iVOD / 16762

Field Value
IVOD_ID 16762
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16762
日期 2025-06-18
會議資料.會議代碼 委員會-11-3-26-17
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議
影片種類 Full
開始時間 2025-06-18T08:29:59+08:00
結束時間 2025-06-18T13:43:00+08:00
影片長度 05:13:01
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a6857536b190c0b7f68c9b5fa2f296a935348b19dddded0b194f3ec1e92977f55ed15ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-06-18T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第17次全體委員會議(事由:邀請勞動部部長就「營造友善職場育兒環境,落實照顧不離職政策規劃」進行專題報告,並備質詢。)
委員名稱 完整會議
委員發言時間 08:29:59 - 13:43:00
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 1377.97596875
transcript.pyannote[0].end 1378.33034375
transcript.pyannote[1].speaker SPEAKER_07
transcript.pyannote[1].start 1378.33034375
transcript.pyannote[1].end 1378.66784375
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 1378.66784375
transcript.pyannote[2].end 1378.70159375
transcript.pyannote[3].speaker SPEAKER_22
transcript.pyannote[3].start 1382.98784375
transcript.pyannote[3].end 1383.15659375
transcript.pyannote[4].speaker SPEAKER_05
transcript.pyannote[4].start 1886.89221875
transcript.pyannote[4].end 1891.56659375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 1893.67596875
transcript.pyannote[5].end 1895.41409375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 1895.48159375
transcript.pyannote[6].end 1898.78909375
transcript.pyannote[7].speaker SPEAKER_19
transcript.pyannote[7].start 1899.26159375
transcript.pyannote[7].end 1961.44596875
transcript.pyannote[8].speaker SPEAKER_19
transcript.pyannote[8].start 1961.59784375
transcript.pyannote[8].end 2041.26471875
transcript.pyannote[9].speaker SPEAKER_19
transcript.pyannote[9].start 2041.34909375
transcript.pyannote[9].end 2045.92221875
transcript.pyannote[10].speaker SPEAKER_19
transcript.pyannote[10].start 2046.02346875
transcript.pyannote[10].end 2050.90034375
transcript.pyannote[11].speaker SPEAKER_19
transcript.pyannote[11].start 2051.32221875
transcript.pyannote[11].end 2057.83596875
transcript.pyannote[12].speaker SPEAKER_19
transcript.pyannote[12].start 2057.86971875
transcript.pyannote[12].end 2073.32721875
transcript.pyannote[13].speaker SPEAKER_19
transcript.pyannote[13].start 2074.32284375
transcript.pyannote[13].end 2088.49784375
transcript.pyannote[14].speaker SPEAKER_19
transcript.pyannote[14].start 2088.73409375
transcript.pyannote[14].end 2142.27846875
transcript.pyannote[15].speaker SPEAKER_19
transcript.pyannote[15].start 2142.31221875
transcript.pyannote[15].end 2144.96159375
transcript.pyannote[16].speaker SPEAKER_19
transcript.pyannote[16].start 2145.11346875
transcript.pyannote[16].end 2148.57284375
transcript.pyannote[17].speaker SPEAKER_19
transcript.pyannote[17].start 2148.77534375
transcript.pyannote[17].end 2152.62284375
transcript.pyannote[18].speaker SPEAKER_19
transcript.pyannote[18].start 2153.14596875
transcript.pyannote[18].end 2155.13721875
transcript.pyannote[19].speaker SPEAKER_19
transcript.pyannote[19].start 2155.17096875
transcript.pyannote[19].end 2172.90659375
transcript.pyannote[20].speaker SPEAKER_19
transcript.pyannote[20].start 2173.17659375
transcript.pyannote[20].end 2189.10659375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 2194.79346875
transcript.pyannote[21].end 2198.86034375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 2200.37909375
transcript.pyannote[22].end 2202.45471875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 2203.07909375
transcript.pyannote[23].end 2209.32284375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 2209.86284375
transcript.pyannote[24].end 2211.76971875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 2212.24221875
transcript.pyannote[25].end 2217.42284375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 2217.47346875
transcript.pyannote[26].end 2221.08471875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 2221.40534375
transcript.pyannote[27].end 2222.75534375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 2226.38346875
transcript.pyannote[28].end 2227.29471875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 2229.58971875
transcript.pyannote[29].end 2230.72034375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 2233.75784375
transcript.pyannote[30].end 2234.02784375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 2234.46659375
transcript.pyannote[31].end 2235.58034375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 2236.28909375
transcript.pyannote[32].end 2237.82471875
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 2240.27159375
transcript.pyannote[33].end 2242.53284375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 2243.84909375
transcript.pyannote[34].end 2244.16971875
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 2245.78971875
transcript.pyannote[35].end 2248.69221875
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 2251.99971875
transcript.pyannote[36].end 2257.02846875
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 2257.85534375
transcript.pyannote[37].end 2260.79159375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 2263.15409375
transcript.pyannote[38].end 2265.53346875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 2267.89596875
transcript.pyannote[39].end 2271.35534375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 2271.94596875
transcript.pyannote[40].end 2272.23284375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 2273.38034375
transcript.pyannote[41].end 2277.59909375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 2278.79721875
transcript.pyannote[42].end 2279.15159375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 2284.43346875
transcript.pyannote[43].end 2287.42034375
transcript.pyannote[44].speaker SPEAKER_07
transcript.pyannote[44].start 2296.02659375
transcript.pyannote[44].end 2296.06034375
transcript.pyannote[45].speaker SPEAKER_22
transcript.pyannote[45].start 2296.06034375
transcript.pyannote[45].end 2296.11096875
transcript.pyannote[46].speaker SPEAKER_07
transcript.pyannote[46].start 2296.11096875
transcript.pyannote[46].end 2296.19534375
transcript.pyannote[47].speaker SPEAKER_07
transcript.pyannote[47].start 2297.83221875
transcript.pyannote[47].end 2383.11846875
transcript.pyannote[48].speaker SPEAKER_07
transcript.pyannote[48].start 2383.96221875
transcript.pyannote[48].end 2388.73784375
transcript.pyannote[49].speaker SPEAKER_07
transcript.pyannote[49].start 2389.86846875
transcript.pyannote[49].end 2403.75659375
transcript.pyannote[50].speaker SPEAKER_07
transcript.pyannote[50].start 2404.24596875
transcript.pyannote[50].end 2432.83221875
transcript.pyannote[51].speaker SPEAKER_07
transcript.pyannote[51].start 2433.49034375
transcript.pyannote[51].end 2448.18846875
transcript.pyannote[52].speaker SPEAKER_07
transcript.pyannote[52].start 2448.52596875
transcript.pyannote[52].end 2451.27659375
transcript.pyannote[53].speaker SPEAKER_07
transcript.pyannote[53].start 2451.47909375
transcript.pyannote[53].end 2453.82471875
transcript.pyannote[54].speaker SPEAKER_07
transcript.pyannote[54].start 2454.73596875
transcript.pyannote[54].end 2487.49034375
transcript.pyannote[55].speaker SPEAKER_07
transcript.pyannote[55].start 2488.08096875
transcript.pyannote[55].end 2502.20534375
transcript.pyannote[56].speaker SPEAKER_07
transcript.pyannote[56].start 2502.45846875
transcript.pyannote[56].end 2512.36409375
transcript.pyannote[57].speaker SPEAKER_07
transcript.pyannote[57].start 2512.78596875
transcript.pyannote[57].end 2528.73284375
transcript.pyannote[58].speaker SPEAKER_07
transcript.pyannote[58].start 2529.27284375
transcript.pyannote[58].end 2545.10159375
transcript.pyannote[59].speaker SPEAKER_07
transcript.pyannote[59].start 2545.45596875
transcript.pyannote[59].end 2571.69659375
transcript.pyannote[60].speaker SPEAKER_07
transcript.pyannote[60].start 2571.78096875
transcript.pyannote[60].end 2573.45159375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 2583.88034375
transcript.pyannote[61].end 2588.14971875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 2589.09471875
transcript.pyannote[62].end 2594.46096875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 2595.15284375
transcript.pyannote[63].end 2597.09346875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 2597.29596875
transcript.pyannote[64].end 2603.08409375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 2603.48909375
transcript.pyannote[65].end 2604.68721875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 2605.31159375
transcript.pyannote[66].end 2609.96909375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 2610.52596875
transcript.pyannote[67].end 2613.12471875
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 2613.85034375
transcript.pyannote[68].end 2635.87221875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 2636.74971875
transcript.pyannote[69].end 2649.87846875
transcript.pyannote[70].speaker SPEAKER_16
transcript.pyannote[70].start 2656.88159375
transcript.pyannote[70].end 2658.28221875
transcript.pyannote[71].speaker SPEAKER_08
transcript.pyannote[71].start 2665.70721875
transcript.pyannote[71].end 2666.16284375
transcript.pyannote[72].speaker SPEAKER_16
transcript.pyannote[72].start 2666.16284375
transcript.pyannote[72].end 2680.99596875
transcript.pyannote[73].speaker SPEAKER_16
transcript.pyannote[73].start 2681.75534375
transcript.pyannote[73].end 2682.46409375
transcript.pyannote[74].speaker SPEAKER_16
transcript.pyannote[74].start 2683.17284375
transcript.pyannote[74].end 2684.74221875
transcript.pyannote[75].speaker SPEAKER_16
transcript.pyannote[75].start 2685.46784375
transcript.pyannote[75].end 2687.15534375
transcript.pyannote[76].speaker SPEAKER_16
transcript.pyannote[76].start 2687.23971875
transcript.pyannote[76].end 2688.72471875
transcript.pyannote[77].speaker SPEAKER_16
transcript.pyannote[77].start 2689.87221875
transcript.pyannote[77].end 2693.75346875
transcript.pyannote[78].speaker SPEAKER_08
transcript.pyannote[78].start 2693.63534375
transcript.pyannote[78].end 2694.74909375
transcript.pyannote[79].speaker SPEAKER_16
transcript.pyannote[79].start 2694.59721875
transcript.pyannote[79].end 2706.46034375
transcript.pyannote[80].speaker SPEAKER_16
transcript.pyannote[80].start 2706.71346875
transcript.pyannote[80].end 2711.23596875
transcript.pyannote[81].speaker SPEAKER_16
transcript.pyannote[81].start 2711.67471875
transcript.pyannote[81].end 2722.33971875
transcript.pyannote[82].speaker SPEAKER_16
transcript.pyannote[82].start 2722.93034375
transcript.pyannote[82].end 2731.23284375
transcript.pyannote[83].speaker SPEAKER_07
transcript.pyannote[83].start 2733.05534375
transcript.pyannote[83].end 2740.66596875
transcript.pyannote[84].speaker SPEAKER_16
transcript.pyannote[84].start 2740.63221875
transcript.pyannote[84].end 2760.07221875
transcript.pyannote[85].speaker SPEAKER_16
transcript.pyannote[85].start 2760.47721875
transcript.pyannote[85].end 2780.59221875
transcript.pyannote[86].speaker SPEAKER_16
transcript.pyannote[86].start 2781.16596875
transcript.pyannote[86].end 2793.23159375
transcript.pyannote[87].speaker SPEAKER_16
transcript.pyannote[87].start 2793.50159375
transcript.pyannote[87].end 2821.22721875
transcript.pyannote[88].speaker SPEAKER_16
transcript.pyannote[88].start 2821.29471875
transcript.pyannote[88].end 2823.21846875
transcript.pyannote[89].speaker SPEAKER_16
transcript.pyannote[89].start 2823.65721875
transcript.pyannote[89].end 2826.08721875
transcript.pyannote[90].speaker SPEAKER_16
transcript.pyannote[90].start 2826.12096875
transcript.pyannote[90].end 2828.77034375
transcript.pyannote[91].speaker SPEAKER_16
transcript.pyannote[91].start 2829.31034375
transcript.pyannote[91].end 2831.79096875
transcript.pyannote[92].speaker SPEAKER_16
transcript.pyannote[92].start 2831.80784375
transcript.pyannote[92].end 2835.82409375
transcript.pyannote[93].speaker SPEAKER_16
transcript.pyannote[93].start 2836.06034375
transcript.pyannote[93].end 2839.82346875
transcript.pyannote[94].speaker SPEAKER_07
transcript.pyannote[94].start 2839.82346875
transcript.pyannote[94].end 2842.52346875
transcript.pyannote[95].speaker SPEAKER_16
transcript.pyannote[95].start 2840.54909375
transcript.pyannote[95].end 2840.98784375
transcript.pyannote[96].speaker SPEAKER_16
transcript.pyannote[96].start 2843.63721875
transcript.pyannote[96].end 2855.16284375
transcript.pyannote[97].speaker SPEAKER_16
transcript.pyannote[97].start 2855.50034375
transcript.pyannote[97].end 2888.22096875
transcript.pyannote[98].speaker SPEAKER_16
transcript.pyannote[98].start 2888.69346875
transcript.pyannote[98].end 2891.89971875
transcript.pyannote[99].speaker SPEAKER_07
transcript.pyannote[99].start 2888.72721875
transcript.pyannote[99].end 2889.36846875
transcript.pyannote[100].speaker SPEAKER_07
transcript.pyannote[100].start 2892.05159375
transcript.pyannote[100].end 2903.69534375
transcript.pyannote[101].speaker SPEAKER_16
transcript.pyannote[101].start 2902.75034375
transcript.pyannote[101].end 2904.57284375
transcript.pyannote[102].speaker SPEAKER_07
transcript.pyannote[102].start 2904.75846875
transcript.pyannote[102].end 2905.02846875
transcript.pyannote[103].speaker SPEAKER_16
transcript.pyannote[103].start 2905.02846875
transcript.pyannote[103].end 2912.45346875
transcript.pyannote[104].speaker SPEAKER_16
transcript.pyannote[104].start 2912.95971875
transcript.pyannote[104].end 2914.74846875
transcript.pyannote[105].speaker SPEAKER_07
transcript.pyannote[105].start 2913.01034375
transcript.pyannote[105].end 2913.53346875
transcript.pyannote[106].speaker SPEAKER_07
transcript.pyannote[106].start 2914.54596875
transcript.pyannote[106].end 2914.78221875
transcript.pyannote[107].speaker SPEAKER_07
transcript.pyannote[107].start 2914.98471875
transcript.pyannote[107].end 2927.26971875
transcript.pyannote[108].speaker SPEAKER_16
transcript.pyannote[108].start 2917.04346875
transcript.pyannote[108].end 2917.49909375
transcript.pyannote[109].speaker SPEAKER_16
transcript.pyannote[109].start 2927.03346875
transcript.pyannote[109].end 2948.29596875
transcript.pyannote[110].speaker SPEAKER_16
transcript.pyannote[110].start 2948.78534375
transcript.pyannote[110].end 3006.49784375
transcript.pyannote[111].speaker SPEAKER_16
transcript.pyannote[111].start 3008.08409375
transcript.pyannote[111].end 3008.18534375
transcript.pyannote[112].speaker SPEAKER_22
transcript.pyannote[112].start 3008.48909375
transcript.pyannote[112].end 3008.52284375
transcript.pyannote[113].speaker SPEAKER_07
transcript.pyannote[113].start 3008.52284375
transcript.pyannote[113].end 3008.53971875
transcript.pyannote[114].speaker SPEAKER_16
transcript.pyannote[114].start 3008.53971875
transcript.pyannote[114].end 3008.55659375
transcript.pyannote[115].speaker SPEAKER_07
transcript.pyannote[115].start 3008.55659375
transcript.pyannote[115].end 3008.62409375
transcript.pyannote[116].speaker SPEAKER_16
transcript.pyannote[116].start 3008.62409375
transcript.pyannote[116].end 3008.69159375
transcript.pyannote[117].speaker SPEAKER_07
transcript.pyannote[117].start 3008.64096875
transcript.pyannote[117].end 3017.85471875
transcript.pyannote[118].speaker SPEAKER_16
transcript.pyannote[118].start 3009.70409375
transcript.pyannote[118].end 3010.56471875
transcript.pyannote[119].speaker SPEAKER_16
transcript.pyannote[119].start 3019.00221875
transcript.pyannote[119].end 3022.02284375
transcript.pyannote[120].speaker SPEAKER_16
transcript.pyannote[120].start 3024.45284375
transcript.pyannote[120].end 3026.86596875
transcript.pyannote[121].speaker SPEAKER_16
transcript.pyannote[121].start 3026.95034375
transcript.pyannote[121].end 3027.70971875
transcript.pyannote[122].speaker SPEAKER_07
transcript.pyannote[122].start 3028.62096875
transcript.pyannote[122].end 3035.92784375
transcript.pyannote[123].speaker SPEAKER_16
transcript.pyannote[123].start 3036.07971875
transcript.pyannote[123].end 3038.10471875
transcript.pyannote[124].speaker SPEAKER_16
transcript.pyannote[124].start 3038.35784375
transcript.pyannote[124].end 3040.19721875
transcript.pyannote[125].speaker SPEAKER_16
transcript.pyannote[125].start 3042.13784375
transcript.pyannote[125].end 3055.14846875
transcript.pyannote[126].speaker SPEAKER_16
transcript.pyannote[126].start 3055.68846875
transcript.pyannote[126].end 3062.05034375
transcript.pyannote[127].speaker SPEAKER_16
transcript.pyannote[127].start 3062.35409375
transcript.pyannote[127].end 3080.84909375
transcript.pyannote[128].speaker SPEAKER_16
transcript.pyannote[128].start 3081.82784375
transcript.pyannote[128].end 3084.12284375
transcript.pyannote[129].speaker SPEAKER_16
transcript.pyannote[129].start 3085.59096875
transcript.pyannote[129].end 3099.22596875
transcript.pyannote[130].speaker SPEAKER_07
transcript.pyannote[130].start 3100.10346875
transcript.pyannote[130].end 3110.46471875
transcript.pyannote[131].speaker SPEAKER_16
transcript.pyannote[131].start 3100.39034375
transcript.pyannote[131].end 3100.47471875
transcript.pyannote[132].speaker SPEAKER_16
transcript.pyannote[132].start 3100.54221875
transcript.pyannote[132].end 3100.72784375
transcript.pyannote[133].speaker SPEAKER_16
transcript.pyannote[133].start 3110.46471875
transcript.pyannote[133].end 3116.57346875
transcript.pyannote[134].speaker SPEAKER_16
transcript.pyannote[134].start 3117.06284375
transcript.pyannote[134].end 3130.47846875
transcript.pyannote[135].speaker SPEAKER_07
transcript.pyannote[135].start 3131.87909375
transcript.pyannote[135].end 3151.75784375
transcript.pyannote[136].speaker SPEAKER_16
transcript.pyannote[136].start 3132.28409375
transcript.pyannote[136].end 3133.81971875
transcript.pyannote[137].speaker SPEAKER_08
transcript.pyannote[137].start 3140.02971875
transcript.pyannote[137].end 3140.06346875
transcript.pyannote[138].speaker SPEAKER_22
transcript.pyannote[138].start 3140.06346875
transcript.pyannote[138].end 3140.14784375
transcript.pyannote[139].speaker SPEAKER_08
transcript.pyannote[139].start 3140.14784375
transcript.pyannote[139].end 3140.16471875
transcript.pyannote[140].speaker SPEAKER_22
transcript.pyannote[140].start 3140.16471875
transcript.pyannote[140].end 3140.18159375
transcript.pyannote[141].speaker SPEAKER_08
transcript.pyannote[141].start 3140.78909375
transcript.pyannote[141].end 3140.83971875
transcript.pyannote[142].speaker SPEAKER_22
transcript.pyannote[142].start 3140.83971875
transcript.pyannote[142].end 3141.97034375
transcript.pyannote[143].speaker SPEAKER_08
transcript.pyannote[143].start 3141.97034375
transcript.pyannote[143].end 3142.02096875
transcript.pyannote[144].speaker SPEAKER_22
transcript.pyannote[144].start 3142.02096875
transcript.pyannote[144].end 3142.27409375
transcript.pyannote[145].speaker SPEAKER_22
transcript.pyannote[145].start 3146.00346875
transcript.pyannote[145].end 3146.08784375
transcript.pyannote[146].speaker SPEAKER_16
transcript.pyannote[146].start 3146.08784375
transcript.pyannote[146].end 3160.33034375
transcript.pyannote[147].speaker SPEAKER_07
transcript.pyannote[147].start 3153.15846875
transcript.pyannote[147].end 3153.58034375
transcript.pyannote[148].speaker SPEAKER_08
transcript.pyannote[148].start 3153.58034375
transcript.pyannote[148].end 3153.64784375
transcript.pyannote[149].speaker SPEAKER_07
transcript.pyannote[149].start 3153.64784375
transcript.pyannote[149].end 3153.79971875
transcript.pyannote[150].speaker SPEAKER_08
transcript.pyannote[150].start 3153.79971875
transcript.pyannote[150].end 3156.14534375
transcript.pyannote[151].speaker SPEAKER_16
transcript.pyannote[151].start 3160.49909375
transcript.pyannote[151].end 3176.83409375
transcript.pyannote[152].speaker SPEAKER_16
transcript.pyannote[152].start 3177.28971875
transcript.pyannote[152].end 3186.72284375
transcript.pyannote[153].speaker SPEAKER_07
transcript.pyannote[153].start 3186.43596875
transcript.pyannote[153].end 3197.94471875
transcript.pyannote[154].speaker SPEAKER_16
transcript.pyannote[154].start 3192.27471875
transcript.pyannote[154].end 3193.33784375
transcript.pyannote[155].speaker SPEAKER_16
transcript.pyannote[155].start 3193.37159375
transcript.pyannote[155].end 3194.23221875
transcript.pyannote[156].speaker SPEAKER_16
transcript.pyannote[156].start 3197.42159375
transcript.pyannote[156].end 3211.34346875
transcript.pyannote[157].speaker SPEAKER_07
transcript.pyannote[157].start 3199.88534375
transcript.pyannote[157].end 3200.34096875
transcript.pyannote[158].speaker SPEAKER_16
transcript.pyannote[158].start 3211.59659375
transcript.pyannote[158].end 3215.05596875
transcript.pyannote[159].speaker SPEAKER_07
transcript.pyannote[159].start 3213.99284375
transcript.pyannote[159].end 3224.60721875
transcript.pyannote[160].speaker SPEAKER_16
transcript.pyannote[160].start 3224.60721875
transcript.pyannote[160].end 3298.90784375
transcript.pyannote[161].speaker SPEAKER_08
transcript.pyannote[161].start 3290.58846875
transcript.pyannote[161].end 3291.82034375
transcript.pyannote[162].speaker SPEAKER_16
transcript.pyannote[162].start 3299.27909375
transcript.pyannote[162].end 3317.08221875
transcript.pyannote[163].speaker SPEAKER_07
transcript.pyannote[163].start 3317.25096875
transcript.pyannote[163].end 3324.57471875
transcript.pyannote[164].speaker SPEAKER_16
transcript.pyannote[164].start 3325.11471875
transcript.pyannote[164].end 3333.67034375
transcript.pyannote[165].speaker SPEAKER_07
transcript.pyannote[165].start 3333.19784375
transcript.pyannote[165].end 3346.96784375
transcript.pyannote[166].speaker SPEAKER_16
transcript.pyannote[166].start 3333.75471875
transcript.pyannote[166].end 3334.59846875
transcript.pyannote[167].speaker SPEAKER_16
transcript.pyannote[167].start 3335.15534375
transcript.pyannote[167].end 3336.70784375
transcript.pyannote[168].speaker SPEAKER_16
transcript.pyannote[168].start 3346.78221875
transcript.pyannote[168].end 3348.31784375
transcript.pyannote[169].speaker SPEAKER_07
transcript.pyannote[169].start 3347.11971875
transcript.pyannote[169].end 3349.78596875
transcript.pyannote[170].speaker SPEAKER_16
transcript.pyannote[170].start 3349.34721875
transcript.pyannote[170].end 3353.29596875
transcript.pyannote[171].speaker SPEAKER_07
transcript.pyannote[171].start 3351.92909375
transcript.pyannote[171].end 3352.57034375
transcript.pyannote[172].speaker SPEAKER_07
transcript.pyannote[172].start 3352.73909375
transcript.pyannote[172].end 3357.78471875
transcript.pyannote[173].speaker SPEAKER_16
transcript.pyannote[173].start 3355.77659375
transcript.pyannote[173].end 3356.06346875
transcript.pyannote[174].speaker SPEAKER_16
transcript.pyannote[174].start 3357.41346875
transcript.pyannote[174].end 3362.57721875
transcript.pyannote[175].speaker SPEAKER_07
transcript.pyannote[175].start 3360.29909375
transcript.pyannote[175].end 3361.59846875
transcript.pyannote[176].speaker SPEAKER_07
transcript.pyannote[176].start 3362.64471875
transcript.pyannote[176].end 3374.18721875
transcript.pyannote[177].speaker SPEAKER_16
transcript.pyannote[177].start 3368.43284375
transcript.pyannote[177].end 3369.61409375
transcript.pyannote[178].speaker SPEAKER_16
transcript.pyannote[178].start 3371.53784375
transcript.pyannote[178].end 3373.36034375
transcript.pyannote[179].speaker SPEAKER_16
transcript.pyannote[179].start 3373.44471875
transcript.pyannote[179].end 3398.28471875
transcript.pyannote[180].speaker SPEAKER_16
transcript.pyannote[180].start 3399.06096875
transcript.pyannote[180].end 3401.10284375
transcript.pyannote[181].speaker SPEAKER_07
transcript.pyannote[181].start 3401.10284375
transcript.pyannote[181].end 3401.87909375
transcript.pyannote[182].speaker SPEAKER_16
transcript.pyannote[182].start 3401.44034375
transcript.pyannote[182].end 3402.65534375
transcript.pyannote[183].speaker SPEAKER_07
transcript.pyannote[183].start 3402.72284375
transcript.pyannote[183].end 3404.49471875
transcript.pyannote[184].speaker SPEAKER_07
transcript.pyannote[184].start 3404.73096875
transcript.pyannote[184].end 3417.57284375
transcript.pyannote[185].speaker SPEAKER_16
transcript.pyannote[185].start 3416.15534375
transcript.pyannote[185].end 3431.93346875
transcript.pyannote[186].speaker SPEAKER_07
transcript.pyannote[186].start 3432.50721875
transcript.pyannote[186].end 3444.60659375
transcript.pyannote[187].speaker SPEAKER_16
transcript.pyannote[187].start 3444.79221875
transcript.pyannote[187].end 3448.33596875
transcript.pyannote[188].speaker SPEAKER_07
transcript.pyannote[188].start 3445.97346875
transcript.pyannote[188].end 3466.66221875
transcript.pyannote[189].speaker SPEAKER_08
transcript.pyannote[189].start 3457.51596875
transcript.pyannote[189].end 3458.96721875
transcript.pyannote[190].speaker SPEAKER_16
transcript.pyannote[190].start 3458.96721875
transcript.pyannote[190].end 3459.87846875
transcript.pyannote[191].speaker SPEAKER_16
transcript.pyannote[191].start 3461.39721875
transcript.pyannote[191].end 3463.06784375
transcript.pyannote[192].speaker SPEAKER_16
transcript.pyannote[192].start 3466.79721875
transcript.pyannote[192].end 3476.55096875
transcript.pyannote[193].speaker SPEAKER_07
transcript.pyannote[193].start 3475.09971875
transcript.pyannote[193].end 3479.97659375
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 3478.40721875
transcript.pyannote[194].end 3478.42409375
transcript.pyannote[195].speaker SPEAKER_16
transcript.pyannote[195].start 3478.42409375
transcript.pyannote[195].end 3478.96409375
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 3478.96409375
transcript.pyannote[196].end 3479.13284375
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 3479.52096875
transcript.pyannote[197].end 3479.94284375
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 3479.97659375
transcript.pyannote[198].end 3480.07784375
transcript.pyannote[199].speaker SPEAKER_03
transcript.pyannote[199].start 3481.17471875
transcript.pyannote[199].end 3482.71034375
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 3483.28409375
transcript.pyannote[200].end 3485.83221875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 3495.09659375
transcript.pyannote[201].end 3496.21034375
transcript.pyannote[202].speaker SPEAKER_22
transcript.pyannote[202].start 3495.24846875
transcript.pyannote[202].end 3495.68721875
transcript.pyannote[203].speaker SPEAKER_22
transcript.pyannote[203].start 3496.61534375
transcript.pyannote[203].end 3497.02034375
transcript.pyannote[204].speaker SPEAKER_08
transcript.pyannote[204].start 3504.25971875
transcript.pyannote[204].end 3504.78284375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 3505.37346875
transcript.pyannote[205].end 3506.47034375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 3507.24659375
transcript.pyannote[206].end 3508.14096875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 3508.34346875
transcript.pyannote[207].end 3516.32534375
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 3516.57846875
transcript.pyannote[208].end 3521.80971875
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 3522.13034375
transcript.pyannote[209].end 3528.03659375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 3528.50909375
transcript.pyannote[210].end 3564.68909375
transcript.pyannote[211].speaker SPEAKER_07
transcript.pyannote[211].start 3566.17409375
transcript.pyannote[211].end 3575.64096875
transcript.pyannote[212].speaker SPEAKER_07
transcript.pyannote[212].start 3576.48471875
transcript.pyannote[212].end 3596.56596875
transcript.pyannote[213].speaker SPEAKER_22
transcript.pyannote[213].start 3596.71784375
transcript.pyannote[213].end 3597.12284375
transcript.pyannote[214].speaker SPEAKER_07
transcript.pyannote[214].start 3597.12284375
transcript.pyannote[214].end 3603.83909375
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 3604.36221875
transcript.pyannote[215].end 3606.13409375
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 3606.53909375
transcript.pyannote[216].end 3613.77846875
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 3613.99784375
transcript.pyannote[217].end 3623.56596875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 3623.90346875
transcript.pyannote[218].end 3629.30346875
transcript.pyannote[219].speaker SPEAKER_01
transcript.pyannote[219].start 3629.91096875
transcript.pyannote[219].end 3667.25534375
transcript.pyannote[220].speaker SPEAKER_01
transcript.pyannote[220].start 3667.45784375
transcript.pyannote[220].end 3667.89659375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 3668.18346875
transcript.pyannote[221].end 3718.31909375
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 3718.94346875
transcript.pyannote[222].end 3726.73971875
transcript.pyannote[223].speaker SPEAKER_01
transcript.pyannote[223].start 3726.80721875
transcript.pyannote[223].end 3731.85284375
transcript.pyannote[224].speaker SPEAKER_01
transcript.pyannote[224].start 3732.27471875
transcript.pyannote[224].end 3735.80159375
transcript.pyannote[225].speaker SPEAKER_01
transcript.pyannote[225].start 3736.10534375
transcript.pyannote[225].end 3756.69284375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 3757.16534375
transcript.pyannote[226].end 3791.94471875
transcript.pyannote[227].speaker SPEAKER_01
transcript.pyannote[227].start 3792.53534375
transcript.pyannote[227].end 3801.02346875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 3801.32721875
transcript.pyannote[228].end 3820.69971875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 3821.32409375
transcript.pyannote[229].end 3828.96846875
transcript.pyannote[230].speaker SPEAKER_01
transcript.pyannote[230].start 3829.42409375
transcript.pyannote[230].end 3836.10659375
transcript.pyannote[231].speaker SPEAKER_07
transcript.pyannote[231].start 3837.16971875
transcript.pyannote[231].end 3839.97096875
transcript.pyannote[232].speaker SPEAKER_07
transcript.pyannote[232].start 3840.17346875
transcript.pyannote[232].end 3843.85221875
transcript.pyannote[233].speaker SPEAKER_07
transcript.pyannote[233].start 3844.49346875
transcript.pyannote[233].end 3844.96596875
transcript.pyannote[234].speaker SPEAKER_07
transcript.pyannote[234].start 3845.01659375
transcript.pyannote[234].end 3858.19596875
transcript.pyannote[235].speaker SPEAKER_07
transcript.pyannote[235].start 3858.68534375
transcript.pyannote[235].end 3860.67659375
transcript.pyannote[236].speaker SPEAKER_07
transcript.pyannote[236].start 3861.03096875
transcript.pyannote[236].end 3870.71721875
transcript.pyannote[237].speaker SPEAKER_08
transcript.pyannote[237].start 3863.96721875
transcript.pyannote[237].end 3866.24534375
transcript.pyannote[238].speaker SPEAKER_00
transcript.pyannote[238].start 3866.24534375
transcript.pyannote[238].end 3866.31284375
transcript.pyannote[239].speaker SPEAKER_07
transcript.pyannote[239].start 3871.88159375
transcript.pyannote[239].end 3877.77096875
transcript.pyannote[240].speaker SPEAKER_07
transcript.pyannote[240].start 3878.20971875
transcript.pyannote[240].end 3882.54659375
transcript.pyannote[241].speaker SPEAKER_07
transcript.pyannote[241].start 3883.64346875
transcript.pyannote[241].end 3903.97784375
transcript.pyannote[242].speaker SPEAKER_07
transcript.pyannote[242].start 3904.19721875
transcript.pyannote[242].end 3905.68221875
transcript.pyannote[243].speaker SPEAKER_07
transcript.pyannote[243].start 3906.61034375
transcript.pyannote[243].end 3911.03159375
transcript.pyannote[244].speaker SPEAKER_07
transcript.pyannote[244].start 3911.60534375
transcript.pyannote[244].end 3957.43784375
transcript.pyannote[245].speaker SPEAKER_07
transcript.pyannote[245].start 3957.97784375
transcript.pyannote[245].end 3966.41534375
transcript.pyannote[246].speaker SPEAKER_22
transcript.pyannote[246].start 3963.54659375
transcript.pyannote[246].end 3963.66471875
transcript.pyannote[247].speaker SPEAKER_01
transcript.pyannote[247].start 3963.66471875
transcript.pyannote[247].end 3964.39034375
transcript.pyannote[248].speaker SPEAKER_01
transcript.pyannote[248].start 3966.41534375
transcript.pyannote[248].end 3971.88284375
transcript.pyannote[249].speaker SPEAKER_07
transcript.pyannote[249].start 3971.51159375
transcript.pyannote[249].end 3971.84909375
transcript.pyannote[250].speaker SPEAKER_01
transcript.pyannote[250].start 3972.35534375
transcript.pyannote[250].end 3999.42284375
transcript.pyannote[251].speaker SPEAKER_01
transcript.pyannote[251].start 3999.86159375
transcript.pyannote[251].end 4014.82971875
transcript.pyannote[252].speaker SPEAKER_01
transcript.pyannote[252].start 4014.96471875
transcript.pyannote[252].end 4015.04909375
transcript.pyannote[253].speaker SPEAKER_01
transcript.pyannote[253].start 4015.06596875
transcript.pyannote[253].end 4069.08284375
transcript.pyannote[254].speaker SPEAKER_07
transcript.pyannote[254].start 4069.25159375
transcript.pyannote[254].end 4116.23159375
transcript.pyannote[255].speaker SPEAKER_07
transcript.pyannote[255].start 4116.67034375
transcript.pyannote[255].end 4121.83409375
transcript.pyannote[256].speaker SPEAKER_07
transcript.pyannote[256].start 4123.38659375
transcript.pyannote[256].end 4129.10721875
transcript.pyannote[257].speaker SPEAKER_01
transcript.pyannote[257].start 4129.10721875
transcript.pyannote[257].end 4178.06159375
transcript.pyannote[258].speaker SPEAKER_01
transcript.pyannote[258].start 4178.75346875
transcript.pyannote[258].end 4192.77659375
transcript.pyannote[259].speaker SPEAKER_07
transcript.pyannote[259].start 4195.96596875
transcript.pyannote[259].end 4197.34971875
transcript.pyannote[260].speaker SPEAKER_10
transcript.pyannote[260].start 4198.07534375
transcript.pyannote[260].end 4209.65159375
transcript.pyannote[261].speaker SPEAKER_07
transcript.pyannote[261].start 4202.41221875
transcript.pyannote[261].end 4202.88471875
transcript.pyannote[262].speaker SPEAKER_01
transcript.pyannote[262].start 4202.88471875
transcript.pyannote[262].end 4202.90159375
transcript.pyannote[263].speaker SPEAKER_10
transcript.pyannote[263].start 4209.90471875
transcript.pyannote[263].end 4210.71471875
transcript.pyannote[264].speaker SPEAKER_01
transcript.pyannote[264].start 4210.46159375
transcript.pyannote[264].end 4225.05846875
transcript.pyannote[265].speaker SPEAKER_01
transcript.pyannote[265].start 4225.17659375
transcript.pyannote[265].end 4252.19346875
transcript.pyannote[266].speaker SPEAKER_07
transcript.pyannote[266].start 4254.01596875
transcript.pyannote[266].end 4257.74534375
transcript.pyannote[267].speaker SPEAKER_07
transcript.pyannote[267].start 4258.13346875
transcript.pyannote[267].end 4274.29971875
transcript.pyannote[268].speaker SPEAKER_01
transcript.pyannote[268].start 4272.39284375
transcript.pyannote[268].end 4272.96659375
transcript.pyannote[269].speaker SPEAKER_07
transcript.pyannote[269].start 4274.90721875
transcript.pyannote[269].end 4278.92346875
transcript.pyannote[270].speaker SPEAKER_01
transcript.pyannote[270].start 4278.87284375
transcript.pyannote[270].end 4278.88971875
transcript.pyannote[271].speaker SPEAKER_01
transcript.pyannote[271].start 4278.90659375
transcript.pyannote[271].end 4284.99846875
transcript.pyannote[272].speaker SPEAKER_01
transcript.pyannote[272].start 4285.70721875
transcript.pyannote[272].end 4346.25471875
transcript.pyannote[273].speaker SPEAKER_01
transcript.pyannote[273].start 4346.72721875
transcript.pyannote[273].end 4350.01784375
transcript.pyannote[274].speaker SPEAKER_01
transcript.pyannote[274].start 4350.30471875
transcript.pyannote[274].end 4370.28471875
transcript.pyannote[275].speaker SPEAKER_01
transcript.pyannote[275].start 4371.06096875
transcript.pyannote[275].end 4374.38534375
transcript.pyannote[276].speaker SPEAKER_07
transcript.pyannote[276].start 4374.60471875
transcript.pyannote[276].end 4388.10471875
transcript.pyannote[277].speaker SPEAKER_01
transcript.pyannote[277].start 4387.83471875
transcript.pyannote[277].end 4388.96534375
transcript.pyannote[278].speaker SPEAKER_07
transcript.pyannote[278].start 4388.17221875
transcript.pyannote[278].end 4388.47596875
transcript.pyannote[279].speaker SPEAKER_07
transcript.pyannote[279].start 4390.07909375
transcript.pyannote[279].end 4390.26471875
transcript.pyannote[280].speaker SPEAKER_03
transcript.pyannote[280].start 4390.26471875
transcript.pyannote[280].end 4390.33221875
transcript.pyannote[281].speaker SPEAKER_07
transcript.pyannote[281].start 4390.33221875
transcript.pyannote[281].end 4390.43346875
transcript.pyannote[282].speaker SPEAKER_03
transcript.pyannote[282].start 4390.43346875
transcript.pyannote[282].end 4392.35721875
transcript.pyannote[283].speaker SPEAKER_03
transcript.pyannote[283].start 4392.67784375
transcript.pyannote[283].end 4395.04034375
transcript.pyannote[284].speaker SPEAKER_03
transcript.pyannote[284].start 4397.82471875
transcript.pyannote[284].end 4399.25909375
transcript.pyannote[285].speaker SPEAKER_03
transcript.pyannote[285].start 4399.68096875
transcript.pyannote[285].end 4402.34721875
transcript.pyannote[286].speaker SPEAKER_21
transcript.pyannote[286].start 4408.91159375
transcript.pyannote[286].end 4411.88159375
transcript.pyannote[287].speaker SPEAKER_04
transcript.pyannote[287].start 4412.96159375
transcript.pyannote[287].end 4413.55221875
transcript.pyannote[288].speaker SPEAKER_07
transcript.pyannote[288].start 4418.00721875
transcript.pyannote[288].end 4418.51346875
transcript.pyannote[289].speaker SPEAKER_21
transcript.pyannote[289].start 4418.51346875
transcript.pyannote[289].end 4423.00221875
transcript.pyannote[290].speaker SPEAKER_21
transcript.pyannote[290].start 4423.66034375
transcript.pyannote[290].end 4428.18284375
transcript.pyannote[291].speaker SPEAKER_21
transcript.pyannote[291].start 4429.29659375
transcript.pyannote[291].end 4436.23221875
transcript.pyannote[292].speaker SPEAKER_21
transcript.pyannote[292].start 4436.51909375
transcript.pyannote[292].end 4437.14346875
transcript.pyannote[293].speaker SPEAKER_21
transcript.pyannote[293].start 4437.27846875
transcript.pyannote[293].end 4448.77034375
transcript.pyannote[294].speaker SPEAKER_07
transcript.pyannote[294].start 4450.00221875
transcript.pyannote[294].end 4456.36409375
transcript.pyannote[295].speaker SPEAKER_07
transcript.pyannote[295].start 4456.63409375
transcript.pyannote[295].end 4487.31284375
transcript.pyannote[296].speaker SPEAKER_21
transcript.pyannote[296].start 4486.68846875
transcript.pyannote[296].end 4489.27034375
transcript.pyannote[297].speaker SPEAKER_07
transcript.pyannote[297].start 4488.17346875
transcript.pyannote[297].end 4489.89471875
transcript.pyannote[298].speaker SPEAKER_21
transcript.pyannote[298].start 4489.43909375
transcript.pyannote[298].end 4506.58409375
transcript.pyannote[299].speaker SPEAKER_07
transcript.pyannote[299].start 4506.58409375
transcript.pyannote[299].end 4532.92596875
transcript.pyannote[300].speaker SPEAKER_22
transcript.pyannote[300].start 4526.46284375
transcript.pyannote[300].end 4526.81721875
transcript.pyannote[301].speaker SPEAKER_07
transcript.pyannote[301].start 4534.57971875
transcript.pyannote[301].end 4536.67221875
transcript.pyannote[302].speaker SPEAKER_07
transcript.pyannote[302].start 4537.06034375
transcript.pyannote[302].end 4548.36659375
transcript.pyannote[303].speaker SPEAKER_21
transcript.pyannote[303].start 4542.47721875
transcript.pyannote[303].end 4542.83159375
transcript.pyannote[304].speaker SPEAKER_21
transcript.pyannote[304].start 4543.13534375
transcript.pyannote[304].end 4543.48971875
transcript.pyannote[305].speaker SPEAKER_21
transcript.pyannote[305].start 4548.36659375
transcript.pyannote[305].end 4555.26846875
transcript.pyannote[306].speaker SPEAKER_07
transcript.pyannote[306].start 4555.03221875
transcript.pyannote[306].end 4555.45409375
transcript.pyannote[307].speaker SPEAKER_21
transcript.pyannote[307].start 4555.33596875
transcript.pyannote[307].end 4561.03971875
transcript.pyannote[308].speaker SPEAKER_07
transcript.pyannote[308].start 4558.67721875
transcript.pyannote[308].end 4559.97659375
transcript.pyannote[309].speaker SPEAKER_07
transcript.pyannote[309].start 4560.90471875
transcript.pyannote[309].end 4574.32034375
transcript.pyannote[310].speaker SPEAKER_07
transcript.pyannote[310].start 4574.84346875
transcript.pyannote[310].end 4584.58034375
transcript.pyannote[311].speaker SPEAKER_07
transcript.pyannote[311].start 4585.47471875
transcript.pyannote[311].end 4595.05971875
transcript.pyannote[312].speaker SPEAKER_08
transcript.pyannote[312].start 4585.62659375
transcript.pyannote[312].end 4585.96409375
transcript.pyannote[313].speaker SPEAKER_08
transcript.pyannote[313].start 4586.85846875
transcript.pyannote[313].end 4587.21284375
transcript.pyannote[314].speaker SPEAKER_08
transcript.pyannote[314].start 4587.65159375
transcript.pyannote[314].end 4587.70221875
transcript.pyannote[315].speaker SPEAKER_21
transcript.pyannote[315].start 4595.95409375
transcript.pyannote[315].end 4599.66659375
transcript.pyannote[316].speaker SPEAKER_07
transcript.pyannote[316].start 4599.58221875
transcript.pyannote[316].end 4601.21909375
transcript.pyannote[317].speaker SPEAKER_21
transcript.pyannote[317].start 4600.37534375
transcript.pyannote[317].end 4602.61971875
transcript.pyannote[318].speaker SPEAKER_07
transcript.pyannote[318].start 4602.65346875
transcript.pyannote[318].end 4604.30721875
transcript.pyannote[319].speaker SPEAKER_21
transcript.pyannote[319].start 4604.08784375
transcript.pyannote[319].end 4604.40846875
transcript.pyannote[320].speaker SPEAKER_07
transcript.pyannote[320].start 4604.40846875
transcript.pyannote[320].end 4604.42534375
transcript.pyannote[321].speaker SPEAKER_07
transcript.pyannote[321].start 4604.57721875
transcript.pyannote[321].end 4616.72721875
transcript.pyannote[322].speaker SPEAKER_21
transcript.pyannote[322].start 4606.56846875
transcript.pyannote[322].end 4607.02409375
transcript.pyannote[323].speaker SPEAKER_21
transcript.pyannote[323].start 4613.82471875
transcript.pyannote[323].end 4614.29721875
transcript.pyannote[324].speaker SPEAKER_21
transcript.pyannote[324].start 4615.12409375
transcript.pyannote[324].end 4652.55284375
transcript.pyannote[325].speaker SPEAKER_21
transcript.pyannote[325].start 4652.92409375
transcript.pyannote[325].end 4658.42534375
transcript.pyannote[326].speaker SPEAKER_15
transcript.pyannote[326].start 4658.98221875
transcript.pyannote[326].end 4659.01596875
transcript.pyannote[327].speaker SPEAKER_22
transcript.pyannote[327].start 4659.01596875
transcript.pyannote[327].end 4660.58534375
transcript.pyannote[328].speaker SPEAKER_15
transcript.pyannote[328].start 4660.58534375
transcript.pyannote[328].end 4660.60221875
transcript.pyannote[329].speaker SPEAKER_21
transcript.pyannote[329].start 4660.60221875
transcript.pyannote[329].end 4661.90159375
transcript.pyannote[330].speaker SPEAKER_15
transcript.pyannote[330].start 4661.49659375
transcript.pyannote[330].end 4662.39096875
transcript.pyannote[331].speaker SPEAKER_21
transcript.pyannote[331].start 4662.55971875
transcript.pyannote[331].end 4668.83721875
transcript.pyannote[332].speaker SPEAKER_15
transcript.pyannote[332].start 4669.59659375
transcript.pyannote[332].end 4670.60909375
transcript.pyannote[333].speaker SPEAKER_21
transcript.pyannote[333].start 4670.10284375
transcript.pyannote[333].end 4670.67659375
transcript.pyannote[334].speaker SPEAKER_15
transcript.pyannote[334].start 4670.67659375
transcript.pyannote[334].end 4670.72721875
transcript.pyannote[335].speaker SPEAKER_15
transcript.pyannote[335].start 4670.89596875
transcript.pyannote[335].end 4672.39784375
transcript.pyannote[336].speaker SPEAKER_21
transcript.pyannote[336].start 4671.14909375
transcript.pyannote[336].end 4671.36846875
transcript.pyannote[337].speaker SPEAKER_21
transcript.pyannote[337].start 4672.60034375
transcript.pyannote[337].end 4675.01346875
transcript.pyannote[338].speaker SPEAKER_07
transcript.pyannote[338].start 4675.58721875
transcript.pyannote[338].end 4687.60221875
transcript.pyannote[339].speaker SPEAKER_21
transcript.pyannote[339].start 4687.90596875
transcript.pyannote[339].end 4692.63096875
transcript.pyannote[340].speaker SPEAKER_21
transcript.pyannote[340].start 4693.39034375
transcript.pyannote[340].end 4710.60284375
transcript.pyannote[341].speaker SPEAKER_21
transcript.pyannote[341].start 4710.85596875
transcript.pyannote[341].end 4712.07096875
transcript.pyannote[342].speaker SPEAKER_21
transcript.pyannote[342].start 4712.49284375
transcript.pyannote[342].end 4725.01409375
transcript.pyannote[343].speaker SPEAKER_21
transcript.pyannote[343].start 4725.36846875
transcript.pyannote[343].end 4726.73534375
transcript.pyannote[344].speaker SPEAKER_21
transcript.pyannote[344].start 4727.08971875
transcript.pyannote[344].end 4731.86534375
transcript.pyannote[345].speaker SPEAKER_21
transcript.pyannote[345].start 4732.15221875
transcript.pyannote[345].end 4733.45159375
transcript.pyannote[346].speaker SPEAKER_21
transcript.pyannote[346].start 4733.92409375
transcript.pyannote[346].end 4735.42596875
transcript.pyannote[347].speaker SPEAKER_21
transcript.pyannote[347].start 4735.98284375
transcript.pyannote[347].end 4737.13034375
transcript.pyannote[348].speaker SPEAKER_21
transcript.pyannote[348].start 4737.73784375
transcript.pyannote[348].end 4738.36221875
transcript.pyannote[349].speaker SPEAKER_07
transcript.pyannote[349].start 4737.87284375
transcript.pyannote[349].end 4741.38284375
transcript.pyannote[350].speaker SPEAKER_07
transcript.pyannote[350].start 4741.68659375
transcript.pyannote[350].end 4745.11221875
transcript.pyannote[351].speaker SPEAKER_21
transcript.pyannote[351].start 4745.90534375
transcript.pyannote[351].end 4748.35221875
transcript.pyannote[352].speaker SPEAKER_07
transcript.pyannote[352].start 4749.34784375
transcript.pyannote[352].end 4749.92159375
transcript.pyannote[353].speaker SPEAKER_21
transcript.pyannote[353].start 4749.36471875
transcript.pyannote[353].end 4752.45284375
transcript.pyannote[354].speaker SPEAKER_07
transcript.pyannote[354].start 4751.11971875
transcript.pyannote[354].end 4752.09846875
transcript.pyannote[355].speaker SPEAKER_07
transcript.pyannote[355].start 4752.68909375
transcript.pyannote[355].end 4758.03846875
transcript.pyannote[356].speaker SPEAKER_21
transcript.pyannote[356].start 4758.62909375
transcript.pyannote[356].end 4758.94971875
transcript.pyannote[357].speaker SPEAKER_07
transcript.pyannote[357].start 4758.94971875
transcript.pyannote[357].end 4760.92409375
transcript.pyannote[358].speaker SPEAKER_07
transcript.pyannote[358].start 4761.10971875
transcript.pyannote[358].end 4763.53971875
transcript.pyannote[359].speaker SPEAKER_21
transcript.pyannote[359].start 4761.44721875
transcript.pyannote[359].end 4762.08846875
transcript.pyannote[360].speaker SPEAKER_21
transcript.pyannote[360].start 4763.77596875
transcript.pyannote[360].end 4787.18159375
transcript.pyannote[361].speaker SPEAKER_21
transcript.pyannote[361].start 4787.43471875
transcript.pyannote[361].end 4789.67909375
transcript.pyannote[362].speaker SPEAKER_07
transcript.pyannote[362].start 4791.46784375
transcript.pyannote[362].end 4809.99659375
transcript.pyannote[363].speaker SPEAKER_22
transcript.pyannote[363].start 4806.25034375
transcript.pyannote[363].end 4806.30096875
transcript.pyannote[364].speaker SPEAKER_07
transcript.pyannote[364].start 4810.06409375
transcript.pyannote[364].end 4811.43096875
transcript.pyannote[365].speaker SPEAKER_07
transcript.pyannote[365].start 4812.51096875
transcript.pyannote[365].end 4832.54159375
transcript.pyannote[366].speaker SPEAKER_04
transcript.pyannote[366].start 4817.45534375
transcript.pyannote[366].end 4817.67471875
transcript.pyannote[367].speaker SPEAKER_08
transcript.pyannote[367].start 4823.96909375
transcript.pyannote[367].end 4823.98596875
transcript.pyannote[368].speaker SPEAKER_22
transcript.pyannote[368].start 4823.98596875
transcript.pyannote[368].end 4824.13784375
transcript.pyannote[369].speaker SPEAKER_08
transcript.pyannote[369].start 4824.13784375
transcript.pyannote[369].end 4824.25596875
transcript.pyannote[370].speaker SPEAKER_21
transcript.pyannote[370].start 4830.06096875
transcript.pyannote[370].end 4830.26346875
transcript.pyannote[371].speaker SPEAKER_21
transcript.pyannote[371].start 4830.29721875
transcript.pyannote[371].end 4830.33096875
transcript.pyannote[372].speaker SPEAKER_21
transcript.pyannote[372].start 4832.45721875
transcript.pyannote[372].end 4832.52471875
transcript.pyannote[373].speaker SPEAKER_21
transcript.pyannote[373].start 4832.54159375
transcript.pyannote[373].end 4837.21596875
transcript.pyannote[374].speaker SPEAKER_21
transcript.pyannote[374].start 4837.31721875
transcript.pyannote[374].end 4839.89909375
transcript.pyannote[375].speaker SPEAKER_07
transcript.pyannote[375].start 4839.89909375
transcript.pyannote[375].end 4840.50659375
transcript.pyannote[376].speaker SPEAKER_21
transcript.pyannote[376].start 4840.72596875
transcript.pyannote[376].end 4869.58221875
transcript.pyannote[377].speaker SPEAKER_21
transcript.pyannote[377].start 4869.95346875
transcript.pyannote[377].end 4879.89284375
transcript.pyannote[378].speaker SPEAKER_21
transcript.pyannote[378].start 4881.85034375
transcript.pyannote[378].end 4885.10721875
transcript.pyannote[379].speaker SPEAKER_21
transcript.pyannote[379].start 4885.66409375
transcript.pyannote[379].end 4902.11721875
transcript.pyannote[380].speaker SPEAKER_21
transcript.pyannote[380].start 4902.28596875
transcript.pyannote[380].end 4904.64846875
transcript.pyannote[381].speaker SPEAKER_21
transcript.pyannote[381].start 4905.03659375
transcript.pyannote[381].end 4905.79596875
transcript.pyannote[382].speaker SPEAKER_21
transcript.pyannote[382].start 4906.25159375
transcript.pyannote[382].end 4906.92659375
