote[1231].end 9015.82034375
transcript.pyannote[1232].speaker SPEAKER_03
transcript.pyannote[1232].start 9017.37284375
transcript.pyannote[1232].end 9022.80659375
transcript.pyannote[1233].speaker SPEAKER_03
transcript.pyannote[1233].start 9023.34659375
transcript.pyannote[1233].end 9025.33784375
transcript.pyannote[1234].speaker SPEAKER_03
transcript.pyannote[1234].start 9026.46846875
transcript.pyannote[1234].end 9035.15909375
transcript.pyannote[1235].speaker SPEAKER_03
transcript.pyannote[1235].start 9035.58096875
transcript.pyannote[1235].end 9044.84534375
transcript.pyannote[1236].speaker SPEAKER_03
transcript.pyannote[1236].start 9045.33471875
transcript.pyannote[1236].end 9054.75096875
transcript.pyannote[1237].speaker SPEAKER_03
transcript.pyannote[1237].start 9055.93221875
transcript.pyannote[1237].end 9058.69971875
transcript.pyannote[1238].speaker SPEAKER_03
transcript.pyannote[1238].start 9059.61096875
transcript.pyannote[1238].end 9062.22659375
transcript.pyannote[1239].speaker SPEAKER_03
transcript.pyannote[1239].start 9063.01971875
transcript.pyannote[1239].end 9071.47409375
transcript.pyannote[1240].speaker SPEAKER_03
transcript.pyannote[1240].start 9073.53284375
transcript.pyannote[1240].end 9080.36721875
transcript.pyannote[1241].speaker SPEAKER_03
transcript.pyannote[1241].start 9082.96596875
transcript.pyannote[1241].end 9083.38784375
transcript.pyannote[1242].speaker SPEAKER_03
transcript.pyannote[1242].start 9085.02471875
transcript.pyannote[1242].end 9088.56846875
transcript.pyannote[1243].speaker SPEAKER_03
transcript.pyannote[1243].start 9088.75409375
transcript.pyannote[1243].end 9091.67346875
transcript.pyannote[1244].speaker SPEAKER_03
transcript.pyannote[1244].start 9093.00659375
transcript.pyannote[1244].end 9095.58846875
transcript.pyannote[1245].speaker SPEAKER_03
transcript.pyannote[1245].start 9097.68096875
transcript.pyannote[1245].end 9099.67221875
transcript.pyannote[1246].speaker SPEAKER_03
transcript.pyannote[1246].start 9102.81096875
transcript.pyannote[1246].end 9104.39721875
transcript.pyannote[1247].speaker SPEAKER_03
transcript.pyannote[1247].start 9104.78534375
transcript.pyannote[1247].end 9107.28284375
transcript.pyannote[1248].speaker SPEAKER_03
transcript.pyannote[1248].start 9109.07159375
transcript.pyannote[1248].end 9118.43721875
transcript.pyannote[1249].speaker SPEAKER_03
transcript.pyannote[1249].start 9118.97721875
transcript.pyannote[1249].end 9124.79909375
transcript.pyannote[1250].speaker SPEAKER_03
transcript.pyannote[1250].start 9125.18721875
transcript.pyannote[1250].end 9130.09784375
transcript.pyannote[1251].speaker SPEAKER_03
transcript.pyannote[1251].start 9132.42659375
transcript.pyannote[1251].end 9141.25221875
transcript.pyannote[1252].speaker SPEAKER_03
transcript.pyannote[1252].start 9143.83409375
transcript.pyannote[1252].end 9145.13346875
transcript.pyannote[1253].speaker SPEAKER_03
transcript.pyannote[1253].start 9146.43284375
transcript.pyannote[1253].end 9147.59721875
transcript.pyannote[1254].speaker SPEAKER_03
transcript.pyannote[1254].start 9148.27221875
transcript.pyannote[1254].end 9150.31409375
transcript.pyannote[1255].speaker SPEAKER_03
transcript.pyannote[1255].start 9151.73159375
transcript.pyannote[1255].end 9151.93409375
transcript.pyannote[1256].speaker SPEAKER_03
transcript.pyannote[1256].start 9154.19534375
transcript.pyannote[1256].end 9154.53284375
transcript.pyannote[1257].speaker SPEAKER_03
transcript.pyannote[1257].start 9154.76909375
transcript.pyannote[1257].end 9159.98346875
transcript.pyannote[1258].speaker SPEAKER_03
transcript.pyannote[1258].start 9160.35471875
transcript.pyannote[1258].end 9165.28221875
transcript.pyannote[1259].speaker SPEAKER_03
transcript.pyannote[1259].start 9176.04846875
transcript.pyannote[1259].end 9177.33096875
transcript.pyannote[1260].speaker SPEAKER_03
transcript.pyannote[1260].start 9181.78596875
transcript.pyannote[1260].end 9182.88284375
transcript.pyannote[1261].speaker SPEAKER_03
transcript.pyannote[1261].start 9185.02596875
transcript.pyannote[1261].end 9187.67534375
transcript.pyannote[1262].speaker SPEAKER_03
transcript.pyannote[1262].start 9188.53596875
transcript.pyannote[1262].end 9192.21471875
transcript.pyannote[1263].speaker SPEAKER_03
transcript.pyannote[1263].start 9194.30721875
transcript.pyannote[1263].end 9195.03284375
transcript.pyannote[1264].speaker SPEAKER_03
transcript.pyannote[1264].start 9195.37034375
transcript.pyannote[1264].end 9196.55159375
transcript.pyannote[1265].speaker SPEAKER_03
transcript.pyannote[1265].start 9198.67784375
transcript.pyannote[1265].end 9201.29346875
transcript.pyannote[1266].speaker SPEAKER_03
transcript.pyannote[1266].start 9201.91784375
transcript.pyannote[1266].end 9207.97596875
transcript.pyannote[1267].speaker SPEAKER_03
transcript.pyannote[1267].start 9209.03909375
transcript.pyannote[1267].end 9215.46846875
transcript.pyannote[1268].speaker SPEAKER_03
transcript.pyannote[1268].start 9216.24471875
transcript.pyannote[1268].end 9217.13909375
transcript.pyannote[1269].speaker SPEAKER_03
transcript.pyannote[1269].start 9218.18534375
transcript.pyannote[1269].end 9220.49721875
transcript.pyannote[1270].speaker SPEAKER_03
transcript.pyannote[1270].start 9222.31971875
transcript.pyannote[1270].end 9223.07909375
transcript.pyannote[1271].speaker SPEAKER_03
transcript.pyannote[1271].start 9223.87221875
transcript.pyannote[1271].end 9224.56409375
transcript.pyannote[1272].speaker SPEAKER_03
transcript.pyannote[1272].start 9226.67346875
transcript.pyannote[1272].end 9228.46221875
transcript.pyannote[1273].speaker SPEAKER_03
transcript.pyannote[1273].start 9229.52534375
transcript.pyannote[1273].end 9229.99784375
transcript.pyannote[1274].speaker SPEAKER_03
transcript.pyannote[1274].start 9231.11159375
transcript.pyannote[1274].end 9235.06034375
transcript.pyannote[1275].speaker SPEAKER_03
transcript.pyannote[1275].start 9236.44409375
transcript.pyannote[1275].end 9239.85284375
transcript.pyannote[1276].speaker SPEAKER_03
transcript.pyannote[1276].start 9240.61221875
transcript.pyannote[1276].end 9241.08471875
transcript.pyannote[1277].speaker SPEAKER_03
transcript.pyannote[1277].start 9242.53596875
transcript.pyannote[1277].end 9245.60721875
transcript.pyannote[1278].speaker SPEAKER_03
transcript.pyannote[1278].start 9247.39596875
transcript.pyannote[1278].end 9248.72909375
transcript.pyannote[1279].speaker SPEAKER_03
transcript.pyannote[1279].start 9254.50034375
transcript.pyannote[1279].end 9255.54659375
transcript.pyannote[1280].speaker SPEAKER_03
transcript.pyannote[1280].start 9259.41096875
transcript.pyannote[1280].end 9259.83284375
transcript.pyannote[1281].speaker SPEAKER_03
transcript.pyannote[1281].start 9264.15284375
transcript.pyannote[1281].end 9264.54096875
transcript.pyannote[1282].speaker SPEAKER_03
transcript.pyannote[1282].start 9264.82784375
transcript.pyannote[1282].end 9266.02596875
transcript.pyannote[1283].speaker SPEAKER_03
transcript.pyannote[1283].start 9266.88659375
transcript.pyannote[1283].end 9272.97846875
transcript.pyannote[1284].speaker SPEAKER_03
transcript.pyannote[1284].start 9274.34534375
transcript.pyannote[1284].end 9277.87221875
transcript.pyannote[1285].speaker SPEAKER_03
transcript.pyannote[1285].start 9278.46284375
transcript.pyannote[1285].end 9279.57659375
transcript.pyannote[1286].speaker SPEAKER_03
transcript.pyannote[1286].start 9282.02346875
transcript.pyannote[1286].end 9288.95909375
transcript.pyannote[1287].speaker SPEAKER_03
transcript.pyannote[1287].start 9290.24159375
transcript.pyannote[1287].end 9290.57909375
transcript.pyannote[1288].speaker SPEAKER_03
transcript.pyannote[1288].start 9291.92909375
transcript.pyannote[1288].end 9294.47721875
transcript.pyannote[1289].speaker SPEAKER_03
transcript.pyannote[1289].start 9296.06346875
transcript.pyannote[1289].end 9297.26159375
transcript.pyannote[1290].speaker SPEAKER_03
transcript.pyannote[1290].start 9297.83534375
transcript.pyannote[1290].end 9298.30784375
transcript.pyannote[1291].speaker SPEAKER_03
transcript.pyannote[1291].start 9298.81409375
transcript.pyannote[1291].end 9300.34971875
transcript.pyannote[1292].speaker SPEAKER_03
transcript.pyannote[1292].start 9303.65721875
transcript.pyannote[1292].end 9304.87221875
transcript.pyannote[1293].speaker SPEAKER_03
transcript.pyannote[1293].start 9305.81721875
transcript.pyannote[1293].end 9306.84659375
transcript.pyannote[1294].speaker SPEAKER_03
transcript.pyannote[1294].start 9307.18409375
transcript.pyannote[1294].end 9310.72784375
transcript.pyannote[1295].speaker SPEAKER_03
transcript.pyannote[1295].start 9311.53784375
transcript.pyannote[1295].end 9316.36409375
transcript.pyannote[1296].speaker SPEAKER_03
transcript.pyannote[1296].start 9316.48221875
transcript.pyannote[1296].end 9320.48159375
transcript.pyannote[1297].speaker SPEAKER_03
transcript.pyannote[1297].start 9320.54909375
transcript.pyannote[1297].end 9324.00846875
transcript.pyannote[1298].speaker SPEAKER_03
transcript.pyannote[1298].start 9324.27846875
transcript.pyannote[1298].end 9328.61534375
transcript.pyannote[1299].speaker SPEAKER_03
transcript.pyannote[1299].start 9329.47596875
transcript.pyannote[1299].end 9330.69096875
transcript.pyannote[1300].speaker SPEAKER_03
transcript.pyannote[1300].start 9331.78784375
transcript.pyannote[1300].end 9355.02471875
transcript.pyannote[1301].speaker SPEAKER_03
transcript.pyannote[1301].start 9355.63221875
transcript.pyannote[1301].end 9364.10346875
transcript.pyannote[1302].speaker SPEAKER_03
transcript.pyannote[1302].start 9365.06534375
transcript.pyannote[1302].end 9366.44909375
transcript.pyannote[1303].speaker SPEAKER_03
transcript.pyannote[1303].start 9367.05659375
transcript.pyannote[1303].end 9371.35971875
transcript.pyannote[1304].speaker SPEAKER_03
transcript.pyannote[1304].start 9372.23721875
transcript.pyannote[1304].end 9375.39284375
transcript.pyannote[1305].speaker SPEAKER_03
transcript.pyannote[1305].start 9376.35471875
transcript.pyannote[1305].end 9376.97909375
transcript.pyannote[1306].speaker SPEAKER_03
transcript.pyannote[1306].start 9377.53596875
transcript.pyannote[1306].end 9378.02534375
transcript.pyannote[1307].speaker SPEAKER_03
transcript.pyannote[1307].start 9378.75096875
transcript.pyannote[1307].end 9380.03346875
transcript.pyannote[1308].speaker SPEAKER_03
transcript.pyannote[1308].start 9382.04159375
transcript.pyannote[1308].end 9383.12159375
transcript.pyannote[1309].speaker SPEAKER_03
transcript.pyannote[1309].start 9384.75846875
transcript.pyannote[1309].end 9385.83846875
transcript.pyannote[1310].speaker SPEAKER_03
transcript.pyannote[1310].start 9387.93096875
transcript.pyannote[1310].end 9389.68596875
transcript.pyannote[1311].speaker SPEAKER_03
transcript.pyannote[1311].start 9390.98534375
transcript.pyannote[1311].end 9392.04846875
transcript.pyannote[1312].speaker SPEAKER_03
transcript.pyannote[1312].start 9392.20034375
transcript.pyannote[1312].end 9393.36471875
transcript.pyannote[1313].speaker SPEAKER_03
transcript.pyannote[1313].start 9394.86659375
transcript.pyannote[1313].end 9397.46534375
transcript.pyannote[1314].speaker SPEAKER_03
transcript.pyannote[1314].start 9399.37221875
transcript.pyannote[1314].end 9399.72659375
transcript.pyannote[1315].speaker SPEAKER_03
transcript.pyannote[1315].start 9400.24971875
transcript.pyannote[1315].end 9406.32471875
transcript.pyannote[1316].speaker SPEAKER_03
transcript.pyannote[1316].start 9406.66221875
transcript.pyannote[1316].end 9411.21846875
transcript.pyannote[1317].speaker SPEAKER_03
transcript.pyannote[1317].start 9411.52221875
transcript.pyannote[1317].end 9412.39971875
transcript.pyannote[1318].speaker SPEAKER_03
transcript.pyannote[1318].start 9413.31096875
transcript.pyannote[1318].end 9416.28096875
transcript.pyannote[1319].speaker SPEAKER_03
transcript.pyannote[1319].start 9417.46221875
transcript.pyannote[1319].end 9420.44909375
transcript.pyannote[1320].speaker SPEAKER_03
transcript.pyannote[1320].start 9421.56284375
transcript.pyannote[1320].end 9425.98409375
transcript.pyannote[1321].speaker SPEAKER_03
transcript.pyannote[1321].start 9426.52409375
transcript.pyannote[1321].end 9443.87159375
transcript.pyannote[1322].speaker SPEAKER_03
transcript.pyannote[1322].start 9444.47909375
transcript.pyannote[1322].end 9445.20471875
transcript.pyannote[1323].speaker SPEAKER_03
transcript.pyannote[1323].start 9445.35659375
transcript.pyannote[1323].end 9451.02659375
transcript.pyannote[1324].speaker SPEAKER_03
transcript.pyannote[1324].start 9451.34721875
transcript.pyannote[1324].end 9452.69721875
transcript.pyannote[1325].speaker SPEAKER_03
transcript.pyannote[1325].start 9453.54096875
transcript.pyannote[1325].end 9456.51096875
transcript.pyannote[1326].speaker SPEAKER_03
transcript.pyannote[1326].start 9457.59096875
transcript.pyannote[1326].end 9483.03846875
transcript.pyannote[1327].speaker SPEAKER_03
transcript.pyannote[1327].start 9483.19034375
transcript.pyannote[1327].end 9485.02971875
transcript.pyannote[1328].speaker SPEAKER_03
transcript.pyannote[1328].start 9487.64534375
transcript.pyannote[1328].end 9488.38784375
transcript.pyannote[1329].speaker SPEAKER_03
transcript.pyannote[1329].start 9489.09659375
transcript.pyannote[1329].end 9491.74596875
transcript.pyannote[1330].speaker SPEAKER_03
transcript.pyannote[1330].start 9492.82596875
transcript.pyannote[1330].end 9496.85909375
transcript.pyannote[1331].speaker SPEAKER_03
transcript.pyannote[1331].start 9497.24721875
transcript.pyannote[1331].end 9498.02346875
transcript.pyannote[1332].speaker SPEAKER_03
transcript.pyannote[1332].start 9498.31034375
transcript.pyannote[1332].end 9502.37721875
transcript.pyannote[1333].speaker SPEAKER_03
transcript.pyannote[1333].start 9504.95909375
transcript.pyannote[1333].end 9506.78159375
transcript.pyannote[1334].speaker SPEAKER_03
transcript.pyannote[1334].start 9507.37221875
transcript.pyannote[1334].end 9507.76034375
transcript.pyannote[1335].speaker SPEAKER_03
transcript.pyannote[1335].start 9508.04721875
transcript.pyannote[1335].end 9514.62846875
transcript.pyannote[1336].speaker SPEAKER_03
transcript.pyannote[1336].start 9515.08409375
transcript.pyannote[1336].end 9517.90221875
transcript.pyannote[1337].speaker SPEAKER_03
transcript.pyannote[1337].start 9519.47159375
transcript.pyannote[1337].end 9521.73284375
transcript.pyannote[1338].speaker SPEAKER_03
transcript.pyannote[1338].start 9522.17159375
transcript.pyannote[1338].end 9528.17909375
transcript.pyannote[1339].speaker SPEAKER_03
transcript.pyannote[1339].start 9529.96784375
transcript.pyannote[1339].end 9532.75221875
transcript.pyannote[1340].speaker SPEAKER_03
transcript.pyannote[1340].start 9533.39346875
transcript.pyannote[1340].end 9538.60784375
transcript.pyannote[1341].speaker SPEAKER_03
transcript.pyannote[1341].start 9540.37971875
transcript.pyannote[1341].end 9548.02409375
transcript.pyannote[1342].speaker SPEAKER_03
transcript.pyannote[1342].start 9549.08721875
transcript.pyannote[1342].end 9555.28034375
transcript.pyannote[1343].speaker SPEAKER_03
transcript.pyannote[1343].start 9556.49534375
transcript.pyannote[1343].end 9558.36846875
transcript.pyannote[1344].speaker SPEAKER_03
transcript.pyannote[1344].start 9561.00096875
transcript.pyannote[1344].end 9561.79409375
transcript.pyannote[1345].speaker SPEAKER_03
transcript.pyannote[1345].start 9562.40159375
transcript.pyannote[1345].end 9573.64034375
transcript.pyannote[1346].speaker SPEAKER_03
transcript.pyannote[1346].start 9576.79596875
transcript.pyannote[1346].end 9580.03596875
transcript.pyannote[1347].speaker SPEAKER_03
transcript.pyannote[1347].start 9580.66034375
transcript.pyannote[1347].end 9583.42784375
transcript.pyannote[1348].speaker SPEAKER_03
transcript.pyannote[1348].start 9584.59221875
transcript.pyannote[1348].end 9601.31534375
transcript.pyannote[1349].speaker SPEAKER_03
transcript.pyannote[1349].start 9601.77096875
transcript.pyannote[1349].end 9605.26409375
transcript.pyannote[1350].speaker SPEAKER_03
transcript.pyannote[1350].start 9605.85471875
transcript.pyannote[1350].end 9607.57596875
transcript.pyannote[1351].speaker SPEAKER_03
transcript.pyannote[1351].start 9608.20034375
transcript.pyannote[1351].end 9610.96784375
transcript.pyannote[1352].speaker SPEAKER_03
transcript.pyannote[1352].start 9611.91284375
transcript.pyannote[1352].end 9613.66784375
transcript.pyannote[1353].speaker SPEAKER_03
transcript.pyannote[1353].start 9614.14034375
transcript.pyannote[1353].end 9619.67534375
transcript.pyannote[1354].speaker SPEAKER_03
transcript.pyannote[1354].start 9620.67096875
transcript.pyannote[1354].end 9630.45846875
transcript.pyannote[1355].speaker SPEAKER_03
transcript.pyannote[1355].start 9631.16721875
transcript.pyannote[1355].end 9634.66034375
transcript.pyannote[1356].speaker SPEAKER_03
transcript.pyannote[1356].start 9634.72784375
transcript.pyannote[1356].end 9646.94534375
transcript.pyannote[1357].speaker SPEAKER_03
transcript.pyannote[1357].start 9647.41784375
transcript.pyannote[1357].end 9648.56534375
transcript.pyannote[1358].speaker SPEAKER_03
transcript.pyannote[1358].start 9649.30784375
transcript.pyannote[1358].end 9650.28659375
transcript.pyannote[1359].speaker SPEAKER_03
transcript.pyannote[1359].start 9651.68721875
transcript.pyannote[1359].end 9658.89284375
transcript.pyannote[1360].speaker SPEAKER_03
transcript.pyannote[1360].start 9659.65221875
transcript.pyannote[1360].end 9662.43659375
transcript.pyannote[1361].speaker SPEAKER_03
transcript.pyannote[1361].start 9662.94284375
transcript.pyannote[1361].end 9665.99721875
transcript.pyannote[1362].speaker SPEAKER_03
transcript.pyannote[1362].start 9667.26284375
transcript.pyannote[1362].end 9668.57909375
transcript.pyannote[1363].speaker SPEAKER_03
transcript.pyannote[1363].start 9668.95034375
transcript.pyannote[1363].end 9675.17721875
transcript.pyannote[1364].speaker SPEAKER_03
transcript.pyannote[1364].start 9676.20659375
transcript.pyannote[1364].end 9680.69534375
transcript.pyannote[1365].speaker SPEAKER_03
transcript.pyannote[1365].start 9681.82596875
transcript.pyannote[1365].end 9683.47971875
transcript.pyannote[1366].speaker SPEAKER_03
transcript.pyannote[1366].start 9685.30221875
transcript.pyannote[1366].end 9686.04471875
transcript.pyannote[1367].speaker SPEAKER_03
transcript.pyannote[1367].start 9688.08659375
transcript.pyannote[1367].end 9692.11971875
transcript.pyannote[1368].speaker SPEAKER_03
transcript.pyannote[1368].start 9692.22096875
transcript.pyannote[1368].end 9705.68721875
transcript.pyannote[1369].speaker SPEAKER_03
transcript.pyannote[1369].start 9707.03721875
transcript.pyannote[1369].end 9714.02346875
transcript.pyannote[1370].speaker SPEAKER_03
transcript.pyannote[1370].start 9714.36096875
transcript.pyannote[1370].end 9715.69409375
transcript.pyannote[1371].speaker SPEAKER_03
transcript.pyannote[1371].start 9716.41971875
transcript.pyannote[1371].end 9720.28409375
transcript.pyannote[1372].speaker SPEAKER_03
transcript.pyannote[1372].start 9720.79034375
transcript.pyannote[1372].end 9722.08971875
transcript.pyannote[1373].speaker SPEAKER_03
transcript.pyannote[1373].start 9723.15284375
transcript.pyannote[1373].end 9725.51534375
transcript.pyannote[1374].speaker SPEAKER_03
transcript.pyannote[1374].start 9726.19034375
transcript.pyannote[1374].end 9728.87346875
transcript.pyannote[1375].speaker SPEAKER_03
transcript.pyannote[1375].start 9729.71721875
transcript.pyannote[1375].end 9731.62409375
transcript.pyannote[1376].speaker SPEAKER_03
transcript.pyannote[1376].start 9733.12596875
transcript.pyannote[1376].end 9734.54346875
transcript.pyannote[1377].speaker SPEAKER_03
transcript.pyannote[1377].start 9736.43346875
transcript.pyannote[1377].end 9736.83846875
transcript.pyannote[1378].speaker SPEAKER_03
transcript.pyannote[1378].start 9739.01534375
transcript.pyannote[1378].end 9747.65534375
transcript.pyannote[1379].speaker SPEAKER_03
transcript.pyannote[1379].start 9748.31346875
transcript.pyannote[1379].end 9749.88284375
transcript.pyannote[1380].speaker SPEAKER_03
transcript.pyannote[1380].start 9751.85721875
transcript.pyannote[1380].end 9757.32471875
transcript.pyannote[1381].speaker SPEAKER_03
transcript.pyannote[1381].start 9757.84784375
transcript.pyannote[1381].end 9761.61096875
transcript.pyannote[1382].speaker SPEAKER_03
transcript.pyannote[1382].start 9762.26909375
transcript.pyannote[1382].end 9764.22659375
transcript.pyannote[1383].speaker SPEAKER_03
transcript.pyannote[1383].start 9765.42471875
transcript.pyannote[1383].end 9766.28534375
transcript.pyannote[1384].speaker SPEAKER_03
transcript.pyannote[1384].start 9767.77034375
transcript.pyannote[1384].end 9769.44096875
transcript.pyannote[1385].speaker SPEAKER_03
transcript.pyannote[1385].start 9769.60971875
transcript.pyannote[1385].end 9771.95534375
transcript.pyannote[1386].speaker SPEAKER_03
transcript.pyannote[1386].start 9773.35596875
transcript.pyannote[1386].end 9778.82346875
transcript.pyannote[1387].speaker SPEAKER_03
transcript.pyannote[1387].start 9779.97096875
transcript.pyannote[1387].end 9787.90221875
transcript.pyannote[1388].speaker SPEAKER_03
transcript.pyannote[1388].start 9789.06659375
transcript.pyannote[1388].end 9790.68659375
transcript.pyannote[1389].speaker SPEAKER_03
transcript.pyannote[1389].start 9791.69909375
transcript.pyannote[1389].end 9793.63971875
transcript.pyannote[1390].speaker SPEAKER_03
transcript.pyannote[1390].start 9794.46659375
transcript.pyannote[1390].end 9795.66471875
transcript.pyannote[1391].speaker SPEAKER_03
transcript.pyannote[1391].start 9796.33971875
transcript.pyannote[1391].end 9799.66409375
transcript.pyannote[1392].speaker SPEAKER_03
transcript.pyannote[1392].start 9800.64284375
transcript.pyannote[1392].end 9804.11909375
transcript.pyannote[1393].speaker SPEAKER_03
transcript.pyannote[1393].start 9805.97534375
transcript.pyannote[1393].end 9806.92034375
transcript.pyannote[1394].speaker SPEAKER_03
transcript.pyannote[1394].start 9807.57846875
transcript.pyannote[1394].end 9808.35471875
transcript.pyannote[1395].speaker SPEAKER_03
transcript.pyannote[1395].start 9808.55721875
transcript.pyannote[1395].end 9809.78909375
transcript.pyannote[1396].speaker SPEAKER_03
transcript.pyannote[1396].start 9810.91971875
transcript.pyannote[1396].end 9815.81346875
transcript.pyannote[1397].speaker SPEAKER_03
transcript.pyannote[1397].start 9816.96096875
transcript.pyannote[1397].end 9823.93034375
transcript.pyannote[1398].speaker SPEAKER_03
transcript.pyannote[1398].start 9825.02721875
transcript.pyannote[1398].end 9841.34534375
transcript.pyannote[1399].speaker SPEAKER_03
transcript.pyannote[1399].start 9842.47596875
transcript.pyannote[1399].end 9844.87221875
transcript.pyannote[1400].speaker SPEAKER_03
transcript.pyannote[1400].start 9845.29409375
transcript.pyannote[1400].end 9847.20096875
transcript.pyannote[1401].speaker SPEAKER_03
transcript.pyannote[1401].start 9847.43721875
transcript.pyannote[1401].end 9849.73221875
transcript.pyannote[1402].speaker SPEAKER_03
transcript.pyannote[1402].start 9850.28909375
transcript.pyannote[1402].end 9851.38596875
transcript.pyannote[1403].speaker SPEAKER_03
transcript.pyannote[1403].start 9852.26346875
transcript.pyannote[1403].end 9877.87971875
transcript.pyannote[1404].speaker SPEAKER_03
transcript.pyannote[1404].start 9878.94284375
transcript.pyannote[1404].end 9894.90659375
transcript.pyannote[1405].speaker SPEAKER_03
transcript.pyannote[1405].start 9896.47596875
transcript.pyannote[1405].end 9903.04034375
transcript.pyannote[1406].speaker SPEAKER_03
transcript.pyannote[1406].start 9903.56346875
transcript.pyannote[1406].end 9904.81221875
transcript.pyannote[1407].speaker SPEAKER_03
transcript.pyannote[1407].start 9905.84159375
transcript.pyannote[1407].end 9906.14534375
transcript.pyannote[1408].speaker SPEAKER_03
transcript.pyannote[1408].start 9907.15784375
transcript.pyannote[1408].end 9907.84971875
transcript.pyannote[1409].speaker SPEAKER_03
transcript.pyannote[1409].start 9908.54159375
transcript.pyannote[1409].end 9909.08159375
transcript.pyannote[1410].speaker SPEAKER_03
transcript.pyannote[1410].start 9909.45284375
transcript.pyannote[1410].end 9910.90409375
transcript.pyannote[1411].speaker SPEAKER_03
transcript.pyannote[1411].start 9911.66346875
transcript.pyannote[1411].end 9912.74346875
transcript.pyannote[1412].speaker SPEAKER_03
transcript.pyannote[1412].start 9915.15659375
transcript.pyannote[1412].end 9929.16284375
transcript.pyannote[1413].speaker SPEAKER_03
transcript.pyannote[1413].start 9931.01909375
transcript.pyannote[1413].end 9935.38971875
transcript.pyannote[1414].speaker SPEAKER_03
transcript.pyannote[1414].start 9935.84534375
transcript.pyannote[1414].end 9936.62159375
transcript.pyannote[1415].speaker SPEAKER_03
transcript.pyannote[1415].start 9939.82784375
transcript.pyannote[1415].end 9942.64596875
transcript.pyannote[1416].speaker SPEAKER_03
transcript.pyannote[1416].start 9943.70909375
transcript.pyannote[1416].end 9945.91971875
transcript.pyannote[1417].speaker SPEAKER_03
transcript.pyannote[1417].start 9945.97034375
transcript.pyannote[1417].end 9946.03784375
transcript.pyannote[1418].speaker SPEAKER_03
transcript.pyannote[1418].start 9946.15596875
transcript.pyannote[1418].end 9947.96159375
transcript.pyannote[1419].speaker SPEAKER_03
transcript.pyannote[1419].start 9989.59221875
transcript.pyannote[1419].end 9995.09346875
transcript.pyannote[1420].speaker SPEAKER_03
transcript.pyannote[1420].start 9996.32534375
transcript.pyannote[1420].end 10002.87284375
transcript.pyannote[1421].speaker SPEAKER_03
transcript.pyannote[1421].start 10004.88096875
transcript.pyannote[1421].end 10005.60659375
transcript.pyannote[1422].speaker SPEAKER_03
transcript.pyannote[1422].start 10008.81284375
transcript.pyannote[1422].end 10012.57596875
transcript.pyannote[1423].speaker SPEAKER_03
transcript.pyannote[1423].start 10014.09471875
transcript.pyannote[1423].end 10014.95534375
transcript.pyannote[1424].speaker SPEAKER_03
transcript.pyannote[1424].start 10016.06909375
transcript.pyannote[1424].end 10019.03909375
transcript.pyannote[1425].speaker SPEAKER_03
transcript.pyannote[1425].start 10019.47784375
transcript.pyannote[1425].end 10020.00096875
transcript.pyannote[1426].speaker SPEAKER_03
transcript.pyannote[1426].start 10022.88659375
transcript.pyannote[1426].end 10023.91596875
transcript.pyannote[1427].speaker SPEAKER_03
transcript.pyannote[1427].start 10025.58659375
transcript.pyannote[1427].end 10026.16034375
transcript.pyannote[1428].speaker SPEAKER_03
transcript.pyannote[1428].start 10027.54409375
transcript.pyannote[1428].end 10029.43409375
transcript.pyannote[1429].speaker SPEAKER_03
transcript.pyannote[1429].start 10029.88971875
transcript.pyannote[1429].end 10030.32846875
transcript.pyannote[1430].speaker SPEAKER_03
transcript.pyannote[1430].start 10033.56846875
transcript.pyannote[1430].end 10038.34409375
transcript.pyannote[1431].speaker SPEAKER_03
transcript.pyannote[1431].start 10073.51159375
transcript.pyannote[1431].end 10077.40971875
transcript.pyannote[1432].speaker SPEAKER_03
transcript.pyannote[1432].start 10077.59534375
transcript.pyannote[1432].end 10078.21971875
transcript.pyannote[1433].speaker SPEAKER_03
transcript.pyannote[1433].start 10088.05784375
transcript.pyannote[1433].end 10090.53846875
transcript.pyannote[1434].speaker SPEAKER_03
transcript.pyannote[1434].start 10092.02346875
transcript.pyannote[1434].end 10092.47909375
transcript.pyannote[1435].speaker SPEAKER_03
transcript.pyannote[1435].start 10093.91346875
transcript.pyannote[1435].end 10098.23346875
transcript.pyannote[1436].speaker SPEAKER_03
transcript.pyannote[1436].start 10098.85784375
transcript.pyannote[1436].end 10100.24159375
transcript.pyannote[1437].speaker SPEAKER_03
transcript.pyannote[1437].start 10103.75159375
transcript.pyannote[1437].end 10104.40971875
transcript.pyannote[1438].speaker SPEAKER_03
transcript.pyannote[1438].start 10105.91159375
transcript.pyannote[1438].end 10109.35409375
transcript.pyannote[1439].speaker SPEAKER_03
transcript.pyannote[1439].start 10109.86034375
transcript.pyannote[1439].end 10113.84284375
transcript.pyannote[1440].speaker SPEAKER_03
transcript.pyannote[1440].start 10115.22659375
transcript.pyannote[1440].end 10125.09846875
transcript.pyannote[1441].speaker SPEAKER_03
transcript.pyannote[1441].start 10125.28409375
transcript.pyannote[1441].end 10132.79346875
transcript.pyannote[1442].speaker SPEAKER_03
transcript.pyannote[1442].start 10133.55284375
transcript.pyannote[1442].end 10135.22346875
transcript.pyannote[1443].speaker SPEAKER_03
transcript.pyannote[1443].start 10135.62846875
transcript.pyannote[1443].end 10138.02471875
transcript.pyannote[1444].speaker SPEAKER_03
transcript.pyannote[1444].start 10138.44659375
transcript.pyannote[1444].end 10138.75034375
transcript.pyannote[1445].speaker SPEAKER_03
transcript.pyannote[1445].start 10139.81346875
transcript.pyannote[1445].end 10141.11284375
transcript.pyannote[1446].speaker SPEAKER_03
transcript.pyannote[1446].start 10143.18846875
transcript.pyannote[1446].end 10146.61409375
transcript.pyannote[1447].speaker SPEAKER_03
transcript.pyannote[1447].start 10146.98534375
transcript.pyannote[1447].end 10147.44096875
transcript.pyannote[1448].speaker SPEAKER_03
transcript.pyannote[1448].start 10148.04846875
transcript.pyannote[1448].end 10149.49971875
transcript.pyannote[1449].speaker SPEAKER_03
transcript.pyannote[1449].start 10149.65159375
transcript.pyannote[1449].end 10153.97159375
transcript.pyannote[1450].speaker SPEAKER_03
transcript.pyannote[1450].start 10156.68846875
transcript.pyannote[1450].end 10157.39721875
transcript.pyannote[1451].speaker SPEAKER_03
transcript.pyannote[1451].start 10157.70096875
transcript.pyannote[1451].end 10158.83159375
transcript.pyannote[1452].speaker SPEAKER_03
transcript.pyannote[1452].start 10160.46846875
transcript.pyannote[1452].end 10161.02534375
transcript.pyannote[1453].speaker SPEAKER_03
transcript.pyannote[1453].start 10161.86909375
transcript.pyannote[1453].end 10174.72784375
transcript.pyannote[1454].speaker SPEAKER_03
transcript.pyannote[1454].start 10175.23409375
transcript.pyannote[1454].end 10176.65159375
transcript.pyannote[1455].speaker SPEAKER_03
transcript.pyannote[1455].start 10177.22534375
transcript.pyannote[1455].end 10178.18721875
transcript.pyannote[1456].speaker SPEAKER_03
transcript.pyannote[1456].start 10180.19534375
transcript.pyannote[1456].end 10183.13159375
transcript.pyannote[1457].speaker SPEAKER_03
transcript.pyannote[1457].start 10184.36346875
transcript.pyannote[1457].end 10185.02159375
transcript.pyannote[1458].speaker SPEAKER_03
transcript.pyannote[1458].start 10186.13534375
transcript.pyannote[1458].end 10190.87721875
transcript.pyannote[1459].speaker SPEAKER_03
transcript.pyannote[1459].start 10191.38346875
transcript.pyannote[1459].end 10192.85159375
transcript.pyannote[1460].speaker SPEAKER_03
transcript.pyannote[1460].start 10195.34909375
transcript.pyannote[1460].end 10195.85534375
transcript.pyannote[1461].speaker SPEAKER_03
transcript.pyannote[1461].start 10196.27721875
transcript.pyannote[1461].end 10209.62534375
transcript.pyannote[1462].speaker SPEAKER_03
transcript.pyannote[1462].start 10210.30034375
transcript.pyannote[1462].end 10212.62909375
transcript.pyannote[1463].speaker SPEAKER_03
transcript.pyannote[1463].start 10214.48534375
transcript.pyannote[1463].end 10221.21846875
transcript.pyannote[1464].speaker SPEAKER_03
transcript.pyannote[1464].start 10222.31534375
transcript.pyannote[1464].end 10229.30159375
transcript.pyannote[1465].speaker SPEAKER_03
transcript.pyannote[1465].start 10230.16221875
transcript.pyannote[1465].end 10234.70159375
transcript.pyannote[1466].speaker SPEAKER_03
transcript.pyannote[1466].start 10239.56159375
transcript.pyannote[1466].end 10241.02971875
transcript.pyannote[1467].speaker SPEAKER_03
transcript.pyannote[1467].start 10241.28284375
transcript.pyannote[1467].end 10242.21096875
transcript.pyannote[1468].speaker SPEAKER_03
transcript.pyannote[1468].start 10242.44721875
transcript.pyannote[1468].end 10243.24034375
transcript.pyannote[1469].speaker SPEAKER_03
transcript.pyannote[1469].start 10243.96596875
transcript.pyannote[1469].end 10252.63971875
transcript.pyannote[1470].speaker SPEAKER_03
transcript.pyannote[1470].start 10253.01096875
transcript.pyannote[1470].end 10254.44534375
transcript.pyannote[1471].speaker SPEAKER_03
transcript.pyannote[1471].start 10255.71096875
transcript.pyannote[1471].end 10260.33471875
transcript.pyannote[1472].speaker SPEAKER_03
transcript.pyannote[1472].start 10260.60471875
transcript.pyannote[1472].end 10267.70909375
transcript.pyannote[1473].speaker SPEAKER_03
transcript.pyannote[1473].start 10269.66659375
transcript.pyannote[1473].end 10271.89409375
transcript.pyannote[1474].speaker SPEAKER_03
transcript.pyannote[1474].start 10273.17659375
transcript.pyannote[1474].end 10275.74159375
transcript.pyannote[1475].speaker SPEAKER_03
transcript.pyannote[1475].start 10277.41221875
transcript.pyannote[1475].end 10282.35659375
transcript.pyannote[1476].speaker SPEAKER_03
transcript.pyannote[1476].start 10282.57596875
transcript.pyannote[1476].end 10285.15784375
transcript.pyannote[1477].speaker SPEAKER_03
transcript.pyannote[1477].start 10286.22096875
transcript.pyannote[1477].end 10295.55284375
transcript.pyannote[1478].speaker SPEAKER_03
transcript.pyannote[1478].start 10295.92409375
transcript.pyannote[1478].end 10296.76784375
transcript.pyannote[1479].speaker SPEAKER_03
transcript.pyannote[1479].start 10298.06721875
transcript.pyannote[1479].end 10299.75471875
transcript.pyannote[1480].speaker SPEAKER_03
transcript.pyannote[1480].start 10301.07096875
transcript.pyannote[1480].end 10301.76284375
transcript.pyannote[1481].speaker SPEAKER_03
transcript.pyannote[1481].start 10302.74159375
transcript.pyannote[1481].end 10303.75409375
transcript.pyannote[1482].speaker SPEAKER_03
transcript.pyannote[1482].start 10304.32784375
transcript.pyannote[1482].end 10309.87971875
transcript.pyannote[1483].speaker SPEAKER_03
transcript.pyannote[1483].start 10311.28034375
transcript.pyannote[1483].end 10317.82784375
transcript.pyannote[1484].speaker SPEAKER_03
transcript.pyannote[1484].start 10319.04284375
transcript.pyannote[1484].end 10322.53596875
transcript.pyannote[1485].speaker SPEAKER_03
transcript.pyannote[1485].start 10323.37971875
transcript.pyannote[1485].end 10325.50596875
transcript.pyannote[1486].speaker SPEAKER_03
transcript.pyannote[1486].start 10326.13034375
transcript.pyannote[1486].end 10327.95284375
transcript.pyannote[1487].speaker SPEAKER_03
transcript.pyannote[1487].start 10328.20596875
transcript.pyannote[1487].end 10331.17596875
transcript.pyannote[1488].speaker SPEAKER_03
transcript.pyannote[1488].start 10332.42471875
transcript.pyannote[1488].end 10334.06159375
transcript.pyannote[1489].speaker SPEAKER_03
transcript.pyannote[1489].start 10334.38221875
transcript.pyannote[1489].end 10350.17721875
transcript.pyannote[1490].speaker SPEAKER_03
transcript.pyannote[1490].start 10351.86471875
transcript.pyannote[1490].end 10352.45534375
transcript.pyannote[1491].speaker SPEAKER_03
transcript.pyannote[1491].start 10352.55659375
transcript.pyannote[1491].end 10354.83471875
transcript.pyannote[1492].speaker SPEAKER_03
transcript.pyannote[1492].start 10355.74596875
transcript.pyannote[1492].end 10356.42096875
transcript.pyannote[1493].speaker SPEAKER_03
transcript.pyannote[1493].start 10356.65721875
transcript.pyannote[1493].end 10357.88909375
transcript.pyannote[1494].speaker SPEAKER_03
transcript.pyannote[1494].start 10359.67784375
transcript.pyannote[1494].end 10364.62221875
transcript.pyannote[1495].speaker SPEAKER_03
transcript.pyannote[1495].start 10364.97659375
transcript.pyannote[1495].end 10365.09471875
transcript.pyannote[1496].speaker SPEAKER_03
transcript.pyannote[1496].start 10365.24659375
transcript.pyannote[1496].end 10367.59221875
transcript.pyannote[1497].speaker SPEAKER_03
transcript.pyannote[1497].start 10368.08159375
transcript.pyannote[1497].end 10369.73534375
transcript.pyannote[1498].speaker SPEAKER_03
transcript.pyannote[1498].start 10369.98846875
transcript.pyannote[1498].end 10403.18159375
transcript.pyannote[1499].speaker SPEAKER_03
transcript.pyannote[1499].start 10403.56971875
transcript.pyannote[1499].end 10414.43721875
transcript.pyannote[1500].speaker SPEAKER_03
transcript.pyannote[1500].start 10416.37784375
transcript.pyannote[1500].end 10417.05284375
transcript.pyannote[1501].speaker SPEAKER_03
transcript.pyannote[1501].start 10418.82471875
transcript.pyannote[1501].end 10422.03096875
transcript.pyannote[1502].speaker SPEAKER_03
transcript.pyannote[1502].start 10422.14909375
transcript.pyannote[1502].end 10423.36409375
transcript.pyannote[1503].speaker SPEAKER_03
transcript.pyannote[1503].start 10423.81971875
transcript.pyannote[1503].end 10425.70971875
transcript.pyannote[1504].speaker SPEAKER_03
transcript.pyannote[1504].start 10426.43534375
transcript.pyannote[1504].end 10427.85284375
transcript.pyannote[1505].speaker SPEAKER_03
transcript.pyannote[1505].start 10427.97096875
transcript.pyannote[1505].end 10428.71346875
transcript.pyannote[1506].speaker SPEAKER_03
transcript.pyannote[1506].start 10430.04659375
transcript.pyannote[1506].end 10432.00409375
transcript.pyannote[1507].speaker SPEAKER_03
transcript.pyannote[1507].start 10433.20221875
transcript.pyannote[1507].end 10434.24846875
transcript.pyannote[1508].speaker SPEAKER_00
transcript.pyannote[1508].start 10433.23596875
transcript.pyannote[1508].end 10433.50596875
transcript.pyannote[1509].speaker SPEAKER_03
transcript.pyannote[1509].start 10434.73784375
transcript.pyannote[1509].end 10453.99221875
transcript.pyannote[1510].speaker SPEAKER_03
transcript.pyannote[1510].start 10455.78096875
transcript.pyannote[1510].end 10458.05909375
transcript.pyannote[1511].speaker SPEAKER_03
transcript.pyannote[1511].start 10459.07159375
transcript.pyannote[1511].end 10459.84784375
transcript.pyannote[1512].speaker SPEAKER_03
transcript.pyannote[1512].start 10461.28221875
transcript.pyannote[1512].end 10463.66159375
transcript.pyannote[1513].speaker SPEAKER_03
transcript.pyannote[1513].start 10464.64034375
transcript.pyannote[1513].end 10473.60096875
transcript.pyannote[1514].speaker SPEAKER_03
transcript.pyannote[1514].start 10476.16596875
transcript.pyannote[1514].end 10476.85784375
transcript.pyannote[1515].speaker SPEAKER_03
transcript.pyannote[1515].start 10477.93784375
transcript.pyannote[1515].end 10479.72659375
transcript.pyannote[1516].speaker SPEAKER_03
transcript.pyannote[1516].start 10481.46471875
transcript.pyannote[1516].end 10481.71784375
transcript.pyannote[1517].speaker SPEAKER_03
transcript.pyannote[1517].start 10482.12284375
transcript.pyannote[1517].end 10482.35909375
transcript.pyannote[1518].speaker SPEAKER_03
transcript.pyannote[1518].start 10482.88221875
transcript.pyannote[1518].end 10489.53096875
transcript.pyannote[1519].speaker SPEAKER_03
transcript.pyannote[1519].start 10490.89784375
transcript.pyannote[1519].end 10491.89346875
transcript.pyannote[1520].speaker SPEAKER_03
transcript.pyannote[1520].start 10492.39971875
transcript.pyannote[1520].end 10493.68221875
transcript.pyannote[1521].speaker SPEAKER_03
transcript.pyannote[1521].start 10497.52971875
transcript.pyannote[1521].end 10498.03596875
transcript.pyannote[1522].speaker SPEAKER_03
transcript.pyannote[1522].start 10499.57159375
transcript.pyannote[1522].end 10500.73596875
transcript.pyannote[1523].speaker SPEAKER_03
transcript.pyannote[1523].start 10502.55846875
transcript.pyannote[1523].end 10506.25409375
transcript.pyannote[1524].speaker SPEAKER_03
transcript.pyannote[1524].start 10507.45221875
transcript.pyannote[1524].end 10515.73784375
transcript.pyannote[1525].speaker SPEAKER_03
transcript.pyannote[1525].start 10517.07096875
transcript.pyannote[1525].end 10522.97721875
transcript.pyannote[1526].speaker SPEAKER_03
transcript.pyannote[1526].start 10523.36534375
transcript.pyannote[1526].end 10524.56346875
transcript.pyannote[1527].speaker SPEAKER_03
transcript.pyannote[1527].start 10525.20471875
transcript.pyannote[1527].end 10526.92596875
transcript.pyannote[1528].speaker SPEAKER_03
transcript.pyannote[1528].start 10527.95534375
transcript.pyannote[1528].end 10531.80284375
transcript.pyannote[1529].speaker SPEAKER_03
transcript.pyannote[1529].start 10533.40596875
transcript.pyannote[1529].end 10542.73784375
transcript.pyannote[1530].speaker SPEAKER_03
transcript.pyannote[1530].start 10543.66596875
transcript.pyannote[1530].end 10545.60659375
transcript.pyannote[1531].speaker SPEAKER_03
transcript.pyannote[1531].start 10547.00721875
transcript.pyannote[1531].end 10550.51721875
transcript.pyannote[1532].speaker SPEAKER_03
transcript.pyannote[1532].start 10551.10784375
transcript.pyannote[1532].end 10557.94221875
transcript.pyannote[1533].speaker SPEAKER_03
transcript.pyannote[1533].start 10558.83659375
transcript.pyannote[1533].end 10566.17721875
transcript.pyannote[1534].speaker SPEAKER_03
transcript.pyannote[1534].start 10566.32909375
transcript.pyannote[1534].end 10570.46346875
transcript.pyannote[1535].speaker SPEAKER_03
transcript.pyannote[1535].start 10571.44221875
transcript.pyannote[1535].end 10587.16971875
transcript.pyannote[1536].speaker SPEAKER_03
transcript.pyannote[1536].start 10589.09346875
transcript.pyannote[1536].end 10590.35909375
transcript.pyannote[1537].speaker SPEAKER_03
transcript.pyannote[1537].start 10593.17721875
transcript.pyannote[1537].end 10601.46284375
transcript.pyannote[1538].speaker SPEAKER_03
transcript.pyannote[1538].start 10602.98159375
transcript.pyannote[1538].end 10603.97721875
transcript.pyannote[1539].speaker SPEAKER_03