transcript.pyannote[383].speaker SPEAKER_21
transcript.pyannote[383].start 4907.28096875
transcript.pyannote[383].end 4911.58409375
transcript.pyannote[384].speaker SPEAKER_21
transcript.pyannote[384].start 4911.80346875
transcript.pyannote[384].end 4965.82034375
transcript.pyannote[385].speaker SPEAKER_21
transcript.pyannote[385].start 4966.27596875
transcript.pyannote[385].end 4976.02971875
transcript.pyannote[386].speaker SPEAKER_21
transcript.pyannote[386].start 4976.35034375
transcript.pyannote[386].end 4979.64096875
transcript.pyannote[387].speaker SPEAKER_07
transcript.pyannote[387].start 4979.97846875
transcript.pyannote[387].end 4983.92721875
transcript.pyannote[388].speaker SPEAKER_07
transcript.pyannote[388].start 4984.92284375
transcript.pyannote[388].end 4985.73284375
transcript.pyannote[389].speaker SPEAKER_23
transcript.pyannote[389].start 4986.45846875
transcript.pyannote[389].end 5001.34221875
transcript.pyannote[390].speaker SPEAKER_23
transcript.pyannote[390].start 5001.42659375
transcript.pyannote[390].end 5002.67534375
transcript.pyannote[391].speaker SPEAKER_23
transcript.pyannote[391].start 5002.91159375
transcript.pyannote[391].end 5005.15596875
transcript.pyannote[392].speaker SPEAKER_23
transcript.pyannote[392].start 5005.29096875
transcript.pyannote[392].end 5015.46659375
transcript.pyannote[393].speaker SPEAKER_21
transcript.pyannote[393].start 5015.38221875
transcript.pyannote[393].end 5026.80659375
transcript.pyannote[394].speaker SPEAKER_21
transcript.pyannote[394].start 5027.32971875
transcript.pyannote[394].end 5037.15096875
transcript.pyannote[395].speaker SPEAKER_19
transcript.pyannote[395].start 5030.23221875
transcript.pyannote[395].end 5030.87346875
transcript.pyannote[396].speaker SPEAKER_07
transcript.pyannote[396].start 5030.87346875
transcript.pyannote[396].end 5030.89034375
transcript.pyannote[397].speaker SPEAKER_19
transcript.pyannote[397].start 5034.78846875
transcript.pyannote[397].end 5034.97409375
transcript.pyannote[398].speaker SPEAKER_07
transcript.pyannote[398].start 5034.97409375
transcript.pyannote[398].end 5035.61534375
transcript.pyannote[399].speaker SPEAKER_21
transcript.pyannote[399].start 5037.42096875
transcript.pyannote[399].end 5039.39534375
transcript.pyannote[400].speaker SPEAKER_21
transcript.pyannote[400].start 5040.28971875
transcript.pyannote[400].end 5047.56284375
transcript.pyannote[401].speaker SPEAKER_21
transcript.pyannote[401].start 5047.96784375
transcript.pyannote[401].end 5050.48221875
transcript.pyannote[402].speaker SPEAKER_21
transcript.pyannote[402].start 5050.71846875
transcript.pyannote[402].end 5064.91034375
transcript.pyannote[403].speaker SPEAKER_07
transcript.pyannote[403].start 5064.79221875
transcript.pyannote[403].end 5086.67909375
transcript.pyannote[404].speaker SPEAKER_08
transcript.pyannote[404].start 5073.02721875
transcript.pyannote[404].end 5073.80346875
transcript.pyannote[405].speaker SPEAKER_08
transcript.pyannote[405].start 5074.25909375
transcript.pyannote[405].end 5074.57971875
transcript.pyannote[406].speaker SPEAKER_22
transcript.pyannote[406].start 5078.68034375
transcript.pyannote[406].end 5078.96721875
transcript.pyannote[407].speaker SPEAKER_21
transcript.pyannote[407].start 5078.96721875
transcript.pyannote[407].end 5079.08534375
transcript.pyannote[408].speaker SPEAKER_04
transcript.pyannote[408].start 5081.98784375
transcript.pyannote[408].end 5082.34221875
transcript.pyannote[409].speaker SPEAKER_21
transcript.pyannote[409].start 5085.91971875
transcript.pyannote[409].end 5088.95721875
transcript.pyannote[410].speaker SPEAKER_07
transcript.pyannote[410].start 5088.40034375
transcript.pyannote[410].end 5089.48034375
transcript.pyannote[411].speaker SPEAKER_21
transcript.pyannote[411].start 5090.07096875
transcript.pyannote[411].end 5175.01971875
transcript.pyannote[412].speaker SPEAKER_10
transcript.pyannote[412].start 5176.43721875
transcript.pyannote[412].end 5185.14471875
transcript.pyannote[413].speaker SPEAKER_21
transcript.pyannote[413].start 5184.87471875
transcript.pyannote[413].end 5185.11096875
transcript.pyannote[414].speaker SPEAKER_21
transcript.pyannote[414].start 5185.14471875
transcript.pyannote[414].end 5185.26284375
transcript.pyannote[415].speaker SPEAKER_10
transcript.pyannote[415].start 5185.43159375
transcript.pyannote[415].end 5185.48221875
transcript.pyannote[416].speaker SPEAKER_21
transcript.pyannote[416].start 5185.48221875
transcript.pyannote[416].end 5190.24096875
transcript.pyannote[417].speaker SPEAKER_10
transcript.pyannote[417].start 5191.18596875
transcript.pyannote[417].end 5196.06284375
transcript.pyannote[418].speaker SPEAKER_21
transcript.pyannote[418].start 5195.64096875
transcript.pyannote[418].end 5217.81471875
transcript.pyannote[419].speaker SPEAKER_07
transcript.pyannote[419].start 5219.99159375
transcript.pyannote[419].end 5226.25221875
transcript.pyannote[420].speaker SPEAKER_21
transcript.pyannote[420].start 5225.47596875
transcript.pyannote[420].end 5226.87659375
transcript.pyannote[421].speaker SPEAKER_07
transcript.pyannote[421].start 5226.87659375
transcript.pyannote[421].end 5235.56721875
transcript.pyannote[422].speaker SPEAKER_21
transcript.pyannote[422].start 5235.70221875
transcript.pyannote[422].end 5237.71034375
transcript.pyannote[423].speaker SPEAKER_03
transcript.pyannote[423].start 5239.21221875
transcript.pyannote[423].end 5240.91659375
transcript.pyannote[424].speaker SPEAKER_03
transcript.pyannote[424].start 5242.50284375
transcript.pyannote[424].end 5244.64596875
transcript.pyannote[425].speaker SPEAKER_12
transcript.pyannote[425].start 5252.34096875
transcript.pyannote[425].end 5254.50096875
transcript.pyannote[426].speaker SPEAKER_08
transcript.pyannote[426].start 5260.27221875
transcript.pyannote[426].end 5260.79534375
transcript.pyannote[427].speaker SPEAKER_12
transcript.pyannote[427].start 5261.18346875
transcript.pyannote[427].end 5289.55034375
transcript.pyannote[428].speaker SPEAKER_12
transcript.pyannote[428].start 5289.68534375
transcript.pyannote[428].end 5291.18721875
transcript.pyannote[429].speaker SPEAKER_12
transcript.pyannote[429].start 5291.57534375
transcript.pyannote[429].end 5293.54971875
transcript.pyannote[430].speaker SPEAKER_12
transcript.pyannote[430].start 5294.42721875
transcript.pyannote[430].end 5297.32971875
transcript.pyannote[431].speaker SPEAKER_12
transcript.pyannote[431].start 5297.85284375
transcript.pyannote[431].end 5299.28721875
transcript.pyannote[432].speaker SPEAKER_12
transcript.pyannote[432].start 5299.48971875
transcript.pyannote[432].end 5300.65409375
transcript.pyannote[433].speaker SPEAKER_07
transcript.pyannote[433].start 5301.83534375
transcript.pyannote[433].end 5326.03409375
transcript.pyannote[434].speaker SPEAKER_12
transcript.pyannote[434].start 5326.16909375
transcript.pyannote[434].end 5327.23221875
transcript.pyannote[435].speaker SPEAKER_07
transcript.pyannote[435].start 5327.23221875
transcript.pyannote[435].end 5328.48096875
transcript.pyannote[436].speaker SPEAKER_12
transcript.pyannote[436].start 5327.55284375
transcript.pyannote[436].end 5328.81846875
transcript.pyannote[437].speaker SPEAKER_12
transcript.pyannote[437].start 5329.30784375
transcript.pyannote[437].end 5333.18909375
transcript.pyannote[438].speaker SPEAKER_07
transcript.pyannote[438].start 5331.04596875
transcript.pyannote[438].end 5331.48471875
transcript.pyannote[439].speaker SPEAKER_07
transcript.pyannote[439].start 5333.18909375
transcript.pyannote[439].end 5333.56034375
transcript.pyannote[440].speaker SPEAKER_12
transcript.pyannote[440].start 5333.93159375
transcript.pyannote[440].end 5335.07909375
transcript.pyannote[441].speaker SPEAKER_07
transcript.pyannote[441].start 5334.60659375
transcript.pyannote[441].end 5335.63596875
transcript.pyannote[442].speaker SPEAKER_12
transcript.pyannote[442].start 5336.32784375
transcript.pyannote[442].end 5356.03784375
transcript.pyannote[443].speaker SPEAKER_00
transcript.pyannote[443].start 5346.35159375
transcript.pyannote[443].end 5346.57096875
transcript.pyannote[444].speaker SPEAKER_07
transcript.pyannote[444].start 5355.51471875
transcript.pyannote[444].end 5357.05034375
transcript.pyannote[445].speaker SPEAKER_12
transcript.pyannote[445].start 5357.08409375
transcript.pyannote[445].end 5357.40471875
transcript.pyannote[446].speaker SPEAKER_12
transcript.pyannote[446].start 5358.06284375
transcript.pyannote[446].end 5428.88721875
transcript.pyannote[447].speaker SPEAKER_07
transcript.pyannote[447].start 5428.88721875
transcript.pyannote[447].end 5435.46846875
transcript.pyannote[448].speaker SPEAKER_22
transcript.pyannote[448].start 5435.18159375
transcript.pyannote[448].end 5437.05471875
transcript.pyannote[449].speaker SPEAKER_07
transcript.pyannote[449].start 5436.21096875
transcript.pyannote[449].end 5461.70909375
transcript.pyannote[450].speaker SPEAKER_12
transcript.pyannote[450].start 5459.88659375
transcript.pyannote[450].end 5463.22784375
transcript.pyannote[451].speaker SPEAKER_07
transcript.pyannote[451].start 5462.78909375
transcript.pyannote[451].end 5464.56096875
transcript.pyannote[452].speaker SPEAKER_12
transcript.pyannote[452].start 5464.30784375
transcript.pyannote[452].end 5474.14596875
transcript.pyannote[453].speaker SPEAKER_12
transcript.pyannote[453].start 5474.21346875
transcript.pyannote[453].end 5510.46096875
transcript.pyannote[454].speaker SPEAKER_07
transcript.pyannote[454].start 5511.25409375
transcript.pyannote[454].end 5515.87784375
transcript.pyannote[455].speaker SPEAKER_12
transcript.pyannote[455].start 5515.87784375
transcript.pyannote[455].end 5552.88471875
transcript.pyannote[456].speaker SPEAKER_07
transcript.pyannote[456].start 5553.00284375
transcript.pyannote[456].end 5555.21346875
transcript.pyannote[457].speaker SPEAKER_07
transcript.pyannote[457].start 5555.82096875
transcript.pyannote[457].end 5559.53346875
transcript.pyannote[458].speaker SPEAKER_12
transcript.pyannote[458].start 5559.53346875
transcript.pyannote[458].end 5561.71034375
transcript.pyannote[459].speaker SPEAKER_07
transcript.pyannote[459].start 5561.38971875
transcript.pyannote[459].end 5561.69346875
transcript.pyannote[460].speaker SPEAKER_07
transcript.pyannote[460].start 5561.71034375
transcript.pyannote[460].end 5579.71596875
transcript.pyannote[461].speaker SPEAKER_12
transcript.pyannote[461].start 5579.74971875
transcript.pyannote[461].end 5581.04909375
transcript.pyannote[462].speaker SPEAKER_12
transcript.pyannote[462].start 5581.08284375
transcript.pyannote[462].end 5582.80409375
transcript.pyannote[463].speaker SPEAKER_07
transcript.pyannote[463].start 5582.14596875
transcript.pyannote[463].end 5584.01909375
transcript.pyannote[464].speaker SPEAKER_12
transcript.pyannote[464].start 5584.44096875
transcript.pyannote[464].end 5584.93034375
transcript.pyannote[465].speaker SPEAKER_07
transcript.pyannote[465].start 5585.52096875
transcript.pyannote[465].end 5588.76096875
transcript.pyannote[466].speaker SPEAKER_12
transcript.pyannote[466].start 5588.44034375
transcript.pyannote[466].end 5592.20346875
transcript.pyannote[467].speaker SPEAKER_07
transcript.pyannote[467].start 5591.12346875
transcript.pyannote[467].end 5593.18221875
transcript.pyannote[468].speaker SPEAKER_12
transcript.pyannote[468].start 5593.87409375
transcript.pyannote[468].end 5594.41409375
transcript.pyannote[469].speaker SPEAKER_07
transcript.pyannote[469].start 5594.76846875
transcript.pyannote[469].end 5596.89471875
transcript.pyannote[470].speaker SPEAKER_12
transcript.pyannote[470].start 5597.02971875
transcript.pyannote[470].end 5599.13909375
transcript.pyannote[471].speaker SPEAKER_07
transcript.pyannote[471].start 5600.43846875
transcript.pyannote[471].end 5604.13409375
transcript.pyannote[472].speaker SPEAKER_12
transcript.pyannote[472].start 5603.61096875
transcript.pyannote[472].end 5610.98534375
transcript.pyannote[473].speaker SPEAKER_07
transcript.pyannote[473].start 5604.91034375
transcript.pyannote[473].end 5608.47096875
transcript.pyannote[474].speaker SPEAKER_07
transcript.pyannote[474].start 5609.17971875
transcript.pyannote[474].end 5609.82096875
transcript.pyannote[475].speaker SPEAKER_07
transcript.pyannote[475].start 5610.42846875
transcript.pyannote[475].end 5611.47471875
transcript.pyannote[476].speaker SPEAKER_12
transcript.pyannote[476].start 5611.91346875
transcript.pyannote[476].end 5623.94534375
transcript.pyannote[477].speaker SPEAKER_07
transcript.pyannote[477].start 5622.49409375
transcript.pyannote[477].end 5631.33659375
transcript.pyannote[478].speaker SPEAKER_12
transcript.pyannote[478].start 5627.80971875
transcript.pyannote[478].end 5629.05846875
transcript.pyannote[479].speaker SPEAKER_12
transcript.pyannote[479].start 5631.01596875
transcript.pyannote[479].end 5637.68159375
transcript.pyannote[480].speaker SPEAKER_07
transcript.pyannote[480].start 5631.40409375
transcript.pyannote[480].end 5631.43784375
transcript.pyannote[481].speaker SPEAKER_00
transcript.pyannote[481].start 5631.47159375
transcript.pyannote[481].end 5631.57284375
transcript.pyannote[482].speaker SPEAKER_12
transcript.pyannote[482].start 5638.18784375
transcript.pyannote[482].end 5643.72284375
transcript.pyannote[483].speaker SPEAKER_07
transcript.pyannote[483].start 5638.28909375
transcript.pyannote[483].end 5638.96409375
transcript.pyannote[484].speaker SPEAKER_07
transcript.pyannote[484].start 5644.48221875
transcript.pyannote[484].end 5646.64221875
transcript.pyannote[485].speaker SPEAKER_12
transcript.pyannote[485].start 5646.89534375
transcript.pyannote[485].end 5654.65784375
transcript.pyannote[486].speaker SPEAKER_12
transcript.pyannote[486].start 5654.94471875
transcript.pyannote[486].end 5656.51409375
transcript.pyannote[487].speaker SPEAKER_12
transcript.pyannote[487].start 5656.78409375
transcript.pyannote[487].end 5660.74971875
transcript.pyannote[488].speaker SPEAKER_07
transcript.pyannote[488].start 5658.53909375
transcript.pyannote[488].end 5658.85971875
transcript.pyannote[489].speaker SPEAKER_07
transcript.pyannote[489].start 5660.32784375
transcript.pyannote[489].end 5670.30096875
transcript.pyannote[490].speaker SPEAKER_12
transcript.pyannote[490].start 5661.23909375
transcript.pyannote[490].end 5661.69471875
transcript.pyannote[491].speaker SPEAKER_12
transcript.pyannote[491].start 5668.10721875
transcript.pyannote[491].end 5682.06284375
transcript.pyannote[492].speaker SPEAKER_07
transcript.pyannote[492].start 5674.41846875
transcript.pyannote[492].end 5675.32971875
transcript.pyannote[493].speaker SPEAKER_22
transcript.pyannote[493].start 5676.02159375
transcript.pyannote[493].end 5676.35909375
transcript.pyannote[494].speaker SPEAKER_22
transcript.pyannote[494].start 5681.38784375
transcript.pyannote[494].end 5681.64096875
transcript.pyannote[495].speaker SPEAKER_12
transcript.pyannote[495].start 5682.26534375
transcript.pyannote[495].end 5704.77659375
transcript.pyannote[496].speaker SPEAKER_07
transcript.pyannote[496].start 5706.78471875
transcript.pyannote[496].end 5707.22346875
transcript.pyannote[497].speaker SPEAKER_07
transcript.pyannote[497].start 5707.94909375
transcript.pyannote[497].end 5709.73784375
transcript.pyannote[498].speaker SPEAKER_07
transcript.pyannote[498].start 5709.80534375
transcript.pyannote[498].end 5714.96909375
transcript.pyannote[499].speaker SPEAKER_07
transcript.pyannote[499].start 5715.69471875
transcript.pyannote[499].end 5715.98159375
transcript.pyannote[500].speaker SPEAKER_07
transcript.pyannote[500].start 5716.28534375
transcript.pyannote[500].end 5717.11221875
transcript.pyannote[501].speaker SPEAKER_07
transcript.pyannote[501].start 5717.38221875
transcript.pyannote[501].end 5718.00659375
transcript.pyannote[502].speaker SPEAKER_07
transcript.pyannote[502].start 5718.22596875
transcript.pyannote[502].end 5748.66846875
transcript.pyannote[503].speaker SPEAKER_12
transcript.pyannote[503].start 5743.75784375
transcript.pyannote[503].end 5743.85909375
transcript.pyannote[504].speaker SPEAKER_07
transcript.pyannote[504].start 5749.27596875
transcript.pyannote[504].end 5754.28784375
transcript.pyannote[505].speaker SPEAKER_12
transcript.pyannote[505].start 5754.15284375
transcript.pyannote[505].end 5755.95846875
transcript.pyannote[506].speaker SPEAKER_07
transcript.pyannote[506].start 5754.38909375
transcript.pyannote[506].end 5755.03034375
transcript.pyannote[507].speaker SPEAKER_07
transcript.pyannote[507].start 5755.36784375
transcript.pyannote[507].end 5763.07971875
transcript.pyannote[508].speaker SPEAKER_12
transcript.pyannote[508].start 5762.13471875
transcript.pyannote[508].end 5766.18471875
transcript.pyannote[509].speaker SPEAKER_07
transcript.pyannote[509].start 5766.20159375
transcript.pyannote[509].end 5768.34471875
transcript.pyannote[510].speaker SPEAKER_12
transcript.pyannote[510].start 5767.85534375
transcript.pyannote[510].end 5770.11659375
transcript.pyannote[511].speaker SPEAKER_12
transcript.pyannote[511].start 5770.38659375
transcript.pyannote[511].end 5773.40721875
transcript.pyannote[512].speaker SPEAKER_07
transcript.pyannote[512].start 5773.94721875
transcript.pyannote[512].end 5781.89534375
transcript.pyannote[513].speaker SPEAKER_12
transcript.pyannote[513].start 5781.05159375
transcript.pyannote[513].end 5781.32159375
transcript.pyannote[514].speaker SPEAKER_12
transcript.pyannote[514].start 5781.94596875
transcript.pyannote[514].end 5808.11909375
transcript.pyannote[515].speaker SPEAKER_12
transcript.pyannote[515].start 5808.82784375
transcript.pyannote[515].end 5817.41721875
transcript.pyannote[516].speaker SPEAKER_12
transcript.pyannote[516].start 5818.04159375
transcript.pyannote[516].end 5840.67096875
transcript.pyannote[517].speaker SPEAKER_07
transcript.pyannote[517].start 5841.70034375
transcript.pyannote[517].end 5848.97346875
transcript.pyannote[518].speaker SPEAKER_07
transcript.pyannote[518].start 5849.36159375
transcript.pyannote[518].end 5858.72721875
transcript.pyannote[519].speaker SPEAKER_12
transcript.pyannote[519].start 5852.75346875
transcript.pyannote[519].end 5855.84159375
transcript.pyannote[520].speaker SPEAKER_12
transcript.pyannote[520].start 5857.02284375
transcript.pyannote[520].end 5859.06471875
transcript.pyannote[521].speaker SPEAKER_12
transcript.pyannote[521].start 5859.43596875
transcript.pyannote[521].end 5864.86971875
transcript.pyannote[522].speaker SPEAKER_07
transcript.pyannote[522].start 5865.00471875
transcript.pyannote[522].end 5871.16409375
transcript.pyannote[523].speaker SPEAKER_12
transcript.pyannote[523].start 5869.45971875
transcript.pyannote[523].end 5900.27346875
transcript.pyannote[524].speaker SPEAKER_12
transcript.pyannote[524].start 5900.54346875
transcript.pyannote[524].end 5935.50846875
transcript.pyannote[525].speaker SPEAKER_07
transcript.pyannote[525].start 5934.47909375
transcript.pyannote[525].end 5937.46596875
transcript.pyannote[526].speaker SPEAKER_12
transcript.pyannote[526].start 5937.26346875
transcript.pyannote[526].end 5950.51034375
transcript.pyannote[527].speaker SPEAKER_07
transcript.pyannote[527].start 5949.64971875
transcript.pyannote[527].end 5951.70846875
transcript.pyannote[528].speaker SPEAKER_12
transcript.pyannote[528].start 5951.64096875
transcript.pyannote[528].end 5952.29909375
transcript.pyannote[529].speaker SPEAKER_03
transcript.pyannote[529].start 5956.21409375
transcript.pyannote[529].end 5957.86784375
transcript.pyannote[530].speaker SPEAKER_03
transcript.pyannote[530].start 5957.96909375
transcript.pyannote[530].end 5960.93909375
transcript.pyannote[531].speaker SPEAKER_05
transcript.pyannote[531].start 5971.28346875
transcript.pyannote[531].end 5973.29159375
transcript.pyannote[532].speaker SPEAKER_05
transcript.pyannote[532].start 5980.32846875
transcript.pyannote[532].end 5981.64471875
transcript.pyannote[533].speaker SPEAKER_05
transcript.pyannote[533].start 5981.99909375
transcript.pyannote[533].end 5983.61909375
transcript.pyannote[534].speaker SPEAKER_29
transcript.pyannote[534].start 5988.37784375
transcript.pyannote[534].end 5996.49471875
transcript.pyannote[535].speaker SPEAKER_29
transcript.pyannote[535].start 5996.66346875
transcript.pyannote[535].end 5999.05971875
transcript.pyannote[536].speaker SPEAKER_29
transcript.pyannote[536].start 6001.43909375
transcript.pyannote[536].end 6002.11409375
transcript.pyannote[537].speaker SPEAKER_29
transcript.pyannote[537].start 6002.51909375
transcript.pyannote[537].end 6018.12846875
transcript.pyannote[538].speaker SPEAKER_29
transcript.pyannote[538].start 6018.44909375
transcript.pyannote[538].end 6019.81596875
transcript.pyannote[539].speaker SPEAKER_29
transcript.pyannote[539].start 6020.18721875
transcript.pyannote[539].end 6021.60471875
transcript.pyannote[540].speaker SPEAKER_29
transcript.pyannote[540].start 6021.82409375
transcript.pyannote[540].end 6024.06846875
transcript.pyannote[541].speaker SPEAKER_29
transcript.pyannote[541].start 6024.38909375
transcript.pyannote[541].end 6028.30409375
transcript.pyannote[542].speaker SPEAKER_29
transcript.pyannote[542].start 6028.72596875
transcript.pyannote[542].end 6030.90284375
transcript.pyannote[543].speaker SPEAKER_29
transcript.pyannote[543].start 6033.77159375
transcript.pyannote[543].end 6034.05846875
transcript.pyannote[544].speaker SPEAKER_05
transcript.pyannote[544].start 6035.25659375
transcript.pyannote[544].end 6036.48846875
transcript.pyannote[545].speaker SPEAKER_05
transcript.pyannote[545].start 6036.94409375
transcript.pyannote[545].end 6037.58534375
transcript.pyannote[546].speaker SPEAKER_05
transcript.pyannote[546].start 6037.88909375
transcript.pyannote[546].end 6045.07784375
transcript.pyannote[547].speaker SPEAKER_05
transcript.pyannote[547].start 6045.56721875
transcript.pyannote[547].end 6053.34659375
transcript.pyannote[548].speaker SPEAKER_05
transcript.pyannote[548].start 6053.46471875
transcript.pyannote[548].end 6062.64471875
transcript.pyannote[549].speaker SPEAKER_05
transcript.pyannote[549].start 6063.21846875
transcript.pyannote[549].end 6071.82471875
transcript.pyannote[550].speaker SPEAKER_05
transcript.pyannote[550].start 6071.90909375
transcript.pyannote[550].end 6076.66784375
transcript.pyannote[551].speaker SPEAKER_13
transcript.pyannote[551].start 6079.40159375
transcript.pyannote[551].end 6079.41846875
transcript.pyannote[552].speaker SPEAKER_07
transcript.pyannote[552].start 6079.41846875
transcript.pyannote[552].end 6079.99221875
transcript.pyannote[553].speaker SPEAKER_05
transcript.pyannote[553].start 6081.24096875
transcript.pyannote[553].end 6083.53596875
transcript.pyannote[554].speaker SPEAKER_05
transcript.pyannote[554].start 6084.12659375
transcript.pyannote[554].end 6091.01159375
transcript.pyannote[555].speaker SPEAKER_05
transcript.pyannote[555].start 6093.05346875
transcript.pyannote[555].end 6094.09971875
transcript.pyannote[556].speaker SPEAKER_05
transcript.pyannote[556].start 6095.12909375
transcript.pyannote[556].end 6099.88784375
transcript.pyannote[557].speaker SPEAKER_07
transcript.pyannote[557].start 6096.95159375
transcript.pyannote[557].end 6098.21721875
transcript.pyannote[558].speaker SPEAKER_00
transcript.pyannote[558].start 6098.21721875
transcript.pyannote[558].end 6098.26784375
transcript.pyannote[559].speaker SPEAKER_05
transcript.pyannote[559].start 6100.19159375
transcript.pyannote[559].end 6106.60409375
transcript.pyannote[560].speaker SPEAKER_05
transcript.pyannote[560].start 6106.94159375
transcript.pyannote[560].end 6108.56159375
transcript.pyannote[561].speaker SPEAKER_05
transcript.pyannote[561].start 6108.86534375
transcript.pyannote[561].end 6110.14784375
transcript.pyannote[562].speaker SPEAKER_05
transcript.pyannote[562].start 6111.12659375
transcript.pyannote[562].end 6112.91534375
transcript.pyannote[563].speaker SPEAKER_07
transcript.pyannote[563].start 6114.50159375
transcript.pyannote[563].end 6122.56784375
transcript.pyannote[564].speaker SPEAKER_07
transcript.pyannote[564].start 6122.77034375
transcript.pyannote[564].end 6123.46221875
transcript.pyannote[565].speaker SPEAKER_07
transcript.pyannote[565].start 6124.06971875
transcript.pyannote[565].end 6124.74471875
transcript.pyannote[566].speaker SPEAKER_07
transcript.pyannote[566].start 6126.26346875
transcript.pyannote[566].end 6126.98909375
transcript.pyannote[567].speaker SPEAKER_07
transcript.pyannote[567].start 6127.29284375
transcript.pyannote[567].end 6132.92909375
transcript.pyannote[568].speaker SPEAKER_07
transcript.pyannote[568].start 6134.26221875
transcript.pyannote[568].end 6135.59534375
transcript.pyannote[569].speaker SPEAKER_07
transcript.pyannote[569].start 6136.69221875
transcript.pyannote[569].end 6138.14346875
transcript.pyannote[570].speaker SPEAKER_07
transcript.pyannote[570].start 6139.24034375
transcript.pyannote[570].end 6143.12159375
transcript.pyannote[571].speaker SPEAKER_07
transcript.pyannote[571].start 6143.66159375
transcript.pyannote[571].end 6144.03284375
transcript.pyannote[572].speaker SPEAKER_05
transcript.pyannote[572].start 6144.03284375
transcript.pyannote[572].end 6146.81721875
transcript.pyannote[573].speaker SPEAKER_05
transcript.pyannote[573].start 6147.42471875
transcript.pyannote[573].end 6147.61034375
transcript.pyannote[574].speaker SPEAKER_05
transcript.pyannote[574].start 6147.81284375
transcript.pyannote[574].end 6149.55096875
transcript.pyannote[575].speaker SPEAKER_05
transcript.pyannote[575].start 6150.34409375
transcript.pyannote[575].end 6151.25534375
transcript.pyannote[576].speaker SPEAKER_05
transcript.pyannote[576].start 6153.17909375
transcript.pyannote[576].end 6155.03534375
transcript.pyannote[577].speaker SPEAKER_05
transcript.pyannote[577].start 6156.70596875
transcript.pyannote[577].end 6161.95409375
transcript.pyannote[578].speaker SPEAKER_07
transcript.pyannote[578].start 6158.19096875
transcript.pyannote[578].end 6160.89096875
transcript.pyannote[579].speaker SPEAKER_07
transcript.pyannote[579].start 6161.95409375
transcript.pyannote[579].end 6168.77159375
transcript.pyannote[580].speaker SPEAKER_05
transcript.pyannote[580].start 6166.78034375
transcript.pyannote[580].end 6178.96409375
transcript.pyannote[581].speaker SPEAKER_07
transcript.pyannote[581].start 6178.96409375
transcript.pyannote[581].end 6179.03159375
transcript.pyannote[582].speaker SPEAKER_05
transcript.pyannote[582].start 6179.03159375
transcript.pyannote[582].end 6179.97659375
transcript.pyannote[583].speaker SPEAKER_07
transcript.pyannote[583].start 6179.97659375
transcript.pyannote[583].end 6180.02721875
transcript.pyannote[584].speaker SPEAKER_05
transcript.pyannote[584].start 6180.02721875
transcript.pyannote[584].end 6180.97221875
transcript.pyannote[585].speaker SPEAKER_07
transcript.pyannote[585].start 6180.97221875
transcript.pyannote[585].end 6181.02284375
transcript.pyannote[586].speaker SPEAKER_05
transcript.pyannote[586].start 6181.02284375
transcript.pyannote[586].end 6181.96784375
transcript.pyannote[587].speaker SPEAKER_07
transcript.pyannote[587].start 6181.96784375
transcript.pyannote[587].end 6182.03534375
transcript.pyannote[588].speaker SPEAKER_05
transcript.pyannote[588].start 6182.03534375
transcript.pyannote[588].end 6182.96346875
transcript.pyannote[589].speaker SPEAKER_07
transcript.pyannote[589].start 6182.96346875
transcript.pyannote[589].end 6183.03096875
transcript.pyannote[590].speaker SPEAKER_05
transcript.pyannote[590].start 6183.03096875
transcript.pyannote[590].end 6193.96596875
transcript.pyannote[591].speaker SPEAKER_07
transcript.pyannote[591].start 6193.96596875
transcript.pyannote[591].end 6204.41159375
transcript.pyannote[592].speaker SPEAKER_08
transcript.pyannote[592].start 6201.08721875
transcript.pyannote[592].end 6202.03221875
transcript.pyannote[593].speaker SPEAKER_05
transcript.pyannote[593].start 6202.03221875
transcript.pyannote[593].end 6206.82471875
transcript.pyannote[594].speaker SPEAKER_07
transcript.pyannote[594].start 6205.13721875
transcript.pyannote[594].end 6205.27221875
transcript.pyannote[595].speaker SPEAKER_05
transcript.pyannote[595].start 6207.14534375
transcript.pyannote[595].end 6214.92471875
transcript.pyannote[596].speaker SPEAKER_05
transcript.pyannote[596].start 6215.76846875
transcript.pyannote[596].end 6225.04971875
transcript.pyannote[597].speaker SPEAKER_00
transcript.pyannote[597].start 6218.89034375
transcript.pyannote[597].end 6219.34596875
transcript.pyannote[598].speaker SPEAKER_22
transcript.pyannote[598].start 6219.34596875
transcript.pyannote[598].end 6219.48096875
transcript.pyannote[599].speaker SPEAKER_00
transcript.pyannote[599].start 6219.48096875
transcript.pyannote[599].end 6219.61596875
transcript.pyannote[600].speaker SPEAKER_07
transcript.pyannote[600].start 6227.71596875
transcript.pyannote[600].end 6228.49221875
transcript.pyannote[601].speaker SPEAKER_07
transcript.pyannote[601].start 6228.64409375
transcript.pyannote[601].end 6235.63034375
transcript.pyannote[602].speaker SPEAKER_07
transcript.pyannote[602].start 6236.15346875
transcript.pyannote[602].end 6236.54159375
transcript.pyannote[603].speaker SPEAKER_07
transcript.pyannote[603].start 6238.34721875
transcript.pyannote[603].end 6238.76909375
transcript.pyannote[604].speaker SPEAKER_07
transcript.pyannote[604].start 6239.98409375
transcript.pyannote[604].end 6240.03471875
transcript.pyannote[605].speaker SPEAKER_05
transcript.pyannote[605].start 6240.03471875
transcript.pyannote[605].end 6240.30471875
transcript.pyannote[606].speaker SPEAKER_07
transcript.pyannote[606].start 6240.57471875
transcript.pyannote[606].end 6240.59159375
transcript.pyannote[607].speaker SPEAKER_05
transcript.pyannote[607].start 6240.59159375
transcript.pyannote[607].end 6248.43846875
transcript.pyannote[608].speaker SPEAKER_07
transcript.pyannote[608].start 6240.82784375
transcript.pyannote[608].end 6242.44784375
transcript.pyannote[609].speaker SPEAKER_07
transcript.pyannote[609].start 6243.03846875
transcript.pyannote[609].end 6244.74284375
transcript.pyannote[610].speaker SPEAKER_05
transcript.pyannote[610].start 6248.89409375
transcript.pyannote[610].end 6254.10846875
transcript.pyannote[611].speaker SPEAKER_05
transcript.pyannote[611].start 6255.25596875
transcript.pyannote[611].end 6257.97284375
transcript.pyannote[612].speaker SPEAKER_07
transcript.pyannote[612].start 6257.97284375
transcript.pyannote[612].end 6266.10659375
transcript.pyannote[613].speaker SPEAKER_07
transcript.pyannote[613].start 6266.79846875
transcript.pyannote[613].end 6270.69659375
transcript.pyannote[614].speaker SPEAKER_05
transcript.pyannote[614].start 6270.69659375
transcript.pyannote[614].end 6270.74721875
transcript.pyannote[615].speaker SPEAKER_07
transcript.pyannote[615].start 6271.57409375
transcript.pyannote[615].end 6271.59096875
transcript.pyannote[616].speaker SPEAKER_05
transcript.pyannote[616].start 6271.59096875
transcript.pyannote[616].end 6284.14596875
transcript.pyannote[617].speaker SPEAKER_05
transcript.pyannote[617].start 6284.65221875
transcript.pyannote[617].end 6290.32221875
transcript.pyannote[618].speaker SPEAKER_05
transcript.pyannote[618].start 6291.46971875
transcript.pyannote[618].end 6292.09409375
transcript.pyannote[619].speaker SPEAKER_05
transcript.pyannote[619].start 6293.08971875
transcript.pyannote[619].end 6293.96721875
transcript.pyannote[620].speaker SPEAKER_07
transcript.pyannote[620].start 6293.96721875
transcript.pyannote[620].end 6309.66096875
transcript.pyannote[621].speaker SPEAKER_05
transcript.pyannote[621].start 6308.95221875
transcript.pyannote[621].end 6314.92596875
transcript.pyannote[622].speaker SPEAKER_05
transcript.pyannote[622].start 6314.97659375
transcript.pyannote[622].end 6316.51221875
transcript.pyannote[623].speaker SPEAKER_05
transcript.pyannote[623].start 6318.30096875
transcript.pyannote[623].end 6318.70596875
transcript.pyannote[624].speaker SPEAKER_05
transcript.pyannote[624].start 6319.21221875
transcript.pyannote[624].end 6320.96721875
transcript.pyannote[625].speaker SPEAKER_07
transcript.pyannote[625].start 6319.76909375
transcript.pyannote[625].end 6319.97159375
transcript.pyannote[626].speaker SPEAKER_07
transcript.pyannote[626].start 6320.96721875
transcript.pyannote[626].end 6329.67471875
transcript.pyannote[627].speaker SPEAKER_05
transcript.pyannote[627].start 6327.97034375
transcript.pyannote[627].end 6331.85159375
transcript.pyannote[628].speaker SPEAKER_05
transcript.pyannote[628].start 6332.50971875
transcript.pyannote[628].end 6333.65721875
transcript.pyannote[629].speaker SPEAKER_07
transcript.pyannote[629].start 6334.38284375
transcript.pyannote[629].end 6340.27221875
transcript.pyannote[630].speaker SPEAKER_05
transcript.pyannote[630].start 6337.11659375
transcript.pyannote[630].end 6345.92534375
transcript.pyannote[631].speaker SPEAKER_05
transcript.pyannote[631].start 6345.97596875
transcript.pyannote[631].end 6348.33846875
transcript.pyannote[632].speaker SPEAKER_05
transcript.pyannote[632].start 6348.59159375
transcript.pyannote[632].end 6351.32534375
transcript.pyannote[633].speaker SPEAKER_07
transcript.pyannote[633].start 6351.32534375
transcript.pyannote[633].end 6351.37596875
transcript.pyannote[634].speaker SPEAKER_05
transcript.pyannote[634].start 6351.59534375
transcript.pyannote[634].end 6352.96221875
transcript.pyannote[635].speaker SPEAKER_07
transcript.pyannote[635].start 6352.96221875
transcript.pyannote[635].end 6353.63721875
transcript.pyannote[636].speaker SPEAKER_07
transcript.pyannote[636].start 6354.17721875
transcript.pyannote[636].end 6355.66221875
transcript.pyannote[637].speaker SPEAKER_07
transcript.pyannote[637].start 6355.74659375
transcript.pyannote[637].end 6362.49659375
transcript.pyannote[638].speaker SPEAKER_05
transcript.pyannote[638].start 6362.49659375
transcript.pyannote[638].end 6362.73284375
transcript.pyannote[639].speaker SPEAKER_07
transcript.pyannote[639].start 6362.73284375
transcript.pyannote[639].end 6363.57659375
transcript.pyannote[640].speaker SPEAKER_05
transcript.pyannote[640].start 6362.74971875
transcript.pyannote[640].end 6366.56346875
transcript.pyannote[641].speaker SPEAKER_07
transcript.pyannote[641].start 6365.31471875
transcript.pyannote[641].end 6366.41159375
transcript.pyannote[642].speaker SPEAKER_05
transcript.pyannote[642].start 6366.86721875
transcript.pyannote[642].end 6376.45221875
transcript.pyannote[643].speaker SPEAKER_07
transcript.pyannote[643].start 6367.89659375
transcript.pyannote[643].end 6367.96409375
transcript.pyannote[644].speaker SPEAKER_22
transcript.pyannote[644].start 6367.96409375
transcript.pyannote[644].end 6368.28471875
transcript.pyannote[645].speaker SPEAKER_24
transcript.pyannote[645].start 6368.28471875
transcript.pyannote[645].end 6368.97659375
transcript.pyannote[646].speaker SPEAKER_22
transcript.pyannote[646].start 6368.97659375
transcript.pyannote[646].end 6369.73596875
transcript.pyannote[647].speaker SPEAKER_00
transcript.pyannote[647].start 6372.11534375
transcript.pyannote[647].end 6372.25034375
transcript.pyannote[648].speaker SPEAKER_28
transcript.pyannote[648].start 6372.25034375
transcript.pyannote[648].end 6373.06034375
transcript.pyannote[649].speaker SPEAKER_22
transcript.pyannote[649].start 6373.06034375
transcript.pyannote[649].end 6373.39784375
transcript.pyannote[650].speaker SPEAKER_05
transcript.pyannote[650].start 6376.67159375
transcript.pyannote[650].end 6382.02096875
transcript.pyannote[651].speaker SPEAKER_07
transcript.pyannote[651].start 6382.02096875
transcript.pyannote[651].end 6382.03784375
transcript.pyannote[652].speaker SPEAKER_05
transcript.pyannote[652].start 6382.96596875
transcript.pyannote[652].end 6382.98284375
transcript.pyannote[653].speaker SPEAKER_07
transcript.pyannote[653].start 6382.98284375
transcript.pyannote[653].end 6392.09534375
transcript.pyannote[654].speaker SPEAKER_05
transcript.pyannote[654].start 6392.09534375
transcript.pyannote[654].end 6393.90096875
transcript.pyannote[655].speaker SPEAKER_07
transcript.pyannote[655].start 6393.90096875
transcript.pyannote[655].end 6393.96846875
transcript.pyannote[656].speaker SPEAKER_05
transcript.pyannote[656].start 6393.96846875
transcript.pyannote[656].end 6394.00221875
transcript.pyannote[657].speaker SPEAKER_07
transcript.pyannote[657].start 6394.00221875
transcript.pyannote[657].end 6394.03596875
transcript.pyannote[658].speaker SPEAKER_05
transcript.pyannote[658].start 6394.03596875
transcript.pyannote[658].end 6397.39409375
transcript.pyannote[659].speaker SPEAKER_05
transcript.pyannote[659].start 6400.43159375
transcript.pyannote[659].end 6400.97159375
transcript.pyannote[660].speaker SPEAKER_07
transcript.pyannote[660].start 6400.97159375
transcript.pyannote[660].end 6409.45971875
transcript.pyannote[661].speaker SPEAKER_05
transcript.pyannote[661].start 6403.75596875
transcript.pyannote[661].end 6410.42159375
transcript.pyannote[662].speaker SPEAKER_05
transcript.pyannote[662].start 6410.96159375
transcript.pyannote[662].end 6413.15534375
transcript.pyannote[663].speaker SPEAKER_05
transcript.pyannote[663].start 6415.16346875
transcript.pyannote[663].end 6416.15909375
transcript.pyannote[664].speaker SPEAKER_05
transcript.pyannote[664].start 6417.13784375
transcript.pyannote[664].end 6431.16096875
transcript.pyannote[665].speaker SPEAKER_05
transcript.pyannote[665].start 6431.34659375
transcript.pyannote[665].end 6432.47721875
transcript.pyannote[666].speaker SPEAKER_05
transcript.pyannote[666].start 6432.71346875
transcript.pyannote[666].end 6450.29721875
transcript.pyannote[667].speaker SPEAKER_05
transcript.pyannote[667].start 6451.41096875
transcript.pyannote[667].end 6454.76909375
transcript.pyannote[668].speaker SPEAKER_05
transcript.pyannote[668].start 6455.15721875
transcript.pyannote[668].end 6483.03471875
transcript.pyannote[669].speaker SPEAKER_05
transcript.pyannote[669].start 6483.22034375
transcript.pyannote[669].end 6484.50284375
transcript.pyannote[670].speaker SPEAKER_05
transcript.pyannote[670].start 6485.16096875
transcript.pyannote[670].end 6486.13971875
transcript.pyannote[671].speaker SPEAKER_23
transcript.pyannote[671].start 6488.75534375
transcript.pyannote[671].end 6500.80409375
transcript.pyannote[672].speaker SPEAKER_05
transcript.pyannote[672].start 6500.82096875
transcript.pyannote[672].end 6500.83784375
transcript.pyannote[673].speaker SPEAKER_23
transcript.pyannote[673].start 6500.83784375
transcript.pyannote[673].end 6500.85471875
transcript.pyannote[674].speaker SPEAKER_05
transcript.pyannote[674].start 6500.85471875
transcript.pyannote[674].end 6502.44096875
transcript.pyannote[675].speaker SPEAKER_23
transcript.pyannote[675].start 6502.52534375
transcript.pyannote[675].end 6537.82784375
transcript.pyannote[676].speaker SPEAKER_23
transcript.pyannote[676].start 6538.09784375
transcript.pyannote[676].end 6539.61659375
transcript.pyannote[677].speaker SPEAKER_05
transcript.pyannote[677].start 6539.05971875
transcript.pyannote[677].end 6542.06346875
transcript.pyannote[678].speaker SPEAKER_23
transcript.pyannote[678].start 6541.96221875
transcript.pyannote[678].end 6542.63721875
transcript.pyannote[679].speaker SPEAKER_05
transcript.pyannote[679].start 6542.35034375
transcript.pyannote[679].end 6545.86034375
transcript.pyannote[680].speaker SPEAKER_23
transcript.pyannote[680].start 6545.86034375
transcript.pyannote[680].end 6551.96909375
transcript.pyannote[681].speaker SPEAKER_05
transcript.pyannote[681].start 6546.78846875
transcript.pyannote[681].end 6547.15971875
transcript.pyannote[682].speaker SPEAKER_05
transcript.pyannote[682].start 6551.96909375
transcript.pyannote[682].end 6554.97284375
transcript.pyannote[683].speaker SPEAKER_23
transcript.pyannote[683].start 6555.07409375
transcript.pyannote[683].end 6556.74471875
transcript.pyannote[684].speaker SPEAKER_05
transcript.pyannote[684].start 6556.45784375
transcript.pyannote[684].end 6560.64284375
transcript.pyannote[685].speaker SPEAKER_05
transcript.pyannote[685].start 6561.30096875
transcript.pyannote[685].end 6567.59534375
transcript.pyannote[686].speaker SPEAKER_07
transcript.pyannote[686].start 6568.21971875
transcript.pyannote[686].end 6590.57909375
transcript.pyannote[687].speaker SPEAKER_05
transcript.pyannote[687].start 6590.44409375
transcript.pyannote[687].end 6596.01284375
transcript.pyannote[688].speaker SPEAKER_05
transcript.pyannote[688].start 6596.40096875
transcript.pyannote[688].end 6605.51346875
transcript.pyannote[689].speaker SPEAKER_08
transcript.pyannote[689].start 6600.04596875
transcript.pyannote[689].end 6600.88971875
transcript.pyannote[690].speaker SPEAKER_07
transcript.pyannote[690].start 6605.51346875
transcript.pyannote[690].end 6620.66721875
transcript.pyannote[691].speaker SPEAKER_05
transcript.pyannote[691].start 6620.14409375
transcript.pyannote[691].end 6624.02534375
transcript.pyannote[692].speaker SPEAKER_07
transcript.pyannote[692].start 6622.27034375
transcript.pyannote[692].end 6637.50846875
transcript.pyannote[693].speaker SPEAKER_05
transcript.pyannote[693].start 6636.19221875
transcript.pyannote[693].end 6643.38096875
transcript.pyannote[694].speaker SPEAKER_05
transcript.pyannote[694].start 6643.65096875
transcript.pyannote[694].end 6653.72534375
transcript.pyannote[695].speaker SPEAKER_07
transcript.pyannote[695].start 6644.76471875
transcript.pyannote[695].end 6645.43971875
transcript.pyannote[696].speaker SPEAKER_07
transcript.pyannote[696].start 6647.16096875
transcript.pyannote[696].end 6647.36346875
transcript.pyannote[697].speaker SPEAKER_05
transcript.pyannote[697].start 6654.14721875
transcript.pyannote[697].end 6658.99034375
transcript.pyannote[698].speaker SPEAKER_05
transcript.pyannote[698].start 6659.04096875
transcript.pyannote[698].end 6687.47534375
transcript.pyannote[699].speaker SPEAKER_05
transcript.pyannote[699].start 6688.03221875
transcript.pyannote[699].end 6691.62659375
transcript.pyannote[700].speaker SPEAKER_05
transcript.pyannote[700].start 6692.41971875
transcript.pyannote[700].end 6695.01846875
transcript.pyannote[701].speaker SPEAKER_05
transcript.pyannote[701].start 6695.37284375
transcript.pyannote[701].end 6697.78596875
transcript.pyannote[702].speaker SPEAKER_05
transcript.pyannote[702].start 6698.14034375
transcript.pyannote[702].end 6705.97034375
transcript.pyannote[703].speaker SPEAKER_07
transcript.pyannote[703].start 6705.97034375
transcript.pyannote[703].end 6711.52221875
transcript.pyannote[704].speaker SPEAKER_07
transcript.pyannote[704].start 6712.26471875
transcript.pyannote[704].end 6717.00659375
transcript.pyannote[705].speaker SPEAKER_07
transcript.pyannote[705].start 6717.51284375
transcript.pyannote[705].end 6723.46971875
transcript.pyannote[706].speaker SPEAKER_07
transcript.pyannote[706].start 6724.06034375
transcript.pyannote[706].end 6731.92409375
transcript.pyannote[707].speaker SPEAKER_07
transcript.pyannote[707].start 6732.51471875
transcript.pyannote[707].end 6733.00409375
transcript.pyannote[708].speaker SPEAKER_07
transcript.pyannote[708].start 6733.45971875
transcript.pyannote[708].end 6739.88909375
transcript.pyannote[709].speaker SPEAKER_07
transcript.pyannote[709].start 6740.47971875
transcript.pyannote[709].end 6743.09534375
transcript.pyannote[710].speaker SPEAKER_05
transcript.pyannote[710].start 6743.09534375
transcript.pyannote[710].end 6757.96221875
transcript.pyannote[711].speaker SPEAKER_07
transcript.pyannote[711].start 6755.97096875
transcript.pyannote[711].end 6755.98784375
transcript.pyannote[712].speaker SPEAKER_08
transcript.pyannote[712].start 6755.98784375
transcript.pyannote[712].end 6757.70909375
transcript.pyannote[713].speaker SPEAKER_07
transcript.pyannote[713].start 6757.96221875
transcript.pyannote[713].end 6761.15159375
transcript.pyannote[714].speaker SPEAKER_07
transcript.pyannote[714].start 6761.37096875
transcript.pyannote[714].end 6769.04909375
transcript.pyannote[715].speaker SPEAKER_05
transcript.pyannote[715].start 6768.27284375
transcript.pyannote[715].end 6778.73534375
transcript.pyannote[716].speaker SPEAKER_08
transcript.pyannote[716].start 6772.62659375
transcript.pyannote[716].end 6781.43534375
transcript.pyannote[717].speaker SPEAKER_05
transcript.pyannote[717].start 6779.61284375
transcript.pyannote[717].end 6782.65034375
transcript.pyannote[718].speaker SPEAKER_03
transcript.pyannote[718].start 6781.43534375
transcript.pyannote[718].end 6781.45221875
transcript.pyannote[719].speaker SPEAKER_03
transcript.pyannote[719].start 6782.65034375
transcript.pyannote[719].end 6782.70096875
transcript.pyannote[720].speaker SPEAKER_03
transcript.pyannote[720].start 6786.04221875
transcript.pyannote[720].end 6788.21909375
transcript.pyannote[721].speaker SPEAKER_03
transcript.pyannote[721].start 6788.80971875
transcript.pyannote[721].end 6795.82971875
transcript.pyannote[722].speaker SPEAKER_00
transcript.pyannote[722].start 6802.71471875
transcript.pyannote[722].end 6804.85784375
transcript.pyannote[723].speaker SPEAKER_22
transcript.pyannote[723].start 6804.85784375
transcript.pyannote[723].end 6805.22909375
transcript.pyannote[724].speaker SPEAKER_07
transcript.pyannote[724].start 6811.16909375
transcript.pyannote[724].end 6811.72596875
transcript.pyannote[725].speaker SPEAKER_00
transcript.pyannote[725].start 6811.72596875
transcript.pyannote[725].end 6868.98284375
transcript.pyannote[726].speaker SPEAKER_01
transcript.pyannote[726].start 6850.43721875
transcript.pyannote[726].end 6850.82534375
transcript.pyannote[727].speaker SPEAKER_01
transcript.pyannote[727].start 6851.58471875
transcript.pyannote[727].end 6851.97284375
transcript.pyannote[728].speaker SPEAKER_00
transcript.pyannote[728].start 6869.13471875
transcript.pyannote[728].end 6937.52909375
transcript.pyannote[729].speaker SPEAKER_07
transcript.pyannote[729].start 6938.13659375
transcript.pyannote[729].end 6961.23846875
transcript.pyannote[730].speaker SPEAKER_08
transcript.pyannote[730].start 6950.69159375
transcript.pyannote[730].end 6950.84346875
transcript.pyannote[731].speaker SPEAKER_07
transcript.pyannote[731].start 6961.40721875
transcript.pyannote[731].end 6978.11346875
transcript.pyannote[732].speaker SPEAKER_00
transcript.pyannote[732].start 6978.11346875
transcript.pyannote[732].end 7019.79471875
transcript.pyannote[733].speaker SPEAKER_07
transcript.pyannote[733].start 6978.34971875
transcript.pyannote[733].end 6980.22284375
transcript.pyannote[734].speaker SPEAKER_00
transcript.pyannote[734].start 7020.23346875
transcript.pyannote[734].end 7021.41471875
transcript.pyannote[735].speaker SPEAKER_00
transcript.pyannote[735].start 7021.66784375
transcript.pyannote[735].end 7061.89784375
transcript.pyannote[736].speaker SPEAKER_07
transcript.pyannote[736].start 7062.31971875
transcript.pyannote[736].end 7065.20534375
transcript.pyannote[737].speaker SPEAKER_07
transcript.pyannote[737].start 7066.08284375
transcript.pyannote[737].end 7066.92659375
transcript.pyannote[738].speaker SPEAKER_07
transcript.pyannote[738].start 7067.98971875
transcript.pyannote[738].end 7089.87659375
transcript.pyannote[739].speaker SPEAKER_04
transcript.pyannote[739].start 7075.53284375
transcript.pyannote[739].end 7075.97159375
transcript.pyannote[740].speaker SPEAKER_04
transcript.pyannote[740].start 7082.46846875
transcript.pyannote[740].end 7082.92409375
transcript.pyannote[741].speaker SPEAKER_00
transcript.pyannote[741].start 7087.54784375
transcript.pyannote[741].end 7087.76721875
transcript.pyannote[742].speaker SPEAKER_07
transcript.pyannote[742].start 7089.92721875
transcript.pyannote[742].end 7089.97784375
transcript.pyannote[743].speaker SPEAKER_00
transcript.pyannote[743].start 7089.97784375
transcript.pyannote[743].end 7090.53471875
transcript.pyannote[744].speaker SPEAKER_07
transcript.pyannote[744].start 7090.24784375
transcript.pyannote[744].end 7091.98596875
transcript.pyannote[745].speaker SPEAKER_00
transcript.pyannote[745].start 7091.80034375
transcript.pyannote[745].end 7094.41596875
transcript.pyannote[746].speaker SPEAKER_07
transcript.pyannote[746].start 7094.23034375
transcript.pyannote[746].end 7095.32721875
transcript.pyannote[747].speaker SPEAKER_00
transcript.pyannote[747].start 7094.80409375
transcript.pyannote[747].end 7108.99596875
transcript.pyannote[748].speaker SPEAKER_22
transcript.pyannote[748].start 7108.96221875
transcript.pyannote[748].end 7109.35034375
transcript.pyannote[749].speaker SPEAKER_00
transcript.pyannote[749].start 7109.26596875
transcript.pyannote[749].end 7141.27784375
transcript.pyannote[750].speaker SPEAKER_07
transcript.pyannote[750].start 7141.41284375
transcript.pyannote[750].end 7192.03784375
transcript.pyannote[751].speaker SPEAKER_00
transcript.pyannote[751].start 7147.18409375
transcript.pyannote[751].end 7147.63971875
transcript.pyannote[752].speaker SPEAKER_22
transcript.pyannote[752].start 7147.63971875
transcript.pyannote[752].end 7147.65659375
transcript.pyannote[753].speaker SPEAKER_00
transcript.pyannote[753].start 7147.65659375
transcript.pyannote[753].end 7147.67346875
transcript.pyannote[754].speaker SPEAKER_00
transcript.pyannote[754].start 7151.68971875
transcript.pyannote[754].end 7153.49534375
transcript.pyannote[755].speaker SPEAKER_00
transcript.pyannote[755].start 7154.47409375
transcript.pyannote[755].end 7154.86221875
transcript.pyannote[756].speaker SPEAKER_00
transcript.pyannote[756].start 7192.17284375
transcript.pyannote[756].end 7210.87034375
transcript.pyannote[757].speaker SPEAKER_22
transcript.pyannote[757].start 7207.14096875
transcript.pyannote[757].end 7207.15784375
transcript.pyannote[758].speaker SPEAKER_07
transcript.pyannote[758].start 7207.15784375
transcript.pyannote[758].end 7208.11971875
transcript.pyannote[759].speaker SPEAKER_07