transcript.pyannote[1539].start 10605.24284375
transcript.pyannote[1539].end 10605.46221875
transcript.pyannote[1540].speaker SPEAKER_03
transcript.pyannote[1540].start 10605.85034375
transcript.pyannote[1540].end 10606.28909375
transcript.pyannote[1541].speaker SPEAKER_03
transcript.pyannote[1541].start 10607.26784375
transcript.pyannote[1541].end 10608.31409375
transcript.pyannote[1542].speaker SPEAKER_03
transcript.pyannote[1542].start 10608.51659375
transcript.pyannote[1542].end 10610.38971875
transcript.pyannote[1543].speaker SPEAKER_03
transcript.pyannote[1543].start 10611.04784375
transcript.pyannote[1543].end 10611.11534375
transcript.pyannote[1544].speaker SPEAKER_03
transcript.pyannote[1544].start 10611.46971875
transcript.pyannote[1544].end 10616.19471875
transcript.pyannote[1545].speaker SPEAKER_03
transcript.pyannote[1545].start 10616.92034375
transcript.pyannote[1545].end 10617.10596875
transcript.pyannote[1546].speaker SPEAKER_03
transcript.pyannote[1546].start 10617.81471875
transcript.pyannote[1546].end 10618.55721875
transcript.pyannote[1547].speaker SPEAKER_03
transcript.pyannote[1547].start 10618.70909375
transcript.pyannote[1547].end 10619.01284375
transcript.pyannote[1548].speaker SPEAKER_03
transcript.pyannote[1548].start 10619.75534375
transcript.pyannote[1548].end 10621.10534375
transcript.pyannote[1549].speaker SPEAKER_03
transcript.pyannote[1549].start 10622.45534375
transcript.pyannote[1549].end 10622.79284375
transcript.pyannote[1550].speaker SPEAKER_03
transcript.pyannote[1550].start 10623.13034375
transcript.pyannote[1550].end 10623.50159375
transcript.pyannote[1551].speaker SPEAKER_03
transcript.pyannote[1551].start 10623.75471875
transcript.pyannote[1551].end 10626.55596875
transcript.pyannote[1552].speaker SPEAKER_03
transcript.pyannote[1552].start 10630.75784375
transcript.pyannote[1552].end 10635.02721875
transcript.pyannote[1553].speaker SPEAKER_03
transcript.pyannote[1553].start 10636.17471875
transcript.pyannote[1553].end 10636.84971875
transcript.pyannote[1554].speaker SPEAKER_03
transcript.pyannote[1554].start 10637.57534375
transcript.pyannote[1554].end 10638.73971875
transcript.pyannote[1555].speaker SPEAKER_03
transcript.pyannote[1555].start 10639.39784375
transcript.pyannote[1555].end 10641.72659375
transcript.pyannote[1556].speaker SPEAKER_03
transcript.pyannote[1556].start 10642.50284375
transcript.pyannote[1556].end 10643.63346875
transcript.pyannote[1557].speaker SPEAKER_03
transcript.pyannote[1557].start 10645.00034375
transcript.pyannote[1557].end 10646.70471875
transcript.pyannote[1558].speaker SPEAKER_03
transcript.pyannote[1558].start 10651.22721875
transcript.pyannote[1558].end 10651.95284375
transcript.pyannote[1559].speaker SPEAKER_03
transcript.pyannote[1559].start 10653.60659375
transcript.pyannote[1559].end 10653.97784375
transcript.pyannote[1560].speaker SPEAKER_03
transcript.pyannote[1560].start 10654.97346875
transcript.pyannote[1560].end 10657.72409375
transcript.pyannote[1561].speaker SPEAKER_03
transcript.pyannote[1561].start 10658.53409375
transcript.pyannote[1561].end 10662.31409375
transcript.pyannote[1562].speaker SPEAKER_03
transcript.pyannote[1562].start 10663.12409375
transcript.pyannote[1562].end 10665.31784375
transcript.pyannote[1563].speaker SPEAKER_03
transcript.pyannote[1563].start 10666.39784375
transcript.pyannote[1563].end 10678.05846875
transcript.pyannote[1564].speaker SPEAKER_03
transcript.pyannote[1564].start 10678.49721875
transcript.pyannote[1564].end 10681.01159375
transcript.pyannote[1565].speaker SPEAKER_03
transcript.pyannote[1565].start 10681.43346875
transcript.pyannote[1565].end 10683.50909375
transcript.pyannote[1566].speaker SPEAKER_03
transcript.pyannote[1566].start 10684.06596875
transcript.pyannote[1566].end 10690.05659375
transcript.pyannote[1567].speaker SPEAKER_03
transcript.pyannote[1567].start 10690.63034375
transcript.pyannote[1567].end 10694.56221875
transcript.pyannote[1568].speaker SPEAKER_03
transcript.pyannote[1568].start 10694.89971875
transcript.pyannote[1568].end 10695.67596875
transcript.pyannote[1569].speaker SPEAKER_03
transcript.pyannote[1569].start 10696.16534375
transcript.pyannote[1569].end 10700.45159375
transcript.pyannote[1570].speaker SPEAKER_03
transcript.pyannote[1570].start 10702.84784375
transcript.pyannote[1570].end 10703.75909375
transcript.pyannote[1571].speaker SPEAKER_03
transcript.pyannote[1571].start 10704.16409375
transcript.pyannote[1571].end 10704.43409375
transcript.pyannote[1572].speaker SPEAKER_03
transcript.pyannote[1572].start 10705.12596875
transcript.pyannote[1572].end 10706.71221875
transcript.pyannote[1573].speaker SPEAKER_03
transcript.pyannote[1573].start 10707.96096875
transcript.pyannote[1573].end 10708.95659375
transcript.pyannote[1574].speaker SPEAKER_03
transcript.pyannote[1574].start 10712.28096875
transcript.pyannote[1574].end 10713.47909375
transcript.pyannote[1575].speaker SPEAKER_03
transcript.pyannote[1575].start 10715.26784375
transcript.pyannote[1575].end 10716.43221875
transcript.pyannote[1576].speaker SPEAKER_03
transcript.pyannote[1576].start 10717.09034375
transcript.pyannote[1576].end 10723.70534375
transcript.pyannote[1577].speaker SPEAKER_03
transcript.pyannote[1577].start 10725.71346875
transcript.pyannote[1577].end 10725.86534375
transcript.pyannote[1578].speaker SPEAKER_03
transcript.pyannote[1578].start 10727.04659375
transcript.pyannote[1578].end 10730.55659375
transcript.pyannote[1579].speaker SPEAKER_03
transcript.pyannote[1579].start 10730.96159375
transcript.pyannote[1579].end 10731.36659375
transcript.pyannote[1580].speaker SPEAKER_03
transcript.pyannote[1580].start 10732.53096875
transcript.pyannote[1580].end 10738.13346875
transcript.pyannote[1581].speaker SPEAKER_03
transcript.pyannote[1581].start 10740.10784375
transcript.pyannote[1581].end 10741.10346875
transcript.pyannote[1582].speaker SPEAKER_03
transcript.pyannote[1582].start 10742.84159375
transcript.pyannote[1582].end 10745.82846875
transcript.pyannote[1583].speaker SPEAKER_03
transcript.pyannote[1583].start 10746.43596875
transcript.pyannote[1583].end 10747.97159375
transcript.pyannote[1584].speaker SPEAKER_03
transcript.pyannote[1584].start 10749.60846875
transcript.pyannote[1584].end 10757.55659375
transcript.pyannote[1585].speaker SPEAKER_03
transcript.pyannote[1585].start 10758.02909375
transcript.pyannote[1585].end 10762.72034375
transcript.pyannote[1586].speaker SPEAKER_03
transcript.pyannote[1586].start 10762.88909375
transcript.pyannote[1586].end 10766.17971875
transcript.pyannote[1587].speaker SPEAKER_03
transcript.pyannote[1587].start 10767.93471875
transcript.pyannote[1587].end 10775.27534375
transcript.pyannote[1588].speaker SPEAKER_03
transcript.pyannote[1588].start 10776.87846875
transcript.pyannote[1588].end 10779.96659375
transcript.pyannote[1589].speaker SPEAKER_03
transcript.pyannote[1589].start 10782.05909375
transcript.pyannote[1589].end 10787.99909375
transcript.pyannote[1590].speaker SPEAKER_03
transcript.pyannote[1590].start 10789.38284375
transcript.pyannote[1590].end 10790.64846875
transcript.pyannote[1591].speaker SPEAKER_03
transcript.pyannote[1591].start 10790.69909375
transcript.pyannote[1591].end 10792.40346875
transcript.pyannote[1592].speaker SPEAKER_03
transcript.pyannote[1592].start 10794.24284375
transcript.pyannote[1592].end 10794.88409375
transcript.pyannote[1593].speaker SPEAKER_03
transcript.pyannote[1593].start 10796.97659375
transcript.pyannote[1593].end 10800.99284375
transcript.pyannote[1594].speaker SPEAKER_03
transcript.pyannote[1594].start 10802.20784375
transcript.pyannote[1594].end 10808.02971875
transcript.pyannote[1595].speaker SPEAKER_03
transcript.pyannote[1595].start 10808.58659375
transcript.pyannote[1595].end 10816.29846875
transcript.pyannote[1596].speaker SPEAKER_03
transcript.pyannote[1596].start 10816.48409375
transcript.pyannote[1596].end 10821.61409375
transcript.pyannote[1597].speaker SPEAKER_03
transcript.pyannote[1597].start 10821.98534375
transcript.pyannote[1597].end 10830.72659375
transcript.pyannote[1598].speaker SPEAKER_03
transcript.pyannote[1598].start 10831.14846875
transcript.pyannote[1598].end 10836.91971875
transcript.pyannote[1599].speaker SPEAKER_03
transcript.pyannote[1599].start 10837.86471875
transcript.pyannote[1599].end 10840.19346875
transcript.pyannote[1600].speaker SPEAKER_03
transcript.pyannote[1600].start 10841.88096875
transcript.pyannote[1600].end 10844.41221875
transcript.pyannote[1601].speaker SPEAKER_03
transcript.pyannote[1601].start 10845.28971875
transcript.pyannote[1601].end 10846.09971875
transcript.pyannote[1602].speaker SPEAKER_03
transcript.pyannote[1602].start 10846.28534375
transcript.pyannote[1602].end 10847.71971875
transcript.pyannote[1603].speaker SPEAKER_03
transcript.pyannote[1603].start 10848.86721875
transcript.pyannote[1603].end 10852.24221875
transcript.pyannote[1604].speaker SPEAKER_03
transcript.pyannote[1604].start 10852.91721875
transcript.pyannote[1604].end 10863.76784375
transcript.pyannote[1605].speaker SPEAKER_03
transcript.pyannote[1605].start 10864.22346875
transcript.pyannote[1605].end 10879.47846875
transcript.pyannote[1606].speaker SPEAKER_03
transcript.pyannote[1606].start 10881.43596875
transcript.pyannote[1606].end 10886.24534375
transcript.pyannote[1607].speaker SPEAKER_03
transcript.pyannote[1607].start 10887.83159375
transcript.pyannote[1607].end 10889.24909375
transcript.pyannote[1608].speaker SPEAKER_03
transcript.pyannote[1608].start 10892.18534375
transcript.pyannote[1608].end 10893.80534375
transcript.pyannote[1609].speaker SPEAKER_03
transcript.pyannote[1609].start 10894.59846875
transcript.pyannote[1609].end 10898.76659375
transcript.pyannote[1610].speaker SPEAKER_03
transcript.pyannote[1610].start 10901.06159375
transcript.pyannote[1610].end 10903.20471875
transcript.pyannote[1611].speaker SPEAKER_03
transcript.pyannote[1611].start 10903.54221875
transcript.pyannote[1611].end 10905.80346875
transcript.pyannote[1612].speaker SPEAKER_03
transcript.pyannote[1612].start 10906.29284375
transcript.pyannote[1612].end 10914.05534375
transcript.pyannote[1613].speaker SPEAKER_03
transcript.pyannote[1613].start 10914.83159375
transcript.pyannote[1613].end 10922.64471875
transcript.pyannote[1614].speaker SPEAKER_03
transcript.pyannote[1614].start 10923.77534375
transcript.pyannote[1614].end 10929.49596875
transcript.pyannote[1615].speaker SPEAKER_03
transcript.pyannote[1615].start 10930.17096875
transcript.pyannote[1615].end 10932.09471875
transcript.pyannote[1616].speaker SPEAKER_03
transcript.pyannote[1616].start 10933.59659375
transcript.pyannote[1616].end 10934.62596875
transcript.pyannote[1617].speaker SPEAKER_03
transcript.pyannote[1617].start 10935.92534375
transcript.pyannote[1617].end 10937.27534375
transcript.pyannote[1618].speaker SPEAKER_03
transcript.pyannote[1618].start 10937.78159375
transcript.pyannote[1618].end 10941.39284375
transcript.pyannote[1619].speaker SPEAKER_03
transcript.pyannote[1619].start 10941.84846875
transcript.pyannote[1619].end 10943.97471875
transcript.pyannote[1620].speaker SPEAKER_03
transcript.pyannote[1620].start 10945.91534375
transcript.pyannote[1620].end 10949.40846875
transcript.pyannote[1621].speaker SPEAKER_03
transcript.pyannote[1621].start 10949.76284375
transcript.pyannote[1621].end 10955.82096875
transcript.pyannote[1622].speaker SPEAKER_03
transcript.pyannote[1622].start 10956.63096875
transcript.pyannote[1622].end 10966.09784375
transcript.pyannote[1623].speaker SPEAKER_03
transcript.pyannote[1623].start 10966.31721875
transcript.pyannote[1623].end 10975.88534375
transcript.pyannote[1624].speaker SPEAKER_03
transcript.pyannote[1624].start 10976.37471875
transcript.pyannote[1624].end 10978.80471875
transcript.pyannote[1625].speaker SPEAKER_03
transcript.pyannote[1625].start 10978.93971875
transcript.pyannote[1625].end 10982.66909375
transcript.pyannote[1626].speaker SPEAKER_03
transcript.pyannote[1626].start 10983.27659375
transcript.pyannote[1626].end 10987.73159375
transcript.pyannote[1627].speaker SPEAKER_03
transcript.pyannote[1627].start 10988.13659375
transcript.pyannote[1627].end 10990.87034375
transcript.pyannote[1628].speaker SPEAKER_03
transcript.pyannote[1628].start 10992.00096875
transcript.pyannote[1628].end 10994.65034375
transcript.pyannote[1629].speaker SPEAKER_03
transcript.pyannote[1629].start 10997.14784375
transcript.pyannote[1629].end 10997.92409375
transcript.pyannote[1630].speaker SPEAKER_03
transcript.pyannote[1630].start 10999.51034375
transcript.pyannote[1630].end 11001.50159375
transcript.pyannote[1631].speaker SPEAKER_03
transcript.pyannote[1631].start 11002.12596875
transcript.pyannote[1631].end 11003.40846875
transcript.pyannote[1632].speaker SPEAKER_03
transcript.pyannote[1632].start 11003.45909375
transcript.pyannote[1632].end 11005.19721875
transcript.pyannote[1633].speaker SPEAKER_03
transcript.pyannote[1633].start 11006.37846875
transcript.pyannote[1633].end 11009.56784375
transcript.pyannote[1634].speaker SPEAKER_03
transcript.pyannote[1634].start 11010.27659375
transcript.pyannote[1634].end 11013.31409375
transcript.pyannote[1635].speaker SPEAKER_03
transcript.pyannote[1635].start 11013.80346875
transcript.pyannote[1635].end 11024.62034375
transcript.pyannote[1636].speaker SPEAKER_03
transcript.pyannote[1636].start 11025.05909375
transcript.pyannote[1636].end 11028.72096875
transcript.pyannote[1637].speaker SPEAKER_03
transcript.pyannote[1637].start 11031.92721875
transcript.pyannote[1637].end 11055.26534375
transcript.pyannote[1638].speaker SPEAKER_00
transcript.pyannote[1638].start 11032.73721875
transcript.pyannote[1638].end 11033.04096875
transcript.pyannote[1639].speaker SPEAKER_03
transcript.pyannote[1639].start 11056.04159375
transcript.pyannote[1639].end 11057.69534375
transcript.pyannote[1640].speaker SPEAKER_03
transcript.pyannote[1640].start 11058.47159375
transcript.pyannote[1640].end 11058.72471875
transcript.pyannote[1641].speaker SPEAKER_03
transcript.pyannote[1641].start 11059.50096875
transcript.pyannote[1641].end 11061.49221875
transcript.pyannote[1642].speaker SPEAKER_03
transcript.pyannote[1642].start 11062.04909375
transcript.pyannote[1642].end 11069.44034375
transcript.pyannote[1643].speaker SPEAKER_03
transcript.pyannote[1643].start 11070.01409375
transcript.pyannote[1643].end 11074.28346875
transcript.pyannote[1644].speaker SPEAKER_03
transcript.pyannote[1644].start 11074.70534375
transcript.pyannote[1644].end 11076.19034375
transcript.pyannote[1645].speaker SPEAKER_03
transcript.pyannote[1645].start 11076.67971875
transcript.pyannote[1645].end 11078.77221875
transcript.pyannote[1646].speaker SPEAKER_03
transcript.pyannote[1646].start 11079.86909375
transcript.pyannote[1646].end 11081.65784375
transcript.pyannote[1647].speaker SPEAKER_03
transcript.pyannote[1647].start 11082.65346875
transcript.pyannote[1647].end 11083.48034375
transcript.pyannote[1648].speaker SPEAKER_03
transcript.pyannote[1648].start 11083.93596875
transcript.pyannote[1648].end 11085.67409375
transcript.pyannote[1649].speaker SPEAKER_03
transcript.pyannote[1649].start 11086.18034375
transcript.pyannote[1649].end 11088.28971875
transcript.pyannote[1650].speaker SPEAKER_03
transcript.pyannote[1650].start 11089.96034375
transcript.pyannote[1650].end 11093.94284375
transcript.pyannote[1651].speaker SPEAKER_03
transcript.pyannote[1651].start 11094.39846875
transcript.pyannote[1651].end 11097.13221875
transcript.pyannote[1652].speaker SPEAKER_03
transcript.pyannote[1652].start 11098.04346875
transcript.pyannote[1652].end 11105.02971875
transcript.pyannote[1653].speaker SPEAKER_03
transcript.pyannote[1653].start 11106.56534375
transcript.pyannote[1653].end 11111.83034375
transcript.pyannote[1654].speaker SPEAKER_03
transcript.pyannote[1654].start 11111.96534375
transcript.pyannote[1654].end 11117.87159375
transcript.pyannote[1655].speaker SPEAKER_03
transcript.pyannote[1655].start 11118.69846875
transcript.pyannote[1655].end 11130.83159375
transcript.pyannote[1656].speaker SPEAKER_03
transcript.pyannote[1656].start 11133.04221875
transcript.pyannote[1656].end 11134.44284375
transcript.pyannote[1657].speaker SPEAKER_03
transcript.pyannote[1657].start 11134.91534375
transcript.pyannote[1657].end 11136.21471875
transcript.pyannote[1658].speaker SPEAKER_03
transcript.pyannote[1658].start 11137.39596875
transcript.pyannote[1658].end 11143.63971875
transcript.pyannote[1659].speaker SPEAKER_03
transcript.pyannote[1659].start 11144.51721875
transcript.pyannote[1659].end 11146.82909375
transcript.pyannote[1660].speaker SPEAKER_03
transcript.pyannote[1660].start 11147.40284375
transcript.pyannote[1660].end 11148.60096875
transcript.pyannote[1661].speaker SPEAKER_03
transcript.pyannote[1661].start 11149.93409375
transcript.pyannote[1661].end 11150.55846875
transcript.pyannote[1662].speaker SPEAKER_03
transcript.pyannote[1662].start 11151.33471875
transcript.pyannote[1662].end 11155.43534375
transcript.pyannote[1663].speaker SPEAKER_03
transcript.pyannote[1663].start 11159.63721875
transcript.pyannote[1663].end 11160.36284375
transcript.pyannote[1664].speaker SPEAKER_03
transcript.pyannote[1664].start 11160.97034375
transcript.pyannote[1664].end 11166.77534375
transcript.pyannote[1665].speaker SPEAKER_03
transcript.pyannote[1665].start 11168.07471875
transcript.pyannote[1665].end 11171.97284375
transcript.pyannote[1666].speaker SPEAKER_03
transcript.pyannote[1666].start 11172.49596875
transcript.pyannote[1666].end 11172.90096875
transcript.pyannote[1667].speaker SPEAKER_03
transcript.pyannote[1667].start 11173.47471875
transcript.pyannote[1667].end 11175.93846875
transcript.pyannote[1668].speaker SPEAKER_03
transcript.pyannote[1668].start 11177.00159375
transcript.pyannote[1668].end 11182.73909375
transcript.pyannote[1669].speaker SPEAKER_03
transcript.pyannote[1669].start 11183.09346875
transcript.pyannote[1669].end 11195.96909375
transcript.pyannote[1670].speaker SPEAKER_03
transcript.pyannote[1670].start 11196.35721875
transcript.pyannote[1670].end 11202.68534375
transcript.pyannote[1671].speaker SPEAKER_03
transcript.pyannote[1671].start 11204.06909375
transcript.pyannote[1671].end 11226.07409375
transcript.pyannote[1672].speaker SPEAKER_03
transcript.pyannote[1672].start 11226.76596875
transcript.pyannote[1672].end 11232.11534375
transcript.pyannote[1673].speaker SPEAKER_03
transcript.pyannote[1673].start 11232.68909375
transcript.pyannote[1673].end 11236.72221875
transcript.pyannote[1674].speaker SPEAKER_03
transcript.pyannote[1674].start 11237.36346875
transcript.pyannote[1674].end 11240.02971875
transcript.pyannote[1675].speaker SPEAKER_03
transcript.pyannote[1675].start 11240.41784375
transcript.pyannote[1675].end 11251.67346875
transcript.pyannote[1676].speaker SPEAKER_03
transcript.pyannote[1676].start 11252.29784375
transcript.pyannote[1676].end 11253.56346875
transcript.pyannote[1677].speaker SPEAKER_03
transcript.pyannote[1677].start 11254.62659375
transcript.pyannote[1677].end 11256.44909375
transcript.pyannote[1678].speaker SPEAKER_03
transcript.pyannote[1678].start 11257.54596875
transcript.pyannote[1678].end 11260.92096875
transcript.pyannote[1679].speaker SPEAKER_03
transcript.pyannote[1679].start 11260.97159375
transcript.pyannote[1679].end 11266.15221875
transcript.pyannote[1680].speaker SPEAKER_03
transcript.pyannote[1680].start 11266.55721875
transcript.pyannote[1680].end 11273.34096875
transcript.pyannote[1681].speaker SPEAKER_03
transcript.pyannote[1681].start 11273.93159375
transcript.pyannote[1681].end 11276.29409375
transcript.pyannote[1682].speaker SPEAKER_03
transcript.pyannote[1682].start 11276.41221875
transcript.pyannote[1682].end 11281.23846875
transcript.pyannote[1683].speaker SPEAKER_03
transcript.pyannote[1683].start 11281.47471875
transcript.pyannote[1683].end 11296.64534375
transcript.pyannote[1684].speaker SPEAKER_03
transcript.pyannote[1684].start 11297.13471875
transcript.pyannote[1684].end 11299.04159375
transcript.pyannote[1685].speaker SPEAKER_03
transcript.pyannote[1685].start 11299.26096875
transcript.pyannote[1685].end 11308.55909375
transcript.pyannote[1686].speaker SPEAKER_03
transcript.pyannote[1686].start 11309.14971875
transcript.pyannote[1686].end 11346.62909375
transcript.pyannote[1687].speaker SPEAKER_03
transcript.pyannote[1687].start 11347.08471875
transcript.pyannote[1687].end 11348.28284375
transcript.pyannote[1688].speaker SPEAKER_03
transcript.pyannote[1688].start 11348.29971875
transcript.pyannote[1688].end 11350.05471875
transcript.pyannote[1689].speaker SPEAKER_03
transcript.pyannote[1689].start 11351.96159375
transcript.pyannote[1689].end 11355.84284375
transcript.pyannote[1690].speaker SPEAKER_03
transcript.pyannote[1690].start 11356.77096875
transcript.pyannote[1690].end 11358.98159375
transcript.pyannote[1691].speaker SPEAKER_03
transcript.pyannote[1691].start 11359.90971875
transcript.pyannote[1691].end 11365.63034375
transcript.pyannote[1692].speaker SPEAKER_03
transcript.pyannote[1692].start 11366.54159375
transcript.pyannote[1692].end 11368.60034375
transcript.pyannote[1693].speaker SPEAKER_03
transcript.pyannote[1693].start 11369.47784375
transcript.pyannote[1693].end 11370.37221875
transcript.pyannote[1694].speaker SPEAKER_03
transcript.pyannote[1694].start 11370.91221875
transcript.pyannote[1694].end 11384.22659375
transcript.pyannote[1695].speaker SPEAKER_03
transcript.pyannote[1695].start 11384.91846875
transcript.pyannote[1695].end 11389.32284375
transcript.pyannote[1696].speaker SPEAKER_03
transcript.pyannote[1696].start 11389.84596875
transcript.pyannote[1696].end 11396.79846875
transcript.pyannote[1697].speaker SPEAKER_03
transcript.pyannote[1697].start 11397.52409375
transcript.pyannote[1697].end 11398.36784375
transcript.pyannote[1698].speaker SPEAKER_03
transcript.pyannote[1698].start 11398.75596875
transcript.pyannote[1698].end 11398.85721875
transcript.pyannote[1699].speaker SPEAKER_03
transcript.pyannote[1699].start 11399.09346875
transcript.pyannote[1699].end 11399.98784375
transcript.pyannote[1700].speaker SPEAKER_03
transcript.pyannote[1700].start 11400.52784375
transcript.pyannote[1700].end 11401.43909375
transcript.pyannote[1701].speaker SPEAKER_03
transcript.pyannote[1701].start 11402.31659375
transcript.pyannote[1701].end 11403.66659375
transcript.pyannote[1702].speaker SPEAKER_03
transcript.pyannote[1702].start 11404.34159375
transcript.pyannote[1702].end 11414.21346875
transcript.pyannote[1703].speaker SPEAKER_03
transcript.pyannote[1703].start 11414.55096875
transcript.pyannote[1703].end 11415.39471875
transcript.pyannote[1704].speaker SPEAKER_03
transcript.pyannote[1704].start 11419.25909375
transcript.pyannote[1704].end 11420.62596875
transcript.pyannote[1705].speaker SPEAKER_03
transcript.pyannote[1705].start 11421.75659375
transcript.pyannote[1705].end 11426.12721875
transcript.pyannote[1706].speaker SPEAKER_03
transcript.pyannote[1706].start 11426.65034375
transcript.pyannote[1706].end 11427.71346875
transcript.pyannote[1707].speaker SPEAKER_03
transcript.pyannote[1707].start 11428.16909375
transcript.pyannote[1707].end 11430.44721875
transcript.pyannote[1708].speaker SPEAKER_03
transcript.pyannote[1708].start 11431.07159375
transcript.pyannote[1708].end 11456.80596875
transcript.pyannote[1709].speaker SPEAKER_03
transcript.pyannote[1709].start 11458.47659375
transcript.pyannote[1709].end 11460.41721875
transcript.pyannote[1710].speaker SPEAKER_03
transcript.pyannote[1710].start 11462.12159375
transcript.pyannote[1710].end 11466.69471875
transcript.pyannote[1711].speaker SPEAKER_03
transcript.pyannote[1711].start 11469.31034375
transcript.pyannote[1711].end 11470.37346875
transcript.pyannote[1712].speaker SPEAKER_03
transcript.pyannote[1712].start 11472.58409375
transcript.pyannote[1712].end 11475.04784375
transcript.pyannote[1713].speaker SPEAKER_03
transcript.pyannote[1713].start 11475.13221875
transcript.pyannote[1713].end 11478.08534375
transcript.pyannote[1714].speaker SPEAKER_03
transcript.pyannote[1714].start 11479.65471875
transcript.pyannote[1714].end 11482.72596875
transcript.pyannote[1715].speaker SPEAKER_03
transcript.pyannote[1715].start 11484.14346875
transcript.pyannote[1715].end 11486.23596875
transcript.pyannote[1716].speaker SPEAKER_03
transcript.pyannote[1716].start 11486.48909375
transcript.pyannote[1716].end 11495.06159375
transcript.pyannote[1717].speaker SPEAKER_03
transcript.pyannote[1717].start 11496.29346875
transcript.pyannote[1717].end 11514.50159375
transcript.pyannote[1718].speaker SPEAKER_03
transcript.pyannote[1718].start 11515.10909375
transcript.pyannote[1718].end 11516.91471875
transcript.pyannote[1719].speaker SPEAKER_03
transcript.pyannote[1719].start 11517.64034375
transcript.pyannote[1719].end 11519.04096875
transcript.pyannote[1720].speaker SPEAKER_03
transcript.pyannote[1720].start 11519.56409375
transcript.pyannote[1720].end 11523.64784375
transcript.pyannote[1721].speaker SPEAKER_03
transcript.pyannote[1721].start 11524.28909375
transcript.pyannote[1721].end 11524.81221875
transcript.pyannote[1722].speaker SPEAKER_03
transcript.pyannote[1722].start 11526.31409375
transcript.pyannote[1722].end 11528.01846875
transcript.pyannote[1723].speaker SPEAKER_03
transcript.pyannote[1723].start 11528.38971875
transcript.pyannote[1723].end 11532.05159375
transcript.pyannote[1724].speaker SPEAKER_03
transcript.pyannote[1724].start 11533.13159375
transcript.pyannote[1724].end 11541.55221875
transcript.pyannote[1725].speaker SPEAKER_03
transcript.pyannote[1725].start 11542.44659375
transcript.pyannote[1725].end 11543.25659375
transcript.pyannote[1726].speaker SPEAKER_03
transcript.pyannote[1726].start 11544.37034375
transcript.pyannote[1726].end 11546.41221875
transcript.pyannote[1727].speaker SPEAKER_03
transcript.pyannote[1727].start 11546.71596875
transcript.pyannote[1727].end 11549.95596875
transcript.pyannote[1728].speaker SPEAKER_03
transcript.pyannote[1728].start 11550.61409375
transcript.pyannote[1728].end 11553.34784375
transcript.pyannote[1729].speaker SPEAKER_03
transcript.pyannote[1729].start 11553.88784375
transcript.pyannote[1729].end 11562.84846875
transcript.pyannote[1730].speaker SPEAKER_03
transcript.pyannote[1730].start 11563.92846875
transcript.pyannote[1730].end 11565.24471875
transcript.pyannote[1731].speaker SPEAKER_03
transcript.pyannote[1731].start 11565.95346875
transcript.pyannote[1731].end 11567.03346875
transcript.pyannote[1732].speaker SPEAKER_03
transcript.pyannote[1732].start 11567.18534375
transcript.pyannote[1732].end 11572.73721875
transcript.pyannote[1733].speaker SPEAKER_03
transcript.pyannote[1733].start 11574.28971875
transcript.pyannote[1733].end 11576.70284375
transcript.pyannote[1734].speaker SPEAKER_03
transcript.pyannote[1734].start 11578.01909375
transcript.pyannote[1734].end 11579.57159375
transcript.pyannote[1735].speaker SPEAKER_03
transcript.pyannote[1735].start 11580.07784375
transcript.pyannote[1735].end 11582.10284375
transcript.pyannote[1736].speaker SPEAKER_03
transcript.pyannote[1736].start 11582.38971875
transcript.pyannote[1736].end 11585.47784375
transcript.pyannote[1737].speaker SPEAKER_03
transcript.pyannote[1737].start 11587.03034375
transcript.pyannote[1737].end 11589.73034375
transcript.pyannote[1738].speaker SPEAKER_03
transcript.pyannote[1738].start 11589.96659375
transcript.pyannote[1738].end 11591.40096875
transcript.pyannote[1739].speaker SPEAKER_03
transcript.pyannote[1739].start 11592.07596875
transcript.pyannote[1739].end 11593.96596875
transcript.pyannote[1740].speaker SPEAKER_03
transcript.pyannote[1740].start 11594.62409375
transcript.pyannote[1740].end 11596.14284375
transcript.pyannote[1741].speaker SPEAKER_03
transcript.pyannote[1741].start 11597.29034375
transcript.pyannote[1741].end 11612.29221875
transcript.pyannote[1742].speaker SPEAKER_03
transcript.pyannote[1742].start 11612.98409375
transcript.pyannote[1742].end 11614.45221875
transcript.pyannote[1743].speaker SPEAKER_03
transcript.pyannote[1743].start 11614.97534375
transcript.pyannote[1743].end 11617.72596875
transcript.pyannote[1744].speaker SPEAKER_03
transcript.pyannote[1744].start 11618.33346875
transcript.pyannote[1744].end 11619.71721875
transcript.pyannote[1745].speaker SPEAKER_03
transcript.pyannote[1745].start 11620.07159375
transcript.pyannote[1745].end 11621.80971875
transcript.pyannote[1746].speaker SPEAKER_03
transcript.pyannote[1746].start 11623.46346875
transcript.pyannote[1746].end 11628.52596875
transcript.pyannote[1747].speaker SPEAKER_03
transcript.pyannote[1747].start 11630.85471875
transcript.pyannote[1747].end 11637.45284375
transcript.pyannote[1748].speaker SPEAKER_03
transcript.pyannote[1748].start 11638.31346875
transcript.pyannote[1748].end 11644.42221875
transcript.pyannote[1749].speaker SPEAKER_03
transcript.pyannote[1749].start 11645.46846875
transcript.pyannote[1749].end 11648.16846875
transcript.pyannote[1750].speaker SPEAKER_03
transcript.pyannote[1750].start 11649.78846875
transcript.pyannote[1750].end 11650.75034375
transcript.pyannote[1751].speaker SPEAKER_03
transcript.pyannote[1751].start 11651.76284375
transcript.pyannote[1751].end 11653.88909375
transcript.pyannote[1752].speaker SPEAKER_03
transcript.pyannote[1752].start 11654.31096875
transcript.pyannote[1752].end 11662.49534375
transcript.pyannote[1753].speaker SPEAKER_03
transcript.pyannote[1753].start 11664.31784375
transcript.pyannote[1753].end 11668.40159375
transcript.pyannote[1754].speaker SPEAKER_03
transcript.pyannote[1754].start 11669.73471875
transcript.pyannote[1754].end 11671.30409375
transcript.pyannote[1755].speaker SPEAKER_03
transcript.pyannote[1755].start 11671.43909375
transcript.pyannote[1755].end 11675.91096875
transcript.pyannote[1756].speaker SPEAKER_03
transcript.pyannote[1756].start 11679.10034375
transcript.pyannote[1756].end 11681.47971875
transcript.pyannote[1757].speaker SPEAKER_03
transcript.pyannote[1757].start 11682.37409375
transcript.pyannote[1757].end 11691.68909375
transcript.pyannote[1758].speaker SPEAKER_03
transcript.pyannote[1758].start 11692.48221875
transcript.pyannote[1758].end 11695.06409375
transcript.pyannote[1759].speaker SPEAKER_03
transcript.pyannote[1759].start 11695.51971875
transcript.pyannote[1759].end 11698.70909375
transcript.pyannote[1760].speaker SPEAKER_03
transcript.pyannote[1760].start 11699.48534375
transcript.pyannote[1760].end 11701.91534375
transcript.pyannote[1761].speaker SPEAKER_03
transcript.pyannote[1761].start 11702.87721875
transcript.pyannote[1761].end 11724.52784375
transcript.pyannote[1762].speaker SPEAKER_03
transcript.pyannote[1762].start 11725.37159375
transcript.pyannote[1762].end 11726.68784375
transcript.pyannote[1763].speaker SPEAKER_03
transcript.pyannote[1763].start 11727.05909375
transcript.pyannote[1763].end 11728.64534375
transcript.pyannote[1764].speaker SPEAKER_03
transcript.pyannote[1764].start 11729.18534375
transcript.pyannote[1764].end 11749.62096875
transcript.pyannote[1765].speaker SPEAKER_03
transcript.pyannote[1765].start 11749.95846875
transcript.pyannote[1765].end 11750.65034375
transcript.pyannote[1766].speaker SPEAKER_03
transcript.pyannote[1766].start 11750.97096875
transcript.pyannote[1766].end 11753.31659375
transcript.pyannote[1767].speaker SPEAKER_03
transcript.pyannote[1767].start 11761.51784375
transcript.pyannote[1767].end 11762.02409375
transcript.pyannote[1768].speaker SPEAKER_01
transcript.pyannote[1768].start 11766.04034375
transcript.pyannote[1768].end 11772.45284375
transcript.pyannote[1769].speaker SPEAKER_01
transcript.pyannote[1769].start 11773.06034375
transcript.pyannote[1769].end 11790.30659375
transcript.pyannote[1770].speaker SPEAKER_05
transcript.pyannote[1770].start 11790.30659375
transcript.pyannote[1770].end 11792.60159375
transcript.pyannote[1771].speaker SPEAKER_05
transcript.pyannote[1771].start 11813.96534375
transcript.pyannote[1771].end 11814.03284375
transcript.pyannote[1772].speaker SPEAKER_05
transcript.pyannote[1772].start 11814.97784375
transcript.pyannote[1772].end 11815.02846875
transcript.pyannote[1773].speaker SPEAKER_05
transcript.pyannote[1773].start 11816.96909375
transcript.pyannote[1773].end 11817.03659375
transcript.pyannote[1774].speaker SPEAKER_05
transcript.pyannote[1774].start 11817.96471875
transcript.pyannote[1774].end 11818.63971875
transcript.pyannote[1775].speaker SPEAKER_05
transcript.pyannote[1775].start 11820.41159375
transcript.pyannote[1775].end 11821.71096875
transcript.pyannote[1776].speaker SPEAKER_05
transcript.pyannote[1776].start 11823.97221875
transcript.pyannote[1776].end 11824.02284375
transcript.pyannote[1777].speaker SPEAKER_05
transcript.pyannote[1777].start 11825.67659375
transcript.pyannote[1777].end 11825.76096875
transcript.pyannote[1778].speaker SPEAKER_05
transcript.pyannote[1778].start 11825.96346875
transcript.pyannote[1778].end 11826.03096875
transcript.pyannote[1779].speaker SPEAKER_05
transcript.pyannote[1779].start 11833.18596875
transcript.pyannote[1779].end 11833.86096875
transcript.pyannote[1780].speaker SPEAKER_05
transcript.pyannote[1780].start 11833.96221875
transcript.pyannote[1780].end 11839.68284375
transcript.whisperx[0].start 53.817
transcript.whisperx[0].end 54.637
transcript.whisperx[0].text 嗯嗯嗯嗯
transcript.whisperx[1].start 65.179
transcript.whisperx[1].end 87.995
transcript.whisperx[1].text 響鐘
transcript.whisperx[2].start 142.517
transcript.whisperx[2].end 158.217
transcript.whisperx[2].text 響鐘
transcript.whisperx[3].start 216.22
transcript.whisperx[3].end 216.544
transcript.whisperx[3].text by bwd6
transcript.whisperx[4].start 774.834
transcript.whisperx[4].end 795.647
transcript.whisperx[4].text 各位同仁大家午安首先代表處裡面歡迎各位同仁來參加今天的自動安全的教育訓練本次的教育訓練最主要是依照自動安全管理法自動安全責任等級分級辦法裡面的規定就是同仁的話就是每年要上一定時數的治安的一個教育訓練的規定來辦理的
transcript.whisperx[5].start 797.508
transcript.whisperx[5].end 820.805
transcript.whisperx[5].text 這次的課程的話我們是請定眼科技有限公司的資安顧問就是林顧問這邊來講授駭客的終極完美武器人工智能大未來的課程林顧問是資安的工程師也是資安的顧問過去在各機關學校都有擔任相關課程的一個講授
transcript.whisperx[6].start 822.822
transcript.whisperx[6].end 847.746
transcript.whisperx[6].text 在上禮拜的話我們有聽林顧問這邊的講授非常的精彩尤其的話他也會帶入一些案例來介紹目前我們治安所遭遇的一些問題希望這三個小時的課程的話大家可以收穫滿滿接下來的話我們就把我們的時間交給我們今天的講師大家掌聲鼓勵一下
transcript.whisperx[7].start 855.018
transcript.whisperx[7].end 881.973
transcript.whisperx[7].text 各位下午安这声音各位听得到吗其实下午不太想太大声因为每次太大声你就不太好睡觉这样子所以用适当的音量来吵吵各位就好了不过应该也有点难因为通常有时候会Q各位各位大概就会醒过来近期的资讯安全跟以前老师说蛮大不同的为什么不同自从有这些AI平台出现就省了我们很多工
transcript.whisperx[8].start 882.873
transcript.whisperx[8].end 904.816
transcript.whisperx[8].text 然後再加上現在還蠻喜歡使用包含說Different的部分去做所謂的換臉或者做所謂的生成所以近期其實有個名詞其實蠻有趣的各位有聽過一個名詞叫數字人嗎知道是什麼東西嗎各位知道外面有很多各位的數字人嗎
transcript.whisperx[9].start 907.174
transcript.whisperx[9].end 931.142
transcript.whisperx[9].text 知道是什么吗就是现在会抓着各位的生物特征去仿制各位然后进行所谓的诈骗诱骗这样子这个其实我觉得未来会有点麻烦所以等一下给各位看一段影片那影片其实还蛮可以让我们去做一个思考这样子可是一开始上课之前我要让各位了解一下各位的资料到底有没有一直往外丢出去
transcript.whisperx[10].start 932.162
transcript.whisperx[10].end 956.26
transcript.whisperx[10].text 以前我們往外丟出去叫個資個資我個人覺得現在都還好可是現在丟的是什麼生物特徵就是你每天去哪裡你的樣子你喜歡什麼東西這些東西其實是跟著我們一輩子的東西我們先來檢查一下看各位有沒有每天一直把自己的資料往外丟怎麼檢查其實很簡單各位身上有手機嗎麻煩各位把你的手機拿起來一下
transcript.whisperx[11].start 957.421
transcript.whisperx[11].end 969.699
transcript.whisperx[11].text 那你跟著我講的地方檢查一下你就知道你的資料有沒有一直往外丟各位請把你最常用的通訊軟體打開一下就是LINE愛情打開一下
transcript.whisperx[12].start 971.365
transcript.whisperx[12].end 995.474
transcript.whisperx[12].text 然后底下有没有看到一个叫主页主页麻烦各位点它一下然后在右上角你会看到一个齿轮的图案齿轮叫做设定请各位点它一下点进设定之后第三个你应该会看到一个叫隐私设定各位有看到麻烦点它一下都点进去了点进去之后麻烦各位先滑到最底下
transcript.whisperx[13].start 996.374
transcript.whisperx[13].end 1008.008
transcript.whisperx[13].text 由下往上数下往上数第4个你会看到一个叫做外部应用程式存取请各位把它点进去这边要是拒绝才是对的
transcript.whisperx[14].start 1010.023
transcript.whisperx[14].end 1037.29
transcript.whisperx[14].text 所以我們已經可以直接結束課程這樣子沒有 我們還是先關來 麻煩各位把它改成拒絕它在做什麼事情我們LINE其實有每天各位的一些操作軌跡 通訊記錄我們手機還有其他的APP會跟它分享資料這其實不是很好的狀態所以麻煩各位先把它改成拒絕改完成拒絕之後各位再點左上角回到上一頁
transcript.whisperx[15].start 1039.07
transcript.whisperx[15].end 1050.657
transcript.whisperx[15].text 然後在外部應用程式存取底下有沒有看到一個叫提供使用資料來嗎一樣點進去這邊所有打開都要關起來特別是第一個叫聊天室資訊對
transcript.whisperx[16].start 1068.109
transcript.whisperx[16].end 1083.783
transcript.whisperx[16].text 聊天室資訊有沒有人今天是第一次關的我先講一下他會做什麼因為我們LINE難免會有一些公務群組很容易造成公務資料外洩各位這樣懂意思可是記得回去宣導一下如果群裡面有一個人沒關還是資料外洩
transcript.whisperx[17].start 1085.48
transcript.whisperx[17].end 1108.767
transcript.whisperx[17].text 這樣懂意思因為我們有很多群有很多群都是會因為這樣子造成資料跑出去的所以把提供使用資料裡面所有全關這些關跟各位正常工人是不影響也不會影響到什麼你LivePay的使用不會所以這邊都關這邊關完了嗎還沒結束還有好幾個要設定來再麻煩回到上一頁
transcript.whisperx[18].start 1110.808
transcript.whisperx[18].end 1125.08
transcript.whisperx[18].text 在提供使用資料底下有沒有看到一個叫廣告相關設定來 馬上點進去如果你裡面兩個功能是打開我個人建議關起來這是什麼呢因為剛才有蒐集到各位你想要什麼現在他就會發廣告推播給你
transcript.whisperx[19].start 1126.862
transcript.whisperx[19].end 1141.461
transcript.whisperx[19].text 這樣懂意思這個其實不好因為現在這些詐騙集團會買廣告會塞到各位的面前各位一不小心就會踩到陷阱所以我個人建議把它關起來關起來就不會再收到那種怪怪的廣告這邊都關完了嗎
transcript.whisperx[20].start 1144.242
transcript.whisperx[20].end 1165.893
transcript.whisperx[20].text 剩下最後一個請回到上一頁在上一頁現在是在設定設定的第二個有沒有看到一個叫我的帳號各位點它一下然後在中間的地方你們應該會看到一個叫連動中的應用程式有沒有各位點進去裡面應該要沒有任何連動中的應用程式才是對的
transcript.whisperx[21].start 1168.614
transcript.whisperx[21].end 1192.181
transcript.whisperx[21].text 有一個就是你的資料會跟他分享所以你自己看一下你有多少個然後我個人建議是這樣子把用不到的不知道他在幹嘛的麻煩各位再點那個APP一下然後拉到最底下你會看到解除連動四個字這個很麻煩是什麼他只能一個一個關所以各位如果沒在用的你要一個一個解除這樣子
transcript.whisperx[22].start 1195.245
transcript.whisperx[22].end 1217.798
transcript.whisperx[22].text 所以各位都有在用只能提供給他資料而已像我個人習慣是都把它解除掉各位可能會看到裡面有一些跟銀行相關的有沒有其實他就是發交易通知給你你可以自己思考一下我個人建議是把沒在用的特別是不知道他在幹嘛的那個我建議就把它關掉了
transcript.whisperx[23].start 1220.416
transcript.whisperx[23].end 1246.767
transcript.whisperx[23].text 所以各位都關完了還在關各位到底是有多少個打開二三十個那我跟各位分享一下在一陣子再過來之後你還是會這麼多個因為現在只要外面什麼加入好友或者裝一個新的APP就會再跑進來一次所以這個會一直跑進來除非你的手機平常沒有什麼在異動就是比如說沒有在裝東西沒有在加入好友要不然這會一直跑進來這樣OK
transcript.whisperx[24].start 1250.65
transcript.whisperx[24].end 1268.988
transcript.whisperx[24].text 可是我覺得各位中毒已深了怎麼辦要不要再來查一下各位是不是最糟糕的那個人我讓給你查一下一個東西就知道了來 這邊各位有空的時候再解除因為有時候你還要判斷哪些是不是要用然後我先讓各位了解一下你現在是不是最嚴重的那個人
transcript.whisperx[25].start 1270.689
transcript.whisperx[25].end 1285.059
transcript.whisperx[25].text 我讲的严重是你们家现在在哪里都已经被摸透了这样懂意思这个现在要怎么试很简单来 各位把你的手机打开你最常用的地图
transcript.whisperx[26].start 1287.08
transcript.whisperx[26].end 1309.711
transcript.whisperx[26].text 比如说你是用 google map麻烦就把你的 google map 打开然后在上面输入的地方吗各位打回家或者讲回家两个字那你看一下他会不会自己导回家如果你没有设定他自己现在已经会帮你导回家那是一个很可怕的状态各位听得懂我讲意思你就讲回家如果他已经导回家了有没有那个是最糟糕的
transcript.whisperx[27].start 1312.233
transcript.whisperx[27].end 1330.465
transcript.whisperx[27].text 因为你每天出门的记录啊几点几分在哪边出摸器他都知道了那他已经把把那个记录记录下来了啊这其实不好这样可以吗那各位知道这个如果真的会倒回家这时候要怎么办知道吗要怎么解决这个问题知道吗换一个家
transcript.whisperx[28].start 1336.308
transcript.whisperx[28].end 1350.242
transcript.whisperx[28].text 這個真的很麻煩因為我們以前所著重的跟現在著重不太一樣大概近十幾年所有網路平台在收集就已經不是收集個資都是收集這種使用者的軌跡這樣可以
transcript.whisperx[29].start 1354.863
transcript.whisperx[29].end 1379.924
transcript.whisperx[29].text 各位看起來都還在關關的有點久你有沒有覺得他很討厭為什麼不能一次全選關掉有沒有真的不行他真的只能一支一支點我都試過就點一支關一支點一支關一支這樣他沒有辦法選全部來沒關係各位邊關我順便再爆一個料好了順便讓各位知道外面有些東西還是不要亂加各位有加入任何超商的會員了嗎
transcript.whisperx[30].start 1382.458
transcript.whisperx[30].end 1400.366
transcript.whisperx[30].text 各位都加的太早了你知道我觉得各位很难救我把整段讲完之后你再自己看以后要怎么办各位去超商买东西的时候仔细注意像结账柜台的后面电视电视上面的框上通常会有镜头拍各位你几岁买了什么东西各位知道吗
transcript.whisperx[31].start 1402.331
transcript.whisperx[31].end 1421.159
transcript.whisperx[31].text 這個不是新聞這個已經做很久了外面不是只有那個電視有時候那個廣告牆上面也會有鏡頭拍各位那因為疫情之後其實很多人出門難免會戴口罩所以他那個鏡頭識別率是下降的可是他又想要知道你想要買什麼東西所以他就讓各位加入會員
transcript.whisperx[32].start 1422.95
transcript.whisperx[32].end 1441.415
transcript.whisperx[32].text 那加入會員有沒有發現一件事情就是在辦公室附近的便利商店跟家裡附近便利商店賣的東西其實不太一樣應該有發現那更可怕的是什麼各位的手機還會裝他的APP你每天操作想要什麼東西他都知道所以那個超商當沒有檔期的時候他就會自己開一個檔期出來
transcript.whisperx[33].start 1442.775
transcript.whisperx[33].end 1461.924
transcript.whisperx[33].text 就隨便念一個數字有沒有那就檔期出來這樣子其實都是透過各位平常這些操作的習慣然後跟他做分享這樣子我還是講一下加入會員可以可是有個小技巧各位可能要稍微注意一下當店員問你會員電話號碼各位這時候是怎麼給他的
transcript.whisperx[34].start 1467.795
transcript.whisperx[34].end 1495.015
transcript.whisperx[34].text 拜托不要再直接爆了因为我每次站在别人后面结账的时候我都觉得听到对方的电话真的不太好各位知道我有你的电话我已经可以跟你做任何IM的连在一起比如说LINE连在一起或什么的然后再来就仿制然后丢给你这样子所以我个人建议因为现在他们也知道有这件事情所以现在有两种做法一种是你手机直接给他扫扣APP可以给他那个
transcript.whisperx[35].start 1496.616
transcript.whisperx[35].end 1515.007
transcript.whisperx[35].text 類似QR Code這樣給他掃這是一種第二種自己用按的他那台底下可以用按的自己按不要講出來講出來現在不太好這是我個人比較建議的部分所以這樣可以等一下就讓各位看一下什麼叫數字冷產生器然後跟目前AI的一些使用
transcript.whisperx[36].start 1516.448
transcript.whisperx[36].end 1534.121
transcript.whisperx[36].text 那這段影片我讓各位看一下這段影片其實我看完的時候哇真的跟我以前推想一模一樣那我給各位看這段是什麼影片這是一個小女孩可是她先仿成18歲去申請所有的資訊哦
transcript.whisperx[37].start 1547.897
transcript.whisperx[37].end 1548.76
transcript.whisperx[37].text 哈哈哈哈
transcript.whisperx[38].start 1577.927
transcript.whisperx[38].end 1600.239
transcript.whisperx[38].text Hey Mom, Hey DadIt's me, EllaWell, a digital version of meJust a bit olderAmazing what technology can do these days, isn't it?All you need are a couple of picturesLike the ones you share on social mediaWhere they can be taken and usedBy everybody
transcript.whisperx[39].start 1603.417
transcript.whisperx[39].end 1609.731
transcript.whisperx[39].text 我知道这些照片对你来说只是回忆但对其他人来说他们只是数据而对我来说
transcript.whisperx[40].start 1611.789
transcript.whisperx[40].end 1627.634
transcript.whisperx[40].text 也許是一開始糟糕的未來未來,我的身份可以被盜竊就像這樣我可以去牢獄做事情我從來都不會做的事情想像我爸爸被破壞的信息數字或者我媽媽的聲音被複製來騙你媽媽,我受到麻煩了我需要你給我錢,拜託我不想變成一個…一個謎語學校的所有人都會欺負我殺死自己,你這個混蛋
transcript.whisperx[41].start 1644.94
transcript.whisperx[41].end 1650.023
transcript.whisperx[41].text 我絕對不想…這個你在網上分享的東西就像是一張電子圖片它會跟著我一輩子的生活我告訴你這是因為我知道你愛我你永遠不會做任何事情來傷害我所以請媽 請爸爸
transcript.whisperx[42].start 1674.36
transcript.whisperx[42].end 1698.585
transcript.whisperx[42].text Protect my virtual privacy後面還有一段一小段我就不往後播其實這個是現在的一個實務狀態就是很多家長可能在小朋友成長的時候覺得這是小朋友成長紀錄
transcript.whisperx[43].start 1700.285
transcript.whisperx[43].end 1724.721
transcript.whisperx[43].text 可是在網路上現在已經有非常多的一些狀態是什麼我抓著這些記錄就可以來做所謂的深圍或者是像上面這影片的部分明明就是一個小朋友我把他變成是18歲以後的樣子然後去做一些包含說他申請一些Credit Card或什麼這其實已經是目前在發生的狀態台灣地區這兩年我覺得更可怕的狀態是什麼
transcript.whisperx[44].start 1726.002