transcript.pyannote[759].start 7210.87034375
transcript.pyannote[759].end 7231.84596875
transcript.pyannote[760].speaker SPEAKER_00
transcript.pyannote[760].start 7216.06784375
transcript.pyannote[760].end 7216.15221875
transcript.pyannote[761].speaker SPEAKER_04
transcript.pyannote[761].start 7216.15221875
transcript.pyannote[761].end 7216.42221875
transcript.pyannote[762].speaker SPEAKER_00
transcript.pyannote[762].start 7216.42221875
transcript.pyannote[762].end 7216.50659375
transcript.pyannote[763].speaker SPEAKER_00
transcript.pyannote[763].start 7230.46221875
transcript.pyannote[763].end 7231.08659375
transcript.pyannote[764].speaker SPEAKER_00
transcript.pyannote[764].start 7231.69409375
transcript.pyannote[764].end 7314.85409375
transcript.pyannote[765].speaker SPEAKER_00
transcript.pyannote[765].start 7315.24221875
transcript.pyannote[765].end 7321.04721875
transcript.pyannote[766].speaker SPEAKER_00
transcript.pyannote[766].start 7321.46909375
transcript.pyannote[766].end 7348.45221875
transcript.pyannote[767].speaker SPEAKER_00
transcript.pyannote[767].start 7349.04284375
transcript.pyannote[767].end 7350.44346875
transcript.pyannote[768].speaker SPEAKER_00
transcript.pyannote[768].start 7351.01721875
transcript.pyannote[768].end 7361.76659375
transcript.pyannote[769].speaker SPEAKER_07
transcript.pyannote[769].start 7362.25596875
transcript.pyannote[769].end 7362.71159375
transcript.pyannote[770].speaker SPEAKER_07
transcript.pyannote[770].start 7362.98159375
transcript.pyannote[770].end 7363.69034375
transcript.pyannote[771].speaker SPEAKER_07
transcript.pyannote[771].start 7363.89284375
transcript.pyannote[771].end 7377.76409375
transcript.pyannote[772].speaker SPEAKER_07
transcript.pyannote[772].start 7377.94971875
transcript.pyannote[772].end 7392.41159375
transcript.pyannote[773].speaker SPEAKER_04
transcript.pyannote[773].start 7387.11284375
transcript.pyannote[773].end 7388.29409375
transcript.pyannote[774].speaker SPEAKER_04
transcript.pyannote[774].start 7392.14159375
transcript.pyannote[774].end 7392.39471875
transcript.pyannote[775].speaker SPEAKER_04
transcript.pyannote[775].start 7392.41159375
transcript.pyannote[775].end 7394.09909375
transcript.pyannote[776].speaker SPEAKER_04
transcript.pyannote[776].start 7395.44909375
transcript.pyannote[776].end 7402.48596875
transcript.pyannote[777].speaker SPEAKER_07
transcript.pyannote[777].start 7397.81159375
transcript.pyannote[777].end 7398.26721875
transcript.pyannote[778].speaker SPEAKER_04
transcript.pyannote[778].start 7403.12721875
transcript.pyannote[778].end 7406.11409375
transcript.pyannote[779].speaker SPEAKER_04
transcript.pyannote[779].start 7406.35034375
transcript.pyannote[779].end 7407.07596875
transcript.pyannote[780].speaker SPEAKER_04
transcript.pyannote[780].start 7407.21096875
transcript.pyannote[780].end 7438.58159375
transcript.pyannote[781].speaker SPEAKER_00
transcript.pyannote[781].start 7417.47096875
transcript.pyannote[781].end 7418.04471875
transcript.pyannote[782].speaker SPEAKER_00
transcript.pyannote[782].start 7421.50409375
transcript.pyannote[782].end 7421.55471875
transcript.pyannote[783].speaker SPEAKER_00
transcript.pyannote[783].start 7421.74034375
transcript.pyannote[783].end 7421.84159375
transcript.pyannote[784].speaker SPEAKER_04
transcript.pyannote[784].start 7438.64909375
transcript.pyannote[784].end 7459.89471875
transcript.pyannote[785].speaker SPEAKER_22
transcript.pyannote[785].start 7438.93596875
transcript.pyannote[785].end 7438.96971875
transcript.pyannote[786].speaker SPEAKER_00
transcript.pyannote[786].start 7438.96971875
transcript.pyannote[786].end 7439.15534375
transcript.pyannote[787].speaker SPEAKER_04
transcript.pyannote[787].start 7460.67096875
transcript.pyannote[787].end 7470.03659375
transcript.pyannote[788].speaker SPEAKER_00
transcript.pyannote[788].start 7470.03659375
transcript.pyannote[788].end 7504.69784375
transcript.pyannote[789].speaker SPEAKER_00
transcript.pyannote[789].start 7505.08596875
transcript.pyannote[789].end 7505.33909375
transcript.pyannote[790].speaker SPEAKER_07
transcript.pyannote[790].start 7505.22096875
transcript.pyannote[790].end 7506.21659375
transcript.pyannote[791].speaker SPEAKER_00
transcript.pyannote[791].start 7506.21659375
transcript.pyannote[791].end 7506.52034375
transcript.pyannote[792].speaker SPEAKER_07
transcript.pyannote[792].start 7506.77346875
transcript.pyannote[792].end 7511.81909375
transcript.pyannote[793].speaker SPEAKER_00
transcript.pyannote[793].start 7510.43534375
transcript.pyannote[793].end 7510.82346875
transcript.pyannote[794].speaker SPEAKER_22
transcript.pyannote[794].start 7510.82346875
transcript.pyannote[794].end 7510.84034375
transcript.pyannote[795].speaker SPEAKER_07
transcript.pyannote[795].start 7512.30846875
transcript.pyannote[795].end 7521.13409375
transcript.pyannote[796].speaker SPEAKER_00
transcript.pyannote[796].start 7513.74284375
transcript.pyannote[796].end 7514.31659375
transcript.pyannote[797].speaker SPEAKER_00
transcript.pyannote[797].start 7515.95346875
transcript.pyannote[797].end 7516.37534375
transcript.pyannote[798].speaker SPEAKER_00
transcript.pyannote[798].start 7520.96534375
transcript.pyannote[798].end 7523.02409375
transcript.pyannote[799].speaker SPEAKER_03
transcript.pyannote[799].start 7525.01534375
transcript.pyannote[799].end 7529.41971875
transcript.pyannote[800].speaker SPEAKER_09
transcript.pyannote[800].start 7539.00471875
transcript.pyannote[800].end 7544.99534375
transcript.pyannote[801].speaker SPEAKER_07
transcript.pyannote[801].start 7548.69096875
transcript.pyannote[801].end 7549.34909375
transcript.pyannote[802].speaker SPEAKER_09
transcript.pyannote[802].start 7549.87221875
transcript.pyannote[802].end 7557.51659375
transcript.pyannote[803].speaker SPEAKER_09
transcript.pyannote[803].start 7558.00596875
transcript.pyannote[803].end 7562.32596875
transcript.pyannote[804].speaker SPEAKER_09
transcript.pyannote[804].start 7562.81534375
transcript.pyannote[804].end 7573.54784375
transcript.pyannote[805].speaker SPEAKER_09
transcript.pyannote[805].start 7574.00346875
transcript.pyannote[805].end 7578.76221875
transcript.pyannote[806].speaker SPEAKER_09
transcript.pyannote[806].start 7578.99846875
transcript.pyannote[806].end 7581.09096875
transcript.pyannote[807].speaker SPEAKER_09
transcript.pyannote[807].start 7585.49534375
transcript.pyannote[807].end 7586.10284375
transcript.pyannote[808].speaker SPEAKER_07
transcript.pyannote[808].start 7586.10284375
transcript.pyannote[808].end 7586.23784375
transcript.pyannote[809].speaker SPEAKER_09
transcript.pyannote[809].start 7586.23784375
transcript.pyannote[809].end 7587.33471875
transcript.pyannote[810].speaker SPEAKER_07
transcript.pyannote[810].start 7586.35596875
transcript.pyannote[810].end 7588.95471875
transcript.pyannote[811].speaker SPEAKER_09
transcript.pyannote[811].start 7588.76909375
transcript.pyannote[811].end 7591.03034375
transcript.pyannote[812].speaker SPEAKER_09
transcript.pyannote[812].start 7591.45221875
transcript.pyannote[812].end 7624.40909375
transcript.pyannote[813].speaker SPEAKER_09
transcript.pyannote[813].start 7624.71284375
transcript.pyannote[813].end 7629.45471875
transcript.pyannote[814].speaker SPEAKER_09
transcript.pyannote[814].start 7629.91034375
transcript.pyannote[814].end 7646.51534375
transcript.pyannote[815].speaker SPEAKER_09
transcript.pyannote[815].start 7646.66721875
transcript.pyannote[815].end 7650.21096875
transcript.pyannote[816].speaker SPEAKER_09
transcript.pyannote[816].start 7650.36284375
transcript.pyannote[816].end 7682.34096875
transcript.pyannote[817].speaker SPEAKER_09
transcript.pyannote[817].start 7682.44221875
transcript.pyannote[817].end 7696.21221875
transcript.pyannote[818].speaker SPEAKER_09
transcript.pyannote[818].start 7696.56659375
transcript.pyannote[818].end 7697.47784375
transcript.pyannote[819].speaker SPEAKER_09
transcript.pyannote[819].start 7697.74784375
transcript.pyannote[819].end 7712.32784375
transcript.pyannote[820].speaker SPEAKER_09
transcript.pyannote[820].start 7712.93534375
transcript.pyannote[820].end 7719.02721875
transcript.pyannote[821].speaker SPEAKER_09
transcript.pyannote[821].start 7719.43221875
transcript.pyannote[821].end 7722.06471875
transcript.pyannote[822].speaker SPEAKER_23
transcript.pyannote[822].start 7724.93346875
transcript.pyannote[822].end 7749.21659375
transcript.pyannote[823].speaker SPEAKER_23
transcript.pyannote[823].start 7749.62159375
transcript.pyannote[823].end 7756.59096875
transcript.pyannote[824].speaker SPEAKER_03
transcript.pyannote[824].start 7749.67221875
transcript.pyannote[824].end 7749.97596875
transcript.pyannote[825].speaker SPEAKER_08
transcript.pyannote[825].start 7749.97596875
transcript.pyannote[825].end 7750.27971875
transcript.pyannote[826].speaker SPEAKER_23
transcript.pyannote[826].start 7756.64159375
transcript.pyannote[826].end 7770.17534375
transcript.pyannote[827].speaker SPEAKER_09
transcript.pyannote[827].start 7771.15409375
transcript.pyannote[827].end 7780.75596875
transcript.pyannote[828].speaker SPEAKER_09
transcript.pyannote[828].start 7781.51534375
transcript.pyannote[828].end 7782.69659375
transcript.pyannote[829].speaker SPEAKER_09
transcript.pyannote[829].start 7783.62471875
transcript.pyannote[829].end 7794.61034375
transcript.pyannote[830].speaker SPEAKER_09
transcript.pyannote[830].start 7795.16721875
transcript.pyannote[830].end 7831.85346875
transcript.pyannote[831].speaker SPEAKER_09
transcript.pyannote[831].start 7832.35971875
transcript.pyannote[831].end 7843.51409375
transcript.pyannote[832].speaker SPEAKER_23
transcript.pyannote[832].start 7843.64909375
transcript.pyannote[832].end 7870.37909375
transcript.pyannote[833].speaker SPEAKER_23
transcript.pyannote[833].start 7870.83471875
transcript.pyannote[833].end 7887.01784375
transcript.pyannote[834].speaker SPEAKER_09
transcript.pyannote[834].start 7887.18659375
transcript.pyannote[834].end 7906.67721875
transcript.pyannote[835].speaker SPEAKER_09
transcript.pyannote[835].start 7906.96409375
transcript.pyannote[835].end 7908.33096875
transcript.pyannote[836].speaker SPEAKER_09
transcript.pyannote[836].start 7909.03971875
transcript.pyannote[836].end 7910.15346875
transcript.pyannote[837].speaker SPEAKER_09
transcript.pyannote[837].start 7910.57534375
transcript.pyannote[837].end 7912.78596875
transcript.pyannote[838].speaker SPEAKER_09
transcript.pyannote[838].start 7912.90409375
transcript.pyannote[838].end 7929.54284375
transcript.pyannote[839].speaker SPEAKER_09
transcript.pyannote[839].start 7929.94784375
transcript.pyannote[839].end 7934.94284375
transcript.pyannote[840].speaker SPEAKER_09
transcript.pyannote[840].start 7935.51659375
transcript.pyannote[840].end 7940.96721875
transcript.pyannote[841].speaker SPEAKER_09
transcript.pyannote[841].start 7941.05159375
transcript.pyannote[841].end 7950.31596875
transcript.pyannote[842].speaker SPEAKER_07
transcript.pyannote[842].start 7951.41284375
transcript.pyannote[842].end 7960.69409375
transcript.pyannote[843].speaker SPEAKER_07
transcript.pyannote[843].start 7961.43659375
transcript.pyannote[843].end 7978.00784375
transcript.pyannote[844].speaker SPEAKER_09
transcript.pyannote[844].start 7978.00784375
transcript.pyannote[844].end 7989.04409375
transcript.pyannote[845].speaker SPEAKER_07
transcript.pyannote[845].start 7988.67284375
transcript.pyannote[845].end 8012.06159375
transcript.pyannote[846].speaker SPEAKER_09
transcript.pyannote[846].start 8011.82534375
transcript.pyannote[846].end 8030.59034375
transcript.pyannote[847].speaker SPEAKER_22
transcript.pyannote[847].start 8030.18534375
transcript.pyannote[847].end 8030.57346875
transcript.pyannote[848].speaker SPEAKER_22
transcript.pyannote[848].start 8030.59034375
transcript.pyannote[848].end 8030.82659375
transcript.pyannote[849].speaker SPEAKER_09
transcript.pyannote[849].start 8031.82221875
transcript.pyannote[849].end 8038.52159375
transcript.pyannote[850].speaker SPEAKER_09
transcript.pyannote[850].start 8038.80846875
transcript.pyannote[850].end 8045.28846875
transcript.pyannote[851].speaker SPEAKER_09
transcript.pyannote[851].start 8045.62596875
transcript.pyannote[851].end 8076.57471875
transcript.pyannote[852].speaker SPEAKER_09
transcript.pyannote[852].start 8076.60846875
transcript.pyannote[852].end 8081.56971875
transcript.pyannote[853].speaker SPEAKER_09
transcript.pyannote[853].start 8082.10971875
transcript.pyannote[853].end 8084.74221875
transcript.pyannote[854].speaker SPEAKER_09
transcript.pyannote[854].start 8085.18096875
transcript.pyannote[854].end 8086.53096875
transcript.pyannote[855].speaker SPEAKER_09
transcript.pyannote[855].start 8086.86846875
transcript.pyannote[855].end 8090.49659375
transcript.pyannote[856].speaker SPEAKER_09
transcript.pyannote[856].start 8090.63159375
transcript.pyannote[856].end 8096.79096875
transcript.pyannote[857].speaker SPEAKER_09
transcript.pyannote[857].start 8097.39846875
transcript.pyannote[857].end 8107.37159375
transcript.pyannote[858].speaker SPEAKER_09
transcript.pyannote[858].start 8107.89471875
transcript.pyannote[858].end 8121.12471875
transcript.pyannote[859].speaker SPEAKER_09
transcript.pyannote[859].start 8121.71534375
transcript.pyannote[859].end 8140.66596875
transcript.pyannote[860].speaker SPEAKER_09
transcript.pyannote[860].start 8140.95284375
transcript.pyannote[860].end 8143.41659375
transcript.pyannote[861].speaker SPEAKER_09
transcript.pyannote[861].start 8143.66971875
transcript.pyannote[861].end 8146.45409375
transcript.pyannote[862].speaker SPEAKER_09
transcript.pyannote[862].start 8146.62284375
transcript.pyannote[862].end 8149.71096875
transcript.pyannote[863].speaker SPEAKER_09
transcript.pyannote[863].start 8149.99784375
transcript.pyannote[863].end 8150.95971875
transcript.pyannote[864].speaker SPEAKER_09
transcript.pyannote[864].start 8151.92159375
transcript.pyannote[864].end 8153.06909375
transcript.pyannote[865].speaker SPEAKER_09
transcript.pyannote[865].start 8154.03096875
transcript.pyannote[865].end 8155.31346875
transcript.pyannote[866].speaker SPEAKER_09
transcript.pyannote[866].start 8155.78596875
transcript.pyannote[866].end 8158.62096875
transcript.pyannote[867].speaker SPEAKER_09
transcript.pyannote[867].start 8159.00909375
transcript.pyannote[867].end 8159.61659375
transcript.pyannote[868].speaker SPEAKER_09
transcript.pyannote[868].start 8160.00471875
transcript.pyannote[868].end 8160.67971875
transcript.pyannote[869].speaker SPEAKER_09
transcript.pyannote[869].start 8161.06784375
transcript.pyannote[869].end 8163.07596875
transcript.pyannote[870].speaker SPEAKER_09
transcript.pyannote[870].start 8163.17721875
transcript.pyannote[870].end 8163.83534375
transcript.pyannote[871].speaker SPEAKER_09
transcript.pyannote[871].start 8164.59471875
transcript.pyannote[871].end 8187.32534375
transcript.pyannote[872].speaker SPEAKER_09
transcript.pyannote[872].start 8187.71346875
transcript.pyannote[872].end 8210.03909375
transcript.pyannote[873].speaker SPEAKER_07
transcript.pyannote[873].start 8210.03909375
transcript.pyannote[873].end 8210.17409375
transcript.pyannote[874].speaker SPEAKER_07
transcript.pyannote[874].start 8210.88284375
transcript.pyannote[874].end 8211.87846875
transcript.pyannote[875].speaker SPEAKER_07
transcript.pyannote[875].start 8212.09784375
transcript.pyannote[875].end 8214.19034375
transcript.pyannote[876].speaker SPEAKER_07
transcript.pyannote[876].start 8214.67971875
transcript.pyannote[876].end 8215.42221875
transcript.pyannote[877].speaker SPEAKER_07
transcript.pyannote[877].start 8216.06346875
transcript.pyannote[877].end 8216.46846875
transcript.pyannote[878].speaker SPEAKER_09
transcript.pyannote[878].start 8216.46846875
transcript.pyannote[878].end 8216.48534375
transcript.pyannote[879].speaker SPEAKER_07
transcript.pyannote[879].start 8217.39659375
transcript.pyannote[879].end 8217.97034375
transcript.pyannote[880].speaker SPEAKER_09
transcript.pyannote[880].start 8217.97034375
transcript.pyannote[880].end 8233.68096875
transcript.pyannote[881].speaker SPEAKER_09
transcript.pyannote[881].start 8233.76534375
transcript.pyannote[881].end 8248.68284375
transcript.pyannote[882].speaker SPEAKER_09
transcript.pyannote[882].start 8249.02034375
transcript.pyannote[882].end 8249.99909375
transcript.pyannote[883].speaker SPEAKER_07
transcript.pyannote[883].start 8251.33221875
transcript.pyannote[883].end 8258.01471875
transcript.pyannote[884].speaker SPEAKER_07
transcript.pyannote[884].start 8258.55471875
transcript.pyannote[884].end 8259.24659375
transcript.pyannote[885].speaker SPEAKER_07
transcript.pyannote[885].start 8260.07346875
transcript.pyannote[885].end 8282.21346875
transcript.pyannote[886].speaker SPEAKER_07
transcript.pyannote[886].start 8283.12471875
transcript.pyannote[886].end 8285.04846875
transcript.pyannote[887].speaker SPEAKER_07
transcript.pyannote[887].start 8285.57159375
transcript.pyannote[887].end 8306.96909375
transcript.pyannote[888].speaker SPEAKER_09
transcript.pyannote[888].start 8306.96909375
transcript.pyannote[888].end 8309.07846875
transcript.pyannote[889].speaker SPEAKER_09
transcript.pyannote[889].start 8309.41596875
transcript.pyannote[889].end 8317.97159375
transcript.pyannote[890].speaker SPEAKER_09
transcript.pyannote[890].start 8318.08971875
transcript.pyannote[890].end 8345.91659375
transcript.pyannote[891].speaker SPEAKER_09
transcript.pyannote[891].start 8347.01346875
transcript.pyannote[891].end 8347.28346875
transcript.pyannote[892].speaker SPEAKER_09
transcript.pyannote[892].start 8347.73909375
transcript.pyannote[892].end 8369.47409375
transcript.pyannote[893].speaker SPEAKER_03
transcript.pyannote[893].start 8369.47409375
transcript.pyannote[893].end 8369.49096875
transcript.pyannote[894].speaker SPEAKER_09
transcript.pyannote[894].start 8370.35159375
transcript.pyannote[894].end 8371.02659375
transcript.pyannote[895].speaker SPEAKER_03
transcript.pyannote[895].start 8371.02659375
transcript.pyannote[895].end 8371.41471875
transcript.pyannote[896].speaker SPEAKER_09
transcript.pyannote[896].start 8372.47784375
transcript.pyannote[896].end 8372.49471875
transcript.pyannote[897].speaker SPEAKER_03
transcript.pyannote[897].start 8372.49471875
transcript.pyannote[897].end 8379.86909375
transcript.pyannote[898].speaker SPEAKER_22
transcript.pyannote[898].start 8808.13971875
transcript.pyannote[898].end 8816.07096875
transcript.pyannote[899].speaker SPEAKER_01
transcript.pyannote[899].start 8809.96221875
transcript.pyannote[899].end 8811.02534375
transcript.pyannote[900].speaker SPEAKER_01
transcript.pyannote[900].start 8811.83534375
transcript.pyannote[900].end 8812.03784375
transcript.pyannote[901].speaker SPEAKER_25
transcript.pyannote[901].start 8812.03784375
transcript.pyannote[901].end 8812.39221875
transcript.pyannote[902].speaker SPEAKER_25
transcript.pyannote[902].start 8813.92784375
transcript.pyannote[902].end 8814.11346875
transcript.pyannote[903].speaker SPEAKER_25
transcript.pyannote[903].start 8814.23159375
transcript.pyannote[903].end 8814.97409375
transcript.pyannote[904].speaker SPEAKER_03
transcript.pyannote[904].start 8820.57659375
transcript.pyannote[904].end 8823.15846875
transcript.pyannote[905].speaker SPEAKER_03
transcript.pyannote[905].start 8823.52971875
transcript.pyannote[905].end 8824.05284375
transcript.pyannote[906].speaker SPEAKER_03
transcript.pyannote[906].start 8824.98096875
transcript.pyannote[906].end 8825.58846875
transcript.pyannote[907].speaker SPEAKER_03
transcript.pyannote[907].start 8825.89221875
transcript.pyannote[907].end 8828.99721875
transcript.pyannote[908].speaker SPEAKER_24
transcript.pyannote[908].start 8834.09346875
transcript.pyannote[908].end 8834.39721875
transcript.pyannote[909].speaker SPEAKER_24
transcript.pyannote[909].start 8834.81909375
transcript.pyannote[909].end 8838.39659375
transcript.pyannote[910].speaker SPEAKER_07
transcript.pyannote[910].start 8846.00721875
transcript.pyannote[910].end 8846.73284375
transcript.pyannote[911].speaker SPEAKER_08
transcript.pyannote[911].start 8846.73284375
transcript.pyannote[911].end 8846.74971875
transcript.pyannote[912].speaker SPEAKER_07
transcript.pyannote[912].start 8846.74971875
transcript.pyannote[912].end 8846.76659375
transcript.pyannote[913].speaker SPEAKER_24
transcript.pyannote[913].start 8846.76659375
transcript.pyannote[913].end 8861.53221875
transcript.pyannote[914].speaker SPEAKER_07
transcript.pyannote[914].start 8846.78346875
transcript.pyannote[914].end 8847.17159375
transcript.pyannote[915].speaker SPEAKER_24
transcript.pyannote[915].start 8863.32096875
transcript.pyannote[915].end 8867.06721875
transcript.pyannote[916].speaker SPEAKER_24
transcript.pyannote[916].start 8867.26971875
transcript.pyannote[916].end 8869.85159375
transcript.pyannote[917].speaker SPEAKER_24
transcript.pyannote[917].start 8870.25659375
transcript.pyannote[917].end 8872.75409375
transcript.pyannote[918].speaker SPEAKER_24
transcript.pyannote[918].start 8872.88909375
transcript.pyannote[918].end 8876.66909375
transcript.pyannote[919].speaker SPEAKER_24
transcript.pyannote[919].start 8876.82096875
transcript.pyannote[919].end 8886.59159375
transcript.pyannote[920].speaker SPEAKER_24
transcript.pyannote[920].start 8887.48596875
transcript.pyannote[920].end 8905.23846875
transcript.pyannote[921].speaker SPEAKER_24
transcript.pyannote[921].start 8906.18346875
transcript.pyannote[921].end 8910.11534375
transcript.pyannote[922].speaker SPEAKER_24
transcript.pyannote[922].start 8910.99284375
transcript.pyannote[922].end 8918.80596875
transcript.pyannote[923].speaker SPEAKER_24
transcript.pyannote[923].start 8919.14346875
transcript.pyannote[923].end 8920.51034375
transcript.pyannote[924].speaker SPEAKER_07
transcript.pyannote[924].start 8922.38346875
transcript.pyannote[924].end 8923.39596875
transcript.pyannote[925].speaker SPEAKER_07
transcript.pyannote[925].start 8923.66596875
transcript.pyannote[925].end 8925.37034375
transcript.pyannote[926].speaker SPEAKER_24
transcript.pyannote[926].start 8925.58971875
transcript.pyannote[926].end 8927.15909375
transcript.pyannote[927].speaker SPEAKER_24
transcript.pyannote[927].start 8929.03221875
transcript.pyannote[927].end 8929.69034375
transcript.pyannote[928].speaker SPEAKER_24
transcript.pyannote[928].start 8930.21346875
transcript.pyannote[928].end 8931.34409375
transcript.pyannote[929].speaker SPEAKER_18
transcript.pyannote[929].start 8933.70659375
transcript.pyannote[929].end 8951.84721875
transcript.pyannote[930].speaker SPEAKER_18
transcript.pyannote[930].start 8951.91471875
transcript.pyannote[930].end 8954.76659375
transcript.pyannote[931].speaker SPEAKER_18
transcript.pyannote[931].start 8954.81721875
transcript.pyannote[931].end 8964.85784375
transcript.pyannote[932].speaker SPEAKER_24
transcript.pyannote[932].start 8965.87034375
transcript.pyannote[932].end 8969.48159375
transcript.pyannote[933].speaker SPEAKER_24
transcript.pyannote[933].start 8970.15659375
transcript.pyannote[933].end 8974.25721875
transcript.pyannote[934].speaker SPEAKER_24
transcript.pyannote[934].start 8974.49346875
transcript.pyannote[934].end 8975.28659375
transcript.pyannote[935].speaker SPEAKER_18
transcript.pyannote[935].start 8975.79284375
transcript.pyannote[935].end 8977.78409375
transcript.pyannote[936].speaker SPEAKER_24
transcript.pyannote[936].start 8977.48034375
transcript.pyannote[936].end 8998.08471875
transcript.pyannote[937].speaker SPEAKER_07
transcript.pyannote[937].start 8998.08471875
transcript.pyannote[937].end 9016.07346875
transcript.pyannote[938].speaker SPEAKER_24
transcript.pyannote[938].start 9008.17596875
transcript.pyannote[938].end 9008.68221875
transcript.pyannote[939].speaker SPEAKER_24
transcript.pyannote[939].start 9016.00596875
transcript.pyannote[939].end 9023.36346875
transcript.pyannote[940].speaker SPEAKER_24
transcript.pyannote[940].start 9023.61659375
transcript.pyannote[940].end 9028.17284375
transcript.pyannote[941].speaker SPEAKER_24
transcript.pyannote[941].start 9028.45971875
transcript.pyannote[941].end 9029.64096875
transcript.pyannote[942].speaker SPEAKER_24
transcript.pyannote[942].start 9030.18096875
transcript.pyannote[942].end 9031.46346875
transcript.pyannote[943].speaker SPEAKER_24
transcript.pyannote[943].start 9032.35784375
transcript.pyannote[943].end 9033.23534375
transcript.pyannote[944].speaker SPEAKER_24
transcript.pyannote[944].start 9034.43346875
transcript.pyannote[944].end 9035.47971875
transcript.pyannote[945].speaker SPEAKER_24
transcript.pyannote[945].start 9036.00284375
transcript.pyannote[945].end 9037.04909375
transcript.pyannote[946].speaker SPEAKER_24
transcript.pyannote[946].start 9037.28534375
transcript.pyannote[946].end 9039.07409375
transcript.pyannote[947].speaker SPEAKER_07
transcript.pyannote[947].start 9039.20909375
transcript.pyannote[947].end 9039.54659375
transcript.pyannote[948].speaker SPEAKER_07
transcript.pyannote[948].start 9039.86721875
transcript.pyannote[948].end 9045.82409375
transcript.pyannote[949].speaker SPEAKER_24
transcript.pyannote[949].start 9043.25909375
transcript.pyannote[949].end 9043.46159375
transcript.pyannote[950].speaker SPEAKER_07
transcript.pyannote[950].start 9046.34721875
transcript.pyannote[950].end 9070.49534375
transcript.pyannote[951].speaker SPEAKER_24
transcript.pyannote[951].start 9070.49534375
transcript.pyannote[951].end 9070.51221875
transcript.pyannote[952].speaker SPEAKER_24
transcript.pyannote[952].start 9070.69784375
transcript.pyannote[952].end 9078.35909375
transcript.pyannote[953].speaker SPEAKER_24
transcript.pyannote[953].start 9079.57409375
transcript.pyannote[953].end 9080.56971875
transcript.pyannote[954].speaker SPEAKER_24
transcript.pyannote[954].start 9080.95784375
transcript.pyannote[954].end 9083.32034375
transcript.pyannote[955].speaker SPEAKER_24
transcript.pyannote[955].start 9083.70846875
transcript.pyannote[955].end 9084.26534375
transcript.pyannote[956].speaker SPEAKER_24
transcript.pyannote[956].start 9085.02471875
transcript.pyannote[956].end 9085.90221875
transcript.pyannote[957].speaker SPEAKER_24
transcript.pyannote[957].start 9086.45909375
transcript.pyannote[957].end 9087.85971875
transcript.pyannote[958].speaker SPEAKER_24
transcript.pyannote[958].start 9088.11284375
transcript.pyannote[958].end 9089.51346875
transcript.pyannote[959].speaker SPEAKER_24
transcript.pyannote[959].start 9090.49221875
transcript.pyannote[959].end 9091.82534375
transcript.pyannote[960].speaker SPEAKER_24
transcript.pyannote[960].start 9092.17971875
transcript.pyannote[960].end 9095.40284375
transcript.pyannote[961].speaker SPEAKER_24
transcript.pyannote[961].start 9095.74034375
transcript.pyannote[961].end 9098.67659375
transcript.pyannote[962].speaker SPEAKER_24
transcript.pyannote[962].start 9098.89596875
transcript.pyannote[962].end 9100.02659375
transcript.pyannote[963].speaker SPEAKER_24
transcript.pyannote[963].start 9101.25846875
transcript.pyannote[963].end 9102.38909375
transcript.pyannote[964].speaker SPEAKER_24
transcript.pyannote[964].start 9103.87409375
transcript.pyannote[964].end 9104.80221875
transcript.pyannote[965].speaker SPEAKER_24
transcript.pyannote[965].start 9105.22409375
transcript.pyannote[965].end 9106.37159375
transcript.pyannote[966].speaker SPEAKER_24
transcript.pyannote[966].start 9106.47284375
transcript.pyannote[966].end 9108.16034375
transcript.pyannote[967].speaker SPEAKER_24
transcript.pyannote[967].start 9108.36284375
transcript.pyannote[967].end 9110.43846875
transcript.pyannote[968].speaker SPEAKER_24
transcript.pyannote[968].start 9110.82659375
transcript.pyannote[968].end 9113.37471875
transcript.pyannote[969].speaker SPEAKER_24
transcript.pyannote[969].start 9114.69096875
transcript.pyannote[969].end 9115.14659375
transcript.pyannote[970].speaker SPEAKER_24
transcript.pyannote[970].start 9116.19284375
transcript.pyannote[970].end 9117.13784375
transcript.pyannote[971].speaker SPEAKER_24
transcript.pyannote[971].start 9117.77909375
transcript.pyannote[971].end 9118.97721875
transcript.pyannote[972].speaker SPEAKER_24
transcript.pyannote[972].start 9119.29784375
transcript.pyannote[972].end 9120.09096875
transcript.pyannote[973].speaker SPEAKER_24
transcript.pyannote[973].start 9120.42846875
transcript.pyannote[973].end 9122.08221875
transcript.pyannote[974].speaker SPEAKER_24
transcript.pyannote[974].start 9122.45346875
transcript.pyannote[974].end 9127.75221875
transcript.pyannote[975].speaker SPEAKER_24
transcript.pyannote[975].start 9127.76909375
transcript.pyannote[975].end 9129.45659375
transcript.pyannote[976].speaker SPEAKER_07
transcript.pyannote[976].start 9130.68846875
transcript.pyannote[976].end 9143.80034375
transcript.pyannote[977].speaker SPEAKER_07
transcript.pyannote[977].start 9145.42034375
transcript.pyannote[977].end 9150.97221875
transcript.pyannote[978].speaker SPEAKER_24
transcript.pyannote[978].start 9150.41534375
transcript.pyannote[978].end 9158.12721875
transcript.pyannote[979].speaker SPEAKER_24
transcript.pyannote[979].start 9158.32971875
transcript.pyannote[979].end 9159.24096875
transcript.pyannote[980].speaker SPEAKER_24
transcript.pyannote[980].start 9159.46034375
transcript.pyannote[980].end 9160.38846875
transcript.pyannote[981].speaker SPEAKER_24
transcript.pyannote[981].start 9160.74284375
transcript.pyannote[981].end 9162.49784375
transcript.pyannote[982].speaker SPEAKER_18
transcript.pyannote[982].start 9165.04596875
transcript.pyannote[982].end 9177.06096875
transcript.pyannote[983].speaker SPEAKER_24
transcript.pyannote[983].start 9171.44159375
transcript.pyannote[983].end 9173.93909375
transcript.pyannote[984].speaker SPEAKER_24
transcript.pyannote[984].start 9176.35221875
transcript.pyannote[984].end 9178.95096875
transcript.pyannote[985].speaker SPEAKER_18
transcript.pyannote[985].start 9180.28409375
transcript.pyannote[985].end 9185.65034375
transcript.pyannote[986].speaker SPEAKER_18
transcript.pyannote[986].start 9185.83596875
transcript.pyannote[986].end 9189.32909375
transcript.pyannote[987].speaker SPEAKER_18
transcript.pyannote[987].start 9189.53159375
transcript.pyannote[987].end 9191.57346875
transcript.pyannote[988].speaker SPEAKER_18
transcript.pyannote[988].start 9192.11346875
transcript.pyannote[988].end 9194.22284375
transcript.pyannote[989].speaker SPEAKER_24
transcript.pyannote[989].start 9193.96971875
transcript.pyannote[989].end 9195.16784375
transcript.pyannote[990].speaker SPEAKER_24
transcript.pyannote[990].start 9195.40409375
transcript.pyannote[990].end 9198.77909375
transcript.pyannote[991].speaker SPEAKER_24
transcript.pyannote[991].start 9199.50471875
transcript.pyannote[991].end 9215.26596875
transcript.pyannote[992].speaker SPEAKER_07
transcript.pyannote[992].start 9215.26596875
transcript.pyannote[992].end 9215.33346875
transcript.pyannote[993].speaker SPEAKER_24
transcript.pyannote[993].start 9215.33346875
transcript.pyannote[993].end 9215.97471875
transcript.pyannote[994].speaker SPEAKER_07
transcript.pyannote[994].start 9215.97471875
transcript.pyannote[994].end 9268.40534375
transcript.pyannote[995].speaker SPEAKER_22
transcript.pyannote[995].start 9230.68971875
transcript.pyannote[995].end 9231.09471875
transcript.pyannote[996].speaker SPEAKER_07
transcript.pyannote[996].start 9268.82721875
transcript.pyannote[996].end 9268.84409375
transcript.pyannote[997].speaker SPEAKER_24
transcript.pyannote[997].start 9268.84409375
transcript.pyannote[997].end 9286.78221875
transcript.pyannote[998].speaker SPEAKER_24
transcript.pyannote[998].start 9287.22096875
transcript.pyannote[998].end 9290.47784375
transcript.pyannote[999].speaker SPEAKER_24
transcript.pyannote[999].start 9291.16971875
transcript.pyannote[999].end 9308.56784375
transcript.pyannote[1000].speaker SPEAKER_07
transcript.pyannote[1000].start 9308.38221875
transcript.pyannote[1000].end 9321.12284375
transcript.pyannote[1001].speaker SPEAKER_24
transcript.pyannote[1001].start 9308.85471875
transcript.pyannote[1001].end 9309.14159375
transcript.pyannote[1002].speaker SPEAKER_24
transcript.pyannote[1002].start 9318.15284375
transcript.pyannote[1002].end 9318.23721875
transcript.pyannote[1003].speaker SPEAKER_24
transcript.pyannote[1003].start 9318.37221875
transcript.pyannote[1003].end 9322.43909375
transcript.pyannote[1004].speaker SPEAKER_07
transcript.pyannote[1004].start 9322.43909375
transcript.pyannote[1004].end 9341.11971875
transcript.pyannote[1005].speaker SPEAKER_24
transcript.pyannote[1005].start 9322.52346875
transcript.pyannote[1005].end 9322.60784375
transcript.pyannote[1006].speaker SPEAKER_07
transcript.pyannote[1006].start 9341.89596875
transcript.pyannote[1006].end 9341.92971875
transcript.pyannote[1007].speaker SPEAKER_24
transcript.pyannote[1007].start 9341.92971875
transcript.pyannote[1007].end 9344.02221875
transcript.pyannote[1008].speaker SPEAKER_24
transcript.pyannote[1008].start 9344.61284375
transcript.pyannote[1008].end 9345.60846875
transcript.pyannote[1009].speaker SPEAKER_24
transcript.pyannote[1009].start 9345.92909375
transcript.pyannote[1009].end 9346.90784375
transcript.pyannote[1010].speaker SPEAKER_24
transcript.pyannote[1010].start 9347.05971875
transcript.pyannote[1010].end 9348.12284375
transcript.pyannote[1011].speaker SPEAKER_24
transcript.pyannote[1011].start 9348.22409375
transcript.pyannote[1011].end 9348.83159375
transcript.pyannote[1012].speaker SPEAKER_24
transcript.pyannote[1012].start 9349.45596875
transcript.pyannote[1012].end 9350.60346875
transcript.pyannote[1013].speaker SPEAKER_24
transcript.pyannote[1013].start 9350.73846875
transcript.pyannote[1013].end 9353.75909375
transcript.pyannote[1014].speaker SPEAKER_24
transcript.pyannote[1014].start 9354.18096875
transcript.pyannote[1014].end 9355.56471875
transcript.pyannote[1015].speaker SPEAKER_24
transcript.pyannote[1015].start 9355.90221875
transcript.pyannote[1015].end 9357.16784375
transcript.pyannote[1016].speaker SPEAKER_24
transcript.pyannote[1016].start 9357.69096875
transcript.pyannote[1016].end 9368.94659375
transcript.pyannote[1017].speaker SPEAKER_08
transcript.pyannote[1017].start 9360.86346875
transcript.pyannote[1017].end 9360.88034375
transcript.pyannote[1018].speaker SPEAKER_04
transcript.pyannote[1018].start 9360.88034375
transcript.pyannote[1018].end 9361.09971875
transcript.pyannote[1019].speaker SPEAKER_22
transcript.pyannote[1019].start 9361.09971875
transcript.pyannote[1019].end 9361.15034375
transcript.pyannote[1020].speaker SPEAKER_08
transcript.pyannote[1020].start 9361.15034375
transcript.pyannote[1020].end 9361.28534375
transcript.pyannote[1021].speaker SPEAKER_04
transcript.pyannote[1021].start 9364.00221875
transcript.pyannote[1021].end 9364.81221875
transcript.pyannote[1022].speaker SPEAKER_04
transcript.pyannote[1022].start 9364.94721875
transcript.pyannote[1022].end 9364.99784375
transcript.pyannote[1023].speaker SPEAKER_24
transcript.pyannote[1023].start 9369.80721875
transcript.pyannote[1023].end 9370.24596875
transcript.pyannote[1024].speaker SPEAKER_24
transcript.pyannote[1024].start 9370.63409375
transcript.pyannote[1024].end 9371.84909375
transcript.pyannote[1025].speaker SPEAKER_24
transcript.pyannote[1025].start 9372.11909375
transcript.pyannote[1025].end 9372.87846875
transcript.pyannote[1026].speaker SPEAKER_24
transcript.pyannote[1026].start 9373.19909375
transcript.pyannote[1026].end 9374.02596875
transcript.pyannote[1027].speaker SPEAKER_24
transcript.pyannote[1027].start 9374.85284375
transcript.pyannote[1027].end 9375.89909375
transcript.pyannote[1028].speaker SPEAKER_24
transcript.pyannote[1028].start 9376.40534375
transcript.pyannote[1028].end 9380.03346875
transcript.pyannote[1029].speaker SPEAKER_24
transcript.pyannote[1029].start 9380.38784375
transcript.pyannote[1029].end 9383.67846875
transcript.pyannote[1030].speaker SPEAKER_24
transcript.pyannote[1030].start 9383.93159375
transcript.pyannote[1030].end 9385.51784375
transcript.pyannote[1031].speaker SPEAKER_24
transcript.pyannote[1031].start 9385.88909375
transcript.pyannote[1031].end 9388.55534375
transcript.pyannote[1032].speaker SPEAKER_24
transcript.pyannote[1032].start 9388.69034375
transcript.pyannote[1032].end 9389.19659375
transcript.pyannote[1033].speaker SPEAKER_24
transcript.pyannote[1033].start 9389.68596875
transcript.pyannote[1033].end 9394.14096875
transcript.pyannote[1034].speaker SPEAKER_24
transcript.pyannote[1034].start 9394.59659375
transcript.pyannote[1034].end 9398.10659375
transcript.pyannote[1035].speaker SPEAKER_24
transcript.pyannote[1035].start 9398.39346875
transcript.pyannote[1035].end 9400.92471875
transcript.pyannote[1036].speaker SPEAKER_24
transcript.pyannote[1036].start 9401.12721875
transcript.pyannote[1036].end 9403.05096875
transcript.pyannote[1037].speaker SPEAKER_24
transcript.pyannote[1037].start 9403.48971875
transcript.pyannote[1037].end 9404.08034375
transcript.pyannote[1038].speaker SPEAKER_24
transcript.pyannote[1038].start 9404.41784375
transcript.pyannote[1038].end 9405.16034375
transcript.pyannote[1039].speaker SPEAKER_24
transcript.pyannote[1039].start 9405.95346875
transcript.pyannote[1039].end 9406.17284375
transcript.pyannote[1040].speaker SPEAKER_24
transcript.pyannote[1040].start 9406.54409375
transcript.pyannote[1040].end 9407.69159375
transcript.pyannote[1041].speaker SPEAKER_24
transcript.pyannote[1041].start 9408.33284375
transcript.pyannote[1041].end 9409.78409375
transcript.pyannote[1042].speaker SPEAKER_24
transcript.pyannote[1042].start 9410.29034375
transcript.pyannote[1042].end 9411.55596875
transcript.pyannote[1043].speaker SPEAKER_24
transcript.pyannote[1043].start 9412.24784375
transcript.pyannote[1043].end 9412.87221875
transcript.pyannote[1044].speaker SPEAKER_24
transcript.pyannote[1044].start 9413.31096875
transcript.pyannote[1044].end 9414.34034375
transcript.pyannote[1045].speaker SPEAKER_24
transcript.pyannote[1045].start 9414.62721875
transcript.pyannote[1045].end 9416.55096875
transcript.pyannote[1046].speaker SPEAKER_24
transcript.pyannote[1046].start 9416.93909375
transcript.pyannote[1046].end 9418.00221875
transcript.pyannote[1047].speaker SPEAKER_24
transcript.pyannote[1047].start 9420.63471875
transcript.pyannote[1047].end 9421.46159375
transcript.pyannote[1048].speaker SPEAKER_24
transcript.pyannote[1048].start 9422.52471875
transcript.pyannote[1048].end 9423.84096875
transcript.pyannote[1049].speaker SPEAKER_24
transcript.pyannote[1049].start 9424.27971875
transcript.pyannote[1049].end 9431.23221875
transcript.pyannote[1050].speaker SPEAKER_24
transcript.pyannote[1050].start 9431.68784375
transcript.pyannote[1050].end 9438.74159375
transcript.pyannote[1051].speaker SPEAKER_24
transcript.pyannote[1051].start 9438.99471875
transcript.pyannote[1051].end 9454.80659375
transcript.pyannote[1052].speaker SPEAKER_24
transcript.pyannote[1052].start 9455.19471875
transcript.pyannote[1052].end 9462.13034375
transcript.pyannote[1053].speaker SPEAKER_24
transcript.pyannote[1053].start 9462.51846875
transcript.pyannote[1053].end 9463.41284375
transcript.pyannote[1054].speaker SPEAKER_24
transcript.pyannote[1054].start 9463.81784375
transcript.pyannote[1054].end 9464.34096875
transcript.pyannote[1055].speaker SPEAKER_24
transcript.pyannote[1055].start 9464.64471875
transcript.pyannote[1055].end 9466.28159375
transcript.pyannote[1056].speaker SPEAKER_24
transcript.pyannote[1056].start 9466.70346875
transcript.pyannote[1056].end 9469.30221875
transcript.pyannote[1057].speaker SPEAKER_24
transcript.pyannote[1057].start 9469.57221875
transcript.pyannote[1057].end 9471.78284375
transcript.pyannote[1058].speaker SPEAKER_24
transcript.pyannote[1058].start 9472.27221875
transcript.pyannote[1058].end 9473.30159375
transcript.pyannote[1059].speaker SPEAKER_24
transcript.pyannote[1059].start 9473.65596875
transcript.pyannote[1059].end 9479.37659375
transcript.pyannote[1060].speaker SPEAKER_24
transcript.pyannote[1060].start 9479.73096875
transcript.pyannote[1060].end 9484.10159375
transcript.pyannote[1061].speaker SPEAKER_24
transcript.pyannote[1061].start 9485.29971875
transcript.pyannote[1061].end 9511.74284375
transcript.pyannote[1062].speaker SPEAKER_22
transcript.pyannote[1062].start 9504.77346875
transcript.pyannote[1062].end 9504.89159375
transcript.pyannote[1063].speaker SPEAKER_08
transcript.pyannote[1063].start 9504.89159375
transcript.pyannote[1063].end 9505.00971875
transcript.pyannote[1064].speaker SPEAKER_00
transcript.pyannote[1064].start 9505.00971875
transcript.pyannote[1064].end 9505.19534375
transcript.pyannote[1065].speaker SPEAKER_08
transcript.pyannote[1065].start 9508.68846875
transcript.pyannote[1065].end 9508.70534375
transcript.pyannote[1066].speaker SPEAKER_05
transcript.pyannote[1066].start 9508.70534375
transcript.pyannote[1066].end 9509.36346875
transcript.pyannote[1067].speaker SPEAKER_08
transcript.pyannote[1067].start 9509.36346875
transcript.pyannote[1067].end 9509.49846875
transcript.pyannote[1068].speaker SPEAKER_24
transcript.pyannote[1068].start 9511.86096875
transcript.pyannote[1068].end 9521.61471875
transcript.pyannote[1069].speaker SPEAKER_24
transcript.pyannote[1069].start 9521.78346875
transcript.pyannote[1069].end 9532.34721875
transcript.pyannote[1070].speaker SPEAKER_07
transcript.pyannote[1070].start 9532.92096875
transcript.pyannote[1070].end 9562.36784375
transcript.pyannote[1071].speaker SPEAKER_24
transcript.pyannote[1071].start 9562.36784375
transcript.pyannote[1071].end 9588.49034375
transcript.pyannote[1072].speaker SPEAKER_00
transcript.pyannote[1072].start 9573.50534375
transcript.pyannote[1072].end 9573.84284375
transcript.pyannote[1073].speaker SPEAKER_24
transcript.pyannote[1073].start 9588.72659375
transcript.pyannote[1073].end 9589.99221875
transcript.pyannote[1074].speaker SPEAKER_24
transcript.pyannote[1074].start 9590.73471875
transcript.pyannote[1074].end 9591.66284375
transcript.pyannote[1075].speaker SPEAKER_24
transcript.pyannote[1075].start 9592.87784375
transcript.pyannote[1075].end 9593.63721875
transcript.pyannote[1076].speaker SPEAKER_24
transcript.pyannote[1076].start 9593.85659375
transcript.pyannote[1076].end 9594.63284375
transcript.pyannote[1077].speaker SPEAKER_24
transcript.pyannote[1077].start 9595.34159375
transcript.pyannote[1077].end 9596.21909375
transcript.pyannote[1078].speaker SPEAKER_24
transcript.pyannote[1078].start 9597.70409375
transcript.pyannote[1078].end 9598.56471875
transcript.pyannote[1079].speaker SPEAKER_24
transcript.pyannote[1079].start 9598.95284375
transcript.pyannote[1079].end 9599.62784375
transcript.pyannote[1080].speaker SPEAKER_24
transcript.pyannote[1080].start 9599.72909375
transcript.pyannote[1080].end 9600.21846875
transcript.pyannote[1081].speaker SPEAKER_24
transcript.pyannote[1081].start 9602.12534375
transcript.pyannote[1081].end 9605.65221875
transcript.pyannote[1082].speaker SPEAKER_24
transcript.pyannote[1082].start 9605.95596875
transcript.pyannote[1082].end 9607.28909375
transcript.pyannote[1083].speaker SPEAKER_24
transcript.pyannote[1083].start 9607.37346875
transcript.pyannote[1083].end 9610.52909375
transcript.pyannote[1084].speaker SPEAKER_07
transcript.pyannote[1084].start 9611.08596875
transcript.pyannote[1084].end 9621.29534375
transcript.pyannote[1085].speaker SPEAKER_24
transcript.pyannote[1085].start 9619.72596875
transcript.pyannote[1085].end 9620.14784375
transcript.pyannote[1086].speaker SPEAKER_24
transcript.pyannote[1086].start 9621.02534375
transcript.pyannote[1086].end 9625.81784375
transcript.pyannote[1087].speaker SPEAKER_07
transcript.pyannote[1087].start 9622.47659375
transcript.pyannote[1087].end 9626.13846875
transcript.pyannote[1088].speaker SPEAKER_07
transcript.pyannote[1088].start 9626.40846875
transcript.pyannote[1088].end 9638.79471875
transcript.pyannote[1089].speaker SPEAKER_07
transcript.pyannote[1089].start 9639.40221875
transcript.pyannote[1089].end 9640.26284375
transcript.pyannote[1090].speaker SPEAKER_24
transcript.pyannote[1090].start 9640.26284375
transcript.pyannote[1090].end 9640.29659375
transcript.pyannote[1091].speaker SPEAKER_07
transcript.pyannote[1091].start 9640.87034375
transcript.pyannote[1091].end 9641.03909375
transcript.pyannote[1092].speaker SPEAKER_24
transcript.pyannote[1092].start 9641.03909375
transcript.pyannote[1092].end 9642.01784375
transcript.pyannote[1093].speaker SPEAKER_24
transcript.pyannote[1093].start 9642.87846875
transcript.pyannote[1093].end 9647.48534375
transcript.pyannote[1094].speaker SPEAKER_08
transcript.pyannote[1094].start 9647.48534375
transcript.pyannote[1094].end 9647.78909375
transcript.pyannote[1095].speaker SPEAKER_24
transcript.pyannote[1095].start 9647.78909375
transcript.pyannote[1095].end 9652.91909375
transcript.pyannote[1096].speaker SPEAKER_24
transcript.pyannote[1096].start 9652.93596875
transcript.pyannote[1096].end 9653.96534375
transcript.pyannote[1097].speaker SPEAKER_08
transcript.pyannote[1097].start 9653.96534375
transcript.pyannote[1097].end 9654.37034375
transcript.pyannote[1098].speaker SPEAKER_24
transcript.pyannote[1098].start 9654.37034375
transcript.pyannote[1098].end 9654.38721875
transcript.pyannote[1099].speaker SPEAKER_08
transcript.pyannote[1099].start 9654.74159375
transcript.pyannote[1099].end 9655.02846875
transcript.pyannote[1100].speaker SPEAKER_07
transcript.pyannote[1100].start 9655.02846875
transcript.pyannote[1100].end 9655.33221875
transcript.pyannote[1101].speaker SPEAKER_24
transcript.pyannote[1101].start 9655.39971875
transcript.pyannote[1101].end 9655.41659375
transcript.pyannote[1102].speaker SPEAKER_07
transcript.pyannote[1102].start 9655.41659375
transcript.pyannote[1102].end 9657.59346875
transcript.pyannote[1103].speaker SPEAKER_18
transcript.pyannote[1103].start 9659.77034375
transcript.pyannote[1103].end 9670.38471875
transcript.pyannote[1104].speaker SPEAKER_18
transcript.pyannote[1104].start 9670.62096875
transcript.pyannote[1104].end 9678.23159375
transcript.pyannote[1105].speaker SPEAKER_24
transcript.pyannote[1105].start 9678.18096875
transcript.pyannote[1105].end 9687.05721875
transcript.pyannote[1106].speaker SPEAKER_24
transcript.pyannote[1106].start 9687.41159375
transcript.pyannote[1106].end 9688.66034375
transcript.pyannote[1107].speaker SPEAKER_24
transcript.pyannote[1107].start 9688.91346875
transcript.pyannote[1107].end 9699.08909375
transcript.pyannote[1108].speaker SPEAKER_07
transcript.pyannote[1108].start 9697.68846875
transcript.pyannote[1108].end 9700.86096875
transcript.pyannote[1109].speaker SPEAKER_24
transcript.pyannote[1109].start 9700.69221875
transcript.pyannote[1109].end 9702.73409375
transcript.pyannote[1110].speaker SPEAKER_24
transcript.pyannote[1110].start 9703.62846875
transcript.pyannote[1110].end 9708.77534375
transcript.pyannote[1111].speaker SPEAKER_24
transcript.pyannote[1111].start 9711.01971875
transcript.pyannote[1111].end 9711.42471875
transcript.pyannote[1112].speaker SPEAKER_24
transcript.pyannote[1112].start 9711.88034375
transcript.pyannote[1112].end 9715.82909375
transcript.pyannote[1113].speaker SPEAKER_24
transcript.pyannote[1113].start 9716.13284375
transcript.pyannote[1113].end 9721.70159375
transcript.pyannote[1114].speaker SPEAKER_24
transcript.pyannote[1114].start 9722.98409375
transcript.pyannote[1114].end 9725.17784375
transcript.pyannote[1115].speaker SPEAKER_24
transcript.pyannote[1115].start 9725.78534375
transcript.pyannote[1115].end 9726.34221875
transcript.pyannote[1116].speaker SPEAKER_24
transcript.pyannote[1116].start 9726.94971875
transcript.pyannote[1116].end 9727.86096875
transcript.pyannote[1117].speaker SPEAKER_24
transcript.pyannote[1117].start 9729.07596875
transcript.pyannote[1117].end 9729.88596875
transcript.pyannote[1118].speaker SPEAKER_24
transcript.pyannote[1118].start 9731.11784375
transcript.pyannote[1118].end 9731.50596875
transcript.pyannote[1119].speaker SPEAKER_24
transcript.pyannote[1119].start 9731.75909375
transcript.pyannote[1119].end 9732.21471875
transcript.pyannote[1120].speaker SPEAKER_07
transcript.pyannote[1120].start 9732.21471875
transcript.pyannote[1120].end 9732.23159375
transcript.pyannote[1121].speaker SPEAKER_24
transcript.pyannote[1121].start 9732.99096875
transcript.pyannote[1121].end 9733.75034375
transcript.pyannote[1122].speaker SPEAKER_07
transcript.pyannote[1122].start 9733.75034375
transcript.pyannote[1122].end 9733.78409375
transcript.pyannote[1123].speaker SPEAKER_07
transcript.pyannote[1123].start 9734.76284375
transcript.pyannote[1123].end 9737.09159375
transcript.pyannote[1124].speaker SPEAKER_07
transcript.pyannote[1124].start 9737.17596875
transcript.pyannote[1124].end 9737.49659375
transcript.pyannote[1125].speaker SPEAKER_07
transcript.pyannote[1125].start 9737.83409375
transcript.pyannote[1125].end 9739.62284375
transcript.pyannote[1126].speaker SPEAKER_24
transcript.pyannote[1126].start 9739.62284375
transcript.pyannote[1126].end 9739.65659375
transcript.pyannote[1127].speaker SPEAKER_24
transcript.pyannote[1127].start 9741.39471875
transcript.pyannote[1127].end 9754.11846875
transcript.pyannote[1128].speaker SPEAKER_24
transcript.pyannote[1128].start 9754.67534375
transcript.pyannote[1128].end 9755.51909375
transcript.pyannote[1129].speaker SPEAKER_18
transcript.pyannote[1129].start 9756.10971875
transcript.pyannote[1129].end 9756.29534375
transcript.pyannote[1130].speaker SPEAKER_24
transcript.pyannote[1130].start 9756.29534375
transcript.pyannote[1130].end 9757.93221875
transcript.pyannote[1131].speaker SPEAKER_18
transcript.pyannote[1131].start 9757.93221875
transcript.pyannote[1131].end 9768.25971875
transcript.pyannote[1132].speaker SPEAKER_18
transcript.pyannote[1132].start 9768.56346875