transcript.whisperx[44].end 1749.17
transcript.whisperx[44].text 已经很多诈骗集团用深微的message在结合网路上叫做社工库去找我们周遭的一些资料然后利用这些资料对我们发动一些讯息当然这些讯息现在以目前的识别方式老实说以我自己在看它的一些发展状态越来越难识别
transcript.whisperx[45].start 1750.59
transcript.whisperx[45].end 1767.975
transcript.whisperx[45].text 越來越難我們會想說目前是不是有一些方法我們等一下來看一下是不是有些方法可以去做一些識別我們先看一下目前的一些科技進展這種科技進展我覺得最有趣的狀態是什麼都不是環部成長都是用跳的
transcript.whisperx[46].start 1769.275
transcript.whisperx[46].end 1790.16
transcript.whisperx[46].text 我們看前幾個第一個是AI的大型語言的部分這其實是LM的部分以前的部分在AI發展其實如果從IT的角度開始看其實大概從1950年代其實就在講AI一直講到現在還在講AI只是說以前的AI比較偏向所謂的專家知識庫
transcript.whisperx[47].start 1792.7
transcript.whisperx[47].end 1813.264
transcript.whisperx[47].text 所以你給他的問題只能是那個知識庫裡面的答案提問要不然他出來的結果會蠻有趣的目前其實什麼你可以去訓練他訓練他讓他去達到一些你想要的一些狀態的部分第二個這個也是近期一直在提的就是所謂的量子技術的部分各位有聽過量子電腦嗎各位覺得這東西離各位近還是遠
transcript.whisperx[48].start 1819.958
transcript.whisperx[48].end 1834.488
transcript.whisperx[48].text 聽起來好像科幻片沒有其實離各位還蠻近的而且我覺得大概三五年內應該會有成熟製程就會直接到各位的面前各位把想像一下之後只要用到所有之後所有有需要用到運算的大概都被血洗一亂
transcript.whisperx[49].start 1835.268
transcript.whisperx[49].end 1856.818
transcript.whisperx[49].text 就包含說我們密碼保護方式大概就沒有用了因為這種計算方式是下一個不能用同一階去看已經跳到下一階這等一下我可以帶給各位大家看一下第三個是什麼就是說目前其實這種AI生成部分蠻簡單的比如說生成圖片影片的部分有一些訊息的部分像剛才看到那影片你也不知道到底是真還是假
transcript.whisperx[50].start 1857.518
transcript.whisperx[50].end 1876.934
transcript.whisperx[50].text 可是我现在在研究有一个蛮吊诡的状态就是当错的资料在网路上没有人校正没有人校对到最后其实会变成对的这是目前其实我觉得一个很麻烦的一个状态后面几个我就不讲这其实是目前的Top10的部分
transcript.whisperx[51].start 1877.854
transcript.whisperx[51].end 1887.959
transcript.whisperx[51].text 今年科技的部分這三個是目前發展我覺得算蠻快的包含說後量子密碼學這邊考個一下各位有沒有覺得記密碼很討厭什麼樣記密碼的方式是最好的考個一下記密碼很討厭所以用什麼樣的方式記密碼是最好的
transcript.whisperx[52].start 1904.444
transcript.whisperx[52].end 1908.647
transcript.whisperx[52].text 不是可以再想一下不是不是不是好來直接跟各位講不對我應該問各位一個問題才知道各位頻率現在到底跟我合不合好我先問前一個問題好了請問各位密碼最怕什麼
transcript.whisperx[53].start 1924.918
transcript.whisperx[53].end 1936.197
transcript.whisperx[53].text 对密密码怕忘记对密码怕忘记忘记你就跟没有密码是一样的所以最好的密码怎么样去记录就是不要有密码
transcript.whisperx[54].start 1937.901
transcript.whisperx[54].end 1959.514
transcript.whisperx[54].text 我沒有在露口令那個其實現在在推那個叫零信任零信任其實就是不要有密碼用Double Confirm的方式各位想想這到底是什麼東西各位有沒有發現你有時候在電腦要登Google他跟你講說手機那個YouTuber打開戳一下你要戳一下或者點什麼數字那個方式其實就是類零信任
transcript.whisperx[55].start 1960.234
transcript.whisperx[55].end 1978.209
transcript.whisperx[55].text 所以以后其实用记忆密码这件事情其实会慢慢被洗掉这慢慢就会改变这样子可是最有趣的是量子计算量子计算我等一下用图让各位比较快速了解第二个是多功能机器人各位在外面有看过哪一些多功能的机器人吗让你觉得非常有趣的
transcript.whisperx[56].start 1982.58
transcript.whisperx[56].end 1990.274
transcript.whisperx[56].text 都沒看過嗎各位去餐廳應該有看過吧就是有那個送餐機器人不是在那邊跑出來嗎那各位有玩過那台送餐機器人嗎也都不會玩那
transcript.whisperx[57].start 1994.679
transcript.whisperx[57].end 2020.892
transcript.whisperx[57].text 怎麼玩 我教你我們家有三個小朋友然後之前帶去育龍城的時候那個機器人跑出來有沒有他們三個就給他圍住不讓他動你知道不讓他動就是因為他碰到人會偵測你知道他就不知道要轉哪裡你知道然後我們小朋友還很壞手指頭會去戳他的臉就那個螢幕戳戳戳結果讓他戳到那個Power off鍵然後他就給他按關機他就停在那裡不會動就我們家小朋友會做這些事情
transcript.whisperx[58].start 2022.052
transcript.whisperx[58].end 2050.254
transcript.whisperx[58].text 那這個機器人基本上各位把他想像一下以後如果他變成是人形的可以跨場域有沒有相信我以後陪你的不會是你的小朋友了就是那台機器人以後叫陪伴機器人各位懂我意思嗎我覺得這也蠻快的啦因為現在其實有很多人那個養毛小孩的時候你沒辦法照顧他的時候都會買那個什麼感測Sensor或者是那個CCTV嘛那有的有腳嘛你還可以跟他講話以後大概就會變成這樣子
transcript.whisperx[59].start 2051.395
transcript.whisperx[59].end 2073.493
transcript.whisperx[59].text 第三個是虛假的資安這其實就對到剛才講的叫做數字人這件事情我先讓各位了解一下未來科技到底會跳到什麼階段各位略懂略懂就好所謂的量子計算跟傳統計算的一個差異各位知道目前台積電最新是幾奈米的製程嗎
transcript.whisperx[60].start 2076.314
transcript.whisperx[60].end 2080.539
transcript.whisperx[60].text 量產是2奈米實際上實驗室是1點多好像是1.6還1.8那考個一下1之後再來
transcript.whisperx[61].start 2087.987
transcript.whisperx[61].end 2114.233
transcript.whisperx[61].text 各位不要說有0點多 沒有因為要換材料了那個材料的極限是1就是各位大概有個印象這樣就好了我們電腦的運算各位應該都知道不是0就是1對不對所以其實是像這樣子各位左邊這張圖其實就是傳統電腦運算方式它其實看待比較像什麼比較像平面不是正面就是反面
transcript.whisperx[62].start 2115.333
transcript.whisperx[62].end 2133.954
transcript.whisperx[62].text 然後去組合起來這樣子然後再加上目前的晶片運算速度這樣子然後後期他們用疊加疊加的技術把它就是在有限空間裡面然後可以疊幾層其實還是算運算速度可是量子電腦的運算就不是0跟1它比較像是立體的概念
transcript.whisperx[63].start 2135.235
transcript.whisperx[63].end 2157.693
transcript.whisperx[63].text 覺得極接近0跟極接近任何地方都可以有組合所以它變成是N的N次方原本的傳統電腦其實它基底就是01是22的N次方所以再怎麼算其實到量子的時候就會跳到下一個階段其實是不同維度的概念各位這樣聽得懂
transcript.whisperx[64].start 2159.074
transcript.whisperx[64].end 2176.329
transcript.whisperx[64].text 各位不要覺得這個好像離各位很遠沒有 這很近這非常的近你把它想像一下之後所有需要運到運算的全部都跳到下一階去了不是一階一階跑是直接跳到下一階去這是非常有趣的狀態這樣子有感覺嗎還是沒有 我還是講得很抽象
transcript.whisperx[65].start 2181.496
transcript.whisperx[65].end 2202.092
transcript.whisperx[65].text 我讲一下一个更抽象的东西好了我们家小朋友都国小我觉得我教要教三次有点累我都教他们自学然后我们家有一个小一生小二的然后这次暑假各位猜看看我教他自学什么猜看看
transcript.whisperx[66].start 2208.737
transcript.whisperx[66].end 2235.4
transcript.whisperx[66].text 智學啦智學可以叫他智學什麼沒有我就是叫他那個智學量子力學你會想說你是在虐待小朋友嗎我告訴你不是喔我是刻意試來我教各位因為現在很多平台真的還蠻好蠻好教小朋友的啦第一個你先去那個YT上面找針對量子力學講得還不錯的頻道
transcript.whisperx[67].start 2236.221
transcript.whisperx[67].end 2253.958
transcript.whisperx[67].text 那你教他看他一定看不懂所以這什麼怎麼做呢把那個頻道丟到某一個平台上可以去轉所謂的新製圖他會把那個影片載進去轉新製圖那轉完新製圖之後你再把那個新製圖丟到ChurchGPT教他以國小二年級的方式去解釋這個新製圖給他聽
transcript.whisperx[68].start 2256.721
transcript.whisperx[68].end 2271.049
transcript.whisperx[68].text 然後聽完之後產測驗體讓小朋友測驗假設實體他只對5題對不對另外錯的5題重新教學再重新產測驗體三輪他就知道什麼叫量子力學這樣各位會教小朋友嗎
transcript.whisperx[69].start 2275.791
transcript.whisperx[69].end 2301.113
transcript.whisperx[69].text 你不会这样虐待他我是试看看这样到底行不行结果我发现可以现在平台很多这样懂意思要会用一些工具这等下也会是课程的一个重点就教各位使用工具我们先把前面这段先把它讲完你就知道以后需要使用到运算的就会跳到下一阶这个差别在哪里我直接讲一个最明显的
transcript.whisperx[70].start 2302.294
transcript.whisperx[70].end 2323.494
transcript.whisperx[70].text 因為最近我看到那個165有一個那個宣導的廣告然後是叫一個那個明星拍的就是他的小孩跟他講說要匯錢這樣子身為啦身為成他小孩的樣子然後他就教他說你左邊轉一下右邊轉一下上面看一下下面看一下這樣子是要去看那個轉換的時候會造成那個影像的破格
transcript.whisperx[71].start 2325.391
transcript.whisperx[71].end 2350.801
transcript.whisperx[71].text 這樣可以可是我跟各位分享以今年技術什麼上下左右轉手這樣子揮不會破格各位聽得懂嗎所以你不要覺得他這樣揮怎麼沒有破格這就是真的其實都是假的現在已經完全不會破格就是你看到會有點像剛才各位看到影片有點怪怪的有沒有現在完全不會現在技術是不會所以還是有一點點落差
transcript.whisperx[72].start 2352.324
transcript.whisperx[72].end 2374.023
transcript.whisperx[72].text 那這種身為其實已經很久了這個第一代當時候有鬧過一個新聞事件各位還記得以前有個網紅叫做小玉嗎N年前 很久很久以前然後他不是就是把A跟B換臉嗎那已經是很久很久的技術了那現在呢 現在是不用
transcript.whisperx[73].start 2375.47
transcript.whisperx[73].end 2400.53
transcript.whisperx[73].text 只要有各位的照片我就可以让那张照片讲话甚至可以有各位的声音之后我可以让那张照片讲出不该讲的话可是是你的声音这其实目前来讲都是很简单就做得到的以前我们比较care是个资外泄其实现在个资外泄这一段我觉得是还好可是你平常的一些轨迹这些是比较麻烦的一个状态
transcript.whisperx[74].start 2401.45
transcript.whisperx[74].end 2418.839
transcript.whisperx[74].text 我們平常在交易完之後大概是低於一個小時就會開始收到這種詐騙訊息有時候是非常非常快以我自己處理這些事件的部分在看你很難發現是從哪一個環節調資料的有時候是端木我們自己環境上
transcript.whisperx[75].start 2419.979
transcript.whisperx[75].end 2442.658
transcript.whisperx[75].text 有时候可能是电商平台或者电商后面的物流业者这其实就环环相扣了很难去抓说到底是哪一个环节造成的到我们user面前最麻烦的地方都是已经开始收到讯息讯息你要去识别难度其实相对就变高了我们最常收到讯息的几个管道第一个叫电话
transcript.whisperx[76].start 2443.719
transcript.whisperx[76].end 2466.499
transcript.whisperx[76].text 第二个就是所谓的IM的平台比方说你的Instagram Facebook或者是LINE的部分第三个叫做简讯的部分目前其实收到讯息比较多的慢慢往上串其实是在第二个就是所谓IM平台的部分这个其实是目前很难避免的一个状态简讯的部分现在也可以利用AI生成假的简讯
transcript.whisperx[77].start 2468.197
transcript.whisperx[77].end 2491.764
transcript.whisperx[77].text 谈到各位的面前我直接讲什么需要注意就好了简讯收没有问题简讯有连结的不要戳这样懂意思有连结不要戳我分享一下我们家的惨案好了我们家什么案例都讲过都遇过我有一个特色就是我在外面常常宣导这种资讯安全的议题可是回家都不会跟另外一半讲各位知道为什么吗
transcript.whisperx[78].start 2495.253
transcript.whisperx[78].end 2521.245
transcript.whisperx[78].text 不知道要不然這樣怎麼會有案例跟各位分享案例是要養出來的才有案例這樣只是有時候血淋淋這樣子來 這個案例其實當時候讓我花了三個多月處理這樣我覺得也是滿痛的就是另外一半買東西買東西以他收到的簡訊不宜有他因為簡訊就跟人講說我們貨到通知有連結他就手指頭給他抽下去抽下去當下手機也沒有發生任何異樣
transcript.whisperx[79].start 2522.886
transcript.whisperx[79].end 2549.348
transcript.whisperx[79].text 那什么时候发现异常收到当期信用卡账单的时候才知道有问题被盗刷了被盗刷那各位猜看看单笔被盗刷多少钱看各位猜不猜得中还蛮吓人的金额猜看看猜看看各位其实都没猜中可以往上调一点还离得蛮大一段的
transcript.whisperx[80].start 2552.058
transcript.whisperx[80].end 2579.686
transcript.whisperx[80].text 還差一段我直接講金額好了當時我看信用卡帳單我快暈倒你知道單筆被盜刷兩萬多美金美金然後我把整段講完你就知道哪些環節其實跟各位以前想的不一樣因為當時被盜刷收到帳單第一個先趕快打給客服就標準程序打給客服然後我先問各位各位都有使用過信用卡
transcript.whisperx[81].start 2581.058
transcript.whisperx[81].end 2585.175
transcript.whisperx[81].text 那请问各位你的信用卡额度是3万块最多可以刷多少钱
transcript.whisperx[82].start 2592.112
transcript.whisperx[82].end 2610.749
transcript.whisperx[82].text 我看各位觀念這麼正確我以前跟各位的想法應該是一樣3萬點應該是3萬其實我跟各位分享不是沒有限制可以打電話進去調單筆額度這樣懂意思可以調單筆額度那後來我去查被倒刷買什麼買商務艙機票
transcript.whisperx[83].start 2614.382
transcript.whisperx[83].end 2641.841
transcript.whisperx[83].text 然后我还问那个客服说奇怪金额那么大怎么没有任何通知电话然后客服是回答你你可能在睡觉没有接到电话有可能因为他是国外刷的我们这边可能在睡觉时间是有可能那也就认了那后来我把另外一半的手机拿起来检查了就发现他的手机被装了两个张东西第一个是什么他会去收集各位手机里面有的信用卡资讯
transcript.whisperx[84].start 2643.082
transcript.whisperx[84].end 2657.422
transcript.whisperx[84].text 因为我们手机难免都会有就是会叫车叫餐就是有信用卡卡号在上面第二个我觉得最神奇他会测录各位手机的简讯要考个一下为什么他要测录手机的简讯
transcript.whisperx[85].start 2662.352
transcript.whisperx[85].end 2682.163
transcript.whisperx[85].text 不知道就我们有时候刷卡到最后不是要传一个简讯验证码吗他在测论那个简讯验证码然后再把它转出去那不是说简讯验证码这机制不好而是他的等待时间太久比如说三分钟五分钟地球都不知道转几圈的各位懂意思
transcript.whisperx[86].start 2683.243
transcript.whisperx[86].end 2697.583
transcript.whisperx[86].text 所以他是把驗證碼收到之後轉出去你看所有的那些保護措施全部被破解還是回歸原點各位有連結的手指頭不要亂戳因為這其實很難去避免這件事情
transcript.whisperx[87].start 2699.404
transcript.whisperx[87].end 2727.704
transcript.whisperx[87].text 目前这种攻击就最直接简讯了就跟你有相关发给你这样子又使你去点那个连结我们通常画面看到的那个连结都是短网址你也没有办法去查证实际上他去哪里点下去才知道那都来不及了所以简讯要特别注意一下因为台湾这几年打仗也是蛮凶的所以像上面目前看到第一名的是汇款
transcript.whisperx[88].start 2728.604
transcript.whisperx[88].end 2741.35
transcript.whisperx[88].text 那汇款现在都被限制各位知道9月份现在开始哀鸿遍野各位知道要怎么让你的账户马上被冻结吗我需要教各位很简单你把自己的钱转给自己就马上被冻结
transcript.whisperx[89].start 2743.448
transcript.whisperx[89].end 2756.811
transcript.whisperx[89].text 各位回去可以試看看就這個月開始了你就薪資薪資我不知道為什麼很多銀行是薪資就打炸薪資你就把自己的錢從自己的帳戶轉給自己就被鎖住了各位知道嗎還是各位要去試一下鎖了再去開這樣不要我提醒一下不要就自己轉自己會被鎖
transcript.whisperx[90].start 2777.247
transcript.whisperx[90].end 2791.685
transcript.whisperx[90].text 真的啦各位不相信的没关系实验精神可以手机两个APP互转一下要修啊可是有的还没修啊就是因为iPhone Pen也才要修啊
transcript.whisperx[91].start 2794.548
transcript.whisperx[91].end 2808.72
transcript.whisperx[91].text 非約定可是實際上我覺得我們先看一下好了因為我不確定他是約定還是非約定都會非約定我確定會了約定會不會我不知道
transcript.whisperx[92].start 2819.693
transcript.whisperx[92].end 2838.518
transcript.whisperx[92].text 沒有 這個不是我可以扛錯的我只跟各位提醒一下拜託不要這樣轉會被鎖這個之後會再有點調整因為他們好像是抓那個叫詐騙行為然後自己錢應該不會自己左手轉右手他是抓那個有點轉帳的邏輯一般是不會這樣子
transcript.whisperx[93].start 2843.359
transcript.whisperx[93].end 2852.991
transcript.whisperx[93].text 那跟各位分享一下第一名的慢慢会变少那上面哪一个会变多以各位觉得哪一个会变多
transcript.whisperx[94].start 2856.69
transcript.whisperx[94].end 2874.367
transcript.whisperx[94].text 就是最右边的那个虚拟那一个对那个一定慢慢会变多那这个我觉得比较有趣的状态是什么就是各位在这两年大多被骗的都是投资理财那投资理财最多的都是叫你去买那个虚拟货币
transcript.whisperx[95].start 2875.348
transcript.whisperx[95].end 2890.363
transcript.whisperx[95].text 然后虚拟货币最神奇是有很多虚拟货币你听都没听过然后他就可以去跟你讲说他的投报率是多少这样子这个我就建议各位只要他跟你讲有这些管道就拜托要稍微小心一下那今年上半年各位有玩过这个吗
transcript.whisperx[96].start 2894.369
transcript.whisperx[96].end 2919.338
transcript.whisperx[96].text 我一般都建议各位尽量不要跟风这样跟风总是会跟到不好的风这样子我也不知道各位跟对还跟错这样这已经过时了现在是那个 AI 模型一阵子会有个新的一阵子会有个新的那你要玩没问题其实他的标准是到 CheckGPT 上然后输入上面红色这一串然后图他就可以把你把原本的图转成那个吉普利风格好他就直接转
transcript.whisperx[97].start 2920.578
transcript.whisperx[97].end 2946.526
transcript.whisperx[97].text 當然玩沒有問題可是我最怕什麼就是跟錯風因為網路也有很多假的像這就假的所以你在玩的時候其實就會操作錯所以還是要特別注意一下因為目前網路上有很多這種深層的平台或者是APP的部分它其實本身後面都有一些問題這個稍微小心一下另外一個是這個當時候其實很多人丟的都是自己的照片
transcript.whisperx[98].start 2949.985
transcript.whisperx[98].end 2978.704
transcript.whisperx[98].text 那個剛才影片才講自己的照片盡量不要丟所以如果你在操作的時候應該發現一件事情CheckGPT其實沒有不care各位的個人的隱私所以CheckGPT你丟照片是丟得上去的可是有些平台你丟自己的照片其實丟不上去他跟你講說那個隱私基本上他是比較care的所以你是不能丟自己的照片這樣可以所以拜託操作還是小心一下如果真的要玩知道要怎麼玩嗎
transcript.whisperx[99].start 2980.285
transcript.whisperx[99].end 3006.267
transcript.whisperx[99].text 你丢隔壁的照片隔壁丢你的照片互相抵消这样就不要自己丢自己的就对了反正这个稍微注意一下外面基本上是这样就是以目前如果各位走在路上应该会发现有很多的感测sensor在收集各位的资讯然后如果以各位身上的线可以帮各位标颜色各位身上的线通常不会只有一条线会有很多条线
transcript.whisperx[100].start 3007.408
transcript.whisperx[100].end 3027.731
transcript.whisperx[100].text 有一些线基本上是没有特别的保护如果要把这些环节把它拆开目前来讲其实是这三段第一段是感测sensor感测sensor一般我们比较碰不到大概都已经是在环境上第二段是传输第三段就是目前都会丢到Cloud上面去做所谓的运算跟处理
transcript.whisperx[101].start 3028.592
transcript.whisperx[101].end 3043.648
transcript.whisperx[101].text 第二段是我目前在看各環境最可怕的狀態這個我讓各位試一下好了你才知道什麼叫做有限的感覺各位慢慢把你的手機拿起來一下請各位把你手機的藍牙打開一下
transcript.whisperx[102].start 3045.21
transcript.whisperx[102].end 3065.824
transcript.whisperx[102].text 现在应该会有很多的蓝牙设备然后马上就随便找一台然后按配对看可不可以配对成功如果被配对成功的那一台手机就是有问题以目前的安全性配对应该不要成功他会传一个代码就会传个code那才是对的
transcript.whisperx[103].start 3068.703
transcript.whisperx[103].end 3087.877
transcript.whisperx[103].text 可是各位的手機現在的藍牙安全性都算高所以理論來講應該是不會配對成功可是目前可以有藍牙的設備不是只有手機有很多都是包含有很多人車子可以接藍牙有沒有各位知道車子接藍牙你的配對密碼是多少各位知道嗎不知道
transcript.whisperx[104].start 3091.778
transcript.whisperx[104].end 3114.374
transcript.whisperx[104].text 我介绍一下各位车子蓝牙配对的密码大概是4个0每一台都差不多那以现在我可以跟你车子配对在一起放鬼故事给你听因为月份又刚刚好有没有这样各位懂意思就中间那个连线现在有很多的连线包含像各位那个各位进捷运站不是逼一下吗
transcript.whisperx[105].start 3115.414
transcript.whisperx[105].end 3132.124
transcript.whisperx[105].text 那是NFC所以现在连线不是只有什么有限的无限的无限的还有一堆那他的安全性其实现在我都打个问号所以这个各位就自己要特别小心一下然后这边我举一个实际的例子好了各位才知道外面有多少坏人有一年9月份
transcript.whisperx[106].start 3138.257
transcript.whisperx[106].end 3152.935
transcript.whisperx[106].text 然后刚好一个礼拜五然后去跟人家聚餐然后聚餐回来之后就发现不对就开始胃痙攣然后从晚上9点一直吃就吃完止痛药一直痛痛痛到凌晨3点
transcript.whisperx[107].start 3154.42
transcript.whisperx[107].end 3183.348
transcript.whisperx[107].text 然後後來不行我就叫計程車去那個台大醫院關急診然後到台大醫院的時候他其實是打那個點滴的止痛藥那打了其實就緩解那通常他會叫你去旁邊觀察所以就坐在椅子觀察然後已經緩解了其實就開始犯自己的職業病這樣子眼睛就會開始看哪邊可以連那結果讓我發現一件事情就台大醫院的急診室西頂的電風扇旁邊有個藍牙的 logo所以你可以用手機跟他配對配對成功你可以把風速轉小一點點
transcript.whisperx[108].start 3185.527
transcript.whisperx[108].end 3206.735
transcript.whisperx[108].text 所以如果下次去你覺得很冷有沒有自己配對關小一點這樣聽得懂我試過了這樣懂其實外面其實很多設備其實都有那個連線不是只有像一般我們的Wi-Fi不是有很多都有這樣狀態所以你看到其實以目前人工智慧其實就兩個東西合起來一個是什麼感測Sensor收一堆數據
transcript.whisperx[109].start 3208.797
transcript.whisperx[109].end 3216.105
transcript.whisperx[109].text 再来就是一个优良的演算法可以反推这些数据未来可以用在什么地方这样其实就这两段
transcript.whisperx[110].start 3217.285
transcript.whisperx[110].end 3237.799
transcript.whisperx[110].text 以目前来讲那个数据已经布很久了这也不是现在在布这大概从有这些零王装置的时候就开始布布到现在只是说比较大的一个差异是什么就是后面的演算法的一个差异我这边用一个示意图让各位了解一下以目前其实已经可以到什么阶段
transcript.whisperx[111].start 3239.02
transcript.whisperx[111].end 3263.382
transcript.whisperx[111].text 這個是所謂的自動決策的一個判斷各位不要看上面圖好了我講一個案例比較容易懂現在很多車子會有那個雨滴偵測然後就自己幫你刷雨刷有沒有其實就上面這張圖其實在我們的那個車子的玻璃上會有一個感測 sensor然後就判斷是不是下雨那今天如果判斷是下雨對不對他會幫你自動下決策去開啟什麼開啟你的雨刷那你的雨刷就會刷
transcript.whisperx[112].start 3265.463
transcript.whisperx[112].end 3278.208
transcript.whisperx[112].text 你看現在都可以這樣做對不對那考各位一下請問各位現在的 AI 判斷是準還是不準我先講前提資料是正確的請問各位現在的判斷是準還是不準
transcript.whisperx[113].start 3280.723
transcript.whisperx[113].end 3300.276
transcript.whisperx[113].text 準準準啦準可是準適合在所有的情境嗎不適合因為有些情境老實說就是不能那麼準我舉一個例子好了海峽中線現在其實都有飛機會飛過來那以正常飛機飛過來應該要什麼把他打下來才對可是打下來問題就大了
transcript.whisperx[114].start 3301.127
transcript.whisperx[114].end 3322.276
transcript.whisperx[114].text 我举一个比较极端的例子可是像上面这雨刷现在就算没有下雨多刷个两下也不会怎么样就不痛不痒的我觉得可以所以他们现在后面还有另外一种什么辅助决策有自动决策有辅助决策这个现在延伸很多体系出来了可是差异在哪里差异在各位使用的AI要是聪明的
transcript.whisperx[115].start 3323.576
transcript.whisperx[115].end 3346.328
transcript.whisperx[115].text 可是我也不知道各位的头脑到底分不分得出什么叫聪明还是不聪明所以我们用一个题目来考各位来这边有个题目是这样子这边岸上有三个东西就一箱菜一只羊一只狼那这边有一个人划着一艘船这艘船一次只能载一个东西到对岸请问各位要把这三个完好无缺运到对岸请问要怎么运各位会吗
transcript.whisperx[116].start 3353.971
transcript.whisperx[116].end 3378.062
transcript.whisperx[116].text 还是各位已经头脑打结了第一次要先运什么不知道那我快速讲一下第一次要先运羊羊运过去空船回来然后你要运哪个都可以你把狼运过去羊再运回来菜再运过去空船回来再把单只羊运过去这样可以如果你的思维是这样子不好意思你是比较低阶的 AI
transcript.whisperx[117].start 3380.484
transcript.whisperx[117].end 3389.197
transcript.whisperx[117].text 真的啦所謂的低階AI就是專家知識庫各位現在的AI問他他第一個會先問你請問那隻羊是吃素的還是葷的
transcript.whisperx[118].start 3391.127
transcript.whisperx[118].end 3416.478
transcript.whisperx[118].text 真的 現在操作各位你現在操作Chad GPD你要先跟他講你是誰你要先定義角色概念是一樣的這題目到最後其實會有一個更神奇的答案他可能跟你講那時候草原為什麼不能做大一點點然後一次就把三個東西運過去這個其實他就是跨領域了所以這跟以前的差異滿大的什麼時候開始有這樣的狀態其實已經很久了這個時候就開始了
transcript.whisperx[119].start 3417.901
transcript.whisperx[119].end 3437.275
transcript.whisperx[119].text 各位有聽過這個東西嗎這已經快10年前的東西各位應該已經忘了它這叫APAGO就是人跟電腦下爲止從此之後人贏不了電腦的timing點就這時候我記得這是2016年的東西這個東西最有趣的狀態是什麼它設計思路跟以前不一樣以前設計的部分是教電腦專家知識庫
transcript.whisperx[120].start 3440.221
transcript.whisperx[120].end 3469.301
transcript.whisperx[120].text 所有的棋类最复杂其实就是围棋为什么围棋一直没办法突破因为这些棋王会做一件事情就是先下比较笨的棋比较弱的棋去做对应所以在结合专家知识库的时候其实很难跳过这些人类的思维2016年这APACO怎么做我教电脑下围棋再用电脑的运算速度跟你人脑比这思维就不一样了
transcript.whisperx[121].start 3471.302
transcript.whisperx[121].end 3493.671
transcript.whisperx[121].text 這是2016年各位知道今年都幾年了所以現在不是用飛的我不知道跳到哪一個階段去了麻煩的是什麼只要這些新技術出來不用看這種駭客就會開始拿來使用包含說各位不會寫程式你可以直接用它來寫程式然後用它來做生成網路上其實有很多這種有心人士非常喜歡利用這些資訊
transcript.whisperx[122].start 3495.252
transcript.whisperx[122].end 3513.833
transcript.whisperx[122].text 来去做使用甚至这些诈骗集团也是非常喜欢做使用再考虑一下各位可能看上面没有感觉我用另外一种问法可能比较容易了解各位知道台湾地区每天受骗的金额应该是多少钱被骗的金额多少钱
transcript.whisperx[123].start 3517.935
transcript.whisperx[123].end 3534.173
transcript.whisperx[123].text 大概2亿到5亿台币左右这是账面上有登记的就是有打165有登记的那有很多是没有打165其实那个金额是非常非常的可怕所以你看他们现在基本上都是拜金主义所以我们看一下一些威胁
transcript.whisperx[124].start 3535.976
transcript.whisperx[124].end 3557.028
transcript.whisperx[124].text 第一个是AI好用我可以用AI去找环境的漏洞当然可以这种找到的漏洞都是什么零带还没有被发现的找到这种零带之后它就可以拿来做使用或做供给这个对单位来讲它的防御就变得非常的困难因为以前我们所知的都是什么党那个叫已知的威胁
transcript.whisperx[125].start 3558.349
transcript.whisperx[125].end 3586.038
transcript.whisperx[125].text 現在都給你出現這種未知的威脅我也不知道怎麼擋都知道已經被攻擊成功之後我才知道這件事情未來會越來越多再來這些設備被入侵成功之後他會躲在你的環境非常的久然後他就可以利用你的設備再去攻擊其他人一般我們俗稱叫殭屍主機或殭屍網路考各位一下各位覺得你的電腦或你的手機被髒東西跑進來了現在平均多久才會被發現
transcript.whisperx[126].start 3588.789
transcript.whisperx[126].end 3617.442
transcript.whisperx[126].text 猜看看会了会被发现了平均是多久就比如说脏东西跑到这里面来平均多久没感觉然后来分享一个数据你就知道了那个趋势之前有统计平均是大概680几天才会被发现就是进来然后要600多天才知道原来已经有脏东西进来了
transcript.whisperx[127].start 3617.942
transcript.whisperx[127].end 3638.299
transcript.whisperx[127].text 所以现在进来你看用未知的给你攻击然后进来躲在里面又躲非常久这样现在大家都这样状态然后各位的设备现在最容易中的是什么东西各位觉得你的环境现在最容易中的最容易感染是哪一些二一城市木马勒索采矿这三个各位觉得哪一个木马勒索采矿
transcript.whisperx[128].start 3644.673
transcript.whisperx[128].end 3667.488
transcript.whisperx[128].text 木馬還好啦因為各位現在防禦都好幾層疊加有防毒然後有EDMDR就好幾層疊加那勒索也還好因為勒索現在其實那個底層其實會跟他講說不能有那麼高的權限其實他也沒辦法做所以各位的環境現在最容易中的是採礦城市就是你會幫別人賺錢直接給各位看實際案例好了這樣解釋比較快這個有看過嗎
transcript.whisperx[129].start 3677.813
transcript.whisperx[129].end 3698.466
transcript.whisperx[129].text 这个叫做矿池各位有听过矿池吗各位比较少看到矿池的样子各位比较常变成上面的小绿或小蓝点一个小绿小蓝就是一台矿机他会到这边报到然后分享你的资源帮他去采矿各位知道什么叫采矿吗
transcript.whisperx[130].start 3701.212
transcript.whisperx[130].end 3724.572
transcript.whisperx[130].text 不知道彩礦有點像在算那個數學式然後數學式如果算對之後就有一個獎勵你把它想現在獎勵其實就是一個虛擬貨幣譬如說是一個比特幣類似像這樣因為礦越來越少所以它的那個計算越來越困難後期的做法以前可能用一台就算得出來有沒有現在一台不行兩台三台四台
transcript.whisperx[131].start 3725.313
transcript.whisperx[131].end 3736.263
transcript.whisperx[131].text 就用大家的資源那他要自己去買礦機要要花不少成本嘛所以有一種駭客的做法呢就是讓各位變成他的礦機這樣懂哦那各位怎麼變礦機來這樣就變礦機了
transcript.whisperx[132].start 3740.265
transcript.whisperx[132].end 3761.748
transcript.whisperx[132].text 有沒有發現開了一個瀏覽器然後旁邊有沒有發現CPU沒有降下來其實現在就在採礦了那個採礦你的電腦不會有ㄎㄧㄤㄎㄧㄤㄎㄧㄤ的聲音就這樣子而已然後他們很聰明不會讓你跑到滿大概只有七成因為跑到滿你電腦都不能動你會發現異常那為什麼這沒有掉下來真的採礦程式在這裡這邊有個瀏覽器有沒有
transcript.whisperx[133].start 3763.578
transcript.whisperx[133].end 3782.75
transcript.whisperx[133].text 他那個瀏覽器的外掛程式就在這邊這東西防毒軟體也不會叫因為沒有檔案不會叫那要把這個瀏覽器關掉CPU才會降下來這就叫做採礦他會一直重複發生所以這個東西其實是目前來講我覺得威脅度是第一名的就會在單位一直重複發生
transcript.whisperx[134].start 3783.934
transcript.whisperx[134].end 3810.739
transcript.whisperx[134].text 那針對各位的部分比較常見的部分都是特定攻擊只要在網路上做社工庫就可以找到各位的資料並且去發動所謂的攻擊那近期其實很多的攻擊那種思維模式其實都可以餵給目前的這些AI然後讓他去學習學習完之後他其實就可以針對環境上去做retry的這個動作的部分這是目前的五大危險的部分那看一些實務的一些應用
transcript.whisperx[135].start 3812.92
transcript.whisperx[135].end 3820.15
transcript.whisperx[135].text 各位這兩三年有沒有一直聽到人工智慧的名詞各位有沒有聽過最誇張的產品跟你講有人工智慧各位有聽過嗎最誇張的產品
transcript.whisperx[136].start 3828.137
transcript.whisperx[136].end 3842.587
transcript.whisperx[136].text 没有 我分享一下我听过最夸张的我有一次去逛菜市场然后发现一个卖扫把的他讲说他的扫把有人工智慧那我百思不迭期间明明就是一只传统的扫把哪来的人工智慧
transcript.whisperx[137].start 3844.608
transcript.whisperx[137].end 3868.884
transcript.whisperx[137].text 结果各位知道他讲的跟我听的不一样他讲的叫做人工智慧这样听得懂吗不是人工智慧人工你记得这样懂目前其实有很多产品是真的有人工智慧我给各位看一些产品我觉得还蛮不错的因为有时候去看一些展览
transcript.whisperx[138].start 3870.425
transcript.whisperx[138].end 3886.169
transcript.whisperx[138].text 上面这是去年的智慧居家展的产品不知道各位有没有去过这我觉得是比较有趣我把它截出来跟各位分享上面有三个产品最左边是那个叫做智能的镜子各位知道这智能镜子可以做什么猜看看 猜看看可以做什么
transcript.whisperx[139].start 3892.657
transcript.whisperx[139].end 3917.937
transcript.whisperx[139].text 我把它公文講完好了那看各位以後會不會想買他那個鏡子上面會有鏡頭鏡頭會拍你今天早上起來的樣子然後他這是聯網的所以他會結合你的schedule然後拍你的樣子比如說今天有開會然後再去調你衣櫃裡面哪幾件衣服是適合今天開會的讓你選那比如說你選第三套然後那個衣服就會從衣櫃拉出來給你他後面還配一個智能的衣櫃
transcript.whisperx[140].start 3923.59
transcript.whisperx[140].end 3936.764
transcript.whisperx[140].text 所以各位家裡以後會不會想買沒關係我跟各位講限制在哪裡好了限制不是禁止禁止不是問題衣櫃才是問題我當時候去看了那個智能的衣櫃最minima的size要15平以上
transcript.whisperx[141].start 3938.422
transcript.whisperx[141].end 3959.381
transcript.whisperx[141].text 覺得各位你的房間要大於15坪各位懂意思嗎要不然你裝不了因為他要裝那個滑軌你知道嗎所以一般住家我覺得有點難我覺得在賣場可能比較適合就賣場調東西我覺得比較適合另外兩個都是智能床墊這個今年已經有打廣告那考各位一下請問各位智能床墊可以做什麼事情智能床墊可以做什麼
transcript.whisperx[142].start 3966.587
transcript.whisperx[142].end 3987.441
transcript.whisperx[142].text 不用看这以后你家一定有我觉得一定会有因为现在人对睡眠品质来讲是很care然后他会去收集你的睡眠的资讯然后还会调底下的涂力桶让你睡眠比较舒适就是可以熟睡这样子
transcript.whisperx[143].start 3989.062
transcript.whisperx[143].end 4002.661
transcript.whisperx[143].text 这以后价格就会到亲民家你就可能会卖可是因为我个人是研究安全所以考试一下如果各位以后家里有这个智能的床垫有5天都没有任何数据这代表什么意思
transcript.whisperx[144].start 4005.155
transcript.whisperx[144].end 4023.438
transcript.whisperx[144].text 反退就一定不在家五天应该是出国吧这就有另外一个问题所以这些用我觉得没问题可是安全的问题可能稍微想一下要不然发生问题就不好你看周遭有没有发现很多这种机器人开始跑出来
transcript.whisperx[145].start 4025.166
transcript.whisperx[145].end 4041.473
transcript.whisperx[145].text 这机器人各位知道那个机器人在China今年上半年的时候有两场机器人相关的一场是那个机器人跑半马的新闻各位有看过吗各位看完的心得是什么
transcript.whisperx[146].start 4043.171
transcript.whisperx[146].end 4062.812
transcript.whisperx[146].text 我看完的心得是操縱的人比較累因為要跟著跑半馬你知道嗎然後每10K還要在那邊換電池弄得很緊張這樣子真的因為他沒有辦法一次跑完21公里就是大概10公里要換一次電池我那時候看完之後我就這好像有點累這樣子然後第二個是前陣子有那個機器人運動會
transcript.whisperx[147].start 4064.534
transcript.whisperx[147].end 4087.009
transcript.whisperx[147].text 对所以你就发现这种东西慢慢已经开始还没有到成熟可是慢慢已经在踹了所以哪一些领域跑最快其实都是宠物宠物的领域就像什么智能床垫然后各位看最右边那张图那只狗狗的后面那一台机器就是陪伴机器人
transcript.whisperx[148].start 4088.05
transcript.whisperx[148].end 4116.434
transcript.whisperx[148].text 那你把它想像一下那台机器人以后变人形有没有就是陪你了啦这样懂哦所以你看这没有离各位很远哦然后各位中间那个是叫做宠物追踪器现在有新的功能叫做宠物翻译的功能就是他可以翻译你们家宠物到底是在骂你还是在讨拍这样就是那个声音他可以识别这样子的那HTC最近有出那个眼镜各位知道
transcript.whisperx[149].start 4118.14
transcript.whisperx[149].end 4134.59
transcript.whisperx[149].text 就之后这个会再来一次VR AR这种一定会再来一次因为目前的一些应用的那个领域会慢慢在展开了所以你看这些慢慢就会改变给我的生活这样子在路上有看过人家带过这个吗
transcript.whisperx[150].start 4136.502
transcript.whisperx[150].end 4157.539
transcript.whisperx[150].text 其实现在戴都比较像是辅助而已就以前很久以前Google有推Google眼镜推不起来又再重来一次这个如果是要完全整合在一起你要看一下VR就虚拟实境那些游戏的应用是不是已经可以跟外面接接目前其实应用都是在独立场域里面
transcript.whisperx[151].start 4159.028
transcript.whisperx[151].end 4168.992
transcript.whisperx[151].text 各位有看过人家玩那个虚拟的那个带着那个虚拟去玩游戏吗那知道都陷在那个场域吗那考个一下为什么都陷在那个场域
transcript.whisperx[152].start 4172.748
transcript.whisperx[152].end 4196.305
transcript.whisperx[152].text 告诉各位为什么好不好这边你直走会撞到墙他看的时候都在里面他不知道实际有墙就会撞下去所以只能陷在那个场域里面那他们这种那个VR眼镜他是一半一半就是可以比如说现在是可以直接看状态然后去做那个资讯的一些判读这样反应我觉得还偏慢然后
transcript.whisperx[153].start 4198.186
transcript.whisperx[153].end 4212.361
transcript.whisperx[153].text 这个各位只要知道科技有这些进展就好我讲一下我们平常要注意的这是我朋友的一支手机然后在客厅看电视突然发现自己的手机会动
transcript.whisperx[154].start 4214.386
transcript.whisperx[154].end 4236.143
transcript.whisperx[154].text 然后他就把它录起来问我说发生什么事情了这不用看这叫脏东西正在操作的样子那我要让各位了解一下现在脏东西进到各位的手机都会偷什么东西还有我们来看一下手机在动这不是他操作的就是有脏东西正在操作他的手机
transcript.whisperx[155].start 4238.044
transcript.whisperx[155].end 4260.759
transcript.whisperx[155].text 现在这些脏东西进来第一步都是先翻通讯录会先抓你通讯录的资料各位在这几年有没有接过一种电话打电话过来没有任何声音就挂断了他就是收你的资料之后打电话给你打电话不是人打的是机器打的是去测这个电话目前是活的还是死的
transcript.whisperx[156].start 4261.819
transcript.whisperx[156].end 4275.183
transcript.whisperx[156].text 然後有時候我們接到電話不是會講聲音嗎現在有的會去錄製各位聲音的音頻然後就可以仿製你講話的聲音出來這就是現在的做法那這個各位知道要怎麼避免嗎怎麼避免這種攻擊不知道不是啊 各位可以跟我一樣不要用通訊錄就好了
transcript.whisperx[157].start 4284.671
transcript.whisperx[157].end 4310.942
transcript.whisperx[157].text 你想說那電話怎麼辦記在頭腦裡太久沒記你就不知道怎麼記了這樣懂沒有我只記重要的不重要的基本上我現在不記我現在基本上已經到什麼程度了就是誰打電話給我大概都不接因為我不知道那電話是真的還是假我現在不接等他整個都沒有聲音之後我再去查證這個電話是誰再回撥了我現在比較不直接接電話因為這個很難避免這些各位玩過嗎這些
transcript.whisperx[158].start 4320.674
transcript.whisperx[158].end 4324.135
transcript.whisperx[158].text 這些用最多其實是那個網紅圈各位在路上有看過人家那個直播的狀況嗎各位去逛夜市或在外面走路有沒有看過人家開直播我們是活在同一個領域的嗎應該是啦應該是啦外面有看過人家直播過嗎那有看過他的本人的樣子跟開播的畫面是不一樣的嗎
transcript.whisperx[159].start 4351.937
transcript.whisperx[159].end 4375.873
transcript.whisperx[159].text 你可以仔细看你一下子可以仔细看一下就有很多是会开什么美肌美颜那些就是模组底下那些都是就是美肌美颜这些模组的部分大概就有这个比较有趣的地方是什么就是各位知道现在年轻人最想从事的职业第一名是什么各位知道没有前三名第一名是什么
transcript.whisperx[160].start 4377.833
transcript.whisperx[160].end 4382.921
transcript.whisperx[160].text 不是啊YT啊还是YT啊直播主啊网红那各位想当网红吗
transcript.whisperx[161].start 4390.447
transcript.whisperx[161].end 4413.775
transcript.whisperx[161].text 各位知道当网红有几个关键的条件第一个就是要不你就要长得非常的讨喜要不就要长得非常的奇葩就是要让人家看了不会忘记这第一个是这个然后第二个就是要有故事性因为没有故事性也其实有点难去做经营所以现在有这种培训单位
transcript.whisperx[162].start 4415.095
transcript.whisperx[162].end 4437.794
transcript.whisperx[162].text 然后会帮你create一个故事然后你的脸如果没有那么的讨喜或者是那么的有特色没关系他会帮你建模然后帮你套套哪个讨喜脸的样子按在网路上就是另外一个样子这样子现在就是这样子做出来的所以各位这都知道了所以我要开始考各位了这人各位认识他是谁吗
transcript.whisperx[163].start 4443.547
transcript.whisperx[163].end 4459.86
transcript.whisperx[163].text 不對我應該這樣問各位各位認識的網紅是誰只要你講的錯我大概就知道你的人格屬性是什麼屬性因為什麼屬性會看哪個網紅其實是推得出來的好啦各位認識這個人是誰嗎
transcript.whisperx[164].start 4462.19
transcript.whisperx[164].end 4484.071
transcript.whisperx[164].text 都不認識因為現在網紅真的太多了網路一坨這個是南韓的一個網紅然後這個網紅他的特色是什麼他是專門唱歌的直播主有一種是專門唱歌的這是他唱歌的一段影片我特別把它抓下來我要麻煩各位幫我做一件事情我要麻煩各位的眼睛幫我找這段影片哪裡有問題這樣可以
transcript.whisperx[165].start 4487.034
transcript.whisperx[165].end 4496.737
transcript.whisperx[165].text 这段影片如果各位没办法试别哪里有问题我可以确定你一定会被现在的诈骗集团技术骗这样可以所以我来播一下各位要找哪里有问题
transcript.whisperx[166].start 4508.891
transcript.whisperx[166].end 4525.556
transcript.whisperx[166].text she was on get up in the morningcup of milk let's rock and rollking kong kick the drumrolling on like a rolling stonesing song when i'm walking homejump up to the top lip runthing done call me on my phonenice tea and i get my ping pongjust
transcript.whisperx[167].start 4525.896
transcript.whisperx[167].end 4549.488
transcript.whisperx[167].text get it heavycan you hear the bass boomi'm ready life is sweet as honeyyeah this bitch ching like moneythis girl overloadi'm into that i'm good to goi'm diamond you know i glow uphey let's gocause i i i'm in the stars tonightso watch me bring the fire set the night alight
transcript.whisperx[168].start 4557.383
transcript.whisperx[168].end 4564.345
transcript.whisperx[168].text 所以已經會唱完了都會找到了嗎
transcript.whisperx[169].start 4584.524
transcript.whisperx[169].end 4591.326
transcript.whisperx[169].text 所以有找到哪裡有問題各位完蛋了你一定被現在詐騙集團騙這個還是舊的技術各位真的完蛋了
transcript.whisperx[170].start 4601.916
transcript.whisperx[170].end 4614.366
transcript.whisperx[170].text 這個是三年前的技術了這個不是現在的現在的更誇張所以各位覺得這裡哪裡有問題不要跟我講背景有問題背景可以套換用背景套完會變這樣子沒關係各位想一下哪裡有問題這個剛才那個影片哪裡有問題
transcript.whisperx[171].start 4627.973
transcript.whisperx[171].end 4647.692
transcript.whisperx[171].text 有点迫在是那个方向可是可以再想一下我提示一下刚才各位听到的声音是本人的声音那是他本人本人的声音然后刚才各位看到的影片只有一个东西是假的其他都是真的
transcript.whisperx[172].start 4652.645
transcript.whisperx[172].end 4679.924
transcript.whisperx[172].text 对脸是假的可是这张脸最神奇是什么拼出来的就是他不是换脸A换B他是收集男男人民最讨喜脸的数据把它拼出来比如说眉毛应该长怎么样子眼睛应该多大鼻子长怎么样子嘴巴应该多大是整张脸是拼出来的所以你在网路上被他骗感情有没有去警察局报案不受理由因为没有这个人
transcript.whisperx[173].start 4680.985
transcript.whisperx[173].end 4707.32
transcript.whisperx[173].text 这样懂来我再往回这里刚才的迫在在哪里其实是在嘴巴嘴巴没有那么自然各位看得出来吗我再把它播一下因为以目前来讲数据细腻程度的部分以前我们很容易识别是什么就是像嘴巴因为嘴巴细腻程度比较不会那么细腻然后再来是关节处
transcript.whisperx[174].start 4708.16
transcript.whisperx[174].end 4735.529
transcript.whisperx[174].text 比如说手指头关节处或者是人的关节处那个其实比较不那么细腻他特别是什么脖子以下都是本人只有脸不是而已所以再给各位看一下嘴巴的地方各位观察一下嘴巴的地方各位有发现没有那么自然吗
transcript.whisperx[175].start 4737.665
transcript.whisperx[175].end 4758.677
transcript.whisperx[175].text 就只有這一點點破綻還是各位看完都差不多那你就認了吧我也不知道怎麼教各位嘴巴如果各位聽那個聲音跟嘴巴的嘴型其實相對細膩度你會發現好像有點怪怪的就只有這個嘴巴而已
transcript.whisperx[176].start 4760.851
transcript.whisperx[176].end 4777.141
transcript.whisperx[176].text 这样可以吗这是现在进行式赶快跟各位讲这样懂然后最可怕的地方来我把这段讲完再让各位休息一下现在最可怕的地方是什么就是这边有一个网站这叫数字人产生器
transcript.whisperx[177].start 4778.86
transcript.whisperx[177].end 4803.324
transcript.whisperx[177].text 我现在只要怎么做我只要拍了各位的照片然后再加上各位的声音我就可以打一段文字让那张照片讲话现在就这样就做得到所以像我现在出门都会这样戴口罩那我戴口罩其实不是干嘛只是遮自己嘴巴而已其实我现在只要有各位的照片马上可以讲话
transcript.whisperx[178].start 4805.963
transcript.whisperx[178].end 4833.362
transcript.whisperx[178].text 各位好像没有感觉我来demo一下好了你才知道什么叫可怕这个现在真的没办法因为技术太多了就这个我只要上传照片第一个叫上传照片所以我只要上传像各位看到这种有五官的照片有嘴巴然后各位第二段这边有没有看到这边我可以打文字就是叫他讲什么话
transcript.whisperx[179].start 4836.468
transcript.whisperx[179].end 4864.843
transcript.whisperx[179].text 最可怕的是什么这边我看到一个这个功能掉掉了这个是什么就是上传各位的声音的音频然后就可以让他讲话然后讲不该讲的话这样子现在大概都可以很快速然后再按下一步生成这样就做好了所以我先拉过来一下因为这样太远我翻一下之前我用上面这张照片生成的给各位看
transcript.whisperx[180].start 4878.337
transcript.whisperx[180].end 4903.351
transcript.whisperx[180].text 这个这个是我上次在另外一场合作的啦就是刚才各位看到那个网红的那一张有没有我是剪那一张的照片而已不是影片照片然后我就让他去直接生成一段文字大家好我是一个由人工智慧驱动的数字人我的名字是安娜很高兴能与大家见面
transcript.whisperx[181].start 4905.066
transcript.whisperx[181].end 4929.293
transcript.whisperx[181].text 我诞生于ABC我的核心是先进的自然语言处理和计算机视觉技术这让我能够理解和回应您的语音和文字输入并通过我的虚拟形象与您进行互动这是我快速让他深层一段了那那个眼睛的部分基本上还可以再调
transcript.whisperx[182].start 4931.571
transcript.whisperx[182].end 4957.804
transcript.whisperx[182].text 所以各位現在收到這種Message你不要覺得他是真的這樣可以那不是只有那麼可怕的功能還有更有趣的功能來分享一下這個還要用網站操作類都類似了各位知道現在有App的版本嗎這個叫閃剪你可以裝在手機上面各位上面看到有很多圖片有沒有
transcript.whisperx[183].start 4958.644
transcript.whisperx[183].end 4986.482
transcript.whisperx[183].text 各位在网路上有没有看到很多什么投资理财都长得像上面这个样子有没有那都数字人灌出来的啦这样懂就是你要怎么识别现在这些技术就是你要看得够多看得够多就好像在哪边有看过那个其实就是这种数字人产生器的那底下那个散减可以做什么事情来我教各位回去玩一个这个可能会造成纠纷可是你还是回去玩看看好了他可以做这件事情
transcript.whisperx[184].start 4987.643
transcript.whisperx[184].end 5013.098
transcript.whisperx[184].text 你可以上传两张照片他上面有很多模组这是其中一个模组叫拥抱那两个人就会抱在一起不是只有拥抱模组还有很多special的模组所以你回去可以把它生成一个影片传给另外一半说你去哪里鬼混被我抓到这样子然后他很难跟你解释不是他这样懂这个根本没有技术我为什么上传这两张照片
transcript.whisperx[185].start 5014.139
transcript.whisperx[185].end 5035.253
transcript.whisperx[185].text 因为这两个在不同时代他们不会在一起可是你可以让这两个人抱在一起这是没有问题的这样可以各位开始现在就要开始深层丢回去不要我个人建议还是不要因为没办法识别以目前我觉得有办法识别的方式是深层的这种平台应该要去压我是什么平台深层
transcript.whisperx[186].start 5036.033
transcript.whisperx[186].end 5053.103
transcript.whisperx[186].text 可是很多平台他沒有做這件事情所以生成出來那個影片你很難用眼睛去看左上右下有沒有那個識別的logo是看不出來的所以這種技術以目前來講是沒有任何的門檻就可以製造那在我們面前很麻煩的地方是什麼
transcript.whisperx[187].start 5054.656
transcript.whisperx[187].end 5083.359
transcript.whisperx[187].text 我们现在在操作任何平台现在会越找越错这件事情各位可能要特别注意一下各位现在找东西还会用 Google 搜寻吗还是还会用搜寻引擎搜寻吗我个人建议不要我们要换下一个方式对像我现在搜寻都是叫 CheckGPT 先去找找完之后再回来塞塞也叫他塞了各位会叫 CheckGPT 找东西吗
transcript.whisperx[188].start 5085.427
transcript.whisperx[188].end 5103.044
transcript.whisperx[188].text 還是各位都自己找來 我跟各位分享自己找沒有不好只是那是上一代的人在找東西的方式現在的做法是什麼用TradeGPT去找然後找完之後還可以做後續的延伸現在的做法真的是這樣做
transcript.whisperx[189].start 5104.426
transcript.whisperx[189].end 5121.765
transcript.whisperx[189].text 那为什么说上一代会有问题是因为我们现在在所有的平台搜寻其实他都会记录我们最近搜寻了什么会谈相关的资讯给我们那第一种最常见的就是上面这个叫一页是诈骗广告就人家搜寻的时候旁边会跳很多广告这些广告
transcript.whisperx[190].start 5122.766
transcript.whisperx[190].end 5144.155
transcript.whisperx[190].text 有时候你会想我来查证这个广告是真还是假越查越错现在是会越查越错所以我个人建议就是在搜寻的过程中跳出任何讯息拜托都不要相信他台湾常常看被破获的案例大多数都是抓到车手而已祖贤是抓不到的
transcript.whisperx[191].start 5146.312
transcript.whisperx[191].end 5153.896
transcript.whisperx[191].text 這個要講一下各位知道我們台灣的另類台灣之光就是我們是詐騙集團非常高深的國家我們的詐騙技術非常高深各位知道
transcript.whisperx[192].start 5159.508
transcript.whisperx[192].end 5176.998
transcript.whisperx[192].text 我也是因为看了某一些资讯之后才发现原来我们的技术是领先各国这样子我分享几个资讯我记得是去年还是今年就是日本有波当地的诈骗集团祖贤被抓到
transcript.whisperx[193].start 5178.198
transcript.whisperx[193].end 5194.256
transcript.whisperx[193].text 然后抓到之后那个祖先是北海道人那抓到之后当地的记者就去问他说请问他那个技术是去哪里学的然后他就讲台湾那他讲完之后最让我生气是什么那技术是十几年前我们已经不用的
transcript.whisperx[194].start 5195.971
transcript.whisperx[194].end 5213.973
transcript.whisperx[194].text 各位知道很多年前有那个访什么检察官寄邮件那一种的我说我们现在不是都用真的去骗对方吗我自己的心理是这样子的我觉得怎么用那么旧的技术这样子各位知道全球现在诈骗的主线大家都在哪里各位知道吗
transcript.whisperx[195].start 5216.618
transcript.whisperx[195].end 5226.169
transcript.whisperx[195].text 不知道應該有聽過就是什麼柬埔寨 京邊那些他們叫詐騙園區然後詐騙園區各位知道那個機房大概都台灣人建的各位知道我們那個建機房技術何其高
transcript.whisperx[196].start 5232.116
transcript.whisperx[196].end 5256.631
transcript.whisperx[196].text 就是我就觉得某些技术我们真的是某一些领域超强你知道吗可是台湾落地抓到就在本岛抓到都是车手很少抓到主嫌主嫌都在国外以前有抓到主嫌很久很久以前就是都在什么民宿里面然后抓到一票人这样子现在这个都没有在台湾都是在国外这样子那没关系我们没有要当主嫌我们要不要被骗就好我把整串串起来这是我把它整理的图
transcript.whisperx[197].start 5260.533
transcript.whisperx[197].end 5278.188
transcript.whisperx[197].text 来现在是这样子这张要先左上左上这一张我们现在在操作过程中会有很多的陷阱让我们踩到什么ES诈骗网页什么有的没有会让我们踩到那现在踩到之后不会直接骗我们会怎么骗诱导你去YT的频道
transcript.whisperx[198].start 5279.669
transcript.whisperx[198].end 5302.045
transcript.whisperx[198].text 那些YT频道是深微的比如说访一些财经主播开这些频道然后跟你讲什么内容这样子因为我们平常可能对这些主播有一点点认识你就会觉得他是什么专业类型的你会相信他相信他之后他就诱导你去右下的叫做LINE的投资群
transcript.whisperx[199].start 5303.326
transcript.whisperx[199].end 5325.984
transcript.whisperx[199].text LINE的投资群里面假设有10个人有9个是他只有你不是而已然后那边就会有一些诈骗的术语然后教你一些什么动作我目前有看到什么他有的还会先出钱让你投资你确定有拿到钱就领出来相信他之后再慢慢拨各位
transcript.whisperx[200].start 5327.464
transcript.whisperx[200].end 5344.192
transcript.whisperx[200].text 我觉得这几年诈骗最狠的地方是什么金额听起来都吓死人各位上个月底8月底有一个诈骗然后就有一个富人被骗退休富人被骗多少钱单一个人各位都没有注意这个新闻九位数
transcript.whisperx[201].start 5355.574
transcript.whisperx[201].end 5372.639
transcript.whisperx[201].text 現在我看到被騙的金額都是九位數起跳以前可能都幾萬塊幾百萬這樣子沒有現在都九位數很誇張然後那個詐騙案例讓我學到了另外一件事情有時候看這個就要學東西學到什麼你要騙人家上億以後你要投一些成本進去
transcript.whisperx[202].start 5374.255
transcript.whisperx[202].end 5392.528
transcript.whisperx[202].text 所以他当时候怎么骗你知道就是他就买那种精品包去送那个贵妇什么那个精品包是真的不是假的我讲的是他是买那个真的去送那又送你比如说你收了一个二三十万的那个精品包就这个人可能还蛮有钱的然后就慢慢骗这样子所以各位平常会收到精品包不会
transcript.whisperx[203].start 5398.041
transcript.whisperx[203].end 5420.929
transcript.whisperx[203].text 没有因为那个案例让我觉得我怎么他们还会投成本进去这样子这个也是这投成本先让你玩可是他不一样是什么他投让你玩的那个平台也是他控制的所以比如说跟你讲说投保率200%对不对他后面后台自己调的这个比较不一样我刚才讲的是另外一种对所以各位认识这个人是谁
transcript.whisperx[204].start 5424.769
transcript.whisperx[204].end 5444.395
transcript.whisperx[204].text 這是謝金河那去年有人訪他身為然後去騙對方被騙了好像1.5億還1.8億現在都是這種很誇張的金額所以這個就稍微注意一下那這種AI詐騙的部分第一種最常見的就是全部都假的完全沒辦法識別
transcript.whisperx[205].start 5444.955
transcript.whisperx[205].end 5469.193
transcript.whisperx[205].text 在网路上因为已经都是假的所以你也不知道是真还是假很难分第二种是利用名人投资理财像今年上半年我还有看过有人去访黄仁勋然后跟你讲说要开另外一间子宫是什么有的没有的募资这样子我也有看过然后再来是什么在大多数都是透过投资
transcript.whisperx[206].start 5470.995
transcript.whisperx[206].end 5490.045
transcript.whisperx[206].text 投资的案件是比较少可是金额都是大的然后以往被骗的数量比较多的是网购可是网购被骗的金额都比较小这样子这两个还是有蛮大的一个差异这网站各位有用过吗这个没有
transcript.whisperx[207].start 5498.004
transcript.whisperx[207].end 5504.046
transcript.whisperx[207].text 各位回去玩一下這是 OpenAI 有一個功能叫做 Sora各位平常有需要拍影片嗎沒有各位生活怎麼鬧的無趣沒有我今天一定要教各位會兩件事情第一個回去弄影片各位平常會寫歌嗎會寫歌嗎
transcript.whisperx[208].start 5516.903
transcript.whisperx[208].end 5542.295
transcript.whisperx[208].text 我今天一定要教各位會寫歌你下下班前寫一首歌寄給你的另外一半這樣子我等下教你我一定教你會來現在那麼好用的功能來這是 OpenAI 的 Sora那基本上現在產影片這件事情各位只要會寫故事情進去像底下那個那寫完就可以直接生成影片這是生成的影片我給各位看影片生成的效果
transcript.whisperx[209].start 5545.519
transcript.whisperx[209].end 5570.351
transcript.whisperx[209].text 這個不是拍出來的這是深層出來的各位可以看那個水的倒影這倒影還就是畫質其實是很高的那像以前我們拍影片啊如果要拍實際現在是晴天就今天是下雨你就沒辦法拍嗎那現在是連天氣你都可以控制哦你就讓深層就有了
transcript.whisperx[210].start 5573.044
transcript.whisperx[210].end 5592.732
transcript.whisperx[210].text 所以这样各位会铲影片写故事铲影片写故事铲影片一次就是60秒多写几段故事就把影片都串完了所以现在这种丢给你像这整段是铲出来的假设这个拿来骗你各位你要怎么识别各位要怎么识别
transcript.whisperx[211].start 5598.345
transcript.whisperx[211].end 5625.995
transcript.whisperx[211].text 以前会教各位你可以认一下右下那边有没有看到OpenAI Logo有看到吧有所以各位以后看到图影片我们还是先下一次先看有没有Logo虽然这个Logo之后会被拔掉有很多是会拔掉可是你如果看到那个不用看对方就很粗糙有没有连Logo都跑出来有没有应该有看到一个Logo所以我建议还是要认一下如果有看到这种不用看都是AI生成的
transcript.whisperx[212].start 5627.615
transcript.whisperx[212].end 5653.634
transcript.whisperx[212].text 那这边有10个我个人建议你的讯息只要符合上面三个不用看这就诈骗资讯了就百分之百诈骗资讯可是以我自己的经验是各位头脑还清醒的时候是识别的出来你如果掉在圈就掉在那个坑里面你其实没办法识别完全没办法识别这我分享一下我朋友的案例好了你就知道什么叫做掉到圈里面
transcript.whisperx[213].start 5655.575
transcript.whisperx[213].end 5674.384
transcript.whisperx[213].text 我朋友是一个退休每天不知道干嘛然后早上他就是出门运动然后晃一晃然后下午其实就在上网去看盘然后在那边上网交友这样就大概是过这种日子这样子有一天我就收到了一个资讯叫我去银行
transcript.whisperx[214].start 5675.871
transcript.whisperx[214].end 5705.041
transcript.whisperx[214].text 为什么因为他被人家通知要汇大额金额一场然后要去协助跟他讲说这是诈骗资讯然后叫他不要汇这样子我去的时候其实航员跟警察都在那边然后就跟他讲这是诈骗资讯这样子他还是不相信然后我到了对方有先跟我讲室友然后跟发生什么事情这样子
transcript.whisperx[215].start 5705.781
transcript.whisperx[215].end 5724.975
transcript.whisperx[215].text 那我一听完我就觉得奇怪这种那么瞎的东西怎么还会有人相信这样子他是这样子的他网络上交友认识了一个明星然后跟他讲要拍电影第二集然后叫他要汇笔钱然后就是当幕后出资这样子那各位猜看看他认识的明星是谁不知道我讲完你就会觉得他很瞎叫梁朝伟
transcript.whisperx[216].start 5733.618
transcript.whisperx[216].end 5737.542
transcript.whisperx[216].text 不用看你怎麼可能在網絡上隨便踩都可以踩到梁朝偉我才不相信
transcript.whisperx[217].start 5739.093
transcript.whisperx[217].end 5768.313
transcript.whisperx[217].text 那我講完當然他很生氣他就把那個media給我看你知道因為你各位知道現在其實不是純文字就會有那個影音你知道嗎老實說我分不出來他是假的各位聽得懂就那個影音的那個分不出來我完全分不出來我只跟他講說基本上這些明星是沒辦法了後來我跟他講了大概十幾分鐘他不相信你知道嗎就你要怎麼讓他一定相信這件事情
transcript.whisperx[218].start 5770.196
transcript.whisperx[218].end 5771.636
transcript.whisperx[218].text 如果是各位會怎麼做我當場生成一個給他看然後他還說現在都可以做到這樣子就是當場他才會有感覺他給我看那個影片我自己看到有而且也沒有那個LOGO完全沒有所以我就覺得現在技術真的是一個有點麻煩的狀態
transcript.whisperx[219].start 5792.541
transcript.whisperx[219].end 5811.845
transcript.whisperx[219].text 这个我还是建议各位只要收到任何比较怪的讯息拜托提高警觉一下这种攻击其实这几年一直发生包含说这种跨国的different的部分然后去访财务长去转钱这也有然后访你的声音也有各位生活周遭有没有受过这种可怕的状态
transcript.whisperx[220].start 5813.928
transcript.whisperx[220].end 5839.821
transcript.whisperx[220].text 这种我还是分享案例我们公司之前有一个同事早上就接到他爸爸的电话然后跟他讲什么家里要装潢然后就要汇一笔钱这样子因为金额比较大他想说中午再去银行汇然后中午他去银行的时候因为忘了那个贷汇款资料然后中午再打电话给他爸要再问一次然后他爸中午是跟他讲我今天没打电话给你各位听得懂
transcript.whisperx[221].start 5844.338
transcript.whisperx[221].end 5849.64
transcript.whisperx[221].text 那現在AI是可以模仿各位的聲音哦那請問各位什麼不能模仿就不是語氣語調還沒辦法
transcript.whisperx[222].start 5859.806
transcript.whisperx[222].end 5873.977
transcript.whisperx[222].text 聲音音頻就講起來很像沒有問題可是語氣語調還沒辦法所以我教各位以後要怎麼辦以後每個禮拜講電話最後一個字你就加一個關鍵字進去如果對方聽到這個關鍵字就是你本人比如說這個禮拜叫阿下個禮拜叫那這樣子對那就是我同事這樣
transcript.whisperx[223].start 5883.086
transcript.whisperx[223].end 5906.774
transcript.whisperx[223].text 没有可能各位要稍微听一下他的语气语调是不是他的本人的习惯因为这个现在没办法我一直以为现在的人没有那么高的警觉我上次在Family那边然后我隔壁一桌刚好有人接电话就直接怎么做通关密码
transcript.whisperx[224].start 5909.986
transcript.whisperx[224].end 5920.045
transcript.whisperx[224].text 我沒有開玩笑真的就通關密碼然後有一次我在那個中南部也有遇過一次有個阿伯然後接到電話去年的今天我們發生過什麼事情
transcript.whisperx[225].start 5921.283
transcript.whisperx[225].end 5944.517
transcript.whisperx[225].text 我覺得現在怎麼變這樣的社會就是你要反問你懂我意思嗎所以各位有時候接電話可以用反問的比如說昨天發生了什麼事昨天太近了那個資訊還不行可能要稍微早一點點單聽聲音拜託就不要相信因為現在很多平台這些都是一堆後來我去了解一下為什麼這些平台要做這些功能
transcript.whisperx[226].start 5945.558
transcript.whisperx[226].end 5971.238
transcript.whisperx[226].text 人家平台原本出處是好的就是讓那些生代受損或者是已故的那種明星可以回到原本的那個聲音然後讓各位回味這樣子可是這個現在都被詐騙集團拿來做使用我覺得比較不好目前各位只要有看到名人推薦有沒有一律不相信就對了這個現在也沒什麼好相信的因為基本上名人不太會去推薦這些東西然後再來是這種
transcript.whisperx[227].start 5973.965
transcript.whisperx[227].end 6000.29
transcript.whisperx[227].text 现在通常到最后就会诱导你去哪个网站操作这种网站其实都会透过什么透过你搜寻的时候跑过来我这边先让各位知道一个环境各位有没有发现现在在任何网站浏览的时候其实常常就会跳出来跟你讲说我要收集你的 cookie有没有像底下那个有同意有取消有没有请问各位这时候要点同意还是点取消哪个不会掉资料
transcript.whisperx[228].start 6005.529
transcript.whisperx[228].end 6029.496
transcript.whisperx[228].text 都会都会都会掉资料你点同意点取消都会掉资料只要网页一弹出来就开始掉了所以那个同意取消其实只是征询各位而已就是告知有这件事情在哪个国家比较严谨哪个区域比较严谨其实是欧盟欧盟GDPR其实他严谨到只要到平台就先stop
transcript.whisperx[229].start 6030.316
transcript.whisperx[229].end 6042.171
transcript.whisperx[229].text 不能收集因為各國家各區域不一樣目前最嚴謹是歐盟各位這個收集對我們就有影響了影響在哪裡各位平常會去操作訂房網站嗎
transcript.whisperx[230].start 6044.195
transcript.whisperx[230].end 6066.347
transcript.whisperx[230].text 那有没有发现你去操作订房网站去的时候还没下订第二天再去同样的房间发现他变贵了应该有发现吗不是越浏览越便宜不是是越浏览越贵因为他演算法会写是你一直浏览怎么没有下订就房间数减少然后价格变高你就会下订
transcript.whisperx[231].start 6068.529
transcript.whisperx[231].end 6087.703
transcript.whisperx[231].text 这个设计过的他抓人性有设计过的那我教各位怎么变回原价屋有方法了这可以学一下第一个你的电脑可以装个VPN的软体或装这个然后上面有没有看到自动更换IP你可以打勾然后底下分钟你可以改一分钟他就是一分钟换一次IP
transcript.whisperx[232].start 6088.905
transcript.whisperx[232].end 6113.91
transcript.whisperx[232].text 然后对这些平台来讲你都是不同人可是记得一件事不要先登录先登录他就知道你是谁所以不登录然后用这个去浏览你就会发现他就会变回原价的状态这是我自己平常在操作的状态不能先自动记密码这样其实就可以让那个网站变回原价的状态各位回去可以试看看
transcript.whisperx[233].start 6116.461
transcript.whisperx[233].end 6120.727
transcript.whisperx[233].text 那我们先休息十分钟等一下再来分享第二段
transcript.whisperx[234].start 6370.896
transcript.whisperx[234].end 6371.186
transcript.whisperx[234].text by bwd6
transcript.whisperx[235].start 6455.162
transcript.whisperx[235].end 6455.503
transcript.whisperx[235].text by bwd6
transcript.whisperx[236].start 6692.406
transcript.whisperx[236].end 6708.195
transcript.whisperx[236].text 那我再继续往下分享题外话一下各位平常有需要回去教小朋友的吗
transcript.whisperx[237].start 6710.331
transcript.whisperx[237].end 6738.312
transcript.whisperx[237].text 小朋友有没有问你东西你答不出来的都没有各位太强现在其实怎么做你知道就是他问你你不懂的对不对你要用手机装CHAT GPD拍然后解答答案就出来了没有因为你少做了一件事你要跟他讲你是什么数学老师专精在什么去解这个题目才是对的我们都少做了一段
transcript.whisperx[238].start 6741.338
transcript.whisperx[238].end 6753.326
transcript.whisperx[238].text 不用不用不用因為我們現在操作等一下也會大概教一下了我們現在操作都少了一段就是定位角色角色沒有把它定位到精準所以有時候那出來結果會有點可怕對對就是你們要定角色給他他是誰了你們要定他了哎那要定就有差
transcript.whisperx[239].start 6764.284
transcript.whisperx[239].end 6776.282
transcript.whisperx[239].text 对你要跟他讲你是国小三年级数学老师专长在什么什么什么然后解这个题目就会对因为因为现在那个 AI 你没有定角色他会嫖
transcript.whisperx[240].start 6779.898
transcript.whisperx[240].end 6804.936
transcript.whisperx[240].text 好 沒關係等一下有一段會教各位大概怎麼操作因為各位操作我發現各位都會吃到以前操作的習慣以前我們操作習慣叫做關鍵字操作就是什麼給我什麼現在平台不能這樣玩平台要先定義角色是誰做什麼事情什麼參出有三段其實講很難其實實際上就是一個敘述式就做完了等一下我教你們會再更精準一點對
transcript.whisperx[241].start 6811.412
transcript.whisperx[241].end 6829.424
transcript.whisperx[241].text 會喔很瞎喔等一下我教各位這個好玩題外話一下各位他們現在吃的不是只有文字圖片連影像都可以吃了丟進去都可以吃都會解答只是說你角色定位要正確
transcript.whisperx[242].start 6832.545
transcript.whisperx[242].end 6858.671
transcript.whisperx[242].text 这是以前我因为我常常到各地上课啦然后跑一跑有些地方没去过有些地方就会用到 map 嘛那像这个是要去那个保一上课然后上课的时候因为第一次没去过然后就找在哪里啊请问各位你找完你下一步会怎么做当然不是这样子啊各位这样很无聊呢我的习惯是找完之后下一步会做什么在那个底下就保一种的底下有没有看到评论
transcript.whisperx[243].start 6860.327
transcript.whisperx[243].end 6874.306
transcript.whisperx[243].text 这里我超爱点这个我都会先点评论这里然后评论点开之后第三则有没有看到一个他就跟你讲说那个对面饮料店的女儿长得很可爱有没有那我还比较早到我还特意去看了到底长成怎样
transcript.whisperx[244].start 6876.207
transcript.whisperx[244].end 6891.494
transcript.whisperx[244].text 我现在这个行为就叫做漏搜那其实以他们现在的专业术语叫做社工库然后那个是某一个人张贴的讯息对不对前面有个account我还可以针对这个account去漏搜他是里面第几期的学生
transcript.whisperx[245].start 6893.055
transcript.whisperx[245].end 6905.62
transcript.whisperx[245].text 这个其实就是现在可以利用一堆爬虫去爬出来的所以网络资讯流的多或少影响就差异非常非常的大那各位有找过自己的资料吗是这样子找吗回去麻烦做一件事你可以把CHATGPT叫出来就是Jiminy把它叫出来你要跟他讲说你是搜寻引擎的专家帮我找哪一个账号网路上有没有资料叫他找
transcript.whisperx[246].start 6924.249
transcript.whisperx[246].end 6946.653
transcript.whisperx[246].text 我為什麼教各位這樣子因為這嚇到我了像那個照最底下那個連結有沒有那是20幾年前我不知道在哪個論壇留的一個資訊這樣他也可以爬得出來所以各位可以回去利用這種方式爬看看那個真的有時候會嚇到你會爬到一些很奇葩的資料出來然後重點是你以前可能不知道在哪邊踩過的坑也在上面這樣子各位回去可以試看看