transcript.pyannote[1132].end 9777.40596875
transcript.pyannote[1133].speaker SPEAKER_18
transcript.pyannote[1133].start 9777.45659375
transcript.pyannote[1133].end 9788.66159375
transcript.pyannote[1134].speaker SPEAKER_18
transcript.pyannote[1134].start 9788.76284375
transcript.pyannote[1134].end 9791.09159375
transcript.pyannote[1135].speaker SPEAKER_18
transcript.pyannote[1135].start 9791.31096875
transcript.pyannote[1135].end 9794.36534375
transcript.pyannote[1136].speaker SPEAKER_18
transcript.pyannote[1136].start 9794.50034375
transcript.pyannote[1136].end 9796.42409375
transcript.pyannote[1137].speaker SPEAKER_18
transcript.pyannote[1137].start 9796.54221875
transcript.pyannote[1137].end 9802.31346875
transcript.pyannote[1138].speaker SPEAKER_24
transcript.pyannote[1138].start 9802.80284375
transcript.pyannote[1138].end 9807.64596875
transcript.pyannote[1139].speaker SPEAKER_24
transcript.pyannote[1139].start 9808.08471875
transcript.pyannote[1139].end 9808.92846875
transcript.pyannote[1140].speaker SPEAKER_24
transcript.pyannote[1140].start 9809.35034375
transcript.pyannote[1140].end 9812.11784375
transcript.pyannote[1141].speaker SPEAKER_24
transcript.pyannote[1141].start 9813.16409375
transcript.pyannote[1141].end 9814.05846875
transcript.pyannote[1142].speaker SPEAKER_24
transcript.pyannote[1142].start 9814.51409375
transcript.pyannote[1142].end 9815.59409375
transcript.pyannote[1143].speaker SPEAKER_24
transcript.pyannote[1143].start 9816.42096875
transcript.pyannote[1143].end 9823.59284375
transcript.pyannote[1144].speaker SPEAKER_04
transcript.pyannote[1144].start 9819.13784375
transcript.pyannote[1144].end 9819.96471875
transcript.pyannote[1145].speaker SPEAKER_13
transcript.pyannote[1145].start 9819.96471875
transcript.pyannote[1145].end 9820.28534375
transcript.pyannote[1146].speaker SPEAKER_00
transcript.pyannote[1146].start 9820.28534375
transcript.pyannote[1146].end 9820.31909375
transcript.pyannote[1147].speaker SPEAKER_24
transcript.pyannote[1147].start 9824.08221875
transcript.pyannote[1147].end 9829.21221875
transcript.pyannote[1148].speaker SPEAKER_24
transcript.pyannote[1148].start 9829.81971875
transcript.pyannote[1148].end 9831.69284375
transcript.pyannote[1149].speaker SPEAKER_07
transcript.pyannote[1149].start 9831.18659375
transcript.pyannote[1149].end 9832.87409375
transcript.pyannote[1150].speaker SPEAKER_24
transcript.pyannote[1150].start 9832.87409375
transcript.pyannote[1150].end 9832.92471875
transcript.pyannote[1151].speaker SPEAKER_07
transcript.pyannote[1151].start 9832.92471875
transcript.pyannote[1151].end 9833.02596875
transcript.pyannote[1152].speaker SPEAKER_24
transcript.pyannote[1152].start 9833.02596875
transcript.pyannote[1152].end 9833.85284375
transcript.pyannote[1153].speaker SPEAKER_07
transcript.pyannote[1153].start 9833.85284375
transcript.pyannote[1153].end 9841.42971875
transcript.pyannote[1154].speaker SPEAKER_24
transcript.pyannote[1154].start 9833.90346875
transcript.pyannote[1154].end 9834.91596875
transcript.pyannote[1155].speaker SPEAKER_24
transcript.pyannote[1155].start 9841.42971875
transcript.pyannote[1155].end 9847.40346875
transcript.pyannote[1156].speaker SPEAKER_07
transcript.pyannote[1156].start 9845.44596875
transcript.pyannote[1156].end 9849.90096875
transcript.pyannote[1157].speaker SPEAKER_24
transcript.pyannote[1157].start 9847.85909375
transcript.pyannote[1157].end 9848.92221875
transcript.pyannote[1158].speaker SPEAKER_07
transcript.pyannote[1158].start 9849.95159375
transcript.pyannote[1158].end 9849.96846875
transcript.pyannote[1159].speaker SPEAKER_07
transcript.pyannote[1159].start 9850.40721875
transcript.pyannote[1159].end 9867.21471875
transcript.pyannote[1160].speaker SPEAKER_07
transcript.pyannote[1160].start 9867.94034375
transcript.pyannote[1160].end 9868.42971875
transcript.pyannote[1161].speaker SPEAKER_07
transcript.pyannote[1161].start 9868.90221875
transcript.pyannote[1161].end 9882.16596875
transcript.pyannote[1162].speaker SPEAKER_24
transcript.pyannote[1162].start 9882.30096875
transcript.pyannote[1162].end 9898.33221875
transcript.pyannote[1163].speaker SPEAKER_07
transcript.pyannote[1163].start 9896.76284375
transcript.pyannote[1163].end 9905.45346875
transcript.pyannote[1164].speaker SPEAKER_24
transcript.pyannote[1164].start 9898.95659375
transcript.pyannote[1164].end 9900.03659375
transcript.pyannote[1165].speaker SPEAKER_24
transcript.pyannote[1165].start 9904.50846875
transcript.pyannote[1165].end 9904.96409375
transcript.pyannote[1166].speaker SPEAKER_03
transcript.pyannote[1166].start 9907.29284375
transcript.pyannote[1166].end 9907.90034375
transcript.pyannote[1167].speaker SPEAKER_03
transcript.pyannote[1167].start 9909.48659375
transcript.pyannote[1167].end 9910.14471875
transcript.pyannote[1168].speaker SPEAKER_03
transcript.pyannote[1168].start 9913.80659375
transcript.pyannote[1168].end 9918.49784375
transcript.pyannote[1169].speaker SPEAKER_06
transcript.pyannote[1169].start 9925.26471875
transcript.pyannote[1169].end 9927.27284375
transcript.pyannote[1170].speaker SPEAKER_06
transcript.pyannote[1170].start 9934.83284375
transcript.pyannote[1170].end 9936.35159375
transcript.pyannote[1171].speaker SPEAKER_06
transcript.pyannote[1171].start 9936.95909375
transcript.pyannote[1171].end 9952.07909375
transcript.pyannote[1172].speaker SPEAKER_06
transcript.pyannote[1172].start 9952.58534375
transcript.pyannote[1172].end 9982.82534375
transcript.pyannote[1173].speaker SPEAKER_06
transcript.pyannote[1173].start 9983.07846875
transcript.pyannote[1173].end 9987.41534375
transcript.pyannote[1174].speaker SPEAKER_06
transcript.pyannote[1174].start 9987.76971875
transcript.pyannote[1174].end 9995.53221875
transcript.pyannote[1175].speaker SPEAKER_06
transcript.pyannote[1175].start 9995.66721875
transcript.pyannote[1175].end 9996.79784375
transcript.pyannote[1176].speaker SPEAKER_07
transcript.pyannote[1176].start 9997.59096875
transcript.pyannote[1176].end 10008.66096875
transcript.pyannote[1177].speaker SPEAKER_07
transcript.pyannote[1177].start 10009.30221875
transcript.pyannote[1177].end 10020.33846875
transcript.pyannote[1178].speaker SPEAKER_07
transcript.pyannote[1178].start 10020.79409375
transcript.pyannote[1178].end 10021.16534375
transcript.pyannote[1179].speaker SPEAKER_07
transcript.pyannote[1179].start 10021.95846875
transcript.pyannote[1179].end 10026.90284375
transcript.pyannote[1180].speaker SPEAKER_07
transcript.pyannote[1180].start 10027.25721875
transcript.pyannote[1180].end 10028.97846875
transcript.pyannote[1181].speaker SPEAKER_06
transcript.pyannote[1181].start 10028.97846875
transcript.pyannote[1181].end 10035.34034375
transcript.pyannote[1182].speaker SPEAKER_07
transcript.pyannote[1182].start 10034.20971875
transcript.pyannote[1182].end 10045.39784375
transcript.pyannote[1183].speaker SPEAKER_06
transcript.pyannote[1183].start 10043.74409375
transcript.pyannote[1183].end 10048.99221875
transcript.pyannote[1184].speaker SPEAKER_07
transcript.pyannote[1184].start 10048.35096875
transcript.pyannote[1184].end 10056.53534375
transcript.pyannote[1185].speaker SPEAKER_06
transcript.pyannote[1185].start 10056.65346875
transcript.pyannote[1185].end 10064.60159375
transcript.pyannote[1186].speaker SPEAKER_07
transcript.pyannote[1186].start 10065.56346875
transcript.pyannote[1186].end 10068.06096875
transcript.pyannote[1187].speaker SPEAKER_06
transcript.pyannote[1187].start 10068.61784375
transcript.pyannote[1187].end 10070.76096875
transcript.pyannote[1188].speaker SPEAKER_07
transcript.pyannote[1188].start 10072.04346875
transcript.pyannote[1188].end 10095.66846875
transcript.pyannote[1189].speaker SPEAKER_06
transcript.pyannote[1189].start 10073.78159375
transcript.pyannote[1189].end 10074.43971875
transcript.pyannote[1190].speaker SPEAKER_06
transcript.pyannote[1190].start 10090.18409375
transcript.pyannote[1190].end 10090.53846875
transcript.pyannote[1191].speaker SPEAKER_06
transcript.pyannote[1191].start 10095.46596875
transcript.pyannote[1191].end 10121.75721875
transcript.pyannote[1192].speaker SPEAKER_06
transcript.pyannote[1192].start 10121.94284375
transcript.pyannote[1192].end 10129.87409375
transcript.pyannote[1193].speaker SPEAKER_23
transcript.pyannote[1193].start 10134.59909375
transcript.pyannote[1193].end 10142.37846875
transcript.pyannote[1194].speaker SPEAKER_23
transcript.pyannote[1194].start 10142.59784375
transcript.pyannote[1194].end 10144.26846875
transcript.pyannote[1195].speaker SPEAKER_23
transcript.pyannote[1195].start 10144.60596875
transcript.pyannote[1195].end 10146.27659375
transcript.pyannote[1196].speaker SPEAKER_23
transcript.pyannote[1196].start 10146.42846875
transcript.pyannote[1196].end 10147.39034375
transcript.pyannote[1197].speaker SPEAKER_23
transcript.pyannote[1197].start 10147.67721875
transcript.pyannote[1197].end 10155.30471875
transcript.pyannote[1198].speaker SPEAKER_23
transcript.pyannote[1198].start 10155.49034375
transcript.pyannote[1198].end 10158.62909375
transcript.pyannote[1199].speaker SPEAKER_23
transcript.pyannote[1199].start 10158.69659375
transcript.pyannote[1199].end 10164.99096875
transcript.pyannote[1200].speaker SPEAKER_06
transcript.pyannote[1200].start 10164.77159375
transcript.pyannote[1200].end 10170.99846875
transcript.pyannote[1201].speaker SPEAKER_06
transcript.pyannote[1201].start 10171.60596875
transcript.pyannote[1201].end 10174.60971875
transcript.pyannote[1202].speaker SPEAKER_07
transcript.pyannote[1202].start 10174.37346875
transcript.pyannote[1202].end 10177.91721875
transcript.pyannote[1203].speaker SPEAKER_06
transcript.pyannote[1203].start 10176.53346875
transcript.pyannote[1203].end 10180.00971875
transcript.pyannote[1204].speaker SPEAKER_06
transcript.pyannote[1204].start 10182.89534375
transcript.pyannote[1204].end 10185.86534375
transcript.pyannote[1205].speaker SPEAKER_15
transcript.pyannote[1205].start 10185.86534375
transcript.pyannote[1205].end 10206.84096875
transcript.pyannote[1206].speaker SPEAKER_15
transcript.pyannote[1206].start 10207.63409375
transcript.pyannote[1206].end 10209.06846875
transcript.pyannote[1207].speaker SPEAKER_06
transcript.pyannote[1207].start 10209.64221875
transcript.pyannote[1207].end 10210.87409375
transcript.pyannote[1208].speaker SPEAKER_06
transcript.pyannote[1208].start 10210.94159375
transcript.pyannote[1208].end 10220.37471875
transcript.pyannote[1209].speaker SPEAKER_07
transcript.pyannote[1209].start 10220.37471875
transcript.pyannote[1209].end 10254.95159375
transcript.pyannote[1210].speaker SPEAKER_00
transcript.pyannote[1210].start 10228.96409375
transcript.pyannote[1210].end 10228.98096875
transcript.pyannote[1211].speaker SPEAKER_22
transcript.pyannote[1211].start 10228.98096875
transcript.pyannote[1211].end 10229.11596875
transcript.pyannote[1212].speaker SPEAKER_00
transcript.pyannote[1212].start 10229.11596875
transcript.pyannote[1212].end 10229.25096875
transcript.pyannote[1213].speaker SPEAKER_04
transcript.pyannote[1213].start 10242.88596875
transcript.pyannote[1213].end 10243.47659375
transcript.pyannote[1214].speaker SPEAKER_06
transcript.pyannote[1214].start 10254.95159375
transcript.pyannote[1214].end 10269.32909375
transcript.pyannote[1215].speaker SPEAKER_07
transcript.pyannote[1215].start 10266.40971875
transcript.pyannote[1215].end 10266.91596875
transcript.pyannote[1216].speaker SPEAKER_08
transcript.pyannote[1216].start 10267.35471875
transcript.pyannote[1216].end 10267.37159375
transcript.pyannote[1217].speaker SPEAKER_07
transcript.pyannote[1217].start 10267.37159375
transcript.pyannote[1217].end 10276.11284375
transcript.pyannote[1218].speaker SPEAKER_07
transcript.pyannote[1218].start 10277.42909375
transcript.pyannote[1218].end 10278.93096875
transcript.pyannote[1219].speaker SPEAKER_07
transcript.pyannote[1219].start 10280.06159375
transcript.pyannote[1219].end 10284.41534375
transcript.pyannote[1220].speaker SPEAKER_07
transcript.pyannote[1220].start 10284.83721875
transcript.pyannote[1220].end 10306.75784375
transcript.pyannote[1221].speaker SPEAKER_00
transcript.pyannote[1221].start 10295.04659375
transcript.pyannote[1221].end 10297.42596875
transcript.pyannote[1222].speaker SPEAKER_07
transcript.pyannote[1222].start 10307.12909375
transcript.pyannote[1222].end 10311.24659375
transcript.pyannote[1223].speaker SPEAKER_06
transcript.pyannote[1223].start 10307.16284375
transcript.pyannote[1223].end 10308.17534375
transcript.pyannote[1224].speaker SPEAKER_06
transcript.pyannote[1224].start 10311.24659375
transcript.pyannote[1224].end 10344.59159375
transcript.pyannote[1225].speaker SPEAKER_06
transcript.pyannote[1225].start 10344.86159375
transcript.pyannote[1225].end 10354.61534375
transcript.pyannote[1226].speaker SPEAKER_06
transcript.pyannote[1226].start 10354.86846875
transcript.pyannote[1226].end 10391.65596875
transcript.pyannote[1227].speaker SPEAKER_06
transcript.pyannote[1227].start 10391.79096875
transcript.pyannote[1227].end 10395.97596875
transcript.pyannote[1228].speaker SPEAKER_07
transcript.pyannote[1228].start 10395.97596875
transcript.pyannote[1228].end 10410.79221875
transcript.pyannote[1229].speaker SPEAKER_07
transcript.pyannote[1229].start 10411.11284375
transcript.pyannote[1229].end 10412.49659375
transcript.pyannote[1230].speaker SPEAKER_07
transcript.pyannote[1230].start 10413.03659375
transcript.pyannote[1230].end 10417.03596875
transcript.pyannote[1231].speaker SPEAKER_07
transcript.pyannote[1231].start 10417.08659375
transcript.pyannote[1231].end 10417.10346875
transcript.pyannote[1232].speaker SPEAKER_06
transcript.pyannote[1232].start 10417.10346875
transcript.pyannote[1232].end 10417.12034375
transcript.pyannote[1233].speaker SPEAKER_07
transcript.pyannote[1233].start 10417.12034375
transcript.pyannote[1233].end 10420.37721875
transcript.pyannote[1234].speaker SPEAKER_06
transcript.pyannote[1234].start 10418.25096875
transcript.pyannote[1234].end 10418.68971875
transcript.pyannote[1235].speaker SPEAKER_07
transcript.pyannote[1235].start 10420.64721875
transcript.pyannote[1235].end 10421.60909375
transcript.pyannote[1236].speaker SPEAKER_07
transcript.pyannote[1236].start 10422.45284375
transcript.pyannote[1236].end 10423.66784375
transcript.pyannote[1237].speaker SPEAKER_07
transcript.pyannote[1237].start 10424.29221875
transcript.pyannote[1237].end 10425.15284375
transcript.pyannote[1238].speaker SPEAKER_07
transcript.pyannote[1238].start 10425.49034375
transcript.pyannote[1238].end 10436.62784375
transcript.pyannote[1239].speaker SPEAKER_06
transcript.pyannote[1239].start 10436.49284375
transcript.pyannote[1239].end 10446.02721875
transcript.pyannote[1240].speaker SPEAKER_07
transcript.pyannote[1240].start 10436.74596875
transcript.pyannote[1240].end 10438.48409375
transcript.pyannote[1241].speaker SPEAKER_08
transcript.pyannote[1241].start 10444.05284375
transcript.pyannote[1241].end 10444.82909375
transcript.pyannote[1242].speaker SPEAKER_07
transcript.pyannote[1242].start 10444.82909375
transcript.pyannote[1242].end 10444.96409375
transcript.pyannote[1243].speaker SPEAKER_08
transcript.pyannote[1243].start 10444.96409375
transcript.pyannote[1243].end 10445.03159375
transcript.pyannote[1244].speaker SPEAKER_07
transcript.pyannote[1244].start 10445.03159375
transcript.pyannote[1244].end 10445.21721875
transcript.pyannote[1245].speaker SPEAKER_07
transcript.pyannote[1245].start 10446.02721875
transcript.pyannote[1245].end 10454.24534375
transcript.pyannote[1246].speaker SPEAKER_07
transcript.pyannote[1246].start 10454.49846875
transcript.pyannote[1246].end 10460.52284375
transcript.pyannote[1247].speaker SPEAKER_07
transcript.pyannote[1247].start 10460.89409375
transcript.pyannote[1247].end 10462.22721875
transcript.pyannote[1248].speaker SPEAKER_07
transcript.pyannote[1248].start 10464.15096875
transcript.pyannote[1248].end 10467.84659375
transcript.pyannote[1249].speaker SPEAKER_06
transcript.pyannote[1249].start 10466.95221875
transcript.pyannote[1249].end 10467.42471875
transcript.pyannote[1250].speaker SPEAKER_07
transcript.pyannote[1250].start 10468.53846875
transcript.pyannote[1250].end 10468.99409375
transcript.pyannote[1251].speaker SPEAKER_07
transcript.pyannote[1251].start 10471.22159375
transcript.pyannote[1251].end 10471.96409375
transcript.pyannote[1252].speaker SPEAKER_06
transcript.pyannote[1252].start 10471.96409375
transcript.pyannote[1252].end 10478.47784375
transcript.pyannote[1253].speaker SPEAKER_06
transcript.pyannote[1253].start 10478.54534375
transcript.pyannote[1253].end 10483.92846875
transcript.pyannote[1254].speaker SPEAKER_07
transcript.pyannote[1254].start 10484.89034375
transcript.pyannote[1254].end 10486.67909375
transcript.pyannote[1255].speaker SPEAKER_06
transcript.pyannote[1255].start 10487.38784375
transcript.pyannote[1255].end 10490.54346875
transcript.pyannote[1256].speaker SPEAKER_07
transcript.pyannote[1256].start 10489.32846875
transcript.pyannote[1256].end 10501.84971875
transcript.pyannote[1257].speaker SPEAKER_06
transcript.pyannote[1257].start 10501.51221875
transcript.pyannote[1257].end 10503.60471875
transcript.pyannote[1258].speaker SPEAKER_07
transcript.pyannote[1258].start 10502.74409375
transcript.pyannote[1258].end 10504.73534375
transcript.pyannote[1259].speaker SPEAKER_06
transcript.pyannote[1259].start 10504.73534375
transcript.pyannote[1259].end 10519.87221875
transcript.pyannote[1260].speaker SPEAKER_07
transcript.pyannote[1260].start 10519.53471875
transcript.pyannote[1260].end 10523.73659375
transcript.pyannote[1261].speaker SPEAKER_06
transcript.pyannote[1261].start 10523.73659375
transcript.pyannote[1261].end 10524.58034375
transcript.pyannote[1262].speaker SPEAKER_07
transcript.pyannote[1262].start 10524.58034375
transcript.pyannote[1262].end 10524.64784375
transcript.pyannote[1263].speaker SPEAKER_06
transcript.pyannote[1263].start 10524.64784375
transcript.pyannote[1263].end 10524.66471875
transcript.pyannote[1264].speaker SPEAKER_07
transcript.pyannote[1264].start 10524.66471875
transcript.pyannote[1264].end 10535.90346875
transcript.pyannote[1265].speaker SPEAKER_06
transcript.pyannote[1265].start 10524.69846875
transcript.pyannote[1265].end 10526.01471875
transcript.pyannote[1266].speaker SPEAKER_06
transcript.pyannote[1266].start 10536.76409375
transcript.pyannote[1266].end 10536.86534375
transcript.pyannote[1267].speaker SPEAKER_07
transcript.pyannote[1267].start 10536.86534375
transcript.pyannote[1267].end 10536.96659375
transcript.pyannote[1268].speaker SPEAKER_06
transcript.pyannote[1268].start 10536.96659375
transcript.pyannote[1268].end 10537.70909375
transcript.pyannote[1269].speaker SPEAKER_06
transcript.pyannote[1269].start 10538.70471875
transcript.pyannote[1269].end 10540.99971875
transcript.pyannote[1270].speaker SPEAKER_06
transcript.pyannote[1270].start 10541.28659375
transcript.pyannote[1270].end 10549.70721875
transcript.pyannote[1271].speaker SPEAKER_07
transcript.pyannote[1271].start 10547.47971875
transcript.pyannote[1271].end 10547.56409375
transcript.pyannote[1272].speaker SPEAKER_07
transcript.pyannote[1272].start 10547.91846875
transcript.pyannote[1272].end 10554.66846875
transcript.pyannote[1273].speaker SPEAKER_06
transcript.pyannote[1273].start 10552.13721875
transcript.pyannote[1273].end 10569.94034375
transcript.pyannote[1274].speaker SPEAKER_08
transcript.pyannote[1274].start 10559.03909375
transcript.pyannote[1274].end 10559.96721875
transcript.pyannote[1275].speaker SPEAKER_08
transcript.pyannote[1275].start 10568.13471875
transcript.pyannote[1275].end 10579.13721875
transcript.pyannote[1276].speaker SPEAKER_06
transcript.pyannote[1276].start 10574.78346875
transcript.pyannote[1276].end 10575.17159375
transcript.pyannote[1277].speaker SPEAKER_07
transcript.pyannote[1277].start 10579.13721875
transcript.pyannote[1277].end 10583.72721875
transcript.pyannote[1278].speaker SPEAKER_08
transcript.pyannote[1278].start 10580.85846875
transcript.pyannote[1278].end 10580.87534375
transcript.pyannote[1279].speaker SPEAKER_06
transcript.pyannote[1279].start 10580.87534375
transcript.pyannote[1279].end 10597.42971875
transcript.pyannote[1280].speaker SPEAKER_08
transcript.pyannote[1280].start 10583.74409375
transcript.pyannote[1280].end 10583.84534375
transcript.pyannote[1281].speaker SPEAKER_06
transcript.pyannote[1281].start 10597.88534375
transcript.pyannote[1281].end 10600.63596875
transcript.pyannote[1282].speaker SPEAKER_08
transcript.pyannote[1282].start 10599.30284375
transcript.pyannote[1282].end 10603.92659375
transcript.pyannote[1283].speaker SPEAKER_06
transcript.pyannote[1283].start 10601.02409375
transcript.pyannote[1283].end 10622.47221875
transcript.pyannote[1284].speaker SPEAKER_08
transcript.pyannote[1284].start 10618.18596875
transcript.pyannote[1284].end 10631.83784375
transcript.pyannote[1285].speaker SPEAKER_06
transcript.pyannote[1285].start 10627.28159375
transcript.pyannote[1285].end 10627.65284375
transcript.pyannote[1286].speaker SPEAKER_22
transcript.pyannote[1286].start 10627.65284375
transcript.pyannote[1286].end 10627.77096875
transcript.pyannote[1287].speaker SPEAKER_06
transcript.pyannote[1287].start 10627.77096875
transcript.pyannote[1287].end 10628.26034375
transcript.pyannote[1288].speaker SPEAKER_06
transcript.pyannote[1288].start 10628.58096875
transcript.pyannote[1288].end 10635.28034375
transcript.pyannote[1289].speaker SPEAKER_08
transcript.pyannote[1289].start 10631.90534375
transcript.pyannote[1289].end 10631.95596875
transcript.pyannote[1290].speaker SPEAKER_08
transcript.pyannote[1290].start 10634.33534375
transcript.pyannote[1290].end 10636.02284375
transcript.pyannote[1291].speaker SPEAKER_07
transcript.pyannote[1291].start 10636.02284375
transcript.pyannote[1291].end 10636.34346875
transcript.pyannote[1292].speaker SPEAKER_08
transcript.pyannote[1292].start 10636.34346875
transcript.pyannote[1292].end 10636.57971875
transcript.pyannote[1293].speaker SPEAKER_07
transcript.pyannote[1293].start 10636.57971875
transcript.pyannote[1293].end 10636.71471875
transcript.pyannote[1294].speaker SPEAKER_08
transcript.pyannote[1294].start 10636.71471875
transcript.pyannote[1294].end 10636.79909375
transcript.pyannote[1295].speaker SPEAKER_07
transcript.pyannote[1295].start 10636.79909375
transcript.pyannote[1295].end 10643.02596875
transcript.pyannote[1296].speaker SPEAKER_07
transcript.pyannote[1296].start 10643.98784375
transcript.pyannote[1296].end 10645.72596875
transcript.pyannote[1297].speaker SPEAKER_06
transcript.pyannote[1297].start 10645.72596875
transcript.pyannote[1297].end 10650.97409375
transcript.pyannote[1298].speaker SPEAKER_07
transcript.pyannote[1298].start 10645.75971875
transcript.pyannote[1298].end 10646.06346875
transcript.pyannote[1299].speaker SPEAKER_07
transcript.pyannote[1299].start 10647.80159375
transcript.pyannote[1299].end 10647.97034375
transcript.pyannote[1300].speaker SPEAKER_08
transcript.pyannote[1300].start 10647.97034375
transcript.pyannote[1300].end 10648.79721875
transcript.pyannote[1301].speaker SPEAKER_07
transcript.pyannote[1301].start 10648.79721875
transcript.pyannote[1301].end 10648.88159375
transcript.pyannote[1302].speaker SPEAKER_06
transcript.pyannote[1302].start 10651.44659375
transcript.pyannote[1302].end 10666.41471875
transcript.pyannote[1303].speaker SPEAKER_00
transcript.pyannote[1303].start 10655.05784375
transcript.pyannote[1303].end 10655.98596875
transcript.pyannote[1304].speaker SPEAKER_00
transcript.pyannote[1304].start 10656.61034375
transcript.pyannote[1304].end 10657.03221875
transcript.pyannote[1305].speaker SPEAKER_22
transcript.pyannote[1305].start 10657.03221875
transcript.pyannote[1305].end 10657.38659375
transcript.pyannote[1306].speaker SPEAKER_08
transcript.pyannote[1306].start 10658.04471875
transcript.pyannote[1306].end 10658.87159375
transcript.pyannote[1307].speaker SPEAKER_22
transcript.pyannote[1307].start 10658.87159375
transcript.pyannote[1307].end 10659.02346875
transcript.pyannote[1308].speaker SPEAKER_08
transcript.pyannote[1308].start 10659.02346875
transcript.pyannote[1308].end 10659.04034375
transcript.pyannote[1309].speaker SPEAKER_08
transcript.pyannote[1309].start 10663.27596875
transcript.pyannote[1309].end 10664.77784375
transcript.pyannote[1310].speaker SPEAKER_08
transcript.pyannote[1310].start 10665.01409375
transcript.pyannote[1310].end 10680.03284375
transcript.pyannote[1311].speaker SPEAKER_06
transcript.pyannote[1311].start 10666.70159375
transcript.pyannote[1311].end 10666.97159375
transcript.pyannote[1312].speaker SPEAKER_06
transcript.pyannote[1312].start 10668.01784375
transcript.pyannote[1312].end 10672.77659375
transcript.pyannote[1313].speaker SPEAKER_06
transcript.pyannote[1313].start 10680.03284375
transcript.pyannote[1313].end 10681.87221875
transcript.pyannote[1314].speaker SPEAKER_06
transcript.pyannote[1314].start 10682.27721875
transcript.pyannote[1314].end 10689.80346875
transcript.pyannote[1315].speaker SPEAKER_08
transcript.pyannote[1315].start 10688.14971875
transcript.pyannote[1315].end 10689.53346875
transcript.pyannote[1316].speaker SPEAKER_00
transcript.pyannote[1316].start 10689.53346875
transcript.pyannote[1316].end 10689.55034375
transcript.pyannote[1317].speaker SPEAKER_06
transcript.pyannote[1317].start 10690.07346875
transcript.pyannote[1317].end 10698.66284375
transcript.pyannote[1318].speaker SPEAKER_24
transcript.pyannote[1318].start 10690.47846875
transcript.pyannote[1318].end 10690.78221875
transcript.pyannote[1319].speaker SPEAKER_08
transcript.pyannote[1319].start 10690.78221875
transcript.pyannote[1319].end 10691.40659375
transcript.pyannote[1320].speaker SPEAKER_24
transcript.pyannote[1320].start 10691.40659375
transcript.pyannote[1320].end 10692.19971875
transcript.pyannote[1321].speaker SPEAKER_22
transcript.pyannote[1321].start 10692.19971875
transcript.pyannote[1321].end 10692.25034375
transcript.pyannote[1322].speaker SPEAKER_06
transcript.pyannote[1322].start 10699.25346875
transcript.pyannote[1322].end 10729.76346875
transcript.pyannote[1323].speaker SPEAKER_08
transcript.pyannote[1323].start 10705.34534375
transcript.pyannote[1323].end 10705.56471875
transcript.pyannote[1324].speaker SPEAKER_05
transcript.pyannote[1324].start 10705.56471875
transcript.pyannote[1324].end 10706.03721875
transcript.pyannote[1325].speaker SPEAKER_08
transcript.pyannote[1325].start 10706.03721875
transcript.pyannote[1325].end 10707.64034375
transcript.pyannote[1326].speaker SPEAKER_05
transcript.pyannote[1326].start 10707.64034375
transcript.pyannote[1326].end 10708.01159375
transcript.pyannote[1327].speaker SPEAKER_05
transcript.pyannote[1327].start 10708.02846875
transcript.pyannote[1327].end 10708.04534375
transcript.pyannote[1328].speaker SPEAKER_05
transcript.pyannote[1328].start 10708.11284375
transcript.pyannote[1328].end 10708.23096875
transcript.pyannote[1329].speaker SPEAKER_08
transcript.pyannote[1329].start 10708.23096875
transcript.pyannote[1329].end 10713.81659375
transcript.pyannote[1330].speaker SPEAKER_08
transcript.pyannote[1330].start 10715.35221875
transcript.pyannote[1330].end 10716.68534375
transcript.pyannote[1331].speaker SPEAKER_08
transcript.pyannote[1331].start 10722.62534375
transcript.pyannote[1331].end 10726.92846875
transcript.pyannote[1332].speaker SPEAKER_06
transcript.pyannote[1332].start 10730.26971875
transcript.pyannote[1332].end 10757.75909375
transcript.pyannote[1333].speaker SPEAKER_08
transcript.pyannote[1333].start 10740.05721875
transcript.pyannote[1333].end 10747.58346875
transcript.pyannote[1334].speaker SPEAKER_06
transcript.pyannote[1334].start 10757.94471875
transcript.pyannote[1334].end 10765.28534375
transcript.pyannote[1335].speaker SPEAKER_08
transcript.pyannote[1335].start 10759.76721875
transcript.pyannote[1335].end 10761.11721875
transcript.pyannote[1336].speaker SPEAKER_08
transcript.pyannote[1336].start 10762.36596875
transcript.pyannote[1336].end 10767.83346875
transcript.pyannote[1337].speaker SPEAKER_06
transcript.pyannote[1337].start 10766.14596875
transcript.pyannote[1337].end 10790.29409375
transcript.pyannote[1338].speaker SPEAKER_07
transcript.pyannote[1338].start 10790.31096875
transcript.pyannote[1338].end 10796.55471875
transcript.pyannote[1339].speaker SPEAKER_07
transcript.pyannote[1339].start 10796.89221875
transcript.pyannote[1339].end 10797.49971875
transcript.pyannote[1340].speaker SPEAKER_06
transcript.pyannote[1340].start 10797.49971875
transcript.pyannote[1340].end 10797.61784375
transcript.pyannote[1341].speaker SPEAKER_07
transcript.pyannote[1341].start 10797.61784375
transcript.pyannote[1341].end 10800.68909375
transcript.pyannote[1342].speaker SPEAKER_07
transcript.pyannote[1342].start 10801.06034375
transcript.pyannote[1342].end 10808.28284375
transcript.pyannote[1343].speaker SPEAKER_07
transcript.pyannote[1343].start 10808.45159375
transcript.pyannote[1343].end 10811.74221875
transcript.pyannote[1344].speaker SPEAKER_07
transcript.pyannote[1344].start 10812.29909375
transcript.pyannote[1344].end 10821.98534375
transcript.pyannote[1345].speaker SPEAKER_07
transcript.pyannote[1345].start 10822.33971875
transcript.pyannote[1345].end 10822.96409375
transcript.pyannote[1346].speaker SPEAKER_06
transcript.pyannote[1346].start 10822.96409375
transcript.pyannote[1346].end 10822.98096875
transcript.pyannote[1347].speaker SPEAKER_07
transcript.pyannote[1347].start 10823.47034375
transcript.pyannote[1347].end 10823.97659375
transcript.pyannote[1348].speaker SPEAKER_06
transcript.pyannote[1348].start 10823.97659375
transcript.pyannote[1348].end 10824.02721875
transcript.pyannote[1349].speaker SPEAKER_07
transcript.pyannote[1349].start 10824.44909375
transcript.pyannote[1349].end 10824.46596875
transcript.pyannote[1350].speaker SPEAKER_06
transcript.pyannote[1350].start 10824.46596875
transcript.pyannote[1350].end 10828.51596875
transcript.pyannote[1351].speaker SPEAKER_06
transcript.pyannote[1351].start 10828.68471875
transcript.pyannote[1351].end 10836.05909375
transcript.pyannote[1352].speaker SPEAKER_06
transcript.pyannote[1352].start 10836.44721875
transcript.pyannote[1352].end 10848.49596875
transcript.pyannote[1353].speaker SPEAKER_06
transcript.pyannote[1353].start 10848.56346875
transcript.pyannote[1353].end 10863.39659375
transcript.pyannote[1354].speaker SPEAKER_06
transcript.pyannote[1354].start 10863.56534375
transcript.pyannote[1354].end 10867.93596875
transcript.pyannote[1355].speaker SPEAKER_06
transcript.pyannote[1355].start 10868.99909375
transcript.pyannote[1355].end 10869.82596875
transcript.pyannote[1356].speaker SPEAKER_07
transcript.pyannote[1356].start 10869.03284375
transcript.pyannote[1356].end 10871.63159375
transcript.pyannote[1357].speaker SPEAKER_06
transcript.pyannote[1357].start 10871.63159375
transcript.pyannote[1357].end 10871.66534375
transcript.pyannote[1358].speaker SPEAKER_07
transcript.pyannote[1358].start 10871.66534375
transcript.pyannote[1358].end 10871.69909375
transcript.pyannote[1359].speaker SPEAKER_07
transcript.pyannote[1359].start 10872.39096875
transcript.pyannote[1359].end 10880.50784375
transcript.pyannote[1360].speaker SPEAKER_06
transcript.pyannote[1360].start 10880.62596875
transcript.pyannote[1360].end 10883.34284375
transcript.pyannote[1361].speaker SPEAKER_07
transcript.pyannote[1361].start 10883.34284375
transcript.pyannote[1361].end 10891.52721875
transcript.pyannote[1362].speaker SPEAKER_07
transcript.pyannote[1362].start 10892.11784375
transcript.pyannote[1362].end 10896.55596875
transcript.pyannote[1363].speaker SPEAKER_07
transcript.pyannote[1363].start 10896.82596875
transcript.pyannote[1363].end 10896.97784375
transcript.pyannote[1364].speaker SPEAKER_06
transcript.pyannote[1364].start 10896.97784375
transcript.pyannote[1364].end 10898.34471875
transcript.pyannote[1365].speaker SPEAKER_07
transcript.pyannote[1365].start 10898.34471875
transcript.pyannote[1365].end 10902.74909375
transcript.pyannote[1366].speaker SPEAKER_06
transcript.pyannote[1366].start 10903.05284375
transcript.pyannote[1366].end 10907.06909375
transcript.pyannote[1367].speaker SPEAKER_07
transcript.pyannote[1367].start 10906.25909375
transcript.pyannote[1367].end 10908.19971875
transcript.pyannote[1368].speaker SPEAKER_07
transcript.pyannote[1368].start 10908.82409375
transcript.pyannote[1368].end 10913.97096875
transcript.pyannote[1369].speaker SPEAKER_06
transcript.pyannote[1369].start 10908.94221875
transcript.pyannote[1369].end 10909.31346875
transcript.pyannote[1370].speaker SPEAKER_08
transcript.pyannote[1370].start 10909.31346875
transcript.pyannote[1370].end 10909.43159375
transcript.pyannote[1371].speaker SPEAKER_08
transcript.pyannote[1371].start 10909.58346875
transcript.pyannote[1371].end 10909.75221875
transcript.pyannote[1372].speaker SPEAKER_06
transcript.pyannote[1372].start 10909.75221875
transcript.pyannote[1372].end 10910.47784375
transcript.pyannote[1373].speaker SPEAKER_06
transcript.pyannote[1373].start 10913.97096875
transcript.pyannote[1373].end 10914.98346875
transcript.pyannote[1374].speaker SPEAKER_06
transcript.pyannote[1374].start 10915.43909375
transcript.pyannote[1374].end 10923.85971875
transcript.pyannote[1375].speaker SPEAKER_06
transcript.pyannote[1375].start 10924.18034375
transcript.pyannote[1375].end 10938.87846875
transcript.pyannote[1376].speaker SPEAKER_06
transcript.pyannote[1376].start 10939.51971875
transcript.pyannote[1376].end 10941.62909375
transcript.pyannote[1377].speaker SPEAKER_06
transcript.pyannote[1377].start 10942.08471875
transcript.pyannote[1377].end 10944.29534375
transcript.pyannote[1378].speaker SPEAKER_06
transcript.pyannote[1378].start 10945.17284375
transcript.pyannote[1378].end 10950.45471875
transcript.pyannote[1379].speaker SPEAKER_06
transcript.pyannote[1379].start 10951.24784375
transcript.pyannote[1379].end 10960.63034375
transcript.pyannote[1380].speaker SPEAKER_07
transcript.pyannote[1380].start 10960.63034375
transcript.pyannote[1380].end 10969.86096875
transcript.pyannote[1381].speaker SPEAKER_06
transcript.pyannote[1381].start 10970.16471875
transcript.pyannote[1381].end 10978.58534375
transcript.pyannote[1382].speaker SPEAKER_06
transcript.pyannote[1382].start 10995.83159375
transcript.pyannote[1382].end 10997.62034375
transcript.pyannote[1383].speaker SPEAKER_03
transcript.pyannote[1383].start 11005.78784375
transcript.pyannote[1383].end 11007.72846875
transcript.pyannote[1384].speaker SPEAKER_03
transcript.pyannote[1384].start 11010.90096875
transcript.pyannote[1384].end 11012.43659375
transcript.pyannote[1385].speaker SPEAKER_03
transcript.pyannote[1385].start 11014.90034375
transcript.pyannote[1385].end 11015.54159375
transcript.pyannote[1386].speaker SPEAKER_03
transcript.pyannote[1386].start 11015.96346875
transcript.pyannote[1386].end 11016.03096875
transcript.pyannote[1387].speaker SPEAKER_03
transcript.pyannote[1387].start 11016.63846875
transcript.pyannote[1387].end 11019.45659375
transcript.pyannote[1388].speaker SPEAKER_03
transcript.pyannote[1388].start 11021.54909375
transcript.pyannote[1388].end 11023.91159375
transcript.pyannote[1389].speaker SPEAKER_03
transcript.pyannote[1389].start 11026.57784375
transcript.pyannote[1389].end 11035.90971875
transcript.pyannote[1390].speaker SPEAKER_07
transcript.pyannote[1390].start 11035.90971875
transcript.pyannote[1390].end 11040.71909375
transcript.pyannote[1391].speaker SPEAKER_07
transcript.pyannote[1391].start 11041.37721875
transcript.pyannote[1391].end 11041.96784375
transcript.pyannote[1392].speaker SPEAKER_03
transcript.pyannote[1392].start 11041.96784375
transcript.pyannote[1392].end 11050.47284375
transcript.pyannote[1393].speaker SPEAKER_07
transcript.pyannote[1393].start 11043.55409375
transcript.pyannote[1393].end 11044.00971875
transcript.pyannote[1394].speaker SPEAKER_07
transcript.pyannote[1394].start 11044.04346875
transcript.pyannote[1394].end 11044.07721875
transcript.pyannote[1395].speaker SPEAKER_03
transcript.pyannote[1395].start 11051.33346875
transcript.pyannote[1395].end 11052.53159375
transcript.pyannote[1396].speaker SPEAKER_03
transcript.pyannote[1396].start 11052.70034375
transcript.pyannote[1396].end 11057.88096875
transcript.pyannote[1397].speaker SPEAKER_07
transcript.pyannote[1397].start 11057.88096875
transcript.pyannote[1397].end 11058.30284375
transcript.pyannote[1398].speaker SPEAKER_03
transcript.pyannote[1398].start 11058.30284375
transcript.pyannote[1398].end 11058.85971875
transcript.pyannote[1399].speaker SPEAKER_07
transcript.pyannote[1399].start 11058.33659375
transcript.pyannote[1399].end 11058.70784375
transcript.pyannote[1400].speaker SPEAKER_03
transcript.pyannote[1400].start 11058.97784375
transcript.pyannote[1400].end 11060.78346875
transcript.pyannote[1401].speaker SPEAKER_07
transcript.pyannote[1401].start 11061.03659375
transcript.pyannote[1401].end 11066.67284375
transcript.pyannote[1402].speaker SPEAKER_07
transcript.pyannote[1402].start 11066.97659375
transcript.pyannote[1402].end 11067.98909375
transcript.pyannote[1403].speaker SPEAKER_07
transcript.pyannote[1403].start 11068.68096875
transcript.pyannote[1403].end 11068.96784375
transcript.pyannote[1404].speaker SPEAKER_03
transcript.pyannote[1404].start 11068.96784375
transcript.pyannote[1404].end 11070.62159375
transcript.pyannote[1405].speaker SPEAKER_03
transcript.pyannote[1405].start 11070.72284375
transcript.pyannote[1405].end 11074.80659375
transcript.pyannote[1406].speaker SPEAKER_03
transcript.pyannote[1406].start 11075.46471875
transcript.pyannote[1406].end 11077.13534375
transcript.pyannote[1407].speaker SPEAKER_07
transcript.pyannote[1407].start 11077.13534375
transcript.pyannote[1407].end 11077.16909375
transcript.pyannote[1408].speaker SPEAKER_03
transcript.pyannote[1408].start 11077.92846875
transcript.pyannote[1408].end 11078.02971875
transcript.pyannote[1409].speaker SPEAKER_07
transcript.pyannote[1409].start 11078.02971875
transcript.pyannote[1409].end 11084.35784375
transcript.pyannote[1410].speaker SPEAKER_07
transcript.pyannote[1410].start 11085.18471875
transcript.pyannote[1410].end 11088.96471875
transcript.pyannote[1411].speaker SPEAKER_03
transcript.pyannote[1411].start 11085.25221875
transcript.pyannote[1411].end 11085.79221875
transcript.pyannote[1412].speaker SPEAKER_03
transcript.pyannote[1412].start 11088.96471875
transcript.pyannote[1412].end 11090.46659375
transcript.pyannote[1413].speaker SPEAKER_03
transcript.pyannote[1413].start 11091.04034375
transcript.pyannote[1413].end 11093.79096875
transcript.pyannote[1414].speaker SPEAKER_03
transcript.pyannote[1414].start 11097.21659375
transcript.pyannote[1414].end 11097.58784375
transcript.pyannote[1415].speaker SPEAKER_07
transcript.pyannote[1415].start 11097.58784375
transcript.pyannote[1415].end 11100.22034375
transcript.pyannote[1416].speaker SPEAKER_03
transcript.pyannote[1416].start 11097.65534375
transcript.pyannote[1416].end 11099.25846875
transcript.pyannote[1417].speaker SPEAKER_07
transcript.pyannote[1417].start 11101.95846875
transcript.pyannote[1417].end 11108.08409375
transcript.pyannote[1418].speaker SPEAKER_03
transcript.pyannote[1418].start 11105.95784375
transcript.pyannote[1418].end 11115.01971875
transcript.pyannote[1419].speaker SPEAKER_07
transcript.pyannote[1419].start 11108.65784375
transcript.pyannote[1419].end 11108.69159375
transcript.pyannote[1420].speaker SPEAKER_07
transcript.pyannote[1420].start 11108.74221875
transcript.pyannote[1420].end 11108.84346875
transcript.pyannote[1421].speaker SPEAKER_03
transcript.pyannote[1421].start 11115.37409375
transcript.pyannote[1421].end 11116.18409375
transcript.pyannote[1422].speaker SPEAKER_03
transcript.pyannote[1422].start 11117.02784375
transcript.pyannote[1422].end 11121.92159375
transcript.pyannote[1423].speaker SPEAKER_03
transcript.pyannote[1423].start 11124.18284375
transcript.pyannote[1423].end 11127.18659375
transcript.pyannote[1424].speaker SPEAKER_03
transcript.pyannote[1424].start 11127.55784375
transcript.pyannote[1424].end 11130.03846875
transcript.pyannote[1425].speaker SPEAKER_07
transcript.pyannote[1425].start 11130.03846875
transcript.pyannote[1425].end 11130.61221875
transcript.pyannote[1426].speaker SPEAKER_03
transcript.pyannote[1426].start 11130.61221875
transcript.pyannote[1426].end 11131.08471875
transcript.pyannote[1427].speaker SPEAKER_07
transcript.pyannote[1427].start 11131.08471875
transcript.pyannote[1427].end 11132.70471875
transcript.pyannote[1428].speaker SPEAKER_03
transcript.pyannote[1428].start 11131.55721875
transcript.pyannote[1428].end 11137.51409375
transcript.pyannote[1429].speaker SPEAKER_07
transcript.pyannote[1429].start 11132.75534375
transcript.pyannote[1429].end 11132.78909375
transcript.pyannote[1430].speaker SPEAKER_03
transcript.pyannote[1430].start 11137.96971875
transcript.pyannote[1430].end 11141.37846875
transcript.pyannote[1431].speaker SPEAKER_03
transcript.pyannote[1431].start 11141.80034375
transcript.pyannote[1431].end 11145.73221875
transcript.pyannote[1432].speaker SPEAKER_03
transcript.pyannote[1432].start 11146.52534375
transcript.pyannote[1432].end 11152.00971875
transcript.pyannote[1433].speaker SPEAKER_03
transcript.pyannote[1433].start 11152.97159375
transcript.pyannote[1433].end 11154.57471875
transcript.pyannote[1434].speaker SPEAKER_03
transcript.pyannote[1434].start 11154.97971875
transcript.pyannote[1434].end 11163.23159375
transcript.pyannote[1435].speaker SPEAKER_00
transcript.pyannote[1435].start 11161.30784375
transcript.pyannote[1435].end 11161.64534375
transcript.pyannote[1436].speaker SPEAKER_03
transcript.pyannote[1436].start 11163.26534375
transcript.pyannote[1436].end 11164.75034375
transcript.pyannote[1437].speaker SPEAKER_03
transcript.pyannote[1437].start 11165.29034375
transcript.pyannote[1437].end 11168.17596875
transcript.pyannote[1438].speaker SPEAKER_03
transcript.pyannote[1438].start 11168.63159375
transcript.pyannote[1438].end 11170.03221875
transcript.pyannote[1439].speaker SPEAKER_03
transcript.pyannote[1439].start 11171.14596875
transcript.pyannote[1439].end 11172.20909375
transcript.pyannote[1440].speaker SPEAKER_07
transcript.pyannote[1440].start 11171.34846875
transcript.pyannote[1440].end 11173.84596875
transcript.pyannote[1441].speaker SPEAKER_03
transcript.pyannote[1441].start 11173.84596875
transcript.pyannote[1441].end 11180.59596875
transcript.pyannote[1442].speaker SPEAKER_03
transcript.pyannote[1442].start 11181.55784375
transcript.pyannote[1442].end 11182.67159375
transcript.pyannote[1443].speaker SPEAKER_03
transcript.pyannote[1443].start 11183.98784375
transcript.pyannote[1443].end 11184.71346875
transcript.pyannote[1444].speaker SPEAKER_03
transcript.pyannote[1444].start 11184.94971875
transcript.pyannote[1444].end 11188.67909375
transcript.pyannote[1445].speaker SPEAKER_03
transcript.pyannote[1445].start 11189.47221875
transcript.pyannote[1445].end 11192.57721875
transcript.pyannote[1446].speaker SPEAKER_03
transcript.pyannote[1446].start 11193.64034375
transcript.pyannote[1446].end 11195.09159375
transcript.pyannote[1447].speaker SPEAKER_15
transcript.pyannote[1447].start 11194.95659375
transcript.pyannote[1447].end 11196.27284375
transcript.pyannote[1448].speaker SPEAKER_03
transcript.pyannote[1448].start 11196.52596875
transcript.pyannote[1448].end 11197.48784375
transcript.pyannote[1449].speaker SPEAKER_15
transcript.pyannote[1449].start 11197.48784375
transcript.pyannote[1449].end 11197.84221875
transcript.pyannote[1450].speaker SPEAKER_03
transcript.pyannote[1450].start 11199.14159375
transcript.pyannote[1450].end 11206.24596875
transcript.pyannote[1451].speaker SPEAKER_15
transcript.pyannote[1451].start 11203.61346875
transcript.pyannote[1451].end 11207.19096875
transcript.pyannote[1452].speaker SPEAKER_03
transcript.pyannote[1452].start 11206.56659375
transcript.pyannote[1452].end 11207.93346875
transcript.pyannote[1453].speaker SPEAKER_15
transcript.pyannote[1453].start 11209.78971875
transcript.pyannote[1453].end 11210.86971875
transcript.pyannote[1454].speaker SPEAKER_03
transcript.pyannote[1454].start 11211.15659375
transcript.pyannote[1454].end 11214.44721875
transcript.pyannote[1455].speaker SPEAKER_03
transcript.pyannote[1455].start 11214.97034375
transcript.pyannote[1455].end 11218.29471875
transcript.pyannote[1456].speaker SPEAKER_03
transcript.pyannote[1456].start 11218.44659375
transcript.pyannote[1456].end 11219.57721875
transcript.pyannote[1457].speaker SPEAKER_03
transcript.pyannote[1457].start 11219.76284375
transcript.pyannote[1457].end 11220.03284375
transcript.pyannote[1458].speaker SPEAKER_07
transcript.pyannote[1458].start 11220.03284375
transcript.pyannote[1458].end 11220.04971875
transcript.pyannote[1459].speaker SPEAKER_03
transcript.pyannote[1459].start 11220.04971875
transcript.pyannote[1459].end 11220.28596875
transcript.pyannote[1460].speaker SPEAKER_07
transcript.pyannote[1460].start 11220.28596875
transcript.pyannote[1460].end 11220.31971875
transcript.pyannote[1461].speaker SPEAKER_03
transcript.pyannote[1461].start 11220.31971875
transcript.pyannote[1461].end 11220.38721875
transcript.pyannote[1462].speaker SPEAKER_07
transcript.pyannote[1462].start 11220.38721875
transcript.pyannote[1462].end 11221.83846875
transcript.pyannote[1463].speaker SPEAKER_03
transcript.pyannote[1463].start 11221.83846875
transcript.pyannote[1463].end 11221.85534375
transcript.pyannote[1464].speaker SPEAKER_07
transcript.pyannote[1464].start 11221.85534375
transcript.pyannote[1464].end 11221.87221875
transcript.pyannote[1465].speaker SPEAKER_03
transcript.pyannote[1465].start 11221.87221875
transcript.pyannote[1465].end 11221.92284375
transcript.pyannote[1466].speaker SPEAKER_07
transcript.pyannote[1466].start 11222.12534375
transcript.pyannote[1466].end 11230.76534375
transcript.pyannote[1467].speaker SPEAKER_08
transcript.pyannote[1467].start 11229.90471875
transcript.pyannote[1467].end 11230.30971875
transcript.pyannote[1468].speaker SPEAKER_07
transcript.pyannote[1468].start 11231.11971875
transcript.pyannote[1468].end 11232.33471875
transcript.pyannote[1469].speaker SPEAKER_07
transcript.pyannote[1469].start 11233.14471875
transcript.pyannote[1469].end 11237.07659375
transcript.pyannote[1470].speaker SPEAKER_03
transcript.pyannote[1470].start 11235.59159375
transcript.pyannote[1470].end 11237.12721875
transcript.pyannote[1471].speaker SPEAKER_07
transcript.pyannote[1471].start 11237.12721875
transcript.pyannote[1471].end 11237.29596875
transcript.pyannote[1472].speaker SPEAKER_03
transcript.pyannote[1472].start 11237.29596875
transcript.pyannote[1472].end 11237.61659375
transcript.pyannote[1473].speaker SPEAKER_07
transcript.pyannote[1473].start 11237.61659375
transcript.pyannote[1473].end 11237.76846875
transcript.pyannote[1474].speaker SPEAKER_03
transcript.pyannote[1474].start 11237.76846875
transcript.pyannote[1474].end 11241.58221875
transcript.pyannote[1475].speaker SPEAKER_07
transcript.pyannote[1475].start 11238.71346875
transcript.pyannote[1475].end 11239.10159375
transcript.pyannote[1476].speaker SPEAKER_03
transcript.pyannote[1476].start 11242.45971875
transcript.pyannote[1476].end 11242.66221875
transcript.pyannote[1477].speaker SPEAKER_03
transcript.pyannote[1477].start 11242.84784375
transcript.pyannote[1477].end 11244.38346875
transcript.pyannote[1478].speaker SPEAKER_03
transcript.pyannote[1478].start 11245.90221875
transcript.pyannote[1478].end 11246.62784375
transcript.pyannote[1479].speaker SPEAKER_03
transcript.pyannote[1479].start 11249.24346875
transcript.pyannote[1479].end 11250.30659375
transcript.pyannote[1480].speaker SPEAKER_03
transcript.pyannote[1480].start 11250.54284375
transcript.pyannote[1480].end 11255.18346875
transcript.pyannote[1481].speaker SPEAKER_03
transcript.pyannote[1481].start 11256.68534375
transcript.pyannote[1481].end 11264.97096875
transcript.pyannote[1482].speaker SPEAKER_03
transcript.pyannote[1482].start 11269.08846875
transcript.pyannote[1482].end 11272.59846875
transcript.pyannote[1483].speaker SPEAKER_03
transcript.pyannote[1483].start 11273.35784375
transcript.pyannote[1483].end 11290.08096875
transcript.pyannote[1484].speaker SPEAKER_00
transcript.pyannote[1484].start 11280.02346875
transcript.pyannote[1484].end 11280.09096875
transcript.pyannote[1485].speaker SPEAKER_00
transcript.pyannote[1485].start 11281.00221875
transcript.pyannote[1485].end 11281.84596875
transcript.pyannote[1486].speaker SPEAKER_00
transcript.pyannote[1486].start 11282.30159375
transcript.pyannote[1486].end 11282.94284375
transcript.pyannote[1487].speaker SPEAKER_07
transcript.pyannote[1487].start 11291.00909375
transcript.pyannote[1487].end 11301.50534375
transcript.pyannote[1488].speaker SPEAKER_03
transcript.pyannote[1488].start 11295.75096875
transcript.pyannote[1488].end 11296.40909375
transcript.pyannote[1489].speaker SPEAKER_03
transcript.pyannote[1489].start 11299.98659375
transcript.pyannote[1489].end 11306.04471875
transcript.pyannote[1490].speaker SPEAKER_03
transcript.pyannote[1490].start 11306.28096875
transcript.pyannote[1490].end 11309.09909375
transcript.pyannote[1491].speaker SPEAKER_03
transcript.pyannote[1491].start 11309.84159375
transcript.pyannote[1491].end 11312.44034375
transcript.pyannote[1492].speaker SPEAKER_22
transcript.pyannote[1492].start 11312.44034375
transcript.pyannote[1492].end 11312.71034375
transcript.pyannote[1493].speaker SPEAKER_03
transcript.pyannote[1493].start 11312.71034375
transcript.pyannote[1493].end 11318.05971875
transcript.pyannote[1494].speaker SPEAKER_03
transcript.pyannote[1494].start 11318.44784375
transcript.pyannote[1494].end 11319.34221875
transcript.pyannote[1495].speaker SPEAKER_03
transcript.pyannote[1495].start 11319.66284375