transcript.whisperx[247].start 6949.479
transcript.whisperx[247].end 6974.8
transcript.whisperx[247].text 各位看照片的时候像上面这新闻是这样这是去年的一个新闻就是有人在台北市政府交易毒品被抓到结果里面是一个其中一个职员这样子每次看新闻我最讨厌看到的新闻就是这种新闻各位如果你要知道这个人是谁现在要怎么做教你按右键图片搜寻就跑出来了然后再以图搜图就中了所以他是谁就跑出来了
transcript.whisperx[248].start 6976.837
transcript.whisperx[248].end 7001.816
transcript.whisperx[248].text 那实际上以这一招在应用的方式是用手机手机会更好操作直接拍就有了我教各位个大绝招好了各位平常会去买水果吗那各位会挑水果吗不会我教你你手机装TrackGPT然后去水果行拍水果的图然后问他说哪个水果田他就会告诉你了
transcript.whisperx[249].start 7004.46
transcript.whisperx[249].end 7025.346
transcript.whisperx[249].text 真的啦科技是生活拿來用啦真的啦真的啦各位回去可以試啦真的啦我沒有開玩笑真的真的真的各位去試一下你用拍的因為他現在吃土啦你用拍的你問他哪顆水果田他會告訴你
transcript.whisperx[250].start 7027.443
transcript.whisperx[250].end 7050.215
transcript.whisperx[250].text 各位你回去试看看就知道好玩的地方啦我先教各位正确操作的方式好了各位平常有需要想一些那个slogan或者是标题吗企划什么slogan标题没有你如果那个现在临时想不出来你可以教他们发想几个议题出来我们会比较好想
transcript.whisperx[251].start 7052.057
transcript.whisperx[251].end 7075.577
transcript.whisperx[251].text 你可以用文字叙述或者是一个意象图给他帮我想slogan他会帮你想然后我们再接那个slogan往下我觉得比较好发酵然后像那个刚才讲到挑水果那个都没问题像这个实际上你用拍的拍然后问他他是谁他会告诉你他会找会告诉你让各位了解一下现在诈骗集团整串是怎么操作的
transcript.whisperx[252].start 7076.918
transcript.whisperx[252].end 7095.197
transcript.whisperx[252].text 这个我觉得拿来做行销好用可是因为现在诈骗集团就是拿来做社交工程的攻击那他怎么做第一个他会先去找知名粉砖那请问各位有加入任何粉砖吗加入粉砖的人是最好攻击的各位知道
transcript.whisperx[253].start 7096.519
transcript.whisperx[253].end 7121.751
transcript.whisperx[253].text 因为他的概念是这样子他加入这个粉砖第二个用爬虫程式把这些粉砖的追踪粉丝全部抓下来那因为你是加入这个粉砖所以你对这个粉砖一定有一个特性你会有一个喜好所以我再去仿这个粉砖的特色去发相关的 message 给你那你就很容易中奖
transcript.whisperx[254].start 7123.031
transcript.whisperx[254].end 7145.931
transcript.whisperx[254].text 这个其实是社交工程只是前面这一段是什么社工库收集接社交工程现在这种社交工程像各位看到上面这个告诉各位都没有技术现在只要怎么做下一步下一步生成就好了像这是生成的平台我只要打开它比如说要生成Google的登录页面这时候就生成好了
transcript.whisperx[255].start 7146.571
transcript.whisperx[255].end 7165.757
transcript.whisperx[255].text 所以在各位的面前只會有什麼左邊的那一張圖跟右下的那個樣子所以一倒就直接倒出去了那過程中各位是不會有任何感覺的這就是目前的一個狀態可以網路很快收集到攻擊的標靶然後再利用你的資訊對你發動攻擊了
transcript.whisperx[256].start 7167.658
transcript.whisperx[256].end 7187.9
transcript.whisperx[256].text 那因为你已经加入那个粉砖基本上只要仿那个粉砖粉砖的资讯出来我们是很难避免的这个都是目前常态性的攻击这样可以哦技术没有很难的你就按下一步下一步就有了这样子所以我个人建议是这样子网路上啊就算是官方给你的discount也不要相信的
transcript.whisperx[257].start 7189.454
transcript.whisperx[257].end 7205.223
transcript.whisperx[257].text 这个真的有点麻烦因为这个我看过太多次了只要哪个官方出来有discount就开始有假的然后网路上就一堆这样子所以现在真真假假不太好分辨所以就算是真的你也不要再相信他了
transcript.whisperx[258].start 7206.283
transcript.whisperx[258].end 7232.049
transcript.whisperx[258].text 第二个是现在的这些社群平台从出来到现在老实说已经收了我们太多的资讯了再加上互动的过程中可以去知道说你周遭人发生的状态我举一个Facebook以前我做过爬虫的状态我当初写的爬虫可以去爬你这个账户相关的八成
transcript.whisperx[259].start 7234.062
transcript.whisperx[259].end 7252.32
transcript.whisperx[259].text 各位知道什么概念吗就你这个账户账户的朋友朋友的朋友朋友的朋友的朋友那做什么事情我可以抓八成这些相关账户现在发生了什么样的message你跟他互动的那个关联程度
transcript.whisperx[260].start 7253.341
transcript.whisperx[260].end 7270
transcript.whisperx[260].text 比如说你的朋友现在的message是旅游好了你对这个旅游有资讯旅游资讯比较有兴趣的时候你就去对他做关联点击我再去访这个人发message给你就好现在都是这样供给各位听得懂吗
transcript.whisperx[261].start 7271.441
transcript.whisperx[261].end 7297.522
transcript.whisperx[261].text 我分享一个也是我们公司之前发生真实例子你就知道现在可怕到什么程度上上个月我们公司内部发生一个我觉得怎么这件事情也到我们公司出现这样子他那个状态是这样子就是一早大概10点多然后有一个客户打电话给我们家然后说有一笔账户账款没有付然后要跟我们家的会计联络
transcript.whisperx[262].start 7299.144
transcript.whisperx[262].end 7306.706
transcript.whisperx[262].text 那我们家会计就想说好那去查一下那通常就去查 PO 这些然后就诱导那个会计去加入 group
transcript.whisperx[263].start 7308.635
transcript.whisperx[263].end 7333.373
transcript.whisperx[263].text 然后加入公司就跟他对重点还真的有这个客户他跟你对有这个单子然后就说没有付款都这样对然后对了一圈最神奇的出现了还在对的过程中对方就仿冒我跟我们家的会计Message说那个账户有没有钱进来可是因为我的LINE不会用自己的本名
transcript.whisperx[264].start 7335.231
transcript.whisperx[264].end 7350.186
transcript.whisperx[264].text 我都是用其他名字所以那个会计员就好像没有看过我的本名在LINE上面又回来问我我说你觉得这是我吗他说不是我说那就对了这就诈骗集团了怎么整个电话都打进去这样子
transcript.whisperx[265].start 7351.866
transcript.whisperx[265].end 7369.431
transcript.whisperx[265].text 我们家有遇过实际上状态后来我去查了一下其实有一些半公开的资料基本上网络上都找得到所以要仿制你的名字或者是说你相关的资讯这是没有什么问题的目前只要有这种社群平台在就一直会有这种状态出现
transcript.whisperx[266].start 7371.356
transcript.whisperx[266].end 7391.797
transcript.whisperx[266].text 先讲一下以前的搜寻比较不好的状态以前搜寻其实就是关键字搜寻关键搜寻的一个缺点是什么就是你在搜寻的过程中诈骗集团可以付他钱买关键字广告所以这时候最有趣的就出现了请问各位搜寻的时候会先去点前三笔还是翻到第10页点第100笔
transcript.whisperx[267].start 7393.891
transcript.whisperx[267].end 7421.193
transcript.whisperx[267].text 不用看我以前也是点前三笔的人谁每次会点到后面去所以你就很容易点到错的传资料给他那另外一种是有时候我们会想说我要来查证这资讯是真还是假有没有越查越错因为他会付钱然后把一些错的放在最前面你就越查越错越查越错这样子这个搜寻引擎你只要用传统的找法都还有这个状态那一直讲这种
transcript.whisperx[268].start 7422.114
transcript.whisperx[268].end 7450.036
transcript.whisperx[268].text 踩到假的网站我这边先教各位如何分辨三在半所以我特别准备了4张来考各位的眼睛我们先看左上角这一包这碗泡面各位觉得这是什么牌子的泡面我先讲这4张看不出来跟治安一点关系都没有是你的眼睛度数有问题这样可以
transcript.whisperx[269].start 7452.699
transcript.whisperx[269].end 7468.192
transcript.whisperx[269].text 左上的那个叫做康帅博有看到中间是帅我都不知道各位看的什么右上那两罐茶的绿色字体是康师傅那黑色字体是什么不好意思我没有放大镜没有办法放大黑色字体是什么
transcript.whisperx[270].start 7477.628
transcript.whisperx[270].end 7496.358
transcript.whisperx[270].text 看不出来我相信我直接跟各位分享比较快他是廉洁的廉一个叫康师傅一个叫廉师傅廉洁的廉有看到廉 廉洁的廉右下角那两罐汽水总看得出来了
transcript.whisperx[271].start 7500.427
transcript.whisperx[271].end 7518.705
transcript.whisperx[271].text 一个是雪碧另外一罐呢云有看到吗一个是雪一个是云云我之前去大陆出差我超爱这种东西的我上次还找到各位看到旁边云碧的姐妹牌叫做雷碧
transcript.whisperx[272].start 7520.566
transcript.whisperx[272].end 7537.69
transcript.whisperx[272].text 有他们有雷臂有真的有你上网找应该也看得到图的有雷臂有最后一张各位觉得那什么牌子的洗衣粉各位觉得是雕牌还是揍柱牌揍柱 雕 雕 揍柱所以是什么揍柱还是雕 雕还是揍柱
transcript.whisperx[273].start 7544.531
transcript.whisperx[273].end 7571.876
transcript.whisperx[273].text 我们不要看红色的字要看右上角右上角的拼音跟你讲这叫周注这样可以那相信各位透过这四张的训练现在对山寨版都有一定的认知来我们最容易踩的陷阱在这里这叫山寨版的网站一样考各位一下这一个真这一个假那麻烦各位的眼睛找一下这两个网站不一样的地方在哪里
transcript.whisperx[274].start 7577.819
transcript.whisperx[274].end 7588.842
transcript.whisperx[274].text 可是各位找的时间只有三秒钟超过三秒钟每一秒钟中毒一次所以现在中毒第三次第四次第五次平常中毒大概就这个感觉所以各位找到了吗各位找的有点久所以哪里有看到了吗
transcript.whisperx[275].start 7604.468
transcript.whisperx[275].end 7620.933
transcript.whisperx[275].text 都没看到各位平常一定被这种骗因为这个在网路上只要有会员的系统就有这种假的网站一堆好了不要虐待各位的眼睛来这两个红色框框不一样而已所以是哪里不一样对 网址网址哪里不一样看得出来吗
transcript.whisperx[276].start 7634.42
transcript.whisperx[276].end 7650.059
transcript.whisperx[276].text 对有人看到了一个是那个 www.china-alice真的是 l 了那假的是 www.china-airair 的后面是数字1一个是 l 一个是1这样有看到吗
transcript.whisperx[277].start 7651.881
transcript.whisperx[277].end 7669.989
transcript.whisperx[277].text 这叫相亲自呼换这已经很久了他的目标其实就是各位踩到假的网站之后会传账号密码给他这是他的主要操作都是这样子这个在网络上还非常的多连什么网站都有再给各位看另外一个案例Costco都有Costco各位平常会去Costco吗
transcript.whisperx[278].start 7675.928
transcript.whisperx[278].end 7690.474
transcript.whisperx[278].text 那是去网路商城还是去卖场有些人会去网路商城因为东西不太一样你不知道网址的时候你就会打关键字像第一个是真的可是有假的假的在这里然后点下去在这里
transcript.whisperx[279].start 7692.664
transcript.whisperx[279].end 7706.503
transcript.whisperx[279].text 现在都这样做各位上面看到的网址还不一样可是你如果平常没在记你也不知道真的还是假所以我教各位我现在的做法这个我觉得比较实物一点
transcript.whisperx[280].start 7707.725
transcript.whisperx[280].end 7727.197
transcript.whisperx[280].text 我现在去操作这种网站如果各位平常上网的时候去到这种网站第一页就跳出来跟你讲请输入账号密码有没有拜托各位不要看连结你学我很简单只要跳出这种请输入账号密码的你就先打假的假的会过那个网站就是有问题各位听得懂吗
transcript.whisperx[281].start 7731.673
transcript.whisperx[281].end 7750.51
transcript.whisperx[281].text 你就給他打假的比如說帳號打123密碼打123如果會過那個網站就是有問題你不要再去分辨什麼L跟E 0跟O不要了啦因為有時候我們手機根本看不出來啊所以像我的習慣像這個信箱我就打111小老鼠111.1密碼打12345會過啊那第二就跟你講請輸入信用卡卡號
transcript.whisperx[282].start 7755.652
transcript.whisperx[282].end 7783.789
transcript.whisperx[282].text 这边有账号密码这边有卡号然后再会帮你转回真的这个是他程式我把它解下来这边他就转回真的Costco的网址过程没感觉这样懂意思所以现在的习惯是只要操作过程中跳出来请输入账号密码你就打假的假的会跳到下一页那个都是有问题各位有没有人想说我打假的他会跟我讲说验证错误
transcript.whisperx[283].start 7785.612
transcript.whisperx[283].end 7794.589
transcript.whisperx[283].text 当然不会因为他没有资料怎么帮你验证对这是我后来发现说干脆这样最快了所以你就给他打假的就对了假的会过就是有问题
transcript.whisperx[284].start 7797.823
transcript.whisperx[284].end 7817.332
transcript.whisperx[284].text 这样可以因为现在这个太难避免了就是稍微提高警觉一下那这个是目前在网路也很多就是他会发那种红利点数越换通知我这边先问各位一下请问各位现在收到任何红利点数越换通知各位要当真的还是当假的各位觉得要当真的还当假的不对你要当真的
transcript.whisperx[285].start 7825.123
transcript.whisperx[285].end 7850.842
transcript.whisperx[285].text 可是不能透过他给你的资讯操作我讲有原因的因为他们现在也会攻击那个网站攻击完之后会取得各位真实的资料用你真的资料骗你现在会这样做所以你把它当假的对不对可是资料是真的你的点数就浪费了所以像我的习惯好我知道这件事自己去官网操作
transcript.whisperx[286].start 7851.923
transcript.whisperx[286].end 7875.89
transcript.whisperx[286].text 就是他透过邮件或简讯跟你讲那个我都不相信我就自己去就好了所以你要当真的可是不要透过他给你的讯息去操作这是目前来讲我建议各位可以这样子使用的部分这样可以因为我觉得这些诈骗集团越来越讨厌无所不用就是想办法骗我们这样子就是稍微提高警觉就对了这样子
transcript.whisperx[287].start 7877.833
transcript.whisperx[287].end 7889.703
transcript.whisperx[287].text 来开始教各位目前有哪些AI可以使用在教这段之前应该先询问各位各位目前有用过哪一些AI的平台有用过不是听过各位有用过的有哪一些CHPTCopilotGimili还有吗
transcript.whisperx[288].start 7909.446
transcript.whisperx[288].end 7927.849
transcript.whisperx[288].text 各位用的真少少到不行以目前来讲虽然说比如说像GPT跟你讲说可以铲图对不对以我个人会建议我们去专业铲图的那个会再更好我等一下会介绍给各位有一些可以用的以目前AI其实有分强跟弱
transcript.whisperx[289].start 7929.851
transcript.whisperx[289].end 7946.003
transcript.whisperx[289].text 强跟弱我们要会操作强的那一边弱的我个人觉得就是尽量少用因为你很容易被框住那什么叫做强什么叫做弱强其实它的概念是这样子它会跨专家知识库
transcript.whisperx[290].start 7948.084
transcript.whisperx[290].end 7964.568
transcript.whisperx[290].text 所以他没有特别的定义他是什么你在操作过程中你要定义他是什么这才是重点弱的就是你不用任何定义你给他资讯他就给你相关的专家知识库答案像什么这些都是弱的
transcript.whisperx[291].start 7971.826
transcript.whisperx[291].end 7998.668
transcript.whisperx[291].text 像夏威夷然后Siri然后车牌辨识这个现在都是落的就单专家知识库这都落的所以在使用其实如果你是以前使用方式其实要稍微调整一下目前这种发展老实说没有很久大概近三年左右而已这应该考各位了CheckGPT听过吗目前CheckGPT最新版本是多少
transcript.whisperx[292].start 8001.604
transcript.whisperx[292].end 8008.249
transcript.whisperx[292].text 不知道他刚出来是3.5所以现在是多少现在最新是5
transcript.whisperx[293].start 8010.375
transcript.whisperx[293].end 8038.123
transcript.whisperx[293].text 5最新是5他不要讲数字他光一阵子就会出一个新的功能新的module这样子所以其实如果各位要去使用的话你会发现他有很多新的一直延伸出来一直延伸出来在使用的部分我先教各位因为这个我一直觉得各位在操作好像没有人教你说目前这种平台大概要怎么操作所以基本上我们大概有轮廓知道怎么操作
transcript.whisperx[294].start 8039.103
transcript.whisperx[294].end 8060.845
transcript.whisperx[294].text 你把想像一下第一个就是他肚子有的data第二个是你要叫这些data做什么事情那他肚子里面的data我个人由衷的建议现在越来越不要相信他为什么因为那个data一直没有去做校正然后像以前我们在学电脑的时候都会讲那嘎啡君嘎啡君奥
transcript.whisperx[295].start 8061.866
transcript.whisperx[295].end 8088.107
transcript.whisperx[295].text 他的资料越来越错越来越错然后错到最后我觉得看似合理可是错得很怪各位可以分辨是没有问题的为什么因为我们可以用我们的经验或者知识去分辨那是ok的可是现在有很多刚接触或者是知识量比较没那么足的时候你没办法分辨你就会觉得是对这个我觉得是一个比较不太好的一个状态
transcript.whisperx[296].start 8089.284
transcript.whisperx[296].end 8093.853
transcript.whisperx[296].text 那像上面的資料在操作的部分基本上是這四個階段
transcript.whisperx[297].start 8097.077
transcript.whisperx[297].end 8120.367
transcript.whisperx[297].text 這是操作的重點各位以前都沒有這樣操作我都覺得怎麼會那麼可愛第一個你要定義他是誰他的專業背景是誰因為他沒有專家知識庫你沒有定義他是誰那跑出來每次答案都不一樣就會非常的奇葩所以第一個你一定要定義他是誰比如說各位平常會去排schedule行程嗎去哪裡玩以前我們可能說幫我排哪裡
transcript.whisperx[298].start 8125.066
transcript.whisperx[298].end 8138.844
transcript.whisperx[298].text 二日遊行程不對啦你要跟他講你是當地的導遊專長什麼領域幫我排當地二日遊行程行程裡面要有什麼特殊的東西這樣排出來才會正確
transcript.whisperx[299].start 8140.046
transcript.whisperx[299].end 8155.967
transcript.whisperx[299].text 也就是第一个你要定角色那第二个就要做什么事情然后再什么格式产出最后你可以去限制比如说你的文字应该是多少的内容或者是我要简报格式输出大概是要用这种方式去做叙述
transcript.whisperx[300].start 8157.358
transcript.whisperx[300].end 8182.416
transcript.whisperx[300].text 讲比较累操作没有那么累操作你可以用讲的其实就讲完了也会非常的正确这边题外话一下在座有修硕班博班有需要教各位快速阐述前三章吗没问题我可以教你而且还不会有学轮的问题绝对不会你想说那个会不会引注错误我跟你讲有一招大绝招可以把引注全部再对一次
transcript.whisperx[301].start 8185.586
transcript.whisperx[301].end 8213.384
transcript.whisperx[301].text 没关系有需要你再来找我我再跟你讲这样子看起来不是全部人都有这样的需要这样有需要你再来问我我跟你讲怎么做这样子现在很快这四段其实你只要记这四个字就好我们以前的操作重点是落在中间叫关键字搜寻现在的重点是头跟尾头尾你是谁做什么事情各位听到这边会操作了吗
transcript.whisperx[302].start 8215.814
transcript.whisperx[302].end 8244.248
transcript.whisperx[302].text 还是不太懂那我教各位大绝招这个你记下来如果你这些都不会操作我教你怎么操作你可以跟TriggerPT讲说你是人我是TriggerPT叫他问你可以角色互换叫他问你他问你完你有发想之后你再回去问他两个角色可以互换
transcript.whisperx[303].start 8246.741
transcript.whisperx[303].end 8264.166
transcript.whisperx[303].text 我之前在带我们家小孩子都是跟这些玩那个成语接龙然后他就跟你成语接龙各位也不会这样玩吗要不然小伙伴用每天都吵你你烦都烦死了那开一个叫他自己跟他接龙啊那就一直接下去这
transcript.whisperx[304].start 8267.563
transcript.whisperx[304].end 8294.914
transcript.whisperx[304].text 老师我比较科技养小孩的我觉得每个都要弄三次有点累这样子需要这些来养这样子没有了真的还蛮好玩的就是有些有趣的东西然后像CHP最基本的能力这些都基本了比如一问一答然后帮你做分类写程式也没问题你不会写程式你就要写会写的比你快然后可以做对话生成翻译那个翻译我教各位那个翻译非常有趣
transcript.whisperx[305].start 8295.834
transcript.whisperx[305].end 8299.083
transcript.whisperx[305].text 各位平常有需要看国外的一些paper吗有需要那都自己看吗
transcript.whisperx[306].start 8304.689
transcript.whisperx[306].end 8326.7
transcript.whisperx[306].text 是好我教各位现在我都怎么看我之前太无聊跑去进修了那我进修的时候其实那个第一堂课的时候通常教授就会打开然后其中要教什么期末要教什么丢了一个题目嘛那最后要pre-learn然后通常他还没有讲完的时候我就已经把其中期末的那个pre-learn的PPT都做完就丢上去了怎么做叫他去读
transcript.whisperx[307].start 8331.88
transcript.whisperx[307].end 8336.484
transcript.whisperx[307].text 你可以叫ChurchBG讀裡面的內容叫他 summarize 重點給你你其實一下就看完了我是這樣子做的我不知道各位怎麼做而且他不是只有限英文他支援語系還蠻多的可以互換
transcript.whisperx[308].start 8349.963
transcript.whisperx[308].end 8365.611
transcript.whisperx[308].text 然后有时候还不是只有可以看文章有时候像人家讲的一些影片教他去读因为影片我觉得很累部分是因为你看完影片30分钟就要看30分钟可是你教他读完惨重点大概2分钟就做完全部的事情了我就可以大量涉略了
transcript.whisperx[309].start 8368.261
transcript.whisperx[309].end 8385.973
transcript.whisperx[309].text 所以各位平常也不要这样好用我觉得现在学习都没有限制你要看什么文章看不对我修正一下有限制我上次叫他去读那个古印度语他读不出来他不认识还是有语言的限制只是大多数是没限制的
transcript.whisperx[310].start 8387.374
transcript.whisperx[310].end 8409.746
transcript.whisperx[310].text 什么东西错的会最离谱跟各位分享图 图错的会最离谱图基本上它的差异的部分是你要跟他讲风格 画风像上面这张图其实就是旁边这些叙述把它勾起来的我之前有做过一个实验让他铲图这件事情他有铲过很奇葩的状态
transcript.whisperx[311].start 8410.726
transcript.whisperx[311].end 8421.348
transcript.whisperx[311].text 我當時候是希望他可以畫一個車水馬龍的街道那我頭的意象是上面這個那他畫完啊超我的想像會變這樣子那我也不能說他錯你知道嗎他把四個字拆開然後個別構圖在兜上來然後他就產了一張圖出來這樣子
transcript.whisperx[312].start 8437.927
transcript.whisperx[312].end 8443.311
transcript.whisperx[312].text 車子各位知道在哪裡嗎在水道上馬在哪裡知道嗎就是龍的頭馬的身體應該有看出來以目前圖錯誤率還很高然後文字的錯誤率我覺得因為近期各位一直在用他的錯誤率怎麼講專業性的錯誤率變高了可是普羅大眾知識的錯誤率變低了
transcript.whisperx[313].start 8467.348
transcript.whisperx[313].end 8483.595
transcript.whisperx[313].text 像CHATGP刚出来第一次我在台中上课我觉得要叫他排台中六日游两天的行程他排一个超奇葩的他叫你礼拜六早上在台中礼拜六早上可以逛台中的动物园各位听起来觉得哪里怪台中没有动物园我不知道他动物园是哪里生出来的
transcript.whisperx[314].start 8493.291
transcript.whisperx[314].end 8512.771
transcript.whisperx[314].text 然后隔下一周再输入一样的对不对就调整完了就没有了所以普罗大众的知识有一些都有校正过可是冷门的知识可能就比较难校正所以我觉得冷门知识的出率还是偏高后面教各位一些平台这一页我还是要宣导一下
transcript.whisperx[315].start 8514.172
transcript.whisperx[315].end 8542.326
transcript.whisperx[315].text 因为现在所有的这些AI的平台都是Cloud所以你在上面输入东西其实如果是一些敏感的或者是跟公务相关的我个人建议是不能丢上去因为丢上去就出去了甚至我也可以透过搜寻就知道目前哪个公司在搜寻什么东西或问什么东西反过来就会变另外一种攻击所以如果你真的要使用
transcript.whisperx[316].start 8543.206
transcript.whisperx[316].end 8569.373
transcript.whisperx[316].text 像我的我还是会用我的用法会把一个问题拆给拆成N个问题给不同平台再拉回来给自己我不会一个平台什么都在那边问什么我就不会这样子就是这个可能要稍微注意一下这是操作的一个小技巧刚才讲的叙述是如果各位不会这边有叙述是大全
transcript.whisperx[317].start 8571.852
transcript.whisperx[317].end 8593.591
transcript.whisperx[317].text 如果各位你不会这边你就去参考了这边有叙述是大全我觉得各位的问题是叙述是还不是很熟第二个最大的问题是各位的工具不够多所以我特别准备了工具在这里给各位这边有个连结上面就一坨所有相关的工具
transcript.whisperx[318].start 8594.71
transcript.whisperx[318].end 8613.155
transcript.whisperx[318].text 那比较适合在哪些作业操作专业的工具你不要什么都用TradeGBT不好啦就是该绘图就用绘图然后该产简报你就用那产简报的刚好讲到产简报各位平常有需要写简报吗也很少各位知道国小寒暑假没有作业我都要教小朋友做简报你知道吗
transcript.whisperx[319].start 8621.809
transcript.whisperx[319].end 8648.652
transcript.whisperx[319].text 然后为了教小朋友做简报后来我发现不行因为我们家有三个教完一个之后要教第二个教第三个我觉得这样不行然后后来我就教老大怎么做简报后来叫他去教后面两个我觉得这样不行然后我等下教各位怎么做简报那简报很有趣你有资料丢给他他当然就做简报没问题你没有资料只有想法他也可以帮各位把图文的简报做完
transcript.whisperx[320].start 8650.213
transcript.whisperx[320].end 8660.106
transcript.whisperx[320].text 这样懂意思这是我觉得还蛮夸张的一个状态基本上这四个领域至少要会一两个
transcript.whisperx[321].start 8661.946
transcript.whisperx[321].end 8682.258
transcript.whisperx[321].text 就是每个领域要一两个像现在搜寻的部分你可以用GPT Compiler或者是GPT部分去做搜寻然后或者是你可以用他们来做所谓的内容的编辑然后资料整理那四个我觉得哪一个最好用是第一个那个叫 Notebook LM那个真的好用
transcript.whisperx[322].start 8683.298
transcript.whisperx[322].end 8706.51
transcript.whisperx[322].text 因为以前我们那个大量的资料你在做那个资料整理的部分你要花好多时间现在没有了就是把那些历史资料把它喂给他那中间就可以做提问这样子而且他的历史资料图文影像都吃这样子我就觉得整理上面就非常的方便这样子他底下有那个写简报的部分他叫各位操作一下
transcript.whisperx[323].start 8707.931
transcript.whisperx[323].end 8718.022
transcript.whisperx[323].text 刚才跟各位讲说今天至少要教各位回去写歌有没有所以现在教各位怎么写歌这样子回去可以自己写一下
transcript.whisperx[324].start 8722.955
transcript.whisperx[324].end 8751.05
transcript.whisperx[324].text 这个是指定大全指定大全其实就是叙述室就是看你要什么的叙述室你可以利用这些叙述室去做延伸你只要修改就好了那第二个是这里这叫工具大全那这边有很多的那个说明那他就是你把它点下去之后他这边就会跳相关的哪几个平台出那我觉得比较好用的部分是什么就是他跳出来会跟你讲付费免费中文英文
transcript.whisperx[325].start 8752.131
transcript.whisperx[325].end 8775.076
transcript.whisperx[325].text 这个属性举例来讲这个跟那个文件处理这几个属性都是一起的功能是一起的那你就可以找几个来操作一下那他的内容基本上他会跟CheckGPT那些一定是不一样的因为这些是专属性的功能就是建议各位可以选一些专属性的功能那教各位写歌这里
transcript.whisperx[326].start 8776.718
transcript.whisperx[326].end 8803.559
transcript.whisperx[326].text 这个这个这个这个各位平常办活动会用到主题曲吗各位的主题曲是用付费的还是不用钱有很多不用钱到时候都跟你讲侵权你知道吗我教你以后主题曲自己弄而且又会比较好就这个你把它点这个那点下去之后等一下它会长这里这个然后不用钱
transcript.whisperx[327].start 8805.646
transcript.whisperx[327].end 8816.493
transcript.whisperx[327].text 然後我生成一個給各位看我這邊隨便抓了因為剛才就找一個新聞那這邊有個什麼最雷台灣景點我叫他唱最雷台灣景點的一首歌好了
transcript.whisperx[328].start 8820.836
transcript.whisperx[328].end 8838.37
transcript.whisperx[328].text 你可以打敘述式打關鍵字這邊可以選曲風選完曲風之後你這邊按生成目前就正在作詞作曲並且在唱這首歌沒有 現在已經在唱了唱完了播給各位聽一下好了什麼叫台灣最雷晴點要不然各位怎麼會知道
transcript.whisperx[329].start 8851.192
transcript.whisperx[329].end 8854.764
transcript.whisperx[329].text 就是我選曲風的關鍵我把它選那個Rap的那個曲風就是你可以選哪多曲風
transcript.whisperx[330].start 8866.231
transcript.whisperx[330].end 8888.016
transcript.whisperx[330].text 這邊有池啦他池在這裡這裡這是剛產出來的那你如果覺得這不滿意沒關係你可以自己再改他就會再重新分割然後通常會有兩個版本剛才是第一個版本啊這是第二個版本
transcript.whisperx[331].start 8890.077
transcript.whisperx[331].end 8899.319
transcript.whisperx[331].text 他這平台無限生成沒有限制就看你要生多少都可以一直生可以嗎各位回去會寫歌了吧
transcript.whisperx[332].start 8914.025
transcript.whisperx[332].end 8940.373
transcript.whisperx[332].text 没有很难吧然后他可以转出是那个 mp3对按钮转 mp3 的档案了啊曲风你可以自己选啊曲风在这里了这里这里这里这里有看到这边我拉来拉去这个他有一堆曲风了看你要什么曲风这样子你要觉得这曲风不好你就换这样换比如说把这个拿掉然后换这个然后再生成啊这时候就换了
transcript.whisperx[333].start 8941.893
transcript.whisperx[333].end 8954.616
transcript.whisperx[333].text 現在是換曲風可是因為我給他那個敘述是一樣所以各位可以再聽看看變成什麼樣他通常那個裡面的那個詞也會不一樣這時候已經好了這換了Neon temples in the rainThey don't they fadeCrowns from the guns on a crack parade
transcript.whisperx[334].start 8976.043
transcript.whisperx[334].end 8991.626
transcript.whisperx[334].text 這樣各位會寫歌了吧有沒有覺得什麼現在突然解鎖很多技能沒有就平台要會用啦會用差異就非常大然後這個來產檢報給各位看
transcript.whisperx[335].start 9002.375
transcript.whisperx[335].end 9015.724
transcript.whisperx[335].text 这个我一样复制这个关键字因为我觉得这还蛮有趣的就是这个复制然后产检报现在用最多的会是这个这个这个有用功吗
transcript.whisperx[336].start 9017.378
transcript.whisperx[336].end 9034.406
transcript.whisperx[336].text 没有各位如果加入免费是200点一次简报扣40点请问各位200点用完再来换个账号再来一次又200点这样子就看各位这也可以用推荐的我这还有产一次我产一次给各位看
transcript.whisperx[337].start 9035.706
transcript.whisperx[337].end 9054.513
transcript.whisperx[337].text 那他可以用新增的你可以贴文字那像刚才小朋友那个寒暑假我就叫他先list把他暑假的经历先大概字写出来然后贴到存文字上面然后所有的那个比如说两个月做了什么事情就在上面那他就会产简报图文的简报嘛
transcript.whisperx[338].start 9056.154
transcript.whisperx[338].end 9071.183
transcript.whisperx[338].text 產完之後再叫他做一件事把上面的圖換成他拍照的那些圖那就做完了這一個是你有網頁或者有檔案完整給他他幫你整理成簡報我讓各位看哪個最神奇中間這個這個只要敘述是或者給他個keyword也可以幫你產完圖文的簡報我剛才不是有個keyword
transcript.whisperx[339].start 9085.103
transcript.whisperx[339].end 9095.492
transcript.whisperx[339].text 这个没有人会写这种简报所以我让他产简报大家第一个会先生成什么简报大纲我先让他生成简报大纲给各位看一下现在是正在写简报中各位怎么没有觉得特别的惊讶各位知道写简报要准备多少质量
transcript.whisperx[340].start 9109.113
transcript.whisperx[340].end 9129.362
transcript.whisperx[340].text 免费的最多10页了付费的会比较多页了我就因为这是免费的我就操作给各位看我文字让他多一点好了这我选详细一点点然后给他一个比较排的背景图这边会有AI绘图他的图是他的简报是图文的简报这时候我底下都不动了我让他生成
transcript.whisperx[341].start 9132.543
transcript.whisperx[341].end 9141.23
transcript.whisperx[341].text 我现在是用刚才马上抓的标题让他去产一个简报所以他把大纲产完之后现在是在做图文的简报各位写简报有他快吗现在应该有点难因为我要去收集资料什么的
transcript.whisperx[342].start 9154.201
transcript.whisperx[342].end 9165.425
transcript.whisperx[342].text 这样我先让他铲完然后play一下给各位看各位才会知道原来那么好用这样他铲完了10张就做完了那把它播一下给各位看一下我快速点一下这样子有看到吧
transcript.whisperx[343].start 9185.069
transcript.whisperx[343].end 9196.385
transcript.whisperx[343].text 看似很正确其实出入率还蛮高的就是看起来很吓人做到漂亮这样其实是假的那边有问题吗
transcript.whisperx[344].start 9198.906
transcript.whisperx[344].end 9217.083
transcript.whisperx[344].text 圖不要太相信他圖通話錯誤率非常的高圖的錯誤率真的很高然後內容嘛看起來好像很正確實際上要對一下可是他已經可以幫各位把那個骨頭全部都拉完了然後裡面實際上的文字你再去調整就可以了有沒有這樣就做完了有沒有發現現在原來做簡報好像也沒什麼應該有發現吧我覺得很快
transcript.whisperx[345].start 9226.707
transcript.whisperx[345].end 9241.25
transcript.whisperx[345].text 那平常会这样子写简报吗还好来我给各位看那个之前我在另外一地方产一个很错的很夸张的简报图这个好我把它play一下好请问各位错在哪里看得出来吗错在哪里
transcript.whisperx[346].start 9259.434
transcript.whisperx[346].end 9260.234
transcript.whisperx[346].text 不知道各位看不出來嗎各位以後會被 AI 導引因為你們完全沒辦法分辨錯誤這樣很可怕那個圖的花不是油桶花那個不是桶花
transcript.whisperx[347].start 9282.485
transcript.whisperx[347].end 9288.689
transcript.whisperx[347].text 這樣懂我再給各位看一個更誇張的可是這個有時候要看各位有沒有去過這個我覺得當時候他也給我傳一個很奇葩的圖圖錯誤率現在都很高這樣子總看得出哪裡有問題各位有看過彰化大佛嗎
transcript.whisperx[348].start 9305.831
transcript.whisperx[348].end 9328.615
transcript.whisperx[348].text 我记得是黑色的我的印象是黑色的应该不是白色的对可是一般人可能没有去过什么你可能好像是对没有所以我一直跟各位提醒那个图的错误率是高的这刚好有几个案例给各位看这样子如果各位要整理资料我个人觉得这个真的好用就是 notebook lm
transcript.whisperx[349].start 9331.876
transcript.whisperx[349].end 9354.566
transcript.whisperx[349].text 他的做法其实概念很简单像我们去TradeGPT找其实他会飘就是那个因为他资料每次找其一部一样会飘那Notebook LVM的部分你就第一个你要把你的相关的一些data的部分把它丢上来那他可以支援图你常见的文档连影音都可以那你丢上来之后你这边可以做提问
transcript.whisperx[350].start 9355.906
transcript.whisperx[350].end 9379.762