transcript.pyannote[1495].end 11324.05034375
transcript.pyannote[1496].speaker SPEAKER_03
transcript.pyannote[1496].start 11324.57346875
transcript.pyannote[1496].end 11325.67034375
transcript.pyannote[1497].speaker SPEAKER_03
transcript.pyannote[1497].start 11325.80534375
transcript.pyannote[1497].end 11326.69971875
transcript.pyannote[1498].speaker SPEAKER_03
transcript.pyannote[1498].start 11327.08784375
transcript.pyannote[1498].end 11337.01034375
transcript.pyannote[1499].speaker SPEAKER_03
transcript.pyannote[1499].start 11338.27596875
transcript.pyannote[1499].end 11339.06909375
transcript.pyannote[1500].speaker SPEAKER_07
transcript.pyannote[1500].start 11339.82846875
transcript.pyannote[1500].end 11339.84534375
transcript.pyannote[1501].speaker SPEAKER_03
transcript.pyannote[1501].start 11339.84534375
transcript.pyannote[1501].end 11339.87909375
transcript.pyannote[1502].speaker SPEAKER_07
transcript.pyannote[1502].start 11339.87909375
transcript.pyannote[1502].end 11340.57096875
transcript.pyannote[1503].speaker SPEAKER_03
transcript.pyannote[1503].start 11341.00971875
transcript.pyannote[1503].end 11341.39784375
transcript.pyannote[1504].speaker SPEAKER_07
transcript.pyannote[1504].start 11341.71846875
transcript.pyannote[1504].end 11341.73534375
transcript.pyannote[1505].speaker SPEAKER_03
transcript.pyannote[1505].start 11341.73534375
transcript.pyannote[1505].end 11341.81971875
transcript.pyannote[1506].speaker SPEAKER_07
transcript.pyannote[1506].start 11341.81971875
transcript.pyannote[1506].end 11341.92096875
transcript.pyannote[1507].speaker SPEAKER_03
transcript.pyannote[1507].start 11341.92096875
transcript.pyannote[1507].end 11341.95471875
transcript.pyannote[1508].speaker SPEAKER_07
transcript.pyannote[1508].start 11341.95471875
transcript.pyannote[1508].end 11341.98846875
transcript.pyannote[1509].speaker SPEAKER_03
transcript.pyannote[1509].start 11342.61284375
transcript.pyannote[1509].end 11343.27096875
transcript.pyannote[1510].speaker SPEAKER_03
transcript.pyannote[1510].start 11343.52409375
transcript.pyannote[1510].end 11345.54909375
transcript.pyannote[1511].speaker SPEAKER_07
transcript.pyannote[1511].start 11345.54909375
transcript.pyannote[1511].end 11345.58284375
transcript.pyannote[1512].speaker SPEAKER_03
transcript.pyannote[1512].start 11346.02159375
transcript.pyannote[1512].end 11347.03409375
transcript.pyannote[1513].speaker SPEAKER_07
transcript.pyannote[1513].start 11347.03409375
transcript.pyannote[1513].end 11348.01284375
transcript.pyannote[1514].speaker SPEAKER_07
transcript.pyannote[1514].start 11349.63284375
transcript.pyannote[1514].end 11354.27346875
transcript.pyannote[1515].speaker SPEAKER_07
transcript.pyannote[1515].start 11354.34096875
transcript.pyannote[1515].end 11362.01909375
transcript.pyannote[1516].speaker SPEAKER_07
transcript.pyannote[1516].start 11362.39034375
transcript.pyannote[1516].end 11372.00909375
transcript.pyannote[1517].speaker SPEAKER_07
transcript.pyannote[1517].start 11372.29596875
transcript.pyannote[1517].end 11377.99971875
transcript.pyannote[1518].speaker SPEAKER_07
transcript.pyannote[1518].start 11378.70846875
transcript.pyannote[1518].end 11379.13034375
transcript.pyannote[1519].speaker SPEAKER_07
transcript.pyannote[1519].start 11380.15971875
transcript.pyannote[1519].end 11381.39159375
transcript.pyannote[1520].speaker SPEAKER_03
transcript.pyannote[1520].start 11381.39159375
transcript.pyannote[1520].end 11385.84659375
transcript.pyannote[1521].speaker SPEAKER_03
transcript.pyannote[1521].start 11386.52159375
transcript.pyannote[1521].end 11388.51284375
transcript.pyannote[1522].speaker SPEAKER_03
transcript.pyannote[1522].start 11390.82471875
transcript.pyannote[1522].end 11395.46534375
transcript.pyannote[1523].speaker SPEAKER_03
transcript.pyannote[1523].start 11397.13596875
transcript.pyannote[1523].end 11402.89034375
transcript.pyannote[1524].speaker SPEAKER_07
transcript.pyannote[1524].start 11402.89034375
transcript.pyannote[1524].end 11411.96909375
transcript.pyannote[1525].speaker SPEAKER_03
transcript.pyannote[1525].start 11409.31971875
transcript.pyannote[1525].end 11409.38721875
transcript.pyannote[1526].speaker SPEAKER_03
transcript.pyannote[1526].start 11411.96909375
transcript.pyannote[1526].end 11420.65971875
transcript.pyannote[1527].speaker SPEAKER_03
transcript.pyannote[1527].start 11421.35159375
transcript.pyannote[1527].end 11429.94096875
transcript.pyannote[1528].speaker SPEAKER_03
transcript.pyannote[1528].start 11430.51471875
transcript.pyannote[1528].end 11434.56471875
transcript.pyannote[1529].speaker SPEAKER_03
transcript.pyannote[1529].start 11434.69971875
transcript.pyannote[1529].end 11437.45034375
transcript.pyannote[1530].speaker SPEAKER_03
transcript.pyannote[1530].start 11437.87221875
transcript.pyannote[1530].end 11438.69909375
transcript.pyannote[1531].speaker SPEAKER_03
transcript.pyannote[1531].start 11439.93096875
transcript.pyannote[1531].end 11442.19221875
transcript.pyannote[1532].speaker SPEAKER_03
transcript.pyannote[1532].start 11443.33971875
transcript.pyannote[1532].end 11446.41096875
transcript.pyannote[1533].speaker SPEAKER_03
transcript.pyannote[1533].start 11446.78221875
transcript.pyannote[1533].end 11449.00971875
transcript.pyannote[1534].speaker SPEAKER_03
transcript.pyannote[1534].start 11449.29659375
transcript.pyannote[1534].end 11452.21596875
transcript.pyannote[1535].speaker SPEAKER_03
transcript.pyannote[1535].start 11453.68409375
transcript.pyannote[1535].end 11458.10534375
transcript.pyannote[1536].speaker SPEAKER_03
transcript.pyannote[1536].start 11458.62846875
transcript.pyannote[1536].end 11468.93909375
transcript.pyannote[1537].speaker SPEAKER_03
transcript.pyannote[1537].start 11469.39471875
transcript.pyannote[1537].end 11473.96784375
transcript.pyannote[1538].speaker SPEAKER_03
transcript.pyannote[1538].start 11474.65971875
transcript.pyannote[1538].end 11481.46034375
transcript.pyannote[1539].speaker SPEAKER_03
transcript.pyannote[1539].start 11481.78096875
transcript.pyannote[1539].end 11483.58659375
transcript.pyannote[1540].speaker SPEAKER_03
transcript.pyannote[1540].start 11484.12659375
transcript.pyannote[1540].end 11488.26096875
transcript.pyannote[1541].speaker SPEAKER_07
transcript.pyannote[1541].start 11488.26096875
transcript.pyannote[1541].end 11488.39596875
transcript.pyannote[1542].speaker SPEAKER_03
transcript.pyannote[1542].start 11488.39596875
transcript.pyannote[1542].end 11489.03721875
transcript.pyannote[1543].speaker SPEAKER_07
transcript.pyannote[1543].start 11489.03721875
transcript.pyannote[1543].end 11491.92284375
transcript.pyannote[1544].speaker SPEAKER_07
transcript.pyannote[1544].start 11492.78346875
transcript.pyannote[1544].end 11499.83721875
transcript.pyannote[1545].speaker SPEAKER_08
transcript.pyannote[1545].start 11492.93534375
transcript.pyannote[1545].end 11493.99846875
transcript.pyannote[1546].speaker SPEAKER_03
transcript.pyannote[1546].start 11499.43221875
transcript.pyannote[1546].end 11499.80346875
transcript.pyannote[1547].speaker SPEAKER_03
transcript.pyannote[1547].start 11499.83721875
transcript.pyannote[1547].end 11500.20846875
transcript.pyannote[1548].speaker SPEAKER_03
transcript.pyannote[1548].start 11503.68471875
transcript.pyannote[1548].end 11508.39284375
transcript.pyannote[1549].speaker SPEAKER_03
transcript.pyannote[1549].start 11508.44346875
transcript.pyannote[1549].end 11511.29534375
transcript.pyannote[1550].speaker SPEAKER_03
transcript.pyannote[1550].start 11512.18971875
transcript.pyannote[1550].end 11518.41659375
transcript.pyannote[1551].speaker SPEAKER_03
transcript.pyannote[1551].start 11518.58534375
transcript.pyannote[1551].end 11522.63534375
transcript.pyannote[1552].speaker SPEAKER_03
transcript.pyannote[1552].start 11523.63096875
transcript.pyannote[1552].end 11531.44409375
transcript.pyannote[1553].speaker SPEAKER_07
transcript.pyannote[1553].start 11531.44409375
transcript.pyannote[1553].end 11531.47784375
transcript.pyannote[1554].speaker SPEAKER_03
transcript.pyannote[1554].start 11531.86596875
transcript.pyannote[1554].end 11533.03034375
transcript.pyannote[1555].speaker SPEAKER_07
transcript.pyannote[1555].start 11533.03034375
transcript.pyannote[1555].end 11533.18221875
transcript.pyannote[1556].speaker SPEAKER_07
transcript.pyannote[1556].start 11534.29596875
transcript.pyannote[1556].end 11542.69971875
transcript.pyannote[1557].speaker SPEAKER_07
transcript.pyannote[1557].start 11543.12159375
transcript.pyannote[1557].end 11547.94784375
transcript.pyannote[1558].speaker SPEAKER_03
transcript.pyannote[1558].start 11544.42096875
transcript.pyannote[1558].end 11545.09596875
transcript.pyannote[1559].speaker SPEAKER_03
transcript.pyannote[1559].start 11545.61909375
transcript.pyannote[1559].end 11547.39096875
transcript.pyannote[1560].speaker SPEAKER_07
transcript.pyannote[1560].start 11548.21784375
transcript.pyannote[1560].end 11549.19659375
transcript.pyannote[1561].speaker SPEAKER_03
transcript.pyannote[1561].start 11548.82534375
transcript.pyannote[1561].end 11549.17971875
transcript.pyannote[1562].speaker SPEAKER_03
transcript.pyannote[1562].start 11549.19659375
transcript.pyannote[1562].end 11549.23034375
transcript.pyannote[1563].speaker SPEAKER_07
transcript.pyannote[1563].start 11549.23034375
transcript.pyannote[1563].end 11549.97284375
transcript.pyannote[1564].speaker SPEAKER_03
transcript.pyannote[1564].start 11549.97284375
transcript.pyannote[1564].end 11552.25096875
transcript.pyannote[1565].speaker SPEAKER_07
transcript.pyannote[1565].start 11551.87971875
transcript.pyannote[1565].end 11558.91659375
transcript.pyannote[1566].speaker SPEAKER_03
transcript.pyannote[1566].start 11556.33471875
transcript.pyannote[1566].end 11556.85784375
transcript.pyannote[1567].speaker SPEAKER_03
transcript.pyannote[1567].start 11557.14471875
transcript.pyannote[1567].end 11557.58346875
transcript.pyannote[1568].speaker SPEAKER_03
transcript.pyannote[1568].start 11558.91659375
transcript.pyannote[1568].end 11559.03471875
transcript.pyannote[1569].speaker SPEAKER_07
transcript.pyannote[1569].start 11559.03471875
transcript.pyannote[1569].end 11559.08534375
transcript.pyannote[1570].speaker SPEAKER_03
transcript.pyannote[1570].start 11559.08534375
transcript.pyannote[1570].end 11559.45659375
transcript.pyannote[1571].speaker SPEAKER_07
transcript.pyannote[1571].start 11559.45659375
transcript.pyannote[1571].end 11559.79409375
transcript.pyannote[1572].speaker SPEAKER_07
transcript.pyannote[1572].start 11564.02971875
transcript.pyannote[1572].end 11588.78534375
transcript.pyannote[1573].speaker SPEAKER_07
transcript.pyannote[1573].start 11588.85284375
transcript.pyannote[1573].end 11596.80096875
transcript.pyannote[1574].speaker SPEAKER_07
transcript.pyannote[1574].start 11596.93596875
transcript.pyannote[1574].end 11600.26034375
transcript.pyannote[1575].speaker SPEAKER_07
transcript.pyannote[1575].start 11601.01971875
transcript.pyannote[1575].end 11602.40346875
transcript.pyannote[1576].speaker SPEAKER_03
transcript.pyannote[1576].start 11602.40346875
transcript.pyannote[1576].end 11602.42034375
transcript.pyannote[1577].speaker SPEAKER_03
transcript.pyannote[1577].start 11603.34846875
transcript.pyannote[1577].end 11604.02346875
transcript.pyannote[1578].speaker SPEAKER_03
transcript.pyannote[1578].start 11605.10346875
transcript.pyannote[1578].end 11605.94721875
transcript.pyannote[1579].speaker SPEAKER_03
transcript.pyannote[1579].start 11605.96409375
transcript.pyannote[1579].end 11605.98096875
transcript.pyannote[1580].speaker SPEAKER_03
transcript.pyannote[1580].start 11607.39846875
transcript.pyannote[1580].end 11619.10971875
transcript.pyannote[1581].speaker SPEAKER_03
transcript.pyannote[1581].start 11620.22346875
transcript.pyannote[1581].end 11620.72971875
transcript.pyannote[1582].speaker SPEAKER_03
transcript.pyannote[1582].start 11621.96159375
transcript.pyannote[1582].end 11623.75034375
transcript.pyannote[1583].speaker SPEAKER_03
transcript.pyannote[1583].start 11624.72909375
transcript.pyannote[1583].end 11627.00721875
transcript.pyannote[1584].speaker SPEAKER_03
transcript.pyannote[1584].start 11628.12096875
transcript.pyannote[1584].end 11629.57221875
transcript.pyannote[1585].speaker SPEAKER_03
transcript.pyannote[1585].start 11629.84221875
transcript.pyannote[1585].end 11631.17534375
transcript.pyannote[1586].speaker SPEAKER_03
transcript.pyannote[1586].start 11632.17096875
transcript.pyannote[1586].end 11633.55471875
transcript.pyannote[1587].speaker SPEAKER_03
transcript.pyannote[1587].start 11634.11159375
transcript.pyannote[1587].end 11634.97221875
transcript.pyannote[1588].speaker SPEAKER_03
transcript.pyannote[1588].start 11635.98471875
transcript.pyannote[1588].end 11638.49909375
transcript.pyannote[1589].speaker SPEAKER_03
transcript.pyannote[1589].start 11639.34284375
transcript.pyannote[1589].end 11651.02034375
transcript.pyannote[1590].speaker SPEAKER_03
transcript.pyannote[1590].start 11652.50534375
transcript.pyannote[1590].end 11653.56846875
transcript.pyannote[1591].speaker SPEAKER_03
transcript.pyannote[1591].start 11653.60221875
transcript.pyannote[1591].end 11660.53784375
transcript.pyannote[1592].speaker SPEAKER_03
transcript.pyannote[1592].start 11661.93846875
transcript.pyannote[1592].end 11662.27596875
transcript.pyannote[1593].speaker SPEAKER_03
transcript.pyannote[1593].start 11664.75659375
transcript.pyannote[1593].end 11666.27534375
transcript.pyannote[1594].speaker SPEAKER_03
transcript.pyannote[1594].start 11666.78159375
transcript.pyannote[1594].end 11671.08471875
transcript.pyannote[1595].speaker SPEAKER_03
transcript.pyannote[1595].start 11671.65846875
transcript.pyannote[1595].end 11673.31221875
transcript.pyannote[1596].speaker SPEAKER_07
transcript.pyannote[1596].start 11674.88159375
transcript.pyannote[1596].end 11676.48471875
transcript.pyannote[1597].speaker SPEAKER_07
transcript.pyannote[1597].start 11677.96971875
transcript.pyannote[1597].end 11681.10846875
transcript.pyannote[1598].speaker SPEAKER_07
transcript.pyannote[1598].start 11681.54721875
transcript.pyannote[1598].end 11681.88471875
transcript.pyannote[1599].speaker SPEAKER_07
transcript.pyannote[1599].start 11682.67784375
transcript.pyannote[1599].end 11684.33159375
transcript.pyannote[1600].speaker SPEAKER_03
transcript.pyannote[1600].start 11684.33159375
transcript.pyannote[1600].end 11684.41596875
transcript.pyannote[1601].speaker SPEAKER_03
transcript.pyannote[1601].start 11684.82096875
transcript.pyannote[1601].end 11684.88846875
transcript.pyannote[1602].speaker SPEAKER_03
transcript.pyannote[1602].start 11716.79909375
transcript.pyannote[1602].end 11718.67221875
transcript.pyannote[1603].speaker SPEAKER_03
transcript.pyannote[1603].start 11718.97596875
transcript.pyannote[1603].end 11720.19096875
transcript.pyannote[1604].speaker SPEAKER_22
transcript.pyannote[1604].start 11720.47784375
transcript.pyannote[1604].end 11720.61284375
transcript.pyannote[1605].speaker SPEAKER_19
transcript.pyannote[1605].start 11720.61284375
transcript.pyannote[1605].end 11720.64659375
transcript.pyannote[1606].speaker SPEAKER_03
transcript.pyannote[1606].start 11723.49846875
transcript.pyannote[1606].end 11724.52784375
transcript.pyannote[1607].speaker SPEAKER_19
transcript.pyannote[1607].start 11725.27034375
transcript.pyannote[1607].end 11803.41846875
transcript.pyannote[1608].speaker SPEAKER_03
transcript.pyannote[1608].start 11804.93721875
transcript.pyannote[1608].end 11805.46034375
transcript.pyannote[1609].speaker SPEAKER_03
transcript.pyannote[1609].start 11805.96659375
transcript.pyannote[1609].end 11807.02971875
transcript.pyannote[1610].speaker SPEAKER_03
transcript.pyannote[1610].start 11809.20659375
transcript.pyannote[1610].end 11809.93221875
transcript.pyannote[1611].speaker SPEAKER_03
transcript.pyannote[1611].start 11810.25284375
transcript.pyannote[1611].end 11810.97846875
transcript.pyannote[1612].speaker SPEAKER_03
transcript.pyannote[1612].start 11811.48471875
transcript.pyannote[1612].end 11811.70409375
transcript.pyannote[1613].speaker SPEAKER_03
transcript.pyannote[1613].start 11814.48846875
transcript.pyannote[1613].end 11814.97784375
transcript.pyannote[1614].speaker SPEAKER_10
transcript.pyannote[1614].start 11814.97784375
transcript.pyannote[1614].end 11816.20971875
transcript.pyannote[1615].speaker SPEAKER_10
transcript.pyannote[1615].start 11817.62721875
transcript.pyannote[1615].end 11847.91784375
transcript.pyannote[1616].speaker SPEAKER_28
transcript.pyannote[1616].start 11848.15409375
transcript.pyannote[1616].end 11848.22159375
transcript.pyannote[1617].speaker SPEAKER_10
transcript.pyannote[1617].start 11848.22159375
transcript.pyannote[1617].end 11848.35659375
transcript.pyannote[1618].speaker SPEAKER_28
transcript.pyannote[1618].start 11848.35659375
transcript.pyannote[1618].end 11848.40721875
transcript.pyannote[1619].speaker SPEAKER_10
transcript.pyannote[1619].start 11848.40721875
transcript.pyannote[1619].end 11848.47471875
transcript.pyannote[1620].speaker SPEAKER_10
transcript.pyannote[1620].start 11849.75721875
transcript.pyannote[1620].end 11850.02721875
transcript.pyannote[1621].speaker SPEAKER_03
transcript.pyannote[1621].start 11850.02721875
transcript.pyannote[1621].end 11860.43909375
transcript.pyannote[1622].speaker SPEAKER_03
transcript.pyannote[1622].start 11860.96221875
transcript.pyannote[1622].end 11869.16346875
transcript.pyannote[1623].speaker SPEAKER_03
transcript.pyannote[1623].start 11869.38284375
transcript.pyannote[1623].end 11877.02721875
transcript.pyannote[1624].speaker SPEAKER_03
transcript.pyannote[1624].start 11877.46596875
transcript.pyannote[1624].end 11881.90409375
transcript.pyannote[1625].speaker SPEAKER_03
transcript.pyannote[1625].start 11882.51159375
transcript.pyannote[1625].end 11886.08909375
transcript.pyannote[1626].speaker SPEAKER_03
transcript.pyannote[1626].start 11886.30846875
transcript.pyannote[1626].end 11891.89409375
transcript.pyannote[1627].speaker SPEAKER_03
transcript.pyannote[1627].start 11892.75471875
transcript.pyannote[1627].end 11894.54346875
transcript.pyannote[1628].speaker SPEAKER_11
transcript.pyannote[1628].start 11895.04971875
transcript.pyannote[1628].end 11895.16784375
transcript.pyannote[1629].speaker SPEAKER_03
transcript.pyannote[1629].start 11895.16784375
transcript.pyannote[1629].end 11896.93971875
transcript.pyannote[1630].speaker SPEAKER_11
transcript.pyannote[1630].start 11896.93971875
transcript.pyannote[1630].end 11898.12096875
transcript.pyannote[1631].speaker SPEAKER_03
transcript.pyannote[1631].start 11897.69909375
transcript.pyannote[1631].end 11898.01971875
transcript.pyannote[1632].speaker SPEAKER_03
transcript.pyannote[1632].start 11898.42471875
transcript.pyannote[1632].end 11898.61034375
transcript.pyannote[1633].speaker SPEAKER_03
transcript.pyannote[1633].start 11899.16721875
transcript.pyannote[1633].end 11903.58846875
transcript.pyannote[1634].speaker SPEAKER_03
transcript.pyannote[1634].start 11905.83284375
transcript.pyannote[1634].end 11905.98471875
transcript.pyannote[1635].speaker SPEAKER_03
transcript.pyannote[1635].start 11906.54159375
transcript.pyannote[1635].end 11908.92096875
transcript.pyannote[1636].speaker SPEAKER_03
transcript.pyannote[1636].start 11909.76471875
transcript.pyannote[1636].end 11911.57034375
transcript.pyannote[1637].speaker SPEAKER_03
transcript.pyannote[1637].start 11911.94159375
transcript.pyannote[1637].end 11913.69659375
transcript.pyannote[1638].speaker SPEAKER_03
transcript.pyannote[1638].start 11915.21534375
transcript.pyannote[1638].end 11916.56534375
transcript.pyannote[1639].speaker SPEAKER_03
transcript.pyannote[1639].start 11918.15159375
transcript.pyannote[1639].end 11921.66159375
transcript.pyannote[1640].speaker SPEAKER_17
transcript.pyannote[1640].start 11930.40284375
transcript.pyannote[1640].end 11931.73596875
transcript.pyannote[1641].speaker SPEAKER_17
transcript.pyannote[1641].start 11931.97221875
transcript.pyannote[1641].end 11933.65971875
transcript.pyannote[1642].speaker SPEAKER_17
transcript.pyannote[1642].start 11933.77784375
transcript.pyannote[1642].end 11940.56159375
transcript.pyannote[1643].speaker SPEAKER_22
transcript.pyannote[1643].start 11940.56159375
transcript.pyannote[1643].end 11940.66284375
transcript.pyannote[1644].speaker SPEAKER_17
transcript.pyannote[1644].start 11940.66284375
transcript.pyannote[1644].end 11948.20596875
transcript.pyannote[1645].speaker SPEAKER_22
transcript.pyannote[1645].start 11940.67971875
transcript.pyannote[1645].end 11941.47284375
transcript.pyannote[1646].speaker SPEAKER_08
transcript.pyannote[1646].start 11953.53846875
transcript.pyannote[1646].end 11954.12909375
transcript.pyannote[1647].speaker SPEAKER_17
transcript.pyannote[1647].start 11954.17971875
transcript.pyannote[1647].end 11985.22971875
transcript.pyannote[1648].speaker SPEAKER_17
transcript.pyannote[1648].start 11987.33909375
transcript.pyannote[1648].end 11987.35596875
transcript.pyannote[1649].speaker SPEAKER_07
transcript.pyannote[1649].start 11987.35596875
transcript.pyannote[1649].end 11988.03096875
transcript.pyannote[1650].speaker SPEAKER_17
transcript.pyannote[1650].start 11987.86221875
transcript.pyannote[1650].end 11988.31784375
transcript.pyannote[1651].speaker SPEAKER_17
transcript.pyannote[1651].start 11989.61721875
transcript.pyannote[1651].end 11992.03034375
transcript.pyannote[1652].speaker SPEAKER_07
transcript.pyannote[1652].start 11989.98846875
transcript.pyannote[1652].end 11991.01784375
transcript.pyannote[1653].speaker SPEAKER_07
transcript.pyannote[1653].start 11992.51971875
transcript.pyannote[1653].end 11993.14409375
transcript.pyannote[1654].speaker SPEAKER_07
transcript.pyannote[1654].start 11993.34659375
transcript.pyannote[1654].end 11995.81034375
transcript.pyannote[1655].speaker SPEAKER_17
transcript.pyannote[1655].start 11997.12659375
transcript.pyannote[1655].end 11999.01659375
transcript.pyannote[1656].speaker SPEAKER_17
transcript.pyannote[1656].start 11999.65784375
transcript.pyannote[1656].end 12005.12534375
transcript.pyannote[1657].speaker SPEAKER_07
transcript.pyannote[1657].start 12006.17159375
transcript.pyannote[1657].end 12006.93096875
transcript.pyannote[1658].speaker SPEAKER_07
transcript.pyannote[1658].start 12006.98159375
transcript.pyannote[1658].end 12008.75346875
transcript.pyannote[1659].speaker SPEAKER_17
transcript.pyannote[1659].start 12008.66909375
transcript.pyannote[1659].end 12014.18721875
transcript.pyannote[1660].speaker SPEAKER_07
transcript.pyannote[1660].start 12011.21721875
transcript.pyannote[1660].end 12011.70659375
transcript.pyannote[1661].speaker SPEAKER_17
transcript.pyannote[1661].start 12014.94659375
transcript.pyannote[1661].end 12016.78596875
transcript.pyannote[1662].speaker SPEAKER_07
transcript.pyannote[1662].start 12015.95909375
transcript.pyannote[1662].end 12020.98784375
transcript.pyannote[1663].speaker SPEAKER_17
transcript.pyannote[1663].start 12018.54096875
transcript.pyannote[1663].end 12023.33346875
transcript.pyannote[1664].speaker SPEAKER_17
transcript.pyannote[1664].start 12024.31221875
transcript.pyannote[1664].end 12032.93534375
transcript.pyannote[1665].speaker SPEAKER_17
transcript.pyannote[1665].start 12033.44159375
transcript.pyannote[1665].end 12059.71596875
transcript.pyannote[1666].speaker SPEAKER_17
transcript.pyannote[1666].start 12060.00284375
transcript.pyannote[1666].end 12062.38221875
transcript.pyannote[1667].speaker SPEAKER_17
transcript.pyannote[1667].start 12063.24284375
transcript.pyannote[1667].end 12064.54221875
transcript.pyannote[1668].speaker SPEAKER_07
transcript.pyannote[1668].start 12064.54221875
transcript.pyannote[1668].end 12066.06096875
transcript.pyannote[1669].speaker SPEAKER_17
transcript.pyannote[1669].start 12066.19596875
transcript.pyannote[1669].end 12069.13221875
transcript.pyannote[1670].speaker SPEAKER_17
transcript.pyannote[1670].start 12069.65534375
transcript.pyannote[1670].end 12102.05534375
transcript.pyannote[1671].speaker SPEAKER_17
transcript.pyannote[1671].start 12102.08909375
transcript.pyannote[1671].end 12145.87971875
transcript.pyannote[1672].speaker SPEAKER_17
transcript.pyannote[1672].start 12146.48721875
transcript.pyannote[1672].end 12158.83971875
transcript.pyannote[1673].speaker SPEAKER_17
transcript.pyannote[1673].start 12159.34596875
transcript.pyannote[1673].end 12160.42596875
transcript.pyannote[1674].speaker SPEAKER_17
transcript.pyannote[1674].start 12160.69596875
transcript.pyannote[1674].end 12187.83096875
transcript.pyannote[1675].speaker SPEAKER_17
transcript.pyannote[1675].start 12188.28659375
transcript.pyannote[1675].end 12198.29346875
transcript.pyannote[1676].speaker SPEAKER_17
transcript.pyannote[1676].start 12198.59721875
transcript.pyannote[1676].end 12214.69596875
transcript.pyannote[1677].speaker SPEAKER_17
transcript.pyannote[1677].start 12215.62409375
transcript.pyannote[1677].end 12235.19909375
transcript.pyannote[1678].speaker SPEAKER_17
transcript.pyannote[1678].start 12235.23284375
transcript.pyannote[1678].end 12238.03409375
transcript.pyannote[1679].speaker SPEAKER_17
transcript.pyannote[1679].start 12238.08471875
transcript.pyannote[1679].end 12252.02346875
transcript.pyannote[1680].speaker SPEAKER_17
transcript.pyannote[1680].start 12252.19221875
transcript.pyannote[1680].end 12256.78221875
transcript.pyannote[1681].speaker SPEAKER_07
transcript.pyannote[1681].start 12257.59221875
transcript.pyannote[1681].end 12260.56221875
transcript.pyannote[1682].speaker SPEAKER_17
transcript.pyannote[1682].start 12261.54096875
transcript.pyannote[1682].end 12263.22846875
transcript.pyannote[1683].speaker SPEAKER_17
transcript.pyannote[1683].start 12263.97096875
transcript.pyannote[1683].end 12278.77034375
transcript.pyannote[1684].speaker SPEAKER_17
transcript.pyannote[1684].start 12279.02346875
transcript.pyannote[1684].end 12279.66471875
transcript.pyannote[1685].speaker SPEAKER_17
transcript.pyannote[1685].start 12280.10346875
transcript.pyannote[1685].end 12282.75284375
transcript.pyannote[1686].speaker SPEAKER_17
transcript.pyannote[1686].start 12283.15784375
transcript.pyannote[1686].end 12285.03096875
transcript.pyannote[1687].speaker SPEAKER_17
transcript.pyannote[1687].start 12285.60471875
transcript.pyannote[1687].end 12299.25659375
transcript.pyannote[1688].speaker SPEAKER_17
transcript.pyannote[1688].start 12299.57721875
transcript.pyannote[1688].end 12321.61596875
transcript.pyannote[1689].speaker SPEAKER_17
transcript.pyannote[1689].start 12321.91971875
transcript.pyannote[1689].end 12334.50846875
transcript.pyannote[1690].speaker SPEAKER_17
transcript.pyannote[1690].start 12335.35221875
transcript.pyannote[1690].end 12341.52846875
transcript.pyannote[1691].speaker SPEAKER_17
transcript.pyannote[1691].start 12341.78159375
transcript.pyannote[1691].end 12346.13534375
transcript.pyannote[1692].speaker SPEAKER_17
transcript.pyannote[1692].start 12346.40534375
transcript.pyannote[1692].end 12360.47909375
transcript.pyannote[1693].speaker SPEAKER_17
transcript.pyannote[1693].start 12361.01909375
transcript.pyannote[1693].end 12364.57971875
transcript.pyannote[1694].speaker SPEAKER_17
transcript.pyannote[1694].start 12365.22096875
transcript.pyannote[1694].end 12365.74409375
transcript.pyannote[1695].speaker SPEAKER_17
transcript.pyannote[1695].start 12366.70596875
transcript.pyannote[1695].end 12369.70971875
transcript.pyannote[1696].speaker SPEAKER_07
transcript.pyannote[1696].start 12371.43096875
transcript.pyannote[1696].end 12373.52346875
transcript.pyannote[1697].speaker SPEAKER_07
transcript.pyannote[1697].start 12373.67534375
transcript.pyannote[1697].end 12374.60346875
transcript.pyannote[1698].speaker SPEAKER_17
transcript.pyannote[1698].start 12373.87784375
transcript.pyannote[1698].end 12377.97846875
transcript.pyannote[1699].speaker SPEAKER_17
transcript.pyannote[1699].start 12379.17659375
transcript.pyannote[1699].end 12382.70346875
transcript.pyannote[1700].speaker SPEAKER_07
transcript.pyannote[1700].start 12379.19346875
transcript.pyannote[1700].end 12379.78409375
transcript.pyannote[1701].speaker SPEAKER_07
transcript.pyannote[1701].start 12382.80471875
transcript.pyannote[1701].end 12392.89596875
transcript.pyannote[1702].speaker SPEAKER_17
transcript.pyannote[1702].start 12392.20409375
transcript.pyannote[1702].end 12407.61096875
transcript.pyannote[1703].speaker SPEAKER_17
transcript.pyannote[1703].start 12407.74596875
transcript.pyannote[1703].end 12413.33159375
transcript.pyannote[1704].speaker SPEAKER_17
transcript.pyannote[1704].start 12413.66909375
transcript.pyannote[1704].end 12429.71721875
transcript.pyannote[1705].speaker SPEAKER_17
transcript.pyannote[1705].start 12430.69596875
transcript.pyannote[1705].end 12431.03346875
transcript.pyannote[1706].speaker SPEAKER_17
transcript.pyannote[1706].start 12433.98659375
transcript.pyannote[1706].end 12436.48409375
transcript.pyannote[1707].speaker SPEAKER_17
transcript.pyannote[1707].start 12437.44596875
transcript.pyannote[1707].end 12440.01096875
transcript.pyannote[1708].speaker SPEAKER_17
transcript.pyannote[1708].start 12440.23034375
transcript.pyannote[1708].end 12442.77846875
transcript.pyannote[1709].speaker SPEAKER_17
transcript.pyannote[1709].start 12443.47034375
transcript.pyannote[1709].end 12445.12409375
transcript.pyannote[1710].speaker SPEAKER_07
transcript.pyannote[1710].start 12446.23784375
transcript.pyannote[1710].end 12448.83659375
transcript.pyannote[1711].speaker SPEAKER_17
transcript.pyannote[1711].start 12447.41909375
transcript.pyannote[1711].end 12447.84096875
transcript.pyannote[1712].speaker SPEAKER_17
transcript.pyannote[1712].start 12449.37659375
transcript.pyannote[1712].end 12450.77721875
transcript.pyannote[1713].speaker SPEAKER_07
transcript.pyannote[1713].start 12450.45659375
transcript.pyannote[1713].end 12450.92909375
transcript.pyannote[1714].speaker SPEAKER_17
transcript.pyannote[1714].start 12450.92909375
transcript.pyannote[1714].end 12453.67971875
transcript.pyannote[1715].speaker SPEAKER_17
transcript.pyannote[1715].start 12455.06346875
transcript.pyannote[1715].end 12455.41784375
transcript.pyannote[1716].speaker SPEAKER_17
transcript.pyannote[1716].start 12456.90284375
transcript.pyannote[1716].end 12461.32409375
transcript.pyannote[1717].speaker SPEAKER_07
transcript.pyannote[1717].start 12461.32409375
transcript.pyannote[1717].end 12461.77971875
transcript.pyannote[1718].speaker SPEAKER_07
transcript.pyannote[1718].start 12463.11284375
transcript.pyannote[1718].end 12466.60596875
transcript.pyannote[1719].speaker SPEAKER_17
transcript.pyannote[1719].start 12466.23471875
transcript.pyannote[1719].end 12469.08659375
transcript.pyannote[1720].speaker SPEAKER_07
transcript.pyannote[1720].start 12467.56784375
transcript.pyannote[1720].end 12467.98971875
transcript.pyannote[1721].speaker SPEAKER_07
transcript.pyannote[1721].start 12468.46221875
transcript.pyannote[1721].end 12482.94096875
transcript.pyannote[1722].speaker SPEAKER_07
transcript.pyannote[1722].start 12483.66659375
transcript.pyannote[1722].end 12486.09659375
transcript.pyannote[1723].speaker SPEAKER_07
transcript.pyannote[1723].start 12486.28221875
transcript.pyannote[1723].end 12486.41721875
transcript.pyannote[1724].speaker SPEAKER_17
transcript.pyannote[1724].start 12486.41721875
transcript.pyannote[1724].end 12486.83909375
transcript.pyannote[1725].speaker SPEAKER_07
transcript.pyannote[1725].start 12486.83909375
transcript.pyannote[1725].end 12486.97409375
transcript.pyannote[1726].speaker SPEAKER_17
transcript.pyannote[1726].start 12486.97409375
transcript.pyannote[1726].end 12487.00784375
transcript.pyannote[1727].speaker SPEAKER_07
transcript.pyannote[1727].start 12487.00784375
transcript.pyannote[1727].end 12487.02471875
transcript.pyannote[1728].speaker SPEAKER_17
transcript.pyannote[1728].start 12487.02471875
transcript.pyannote[1728].end 12487.66596875
transcript.pyannote[1729].speaker SPEAKER_07
transcript.pyannote[1729].start 12487.10909375
transcript.pyannote[1729].end 12487.71659375
transcript.pyannote[1730].speaker SPEAKER_17
transcript.pyannote[1730].start 12487.71659375
transcript.pyannote[1730].end 12489.03284375
transcript.pyannote[1731].speaker SPEAKER_07
transcript.pyannote[1731].start 12489.31971875
transcript.pyannote[1731].end 12489.33659375
transcript.pyannote[1732].speaker SPEAKER_17
transcript.pyannote[1732].start 12489.33659375
transcript.pyannote[1732].end 12490.11284375
transcript.pyannote[1733].speaker SPEAKER_17
transcript.pyannote[1733].start 12490.28159375
transcript.pyannote[1733].end 12498.02721875
transcript.pyannote[1734].speaker SPEAKER_17
transcript.pyannote[1734].start 12498.28034375
transcript.pyannote[1734].end 12500.11971875
transcript.pyannote[1735].speaker SPEAKER_17
transcript.pyannote[1735].start 12500.84534375
transcript.pyannote[1735].end 12507.59534375
transcript.pyannote[1736].speaker SPEAKER_17
transcript.pyannote[1736].start 12508.38846875
transcript.pyannote[1736].end 12511.56096875
transcript.pyannote[1737].speaker SPEAKER_17
transcript.pyannote[1737].start 12511.94909375
transcript.pyannote[1737].end 12512.72534375
transcript.pyannote[1738].speaker SPEAKER_17
transcript.pyannote[1738].start 12513.99096875
transcript.pyannote[1738].end 12516.96096875
transcript.pyannote[1739].speaker SPEAKER_17
transcript.pyannote[1739].start 12518.12534375
transcript.pyannote[1739].end 12520.47096875
transcript.pyannote[1740].speaker SPEAKER_17
transcript.pyannote[1740].start 12521.29784375
transcript.pyannote[1740].end 12522.59721875
transcript.pyannote[1741].speaker SPEAKER_17
transcript.pyannote[1741].start 12522.66471875
transcript.pyannote[1741].end 12532.23284375
transcript.pyannote[1742].speaker SPEAKER_17
transcript.pyannote[1742].start 12532.40159375
transcript.pyannote[1742].end 12533.97096875
transcript.pyannote[1743].speaker SPEAKER_17
transcript.pyannote[1743].start 12535.20284375
transcript.pyannote[1743].end 12537.17721875
transcript.pyannote[1744].speaker SPEAKER_17
transcript.pyannote[1744].start 12538.00409375
transcript.pyannote[1744].end 12539.23596875
transcript.pyannote[1745].speaker SPEAKER_17
transcript.pyannote[1745].start 12540.63659375
transcript.pyannote[1745].end 12541.48034375
transcript.pyannote[1746].speaker SPEAKER_17
transcript.pyannote[1746].start 12542.77971875
transcript.pyannote[1746].end 12545.54721875
transcript.pyannote[1747].speaker SPEAKER_17
transcript.pyannote[1747].start 12546.52596875
transcript.pyannote[1747].end 12548.26409375
transcript.pyannote[1748].speaker SPEAKER_17
transcript.pyannote[1748].start 12548.63534375
transcript.pyannote[1748].end 12558.65909375
transcript.pyannote[1749].speaker SPEAKER_17
transcript.pyannote[1749].start 12559.80659375
transcript.pyannote[1749].end 12563.19846875
transcript.pyannote[1750].speaker SPEAKER_17
transcript.pyannote[1750].start 12564.26159375
transcript.pyannote[1750].end 12596.52659375
transcript.pyannote[1751].speaker SPEAKER_17
transcript.pyannote[1751].start 12596.98221875
transcript.pyannote[1751].end 12605.40284375
transcript.pyannote[1752].speaker SPEAKER_17
transcript.pyannote[1752].start 12606.06096875
transcript.pyannote[1752].end 12614.43096875
transcript.pyannote[1753].speaker SPEAKER_17
transcript.pyannote[1753].start 12615.05534375
transcript.pyannote[1753].end 12626.76659375
transcript.pyannote[1754].speaker SPEAKER_17
transcript.pyannote[1754].start 12627.08721875
transcript.pyannote[1754].end 12636.85784375
transcript.pyannote[1755].speaker SPEAKER_17
transcript.pyannote[1755].start 12637.34721875
transcript.pyannote[1755].end 12644.13096875
transcript.pyannote[1756].speaker SPEAKER_17
transcript.pyannote[1756].start 12644.33346875
transcript.pyannote[1756].end 12645.31221875
transcript.pyannote[1757].speaker SPEAKER_07
transcript.pyannote[1757].start 12645.93659375
transcript.pyannote[1757].end 12647.65784375
transcript.pyannote[1758].speaker SPEAKER_17
transcript.pyannote[1758].start 12647.65784375
transcript.pyannote[1758].end 12648.18096875
transcript.pyannote[1759].speaker SPEAKER_17
transcript.pyannote[1759].start 12648.53534375
transcript.pyannote[1759].end 12650.22284375
transcript.pyannote[1760].speaker SPEAKER_17
transcript.pyannote[1760].start 12650.59409375
transcript.pyannote[1760].end 12660.01034375
transcript.pyannote[1761].speaker SPEAKER_17
transcript.pyannote[1761].start 12660.29721875
transcript.pyannote[1761].end 12668.29596875
transcript.pyannote[1762].speaker SPEAKER_17
transcript.pyannote[1762].start 12668.85284375
transcript.pyannote[1762].end 12671.51909375
transcript.pyannote[1763].speaker SPEAKER_17
transcript.pyannote[1763].start 12671.72159375
transcript.pyannote[1763].end 12678.91034375
transcript.pyannote[1764].speaker SPEAKER_17
transcript.pyannote[1764].start 12679.58534375
transcript.pyannote[1764].end 12685.12034375
transcript.pyannote[1765].speaker SPEAKER_07
transcript.pyannote[1765].start 12686.38596875
transcript.pyannote[1765].end 12689.44034375
transcript.pyannote[1766].speaker SPEAKER_17
transcript.pyannote[1766].start 12689.50784375
transcript.pyannote[1766].end 12693.47346875
transcript.pyannote[1767].speaker SPEAKER_17
transcript.pyannote[1767].start 12694.16534375
transcript.pyannote[1767].end 12695.90346875
transcript.pyannote[1768].speaker SPEAKER_17
transcript.pyannote[1768].start 12696.83159375
transcript.pyannote[1768].end 12710.12909375
transcript.pyannote[1769].speaker SPEAKER_17
transcript.pyannote[1769].start 12710.38221875
transcript.pyannote[1769].end 12717.52034375
transcript.pyannote[1770].speaker SPEAKER_17
transcript.pyannote[1770].start 12718.87034375
transcript.pyannote[1770].end 12720.03471875
transcript.pyannote[1771].speaker SPEAKER_17
transcript.pyannote[1771].start 12720.64221875
transcript.pyannote[1771].end 12721.31721875
transcript.pyannote[1772].speaker SPEAKER_17
transcript.pyannote[1772].start 12721.84034375
transcript.pyannote[1772].end 12722.78534375
transcript.pyannote[1773].speaker SPEAKER_17
transcript.pyannote[1773].start 12723.08909375
transcript.pyannote[1773].end 12724.74284375
transcript.pyannote[1774].speaker SPEAKER_17
transcript.pyannote[1774].start 12725.89034375
transcript.pyannote[1774].end 12728.08409375
transcript.pyannote[1775].speaker SPEAKER_17
transcript.pyannote[1775].start 12728.43846875
transcript.pyannote[1775].end 12730.10909375
transcript.pyannote[1776].speaker SPEAKER_00
transcript.pyannote[1776].start 12728.53971875
transcript.pyannote[1776].end 12728.84346875
transcript.pyannote[1777].speaker SPEAKER_17
transcript.pyannote[1777].start 12730.15971875
transcript.pyannote[1777].end 12737.01096875
transcript.pyannote[1778].speaker SPEAKER_17
transcript.pyannote[1778].start 12737.90534375
transcript.pyannote[1778].end 12738.64784375
transcript.pyannote[1779].speaker SPEAKER_17
transcript.pyannote[1779].start 12738.85034375
transcript.pyannote[1779].end 12740.04846875
transcript.pyannote[1780].speaker SPEAKER_17
transcript.pyannote[1780].start 12740.55471875
transcript.pyannote[1780].end 12747.47346875
transcript.pyannote[1781].speaker SPEAKER_17
transcript.pyannote[1781].start 12748.50284375
transcript.pyannote[1781].end 12749.19471875
transcript.pyannote[1782].speaker SPEAKER_17
transcript.pyannote[1782].start 12750.13971875
transcript.pyannote[1782].end 12763.70721875
transcript.pyannote[1783].speaker SPEAKER_17
transcript.pyannote[1783].start 12763.85909375
transcript.pyannote[1783].end 12768.36471875
transcript.pyannote[1784].speaker SPEAKER_17
transcript.pyannote[1784].start 12768.85409375
transcript.pyannote[1784].end 12776.70096875
transcript.pyannote[1785].speaker SPEAKER_17
transcript.pyannote[1785].start 12776.71784375
transcript.pyannote[1785].end 12790.90971875
transcript.pyannote[1786].speaker SPEAKER_17
transcript.pyannote[1786].start 12791.97284375
transcript.pyannote[1786].end 12803.36346875
transcript.pyannote[1787].speaker SPEAKER_17
transcript.pyannote[1787].start 12803.68409375
transcript.pyannote[1787].end 12804.81471875
transcript.pyannote[1788].speaker SPEAKER_17
transcript.pyannote[1788].start 12805.91159375
transcript.pyannote[1788].end 12809.50596875
transcript.pyannote[1789].speaker SPEAKER_17
transcript.pyannote[1789].start 12810.07971875
transcript.pyannote[1789].end 12817.89284375
transcript.pyannote[1790].speaker SPEAKER_17
transcript.pyannote[1790].start 12818.61846875
transcript.pyannote[1790].end 12824.28846875
transcript.pyannote[1791].speaker SPEAKER_17
transcript.pyannote[1791].start 12824.74409375
transcript.pyannote[1791].end 12827.74784375
transcript.pyannote[1792].speaker SPEAKER_17
transcript.pyannote[1792].start 12828.74346875
transcript.pyannote[1792].end 12829.73909375
transcript.pyannote[1793].speaker SPEAKER_17
transcript.pyannote[1793].start 12830.16096875
transcript.pyannote[1793].end 12832.01721875
transcript.pyannote[1794].speaker SPEAKER_17
transcript.pyannote[1794].start 12832.57409375
transcript.pyannote[1794].end 12835.29096875
transcript.pyannote[1795].speaker SPEAKER_17
transcript.pyannote[1795].start 12835.67909375
transcript.pyannote[1795].end 12837.43409375
transcript.pyannote[1796].speaker SPEAKER_17
transcript.pyannote[1796].start 12839.89784375
transcript.pyannote[1796].end 12852.46971875
transcript.pyannote[1797].speaker SPEAKER_17
transcript.pyannote[1797].start 12852.75659375
transcript.pyannote[1797].end 12855.16971875
transcript.pyannote[1798].speaker SPEAKER_17
transcript.pyannote[1798].start 12855.92909375
transcript.pyannote[1798].end 12856.92471875
transcript.pyannote[1799].speaker SPEAKER_17
transcript.pyannote[1799].start 12857.68409375
transcript.pyannote[1799].end 12865.09221875
transcript.pyannote[1800].speaker SPEAKER_17
transcript.pyannote[1800].start 12865.53096875
transcript.pyannote[1800].end 12867.10034375
transcript.pyannote[1801].speaker SPEAKER_17
transcript.pyannote[1801].start 12867.89346875
transcript.pyannote[1801].end 12874.01909375
transcript.pyannote[1802].speaker SPEAKER_17
transcript.pyannote[1802].start 12874.39034375
transcript.pyannote[1802].end 12882.79409375
transcript.pyannote[1803].speaker SPEAKER_17
transcript.pyannote[1803].start 12882.99659375
transcript.pyannote[1803].end 12883.89096875
transcript.pyannote[1804].speaker SPEAKER_17
transcript.pyannote[1804].start 12884.26221875
transcript.pyannote[1804].end 12886.64159375
transcript.pyannote[1805].speaker SPEAKER_17
transcript.pyannote[1805].start 12887.53596875
transcript.pyannote[1805].end 12890.77596875
transcript.pyannote[1806].speaker SPEAKER_17
transcript.pyannote[1806].start 12891.26534375
transcript.pyannote[1806].end 12892.34534375
transcript.pyannote[1807].speaker SPEAKER_17
transcript.pyannote[1807].start 12892.75034375
transcript.pyannote[1807].end 12895.38284375
transcript.pyannote[1808].speaker SPEAKER_17
transcript.pyannote[1808].start 12895.75409375
transcript.pyannote[1808].end 12896.90159375
transcript.pyannote[1809].speaker SPEAKER_17
transcript.pyannote[1809].start 12897.39096875
transcript.pyannote[1809].end 12898.43721875
transcript.pyannote[1810].speaker SPEAKER_07
transcript.pyannote[1810].start 12901.33971875
transcript.pyannote[1810].end 12904.54596875
transcript.pyannote[1811].speaker SPEAKER_07
transcript.pyannote[1811].start 12904.88346875
transcript.pyannote[1811].end 12906.82409375
transcript.pyannote[1812].speaker SPEAKER_07
transcript.pyannote[1812].start 12907.38096875
transcript.pyannote[1812].end 12916.02096875
transcript.pyannote[1813].speaker SPEAKER_17
transcript.pyannote[1813].start 12914.04659375
transcript.pyannote[1813].end 12916.12221875
transcript.pyannote[1814].speaker SPEAKER_17
transcript.pyannote[1814].start 12916.34159375
transcript.pyannote[1814].end 12921.15096875
transcript.pyannote[1815].speaker SPEAKER_17
transcript.pyannote[1815].start 12921.79221875
transcript.pyannote[1815].end 12927.86721875
transcript.pyannote[1816].speaker SPEAKER_17
transcript.pyannote[1816].start 12928.18784375
transcript.pyannote[1816].end 12932.23784375
transcript.pyannote[1817].speaker SPEAKER_22
transcript.pyannote[1817].start 12932.87909375
transcript.pyannote[1817].end 12933.52034375
transcript.pyannote[1818].speaker SPEAKER_17
transcript.pyannote[1818].start 12933.19971875
transcript.pyannote[1818].end 12934.63409375
transcript.pyannote[1819].speaker SPEAKER_17
transcript.pyannote[1819].start 12936.99659375
transcript.pyannote[1819].end 12937.63784375
transcript.pyannote[1820].speaker SPEAKER_17
transcript.pyannote[1820].start 12937.87409375
transcript.pyannote[1820].end 12941.11409375
transcript.pyannote[1821].speaker SPEAKER_17
transcript.pyannote[1821].start 12941.36721875
transcript.pyannote[1821].end 12944.32034375
transcript.pyannote[1822].speaker SPEAKER_17
transcript.pyannote[1822].start 12944.72534375
transcript.pyannote[1822].end 12954.04034375
transcript.pyannote[1823].speaker SPEAKER_17
transcript.pyannote[1823].start 12954.49596875
transcript.pyannote[1823].end 12961.22909375
transcript.pyannote[1824].speaker SPEAKER_17
transcript.pyannote[1824].start 12961.65096875
transcript.pyannote[1824].end 12969.07596875
transcript.pyannote[1825].speaker SPEAKER_17
transcript.pyannote[1825].start 12969.98721875
transcript.pyannote[1825].end 12980.46659375
transcript.pyannote[1826].speaker SPEAKER_17
transcript.pyannote[1826].start 12981.34409375
transcript.pyannote[1826].end 12993.02159375
transcript.pyannote[1827].speaker SPEAKER_17
transcript.pyannote[1827].start 12993.51096875
transcript.pyannote[1827].end 13004.80034375
transcript.pyannote[1828].speaker SPEAKER_17
transcript.pyannote[1828].start 13005.35721875
transcript.pyannote[1828].end 13007.14596875
transcript.pyannote[1829].speaker SPEAKER_17
transcript.pyannote[1829].start 13007.80409375
transcript.pyannote[1829].end 13013.08596875
transcript.pyannote[1830].speaker SPEAKER_17
transcript.pyannote[1830].start 13013.47409375
transcript.pyannote[1830].end 13017.69284375
transcript.pyannote[1831].speaker SPEAKER_17
transcript.pyannote[1831].start 13018.14846875
transcript.pyannote[1831].end 13021.40534375
transcript.pyannote[1832].speaker SPEAKER_17
transcript.pyannote[1832].start 13022.21534375
transcript.pyannote[1832].end 13038.93846875
transcript.pyannote[1833].speaker SPEAKER_17
transcript.pyannote[1833].start 13039.29284375
transcript.pyannote[1833].end 13042.06034375
transcript.pyannote[1834].speaker SPEAKER_17
transcript.pyannote[1834].start 13042.38096875
transcript.pyannote[1834].end 13049.63721875
transcript.pyannote[1835].speaker SPEAKER_17
transcript.pyannote[1835].start 13050.41346875
transcript.pyannote[1835].end 13052.32034375
transcript.pyannote[1836].speaker SPEAKER_17
transcript.pyannote[1836].start 13052.74221875
transcript.pyannote[1836].end 13064.35221875
transcript.pyannote[1837].speaker SPEAKER_07
transcript.pyannote[1837].start 13064.35221875
transcript.pyannote[1837].end 13064.36909375
transcript.pyannote[1838].speaker SPEAKER_17
transcript.pyannote[1838].start 13065.02721875
transcript.pyannote[1838].end 13065.39846875
transcript.pyannote[1839].speaker SPEAKER_07
transcript.pyannote[1839].start 13065.39846875
transcript.pyannote[1839].end 13065.43221875
transcript.pyannote[1840].speaker SPEAKER_07
transcript.pyannote[1840].start 13065.75284375
transcript.pyannote[1840].end 13065.76971875
transcript.pyannote[1841].speaker SPEAKER_17
transcript.pyannote[1841].start 13065.76971875
transcript.pyannote[1841].end 13066.02284375
transcript.pyannote[1842].speaker SPEAKER_07
transcript.pyannote[1842].start 13066.02284375
transcript.pyannote[1842].end 13068.62159375
transcript.pyannote[1843].speaker SPEAKER_07
transcript.pyannote[1843].start 13068.97596875
transcript.pyannote[1843].end 13075.15221875
transcript.pyannote[1844].speaker SPEAKER_07
transcript.pyannote[1844].start 13075.54034375
transcript.pyannote[1844].end 13076.06346875
transcript.pyannote[1845].speaker SPEAKER_07
transcript.pyannote[1845].start 13076.94096875
transcript.pyannote[1845].end 13078.22346875
transcript.pyannote[1846].speaker SPEAKER_07
transcript.pyannote[1846].start 13078.66221875
transcript.pyannote[1846].end 13085.64846875
transcript.pyannote[1847].speaker SPEAKER_17
transcript.pyannote[1847].start 13085.51346875
transcript.pyannote[1847].end 13087.57221875
transcript.pyannote[1848].speaker SPEAKER_17
transcript.pyannote[1848].start 13089.51284375
transcript.pyannote[1848].end 13090.54221875
transcript.pyannote[1849].speaker SPEAKER_07
transcript.pyannote[1849].start 13091.23409375
transcript.pyannote[1849].end 13092.16221875
transcript.pyannote[1850].speaker SPEAKER_17
transcript.pyannote[1850].start 13091.89221875
transcript.pyannote[1850].end 13094.17034375
transcript.pyannote[1851].speaker SPEAKER_17
transcript.pyannote[1851].start 13094.49096875
transcript.pyannote[1851].end 13096.27971875
transcript.pyannote[1852].speaker SPEAKER_17
transcript.pyannote[1852].start 13097.61284375
transcript.pyannote[1852].end 13099.78971875
transcript.pyannote[1853].speaker SPEAKER_17
transcript.pyannote[1853].start 13099.97534375
transcript.pyannote[1853].end 13101.27471875
transcript.pyannote[1854].speaker SPEAKER_22
transcript.pyannote[1854].start 13101.27471875
transcript.pyannote[1854].end 13101.61221875
transcript.pyannote[1855].speaker SPEAKER_17
transcript.pyannote[1855].start 13101.61221875
transcript.pyannote[1855].end 13117.74471875
transcript.pyannote[1856].speaker SPEAKER_17
transcript.pyannote[1856].start 13119.07784375
transcript.pyannote[1856].end 13126.21596875
transcript.pyannote[1857].speaker SPEAKER_17
transcript.pyannote[1857].start 13126.46909375
transcript.pyannote[1857].end 13131.00846875
transcript.pyannote[1858].speaker SPEAKER_17
transcript.pyannote[1858].start 13131.93659375
transcript.pyannote[1858].end 13140.28971875
transcript.pyannote[1859].speaker SPEAKER_17
transcript.pyannote[1859].start 13140.89721875
transcript.pyannote[1859].end 13145.23409375
transcript.pyannote[1860].speaker SPEAKER_17
transcript.pyannote[1860].start 13145.89221875
transcript.pyannote[1860].end 13147.90034375
transcript.pyannote[1861].speaker SPEAKER_17
transcript.pyannote[1861].start 13149.28409375
transcript.pyannote[1861].end 13150.93784375
transcript.pyannote[1862].speaker SPEAKER_17
transcript.pyannote[1862].start 13151.64659375
transcript.pyannote[1862].end 13152.50721875
transcript.pyannote[1863].speaker SPEAKER_17
transcript.pyannote[1863].start 13153.04721875
transcript.pyannote[1863].end 13153.41846875
transcript.pyannote[1864].speaker SPEAKER_17
transcript.pyannote[1864].start 13154.83596875
transcript.pyannote[1864].end 13155.24096875
transcript.pyannote[1865].speaker SPEAKER_17
transcript.pyannote[1865].start 13155.39284375
transcript.pyannote[1865].end 13157.89034375
transcript.pyannote[1866].speaker SPEAKER_17
transcript.pyannote[1866].start 13158.10971875
transcript.pyannote[1866].end 13162.61534375
transcript.pyannote[1867].speaker SPEAKER_17
transcript.pyannote[1867].start 13162.81784375
transcript.pyannote[1867].end 13163.66159375
transcript.pyannote[1868].speaker SPEAKER_03
transcript.pyannote[1868].start 13173.49971875
transcript.pyannote[1868].end 13175.62596875
transcript.pyannote[1869].speaker SPEAKER_03
transcript.pyannote[1869].start 13176.36846875
transcript.pyannote[1869].end 13178.03909375
transcript.pyannote[1870].speaker SPEAKER_03
transcript.pyannote[1870].start 13178.32596875
transcript.pyannote[1870].end 13179.84471875
transcript.pyannote[1871].speaker SPEAKER_03
transcript.pyannote[1871].start 13180.94159375
transcript.pyannote[1871].end 13182.84846875
transcript.pyannote[1872].speaker SPEAKER_03
transcript.pyannote[1872].start 13189.31159375
transcript.pyannote[1872].end 13190.29034375
transcript.pyannote[1873].speaker SPEAKER_13
transcript.pyannote[1873].start 13190.29034375
transcript.pyannote[1873].end 13190.34096875
transcript.pyannote[1874].speaker SPEAKER_13
transcript.pyannote[1874].start 13190.42534375
transcript.pyannote[1874].end 13190.49284375
transcript.pyannote[1875].speaker SPEAKER_03
transcript.pyannote[1875].start 13190.49284375
transcript.pyannote[1875].end 13190.96534375
transcript.pyannote[1876].speaker SPEAKER_13
transcript.pyannote[1876].start 13190.96534375
transcript.pyannote[1876].end 13197.69846875
transcript.pyannote[1877].speaker SPEAKER_22
transcript.pyannote[1877].start 13198.66034375
transcript.pyannote[1877].end 13198.98096875
transcript.pyannote[1878].speaker SPEAKER_13
transcript.pyannote[1878].start 13207.19909375
transcript.pyannote[1878].end 13239.71721875
transcript.pyannote[1879].speaker SPEAKER_13
transcript.pyannote[1879].start 13239.88596875
transcript.pyannote[1879].end 13241.01659375
transcript.pyannote[1880].speaker SPEAKER_13
transcript.pyannote[1880].start 13241.37096875
transcript.pyannote[1880].end 13241.96159375
transcript.pyannote[1881].speaker SPEAKER_13
transcript.pyannote[1881].start 13242.67034375
transcript.pyannote[1881].end 13252.79534375
transcript.pyannote[1882].speaker SPEAKER_13
transcript.pyannote[1882].start 13253.40284375
transcript.pyannote[1882].end 13290.62909375
transcript.pyannote[1883].speaker SPEAKER_13
transcript.pyannote[1883].start 13290.93284375
transcript.pyannote[1883].end 13292.85659375
transcript.pyannote[1884].speaker SPEAKER_13
transcript.pyannote[1884].start 13293.31221875
transcript.pyannote[1884].end 13330.96034375
transcript.pyannote[1885].speaker SPEAKER_13
transcript.pyannote[1885].start 13331.06159375
transcript.pyannote[1885].end 13332.02346875
transcript.pyannote[1886].speaker SPEAKER_13
transcript.pyannote[1886].start 13332.17534375
transcript.pyannote[1886].end 13339.65096875
transcript.pyannote[1887].speaker SPEAKER_13
transcript.pyannote[1887].start 13340.25846875
transcript.pyannote[1887].end 13342.13159375
transcript.pyannote[1888].speaker SPEAKER_13
transcript.pyannote[1888].start 13342.55346875
transcript.pyannote[1888].end 13371.74721875
transcript.pyannote[1889].speaker SPEAKER_13
transcript.pyannote[1889].start 13371.98346875
transcript.pyannote[1889].end 13372.05096875
transcript.pyannote[1890].speaker SPEAKER_13
transcript.pyannote[1890].start 13372.08471875
transcript.pyannote[1890].end 13379.07096875
transcript.pyannote[1891].speaker SPEAKER_13
transcript.pyannote[1891].start 13379.76284375
transcript.pyannote[1891].end 13383.17159375
transcript.pyannote[1892].speaker SPEAKER_07
transcript.pyannote[1892].start 13382.64846875
transcript.pyannote[1892].end 13416.71909375
transcript.pyannote[1893].speaker SPEAKER_07
transcript.pyannote[1893].start 13417.44471875
transcript.pyannote[1893].end 13437.94784375
transcript.pyannote[1894].speaker SPEAKER_07
transcript.pyannote[1894].start 13438.42034375
transcript.pyannote[1894].end 13451.63346875
transcript.pyannote[1895].speaker SPEAKER_07
transcript.pyannote[1895].start 13452.37596875
transcript.pyannote[1895].end 13466.17971875
transcript.pyannote[1896].speaker SPEAKER_13
transcript.pyannote[1896].start 13466.17971875
transcript.pyannote[1896].end 13472.47409375
transcript.pyannote[1897].speaker SPEAKER_13
transcript.pyannote[1897].start 13472.59221875
transcript.pyannote[1897].end 13485.02909375
transcript.pyannote[1898].speaker SPEAKER_13
transcript.pyannote[1898].start 13485.45096875
transcript.pyannote[1898].end 13498.30971875
transcript.pyannote[1899].speaker SPEAKER_07
transcript.pyannote[1899].start 13499.54159375
transcript.pyannote[1899].end 13503.74346875
transcript.pyannote[1900].speaker SPEAKER_07
transcript.pyannote[1900].start 13503.82784375
transcript.pyannote[1900].end 13504.65471875
transcript.pyannote[1901].speaker SPEAKER_07
transcript.pyannote[1901].start 13505.41409375
transcript.pyannote[1901].end 13529.35971875
transcript.pyannote[1902].speaker SPEAKER_07
transcript.pyannote[1902].start 13529.49471875
transcript.pyannote[1902].end 13530.01784375
transcript.pyannote[1903].speaker SPEAKER_13
transcript.pyannote[1903].start 13530.08534375
transcript.pyannote[1903].end 13530.10221875
transcript.pyannote[1904].speaker SPEAKER_07
transcript.pyannote[1904].start 13530.10221875
transcript.pyannote[1904].end 13534.96221875
transcript.pyannote[1905].speaker SPEAKER_13
transcript.pyannote[1905].start 13531.09784375
transcript.pyannote[1905].end 13531.55346875
transcript.pyannote[1906].speaker SPEAKER_13
transcript.pyannote[1906].start 13534.96221875
transcript.pyannote[1906].end 13574.14596875
transcript.pyannote[1907].speaker SPEAKER_07
transcript.pyannote[1907].start 13536.31221875
transcript.pyannote[1907].end 13537.02096875
transcript.pyannote[1908].speaker SPEAKER_07
transcript.pyannote[1908].start 13537.37534375
transcript.pyannote[1908].end 13537.40909375
transcript.pyannote[1909].speaker SPEAKER_07
transcript.pyannote[1909].start 13538.25284375
transcript.pyannote[1909].end 13538.59034375
transcript.pyannote[1910].speaker SPEAKER_13
transcript.pyannote[1910].start 13574.73659375
transcript.pyannote[1910].end 13600.36971875
transcript.pyannote[1911].speaker SPEAKER_22
transcript.pyannote[1911].start 13598.85096875
transcript.pyannote[1911].end 13598.95221875
transcript.pyannote[1912].speaker SPEAKER_13
transcript.pyannote[1912].start 13601.02784375
transcript.pyannote[1912].end 13603.15409375
transcript.pyannote[1913].speaker SPEAKER_13
transcript.pyannote[1913].start 13603.40721875
transcript.pyannote[1913].end 13608.03096875
transcript.pyannote[1914].speaker SPEAKER_13
transcript.pyannote[1914].start 13608.40221875
transcript.pyannote[1914].end 13629.10784375
transcript.pyannote[1915].speaker SPEAKER_13
transcript.pyannote[1915].start 13629.49596875
transcript.pyannote[1915].end 13645.02096875
transcript.pyannote[1916].speaker SPEAKER_13
transcript.pyannote[1916].start 13645.76346875
transcript.pyannote[1916].end 13649.10471875
transcript.pyannote[1917].speaker SPEAKER_13
transcript.pyannote[1917].start 13649.66159375
transcript.pyannote[1917].end 13691.68034375
transcript.pyannote[1918].speaker SPEAKER_13
transcript.pyannote[1918].start 13692.06846875
transcript.pyannote[1918].end 13707.07034375
transcript.pyannote[1919].speaker SPEAKER_13
transcript.pyannote[1919].start 13707.37409375
transcript.pyannote[1919].end 13734.88034375
transcript.pyannote[1920].speaker SPEAKER_13
transcript.pyannote[1920].start 13735.13346875
transcript.pyannote[1920].end 13753.76346875
transcript.pyannote[1921].speaker SPEAKER_13
transcript.pyannote[1921].start 13754.50596875
transcript.pyannote[1921].end 13767.36471875
transcript.pyannote[1922].speaker SPEAKER_13
transcript.pyannote[1922].start 13767.63471875
transcript.pyannote[1922].end 13773.13596875
transcript.pyannote[1923].speaker SPEAKER_13
transcript.pyannote[1923].start 13773.77721875
transcript.pyannote[1923].end 13781.20221875
transcript.pyannote[1924].speaker SPEAKER_13
transcript.pyannote[1924].start 13781.47221875
transcript.pyannote[1924].end 13782.23159375
transcript.pyannote[1925].speaker SPEAKER_13
transcript.pyannote[1925].start 13782.68721875
transcript.pyannote[1925].end 13784.13846875
transcript.pyannote[1926].speaker SPEAKER_13
transcript.pyannote[1926].start 13784.54346875
transcript.pyannote[1926].end 13787.34471875
transcript.pyannote[1927].speaker SPEAKER_13
transcript.pyannote[1927].start 13787.53034375
transcript.pyannote[1927].end 13788.98159375
transcript.pyannote[1928].speaker SPEAKER_13
transcript.pyannote[1928].start 13789.43721875
transcript.pyannote[1928].end 13791.86721875
transcript.pyannote[1929].speaker SPEAKER_13
transcript.pyannote[1929].start 13792.27221875
transcript.pyannote[1929].end 13799.34284375
transcript.pyannote[1930].speaker SPEAKER_13
transcript.pyannote[1930].start 13799.74784375
transcript.pyannote[1930].end 13805.75534375
transcript.pyannote[1931].speaker SPEAKER_13
transcript.pyannote[1931].start 13805.85659375
transcript.pyannote[1931].end 13807.05471875
transcript.pyannote[1932].speaker SPEAKER_13
transcript.pyannote[1932].start 13807.83096875
transcript.pyannote[1932].end 13834.89846875
transcript.pyannote[1933].speaker SPEAKER_13
transcript.pyannote[1933].start 13835.52284375
transcript.pyannote[1933].end 13841.46284375
transcript.pyannote[1934].speaker SPEAKER_13
transcript.pyannote[1934].start 13841.64846875
transcript.pyannote[1934].end 13860.16034375
transcript.pyannote[1935].speaker SPEAKER_13
transcript.pyannote[1935].start 13860.48096875
transcript.pyannote[1935].end 13880.86596875
transcript.pyannote[1936].speaker SPEAKER_13
transcript.pyannote[1936].start 13881.16971875
transcript.pyannote[1936].end 13892.42534375
transcript.pyannote[1937].speaker SPEAKER_13
transcript.pyannote[1937].start 13892.81346875
transcript.pyannote[1937].end 13895.24346875
transcript.pyannote[1938].speaker SPEAKER_13
transcript.pyannote[1938].start 13895.47971875
transcript.pyannote[1938].end 13896.91409375
transcript.pyannote[1939].speaker SPEAKER_13
transcript.pyannote[1939].start 13897.65659375
transcript.pyannote[1939].end 13906.70159375
transcript.pyannote[1940].speaker SPEAKER_13
transcript.pyannote[1940].start 13906.97159375
transcript.pyannote[1940].end 13926.85034375
transcript.pyannote[1941].speaker SPEAKER_13
transcript.pyannote[1941].start 13927.06971875
transcript.pyannote[1941].end 13942.99971875
transcript.pyannote[1942].speaker SPEAKER_13
transcript.pyannote[1942].start 13943.60721875
transcript.pyannote[1942].end 13949.10846875
transcript.pyannote[1943].speaker SPEAKER_13
transcript.pyannote[1943].start 13949.27721875
transcript.pyannote[1943].end 13962.72659375
transcript.pyannote[1944].speaker SPEAKER_13
transcript.pyannote[1944].start 13963.26659375
transcript.pyannote[1944].end 13968.00846875
transcript.pyannote[1945].speaker SPEAKER_15
transcript.pyannote[1945].start 13968.78471875
transcript.pyannote[1945].end 13969.24034375
transcript.pyannote[1946].speaker SPEAKER_15
transcript.pyannote[1946].start 13969.49346875
transcript.pyannote[1946].end 13977.25596875
transcript.pyannote[1947].speaker SPEAKER_15
transcript.pyannote[1947].start 13977.35721875
transcript.pyannote[1947].end 14006.53409375
transcript.pyannote[1948].speaker SPEAKER_15
transcript.pyannote[1948].start 14006.97284375
transcript.pyannote[1948].end 14028.70784375
transcript.pyannote[1949].speaker SPEAKER_15
transcript.pyannote[1949].start 14028.84284375
transcript.pyannote[1949].end 14031.49221875
transcript.pyannote[1950].speaker SPEAKER_15
transcript.pyannote[1950].start 14032.03221875
transcript.pyannote[1950].end 14032.75784375
transcript.pyannote[1951].speaker SPEAKER_15
transcript.pyannote[1951].start 14033.07846875
transcript.pyannote[1951].end 14037.43221875
transcript.pyannote[1952].speaker SPEAKER_15
transcript.pyannote[1952].start 14037.95534375
transcript.pyannote[1952].end 14040.38534375
transcript.pyannote[1953].speaker SPEAKER_15
transcript.pyannote[1953].start 14040.89159375
transcript.pyannote[1953].end 14046.08909375
transcript.pyannote[1954].speaker SPEAKER_15
transcript.pyannote[1954].start 14046.54471875
transcript.pyannote[1954].end 14052.88971875
transcript.pyannote[1955].speaker SPEAKER_15
transcript.pyannote[1955].start 14053.19346875
transcript.pyannote[1955].end 14082.69096875
transcript.pyannote[1956].speaker SPEAKER_15
transcript.pyannote[1956].start 14083.01159375
transcript.pyannote[1956].end 14090.94284375
transcript.pyannote[1957].speaker SPEAKER_15
transcript.pyannote[1957].start 14091.22971875
transcript.pyannote[1957].end 14098.78971875
transcript.pyannote[1958].speaker SPEAKER_13
transcript.pyannote[1958].start 14099.48159375
transcript.pyannote[1958].end 14109.74159375
transcript.pyannote[1959].speaker SPEAKER_07
transcript.pyannote[1959].start 14109.74159375
transcript.pyannote[1959].end 14109.75846875
transcript.pyannote[1960].speaker SPEAKER_13
transcript.pyannote[1960].start 14111.49659375
transcript.pyannote[1960].end 14111.53034375
transcript.pyannote[1961].speaker SPEAKER_07
transcript.pyannote[1961].start 14111.53034375
transcript.pyannote[1961].end 14115.22596875
transcript.pyannote[1962].speaker SPEAKER_07
transcript.pyannote[1962].start 14115.71534375
transcript.pyannote[1962].end 14126.65034375
transcript.pyannote[1963].speaker SPEAKER_07
transcript.pyannote[1963].start 14126.88659375
transcript.pyannote[1963].end 14132.82659375
transcript.pyannote[1964].speaker SPEAKER_07
transcript.pyannote[1964].start 14133.40034375
transcript.pyannote[1964].end 14135.00346875
transcript.pyannote[1965].speaker SPEAKER_07
transcript.pyannote[1965].start 14136.33659375
transcript.pyannote[1965].end 14137.24784375
transcript.pyannote[1966].speaker SPEAKER_07
transcript.pyannote[1966].start 14137.97346875
transcript.pyannote[1966].end 14138.02409375
transcript.pyannote[1967].speaker SPEAKER_07
transcript.pyannote[1967].start 14138.27721875
transcript.pyannote[1967].end 14146.73159375
transcript.pyannote[1968].speaker SPEAKER_13
transcript.pyannote[1968].start 14146.93409375
transcript.pyannote[1968].end 14155.55721875
transcript.pyannote[1969].speaker SPEAKER_07
transcript.pyannote[1969].start 14153.11034375
transcript.pyannote[1969].end 14154.30846875
transcript.pyannote[1970].speaker SPEAKER_13
transcript.pyannote[1970].start 14156.01284375
transcript.pyannote[1970].end 14158.35846875
transcript.pyannote[1971].speaker SPEAKER_22
transcript.pyannote[1971].start 14158.44284375
transcript.pyannote[1971].end 14158.66221875
transcript.pyannote[1972].speaker SPEAKER_07
transcript.pyannote[1972].start 14159.32034375
transcript.pyannote[1972].end 14159.33721875
transcript.pyannote[1973].speaker SPEAKER_13
transcript.pyannote[1973].start 14159.33721875
transcript.pyannote[1973].end 14167.94346875
transcript.pyannote[1974].speaker SPEAKER_03
transcript.pyannote[1974].start 14168.44971875
transcript.pyannote[1974].end 14180.43096875
transcript.pyannote[1975].speaker SPEAKER_22
transcript.pyannote[1975].start 14175.41909375
transcript.pyannote[1975].end 14176.14471875
transcript.pyannote[1976].speaker SPEAKER_03
transcript.pyannote[1976].start 14181.69659375
transcript.pyannote[1976].end 14182.67534375
transcript.pyannote[1977].speaker SPEAKER_03
transcript.pyannote[1977].start 14183.85659375
transcript.pyannote[1977].end 14187.63659375
transcript.pyannote[1978].speaker SPEAKER_26
transcript.pyannote[1978].start 14195.60159375
transcript.pyannote[1978].end 14197.44096875
transcript.pyannote[1979].speaker SPEAKER_22
transcript.pyannote[1979].start 14200.79909375
transcript.pyannote[1979].end 14200.96784375
transcript.pyannote[1980].speaker SPEAKER_26
transcript.pyannote[1980].start 14204.66346875
transcript.pyannote[1980].end 14205.20346875
transcript.pyannote[1981].speaker SPEAKER_26
transcript.pyannote[1981].start 14205.62534375
transcript.pyannote[1981].end 14246.93534375
transcript.pyannote[1982].speaker SPEAKER_26
transcript.pyannote[1982].start 14247.64409375
transcript.pyannote[1982].end 14248.52159375
transcript.pyannote[1983].speaker SPEAKER_07
transcript.pyannote[1983].start 14249.83784375
transcript.pyannote[1983].end 14253.46596875
transcript.pyannote[1984].speaker SPEAKER_07
transcript.pyannote[1984].start 14253.73596875
transcript.pyannote[1984].end 14263.92846875
transcript.pyannote[1985].speaker SPEAKER_26
transcript.pyannote[1985].start 14264.08034375
transcript.pyannote[1985].end 14265.22784375
transcript.pyannote[1986].speaker SPEAKER_07
transcript.pyannote[1986].start 14265.80159375
transcript.pyannote[1986].end 14277.32721875
transcript.pyannote[1987].speaker SPEAKER_07
transcript.pyannote[1987].start 14277.85034375
transcript.pyannote[1987].end 14282.82846875
transcript.pyannote[1988].speaker SPEAKER_07
transcript.pyannote[1988].start 14283.79034375
transcript.pyannote[1988].end 14283.80721875
transcript.pyannote[1989].speaker SPEAKER_26
transcript.pyannote[1989].start 14283.80721875
transcript.pyannote[1989].end 14287.16534375
transcript.pyannote[1990].speaker SPEAKER_26
transcript.pyannote[1990].start 14287.55346875
transcript.pyannote[1990].end 14292.17721875
transcript.pyannote[1991].speaker SPEAKER_26
transcript.pyannote[1991].start 14292.61596875
transcript.pyannote[1991].end 14293.81409375
transcript.pyannote[1992].speaker SPEAKER_26
transcript.pyannote[1992].start 14294.33721875
transcript.pyannote[1992].end 14298.25221875
transcript.pyannote[1993].speaker SPEAKER_26
transcript.pyannote[1993].start 14298.64034375
transcript.pyannote[1993].end 14299.51784375
transcript.pyannote[1994].speaker SPEAKER_26
transcript.pyannote[1994].start 14300.32784375
transcript.pyannote[1994].end 14304.61409375
transcript.pyannote[1995].speaker SPEAKER_07
transcript.pyannote[1995].start 14306.84159375
transcript.pyannote[1995].end 14307.75284375
transcript.pyannote[1996].speaker SPEAKER_26
transcript.pyannote[1996].start 14309.37284375
transcript.pyannote[1996].end 14323.91909375
transcript.pyannote[1997].speaker SPEAKER_26
transcript.pyannote[1997].start 14324.56034375
transcript.pyannote[1997].end 14326.65284375
transcript.pyannote[1998].speaker SPEAKER_26
transcript.pyannote[1998].start 14327.86784375
transcript.pyannote[1998].end 14328.52596875
transcript.pyannote[1999].speaker SPEAKER_26
transcript.pyannote[1999].start 14328.88034375
transcript.pyannote[1999].end 14332.00221875
transcript.pyannote[2000].speaker SPEAKER_22
transcript.pyannote[2000].start 14332.17096875
transcript.pyannote[2000].end 14332.18784375
transcript.pyannote[2001].speaker SPEAKER_26
transcript.pyannote[2001].start 14332.18784375
transcript.pyannote[2001].end 14332.28909375
transcript.pyannote[2002].speaker SPEAKER_22
transcript.pyannote[2002].start 14332.28909375
transcript.pyannote[2002].end 14332.47471875
transcript.pyannote[2003].speaker SPEAKER_26
transcript.pyannote[2003].start 14332.44096875
transcript.pyannote[2003].end 14333.18346875
transcript.pyannote[2004].speaker SPEAKER_07
transcript.pyannote[2004].start 14332.47471875
transcript.pyannote[2004].end 14343.52784375
transcript.pyannote[2005].speaker SPEAKER_26
transcript.pyannote[2005].start 14335.78221875
transcript.pyannote[2005].end 14336.17034375
transcript.pyannote[2006].speaker SPEAKER_26
transcript.pyannote[2006].start 14342.66721875
transcript.pyannote[2006].end 14350.14284375
transcript.pyannote[2007].speaker SPEAKER_26
transcript.pyannote[2007].start 14355.45846875
transcript.pyannote[2007].end 14355.52596875
transcript.pyannote[2008].speaker SPEAKER_04
transcript.pyannote[2008].start 14355.52596875
transcript.pyannote[2008].end 14356.03221875
transcript.pyannote[2009].speaker SPEAKER_26
transcript.pyannote[2009].start 14355.55971875
transcript.pyannote[2009].end 14364.77346875
transcript.pyannote[2010].speaker SPEAKER_07
transcript.pyannote[2010].start 14356.03221875
transcript.pyannote[2010].end 14358.09096875
transcript.pyannote[2011].speaker SPEAKER_07
transcript.pyannote[2011].start 14358.32721875
transcript.pyannote[2011].end 14358.49596875
transcript.pyannote[2012].speaker SPEAKER_26
transcript.pyannote[2012].start 14365.17846875
transcript.pyannote[2012].end 14371.37159375
transcript.pyannote[2013].speaker SPEAKER_26
transcript.pyannote[2013].start 14372.11409375
transcript.pyannote[2013].end 14373.09284375
transcript.pyannote[2014].speaker SPEAKER_26
transcript.pyannote[2014].start 14373.37971875
transcript.pyannote[2014].end 14373.97034375
transcript.pyannote[2015].speaker SPEAKER_07
transcript.pyannote[2015].start 14373.97034375
transcript.pyannote[2015].end 14374.00409375
transcript.pyannote[2016].speaker SPEAKER_26
transcript.pyannote[2016].start 14374.49346875
transcript.pyannote[2016].end 14374.56096875
transcript.pyannote[2017].speaker SPEAKER_07
transcript.pyannote[2017].start 14374.56096875
transcript.pyannote[2017].end 14374.84784375
transcript.pyannote[2018].speaker SPEAKER_26
transcript.pyannote[2018].start 14374.84784375
transcript.pyannote[2018].end 14374.96596875
transcript.pyannote[2019].speaker SPEAKER_07
transcript.pyannote[2019].start 14374.96596875
transcript.pyannote[2019].end 14391.50346875
transcript.pyannote[2020].speaker SPEAKER_26
transcript.pyannote[2020].start 14391.50346875
transcript.pyannote[2020].end 14406.47159375
transcript.pyannote[2021].speaker SPEAKER_26
transcript.pyannote[2021].start 14406.79221875
transcript.pyannote[2021].end 14407.83846875
transcript.pyannote[2022].speaker SPEAKER_26
transcript.pyannote[2022].start 14408.51346875
transcript.pyannote[2022].end 14411.51721875
transcript.pyannote[2023].speaker SPEAKER_26
transcript.pyannote[2023].start 14412.00659375
transcript.pyannote[2023].end 14415.31409375
transcript.pyannote[2024].speaker SPEAKER_26
transcript.pyannote[2024].start 14415.75284375
transcript.pyannote[2024].end 14419.36409375
transcript.pyannote[2025].speaker SPEAKER_26
transcript.pyannote[2025].start 14419.78596875
transcript.pyannote[2025].end 14433.38721875
transcript.pyannote[2026].speaker SPEAKER_26
transcript.pyannote[2026].start 14433.89346875
transcript.pyannote[2026].end 14434.53471875
transcript.pyannote[2027].speaker SPEAKER_26
transcript.pyannote[2027].start 14434.58534375
transcript.pyannote[2027].end 14435.56409375
transcript.pyannote[2028].speaker SPEAKER_07
transcript.pyannote[2028].start 14436.64409375
transcript.pyannote[2028].end 14440.08659375
transcript.pyannote[2029].speaker SPEAKER_07
transcript.pyannote[2029].start 14441.16659375
transcript.pyannote[2029].end 14441.65596875
transcript.pyannote[2030].speaker SPEAKER_26
transcript.pyannote[2030].start 14441.65596875
transcript.pyannote[2030].end 14441.68971875
transcript.pyannote[2031].speaker SPEAKER_07
transcript.pyannote[2031].start 14441.68971875
transcript.pyannote[2031].end 14441.75721875
transcript.pyannote[2032].speaker SPEAKER_26
transcript.pyannote[2032].start 14441.75721875
transcript.pyannote[2032].end 14441.90909375
transcript.pyannote[2033].speaker SPEAKER_07
transcript.pyannote[2033].start 14441.90909375
transcript.pyannote[2033].end 14441.95971875
transcript.pyannote[2034].speaker SPEAKER_26
transcript.pyannote[2034].start 14441.95971875
transcript.pyannote[2034].end 14441.97659375
transcript.pyannote[2035].speaker SPEAKER_07
transcript.pyannote[2035].start 14441.97659375
transcript.pyannote[2035].end 14442.02721875
transcript.pyannote[2036].speaker SPEAKER_26
transcript.pyannote[2036].start 14442.02721875
transcript.pyannote[2036].end 14445.33471875
transcript.pyannote[2037].speaker SPEAKER_26
transcript.pyannote[2037].start 14445.73971875
transcript.pyannote[2037].end 14465.23034375
transcript.pyannote[2038].speaker SPEAKER_26
transcript.pyannote[2038].start 14466.24284375
transcript.pyannote[2038].end 14474.17409375
transcript.pyannote[2039].speaker SPEAKER_26
transcript.pyannote[2039].start 14474.44409375
transcript.pyannote[2039].end 14476.55346875
transcript.pyannote[2040].speaker SPEAKER_26
transcript.pyannote[2040].start 14476.94159375
transcript.pyannote[2040].end 14477.58284375
transcript.pyannote[2041].speaker SPEAKER_26
transcript.pyannote[2041].start 14478.07221875
transcript.pyannote[2041].end 14491.97721875
transcript.pyannote[2042].speaker SPEAKER_26
transcript.pyannote[2042].start 14492.53409375
transcript.pyannote[2042].end 14501.32596875
transcript.pyannote[2043].speaker SPEAKER_26
transcript.pyannote[2043].start 14501.96721875
transcript.pyannote[2043].end 14504.19471875
transcript.pyannote[2044].speaker SPEAKER_26
transcript.pyannote[2044].start 14505.24096875
transcript.pyannote[2044].end 14506.15221875
transcript.pyannote[2045].speaker SPEAKER_26
transcript.pyannote[2045].start 14506.42221875
transcript.pyannote[2045].end 14507.33346875
transcript.pyannote[2046].speaker SPEAKER_23
transcript.pyannote[2046].start 14507.90721875
transcript.pyannote[2046].end 14553.90846875
transcript.pyannote[2047].speaker SPEAKER_26
transcript.pyannote[2047].start 14554.33034375
transcript.pyannote[2047].end 14575.06971875
transcript.pyannote[2048].speaker SPEAKER_26
transcript.pyannote[2048].start 14575.64346875
transcript.pyannote[2048].end 14585.49846875
transcript.pyannote[2049].speaker SPEAKER_26
transcript.pyannote[2049].start 14585.92034375
transcript.pyannote[2049].end 14589.54846875
transcript.pyannote[2050].speaker SPEAKER_26
transcript.pyannote[2050].start 14589.71721875
transcript.pyannote[2050].end 14592.83909375
transcript.pyannote[2051].speaker SPEAKER_26
transcript.pyannote[2051].start 14593.48034375
transcript.pyannote[2051].end 14595.99471875
transcript.pyannote[2052].speaker SPEAKER_07
transcript.pyannote[2052].start 14596.36596875
transcript.pyannote[2052].end 14628.12471875
transcript.pyannote[2053].speaker SPEAKER_26
transcript.pyannote[2053].start 14602.01909375
transcript.pyannote[2053].end 14602.99784375
transcript.pyannote[2054].speaker SPEAKER_26
transcript.pyannote[2054].start 14603.33534375
transcript.pyannote[2054].end 14604.11159375
transcript.pyannote[2055].speaker SPEAKER_26
transcript.pyannote[2055].start 14606.38971875
transcript.pyannote[2055].end 14608.00971875
transcript.pyannote[2056].speaker SPEAKER_26
transcript.pyannote[2056].start 14626.72409375
transcript.pyannote[2056].end 14636.20784375
transcript.pyannote[2057].speaker SPEAKER_26
transcript.pyannote[2057].start 14636.42721875
transcript.pyannote[2057].end 14638.45221875
transcript.pyannote[2058].speaker SPEAKER_07
transcript.pyannote[2058].start 14636.69721875
transcript.pyannote[2058].end 14636.79846875
transcript.pyannote[2059].speaker SPEAKER_07
transcript.pyannote[2059].start 14638.09784375
transcript.pyannote[2059].end 14640.61221875
transcript.pyannote[2060].speaker SPEAKER_26
transcript.pyannote[2060].start 14640.61221875
transcript.pyannote[2060].end 14643.85221875
transcript.pyannote[2061].speaker SPEAKER_07
transcript.pyannote[2061].start 14645.45534375
transcript.pyannote[2061].end 14650.66971875
transcript.pyannote[2062].speaker SPEAKER_26
transcript.pyannote[2062].start 14649.91034375
transcript.pyannote[2062].end 14654.46659375
transcript.pyannote[2063].speaker SPEAKER_07
transcript.pyannote[2063].start 14651.24346875
transcript.pyannote[2063].end 14656.33971875
transcript.pyannote[2064].speaker SPEAKER_26
transcript.pyannote[2064].start 14655.22596875
transcript.pyannote[2064].end 14655.95159375
transcript.pyannote[2065].speaker SPEAKER_26
transcript.pyannote[2065].start 14656.33971875
transcript.pyannote[2065].end 14656.96409375
transcript.pyannote[2066].speaker SPEAKER_07
transcript.pyannote[2066].start 14656.96409375
transcript.pyannote[2066].end 14661.85784375
transcript.pyannote[2067].speaker SPEAKER_08
transcript.pyannote[2067].start 14659.19159375
transcript.pyannote[2067].end 14660.27159375
transcript.pyannote[2068].speaker SPEAKER_07
transcript.pyannote[2068].start 14662.51596875
transcript.pyannote[2068].end 14663.69721875
transcript.pyannote[2069].speaker SPEAKER_07
transcript.pyannote[2069].start 14664.05159375
transcript.pyannote[2069].end 14664.72659375
transcript.pyannote[2070].speaker SPEAKER_07
transcript.pyannote[2070].start 14664.92909375
transcript.pyannote[2070].end 14667.74721875
transcript.pyannote[2071].speaker SPEAKER_07
transcript.pyannote[2071].start 14668.35471875
transcript.pyannote[2071].end 14670.44721875
transcript.pyannote[2072].speaker SPEAKER_07
transcript.pyannote[2072].start 14671.17284375
transcript.pyannote[2072].end 14676.42096875
transcript.pyannote[2073].speaker SPEAKER_07
transcript.pyannote[2073].start 14676.79221875
transcript.pyannote[2073].end 14684.01471875
transcript.pyannote[2074].speaker SPEAKER_26
transcript.pyannote[2074].start 14684.01471875
transcript.pyannote[2074].end 14684.33534375
transcript.pyannote[2075].speaker SPEAKER_26
transcript.pyannote[2075].start 14684.47034375
transcript.pyannote[2075].end 14691.54096875
transcript.pyannote[2076].speaker SPEAKER_26
transcript.pyannote[2076].start 14692.43534375
transcript.pyannote[2076].end 14692.94159375
transcript.pyannote[2077].speaker SPEAKER_26
transcript.pyannote[2077].start 14692.95846875
transcript.pyannote[2077].end 14692.97534375
transcript.pyannote[2078].speaker SPEAKER_26
transcript.pyannote[2078].start 14693.09346875
transcript.pyannote[2078].end 14702.17221875
transcript.pyannote[2079].speaker SPEAKER_26
transcript.pyannote[2079].start 14702.39159375
transcript.pyannote[2079].end 14703.21846875
transcript.pyannote[2080].speaker SPEAKER_26
transcript.pyannote[2080].start 14703.52221875
transcript.pyannote[2080].end 14723.46846875
transcript.pyannote[2081].speaker SPEAKER_26
transcript.pyannote[2081].start 14723.99159375
transcript.pyannote[2081].end 14748.42659375
transcript.pyannote[2082].speaker SPEAKER_05
transcript.pyannote[2082].start 14728.05846875
transcript.pyannote[2082].end 14728.15971875
transcript.pyannote[2083].speaker SPEAKER_26
transcript.pyannote[2083].start 14748.93284375
transcript.pyannote[2083].end 14754.38346875
transcript.pyannote[2084].speaker SPEAKER_26
transcript.pyannote[2084].start 14754.61971875
transcript.pyannote[2084].end 14785.73721875
transcript.pyannote[2085].speaker SPEAKER_26
transcript.pyannote[2085].start 14786.39534375
transcript.pyannote[2085].end 14787.10409375
transcript.pyannote[2086].speaker SPEAKER_26
transcript.pyannote[2086].start 14788.01534375
transcript.pyannote[2086].end 14788.77471875
transcript.pyannote[2087].speaker SPEAKER_07
transcript.pyannote[2087].start 14789.28096875
transcript.pyannote[2087].end 14799.89534375
transcript.pyannote[2088].speaker SPEAKER_07
transcript.pyannote[2088].start 14800.21596875
transcript.pyannote[2088].end 14803.65846875
transcript.pyannote[2089].speaker SPEAKER_26
transcript.pyannote[2089].start 14804.67096875
transcript.pyannote[2089].end 14823.95909375
transcript.pyannote[2090].speaker SPEAKER_26
transcript.pyannote[2090].start 14824.92096875
transcript.pyannote[2090].end 14826.84471875
transcript.pyannote[2091].speaker SPEAKER_26
transcript.pyannote[2091].start 14826.99659375
transcript.pyannote[2091].end 14827.90784375
transcript.pyannote[2092].speaker SPEAKER_07
transcript.pyannote[2092].start 14829.07221875
transcript.pyannote[2092].end 14837.81346875
transcript.pyannote[2093].speaker SPEAKER_26
transcript.pyannote[2093].start 14834.23596875
transcript.pyannote[2093].end 14835.90659375
transcript.pyannote[2094].speaker SPEAKER_26
transcript.pyannote[2094].start 14837.81346875
transcript.pyannote[2094].end 14840.05784375
transcript.pyannote[2095].speaker SPEAKER_26
transcript.pyannote[2095].start 14840.78346875
transcript.pyannote[2095].end 14841.82971875
transcript.pyannote[2096].speaker SPEAKER_26
transcript.pyannote[2096].start 14841.94784375
transcript.pyannote[2096].end 14879.10659375
transcript.pyannote[2097].speaker SPEAKER_26
transcript.pyannote[2097].start 14879.88284375
transcript.pyannote[2097].end 14892.99471875
transcript.pyannote[2098].speaker SPEAKER_26
transcript.pyannote[2098].start 14893.26471875
transcript.pyannote[2098].end 14893.28159375
transcript.pyannote[2099].speaker SPEAKER_07
transcript.pyannote[2099].start 14893.28159375
transcript.pyannote[2099].end 14895.98159375
transcript.pyannote[2100].speaker SPEAKER_26
transcript.pyannote[2100].start 14895.98159375
transcript.pyannote[2100].end 14895.99846875
transcript.pyannote[2101].speaker SPEAKER_21
transcript.pyannote[2101].start 14897.60159375
transcript.pyannote[2101].end 14901.65159375
transcript.pyannote[2102].speaker SPEAKER_11
transcript.pyannote[2102].start 14908.48596875
transcript.pyannote[2102].end 14909.83596875
transcript.pyannote[2103].speaker SPEAKER_11
transcript.pyannote[2103].start 14909.97096875
transcript.pyannote[2103].end 14910.74721875
transcript.pyannote[2104].speaker SPEAKER_21
transcript.pyannote[2104].start 14911.21971875
transcript.pyannote[2104].end 14911.79346875
transcript.pyannote[2105].speaker SPEAKER_11
transcript.pyannote[2105].start 14918.03721875
transcript.pyannote[2105].end 14936.90346875
transcript.pyannote[2106].speaker SPEAKER_11
transcript.pyannote[2106].start 14937.42659375
transcript.pyannote[2106].end 14943.11346875
transcript.pyannote[2107].speaker SPEAKER_11
transcript.pyannote[2107].start 14943.26534375
transcript.pyannote[2107].end 14945.18909375
transcript.pyannote[2108].speaker SPEAKER_11
transcript.pyannote[2108].start 14945.39159375
transcript.pyannote[2108].end 14959.76909375
transcript.pyannote[2109].speaker SPEAKER_11
transcript.pyannote[2109].start 14960.10659375
transcript.pyannote[2109].end 14964.47721875
transcript.pyannote[2110].speaker SPEAKER_04
transcript.pyannote[2110].start 14965.33784375
transcript.pyannote[2110].end 14965.67534375
transcript.pyannote[2111].speaker SPEAKER_11
transcript.pyannote[2111].start 14965.75971875
transcript.pyannote[2111].end 14970.31596875
transcript.pyannote[2112].speaker SPEAKER_07
transcript.pyannote[2112].start 14970.82221875
transcript.pyannote[2112].end 14982.14534375
transcript.pyannote[2113].speaker SPEAKER_11
transcript.pyannote[2113].start 14974.65284375
transcript.pyannote[2113].end 14974.78784375
transcript.pyannote[2114].speaker SPEAKER_07
transcript.pyannote[2114].start 14982.60096875
transcript.pyannote[2114].end 14984.23784375
transcript.pyannote[2115].speaker SPEAKER_11
transcript.pyannote[2115].start 14983.68096875
transcript.pyannote[2115].end 14985.21659375
transcript.pyannote[2116].speaker SPEAKER_07
transcript.pyannote[2116].start 14985.14909375
transcript.pyannote[2116].end 15005.04471875
transcript.pyannote[2117].speaker SPEAKER_08
transcript.pyannote[2117].start 14999.49284375
transcript.pyannote[2117].end 14999.62784375
transcript.pyannote[2118].speaker SPEAKER_04
transcript.pyannote[2118].start 14999.62784375
transcript.pyannote[2118].end 14999.69534375
transcript.pyannote[2119].speaker SPEAKER_08
transcript.pyannote[2119].start 15002.71596875
transcript.pyannote[2119].end 15003.50909375
transcript.pyannote[2120].speaker SPEAKER_11
transcript.pyannote[2120].start 15003.50909375
transcript.pyannote[2120].end 15003.52596875
transcript.pyannote[2121].speaker SPEAKER_11
transcript.pyannote[2121].start 15005.04471875
transcript.pyannote[2121].end 15005.70284375
transcript.pyannote[2122].speaker SPEAKER_07
transcript.pyannote[2122].start 15005.70284375
transcript.pyannote[2122].end 15005.77034375
transcript.pyannote[2123].speaker SPEAKER_11
transcript.pyannote[2123].start 15005.77034375
transcript.pyannote[2123].end 15005.78721875
transcript.pyannote[2124].speaker SPEAKER_07
transcript.pyannote[2124].start 15005.78721875
transcript.pyannote[2124].end 15005.88846875
transcript.pyannote[2125].speaker SPEAKER_11
transcript.pyannote[2125].start 15005.88846875
transcript.pyannote[2125].end 15005.93909375
transcript.pyannote[2126].speaker SPEAKER_07
transcript.pyannote[2126].start 15005.93909375
transcript.pyannote[2126].end 15005.95596875
transcript.pyannote[2127].speaker SPEAKER_11
transcript.pyannote[2127].start 15005.95596875
transcript.pyannote[2127].end 15006.78284375
transcript.pyannote[2128].speaker SPEAKER_11
transcript.pyannote[2128].start 15007.40721875
transcript.pyannote[2128].end 15010.63034375
transcript.pyannote[2129].speaker SPEAKER_11
transcript.pyannote[2129].start 15011.05221875
transcript.pyannote[2129].end 15012.70596875
transcript.pyannote[2130].speaker SPEAKER_04
transcript.pyannote[2130].start 15013.17846875
transcript.pyannote[2130].end 15013.46534375
transcript.pyannote[2131].speaker SPEAKER_11
transcript.pyannote[2131].start 15014.05596875
transcript.pyannote[2131].end 15017.90346875
transcript.pyannote[2132].speaker SPEAKER_02
transcript.pyannote[2132].start 15019.15221875
transcript.pyannote[2132].end 15028.29846875
transcript.pyannote[2133].speaker SPEAKER_11
transcript.pyannote[2133].start 15028.29846875
transcript.pyannote[2133].end 15031.94346875
transcript.pyannote[2134].speaker SPEAKER_02
transcript.pyannote[2134].start 15031.94346875
transcript.pyannote[2134].end 15032.11221875
transcript.pyannote[2135].speaker SPEAKER_11
transcript.pyannote[2135].start 15032.11221875
transcript.pyannote[2135].end 15032.12909375
transcript.pyannote[2136].speaker SPEAKER_11
transcript.pyannote[2136].start 15032.21346875
transcript.pyannote[2136].end 15033.88409375
transcript.pyannote[2137].speaker SPEAKER_02
transcript.pyannote[2137].start 15034.22159375
transcript.pyannote[2137].end 15034.55909375
transcript.pyannote[2138].speaker SPEAKER_02
transcript.pyannote[2138].start 15034.89659375
transcript.pyannote[2138].end 15050.37096875
transcript.pyannote[2139].speaker SPEAKER_11
transcript.pyannote[2139].start 15037.88346875
transcript.pyannote[2139].end 15038.11971875
transcript.pyannote[2140].speaker SPEAKER_11
transcript.pyannote[2140].start 15042.55784375
transcript.pyannote[2140].end 15046.82721875
transcript.pyannote[2141].speaker SPEAKER_11
transcript.pyannote[2141].start 15048.83534375
transcript.pyannote[2141].end 15049.25721875
transcript.pyannote[2142].speaker SPEAKER_11
transcript.pyannote[2142].start 15050.32034375
transcript.pyannote[2142].end 15057.18846875
transcript.pyannote[2143].speaker SPEAKER_02
transcript.pyannote[2143].start 15058.45409375
transcript.pyannote[2143].end 15067.97159375
transcript.pyannote[2144].speaker SPEAKER_11
transcript.pyannote[2144].start 15064.36034375
transcript.pyannote[2144].end 15064.69784375
transcript.pyannote[2145].speaker SPEAKER_11
transcript.pyannote[2145].start 15065.50784375
transcript.pyannote[2145].end 15066.23346875
transcript.pyannote[2146].speaker SPEAKER_11
transcript.pyannote[2146].start 15067.97159375
transcript.pyannote[2146].end 15068.05596875
transcript.pyannote[2147].speaker SPEAKER_02
transcript.pyannote[2147].start 15068.03909375
transcript.pyannote[2147].end 15068.37659375
transcript.pyannote[2148].speaker SPEAKER_22
transcript.pyannote[2148].start 15068.05596875
transcript.pyannote[2148].end 15068.07284375
transcript.pyannote[2149].speaker SPEAKER_02
transcript.pyannote[2149].start 15068.39346875
transcript.pyannote[2149].end 15068.42721875
transcript.pyannote[2150].speaker SPEAKER_11
transcript.pyannote[2150].start 15068.42721875
transcript.pyannote[2150].end 15082.36596875
transcript.pyannote[2151].speaker SPEAKER_02
transcript.pyannote[2151].start 15083.76659375
transcript.pyannote[2151].end 15100.06784375
transcript.pyannote[2152].speaker SPEAKER_11
transcript.pyannote[2152].start 15088.42409375
transcript.pyannote[2152].end 15088.79534375
transcript.pyannote[2153].speaker SPEAKER_00
transcript.pyannote[2153].start 15093.60471875
transcript.pyannote[2153].end 15094.06034375
transcript.pyannote[2154].speaker SPEAKER_11
transcript.pyannote[2154].start 15100.06784375
transcript.pyannote[2154].end 15107.02034375
transcript.pyannote[2155].speaker SPEAKER_07
transcript.pyannote[2155].start 15107.23971875
transcript.pyannote[2155].end 15108.89346875
transcript.pyannote[2156].speaker SPEAKER_11
transcript.pyannote[2156].start 15108.89346875
transcript.pyannote[2156].end 15110.91846875
transcript.pyannote[2157].speaker SPEAKER_07
transcript.pyannote[2157].start 15110.46284375
transcript.pyannote[2157].end 15112.36971875
transcript.pyannote[2158].speaker SPEAKER_11
transcript.pyannote[2158].start 15112.04909375
transcript.pyannote[2158].end 15120.31784375
transcript.pyannote[2159].speaker SPEAKER_22
transcript.pyannote[2159].start 15120.03096875
transcript.pyannote[2159].end 15120.08159375
transcript.pyannote[2160].speaker SPEAKER_11
transcript.pyannote[2160].start 15120.50346875
transcript.pyannote[2160].end 15120.77346875
transcript.pyannote[2161].speaker SPEAKER_11
transcript.pyannote[2161].start 15120.80721875
transcript.pyannote[2161].end 15127.91159375
transcript.pyannote[2162].speaker SPEAKER_11
transcript.pyannote[2162].start 15128.19846875
transcript.pyannote[2162].end 15144.38159375
transcript.pyannote[2163].speaker SPEAKER_11
transcript.pyannote[2163].start 15145.39409375
transcript.pyannote[2163].end 15152.93721875
transcript.pyannote[2164].speaker SPEAKER_07
transcript.pyannote[2164].start 15153.59534375
transcript.pyannote[2164].end 15160.75034375
transcript.pyannote[2165].speaker SPEAKER_11
transcript.pyannote[2165].start 15153.94971875
transcript.pyannote[2165].end 15155.02971875
transcript.pyannote[2166].speaker SPEAKER_07
transcript.pyannote[2166].start 15161.23971875
transcript.pyannote[2166].end 15161.81346875
transcript.pyannote[2167].speaker SPEAKER_07
transcript.pyannote[2167].start 15161.94846875
transcript.pyannote[2167].end 15161.96534375
transcript.pyannote[2168].speaker SPEAKER_11
transcript.pyannote[2168].start 15161.96534375
transcript.pyannote[2168].end 15175.97159375
transcript.pyannote[2169].speaker SPEAKER_07
transcript.pyannote[2169].start 15175.80284375
transcript.pyannote[2169].end 15193.60596875
transcript.pyannote[2170].speaker SPEAKER_07
transcript.pyannote[2170].start 15194.06159375
transcript.pyannote[2170].end 15194.87159375
transcript.pyannote[2171].speaker SPEAKER_07
transcript.pyannote[2171].start 15195.68159375
transcript.pyannote[2171].end 15215.34096875
transcript.pyannote[2172].speaker SPEAKER_22
transcript.pyannote[2172].start 15215.34096875
transcript.pyannote[2172].end 15215.67846875
transcript.pyannote[2173].speaker SPEAKER_07
transcript.pyannote[2173].start 15215.67846875
transcript.pyannote[2173].end 15215.69534375
transcript.pyannote[2174].speaker SPEAKER_22
transcript.pyannote[2174].start 15215.69534375
transcript.pyannote[2174].end 15215.71221875
transcript.pyannote[2175].speaker SPEAKER_07
transcript.pyannote[2175].start 15215.71221875
transcript.pyannote[2175].end 15215.72909375
transcript.pyannote[2176].speaker SPEAKER_07
transcript.pyannote[2176].start 15216.23534375
transcript.pyannote[2176].end 15253.39409375
transcript.pyannote[2177].speaker SPEAKER_21
transcript.pyannote[2177].start 15254.33909375
transcript.pyannote[2177].end 15254.59221875
transcript.pyannote[2178].speaker SPEAKER_07
transcript.pyannote[2178].start 15254.59221875
transcript.pyannote[2178].end 15254.72721875
transcript.pyannote[2179].speaker SPEAKER_21
transcript.pyannote[2179].start 15256.73534375
transcript.pyannote[2179].end 15258.22034375
transcript.pyannote[2180].speaker SPEAKER_20
transcript.pyannote[2180].start 15268.15971875
transcript.pyannote[2180].end 15270.33659375
transcript.pyannote[2181].speaker SPEAKER_21
transcript.pyannote[2181].start 15276.27659375
transcript.pyannote[2181].end 15276.83346875
transcript.pyannote[2182].speaker SPEAKER_20
transcript.pyannote[2182].start 15276.88409375
transcript.pyannote[2182].end 15280.74846875
transcript.pyannote[2183].speaker SPEAKER_20
transcript.pyannote[2183].start 15281.42346875
transcript.pyannote[2183].end 15287.21159375
transcript.pyannote[2184].speaker SPEAKER_20
transcript.pyannote[2184].start 15287.48159375
transcript.pyannote[2184].end 15309.03096875
transcript.pyannote[2185].speaker SPEAKER_20
transcript.pyannote[2185].start 15309.35159375
transcript.pyannote[2185].end 15315.40971875
transcript.pyannote[2186].speaker SPEAKER_20
transcript.pyannote[2186].start 15316.20284375
transcript.pyannote[2186].end 15330.46221875
transcript.pyannote[2187].speaker SPEAKER_20
transcript.pyannote[2187].start 15330.69846875
transcript.pyannote[2187].end 15342.56159375
transcript.pyannote[2188].speaker SPEAKER_20
transcript.pyannote[2188].start 15343.15221875
transcript.pyannote[2188].end 15348.02909375
transcript.pyannote[2189].speaker SPEAKER_20
transcript.pyannote[2189].start 15348.16409375
transcript.pyannote[2189].end 15355.23471875
transcript.pyannote[2190].speaker SPEAKER_20
transcript.pyannote[2190].start 15355.99409375
transcript.pyannote[2190].end 15374.74221875
transcript.pyannote[2191].speaker SPEAKER_20
transcript.pyannote[2191].start 15375.23159375
transcript.pyannote[2191].end 15395.97096875
transcript.pyannote[2192].speaker SPEAKER_20
transcript.pyannote[2192].start 15397.21971875
transcript.pyannote[2192].end 15414.21284375
transcript.pyannote[2193].speaker SPEAKER_20
transcript.pyannote[2193].start 15415.61346875
transcript.pyannote[2193].end 15415.91721875
transcript.pyannote[2194].speaker SPEAKER_20
transcript.pyannote[2194].start 15417.40221875
transcript.pyannote[2194].end 15424.84409375
transcript.pyannote[2195].speaker SPEAKER_20
transcript.pyannote[2195].start 15425.45159375
transcript.pyannote[2195].end 15432.04971875
transcript.pyannote[2196].speaker SPEAKER_20
transcript.pyannote[2196].start 15432.62346875
transcript.pyannote[2196].end 15435.91409375
transcript.pyannote[2197].speaker SPEAKER_20
transcript.pyannote[2197].start 15436.25159375
transcript.pyannote[2197].end 15446.81534375
transcript.pyannote[2198].speaker SPEAKER_20
transcript.pyannote[2198].start 15446.93346875
transcript.pyannote[2198].end 15449.07659375
transcript.pyannote[2199].speaker SPEAKER_20
transcript.pyannote[2199].start 15449.12721875
transcript.pyannote[2199].end 15449.80221875
transcript.pyannote[2200].speaker SPEAKER_20
transcript.pyannote[2200].start 15450.56159375
transcript.pyannote[2200].end 15452.63721875
transcript.pyannote[2201].speaker SPEAKER_20
transcript.pyannote[2201].start 15452.95784375
transcript.pyannote[2201].end 15454.74659375
transcript.pyannote[2202].speaker SPEAKER_20
transcript.pyannote[2202].start 15455.79284375
transcript.pyannote[2202].end 15456.11346875
transcript.pyannote[2203].speaker SPEAKER_20
transcript.pyannote[2203].start 15457.59846875
transcript.pyannote[2203].end 15459.64034375
transcript.pyannote[2204].speaker SPEAKER_20
transcript.pyannote[2204].start 15460.33221875
transcript.pyannote[2204].end 15460.85534375
transcript.pyannote[2205].speaker SPEAKER_20
transcript.pyannote[2205].start 15461.24346875
transcript.pyannote[2205].end 15469.68096875
transcript.pyannote[2206].speaker SPEAKER_20
transcript.pyannote[2206].start 15470.13659375
transcript.pyannote[2206].end 15482.53971875
transcript.pyannote[2207].speaker SPEAKER_20
transcript.pyannote[2207].start 15483.19784375
transcript.pyannote[2207].end 15507.83534375
transcript.pyannote[2208].speaker SPEAKER_20
transcript.pyannote[2208].start 15508.07159375
transcript.pyannote[2208].end 15513.87659375
transcript.pyannote[2209].speaker SPEAKER_07
transcript.pyannote[2209].start 15520.42409375
transcript.pyannote[2209].end 15526.11096875
transcript.pyannote[2210].speaker SPEAKER_22
transcript.pyannote[2210].start 15526.02659375
transcript.pyannote[2210].end 15526.43159375
transcript.pyannote[2211].speaker SPEAKER_07
transcript.pyannote[2211].start 15526.31346875
transcript.pyannote[2211].end 15528.57471875
transcript.pyannote[2212].speaker SPEAKER_07
transcript.pyannote[2212].start 15529.55346875
transcript.pyannote[2212].end 15536.16846875
transcript.pyannote[2213].speaker SPEAKER_22
transcript.pyannote[2213].start 15536.10096875
transcript.pyannote[2213].end 15536.45534375
transcript.pyannote[2214].speaker SPEAKER_07
transcript.pyannote[2214].start 15536.33721875
transcript.pyannote[2214].end 15552.58784375
transcript.pyannote[2215].speaker SPEAKER_20
transcript.pyannote[2215].start 15552.72284375
transcript.pyannote[2215].end 15555.28784375
transcript.pyannote[2216].speaker SPEAKER_20
transcript.pyannote[2216].start 15555.43971875
transcript.pyannote[2216].end 15559.50659375
transcript.pyannote[2217].speaker SPEAKER_07
transcript.pyannote[2217].start 15559.50659375
transcript.pyannote[2217].end 15561.09284375
transcript.pyannote[2218].speaker SPEAKER_20
transcript.pyannote[2218].start 15559.97909375
transcript.pyannote[2218].end 15563.06721875
transcript.pyannote[2219].speaker SPEAKER_07
transcript.pyannote[2219].start 15561.81846875
transcript.pyannote[2219].end 15568.85534375
transcript.pyannote[2220].speaker SPEAKER_20
transcript.pyannote[2220].start 15564.63659375
transcript.pyannote[2220].end 15564.99096875