transcript.whisperx[350].text 他就可以针对这些内容去铲你里面的一个提问的答案这样子这个我之前用在什么地方所以之前有个朋友他们公司刚好有个案例然后那个案例就是他们每年都会接到民众投诉投诉什么投诉退休金算错各位知道是哪个单位吗
transcript.whisperx[351].start 9385.478
transcript.whisperx[351].end 9397.28
transcript.whisperx[351].text 就退休金算错啊哪个单位不知道某一家银行了就你们楼下在领款的那一家银行了
transcript.whisperx[352].start 9400.391
transcript.whisperx[352].end 9420.196
transcript.whisperx[352].text 他是这样子那个案子有上法庭然后对方是败诉所以说有判决出来他就提了一个问题给我就是说因为他原本这个承办快退休了可是这个民众每年都会来投诉一次他说可不可以把他经验传承下来
transcript.whisperx[353].start 9421.797
transcript.whisperx[353].end 9444.853
transcript.whisperx[353].text 我当时候就想说这个看起来比较像是把以前的资料汇整我当时候就做了一件事情就是第一个上面各位看到最左边这边我就把以前判决书的判例把它弄上去然后还有以前往来的邮件弄上去然后就疑问一答弄上去中间就把它今年没有过来的投诉
transcript.whisperx[354].start 9445.753
transcript.whisperx[354].end 9473.776
transcript.whisperx[354].text 喂给他然后叫他依之前的回应产回应的邮件他当时候产回应邮件产了8个重点然后再把8个重点给快退休的看看有没有keep到里面的重点项目其实都有唯一比较大的差异是用字遣词的部分可能要稍微再柔和一点就只有这个差异而已
transcript.whisperx[355].start 9474.396
transcript.whisperx[355].end 9502.198
transcript.whisperx[355].text 所以我觉得这个整理资料还蛮好用的而且上面这个案例各位可能看起来好像没有什么其实这个案例才有趣各位有没有看到我左边我都给他上传什么各位没感觉我左边上传全部都是YT的影片是叫他去截这些影片里面的重点然后再去做提问影片你如果存档案那些我都觉得现在没什么那是影片
transcript.whisperx[356].start 9505.003
transcript.whisperx[356].end 9528.089
transcript.whisperx[356].text 各位平常有需要整理影片的资料再叫他读读完之后就重点了重点再往下就很快所以这是可以吃影片然后免费版最多50个档案是全部50个不是一个50个全部50个你可以回去用一下这是基本功能我觉得这些就是一定要拿来用的
transcript.whisperx[357].start 9529.989
transcript.whisperx[357].end 9558.284
transcript.whisperx[357].text 我个人比较由衷的建议是这样子就是要不你这些要非常的上手非常的顺要不你就都不要用现在只有二分法就是要不就跟上车这样要不你就不要上车可是不要上车的人你可能要考虑去挖个山洞点蜡烛就现在我觉得就很明就真的很明显就是会用跟不会用的差异差非常的大举例来讲各位平常会写企划书吗
transcript.whisperx[358].start 9561.064
transcript.whisperx[358].end 9583.107
transcript.whisperx[358].text 也不会现在可以叫他把企划书朝你拟完然后再往下现在都是会用一些方法处理甚至可以叫他去审企划书里面是不是有亮点现在都审得出来对了就是要会用一下我个人是这样建议的要不然这些骇客都用的比各位早才可怕
transcript.whisperx[359].start 9584.662
transcript.whisperx[359].end 9610.813
transcript.whisperx[359].text 这个刚出来其实就有一堆駭客拿来用了为什么因为以前要去跨领域学习这件事是很头痛的所以现在基本上没有跨领域这件事情反正你只要会操作对的平台然后去收集一些相关的资料就可以甚至有一种駭客更坏一开始就在他们这些肚子里面去买一张东西让各位搜寻就是错的最明显的例子在今年就发生了
transcript.whisperx[360].start 9612.013
transcript.whisperx[360].end 9633.672
transcript.whisperx[360].text 就是有那個駭客在寫程式的提問裡面去跟大家講裡面應該加什麼什麼的功能所以這時候你在問他的時候他就會自己加了那個功能在裡面等同是什麼等同是二一程式在裡面我現在已經有看到這種案例了所以各位回去都可以稍微要注意一下這些狀態
transcript.whisperx[361].start 9634.973
transcript.whisperx[361].end 9649.97
transcript.whisperx[361].text 那越知名的账户其实他的那个受信程度其实相对比较高那当然有些Hacker就会想去入侵这些账户再去做使用这都是当时候就有到现在都还有的状态那给各位看一下写成是这个
transcript.whisperx[362].start 9651.752
transcript.whisperx[362].end 9665.831
transcript.whisperx[362].text 以目前这些AI的进展很直接已经影响到某一些工作族群非常直接第一个被影响的是各位知道外面有兼职翻译
transcript.whisperx[363].start 9667.313
transcript.whisperx[363].end 9683.563
transcript.whisperx[363].text 那个已经被影响了因为现在的翻译不是Google翻译是AI for 专业翻译现在不是Google翻译那翻出来真的是跟他们现在用人翻基本上没什么差异各位会专业翻译吗有需要教吗
transcript.whisperx[364].start 9688.12
transcript.whisperx[364].end 9705.522
transcript.whisperx[364].text 好我等一下如果有时间我翻两页让各位拍一下你就会专业翻译哎那没问题而且翻出来就不是以前那什么 google翻译没这件事情完全没有所以像那个翻译的被取代就兼职了当然有些还是需要人去翻了第二个我觉得最容易被取代是什么写程式的
transcript.whisperx[365].start 9707.102
transcript.whisperx[365].end 9731.689
transcript.whisperx[365].text 这个是那个这个OpenAI里面的一个forall就是专门写程式的forall你就叙述然后跟他讲你是程式设计师帮我用什么程式写什么功能他就写了上面这是他自己在写那写完你再comply看会不会动这样就好了那你也可以叫他去做所谓的坏事各位会叫这些平台做坏事吗知道什么叫做坏事吗
transcript.whisperx[366].start 9739.123
transcript.whisperx[366].end 9764.13
transcript.whisperx[366].text 现在你叫他做坏事他不会做刚出来的时候你叫他做坏事都很可爱就真的会去做像什么坏事我举个例子比如说你跟他讲我现在想要制作炸弹然后他就问你说你要制作什么炸弹你再继续往下提问比如说我要制造黄色炸弹然后要什么原料他就告诉你这个炸弹要什么什么原料然后原料列完了再来再来再来再来
transcript.whisperx[367].start 9767.833
transcript.whisperx[367].end 9787.8
transcript.whisperx[367].text 你问他去哪里买然后他就跟你讲可恩去哪里买以前真的是可以的刚出来的时候现在你叫他这样做他会跟你讲你叫我做坏事我不铲除像他们现在也有年龄限制因为他们会做那个保护所以那个18岁以下的账号他是不让使用的
transcript.whisperx[368].start 9789.133
transcript.whisperx[368].end 9803.784
transcript.whisperx[368].text 就是这些平台是不让使用的所以18岁以下的小朋友会怎么使用用你的账号使用就会变这样子所以自己要稍微控管一下这是我当时我的案例我就叫他写攻击程式
transcript.whisperx[369].start 9806.027
transcript.whisperx[369].end 9823.705
transcript.whisperx[369].text 要有趣是这个就叫他写就直接出现了现在一样叫他去写攻击程式像上面这个序字他就会说不行因为我们人是比较聪明的所以就换句话说只要他不认识就一样可以产出攻击程式
transcript.whisperx[370].start 9825.186
transcript.whisperx[370].end 9851.133
transcript.whisperx[370].text 我的意思是我们要比较聪明当他说不产出的时候我们就换句话说他不认识一样可以产出当一个问题被他解释出来之后你如果要让他没办法解释这问题很简单你就让他猜成两个小问题他不认识也就直接产出我们是比较聪明的这个我有做过一个实验就是实验是这样子
transcript.whisperx[371].start 9852.333
transcript.whisperx[371].end 9877.732
transcript.whisperx[371].text 因为在安全检测上面会分好几段第一段是先把东西写出来第二个是检测有没有问题第三个是把检测出来有问题去修正那以前这三段要三个不同的人或者是你要有这些综合的专业现在这三段可以一起做完第一个就叫他写程式第二个叫他去检查程式有没有问题那检查完之后你还可以叫他去针对检查出来的问题去做修正三个就一起做完
transcript.whisperx[372].start 9879.173
transcript.whisperx[372].end 9894.708
transcript.whisperx[372].text 以前要拆三段没有现在你自己操作三段就做完了那你也可以叫他去盘点常看到网站的直网域或者是叫他去查这个网站本身是不是有安全的问题这个都可以检查
transcript.whisperx[373].start 9896.562
transcript.whisperx[373].end 9912.581
transcript.whisperx[373].text 所以很好用啊所以現在有很多功能都可以這樣使用那既然在上課啊總是要分享一些special的給各位來我分享一下這一個是沒有功能限制的這樣聽得懂意思嗎
transcript.whisperx[374].start 9915.225
transcript.whisperx[374].end 9936.344
transcript.whisperx[374].text 怎么听不太懂确GPD那个人性本身叫你不能叫我做坏事这个你叫他做坏事一样造产出这样子网路上有很多是没有功能限制的对这个就是没有功能限制的这样可以有些总是要找一些没有功能限制的要不然什么都功能限制还得了这样子可以
transcript.whisperx[375].start 9940.167
transcript.whisperx[375].end 9947.782
transcript.whisperx[375].text 我怎么觉得各位平常真的好像不太会用这些还有点是借我翻一下我真的要帮各位把这些先补一下
transcript.whisperx[376].start 9989.821
transcript.whisperx[376].end 10002.767
transcript.whisperx[376].text 我教各位幾個延伸的使用第一個我先教各位因為現在這些平台有眼睛各位現在也有眼睛所以考各位請問各位這裡是台灣的哪裡你確定
transcript.whisperx[377].start 10008.86
transcript.whisperx[377].end 10020.187
transcript.whisperx[377].text 这个每次我找在北部询问就一个人家就会告诉我是基隆这个不是基隆这是那个高雄的那个什么彩色岛博二哎哥有去过吗这高雄真的啦这是高雄这不是那个政兵不是来来来我们来验证一下啊他丢上去问他说这里是哪里等我一下
transcript.whisperx[378].start 10073.473
transcript.whisperx[378].end 10076.614
transcript.whisperx[378].text 這樣子不好意思丟上去問他這裡是哪裡這樣子那他會去做識別然後告訴你一些相關的資訊那就可以去做判讀
transcript.whisperx[379].start 10103.809
transcript.whisperx[379].end 10113.567
transcript.whisperx[379].text 有看到吗这是那个奇景我记得是高雄这个不是那个不是我们一般看到第一眼就说是震屏这其实不是
transcript.whisperx[380].start 10115.347
transcript.whisperx[380].end 10137.986
transcript.whisperx[380].text 所以各位有很多那個不知道東西丟上去他會幫你做識別所以現在我的意思是現在有眼睛挑水果什麼那都沒有問題我就丟上去問他就好所以這是基本操作了我先把一些基本的先跟各位講一下因為各位好像有一些操作沒有那麼熟悉就是現在有眼睛所以你不知道你就丟上去就可以了然後像這個
transcript.whisperx[381].start 10143.05
transcript.whisperx[381].end 10154.083
transcript.whisperx[381].text 刚才不是跟各位讲说可以去做那个翻译这件事情吗上面这边有个网站那请问各位有没有办法在三秒钟告诉我这个网站在写什么东西时间到所以各位可以吗
transcript.whisperx[382].start 10160.515
transcript.whisperx[382].end 10177.892
transcript.whisperx[382].text 不行這樣各位涉獵資訊太慢了來我教各位大絕招這也是我現在常用的來這都沒有在slide上這都新增的了來我教你怎麼操作很簡單第一個有看到這個第一步記連結連結總會了吧叫他去讀那個網站給我中文報告這樣就做完了
transcript.whisperx[383].start 10184.42
transcript.whisperx[383].end 10212.397
transcript.whisperx[383].text 这样有没有快后面你还可以叙述了比如说给我30个字的重点报告什么的这样这样就就读完了所以他可以互相转来转去的那不是只有像网页了档案丢上去也是可以啊所以呢可以让他去读报告那如果你是要把它整理成那个简报有没有你就最后变成简报格式啊他就帮你摘要成简报格式
transcript.whisperx[384].start 10214.702
transcript.whisperx[384].end 10234.327
transcript.whisperx[384].text 他可以互转转来转去那像刚才的案例是英文转中文有没有你中文可以再转德文就输出的时候可以再转他其实就互相转来转去这样子这其实是在阅读上我觉得就蛮大的一个差异然后不是只有可以这样子做还有一个更有趣的
transcript.whisperx[385].start 10239.628
transcript.whisperx[385].end 10267.565
transcript.whisperx[385].text 这个是上半年那个市壮运那为什么我举这个例子呢是举例来讲上半年比如说我要参加市壮运水上活动好了那请问各位上面有哪一些活动项目我们以前的做法不是还要再点进去看比如说有哪几类吗可是这样子我觉得有点累所以最好可不可以给我那个整理完Excel的栏位这样子
transcript.whisperx[386].start 10269.71
transcript.whisperx[386].end 10296.629
transcript.whisperx[386].text 那各位怎么让他产成Excel单位我教你一样第一步把链接记下来产报告就叫他读给我内容嘛如果是要Excel呢表格式的报告就是Excel所以他就会把上面这些的游泳项目的部分帮你整理成Excel那这是那个Gmini的部分你可以让他汇出成四算表就Excel了
transcript.whisperx[387].start 10298.211
transcript.whisperx[387].end 10309.591
transcript.whisperx[387].text 以前这个都要花很多时间这样可以就是好用了然后刚才不是跟各位讲说可以识别吗这没有问题所以延伸可以挑水果
transcript.whisperx[388].start 10311.997
transcript.whisperx[388].end 10330.823
transcript.whisperx[388].text 这我都试过了我都试过了可以挑水果可是我先跟各位讲不要这样子挑因为他没有手没有嘴巴没有办法告诉你哪一棵所以正确的操作要这样子你拍完照你要标数字然后问他哪棵水果田他就可以告诉你几号
transcript.whisperx[389].start 10332.455
transcript.whisperx[389].end 10357.704
transcript.whisperx[389].text 这个才是正确的做法你直接拍他没有手没办法帮你抓可是你不要数字他就会告诉你几号你就知道了这是正确的用法这样子这都是一些延伸的我觉得有些好像蛮有趣可是各位都不太会的然后再补充两个就好然后跳回去各位平常有需要写问卷吗
transcript.whisperx[390].start 10359.707
transcript.whisperx[390].end 10381.613
transcript.whisperx[390].text 你为什么勾到这一段这段就是有人要写论文的时候就会去做问卷写问卷很讨厌为什么因为你要设计问卷那我教各位怎么做了第一个你现在要去爬哪个网站或哪个内容先去产关键字然后加上关键字再去生成问卷题目
transcript.whisperx[391].start 10382.413
transcript.whisperx[391].end 10402.689
transcript.whisperx[391].text 然后居民里刚好这跟Google整合在一起所以你可以叫他产Google的那个问卷语法然后把它贴上去那个问卷就做完你再发给谁去写这样就好了所以像这个第一个一样叫他去读哪里去产表格是他会把比如说那个网站在研究有看到哪些关键字先产出来
transcript.whisperx[392].start 10403.67
transcript.whisperx[392].end 10414.315
transcript.whisperx[392].text 那个关键字产出来你将要去设计跟这个关键字相关的问卷题目在产问卷表单的code贴上来问卷就做完了这样可以吗
transcript.whisperx[393].start 10418.997
transcript.whisperx[393].end 10445.642
transcript.whisperx[393].text 我讲很快这个是各位有用到再来说要不然这个当然讲很快刚才不是教各位专业翻译吗各位知道什么叫专业翻译吗知道怎么做吗这个sample给你们参考一下你有没有发现这什么叫专业翻译不是只有跟他讲你是一个翻译你要跟他讲你是一个专精的翻译熟中英文而且你还在哪一个领域从事过
transcript.whisperx[394].start 10446.562
transcript.whisperx[394].end 10473.46
transcript.whisperx[394].text 有那个经历然后帮我翻以下的文章他要有什么学术的内容那出来就是专业翻译然后翻一次不够你可以让他再翻一次转两次这真的要定角色这个是定的比较完整那这个翻出来跟那个你送出去专业翻译老实说因为他还加了那个工作经验所以他翻出来会更准
transcript.whisperx[395].start 10476.212
transcript.whisperx[395].end 10493.886
transcript.whisperx[395].text 这样可以所以各位平常有这样翻过吗好来最后报一个料好了各位现在不是都之前那个在写paper的时候不是都很怕那个学轮的问题吗那知道要怎么避免学轮的问题吗不知道换句话说
transcript.whisperx[396].start 10502.711
transcript.whisperx[396].end 10515.439
transcript.whisperx[396].text 叙述换句话说那他有一个专业术语叫降重降重那个换句话说就不一样不一样基本上就没有那个什么学论的问题我觉得之后会有另外一个问题就AI抄袭的问题
transcript.whisperx[397].start 10517.199
transcript.whisperx[397].end 10545.466
transcript.whisperx[397].text 因为大家都叫他写写到最后每个产出好像都差不多这样有可能会有可是现阶段应该还data应该还没到对以后一定AI抄袭所以我跟各位分享一下我之前帮人家做评审我已经做什么事情我先讲不要学我这样做不正好因为我觉得当评审到后面有一个很麻烦的状态就是上次我去参加那个国务校帮人家审那个绘画我只能认真看完前三幅
transcript.whisperx[398].start 10547.071
transcript.whisperx[398].end 10565.633
transcript.whisperx[398].text 后面我就开始恍神了我就没有办法很认真的去评后来我发现这样好像不是很公平你知道吗结果那一次我就做了一件事情我记得那个小朋友交过来60几个有一个主题就花了60几个我先喂给他这个主题然后把那60几个档案全部都丢上去
transcript.whisperx[399].start 10566.494
transcript.whisperx[399].end 10587.139
transcript.whisperx[399].text 然后教他评分以这个主题评分评分完之后再排序然后重点还不是这样子要写评语优缺的评语然后教帮我把前10个的写完优缺的评语然后因为我这个很熟所以我还做了一件事情帮我审一下有没有 AI 绘图然后还拉出四五张这样懂意思
transcript.whisperx[400].start 10593.944
transcript.whisperx[400].end 10601.412
transcript.whisperx[400].text 各位还是认真的评这样子我只说我偷懒的时候就丢上去我是要试他那个效果还蛮可怕的有这样做过吗也没有
transcript.whisperx[401].start 10607.626
transcript.whisperx[401].end 10626.518
transcript.whisperx[401].text 我做过回去试一下这是额外提供的因为目前其实使用其实可以利用到这种程度拉回来以平台要加码就加个go好了我再加一个就好了
transcript.whisperx[402].start 10630.805
transcript.whisperx[402].end 10657.505
transcript.whisperx[402].text 各位那个平台如果各位是要做学术研究的我个人建议不要用常用的那几个因为大家都用那几个有一定出问题也有一定出问题我个人比较推的是这个这个用够吗这个如果你要学术研究个人比较推是这个
transcript.whisperx[403].start 10658.635
transcript.whisperx[403].end 10683.255
transcript.whisperx[403].text 因为我发现现在学术研究大家用最多第一名叫全GPT大家都用它然后GPT大概就这两个用比较多可是这个学术研究其实它的研究方法会比较像我们传统在做研究他会先去找引柱出处有没有人讲过这个那他找的都是就是我找的一个出处了
transcript.whisperx[404].start 10684.136
transcript.whisperx[404].end 10700.44
transcript.whisperx[404].text 然后你可以找到关联的资料可以再拉下来自己做验证然后像确GPD有时候找的很莫名其妙你知道吗找出来都不是真的都假的了不知道怎么来资料都不知道怎么来这个就还有个引注各位可以用这个是谁家的知道吗这个是哪一家的知道吗有人听过这一家吗
transcript.whisperx[405].start 10712.358
transcript.whisperx[405].end 10737.933
transcript.whisperx[405].text 这特斯拉他们家另外一个分支的然后之前Facebook也找一堆人要去弄然后挂掉了Facebook应该起来那我觉得这个的比较有趣这样就多几个了反正多几个工具教他使用来那刚才这个架构都知道了给让各位知道危险在哪里然后请问各位家里有镜头吗各位家里有镜头吗
transcript.whisperx[406].start 10742.888
transcript.whisperx[406].end 10765.488
transcript.whisperx[406].text 各位怎麼又開始很奇怪了各位可以把你的手機拿起來看一下嗎有沒有看到一個鏡頭正在對著你現在手機也可以操作上面這個比較壞上面有沒有看到一個英文關鍵字你可以搜尋這英文關鍵字可以找到底下的網站底下的網站就是把各國有問題的鏡頭會直接貼上來所以你可以直接點它就可以看到很多人家裡的鏡頭
transcript.whisperx[407].start 10768.267
transcript.whisperx[407].end 10792.461
transcript.whisperx[407].text 我是常点因为就是看有没有类似像这样的危害所以你回去可以看一下你们家的镜头有没有在上面各位知道如果你们家的镜头有在上面知道怎么办吗你可以转行当网红反正该看都被人家看光了你也可以自己转行这样子那家里的锁各位已经换这种锁了吗智能锁
transcript.whisperx[408].start 10797.02
transcript.whisperx[408].end 10800.792
transcript.whisperx[408].text 有时候就太晚来这样子应该早一点来跟各位讲这个的危害才对
transcript.whisperx[409].start 10802.29
transcript.whisperx[409].end 10830.387
transcript.whisperx[409].text 如果各位要换我个人建议换1万5以上的1万5以下的智能锁很可怕因为这几年有很多厂商拿来让我测1万5以下的智能锁你在传Open跟Off的代码不会换所以我在旁边可以测入到你开门的扣所以我再丢给他 他就会开1万5以上的锁他不是用这种机制他是会到他的云端去算一串扣再下来每一次都不一样每一次都不一样
transcript.whisperx[410].start 10831.267
transcript.whisperx[410].end 10847.229
transcript.whisperx[410].text 那15000以上的锁我还可以做另外一件事情当你永远配对不成功你们家的门打不开所以各位觉得打得开比较好还打不开比较好以我的研究传统钥匙好像好一点点就是提供给各位参考
transcript.whisperx[411].start 10848.925
transcript.whisperx[411].end 10871.5
transcript.whisperx[411].text 那現在因為太多人家裡都會裝很多的感測sensor那這個也是未來的趨勢比如說長照那你就裝很多感測sensor屋子裡面會有身上會有那你把它想像很簡單收數據定監控點到這個狀態通知什麼就這樣子可是各階段的安全性其實各位在使用的時候自己就要稍微考慮一下
transcript.whisperx[412].start 10872.541
transcript.whisperx[412].end 10898.372
transcript.whisperx[412].text 那这个我举一个比较有趣的例子各位有参与过那个远距医疗远距看诊过吗那有没有发现远距医疗远距看诊比较适合西医不适合中医各位知道原因是什么吗西医比较像是量化病增了一问一答一问一答那中医比较
transcript.whisperx[413].start 10901.109
transcript.whisperx[413].end 10922.308
transcript.whisperx[413].text 比较偏老师傅经验可是他的经验又很难量化所以他其实比较适合西医的原因在这里第二个其实是什么也是就我研究得到的结果就是远距医疗远距看诊如果是中医一定失效因为各位远距医疗的时候就会开美肌
transcript.whisperx[414].start 10923.829
transcript.whisperx[414].end 10943.859
transcript.whisperx[414].text 然后中医就觉得你气色那么好都不知道来干嘛的这样子你知道吗就是还是有差异的这提问各位有看过老中医吗很厉害的老中医这个真的我不知道我去年有一次经验是这样就是咳嗽咳了三个月没有好然后看西医都跟你讲肺有问题
transcript.whisperx[415].start 10945.936
transcript.whisperx[415].end 10955.576
transcript.whisperx[415].text 然后看到不行刚好有人推荐说你要不要去看个中医这样子然后那中医一去的时候吓到我了就是那个门刚踏进来他就说你气场不好
transcript.whisperx[416].start 10956.69
transcript.whisperx[416].end 10982.38
transcript.whisperx[416].text 还没摸到我先讲都还没摸到我自己一个心理OS是你是看到我背了两个人进来是不是就后面背两个进来怎么会摸到我觉得就算了你知道是还没摸到然后后来他就是把麦看完之后他说你这从头到尾都不是肺的问题是胃的问题胃结果真的是胃就是胃食道逆流那个对是胃胃结果他就开完
transcript.whisperx[417].start 10983.32
transcript.whisperx[417].end 10994.496
transcript.whisperx[417].text 我就发现我看了那三个月的西医都不知道在看什么然后全部都错你知道吗对还是有的还是有成效的那游戏这个各位以前有玩过吗
transcript.whisperx[418].start 10997.205
transcript.whisperx[418].end 11012.982
transcript.whisperx[418].text 现在还有在玩吗走在路上偶尔还是看到有人在玩玩没有问题你要知道他抓了什么资料吗他是这样子的你在玩的过程中其实他在背后抓你的资料一直上传到底下那个网站各位其实不知道
transcript.whisperx[419].start 11014.043
transcript.whisperx[419].end 11028.52
transcript.whisperx[419].text 这个其实可以去判断这个国家的禁区跟军事区在哪里是非常的精准所以各位有时候变成是贡献者了所以在玩的时候要注意一下请问各位现在在收集各位的资料有违法还是没有违法
transcript.whisperx[420].start 11032.12
transcript.whisperx[420].end 11055.14
transcript.whisperx[420].text 當然沒有啊都是各位同意的啊對啊所以現在沒有違法的狀態啊而且現在收集的也不是個資啊就是等於是個資法官以外的那些資料了那麻煩的部分是收集這麼多年下來都有點像上面這張圖這張圖其實就是剛才那個我們手機連動中應用程式如果我把它畫成圖就長這樣子各位的可能比這還誇張
transcript.whisperx[421].start 11058.533
transcript.whisperx[421].end 11081.507
transcript.whisperx[421].text 那有时候会骗各位像什么像这个跟你讲说来装不用钱的防毒软体你点一下背后就被收走一堆资料了现在就像这样子所以各位常常有很多资料为什么跑出去不小心就会有这个状态那问各位一下请问各位平常会看YouTube的影片吗那请问看YouTube的影片会中毒吗
transcript.whisperx[422].start 11082.688
transcript.whisperx[422].end 11104.695
transcript.whisperx[422].text 当然会那请问还要看YouTube的影片吗还是要 有没有有宣导跟没宣导一样哪里会中毒就是我们看那个YouTube的影片有些影片不是会跳广告吗就那个广告跳出来如果是脏的就会中毒这样可以我让各位自己检查一下手机是干净的还是脏的好了来 各位把手机拿起来一下
transcript.whisperx[423].start 11106.616
transcript.whisperx[423].end 11130.065
transcript.whisperx[423].text 跟著我上面的畫面操作一下來先把Line打開一下底下的主頁打開一下那右上角的齒輪慢慢再打開一下那齒輪叫設定設定的第三個隱私設定再點它一下然後從上面數來應該是在第四個會看到一個英文字這是加密的功能我先講預設是打開的如果各位點進去發現它是關起來的恭喜你你的手機裡面有髒東西
transcript.whisperx[424].start 11133.072
transcript.whisperx[424].end 11155.2
transcript.whisperx[424].text iOS打開長這樣子Android打開長這樣子預設是打開的如果點進去你的是關起來的你的手機裡面有張東西你不要偷偷的再把它打開沒有用因為他會再幫你關起來這樣可以預設是開的預設是開的如果各位點進去是關的就問題就大
transcript.whisperx[425].start 11159.676
transcript.whisperx[425].end 11182.404
transcript.whisperx[425].text 这样可以如果你点开发现它是关起来的你不要偷偷打开真的没有用因为里面有木马城市会在关起来唯一的做法是你要把你的手机还原原厂设定值如果有关起来的话这稍微注意一下但目前供给其实这几年我觉得好像没有太大变化第一名都还是社交工程
transcript.whisperx[426].start 11183.204
transcript.whisperx[426].end 11202.539
transcript.whisperx[426].text 然后再来是样态比如说勒索的样态比较多还是采矿的样态比较多所以我觉得主攻击还是没有太大差异只是说各位要比较小心的部分是因为网路上有很多的平台都是在做跟我们想的不一样像上面这平台最主要是在公布哪个网站有漏洞
transcript.whisperx[427].start 11204.16
transcript.whisperx[427].end 11231.851
transcript.whisperx[427].text 所以上面其实叫做那个漏洞搜寻引擎所以我可以在上面搜寻到很多环境上面的问题那再利用这些问题去做攻击就可以直接攻击成功所以你只要会操作一些网站其实也有很多的资料可以取得比如说跟这网站连在一起就可以那目前我们常上的一些网站是这样子每天都有一堆嗨客会去攻击他那只差别在有攻击成功跟没有攻击成功
transcript.whisperx[428].start 11233.051
transcript.whisperx[428].end 11256.313
transcript.whisperx[428].text 我们常常在操作过程中就user需要特别注意的是连结所以连结拜托真的不要乱点不管是简讯或者是LINE上面拜托都不要乱点我们常看到的网站各位不要觉得那个是官方网站就是干净我跟你讲没有这个就是有问题的网站哪里有问题底下那个连结
transcript.whisperx[429].start 11257.614
transcript.whisperx[429].end 11280.895
transcript.whisperx[429].text 那他们现在入侵这网站不会在网站上面去做任何的更改会让他长得一模一样各位再去这个地方就会直到底下那个网址那这个网址背后可以跑很多东西啊比如说跑木马勒索采矿全部都可以但我有一个示意图让各位了解我们常去网站他也常去啊你去看资料他去是看漏洞啊今天只要发现有漏洞跑进来了
transcript.whisperx[430].start 11281.596
transcript.whisperx[430].end 11296.184
transcript.whisperx[430].text 那让网站长得一模一样多一个连结那这时候各位再过去就中毒了那过程中不会有任何感觉这个就是平常我们上网中毒的一个实际的一个状态了这个到现在都还是长去的网站不见得是干净的
transcript.whisperx[431].start 11297.273
transcript.whisperx[431].end 11323.491
transcript.whisperx[431].text 那邮件的部分是從以前到現在其實都是駭客的主要攻擊管道了因為只要有各位的信箱就可以對各位發動攻擊那這個其實在公部門已經訓練很久所以這個我覺得還好基本上各位現在收到來不來路部門的邮件不太會去點開他了那為什麼這個會是主流因為不用錢那有各位的mail就可以一直發行那也可以夾帽各位的親朋好友直接去做發行
transcript.whisperx[432].start 11324.111
transcript.whisperx[432].end 11349.925
transcript.whisperx[432].text 那这种发信现在可以去用AI去拟发信的内容那就会变成是客制的发信然后也是比较贴近所以基本上一样各位收到邮件不认识的人不要乱开的然后乱点里面的超连结然后副档要查阅这样子这个其实就可以避免这个危险那在这两个管道之外另外一个最容易攻击的管道就是手机了手机是这样子请问各位这个你还会相信他吗
transcript.whisperx[433].start 11351.98
transcript.whisperx[433].end 11367.876
transcript.whisperx[433].text 如果你的手機操作過程中跟你講說已經有病毒了你會相信他嗎不能點你點確定叫立刻中毒騙人的這跟那個我們剛才看到那些畫面是一樣的這個各位會想安裝嗎他跟你講說你的手機可以裝採礦程式
transcript.whisperx[434].start 11369.557
transcript.whisperx[434].end 11396.577
transcript.whisperx[434].text 这也是骗人的这都骗人的所以拜托手机不要乱装因为装了基本上背后跑了什么东西我们比较难去做识别而且很多背后其实有勒索采矿什么一堆这个就稍微要注意一下目前我们的连结拜托各位要特别注意第二个是很多的档案你不要觉得这个档案我认识我就去开启它现在是所有档案都可以做有问题的档案
transcript.whisperx[435].start 11397.558
transcript.whisperx[435].end 11415.336
transcript.whisperx[435].text 他点到你发现这个就来不及了这个就已经是中勒索了所以考各位一下这边有个压缩档压缩档里面有两个档案一个叫桌面点1X1一个叫超级消耗片点TXD请问各位这两个档案哪一个会害你中毒上还是下正确答案是两个都会
transcript.whisperx[436].start 11421.909
transcript.whisperx[436].end 11450.401
transcript.whisperx[436].text 下是超级消耗片.txt后面200多个空白再.exe两个都是执行档所以各位不要太相信自己的眼睛以前最早是透过漏洞跑进来或透过服务跑进来现在大多数都是透过各位帮他开门点click然后或者是开档案所以以目前来讲我都会建议各位只要看得到的讯息有连结的有档案拜托都不要相信他
transcript.whisperx[437].start 11451.321
transcript.whisperx[437].end 11477.887
transcript.whisperx[437].text 然后LINE里面有一个很讨厌的状态就是各位知道有很多群里面不是都有那个早安贴图吗有很多贴图是有问题的所以各位如果长辈在group里面去贴早安贴图这时候怎么办如果是各位你会怎么办我个人的做法是只要有一个群有长辈贴早安贴图自动退群
transcript.whisperx[438].start 11479.71
transcript.whisperx[438].end 11494.797
transcript.whisperx[438].text 因为你没有办法控制长辈只能控制自己所以自己推出来没有因为那个完全没办法控制因为一般人也很难去识别那个土背后有什么所以比较建议各位如果你没有办法避免他那你就请备份吧
transcript.whisperx[439].start 11496.371
transcript.whisperx[439].end 11524.542
transcript.whisperx[439].text 因为目前来讲最怕的是中勒索所以你勤备份其实也可以避免这些问题去年其实有一些勒索的平台被破解所以各位也可以到这些平台上如果有中可以到这些平台上看看有没有解药然后这个是我个人比较建议的部分那再重点提示一下这个连结不要戳了有连结就不要戳然后手机的部分是这样子不好意思我把它跳到后面讲重点就是
transcript.whisperx[440].start 11526.382
transcript.whisperx[440].end 11553.131
transcript.whisperx[440].text 各位如果要安装App我建议各位第一个要注意的是权限权限要认两个有这两个就稍微注意一下就是有付费跟订阅有付费有订阅这个App就尽量不要安装付费订阅其他的就看各位我这支手机基本上跟原厂没什么两样因为现在不知道装什么是干净的所以
transcript.whisperx[441].start 11554.231
transcript.whisperx[441].end 11572.562
transcript.whisperx[441].text 目前来讲以我自己在查就是有付费有订阅危险程度是最高的然后这个不要再点连结然后再考各位一下像这边跟你讲说左边这张图说我要读取你目前的位置有不允许跟好请问各位这时候要点哪一个
transcript.whisperx[442].start 11574.295
transcript.whisperx[442].end 11603.169
transcript.whisperx[442].text 点不允许打不开来各位没有用过手机用来我教各位了这个如果你真的要用你要先点好好之后到设定里面设定里面把它关起来再去使用要要多一段要到设定里面再关再使用点不允许打不开了你只能点好再去关掉它这个各位还会再相信他吗拜托不要这个也是现在还有另外一种跟你讲说手机空间已满叫你清嘎比举那也是骗人的
transcript.whisperx[443].start 11604.449
transcript.whisperx[443].end 11628.307
transcript.whisperx[443].text 所以你看现在那么多安装的时候记得就是稍微看一下评论不是看星星评论跟权限那权限付费跟订阅就稍微注意一下不行这个容我一定要帮各位洗脑回来很多的APP会跟你讲说免费使用15天请问各位第几天的时候会移掉它
transcript.whisperx[444].start 11630.925
transcript.whisperx[444].end 11648.017
transcript.whisperx[444].text 我的研究一半的人会忘记是真的会忘记不是故意忘记是真的忘记这件事情所以他就一直订阅下去另外一半的人很聪明会说我第14天在移除他不好意思他是这样子下载隔天没用就要移除
transcript.whisperx[445].start 11649.847
transcript.whisperx[445].end 11675.819
transcript.whisperx[445].text 各位听得懂意思吗不是第14天他的订阅跟付费是拆开的免费使用15天隔天他就先帮你订阅付费了这样懂意思因为他们有些游戏规则就要稍微小心一下讲快讲到最后各位觉得现在的AI是要让他发展下去比较好还是不发展下去比较好
transcript.whisperx[446].start 11679.167
transcript.whisperx[446].end 11701.693
transcript.whisperx[446].text 这个在前年有开公听会然后有一批人就是说要让他发展就促进世界发展这样另外一批就说现在发展下去会跟电影情节差不多这个是前年开的公听会就我目前的资讯研究下来比较会偏到走电影的那一边去
transcript.whisperx[447].start 11703.493
transcript.whisperx[447].end 11729.989
transcript.whisperx[447].text 我现在看到是比较不好的我们又不可逆所以各位其实在操作过程中我还是建议各位要注意一下那个资讯不要一直操作一直跑出去如果真的要操作比较正常的操作方式是要建那个叫落地的LLM资料在落地学习像我自己是这样建的敏感的是建落地的自己去学习
transcript.whisperx[448].start 11730.729
transcript.whisperx[448].end 11753.162
transcript.whisperx[448].text 那资料是不出去的他可以去抓什么比如说我可以去抓CHAT GPT的那个语言模组下来学习那我可以确保至少资料不会出去我自己是这样用如果各位如果是用现在云端版本资料就一定会出去这是比较建议各位的部分超时各位有没有一些疑难杂志想要问
transcript.whisperx[449].start 11766.292
transcript.whisperx[449].end 11789.051
transcript.whisperx[449].text 那沒有的話那各位同仁就是希望感謝一下我們講師今天辛苦的教學那不好意思再請大家幫我們繳交一下那個問卷調查表然後我們外面有那個小點心跟飲料那麻煩大家要拿一下這樣子那如果要登記公務人員學習時數我這裡有QR Code麻煩你們少去登記那個身分證字號這樣子