transcript.pyannote[2221].speaker SPEAKER_07
transcript.pyannote[2221].start 15569.12534375
transcript.pyannote[2221].end 15588.07596875
transcript.pyannote[2222].speaker SPEAKER_00
transcript.pyannote[2222].start 15572.53409375
transcript.pyannote[2222].end 15572.92221875
transcript.pyannote[2223].speaker SPEAKER_20
transcript.pyannote[2223].start 15588.07596875
transcript.pyannote[2223].end 15588.41346875
transcript.pyannote[2224].speaker SPEAKER_07
transcript.pyannote[2224].start 15588.44721875
transcript.pyannote[2224].end 15591.99096875
transcript.pyannote[2225].speaker SPEAKER_20
transcript.pyannote[2225].start 15592.04159375
transcript.pyannote[2225].end 15594.18471875
transcript.pyannote[2226].speaker SPEAKER_07
transcript.pyannote[2226].start 15594.18471875
transcript.pyannote[2226].end 15596.20971875
transcript.pyannote[2227].speaker SPEAKER_20
transcript.pyannote[2227].start 15596.20971875
transcript.pyannote[2227].end 15599.82096875
transcript.pyannote[2228].speaker SPEAKER_07
transcript.pyannote[2228].start 15599.02784375
transcript.pyannote[2228].end 15599.77034375
transcript.pyannote[2229].speaker SPEAKER_20
transcript.pyannote[2229].start 15600.17534375
transcript.pyannote[2229].end 15615.17721875
transcript.pyannote[2230].speaker SPEAKER_22
transcript.pyannote[2230].start 15612.71346875
transcript.pyannote[2230].end 15613.59096875
transcript.pyannote[2231].speaker SPEAKER_20
transcript.pyannote[2231].start 15615.76784375
transcript.pyannote[2231].end 15624.71159375
transcript.pyannote[2232].speaker SPEAKER_20
transcript.pyannote[2232].start 15626.07846875
transcript.pyannote[2232].end 15642.02534375
transcript.pyannote[2233].speaker SPEAKER_20
transcript.pyannote[2233].start 15642.41346875
transcript.pyannote[2233].end 15668.02971875
transcript.pyannote[2234].speaker SPEAKER_20
transcript.pyannote[2234].start 15668.16471875
transcript.pyannote[2234].end 15671.26971875
transcript.pyannote[2235].speaker SPEAKER_20
transcript.pyannote[2235].start 15671.96159375
transcript.pyannote[2235].end 15681.37784375
transcript.pyannote[2236].speaker SPEAKER_07
transcript.pyannote[2236].start 15680.78721875
transcript.pyannote[2236].end 15682.35659375
transcript.pyannote[2237].speaker SPEAKER_07
transcript.pyannote[2237].start 15682.40721875
transcript.pyannote[2237].end 15685.15784375
transcript.pyannote[2238].speaker SPEAKER_07
transcript.pyannote[2238].start 15685.29284375
transcript.pyannote[2238].end 15729.50534375
transcript.pyannote[2239].speaker SPEAKER_20
transcript.pyannote[2239].start 15729.23534375
transcript.pyannote[2239].end 15732.54284375
transcript.pyannote[2240].speaker SPEAKER_20
transcript.pyannote[2240].start 15732.59346875
transcript.pyannote[2240].end 15742.16159375
transcript.pyannote[2241].speaker SPEAKER_20
transcript.pyannote[2241].start 15743.10659375
transcript.pyannote[2241].end 15744.87846875
transcript.pyannote[2242].speaker SPEAKER_20
transcript.pyannote[2242].start 15746.22846875
transcript.pyannote[2242].end 15746.65034375
transcript.pyannote[2243].speaker SPEAKER_07
transcript.pyannote[2243].start 15746.31284375
transcript.pyannote[2243].end 15749.31659375
transcript.pyannote[2244].speaker SPEAKER_20
transcript.pyannote[2244].start 15746.93721875
transcript.pyannote[2244].end 15748.64159375
transcript.pyannote[2245].speaker SPEAKER_20
transcript.pyannote[2245].start 15749.31659375
transcript.pyannote[2245].end 15754.00784375
transcript.pyannote[2246].speaker SPEAKER_20
transcript.pyannote[2246].start 15755.02034375
transcript.pyannote[2246].end 15756.85971875
transcript.pyannote[2247].speaker SPEAKER_20
transcript.pyannote[2247].start 15757.29846875
transcript.pyannote[2247].end 15758.09159375
transcript.pyannote[2248].speaker SPEAKER_23
transcript.pyannote[2248].start 15758.09159375
transcript.pyannote[2248].end 15758.10846875
transcript.pyannote[2249].speaker SPEAKER_22
transcript.pyannote[2249].start 15758.51346875
transcript.pyannote[2249].end 15759.00284375
transcript.pyannote[2250].speaker SPEAKER_20
transcript.pyannote[2250].start 15758.71596875
transcript.pyannote[2250].end 15759.03659375
transcript.pyannote[2251].speaker SPEAKER_23
transcript.pyannote[2251].start 15759.03659375
transcript.pyannote[2251].end 15764.79096875
transcript.pyannote[2252].speaker SPEAKER_23
transcript.pyannote[2252].start 15765.48284375
transcript.pyannote[2252].end 15768.43596875
transcript.pyannote[2253].speaker SPEAKER_20
transcript.pyannote[2253].start 15768.43596875
transcript.pyannote[2253].end 15772.99221875
transcript.pyannote[2254].speaker SPEAKER_23
transcript.pyannote[2254].start 15772.46909375
transcript.pyannote[2254].end 15775.48971875
transcript.pyannote[2255].speaker SPEAKER_20
transcript.pyannote[2255].start 15773.32971875
transcript.pyannote[2255].end 15774.22409375
transcript.pyannote[2256].speaker SPEAKER_20
transcript.pyannote[2256].start 15776.13096875
transcript.pyannote[2256].end 15776.92409375
transcript.pyannote[2257].speaker SPEAKER_20
transcript.pyannote[2257].start 15777.34596875
transcript.pyannote[2257].end 15804.22784375
transcript.pyannote[2258].speaker SPEAKER_20
transcript.pyannote[2258].start 15804.39659375
transcript.pyannote[2258].end 15830.26596875
transcript.pyannote[2259].speaker SPEAKER_07
transcript.pyannote[2259].start 15830.51909375
transcript.pyannote[2259].end 15846.60096875
transcript.pyannote[2260].speaker SPEAKER_22
transcript.pyannote[2260].start 15846.60096875
transcript.pyannote[2260].end 15847.02284375
transcript.pyannote[2261].speaker SPEAKER_07
transcript.pyannote[2261].start 15847.39409375
transcript.pyannote[2261].end 15855.03846875
transcript.pyannote[2262].speaker SPEAKER_22
transcript.pyannote[2262].start 15851.42721875
transcript.pyannote[2262].end 15852.08534375
transcript.pyannote[2263].speaker SPEAKER_07
transcript.pyannote[2263].start 15855.22409375
transcript.pyannote[2263].end 15891.89346875
transcript.pyannote[2264].speaker SPEAKER_08
transcript.pyannote[2264].start 15873.44909375
transcript.pyannote[2264].end 15873.88784375
transcript.pyannote[2265].speaker SPEAKER_08
transcript.pyannote[2265].start 15891.82596875
transcript.pyannote[2265].end 15891.87659375
transcript.pyannote[2266].speaker SPEAKER_08
transcript.pyannote[2266].start 15891.89346875
transcript.pyannote[2266].end 15892.02846875
transcript.pyannote[2267].speaker SPEAKER_22
transcript.pyannote[2267].start 15892.02846875
transcript.pyannote[2267].end 15892.16346875
transcript.pyannote[2268].speaker SPEAKER_08
transcript.pyannote[2268].start 15892.16346875
transcript.pyannote[2268].end 15892.24784375
transcript.pyannote[2269].speaker SPEAKER_07
transcript.pyannote[2269].start 15892.16346875
transcript.pyannote[2269].end 15903.28409375
transcript.pyannote[2270].speaker SPEAKER_22
transcript.pyannote[2270].start 15892.24784375
transcript.pyannote[2270].end 15892.29846875
transcript.pyannote[2271].speaker SPEAKER_22
transcript.pyannote[2271].start 15896.31471875
transcript.pyannote[2271].end 15896.70284375
transcript.pyannote[2272].speaker SPEAKER_07
transcript.pyannote[2272].start 15903.89159375
transcript.pyannote[2272].end 15921.10409375
transcript.pyannote[2273].speaker SPEAKER_20
transcript.pyannote[2273].start 15921.52596875
transcript.pyannote[2273].end 15930.67221875
transcript.pyannote[2274].speaker SPEAKER_22
transcript.pyannote[2274].start 15930.67221875
transcript.pyannote[2274].end 15930.97596875
transcript.pyannote[2275].speaker SPEAKER_20
transcript.pyannote[2275].start 15930.68909375
transcript.pyannote[2275].end 15930.72284375
transcript.pyannote[2276].speaker SPEAKER_20
transcript.pyannote[2276].start 15930.97596875
transcript.pyannote[2276].end 15938.50221875
transcript.pyannote[2277].speaker SPEAKER_07
transcript.pyannote[2277].start 15938.14784375
transcript.pyannote[2277].end 15942.80534375
transcript.pyannote[2278].speaker SPEAKER_20
transcript.pyannote[2278].start 15942.68721875
transcript.pyannote[2278].end 15943.04159375
transcript.pyannote[2279].speaker SPEAKER_07
transcript.pyannote[2279].start 15943.02471875
transcript.pyannote[2279].end 15949.52159375
transcript.pyannote[2280].speaker SPEAKER_08
transcript.pyannote[2280].start 15943.04159375
transcript.pyannote[2280].end 15943.05846875
transcript.pyannote[2281].speaker SPEAKER_07
transcript.pyannote[2281].start 15949.74096875
transcript.pyannote[2281].end 15971.66159375
transcript.pyannote[2282].speaker SPEAKER_08
transcript.pyannote[2282].start 15958.53284375
transcript.pyannote[2282].end 15958.60034375
transcript.pyannote[2283].speaker SPEAKER_07
transcript.pyannote[2283].start 15971.74596875
transcript.pyannote[2283].end 15978.81659375
transcript.pyannote[2284].speaker SPEAKER_08
transcript.pyannote[2284].start 15974.39534375
transcript.pyannote[2284].end 15974.96909375
transcript.pyannote[2285].speaker SPEAKER_20
transcript.pyannote[2285].start 15974.96909375
transcript.pyannote[2285].end 15975.40784375
transcript.pyannote[2286].speaker SPEAKER_20
transcript.pyannote[2286].start 15979.10346875
transcript.pyannote[2286].end 15982.09034375
transcript.pyannote[2287].speaker SPEAKER_07
transcript.pyannote[2287].start 15982.51221875
transcript.pyannote[2287].end 16002.50909375
transcript.pyannote[2288].speaker SPEAKER_20
transcript.pyannote[2288].start 15983.35596875
transcript.pyannote[2288].end 15983.99721875
transcript.pyannote[2289].speaker SPEAKER_20
transcript.pyannote[2289].start 16001.29409375
transcript.pyannote[2289].end 16010.27159375
transcript.pyannote[2290].speaker SPEAKER_07
transcript.pyannote[2290].start 16002.77909375
transcript.pyannote[2290].end 16002.82971875
transcript.pyannote[2291].speaker SPEAKER_22
transcript.pyannote[2291].start 16010.13659375
transcript.pyannote[2291].end 16010.33909375
transcript.pyannote[2292].speaker SPEAKER_20
transcript.pyannote[2292].start 16010.33909375
transcript.pyannote[2292].end 16014.33846875
transcript.pyannote[2293].speaker SPEAKER_22
transcript.pyannote[2293].start 16010.35596875
transcript.pyannote[2293].end 16010.42346875
transcript.pyannote[2294].speaker SPEAKER_21
transcript.pyannote[2294].start 16013.47784375
transcript.pyannote[2294].end 16013.52846875
transcript.pyannote[2295].speaker SPEAKER_22
transcript.pyannote[2295].start 16013.52846875
transcript.pyannote[2295].end 16013.79846875
transcript.pyannote[2296].speaker SPEAKER_20
transcript.pyannote[2296].start 16015.65471875
transcript.pyannote[2296].end 16015.67159375
transcript.pyannote[2297].speaker SPEAKER_21
transcript.pyannote[2297].start 16015.67159375
transcript.pyannote[2297].end 16019.24909375
transcript.pyannote[2298].speaker SPEAKER_21
transcript.pyannote[2298].start 16019.99159375
transcript.pyannote[2298].end 16024.51409375
transcript.pyannote[2299].speaker SPEAKER_27
transcript.pyannote[2299].start 16043.26221875
transcript.pyannote[2299].end 16044.66284375
transcript.pyannote[2300].speaker SPEAKER_19
transcript.pyannote[2300].start 16045.08471875
transcript.pyannote[2300].end 16045.60784375
transcript.pyannote[2301].speaker SPEAKER_27
transcript.pyannote[2301].start 16050.61971875
transcript.pyannote[2301].end 16060.71096875
transcript.pyannote[2302].speaker SPEAKER_27
transcript.pyannote[2302].start 16061.11596875
transcript.pyannote[2302].end 16072.70909375
transcript.pyannote[2303].speaker SPEAKER_27
transcript.pyannote[2303].start 16075.83096875
transcript.pyannote[2303].end 16083.61034375
transcript.pyannote[2304].speaker SPEAKER_00
transcript.pyannote[2304].start 16077.77159375
transcript.pyannote[2304].end 16077.85596875
transcript.pyannote[2305].speaker SPEAKER_27
transcript.pyannote[2305].start 16084.01534375
transcript.pyannote[2305].end 16088.47034375
transcript.pyannote[2306].speaker SPEAKER_27
transcript.pyannote[2306].start 16088.87534375
transcript.pyannote[2306].end 16093.68471875
transcript.pyannote[2307].speaker SPEAKER_27
transcript.pyannote[2307].start 16094.83221875
transcript.pyannote[2307].end 16104.61971875
transcript.pyannote[2308].speaker SPEAKER_27
transcript.pyannote[2308].start 16105.34534375
transcript.pyannote[2308].end 16111.45409375
transcript.pyannote[2309].speaker SPEAKER_27
transcript.pyannote[2309].start 16111.87596875
transcript.pyannote[2309].end 16117.34346875
transcript.pyannote[2310].speaker SPEAKER_27
transcript.pyannote[2310].start 16118.28846875
transcript.pyannote[2310].end 16123.78971875
transcript.pyannote[2311].speaker SPEAKER_27
transcript.pyannote[2311].start 16124.38034375
transcript.pyannote[2311].end 16125.64596875
transcript.pyannote[2312].speaker SPEAKER_27
transcript.pyannote[2312].start 16126.15221875
transcript.pyannote[2312].end 16131.53534375
transcript.pyannote[2313].speaker SPEAKER_27
transcript.pyannote[2313].start 16132.49721875
transcript.pyannote[2313].end 16146.13221875
transcript.pyannote[2314].speaker SPEAKER_27
transcript.pyannote[2314].start 16147.39784375
transcript.pyannote[2314].end 16148.42721875
transcript.pyannote[2315].speaker SPEAKER_27
transcript.pyannote[2315].start 16148.73096875
transcript.pyannote[2315].end 16150.11471875
transcript.pyannote[2316].speaker SPEAKER_27
transcript.pyannote[2316].start 16151.05971875
transcript.pyannote[2316].end 16152.96659375
transcript.pyannote[2317].speaker SPEAKER_27
transcript.pyannote[2317].start 16153.89471875
transcript.pyannote[2317].end 16155.66659375
transcript.pyannote[2318].speaker SPEAKER_27
transcript.pyannote[2318].start 16156.03784375
transcript.pyannote[2318].end 16156.45971875
transcript.pyannote[2319].speaker SPEAKER_27
transcript.pyannote[2319].start 16157.23596875
transcript.pyannote[2319].end 16159.29471875
transcript.pyannote[2320].speaker SPEAKER_27
transcript.pyannote[2320].start 16159.66596875
transcript.pyannote[2320].end 16160.02034375
transcript.pyannote[2321].speaker SPEAKER_27
transcript.pyannote[2321].start 16160.32409375
transcript.pyannote[2321].end 16161.11721875
transcript.pyannote[2322].speaker SPEAKER_27
transcript.pyannote[2322].start 16161.79221875
transcript.pyannote[2322].end 16165.50471875
transcript.pyannote[2323].speaker SPEAKER_27
transcript.pyannote[2323].start 16166.07846875
transcript.pyannote[2323].end 16168.13721875
transcript.pyannote[2324].speaker SPEAKER_27
transcript.pyannote[2324].start 16168.27221875
transcript.pyannote[2324].end 16170.76971875
transcript.pyannote[2325].speaker SPEAKER_27
transcript.pyannote[2325].start 16171.39409375
transcript.pyannote[2325].end 16173.28409375
transcript.pyannote[2326].speaker SPEAKER_27
transcript.pyannote[2326].start 16175.05596875
transcript.pyannote[2326].end 16176.54096875
transcript.pyannote[2327].speaker SPEAKER_27
transcript.pyannote[2327].start 16177.48596875
transcript.pyannote[2327].end 16179.74721875
transcript.pyannote[2328].speaker SPEAKER_07
transcript.pyannote[2328].start 16179.74721875
transcript.pyannote[2328].end 16179.78096875
transcript.pyannote[2329].speaker SPEAKER_27
transcript.pyannote[2329].start 16179.78096875
transcript.pyannote[2329].end 16180.20284375
transcript.pyannote[2330].speaker SPEAKER_27
transcript.pyannote[2330].start 16180.62471875
transcript.pyannote[2330].end 16182.63284375
transcript.pyannote[2331].speaker SPEAKER_27
transcript.pyannote[2331].start 16182.71721875
transcript.pyannote[2331].end 16185.14721875
transcript.pyannote[2332].speaker SPEAKER_27
transcript.pyannote[2332].start 16185.88971875
transcript.pyannote[2332].end 16191.54284375
transcript.pyannote[2333].speaker SPEAKER_27
transcript.pyannote[2333].start 16191.81284375
transcript.pyannote[2333].end 16193.55096875
transcript.pyannote[2334].speaker SPEAKER_27
transcript.pyannote[2334].start 16194.29346875
transcript.pyannote[2334].end 16195.33971875
transcript.pyannote[2335].speaker SPEAKER_27
transcript.pyannote[2335].start 16196.01471875
transcript.pyannote[2335].end 16196.68971875
transcript.pyannote[2336].speaker SPEAKER_27
transcript.pyannote[2336].start 16197.83721875
transcript.pyannote[2336].end 16199.08596875
transcript.pyannote[2337].speaker SPEAKER_27
transcript.pyannote[2337].start 16199.59221875
transcript.pyannote[2337].end 16203.57471875
transcript.pyannote[2338].speaker SPEAKER_27
transcript.pyannote[2338].start 16204.19909375
transcript.pyannote[2338].end 16205.04284375
transcript.pyannote[2339].speaker SPEAKER_27
transcript.pyannote[2339].start 16205.59971875
transcript.pyannote[2339].end 16212.97409375
transcript.pyannote[2340].speaker SPEAKER_27
transcript.pyannote[2340].start 16214.30721875
transcript.pyannote[2340].end 16215.06659375
transcript.pyannote[2341].speaker SPEAKER_27
transcript.pyannote[2341].start 16215.69096875
transcript.pyannote[2341].end 16216.77096875
transcript.pyannote[2342].speaker SPEAKER_27
transcript.pyannote[2342].start 16218.44159375
transcript.pyannote[2342].end 16220.73659375
transcript.pyannote[2343].speaker SPEAKER_27
transcript.pyannote[2343].start 16221.19221875
transcript.pyannote[2343].end 16225.69784375
transcript.pyannote[2344].speaker SPEAKER_27
transcript.pyannote[2344].start 16226.01846875
transcript.pyannote[2344].end 16227.62159375
transcript.pyannote[2345].speaker SPEAKER_27
transcript.pyannote[2345].start 16228.41471875
transcript.pyannote[2345].end 16231.63784375
transcript.pyannote[2346].speaker SPEAKER_27
transcript.pyannote[2346].start 16232.63346875
transcript.pyannote[2346].end 16233.42659375
transcript.pyannote[2347].speaker SPEAKER_27
transcript.pyannote[2347].start 16233.98346875
transcript.pyannote[2347].end 16234.79346875
transcript.pyannote[2348].speaker SPEAKER_27
transcript.pyannote[2348].start 16236.24471875
transcript.pyannote[2348].end 16238.25284375
transcript.pyannote[2349].speaker SPEAKER_27
transcript.pyannote[2349].start 16238.97846875
transcript.pyannote[2349].end 16240.73346875
transcript.pyannote[2350].speaker SPEAKER_27
transcript.pyannote[2350].start 16242.26909375
transcript.pyannote[2350].end 16245.42471875
transcript.pyannote[2351].speaker SPEAKER_27
transcript.pyannote[2351].start 16245.67784375
transcript.pyannote[2351].end 16247.88846875
transcript.pyannote[2352].speaker SPEAKER_27
transcript.pyannote[2352].start 16248.22596875
transcript.pyannote[2352].end 16249.18784375
transcript.pyannote[2353].speaker SPEAKER_27
transcript.pyannote[2353].start 16250.57159375
transcript.pyannote[2353].end 16255.53284375
transcript.pyannote[2354].speaker SPEAKER_27
transcript.pyannote[2354].start 16256.00534375
transcript.pyannote[2354].end 16258.33409375
transcript.pyannote[2355].speaker SPEAKER_27
transcript.pyannote[2355].start 16259.90346875
transcript.pyannote[2355].end 16267.37909375
transcript.pyannote[2356].speaker SPEAKER_27
transcript.pyannote[2356].start 16268.34096875
transcript.pyannote[2356].end 16273.96034375
transcript.pyannote[2357].speaker SPEAKER_27
transcript.pyannote[2357].start 16274.31471875
transcript.pyannote[2357].end 16277.35221875
transcript.pyannote[2358].speaker SPEAKER_27
transcript.pyannote[2358].start 16277.99346875
transcript.pyannote[2358].end 16285.58721875
transcript.pyannote[2359].speaker SPEAKER_27
transcript.pyannote[2359].start 16286.66721875
transcript.pyannote[2359].end 16288.38846875
transcript.pyannote[2360].speaker SPEAKER_27
transcript.pyannote[2360].start 16288.79346875
transcript.pyannote[2360].end 16289.14784375
transcript.pyannote[2361].speaker SPEAKER_27
transcript.pyannote[2361].start 16289.45159375
transcript.pyannote[2361].end 16291.07159375
transcript.pyannote[2362].speaker SPEAKER_27
transcript.pyannote[2362].start 16292.18534375
transcript.pyannote[2362].end 16292.94471875
transcript.pyannote[2363].speaker SPEAKER_27
transcript.pyannote[2363].start 16293.33284375
transcript.pyannote[2363].end 16295.35784375
transcript.pyannote[2364].speaker SPEAKER_07
transcript.pyannote[2364].start 16295.35784375
transcript.pyannote[2364].end 16312.73909375
transcript.pyannote[2365].speaker SPEAKER_27
transcript.pyannote[2365].start 16313.58284375
transcript.pyannote[2365].end 16319.20221875
transcript.pyannote[2366].speaker SPEAKER_07
transcript.pyannote[2366].start 16319.20221875
transcript.pyannote[2366].end 16320.56909375
transcript.pyannote[2367].speaker SPEAKER_27
transcript.pyannote[2367].start 16319.21909375
transcript.pyannote[2367].end 16319.92784375
transcript.pyannote[2368].speaker SPEAKER_27
transcript.pyannote[2368].start 16321.12596875
transcript.pyannote[2368].end 16321.15971875
transcript.pyannote[2369].speaker SPEAKER_07
transcript.pyannote[2369].start 16321.15971875
transcript.pyannote[2369].end 16325.96909375
transcript.pyannote[2370].speaker SPEAKER_07
transcript.pyannote[2370].start 16326.44159375
transcript.pyannote[2370].end 16327.16721875
transcript.pyannote[2371].speaker SPEAKER_27
transcript.pyannote[2371].start 16327.16721875
transcript.pyannote[2371].end 16327.18409375
transcript.pyannote[2372].speaker SPEAKER_27
transcript.pyannote[2372].start 16327.30221875
transcript.pyannote[2372].end 16327.33596875
transcript.pyannote[2373].speaker SPEAKER_07
transcript.pyannote[2373].start 16327.33596875
transcript.pyannote[2373].end 16327.35284375
transcript.pyannote[2374].speaker SPEAKER_27
transcript.pyannote[2374].start 16327.35284375
transcript.pyannote[2374].end 16327.97721875
transcript.pyannote[2375].speaker SPEAKER_07
transcript.pyannote[2375].start 16327.97721875
transcript.pyannote[2375].end 16328.01096875
transcript.pyannote[2376].speaker SPEAKER_27
transcript.pyannote[2376].start 16328.01096875
transcript.pyannote[2376].end 16330.86284375
transcript.pyannote[2377].speaker SPEAKER_07
transcript.pyannote[2377].start 16328.04471875
transcript.pyannote[2377].end 16328.26409375
transcript.pyannote[2378].speaker SPEAKER_07
transcript.pyannote[2378].start 16328.33159375
transcript.pyannote[2378].end 16328.34846875
transcript.pyannote[2379].speaker SPEAKER_07
transcript.pyannote[2379].start 16331.23409375
transcript.pyannote[2379].end 16332.93846875
transcript.pyannote[2380].speaker SPEAKER_27
transcript.pyannote[2380].start 16331.38596875
transcript.pyannote[2380].end 16331.43659375
transcript.pyannote[2381].speaker SPEAKER_27
transcript.pyannote[2381].start 16332.51659375
transcript.pyannote[2381].end 16332.92159375
transcript.pyannote[2382].speaker SPEAKER_27
transcript.pyannote[2382].start 16332.93846875
transcript.pyannote[2382].end 16332.98909375
transcript.pyannote[2383].speaker SPEAKER_07
transcript.pyannote[2383].start 16332.98909375
transcript.pyannote[2383].end 16333.00596875
transcript.pyannote[2384].speaker SPEAKER_27
transcript.pyannote[2384].start 16333.96784375
transcript.pyannote[2384].end 16333.98471875
transcript.pyannote[2385].speaker SPEAKER_07
transcript.pyannote[2385].start 16333.98471875
transcript.pyannote[2385].end 16354.74096875
transcript.pyannote[2386].speaker SPEAKER_27
transcript.pyannote[2386].start 16334.28846875
transcript.pyannote[2386].end 16335.40221875
transcript.pyannote[2387].speaker SPEAKER_27
transcript.pyannote[2387].start 16335.41909375
transcript.pyannote[2387].end 16335.46971875
transcript.pyannote[2388].speaker SPEAKER_27
transcript.pyannote[2388].start 16335.50346875
transcript.pyannote[2388].end 16335.55409375
transcript.pyannote[2389].speaker SPEAKER_27
transcript.pyannote[2389].start 16335.67221875
transcript.pyannote[2389].end 16337.39346875
transcript.pyannote[2390].speaker SPEAKER_27
transcript.pyannote[2390].start 16355.26409375
transcript.pyannote[2390].end 16360.73159375
transcript.pyannote[2391].speaker SPEAKER_27
transcript.pyannote[2391].start 16361.10284375
transcript.pyannote[2391].end 16368.96659375
transcript.pyannote[2392].speaker SPEAKER_07
transcript.pyannote[2392].start 16368.96659375
transcript.pyannote[2392].end 16369.10159375
transcript.pyannote[2393].speaker SPEAKER_27
transcript.pyannote[2393].start 16369.10159375
transcript.pyannote[2393].end 16379.14221875
transcript.pyannote[2394].speaker SPEAKER_07
transcript.pyannote[2394].start 16369.37159375
transcript.pyannote[2394].end 16370.29971875
transcript.pyannote[2395].speaker SPEAKER_27
transcript.pyannote[2395].start 16379.34471875
transcript.pyannote[2395].end 16390.07721875
transcript.pyannote[2396].speaker SPEAKER_07
transcript.pyannote[2396].start 16390.07721875
transcript.pyannote[2396].end 16390.14471875
transcript.pyannote[2397].speaker SPEAKER_27
transcript.pyannote[2397].start 16390.14471875
transcript.pyannote[2397].end 16390.97159375
transcript.pyannote[2398].speaker SPEAKER_07
transcript.pyannote[2398].start 16390.97159375
transcript.pyannote[2398].end 16391.07284375
transcript.pyannote[2399].speaker SPEAKER_27
transcript.pyannote[2399].start 16391.07284375
transcript.pyannote[2399].end 16391.76471875
transcript.pyannote[2400].speaker SPEAKER_07
transcript.pyannote[2400].start 16391.62971875
transcript.pyannote[2400].end 16408.82534375
transcript.pyannote[2401].speaker SPEAKER_07
transcript.pyannote[2401].start 16409.43284375
transcript.pyannote[2401].end 16413.44909375
transcript.pyannote[2402].speaker SPEAKER_27
transcript.pyannote[2402].start 16413.66846875
transcript.pyannote[2402].end 16414.73159375
transcript.pyannote[2403].speaker SPEAKER_27
transcript.pyannote[2403].start 16415.37284375
transcript.pyannote[2403].end 16430.03721875
transcript.pyannote[2404].speaker SPEAKER_07
transcript.pyannote[2404].start 16423.37159375
transcript.pyannote[2404].end 16423.40534375
transcript.pyannote[2405].speaker SPEAKER_08
transcript.pyannote[2405].start 16423.40534375
transcript.pyannote[2405].end 16424.02971875
transcript.pyannote[2406].speaker SPEAKER_07
transcript.pyannote[2406].start 16424.02971875
transcript.pyannote[2406].end 16424.68784375
transcript.pyannote[2407].speaker SPEAKER_07
transcript.pyannote[2407].start 16424.72159375
transcript.pyannote[2407].end 16425.91971875
transcript.pyannote[2408].speaker SPEAKER_08
transcript.pyannote[2408].start 16425.91971875
transcript.pyannote[2408].end 16425.93659375
transcript.pyannote[2409].speaker SPEAKER_07
transcript.pyannote[2409].start 16425.93659375
transcript.pyannote[2409].end 16425.95346875
transcript.pyannote[2410].speaker SPEAKER_07
transcript.pyannote[2410].start 16426.94909375
transcript.pyannote[2410].end 16432.83846875
transcript.pyannote[2411].speaker SPEAKER_27
transcript.pyannote[2411].start 16432.83846875
transcript.pyannote[2411].end 16433.12534375
transcript.pyannote[2412].speaker SPEAKER_27
transcript.pyannote[2412].start 16433.73284375
transcript.pyannote[2412].end 16438.86284375
transcript.pyannote[2413].speaker SPEAKER_27
transcript.pyannote[2413].start 16439.43659375
transcript.pyannote[2413].end 16444.90409375
transcript.pyannote[2414].speaker SPEAKER_27
transcript.pyannote[2414].start 16445.22471875
transcript.pyannote[2414].end 16468.17471875
transcript.pyannote[2415].speaker SPEAKER_27
transcript.pyannote[2415].start 16468.68096875
transcript.pyannote[2415].end 16474.21596875
transcript.pyannote[2416].speaker SPEAKER_27
transcript.pyannote[2416].start 16474.97534375
transcript.pyannote[2416].end 16487.34471875
transcript.pyannote[2417].speaker SPEAKER_27
transcript.pyannote[2417].start 16487.73284375
transcript.pyannote[2417].end 16494.97221875
transcript.pyannote[2418].speaker SPEAKER_07
transcript.pyannote[2418].start 16494.97221875
transcript.pyannote[2418].end 16499.66346875
transcript.pyannote[2419].speaker SPEAKER_27
transcript.pyannote[2419].start 16495.71471875
transcript.pyannote[2419].end 16495.74846875
transcript.pyannote[2420].speaker SPEAKER_08
transcript.pyannote[2420].start 16495.74846875
transcript.pyannote[2420].end 16496.25471875
transcript.pyannote[2421].speaker SPEAKER_27
transcript.pyannote[2421].start 16496.25471875
transcript.pyannote[2421].end 16496.32221875
transcript.pyannote[2422].speaker SPEAKER_07
transcript.pyannote[2422].start 16500.00096875
transcript.pyannote[2422].end 16503.94971875
transcript.pyannote[2423].speaker SPEAKER_07
transcript.pyannote[2423].start 16504.20284375
transcript.pyannote[2423].end 16506.46409375
transcript.pyannote[2424].speaker SPEAKER_07
transcript.pyannote[2424].start 16507.22346875
transcript.pyannote[2424].end 16507.54409375
transcript.pyannote[2425].speaker SPEAKER_07
transcript.pyannote[2425].start 16507.61159375
transcript.pyannote[2425].end 16512.85971875
transcript.pyannote[2426].speaker SPEAKER_07
transcript.pyannote[2426].start 16513.28159375
transcript.pyannote[2426].end 16513.31534375
transcript.pyannote[2427].speaker SPEAKER_07
transcript.pyannote[2427].start 16513.72034375
transcript.pyannote[2427].end 16514.17596875
transcript.pyannote[2428].speaker SPEAKER_07
transcript.pyannote[2428].start 16515.39096875
transcript.pyannote[2428].end 16516.35284375
transcript.pyannote[2429].speaker SPEAKER_07
transcript.pyannote[2429].start 16516.57221875
transcript.pyannote[2429].end 16525.43159375
transcript.pyannote[2430].speaker SPEAKER_07
transcript.pyannote[2430].start 16525.95471875
transcript.pyannote[2430].end 16532.62034375
transcript.pyannote[2431].speaker SPEAKER_27
transcript.pyannote[2431].start 16532.62034375
transcript.pyannote[2431].end 16549.81596875
transcript.pyannote[2432].speaker SPEAKER_27
transcript.pyannote[2432].start 16550.25471875
transcript.pyannote[2432].end 16556.83596875
transcript.pyannote[2433].speaker SPEAKER_27
transcript.pyannote[2433].start 16557.32534375
transcript.pyannote[2433].end 16559.18159375
transcript.pyannote[2434].speaker SPEAKER_07
transcript.pyannote[2434].start 16558.05096875
transcript.pyannote[2434].end 16558.21971875
transcript.pyannote[2435].speaker SPEAKER_07
transcript.pyannote[2435].start 16559.18159375
transcript.pyannote[2435].end 16559.19846875
transcript.pyannote[2436].speaker SPEAKER_27
transcript.pyannote[2436].start 16559.19846875
transcript.pyannote[2436].end 16559.63721875
transcript.pyannote[2437].speaker SPEAKER_07
transcript.pyannote[2437].start 16559.21534375
transcript.pyannote[2437].end 16559.65409375
transcript.pyannote[2438].speaker SPEAKER_27
transcript.pyannote[2438].start 16559.65409375
transcript.pyannote[2438].end 16559.97471875
transcript.pyannote[2439].speaker SPEAKER_07
transcript.pyannote[2439].start 16559.97471875
transcript.pyannote[2439].end 16570.96034375
transcript.pyannote[2440].speaker SPEAKER_27
transcript.pyannote[2440].start 16571.46659375
transcript.pyannote[2440].end 16581.27096875
transcript.pyannote[2441].speaker SPEAKER_03
transcript.pyannote[2441].start 16582.75596875
transcript.pyannote[2441].end 16584.81471875
transcript.pyannote[2442].speaker SPEAKER_03
transcript.pyannote[2442].start 16586.33346875
transcript.pyannote[2442].end 16588.96596875
transcript.pyannote[2443].speaker SPEAKER_03
transcript.pyannote[2443].start 16589.59034375
transcript.pyannote[2443].end 16593.97784375
transcript.pyannote[2444].speaker SPEAKER_03
transcript.pyannote[2444].start 16594.41659375
transcript.pyannote[2444].end 16596.99846875
transcript.pyannote[2445].speaker SPEAKER_03
transcript.pyannote[2445].start 16597.82534375
transcript.pyannote[2445].end 16600.57596875
transcript.pyannote[2446].speaker SPEAKER_03
transcript.pyannote[2446].start 16601.28471875
transcript.pyannote[2446].end 16604.08596875
transcript.pyannote[2447].speaker SPEAKER_21
transcript.pyannote[2447].start 16617.26534375
transcript.pyannote[2447].end 16621.41659375
transcript.pyannote[2448].speaker SPEAKER_07
transcript.pyannote[2448].start 16627.81221875
transcript.pyannote[2448].end 16628.35221875
transcript.pyannote[2449].speaker SPEAKER_21
transcript.pyannote[2449].start 16628.35221875
transcript.pyannote[2449].end 16628.40284375
transcript.pyannote[2450].speaker SPEAKER_21
transcript.pyannote[2450].start 16628.47034375
transcript.pyannote[2450].end 16629.71909375
transcript.pyannote[2451].speaker SPEAKER_21
transcript.pyannote[2451].start 16659.46971875
transcript.pyannote[2451].end 16666.25346875
transcript.pyannote[2452].speaker SPEAKER_21
transcript.pyannote[2452].start 16666.79346875
transcript.pyannote[2452].end 16668.17721875
transcript.pyannote[2453].speaker SPEAKER_21
transcript.pyannote[2453].start 16668.24471875
transcript.pyannote[2453].end 16676.24346875
transcript.pyannote[2454].speaker SPEAKER_21
transcript.pyannote[2454].start 16676.34471875
transcript.pyannote[2454].end 16681.40721875
transcript.pyannote[2455].speaker SPEAKER_21
transcript.pyannote[2455].start 16681.49159375
transcript.pyannote[2455].end 16687.48221875
transcript.pyannote[2456].speaker SPEAKER_21
transcript.pyannote[2456].start 16687.95471875
transcript.pyannote[2456].end 16688.34284375
transcript.pyannote[2457].speaker SPEAKER_21
transcript.pyannote[2457].start 16689.16971875
transcript.pyannote[2457].end 16690.53659375
transcript.pyannote[2458].speaker SPEAKER_21
transcript.pyannote[2458].start 16690.67159375
transcript.pyannote[2458].end 16694.62034375
transcript.pyannote[2459].speaker SPEAKER_07
transcript.pyannote[2459].start 16695.48096875
transcript.pyannote[2459].end 16696.91534375
transcript.pyannote[2460].speaker SPEAKER_21
transcript.pyannote[2460].start 16696.88159375
transcript.pyannote[2460].end 16699.64909375
transcript.pyannote[2461].speaker SPEAKER_07
transcript.pyannote[2461].start 16697.75909375
transcript.pyannote[2461].end 16700.20596875
transcript.pyannote[2462].speaker SPEAKER_21
transcript.pyannote[2462].start 16700.69534375
transcript.pyannote[2462].end 16701.03284375
transcript.pyannote[2463].speaker SPEAKER_21
transcript.pyannote[2463].start 16701.43784375
transcript.pyannote[2463].end 16703.02409375
transcript.pyannote[2464].speaker SPEAKER_07
transcript.pyannote[2464].start 16703.02409375
transcript.pyannote[2464].end 16703.83409375
transcript.pyannote[2465].speaker SPEAKER_21
transcript.pyannote[2465].start 16703.53034375
transcript.pyannote[2465].end 16703.91846875
transcript.pyannote[2466].speaker SPEAKER_21
transcript.pyannote[2466].start 16704.20534375
transcript.pyannote[2466].end 16704.61034375
transcript.pyannote[2467].speaker SPEAKER_21
transcript.pyannote[2467].start 16705.06596875
transcript.pyannote[2467].end 16705.92659375
transcript.pyannote[2468].speaker SPEAKER_21
transcript.pyannote[2468].start 16706.33159375
transcript.pyannote[2468].end 16710.04409375
transcript.pyannote[2469].speaker SPEAKER_21
transcript.pyannote[2469].start 16710.28034375
transcript.pyannote[2469].end 16716.35534375
transcript.pyannote[2470].speaker SPEAKER_21
transcript.pyannote[2470].start 16717.24971875
transcript.pyannote[2470].end 16717.89096875
transcript.pyannote[2471].speaker SPEAKER_21
transcript.pyannote[2471].start 16718.14409375
transcript.pyannote[2471].end 16720.11846875
transcript.pyannote[2472].speaker SPEAKER_21
transcript.pyannote[2472].start 16720.96221875
transcript.pyannote[2472].end 16721.50221875
transcript.pyannote[2473].speaker SPEAKER_21
transcript.pyannote[2473].start 16722.12659375
transcript.pyannote[2473].end 16725.41721875
transcript.pyannote[2474].speaker SPEAKER_21
transcript.pyannote[2474].start 16725.92346875
transcript.pyannote[2474].end 16728.18471875
transcript.pyannote[2475].speaker SPEAKER_21
transcript.pyannote[2475].start 16729.43346875
transcript.pyannote[2475].end 16731.86346875
transcript.pyannote[2476].speaker SPEAKER_21
transcript.pyannote[2476].start 16732.48784375
transcript.pyannote[2476].end 16732.90971875
transcript.pyannote[2477].speaker SPEAKER_21
transcript.pyannote[2477].start 16733.41596875
transcript.pyannote[2477].end 16734.81659375
transcript.pyannote[2478].speaker SPEAKER_21
transcript.pyannote[2478].start 16735.76159375
transcript.pyannote[2478].end 16738.54596875
transcript.pyannote[2479].speaker SPEAKER_21
transcript.pyannote[2479].start 16739.13659375
transcript.pyannote[2479].end 16740.92534375
transcript.pyannote[2480].speaker SPEAKER_21
transcript.pyannote[2480].start 16741.49909375
transcript.pyannote[2480].end 16743.47346875
transcript.pyannote[2481].speaker SPEAKER_07
transcript.pyannote[2481].start 16748.24909375
transcript.pyannote[2481].end 16753.83471875
transcript.pyannote[2482].speaker SPEAKER_21
transcript.pyannote[2482].start 16753.81784375
transcript.pyannote[2482].end 16755.94409375
transcript.pyannote[2483].speaker SPEAKER_21
transcript.pyannote[2483].start 16756.50096875
transcript.pyannote[2483].end 16756.95659375
transcript.pyannote[2484].speaker SPEAKER_21
transcript.pyannote[2484].start 16758.37409375
transcript.pyannote[2484].end 16760.21346875
transcript.pyannote[2485].speaker SPEAKER_07
transcript.pyannote[2485].start 16760.85471875
transcript.pyannote[2485].end 16761.25971875
transcript.pyannote[2486].speaker SPEAKER_07
transcript.pyannote[2486].start 16761.52971875
transcript.pyannote[2486].end 16762.74471875
transcript.pyannote[2487].speaker SPEAKER_21
transcript.pyannote[2487].start 16764.34784375
transcript.pyannote[2487].end 16765.27596875
transcript.pyannote[2488].speaker SPEAKER_14
transcript.pyannote[2488].start 16765.27596875
transcript.pyannote[2488].end 16765.30971875
transcript.pyannote[2489].speaker SPEAKER_14
transcript.pyannote[2489].start 16766.08596875
transcript.pyannote[2489].end 16767.77346875
transcript.pyannote[2490].speaker SPEAKER_14
transcript.pyannote[2490].start 16768.49909375
transcript.pyannote[2490].end 16769.27534375
transcript.pyannote[2491].speaker SPEAKER_14
transcript.pyannote[2491].start 16769.42721875
transcript.pyannote[2491].end 16779.80534375
transcript.pyannote[2492].speaker SPEAKER_18
transcript.pyannote[2492].start 16773.13971875
transcript.pyannote[2492].end 16773.62909375
transcript.pyannote[2493].speaker SPEAKER_21
transcript.pyannote[2493].start 16778.28659375
transcript.pyannote[2493].end 16780.15971875
transcript.pyannote[2494].speaker SPEAKER_21
transcript.pyannote[2494].start 16780.75034375
transcript.pyannote[2494].end 16782.06659375
transcript.pyannote[2495].speaker SPEAKER_21
transcript.pyannote[2495].start 16782.67409375
transcript.pyannote[2495].end 16784.69909375
transcript.pyannote[2496].speaker SPEAKER_14
transcript.pyannote[2496].start 16784.69909375
transcript.pyannote[2496].end 16785.32346875
transcript.pyannote[2497].speaker SPEAKER_21
transcript.pyannote[2497].start 16784.73284375
transcript.pyannote[2497].end 16785.15471875
transcript.pyannote[2498].speaker SPEAKER_21
transcript.pyannote[2498].start 16785.32346875
transcript.pyannote[2498].end 16785.45846875
transcript.pyannote[2499].speaker SPEAKER_14
transcript.pyannote[2499].start 16785.45846875
transcript.pyannote[2499].end 16785.52596875
transcript.pyannote[2500].speaker SPEAKER_21
transcript.pyannote[2500].start 16785.52596875
transcript.pyannote[2500].end 16785.54284375
transcript.pyannote[2501].speaker SPEAKER_14
transcript.pyannote[2501].start 16785.54284375
transcript.pyannote[2501].end 16785.64409375
transcript.pyannote[2502].speaker SPEAKER_14
transcript.pyannote[2502].start 16785.88034375
transcript.pyannote[2502].end 16788.27659375
transcript.pyannote[2503].speaker SPEAKER_21
transcript.pyannote[2503].start 16786.13346875
transcript.pyannote[2503].end 16786.79159375
transcript.pyannote[2504].speaker SPEAKER_07
transcript.pyannote[2504].start 16789.44096875
transcript.pyannote[2504].end 16792.29284375
transcript.pyannote[2505].speaker SPEAKER_21
transcript.pyannote[2505].start 16789.50846875
transcript.pyannote[2505].end 16789.54221875
transcript.pyannote[2506].speaker SPEAKER_14
transcript.pyannote[2506].start 16789.54221875
transcript.pyannote[2506].end 16789.71096875
transcript.pyannote[2507].speaker SPEAKER_21
transcript.pyannote[2507].start 16789.71096875
transcript.pyannote[2507].end 16789.81221875
transcript.pyannote[2508].speaker SPEAKER_21
transcript.pyannote[2508].start 16792.78221875
transcript.pyannote[2508].end 16796.29221875
transcript.pyannote[2509].speaker SPEAKER_07
transcript.pyannote[2509].start 16798.43534375
transcript.pyannote[2509].end 16801.94534375
transcript.pyannote[2510].speaker SPEAKER_21
transcript.pyannote[2510].start 16802.04659375
transcript.pyannote[2510].end 16808.88096875
transcript.pyannote[2511].speaker SPEAKER_21
transcript.pyannote[2511].start 16809.31971875
transcript.pyannote[2511].end 16811.93534375
transcript.pyannote[2512].speaker SPEAKER_07
transcript.pyannote[2512].start 16811.78346875
transcript.pyannote[2512].end 16815.96846875
transcript.pyannote[2513].speaker SPEAKER_21
transcript.pyannote[2513].start 16814.09534375
transcript.pyannote[2513].end 16814.44971875
transcript.pyannote[2514].speaker SPEAKER_21
transcript.pyannote[2514].start 16814.90534375
transcript.pyannote[2514].end 16820.03534375
transcript.pyannote[2515].speaker SPEAKER_21
transcript.pyannote[2515].start 16820.37284375
transcript.pyannote[2515].end 16821.89159375
transcript.pyannote[2516].speaker SPEAKER_21
transcript.pyannote[2516].start 16821.97596875
transcript.pyannote[2516].end 16826.04284375
transcript.pyannote[2517].speaker SPEAKER_21
transcript.pyannote[2517].start 16826.70096875
transcript.pyannote[2517].end 16835.08784375
transcript.pyannote[2518].speaker SPEAKER_21
transcript.pyannote[2518].start 16836.64034375
transcript.pyannote[2518].end 16842.25971875
transcript.pyannote[2519].speaker SPEAKER_21
transcript.pyannote[2519].start 16843.13721875
transcript.pyannote[2519].end 16844.92596875
transcript.pyannote[2520].speaker SPEAKER_07
transcript.pyannote[2520].start 16845.33096875
transcript.pyannote[2520].end 16846.12409375
transcript.pyannote[2521].speaker SPEAKER_21
transcript.pyannote[2521].start 16846.07346875
transcript.pyannote[2521].end 16850.44409375
transcript.pyannote[2522].speaker SPEAKER_21
transcript.pyannote[2522].start 16851.01784375
transcript.pyannote[2522].end 16863.45471875
transcript.pyannote[2523].speaker SPEAKER_21
transcript.pyannote[2523].start 16863.84284375
transcript.pyannote[2523].end 16872.82034375
transcript.pyannote[2524].speaker SPEAKER_07
transcript.pyannote[2524].start 16874.30534375
transcript.pyannote[2524].end 16877.34284375
transcript.pyannote[2525].speaker SPEAKER_21
transcript.pyannote[2525].start 16878.03471875
transcript.pyannote[2525].end 16878.18659375
transcript.pyannote[2526].speaker SPEAKER_07
transcript.pyannote[2526].start 16878.52409375
transcript.pyannote[2526].end 16880.27909375
transcript.pyannote[2527].speaker SPEAKER_21
transcript.pyannote[2527].start 16879.53659375
transcript.pyannote[2527].end 16880.41409375
transcript.pyannote[2528].speaker SPEAKER_21
transcript.pyannote[2528].start 16880.95409375
transcript.pyannote[2528].end 16881.91596875
transcript.pyannote[2529].speaker SPEAKER_07
transcript.pyannote[2529].start 16881.91596875
transcript.pyannote[2529].end 16884.80159375
transcript.pyannote[2530].speaker SPEAKER_21
transcript.pyannote[2530].start 16883.06346875
transcript.pyannote[2530].end 16884.24471875
transcript.pyannote[2531].speaker SPEAKER_21
transcript.pyannote[2531].start 16885.10534375
transcript.pyannote[2531].end 16885.93221875
transcript.pyannote[2532].speaker SPEAKER_21
transcript.pyannote[2532].start 16886.50596875
transcript.pyannote[2532].end 16887.21471875
transcript.pyannote[2533].speaker SPEAKER_21
transcript.pyannote[2533].start 16887.60284375
transcript.pyannote[2533].end 16889.69534375
transcript.pyannote[2534].speaker SPEAKER_21
transcript.pyannote[2534].start 16890.30284375
transcript.pyannote[2534].end 16909.33784375
transcript.pyannote[2535].speaker SPEAKER_21
transcript.pyannote[2535].start 16910.68784375
transcript.pyannote[2535].end 16913.80971875
transcript.pyannote[2536].speaker SPEAKER_07
transcript.pyannote[2536].start 16913.99534375
transcript.pyannote[2536].end 16917.75846875
transcript.pyannote[2537].speaker SPEAKER_21
transcript.pyannote[2537].start 16917.67409375
transcript.pyannote[2537].end 16920.71159375
transcript.pyannote[2538].speaker SPEAKER_21
transcript.pyannote[2538].start 16921.97721875
transcript.pyannote[2538].end 16927.57971875
transcript.pyannote[2539].speaker SPEAKER_21
transcript.pyannote[2539].start 16929.31784375
transcript.pyannote[2539].end 16938.51471875
transcript.pyannote[2540].speaker SPEAKER_21
transcript.pyannote[2540].start 16939.57784375
transcript.pyannote[2540].end 16946.19284375
transcript.pyannote[2541].speaker SPEAKER_21
transcript.pyannote[2541].start 16948.45409375
transcript.pyannote[2541].end 16950.34409375
transcript.pyannote[2542].speaker SPEAKER_21
transcript.pyannote[2542].start 16950.86721875
transcript.pyannote[2542].end 16952.94284375
transcript.pyannote[2543].speaker SPEAKER_21
transcript.pyannote[2543].start 16954.03971875
transcript.pyannote[2543].end 16955.59221875
transcript.pyannote[2544].speaker SPEAKER_21
transcript.pyannote[2544].start 16956.14909375
transcript.pyannote[2544].end 16990.60784375
transcript.pyannote[2545].speaker SPEAKER_21
transcript.pyannote[2545].start 16991.06346875
transcript.pyannote[2545].end 16996.54784375
transcript.pyannote[2546].speaker SPEAKER_07
transcript.pyannote[2546].start 16999.61909375
transcript.pyannote[2546].end 17004.78284375
transcript.pyannote[2547].speaker SPEAKER_07
transcript.pyannote[2547].start 17005.81221875
transcript.pyannote[2547].end 17008.74846875
transcript.pyannote[2548].speaker SPEAKER_07
transcript.pyannote[2548].start 17009.11971875
transcript.pyannote[2548].end 17013.45659375
transcript.pyannote[2549].speaker SPEAKER_07
transcript.pyannote[2549].start 17013.59159375
transcript.pyannote[2549].end 17017.43909375
transcript.pyannote[2550].speaker SPEAKER_07
transcript.pyannote[2550].start 17018.23221875
transcript.pyannote[2550].end 17033.20034375
transcript.pyannote[2551].speaker SPEAKER_07
transcript.pyannote[2551].start 17033.75721875
transcript.pyannote[2551].end 17034.04409375
transcript.pyannote[2552].speaker SPEAKER_19
transcript.pyannote[2552].start 17034.04409375
transcript.pyannote[2552].end 17034.21284375
transcript.pyannote[2553].speaker SPEAKER_07
transcript.pyannote[2553].start 17034.21284375
transcript.pyannote[2553].end 17036.03534375
transcript.pyannote[2554].speaker SPEAKER_07
transcript.pyannote[2554].start 17036.27159375
transcript.pyannote[2554].end 17039.05596875
transcript.pyannote[2555].speaker SPEAKER_07
transcript.pyannote[2555].start 17040.08534375
transcript.pyannote[2555].end 17042.65034375
transcript.pyannote[2556].speaker SPEAKER_07
transcript.pyannote[2556].start 17042.93721875
transcript.pyannote[2556].end 17043.37596875
transcript.pyannote[2557].speaker SPEAKER_07
transcript.pyannote[2557].start 17044.32096875
transcript.pyannote[2557].end 17046.51471875
transcript.pyannote[2558].speaker SPEAKER_07
transcript.pyannote[2558].start 17047.10534375
transcript.pyannote[2558].end 17058.24284375
transcript.pyannote[2559].speaker SPEAKER_21
transcript.pyannote[2559].start 17058.07409375
transcript.pyannote[2559].end 17063.84534375
transcript.pyannote[2560].speaker SPEAKER_21
transcript.pyannote[2560].start 17063.87909375
transcript.pyannote[2560].end 17064.67221875
transcript.pyannote[2561].speaker SPEAKER_21
transcript.pyannote[2561].start 17065.58346875
transcript.pyannote[2561].end 17069.41409375
transcript.pyannote[2562].speaker SPEAKER_21
transcript.pyannote[2562].start 17069.75159375
transcript.pyannote[2562].end 17080.65284375
transcript.pyannote[2563].speaker SPEAKER_21
transcript.pyannote[2563].start 17081.14221875
transcript.pyannote[2563].end 17081.53034375
transcript.pyannote[2564].speaker SPEAKER_21
transcript.pyannote[2564].start 17082.42471875
transcript.pyannote[2564].end 17085.71534375
transcript.pyannote[2565].speaker SPEAKER_21
transcript.pyannote[2565].start 17086.06971875
transcript.pyannote[2565].end 17090.71034375
transcript.pyannote[2566].speaker SPEAKER_07
transcript.pyannote[2566].start 17089.41096875
transcript.pyannote[2566].end 17091.50346875
transcript.pyannote[2567].speaker SPEAKER_21
transcript.pyannote[2567].start 17091.08159375
transcript.pyannote[2567].end 17101.84784375
transcript.pyannote[2568].speaker SPEAKER_21
transcript.pyannote[2568].start 17102.47221875
transcript.pyannote[2568].end 17106.82596875
transcript.pyannote[2569].speaker SPEAKER_21
transcript.pyannote[2569].start 17107.14659375
transcript.pyannote[2569].end 17128.39221875
transcript.pyannote[2570].speaker SPEAKER_22
transcript.pyannote[2570].start 17127.68346875
transcript.pyannote[2570].end 17127.97034375
transcript.pyannote[2571].speaker SPEAKER_00
transcript.pyannote[2571].start 17127.97034375
transcript.pyannote[2571].end 17128.10534375
transcript.pyannote[2572].speaker SPEAKER_21
transcript.pyannote[2572].start 17128.76346875
transcript.pyannote[2572].end 17128.99971875
transcript.pyannote[2573].speaker SPEAKER_21
transcript.pyannote[2573].start 17129.33721875
transcript.pyannote[2573].end 17129.67471875
transcript.pyannote[2574].speaker SPEAKER_21
transcript.pyannote[2574].start 17129.97846875
transcript.pyannote[2574].end 17141.74034375
transcript.pyannote[2575].speaker SPEAKER_07
transcript.pyannote[2575].start 17142.14534375
transcript.pyannote[2575].end 17142.60096875
transcript.pyannote[2576].speaker SPEAKER_07
transcript.pyannote[2576].start 17142.85409375
transcript.pyannote[2576].end 17143.86659375
transcript.pyannote[2577].speaker SPEAKER_07
transcript.pyannote[2577].start 17144.44034375
transcript.pyannote[2577].end 17152.37159375
transcript.pyannote[2578].speaker SPEAKER_07
transcript.pyannote[2578].start 17152.55721875
transcript.pyannote[2578].end 17154.05909375
transcript.pyannote[2579].speaker SPEAKER_07
transcript.pyannote[2579].start 17154.27846875
transcript.pyannote[2579].end 17158.46346875
transcript.pyannote[2580].speaker SPEAKER_07
transcript.pyannote[2580].start 17159.50971875
transcript.pyannote[2580].end 17159.71221875
transcript.pyannote[2581].speaker SPEAKER_07
transcript.pyannote[2581].start 17160.91034375
transcript.pyannote[2581].end 17161.12971875
transcript.pyannote[2582].speaker SPEAKER_15
transcript.pyannote[2582].start 17161.12971875
transcript.pyannote[2582].end 17161.26471875
transcript.pyannote[2583].speaker SPEAKER_21
transcript.pyannote[2583].start 17161.26471875
transcript.pyannote[2583].end 17161.36596875
transcript.pyannote[2584].speaker SPEAKER_07
transcript.pyannote[2584].start 17162.39534375
transcript.pyannote[2584].end 17162.71596875
transcript.pyannote[2585].speaker SPEAKER_07
transcript.pyannote[2585].start 17163.32346875
transcript.pyannote[2585].end 17165.93909375
transcript.pyannote[2586].speaker SPEAKER_21
transcript.pyannote[2586].start 17167.00221875
transcript.pyannote[2586].end 17169.80346875
transcript.pyannote[2587].speaker SPEAKER_21
transcript.pyannote[2587].start 17170.17471875
transcript.pyannote[2587].end 17172.03096875
transcript.pyannote[2588].speaker SPEAKER_14
transcript.pyannote[2588].start 17170.98471875
transcript.pyannote[2588].end 17171.06909375
transcript.pyannote[2589].speaker SPEAKER_14
transcript.pyannote[2589].start 17172.46971875
transcript.pyannote[2589].end 17173.51596875
transcript.pyannote[2590].speaker SPEAKER_14
transcript.pyannote[2590].start 17174.19096875
transcript.pyannote[2590].end 17179.89471875
transcript.pyannote[2591].speaker SPEAKER_14
transcript.pyannote[2591].start 17180.09721875
transcript.pyannote[2591].end 17182.07159375
transcript.pyannote[2592].speaker SPEAKER_14
transcript.pyannote[2592].start 17182.54409375
transcript.pyannote[2592].end 17186.23971875
transcript.pyannote[2593].speaker SPEAKER_21
transcript.pyannote[2593].start 17184.72096875
transcript.pyannote[2593].end 17186.96534375
transcript.pyannote[2594].speaker SPEAKER_14
transcript.pyannote[2594].start 17186.96534375
transcript.pyannote[2594].end 17187.03284375
transcript.pyannote[2595].speaker SPEAKER_21
transcript.pyannote[2595].start 17187.03284375
transcript.pyannote[2595].end 17187.50534375
transcript.pyannote[2596].speaker SPEAKER_21
transcript.pyannote[2596].start 17188.31534375
transcript.pyannote[2596].end 17189.85096875
transcript.pyannote[2597].speaker SPEAKER_21
transcript.pyannote[2597].start 17190.84659375
transcript.pyannote[2597].end 17192.04471875
transcript.pyannote[2598].speaker SPEAKER_21
transcript.pyannote[2598].start 17193.14159375
transcript.pyannote[2598].end 17203.77284375
transcript.pyannote[2599].speaker SPEAKER_07
transcript.pyannote[2599].start 17198.92971875
transcript.pyannote[2599].end 17201.44409375
transcript.pyannote[2600].speaker SPEAKER_21
transcript.pyannote[2600].start 17204.29596875
transcript.pyannote[2600].end 17213.69534375
transcript.pyannote[2601].speaker SPEAKER_21
transcript.pyannote[2601].start 17214.37034375
transcript.pyannote[2601].end 17224.37721875
transcript.pyannote[2602].speaker SPEAKER_07
transcript.pyannote[2602].start 17226.63846875
transcript.pyannote[2602].end 17241.92721875
transcript.pyannote[2603].speaker SPEAKER_07
transcript.pyannote[2603].start 17242.53471875
transcript.pyannote[2603].end 17245.01534375
transcript.pyannote[2604].speaker SPEAKER_21
transcript.pyannote[2604].start 17245.01534375
transcript.pyannote[2604].end 17264.57346875
transcript.pyannote[2605].speaker SPEAKER_21
transcript.pyannote[2605].start 17264.79284375
transcript.pyannote[2605].end 17267.76284375
transcript.pyannote[2606].speaker SPEAKER_21
transcript.pyannote[2606].start 17268.31971875
transcript.pyannote[2606].end 17269.07909375
transcript.pyannote[2607].speaker SPEAKER_21
transcript.pyannote[2607].start 17269.21409375
transcript.pyannote[2607].end 17270.44596875
transcript.pyannote[2608].speaker SPEAKER_07
transcript.pyannote[2608].start 17271.30659375
transcript.pyannote[2608].end 17272.09971875
transcript.pyannote[2609].speaker SPEAKER_07
transcript.pyannote[2609].start 17272.90971875
transcript.pyannote[2609].end 17275.15409375
transcript.pyannote[2610].speaker SPEAKER_07
transcript.pyannote[2610].start 17276.16659375
transcript.pyannote[2610].end 17279.69346875
transcript.pyannote[2611].speaker SPEAKER_07
transcript.pyannote[2611].start 17279.98034375
transcript.pyannote[2611].end 17283.67596875
transcript.pyannote[2612].speaker SPEAKER_07
transcript.pyannote[2612].start 17284.92471875
transcript.pyannote[2612].end 17289.48096875
transcript.pyannote[2613].speaker SPEAKER_21
transcript.pyannote[2613].start 17289.09284375
transcript.pyannote[2613].end 17296.68659375
transcript.pyannote[2614].speaker SPEAKER_07
transcript.pyannote[2614].start 17292.72096875
transcript.pyannote[2614].end 17293.09221875
transcript.pyannote[2615].speaker SPEAKER_07
transcript.pyannote[2615].start 17295.11721875
transcript.pyannote[2615].end 17298.88034375
transcript.pyannote[2616].speaker SPEAKER_21
transcript.pyannote[2616].start 17297.27721875
transcript.pyannote[2616].end 17300.87159375
transcript.pyannote[2617].speaker SPEAKER_21
transcript.pyannote[2617].start 17301.12471875
transcript.pyannote[2617].end 17302.87971875
transcript.pyannote[2618].speaker SPEAKER_21
transcript.pyannote[2618].start 17303.30159375
transcript.pyannote[2618].end 17305.39409375
transcript.pyannote[2619].speaker SPEAKER_22
transcript.pyannote[2619].start 17305.44471875
transcript.pyannote[2619].end 17305.88346875
transcript.pyannote[2620].speaker SPEAKER_21
transcript.pyannote[2620].start 17305.83284375
transcript.pyannote[2620].end 17318.33721875
transcript.pyannote[2621].speaker SPEAKER_07
transcript.pyannote[2621].start 17321.29034375
transcript.pyannote[2621].end 17321.72909375
transcript.pyannote[2622].speaker SPEAKER_07
transcript.pyannote[2622].start 17322.65721875
transcript.pyannote[2622].end 17333.79471875
transcript.pyannote[2623].speaker SPEAKER_21
transcript.pyannote[2623].start 17334.80721875
transcript.pyannote[2623].end 17335.21221875
transcript.pyannote[2624].speaker SPEAKER_21
transcript.pyannote[2624].start 17336.62971875
transcript.pyannote[2624].end 17337.45659375
transcript.pyannote[2625].speaker SPEAKER_21
transcript.pyannote[2625].start 17338.60409375
transcript.pyannote[2625].end 17365.99221875
transcript.pyannote[2626].speaker SPEAKER_07
transcript.pyannote[2626].start 17368.40534375
transcript.pyannote[2626].end 17386.30971875
transcript.pyannote[2627].speaker SPEAKER_21
transcript.pyannote[2627].start 17383.37346875
transcript.pyannote[2627].end 17383.72784375
transcript.pyannote[2628].speaker SPEAKER_21
transcript.pyannote[2628].start 17384.99346875
transcript.pyannote[2628].end 17390.86596875
transcript.pyannote[2629].speaker SPEAKER_21
transcript.pyannote[2629].start 17394.12284375
transcript.pyannote[2629].end 17396.87346875
transcript.pyannote[2630].speaker SPEAKER_22
transcript.pyannote[2630].start 17395.21971875
transcript.pyannote[2630].end 17396.02971875
transcript.pyannote[2631].speaker SPEAKER_07
transcript.pyannote[2631].start 17396.02971875
transcript.pyannote[2631].end 17396.97471875
transcript.pyannote[2632].speaker SPEAKER_21
transcript.pyannote[2632].start 17397.75096875
transcript.pyannote[2632].end 17400.99096875
transcript.pyannote[2633].speaker SPEAKER_07
transcript.pyannote[2633].start 17400.36659375
transcript.pyannote[2633].end 17401.51409375
transcript.pyannote[2634].speaker SPEAKER_21
transcript.pyannote[2634].start 17401.54784375
transcript.pyannote[2634].end 17401.98659375
transcript.pyannote[2635].speaker SPEAKER_21
transcript.pyannote[2635].start 17403.15096875
transcript.pyannote[2635].end 17406.72846875
transcript.pyannote[2636].speaker SPEAKER_21
transcript.pyannote[2636].start 17408.33159375
transcript.pyannote[2636].end 17409.76596875
transcript.pyannote[2637].speaker SPEAKER_21
transcript.pyannote[2637].start 17409.96846875
transcript.pyannote[2637].end 17412.24659375
transcript.pyannote[2638].speaker SPEAKER_21
transcript.pyannote[2638].start 17413.05659375
transcript.pyannote[2638].end 17419.58721875
transcript.pyannote[2639].speaker SPEAKER_25
transcript.pyannote[2639].start 17424.80159375
transcript.pyannote[2639].end 17425.45971875
transcript.pyannote[2640].speaker SPEAKER_25
transcript.pyannote[2640].start 17425.81409375
transcript.pyannote[2640].end 17433.91409375
transcript.pyannote[2641].speaker SPEAKER_00
transcript.pyannote[2641].start 17425.86471875
transcript.pyannote[2641].end 17425.88159375
transcript.pyannote[2642].speaker SPEAKER_21
transcript.pyannote[2642].start 17425.88159375
transcript.pyannote[2642].end 17426.50596875
transcript.pyannote[2643].speaker SPEAKER_21
transcript.pyannote[2643].start 17429.32409375
transcript.pyannote[2643].end 17429.74596875
transcript.pyannote[2644].speaker SPEAKER_21
transcript.pyannote[2644].start 17430.52221875
transcript.pyannote[2644].end 17433.07034375
transcript.pyannote[2645].speaker SPEAKER_21
transcript.pyannote[2645].start 17434.06596875
transcript.pyannote[2645].end 17439.70221875
transcript.pyannote[2646].speaker SPEAKER_21
transcript.pyannote[2646].start 17439.78659375
transcript.pyannote[2646].end 17442.16596875
transcript.pyannote[2647].speaker SPEAKER_21
transcript.pyannote[2647].start 17443.00971875
transcript.pyannote[2647].end 17444.69721875
transcript.pyannote[2648].speaker SPEAKER_25
transcript.pyannote[2648].start 17448.71346875
transcript.pyannote[2648].end 17449.28721875
transcript.pyannote[2649].speaker SPEAKER_25
transcript.pyannote[2649].start 17449.81034375
transcript.pyannote[2649].end 17452.61159375
transcript.pyannote[2650].speaker SPEAKER_25
transcript.pyannote[2650].start 17452.84784375
transcript.pyannote[2650].end 17478.17721875
transcript.pyannote[2651].speaker SPEAKER_21
transcript.pyannote[2651].start 17476.10159375
transcript.pyannote[2651].end 17488.03221875
transcript.pyannote[2652].speaker SPEAKER_21
transcript.pyannote[2652].start 17488.16721875
transcript.pyannote[2652].end 17489.01096875
transcript.pyannote[2653].speaker SPEAKER_21
transcript.pyannote[2653].start 17489.56784375
transcript.pyannote[2653].end 17491.13721875
transcript.pyannote[2654].speaker SPEAKER_21
transcript.pyannote[2654].start 17491.57596875
transcript.pyannote[2654].end 17492.68971875
transcript.pyannote[2655].speaker SPEAKER_07
transcript.pyannote[2655].start 17492.95971875
transcript.pyannote[2655].end 17494.37721875
transcript.pyannote[2656].speaker SPEAKER_21
transcript.pyannote[2656].start 17494.24221875
transcript.pyannote[2656].end 17495.38971875
transcript.pyannote[2657].speaker SPEAKER_07
transcript.pyannote[2657].start 17495.11971875
transcript.pyannote[2657].end 17498.79846875
transcript.pyannote[2658].speaker SPEAKER_21
transcript.pyannote[2658].start 17497.54971875
transcript.pyannote[2658].end 17497.88721875
transcript.pyannote[2659].speaker SPEAKER_21
transcript.pyannote[2659].start 17498.79846875
transcript.pyannote[2659].end 17499.91221875
transcript.pyannote[2660].speaker SPEAKER_21
transcript.pyannote[2660].start 17500.48596875
transcript.pyannote[2660].end 17501.07659375
transcript.pyannote[2661].speaker SPEAKER_21
transcript.pyannote[2661].start 17501.31284375
transcript.pyannote[2661].end 17508.68721875
transcript.pyannote[2662].speaker SPEAKER_21
transcript.pyannote[2662].start 17509.22721875
transcript.pyannote[2662].end 17510.17221875
transcript.pyannote[2663].speaker SPEAKER_21
transcript.pyannote[2663].start 17511.37034375
transcript.pyannote[2663].end 17512.33221875
transcript.pyannote[2664].speaker SPEAKER_21
transcript.pyannote[2664].start 17512.73721875
transcript.pyannote[2664].end 17513.36159375
transcript.pyannote[2665].speaker SPEAKER_21
transcript.pyannote[2665].start 17514.27284375
transcript.pyannote[2665].end 17514.89721875
transcript.pyannote[2666].speaker SPEAKER_21
transcript.pyannote[2666].start 17515.75784375
transcript.pyannote[2666].end 17516.41596875
transcript.pyannote[2667].speaker SPEAKER_21
transcript.pyannote[2667].start 17518.40721875
transcript.pyannote[2667].end 17519.45346875
transcript.pyannote[2668].speaker SPEAKER_07
transcript.pyannote[2668].start 17518.42409375
transcript.pyannote[2668].end 17523.60471875
transcript.pyannote[2669].speaker SPEAKER_21
transcript.pyannote[2669].start 17525.61284375
transcript.pyannote[2669].end 17535.50159375
transcript.pyannote[2670].speaker SPEAKER_21
transcript.pyannote[2670].start 17537.29034375
transcript.pyannote[2670].end 17544.15846875
transcript.pyannote[2671].speaker SPEAKER_21
transcript.pyannote[2671].start 17544.90096875
transcript.pyannote[2671].end 17546.28471875
transcript.pyannote[2672].speaker SPEAKER_21
transcript.pyannote[2672].start 17547.26346875
transcript.pyannote[2672].end 17547.98909375
transcript.pyannote[2673].speaker SPEAKER_21
transcript.pyannote[2673].start 17548.39409375
transcript.pyannote[2673].end 17550.28409375
transcript.pyannote[2674].speaker SPEAKER_21
transcript.pyannote[2674].start 17550.67221875
transcript.pyannote[2674].end 17554.33409375
transcript.pyannote[2675].speaker SPEAKER_21
transcript.pyannote[2675].start 17554.84034375
transcript.pyannote[2675].end 17555.83596875
transcript.pyannote[2676].speaker SPEAKER_21
transcript.pyannote[2676].start 17557.25346875
transcript.pyannote[2676].end 17560.00409375
transcript.pyannote[2677].speaker SPEAKER_14
transcript.pyannote[2677].start 17557.33784375
transcript.pyannote[2677].end 17558.02971875
transcript.pyannote[2678].speaker SPEAKER_14
transcript.pyannote[2678].start 17560.86471875
transcript.pyannote[2678].end 17570.50034375
transcript.pyannote[2679].speaker SPEAKER_21
transcript.pyannote[2679].start 17568.44159375
transcript.pyannote[2679].end 17595.47534375
transcript.pyannote[2680].speaker SPEAKER_21
transcript.pyannote[2680].start 17595.77909375
transcript.pyannote[2680].end 17597.50034375
transcript.pyannote[2681].speaker SPEAKER_14
transcript.pyannote[2681].start 17598.96846875
transcript.pyannote[2681].end 17599.00221875
transcript.pyannote[2682].speaker SPEAKER_21
transcript.pyannote[2682].start 17599.00221875
transcript.pyannote[2682].end 17599.03596875
transcript.pyannote[2683].speaker SPEAKER_14
transcript.pyannote[2683].start 17599.03596875
transcript.pyannote[2683].end 17599.22159375
transcript.pyannote[2684].speaker SPEAKER_21
transcript.pyannote[2684].start 17599.22159375
transcript.pyannote[2684].end 17599.32284375
transcript.pyannote[2685].speaker SPEAKER_14
transcript.pyannote[2685].start 17599.32284375
transcript.pyannote[2685].end 17604.67221875
transcript.pyannote[2686].speaker SPEAKER_14
transcript.pyannote[2686].start 17605.29659375
transcript.pyannote[2686].end 17610.81471875
transcript.pyannote[2687].speaker SPEAKER_14
transcript.pyannote[2687].start 17611.03409375
transcript.pyannote[2687].end 17618.13846875
transcript.pyannote[2688].speaker SPEAKER_21
transcript.pyannote[2688].start 17615.67471875
transcript.pyannote[2688].end 17618.15534375
transcript.pyannote[2689].speaker SPEAKER_14
transcript.pyannote[2689].start 17618.15534375
transcript.pyannote[2689].end 17618.23971875
transcript.pyannote[2690].speaker SPEAKER_21
transcript.pyannote[2690].start 17618.23971875
transcript.pyannote[2690].end 17627.03159375
transcript.pyannote[2691].speaker SPEAKER_14
transcript.pyannote[2691].start 17618.71221875
transcript.pyannote[2691].end 17618.96534375
transcript.pyannote[2692].speaker SPEAKER_21
transcript.pyannote[2692].start 17627.99346875
transcript.pyannote[2692].end 17636.63346875
transcript.pyannote[2693].speaker SPEAKER_21
transcript.pyannote[2693].start 17637.39284375
transcript.pyannote[2693].end 17638.16909375
transcript.pyannote[2694].speaker SPEAKER_21
transcript.pyannote[2694].start 17639.73846875
transcript.pyannote[2694].end 17642.52284375
transcript.pyannote[2695].speaker SPEAKER_21
transcript.pyannote[2695].start 17642.96159375
transcript.pyannote[2695].end 17644.22721875
transcript.pyannote[2696].speaker SPEAKER_21
transcript.pyannote[2696].start 17644.71659375
transcript.pyannote[2696].end 17646.06659375
transcript.pyannote[2697].speaker SPEAKER_21
transcript.pyannote[2697].start 17646.80909375
transcript.pyannote[2697].end 17647.65284375
transcript.pyannote[2698].speaker SPEAKER_21
transcript.pyannote[2698].start 17652.88409375
transcript.pyannote[2698].end 17658.58784375
transcript.pyannote[2699].speaker SPEAKER_07
transcript.pyannote[2699].start 17659.17846875
transcript.pyannote[2699].end 17672.23971875
transcript.pyannote[2700].speaker SPEAKER_21
transcript.pyannote[2700].start 17672.18909375
transcript.pyannote[2700].end 17684.23784375
transcript.pyannote[2701].speaker SPEAKER_21
transcript.pyannote[2701].start 17684.54159375
transcript.pyannote[2701].end 17684.94659375
transcript.pyannote[2702].speaker SPEAKER_21
transcript.pyannote[2702].start 17684.98034375
transcript.pyannote[2702].end 17687.64659375
transcript.pyannote[2703].speaker SPEAKER_21
transcript.pyannote[2703].start 17688.13596875
transcript.pyannote[2703].end 17688.92909375
transcript.pyannote[2704].speaker SPEAKER_21
transcript.pyannote[2704].start 17689.30034375
transcript.pyannote[2704].end 17717.63346875
transcript.pyannote[2705].speaker SPEAKER_21
transcript.pyannote[2705].start 17718.30846875
transcript.pyannote[2705].end 17722.18971875
transcript.pyannote[2706].speaker SPEAKER_21
transcript.pyannote[2706].start 17722.22346875
transcript.pyannote[2706].end 17742.25409375
transcript.pyannote[2707].speaker SPEAKER_21
transcript.pyannote[2707].start 17742.50721875
transcript.pyannote[2707].end 17747.23221875
transcript.pyannote[2708].speaker SPEAKER_21
transcript.pyannote[2708].start 17747.56971875
transcript.pyannote[2708].end 17751.68721875
transcript.pyannote[2709].speaker SPEAKER_21
transcript.pyannote[2709].start 17752.05846875
transcript.pyannote[2709].end 17765.11971875
transcript.pyannote[2710].speaker SPEAKER_21
transcript.pyannote[2710].start 17766.03096875
transcript.pyannote[2710].end 17770.30034375
transcript.pyannote[2711].speaker SPEAKER_07
transcript.pyannote[2711].start 17768.74784375
transcript.pyannote[2711].end 17771.85284375
transcript.pyannote[2712].speaker SPEAKER_21
transcript.pyannote[2712].start 17771.24534375
transcript.pyannote[2712].end 17774.41784375
transcript.pyannote[2713].speaker SPEAKER_07
transcript.pyannote[2713].start 17773.08471875
transcript.pyannote[2713].end 17773.52346875
transcript.pyannote[2714].speaker SPEAKER_21
transcript.pyannote[2714].start 17774.56971875
transcript.pyannote[2714].end 17777.45534375
transcript.pyannote[2715].speaker SPEAKER_21
transcript.pyannote[2715].start 17778.80534375
transcript.pyannote[2715].end 17788.30596875
transcript.pyannote[2716].speaker SPEAKER_21
transcript.pyannote[2716].start 17788.57596875
transcript.pyannote[2716].end 17813.53409375
transcript.pyannote[2717].speaker SPEAKER_07
transcript.pyannote[2717].start 17814.00659375
transcript.pyannote[2717].end 17821.21221875
transcript.pyannote[2718].speaker SPEAKER_21
transcript.pyannote[2718].start 17819.99721875
transcript.pyannote[2718].end 17822.68034375
transcript.pyannote[2719].speaker SPEAKER_07
transcript.pyannote[2719].start 17822.05596875
transcript.pyannote[2719].end 17828.51909375
transcript.pyannote[2720].speaker SPEAKER_07
transcript.pyannote[2720].start 17828.92409375
transcript.pyannote[2720].end 17835.47159375
transcript.pyannote[2721].speaker SPEAKER_07
transcript.pyannote[2721].start 17835.77534375
transcript.pyannote[2721].end 17841.59721875
transcript.pyannote[2722].speaker SPEAKER_07
transcript.pyannote[2722].start 17841.90096875
transcript.pyannote[2722].end 17842.13721875
transcript.pyannote[2723].speaker SPEAKER_21
transcript.pyannote[2723].start 17842.98096875
transcript.pyannote[2723].end 17847.57096875
transcript.pyannote[2724].speaker SPEAKER_21
transcript.pyannote[2724].start 17848.04346875
transcript.pyannote[2724].end 17854.70909375
transcript.pyannote[2725].speaker SPEAKER_21
transcript.pyannote[2725].start 17855.08034375
transcript.pyannote[2725].end 17857.76346875
transcript.pyannote[2726].speaker SPEAKER_21
transcript.pyannote[2726].start 17858.03346875
transcript.pyannote[2726].end 17909.09721875
transcript.pyannote[2727].speaker SPEAKER_21
transcript.pyannote[2727].start 17909.53596875
transcript.pyannote[2727].end 17915.76284375
transcript.pyannote[2728].speaker SPEAKER_21
transcript.pyannote[2728].start 17916.35346875
transcript.pyannote[2728].end 17916.65721875
transcript.pyannote[2729].speaker SPEAKER_07
transcript.pyannote[2729].start 17917.26471875
transcript.pyannote[2729].end 17920.04909375
transcript.pyannote[2730].speaker SPEAKER_07
transcript.pyannote[2730].start 17920.42034375
transcript.pyannote[2730].end 17922.41159375
transcript.pyannote[2731].speaker SPEAKER_07
transcript.pyannote[2731].start 17923.22159375
transcript.pyannote[2731].end 17924.75721875
transcript.pyannote[2732].speaker SPEAKER_21
transcript.pyannote[2732].start 17923.27221875
transcript.pyannote[2732].end 17925.93846875
transcript.pyannote[2733].speaker SPEAKER_21
transcript.pyannote[2733].start 17927.20409375
transcript.pyannote[2733].end 17929.75221875
transcript.pyannote[2734].speaker SPEAKER_21
transcript.pyannote[2734].start 17929.92096875
transcript.pyannote[2734].end 17930.62971875
transcript.pyannote[2735].speaker SPEAKER_21
transcript.pyannote[2735].start 17931.11909375
transcript.pyannote[2735].end 17935.10159375
transcript.pyannote[2736].speaker SPEAKER_03
transcript.pyannote[2736].start 17935.25346875
transcript.pyannote[2736].end 17942.50971875
transcript.pyannote[2737].speaker SPEAKER_03
transcript.pyannote[2737].start 17943.13409375
transcript.pyannote[2737].end 17943.55596875
transcript.pyannote[2738].speaker SPEAKER_03
transcript.pyannote[2738].start 17944.11284375
transcript.pyannote[2738].end 17947.04909375
transcript.pyannote[2739].speaker SPEAKER_03
transcript.pyannote[2739].start 17947.74096875
transcript.pyannote[2739].end 17949.64784375
transcript.pyannote[2740].speaker SPEAKER_03
transcript.pyannote[2740].start 17958.72659375
transcript.pyannote[2740].end 17959.23284375
transcript.pyannote[2741].speaker SPEAKER_03
transcript.pyannote[2741].start 17961.37596875
transcript.pyannote[2741].end 17963.48534375
transcript.pyannote[2742].speaker SPEAKER_03
transcript.pyannote[2742].start 17964.37971875
transcript.pyannote[2742].end 17965.30784375
transcript.pyannote[2743].speaker SPEAKER_22
transcript.pyannote[2743].start 17965.30784375
transcript.pyannote[2743].end 17965.93221875
transcript.pyannote[2744].speaker SPEAKER_03
transcript.pyannote[2744].start 17966.80971875
transcript.pyannote[2744].end 17968.34534375
transcript.pyannote[2745].speaker SPEAKER_03
transcript.pyannote[2745].start 17973.27284375
transcript.pyannote[2745].end 17976.79971875
transcript.pyannote[2746].speaker SPEAKER_03
transcript.pyannote[2746].start 17977.69409375
transcript.pyannote[2746].end 17978.43659375
transcript.pyannote[2747].speaker SPEAKER_03
transcript.pyannote[2747].start 17979.34784375
transcript.pyannote[2747].end 17979.85409375
transcript.pyannote[2748].speaker SPEAKER_03
transcript.pyannote[2748].start 17980.36034375
transcript.pyannote[2748].end 17983.36409375
transcript.pyannote[2749].speaker SPEAKER_03
transcript.pyannote[2749].start 17983.73534375
transcript.pyannote[2749].end 17984.07284375
transcript.pyannote[2750].speaker SPEAKER_03
transcript.pyannote[2750].start 17986.65471875
transcript.pyannote[2750].end 17987.16096875
transcript.pyannote[2751].speaker SPEAKER_03
transcript.pyannote[2751].start 17988.00471875
transcript.pyannote[2751].end 17989.00034375
transcript.pyannote[2752].speaker SPEAKER_03
transcript.pyannote[2752].start 17991.63284375
transcript.pyannote[2752].end 17994.13034375
transcript.pyannote[2753].speaker SPEAKER_03
transcript.pyannote[2753].start 17995.36221875
transcript.pyannote[2753].end 17995.71659375
transcript.pyannote[2754].speaker SPEAKER_03
transcript.pyannote[2754].start 17996.69534375
transcript.pyannote[2754].end 17996.79659375
transcript.pyannote[2755].speaker SPEAKER_03
transcript.pyannote[2755].start 17997.99471875
transcript.pyannote[2755].end 18001.04909375
transcript.pyannote[2756].speaker SPEAKER_03
transcript.pyannote[2756].start 18011.29221875
transcript.pyannote[2756].end 18013.09784375
transcript.pyannote[2757].speaker SPEAKER_03
transcript.pyannote[2757].start 18017.83971875
transcript.pyannote[2757].end 18024.37034375
transcript.pyannote[2758].speaker SPEAKER_28
transcript.pyannote[2758].start 18034.19159375
transcript.pyannote[2758].end 18036.14909375
transcript.pyannote[2759].speaker SPEAKER_03
transcript.pyannote[2759].start 18036.55409375
transcript.pyannote[2759].end 18037.75221875
transcript.pyannote[2760].speaker SPEAKER_28
transcript.pyannote[2760].start 18044.23221875
transcript.pyannote[2760].end 18045.76784375
transcript.pyannote[2761].speaker SPEAKER_28
transcript.pyannote[2761].start 18046.93221875
transcript.pyannote[2761].end 18057.14159375
transcript.pyannote[2762].speaker SPEAKER_28
transcript.pyannote[2762].start 18057.32721875
transcript.pyannote[2762].end 18068.09346875
transcript.pyannote[2763].speaker SPEAKER_28
transcript.pyannote[2763].start 18068.83596875
transcript.pyannote[2763].end 18070.77659375
transcript.pyannote[2764].speaker SPEAKER_28
transcript.pyannote[2764].start 18071.58659375
transcript.pyannote[2764].end 18072.16034375
transcript.pyannote[2765].speaker SPEAKER_28
transcript.pyannote[2765].start 18072.86909375
transcript.pyannote[2765].end 18076.98659375
transcript.pyannote[2766].speaker SPEAKER_28
transcript.pyannote[2766].start 18077.69534375
transcript.pyannote[2766].end 18090.03096875
transcript.pyannote[2767].speaker SPEAKER_28
transcript.pyannote[2767].start 18090.65534375
transcript.pyannote[2767].end 18091.44846875
transcript.pyannote[2768].speaker SPEAKER_28
transcript.pyannote[2768].start 18092.44409375
transcript.pyannote[2768].end 18095.49846875
transcript.pyannote[2769].speaker SPEAKER_28
transcript.pyannote[2769].start 18096.13971875
transcript.pyannote[2769].end 18106.70346875
transcript.pyannote[2770].speaker SPEAKER_28
transcript.pyannote[2770].start 18107.29409375
transcript.pyannote[2770].end 18109.89284375
transcript.pyannote[2771].speaker SPEAKER_28
transcript.pyannote[2771].start 18110.58471875
transcript.pyannote[2771].end 18111.42846875
transcript.pyannote[2772].speaker SPEAKER_28
transcript.pyannote[2772].start 18111.61409375
transcript.pyannote[2772].end 18112.91346875
transcript.pyannote[2773].speaker SPEAKER_28
transcript.pyannote[2773].start 18113.77409375
transcript.pyannote[2773].end 18114.87096875
transcript.pyannote[2774].speaker SPEAKER_28
transcript.pyannote[2774].start 18115.42784375
transcript.pyannote[2774].end 18117.23346875
transcript.pyannote[2775].speaker SPEAKER_28
transcript.pyannote[2775].start 18117.82409375
transcript.pyannote[2775].end 18119.19096875
transcript.pyannote[2776].speaker SPEAKER_28
transcript.pyannote[2776].start 18119.73096875
transcript.pyannote[2776].end 18140.67284375
transcript.pyannote[2777].speaker SPEAKER_28
transcript.pyannote[2777].start 18140.99346875
transcript.pyannote[2777].end 18145.21221875
transcript.pyannote[2778].speaker SPEAKER_28
transcript.pyannote[2778].start 18146.27534375
transcript.pyannote[2778].end 18148.24971875
transcript.pyannote[2779].speaker SPEAKER_28
transcript.pyannote[2779].start 18149.07659375
transcript.pyannote[2779].end 18160.78784375
transcript.pyannote[2780].speaker SPEAKER_28
transcript.pyannote[2780].start 18160.90596875
transcript.pyannote[2780].end 18163.62284375
transcript.pyannote[2781].speaker SPEAKER_28
transcript.pyannote[2781].start 18163.99409375
transcript.pyannote[2781].end 18167.77409375
transcript.pyannote[2782].speaker SPEAKER_28
transcript.pyannote[2782].start 18168.66846875
transcript.pyannote[2782].end 18169.49534375
transcript.pyannote[2783].speaker SPEAKER_28
transcript.pyannote[2783].start 18169.81596875
transcript.pyannote[2783].end 18170.20409375
transcript.pyannote[2784].speaker SPEAKER_28
transcript.pyannote[2784].start 18171.31784375
transcript.pyannote[2784].end 18173.07284375
transcript.pyannote[2785].speaker SPEAKER_28
transcript.pyannote[2785].start 18173.74784375
transcript.pyannote[2785].end 18177.17346875
transcript.pyannote[2786].speaker SPEAKER_28
transcript.pyannote[2786].start 18177.27471875
transcript.pyannote[2786].end 18189.61034375
transcript.pyannote[2787].speaker SPEAKER_28
transcript.pyannote[2787].start 18190.84221875
transcript.pyannote[2787].end 18191.34846875
transcript.pyannote[2788].speaker SPEAKER_28
transcript.pyannote[2788].start 18192.29346875
transcript.pyannote[2788].end 18194.60534375
transcript.pyannote[2789].speaker SPEAKER_28
transcript.pyannote[2789].start 18195.71909375
transcript.pyannote[2789].end 18195.78659375
transcript.pyannote[2790].speaker SPEAKER_28
transcript.pyannote[2790].start 18195.98909375
transcript.pyannote[2790].end 18196.17471875
transcript.pyannote[2791].speaker SPEAKER_28
transcript.pyannote[2791].start 18196.27596875
transcript.pyannote[2791].end 18198.04784375
transcript.pyannote[2792].speaker SPEAKER_28
transcript.pyannote[2792].start 18198.48659375
transcript.pyannote[2792].end 18199.97159375
transcript.pyannote[2793].speaker SPEAKER_28
transcript.pyannote[2793].start 18200.84909375
transcript.pyannote[2793].end 18214.88909375
transcript.pyannote[2794].speaker SPEAKER_28
transcript.pyannote[2794].start 18215.69909375
transcript.pyannote[2794].end 18221.09909375
transcript.pyannote[2795].speaker SPEAKER_28
transcript.pyannote[2795].start 18221.58846875
transcript.pyannote[2795].end 18226.16159375
transcript.pyannote[2796].speaker SPEAKER_28
transcript.pyannote[2796].start 18226.26284375
transcript.pyannote[2796].end 18232.43909375
transcript.pyannote[2797].speaker SPEAKER_28
transcript.pyannote[2797].start 18233.26596875
transcript.pyannote[2797].end 18237.61971875
transcript.pyannote[2798].speaker SPEAKER_28
transcript.pyannote[2798].start 18238.53096875
transcript.pyannote[2798].end 18244.23471875
transcript.pyannote[2799].speaker SPEAKER_28
transcript.pyannote[2799].start 18244.82534375
transcript.pyannote[2799].end 18247.44096875
transcript.pyannote[2800].speaker SPEAKER_28
transcript.pyannote[2800].start 18247.93034375
transcript.pyannote[2800].end 18249.07784375
transcript.pyannote[2801].speaker SPEAKER_28
transcript.pyannote[2801].start 18249.73596875
transcript.pyannote[2801].end 18251.06909375
transcript.pyannote[2802].speaker SPEAKER_28
transcript.pyannote[2802].start 18251.47409375
transcript.pyannote[2802].end 18252.65534375
transcript.pyannote[2803].speaker SPEAKER_28
transcript.pyannote[2803].start 18253.33034375
transcript.pyannote[2803].end 18254.89971875
transcript.pyannote[2804].speaker SPEAKER_28
transcript.pyannote[2804].start 18256.36784375
transcript.pyannote[2804].end 18260.68784375
transcript.pyannote[2805].speaker SPEAKER_28
transcript.pyannote[2805].start 18261.44721875
transcript.pyannote[2805].end 18262.83096875
transcript.pyannote[2806].speaker SPEAKER_28
transcript.pyannote[2806].start 18263.92784375
transcript.pyannote[2806].end 18266.17221875
transcript.pyannote[2807].speaker SPEAKER_28
transcript.pyannote[2807].start 18266.40846875
transcript.pyannote[2807].end 18272.19659375
transcript.pyannote[2808].speaker SPEAKER_07
transcript.pyannote[2808].start 18273.52971875
transcript.pyannote[2808].end 18283.48596875
transcript.pyannote[2809].speaker SPEAKER_28
transcript.pyannote[2809].start 18275.28471875
transcript.pyannote[2809].end 18275.68971875
transcript.pyannote[2810].speaker SPEAKER_07
transcript.pyannote[2810].start 18284.04284375
transcript.pyannote[2810].end 18287.31659375
transcript.pyannote[2811].speaker SPEAKER_07
transcript.pyannote[2811].start 18287.51909375
transcript.pyannote[2811].end 18296.37846875
transcript.pyannote[2812].speaker SPEAKER_28
transcript.pyannote[2812].start 18296.42909375
transcript.pyannote[2812].end 18305.65971875
transcript.pyannote[2813].speaker SPEAKER_28
transcript.pyannote[2813].start 18306.04784375
transcript.pyannote[2813].end 18326.75346875
transcript.pyannote[2814].speaker SPEAKER_28
transcript.pyannote[2814].start 18327.04034375
transcript.pyannote[2814].end 18328.08659375
transcript.pyannote[2815].speaker SPEAKER_28
transcript.pyannote[2815].start 18329.14971875
transcript.pyannote[2815].end 18335.61284375
transcript.pyannote[2816].speaker SPEAKER_28
transcript.pyannote[2816].start 18336.01784375
transcript.pyannote[2816].end 18336.55784375
transcript.pyannote[2817].speaker SPEAKER_28
transcript.pyannote[2817].start 18336.87846875
transcript.pyannote[2817].end 18347.03721875
transcript.pyannote[2818].speaker SPEAKER_28
transcript.pyannote[2818].start 18347.62784375
transcript.pyannote[2818].end 18365.51534375
transcript.pyannote[2819].speaker SPEAKER_28
transcript.pyannote[2819].start 18366.27471875
transcript.pyannote[2819].end 18370.10534375
transcript.pyannote[2820].speaker SPEAKER_28
transcript.pyannote[2820].start 18370.59471875
transcript.pyannote[2820].end 18374.07096875
transcript.pyannote[2821].speaker SPEAKER_28
transcript.pyannote[2821].start 18374.57721875
transcript.pyannote[2821].end 18378.94784375
transcript.pyannote[2822].speaker SPEAKER_28
transcript.pyannote[2822].start 18379.45409375
transcript.pyannote[2822].end 18379.99409375
transcript.pyannote[2823].speaker SPEAKER_28
transcript.pyannote[2823].start 18380.63534375
transcript.pyannote[2823].end 18381.12471875
transcript.pyannote[2824].speaker SPEAKER_28
transcript.pyannote[2824].start 18381.85034375
transcript.pyannote[2824].end 18383.13284375
transcript.pyannote[2825].speaker SPEAKER_28
transcript.pyannote[2825].start 18383.85846875
transcript.pyannote[2825].end 18384.41534375
transcript.pyannote[2826].speaker SPEAKER_28
transcript.pyannote[2826].start 18385.00596875
transcript.pyannote[2826].end 18390.60846875
transcript.pyannote[2827].speaker SPEAKER_28
transcript.pyannote[2827].start 18391.57034375
transcript.pyannote[2827].end 18392.88659375
transcript.pyannote[2828].speaker SPEAKER_28
transcript.pyannote[2828].start 18393.69659375
transcript.pyannote[2828].end 18394.87784375
transcript.pyannote[2829].speaker SPEAKER_28
transcript.pyannote[2829].start 18395.24909375
transcript.pyannote[2829].end 18399.72096875
transcript.pyannote[2830].speaker SPEAKER_28
transcript.pyannote[2830].start 18400.19346875
transcript.pyannote[2830].end 18401.03721875
transcript.pyannote[2831].speaker SPEAKER_28
transcript.pyannote[2831].start 18402.01596875
transcript.pyannote[2831].end 18403.80471875
transcript.pyannote[2832].speaker SPEAKER_28
transcript.pyannote[2832].start 18404.04096875
transcript.pyannote[2832].end 18404.39534375
transcript.pyannote[2833].speaker SPEAKER_28
transcript.pyannote[2833].start 18404.96909375
transcript.pyannote[2833].end 18406.40346875
transcript.pyannote[2834].speaker SPEAKER_28
transcript.pyannote[2834].start 18406.50471875
transcript.pyannote[2834].end 18407.28096875
transcript.pyannote[2835].speaker SPEAKER_28
transcript.pyannote[2835].start 18407.61846875
transcript.pyannote[2835].end 18411.09471875
transcript.pyannote[2836].speaker SPEAKER_28
transcript.pyannote[2836].start 18411.65159375
transcript.pyannote[2836].end 18415.66784375
transcript.pyannote[2837].speaker SPEAKER_28
transcript.pyannote[2837].start 18416.49471875
transcript.pyannote[2837].end 18418.03034375
transcript.pyannote[2838].speaker SPEAKER_28
transcript.pyannote[2838].start 18418.50284375
transcript.pyannote[2838].end 18421.52346875
transcript.pyannote[2839].speaker SPEAKER_28
transcript.pyannote[2839].start 18422.29971875
transcript.pyannote[2839].end 18425.01659375
transcript.pyannote[2840].speaker SPEAKER_07
transcript.pyannote[2840].start 18425.89409375
transcript.pyannote[2840].end 18428.64471875
transcript.pyannote[2841].speaker SPEAKER_07
transcript.pyannote[2841].start 18429.37034375
transcript.pyannote[2841].end 18431.41221875
transcript.pyannote[2842].speaker SPEAKER_07
transcript.pyannote[2842].start 18431.78346875
transcript.pyannote[2842].end 18467.64284375
transcript.pyannote[2843].speaker SPEAKER_08
transcript.pyannote[2843].start 18466.19159375
transcript.pyannote[2843].end 18469.66784375
transcript.pyannote[2844].speaker SPEAKER_07
transcript.pyannote[2844].start 18468.46971875
transcript.pyannote[2844].end 18485.90159375
transcript.pyannote[2845].speaker SPEAKER_07
transcript.pyannote[2845].start 18486.32346875
transcript.pyannote[2845].end 18493.20846875
transcript.pyannote[2846].speaker SPEAKER_28
transcript.pyannote[2846].start 18488.63534375
transcript.pyannote[2846].end 18489.76596875
transcript.pyannote[2847].speaker SPEAKER_28
transcript.pyannote[2847].start 18490.64346875
transcript.pyannote[2847].end 18491.53784375
transcript.pyannote[2848].speaker SPEAKER_28
transcript.pyannote[2848].start 18491.57159375
transcript.pyannote[2848].end 18506.60721875
transcript.pyannote[2849].speaker SPEAKER_07
transcript.pyannote[2849].start 18506.75909375
transcript.pyannote[2849].end 18511.02846875
transcript.pyannote[2850].speaker SPEAKER_07
transcript.pyannote[2850].start 18511.18034375
transcript.pyannote[2850].end 18537.67409375
transcript.pyannote[2851].speaker SPEAKER_00
transcript.pyannote[2851].start 18526.65471875
transcript.pyannote[2851].end 18526.80659375
transcript.pyannote[2852].speaker SPEAKER_08
transcript.pyannote[2852].start 18534.29909375
transcript.pyannote[2852].end 18534.43409375
transcript.pyannote[2853].speaker SPEAKER_08
transcript.pyannote[2853].start 18534.48471875
transcript.pyannote[2853].end 18535.00784375
transcript.pyannote[2854].speaker SPEAKER_28
transcript.pyannote[2854].start 18535.00784375
transcript.pyannote[2854].end 18535.31159375
transcript.pyannote[2855].speaker SPEAKER_08
transcript.pyannote[2855].start 18535.31159375
transcript.pyannote[2855].end 18535.34534375
transcript.pyannote[2856].speaker SPEAKER_28
transcript.pyannote[2856].start 18538.65284375
transcript.pyannote[2856].end 18559.05471875
transcript.pyannote[2857].speaker SPEAKER_28
transcript.pyannote[2857].start 18559.81409375
transcript.pyannote[2857].end 18560.21909375
transcript.pyannote[2858].speaker SPEAKER_28
transcript.pyannote[2858].start 18560.91096875
transcript.pyannote[2858].end 18561.38346875
transcript.pyannote[2859].speaker SPEAKER_28
transcript.pyannote[2859].start 18561.77159375
transcript.pyannote[2859].end 18562.31159375
transcript.pyannote[2860].speaker SPEAKER_28
transcript.pyannote[2860].start 18562.49721875
transcript.pyannote[2860].end 18564.37034375
transcript.pyannote[2861].speaker SPEAKER_28
transcript.pyannote[2861].start 18565.83846875
transcript.pyannote[2861].end 18567.52596875
transcript.pyannote[2862].speaker SPEAKER_28
transcript.pyannote[2862].start 18568.75784375
transcript.pyannote[2862].end 18570.63096875
transcript.pyannote[2863].speaker SPEAKER_28
transcript.pyannote[2863].start 18570.90096875
transcript.pyannote[2863].end 18573.93846875
transcript.pyannote[2864].speaker SPEAKER_28
transcript.pyannote[2864].start 18574.83284375
transcript.pyannote[2864].end 18575.91284375
transcript.pyannote[2865].speaker SPEAKER_28
transcript.pyannote[2865].start 18577.31346875
transcript.pyannote[2865].end 18579.18659375
transcript.pyannote[2866].speaker SPEAKER_28
transcript.pyannote[2866].start 18579.62534375
transcript.pyannote[2866].end 18585.10971875
transcript.pyannote[2867].speaker SPEAKER_28
transcript.pyannote[2867].start 18585.68346875
transcript.pyannote[2867].end 18586.03784375
transcript.pyannote[2868].speaker SPEAKER_28
transcript.pyannote[2868].start 18587.05034375
transcript.pyannote[2868].end 18588.46784375
transcript.pyannote[2869].speaker SPEAKER_28
transcript.pyannote[2869].start 18588.82221875
transcript.pyannote[2869].end 18594.49221875
transcript.pyannote[2870].speaker SPEAKER_28
transcript.pyannote[2870].start 18595.04909375
transcript.pyannote[2870].end 18601.69784375
transcript.pyannote[2871].speaker SPEAKER_28
transcript.pyannote[2871].start 18602.32221875
transcript.pyannote[2871].end 18602.96346875
transcript.pyannote[2872].speaker SPEAKER_28
transcript.pyannote[2872].start 18603.58784375
transcript.pyannote[2872].end 18616.80096875
transcript.pyannote[2873].speaker SPEAKER_28
transcript.pyannote[2873].start 18617.32409375
transcript.pyannote[2873].end 18617.83034375
transcript.pyannote[2874].speaker SPEAKER_28
transcript.pyannote[2874].start 18618.31971875
transcript.pyannote[2874].end 18619.41659375
transcript.pyannote[2875].speaker SPEAKER_28
transcript.pyannote[2875].start 18620.61471875
transcript.pyannote[2875].end 18624.29346875
transcript.pyannote[2876].speaker SPEAKER_28
transcript.pyannote[2876].start 18624.61409375
transcript.pyannote[2876].end 18627.28034375
transcript.pyannote[2877].speaker SPEAKER_28
transcript.pyannote[2877].start 18628.84971875
transcript.pyannote[2877].end 18630.35159375
transcript.pyannote[2878].speaker SPEAKER_28
transcript.pyannote[2878].start 18630.87471875
transcript.pyannote[2878].end 18632.37659375
transcript.pyannote[2879].speaker SPEAKER_28
transcript.pyannote[2879].start 18632.61284375
transcript.pyannote[2879].end 18634.72221875
transcript.pyannote[2880].speaker SPEAKER_28
transcript.pyannote[2880].start 18635.48159375
transcript.pyannote[2880].end 18637.28721875
transcript.pyannote[2881].speaker SPEAKER_28
transcript.pyannote[2881].start 18637.86096875
transcript.pyannote[2881].end 18641.94471875
transcript.pyannote[2882].speaker SPEAKER_07
transcript.pyannote[2882].start 18642.53534375
transcript.pyannote[2882].end 18655.05659375
transcript.pyannote[2883].speaker SPEAKER_28
transcript.pyannote[2883].start 18652.45784375
transcript.pyannote[2883].end 18652.77846875
transcript.pyannote[2884].speaker SPEAKER_28
transcript.pyannote[2884].start 18653.47034375
transcript.pyannote[2884].end 18653.63909375
transcript.pyannote[2885].speaker SPEAKER_28
transcript.pyannote[2885].start 18653.82471875
transcript.pyannote[2885].end 18662.27909375
transcript.pyannote[2886].speaker SPEAKER_07
transcript.pyannote[2886].start 18658.39784375
transcript.pyannote[2886].end 18658.68471875
transcript.pyannote[2887].speaker SPEAKER_07
transcript.pyannote[2887].start 18661.23284375
transcript.pyannote[2887].end 18666.49784375
transcript.pyannote[2888].speaker SPEAKER_28
transcript.pyannote[2888].start 18664.55721875
transcript.pyannote[2888].end 18674.07471875
transcript.pyannote[2889].speaker SPEAKER_28
transcript.pyannote[2889].start 18674.66534375
transcript.pyannote[2889].end 18684.82409375
transcript.pyannote[2890].speaker SPEAKER_28
transcript.pyannote[2890].start 18685.06034375
transcript.pyannote[2890].end 18687.30471875
transcript.pyannote[2891].speaker SPEAKER_28
transcript.pyannote[2891].start 18687.86159375
transcript.pyannote[2891].end 18688.75596875
transcript.pyannote[2892].speaker SPEAKER_28
transcript.pyannote[2892].start 18689.14409375
transcript.pyannote[2892].end 18693.80159375
transcript.pyannote[2893].speaker SPEAKER_28
transcript.pyannote[2893].start 18694.32471875
transcript.pyannote[2893].end 18702.35721875
transcript.pyannote[2894].speaker SPEAKER_28
transcript.pyannote[2894].start 18705.31034375
transcript.pyannote[2894].end 18705.32721875
transcript.pyannote[2895].speaker SPEAKER_03
transcript.pyannote[2895].start 18705.32721875
transcript.pyannote[2895].end 18707.87534375
transcript.pyannote[2896].speaker SPEAKER_03
transcript.pyannote[2896].start 18710.05221875
transcript.pyannote[2896].end 18713.51159375
transcript.pyannote[2897].speaker SPEAKER_03
transcript.pyannote[2897].start 18714.23721875
transcript.pyannote[2897].end 18718.23659375
transcript.pyannote[2898].speaker SPEAKER_03
transcript.pyannote[2898].start 18718.82721875
transcript.pyannote[2898].end 18730.92659375
transcript.pyannote[2899].speaker SPEAKER_03
transcript.pyannote[2899].start 18731.39909375
transcript.pyannote[2899].end 18734.11596875
transcript.pyannote[2900].speaker SPEAKER_03
transcript.pyannote[2900].start 18735.21284375
transcript.pyannote[2900].end 18737.28846875
transcript.whisperx[0].start 1378.038
transcript.whisperx[0].end 1378.058
transcript.whisperx[0].text 沒關係
transcript.whisperx[1].start 1887.066
transcript.whisperx[1].end 1908.132
transcript.whisperx[1].text 報告委員會初期委員12人已足法定人數請主席宣布開會現在開會請議事人員宣讀上次會議意思錄立法院第11屆第三會期社會福利及衛生環境委員會第16次全體委員會議意思錄時間114年6月9日星期一9時2分至16時35分6月11日星期三9時至17時24分地點群賢樓801會議室
transcript.whisperx[2].start 1914.774
transcript.whisperx[2].end 1937.927
transcript.whisperx[2].text 出席委员陈委员赵姿等15人列席委员中委员嘉宾等15人列席官员卫生福利部部长邱太元等相关人员主席刘兆吉委员建国6月9日报告事项宣读上次会议议事录决定确定讨论事项审查行政院含情审议委员林月琴等21人拟据全民健康保险资料管理条例草案等二案
transcript.whisperx[3].start 1938.567
transcript.whisperx[3].end 1960.946
transcript.whisperx[3].text 本日會議經委員林月琴說明提案指去由衛生福利部部長說明後委員陳昭芝等14人提出質詢均經衛生福利部部長及個人資料保護委員會籌備處法制事務組組長林玉佳及各相關主管等即席答覆委員楊耀翁小林圖權及徐欣盈及陳盈所提書面質詢列入紀錄刊登公報
transcript.whisperx[4].start 1961.767
transcript.whisperx[4].end 1974.075
transcript.whisperx[4].text 本日會議由委員王振旭等3人提出部分條文修正動議委員盧憲一等3人提出第5條第7條及第15條條文修正動議委員王衛明等6人分別提出第6條第7條第17條第23條條文修正動議
transcript.whisperx[5].start 1977.857
transcript.whisperx[5].end 2004.571
transcript.whisperx[5].text 委員劉建國等三人提出部分條文修正動議委員林淑芬等四人分別提出第五條第六條第十條第十一條第十四條第十七條第十九條條文修正動議委員陳昭芝等三人提出部分條文修正動議共十五案決議一說明及詢答完畢二委員質詢未及答覆或請補充資料者請相關機關於二周內以書面答覆委員另要求其勝者從其鎖定
transcript.whisperx[6].start 2005.171
transcript.whisperx[6].end 2022.278
transcript.whisperx[6].text 三行政院含情審議全民健康保險資料管理條例草案等二案保留條文及第14條以下條文令則其繼續審查審查結果一照行政院及委員林月琴等21人提案通過法案名稱第二條第12條及第13條二保留條文
transcript.whisperx[7].start 2026.019
transcript.whisperx[7].end 2045.655
transcript.whisperx[7].text 第一條第三條至第十一條六月十一日討論事項繼續審查行政院函請審議委員林月琴等十六人委員何新淳等十六人委員王玉敏等二十四人委員邱若驊等十六人委員黃婕等二十一人委員蔡易宇等十七人委員李坤臣等二十二人委員陳培宇等十九人
transcript.whisperx[8].start 2046.215
transcript.whisperx[8].end 2073.009
transcript.whisperx[8].text 委員郭玉琴等21人委員陳素月等16人委員鄭天才等18人委員王美惠等19人委員林淑芬等25人委員王振旭等18人委員吳佩儀等19人分別擬據兒童托育服務法草案等16案以及審查委員游浩等17人擬據兒童托育多元服務法草案委員范雲等17人委員李燕秀等16人委員羅廷瑋等17人分別擬據兒童托育服務法草案等4案
transcript.whisperx[9].start 2075.023
transcript.whisperx[9].end 2100.797
transcript.whisperx[9].text 114年5月28日第11屆第三會期本會第14次全體委員會議由委員林月琴等三人提出部分條文修正動議本日會議由委員陳金輝陳昭芝王玉明等三人提出第11條條文修正動議委員陳金輝陳昭芝王玉明等三人提出第18條第19條及第36條條文修正動議委員王振旭黃秀芳林淑芬張雅玲等四人提出部分條文修正動議
transcript.whisperx[10].start 2101.557
transcript.whisperx[10].end 2120.316
transcript.whisperx[10].text 委員林淑芬等三人提出第七條第十三條及第十四條條文修正動議委員林淑芬等三人提出第八條第十八條及第七十七條條文修正動議委員劉建國等三人提出部分條文修正動議委員陳寅王振旭吳立華等四人提出部分條文修正動議共八案
transcript.whisperx[11].start 2121.096
transcript.whisperx[11].end 2148.172
transcript.whisperx[11].text 決議一本日會議審查結果如下照行政院提案通過法案名稱第一張張明及第二張張明第一條照委員林月琴等16人及委員林淑芬等25人提案修正通過委員陳培宇等19人提案第八條及委員林淑芬等25人提案第九條修正通過四法案審查完均後改列本法第四條第八條仲裁各版本修正通過第九條照委員劉堅果等三人所提修正動議修正通過
transcript.whisperx[12].start 2148.852
transcript.whisperx[12].end 2157.101
transcript.whisperx[12].text 第10條照委員林淑芬等25人提案第12條及委員劉建國等3人所提修正動議通過委員林淑芬等25人提案第14條修正通過通過附帶決議一項保留條文第2條至第7條委員林淑芬等25人提案第7條委員王玉敏等24人提案第48條
transcript.whisperx[13].start 2168.252
transcript.whisperx[13].end 2185.266
transcript.whisperx[13].text 委員陳培鈺等19人提案第12條及委員林淑芬等25人提案第13條委員王衛明等24人提案第9條至第13條委員林淑芬等25人提案第15條二行政院函請審議審議兒童托育服務法草案等20案保留條文及第11條以下條文令則其繼續審查宣讀完畢
transcript.whisperx[14].start 2194.807
transcript.whisperx[14].end 2222.401
transcript.whisperx[14].text 好 請問委員會上市議事錄有錯誤或遺漏之處沒有 那我們議事錄確定本日的議程為邀請勞動部長就營造友善職場育兒環境落實照顧不離子政策規劃進行專題報告並備諮詢我們現在介紹在場的委員及列席官員第一位陳昭志委員
transcript.whisperx[15].start 2226.451
transcript.whisperx[15].end 2248.485
transcript.whisperx[15].text 林業群委員 王振旭委員行政官員 勞動部部長 洪淑安勞動力發展署署長 黃林玉勞工保險局局長 白立珍
transcript.whisperx[16].start 2252.425
transcript.whisperx[16].end 2265.053
transcript.whisperx[16].text 職業安全衛生署署長林玉堂好 林玉堂勞動關係司司長王厚偉勞動保險司司長陳美女勞動福祉退休司司長黃維琛好勞動條件就業評等司司長黃琦雅好
transcript.whisperx[17].start 2284.685
transcript.whisperx[17].end 2287.23
transcript.whisperx[17].text 接下來請洪部長來做報告嗯
transcript.whisperx[18].start 2298.728
transcript.whisperx[18].end 2324.362
transcript.whisperx[18].text 主席各位委員大家好那今天本部應邀致貴委員會就營造友善職場育兒環境落實照顧不離職政策規劃進行專題報告進行委員不吝指教那以下請就安心生養職場環境育嬰留職停薪津貼及補助推動企業設置補給乳室托兒設施或提供托兒措施
transcript.whisperx[19].start 2325.883
transcript.whisperx[19].end 2341.518
transcript.whisperx[19].text 協助婦女平衡工作與家庭照顧之支持性措施及滾動檢討友善育兒照顧措施提供說明那第一個部分是安心生養職場環境一性別平等工作法規定受僱者如有育嬰留職停薪
transcript.whisperx[20].start 2342.259
transcript.whisperx[20].end 2360.936
transcript.whisperx[20].text 調整或減少工作時間等各項促進平等工作平等措施需求都可以依法提出申請雇主不得拒絕另外該法也規定雇主對於求職者或受雇者不得因性別而有差別待遇這裡的性別歧視禁止也包括懷孕歧視的禁止
transcript.whisperx[21].start 2361.596
transcript.whisperx[21].end 2388.376
transcript.whisperx[21].text 本部於去年事辦彈性暈流停有89家企業參加勞工方面申請三日的佔最多主要申請原因有保姆臨時有事腸病毒停託客等而沒有提出申請的原因大部分以家庭照顧價或用其他價別來替代部分僱主有表達未來制度如果放寬彈性還是會擔心影響人力調配及公司營運這次的事辦彈性暈流停
transcript.whisperx[22].start 2390.475
transcript.whisperx[22].end 2415.422
transcript.whisperx[22].text 確實有經濟空間本部以陸續收集各方回饋意見及相關建言並規劃配套措施以建構更友善的勞工職場環境第二部分是提供育嬰留職停薪津貼及補助為穩定勞工就業就會保險提供六成的育嬰留職停薪津貼而且從110年7月1日起另外以公務預算加給兩成的薪資補助合計發
transcript.whisperx[23].start 2417.784
transcript.whisperx[23].end 2432.325
transcript.whisperx[23].text 發給八成的津貼及補助自110年7月實施薪資補助以來截至123年底勤領津貼及薪資補助者為32萬多人男女性勤領人數都有成長
transcript.whisperx[24].start 2433.547
transcript.whisperx[24].end 2453.379
transcript.whisperx[24].text 第三部分是推动企业设置补给入市托儿设施或提供托儿措施为支持双就业双照顾本部定定经费补助办法提供经费鼓励企业设计补给入市及提供托儿服务另外去年8月修正经费补助办法提高新兴
transcript.whisperx[25].start 2454.758
transcript.whisperx[25].end 2469.546
transcript.whisperx[25].text 托兒設施經費最高補助額度由300萬至500萬元並補助企業辦理友善家庭的工作生活平衡措施第四部分是協助婦女平衡工作及家庭照顧之支持性措施
transcript.whisperx[26].start 2470.046
transcript.whisperx[26].end 2486.257
transcript.whisperx[26].text 为鼓励妇女再就业本部推动妇女再就业计划结合相关部会资源协助妇女平衡工作与家庭照顾需求运用自主训练奖励再就业奖励雇主工时调整奖励及其他如雇佣奖助等
transcript.whisperx[27].start 2488.158
transcript.whisperx[27].end 2503.744
transcript.whisperx[27].text 措施鼓勵婦女精進職能重返職場穩定就業並提高雇主雇用意願營造友善職場環境113年至114年5月只以協助婦女58,027人並以114年至117年每年協助3.5萬名婦女重返職場為目標持續辦理
transcript.whisperx[28].start 2512.867
transcript.whisperx[28].end 2526.133
transcript.whisperx[28].text 最後在滾動檢討友善職場育兒照顧措施部分未來在面對受僱者的育兒照顧需求本部課證研擬更彈性的照顧措施減少勞工因育兒而必須離職並將兼顧企業營運需求以創造勞工企業雙贏
transcript.whisperx[29].start 2529.595
transcript.whisperx[29].end 2544.511
transcript.whisperx[29].text 我們同步也在規劃修正就保保險法規定讓領滿6個月的育嬰留職挺心津貼之雙親於育嬰留職挺心期間得各在請領一個月的育嬰留職挺心津貼以鼓勵雙親共同分擔育嬰之責任
transcript.whisperx[30].start 2545.652
transcript.whisperx[30].end 2573.004
transcript.whisperx[30].text 另外為肯定鼓勵企業推動友善家庭措施本部也辦理工作生活平衡獎並將獲獎企業優良範例加以推廣帶動更多企業響應推動友善家庭措施未來本部也會配合整體少子女化政策持續加強各項友善職場措施支持勞工兼顧工作育兒以及家庭照顧以上報告敬請各位委員及先進指導並助主席各位委員先進身體健康萬事如意謝謝
transcript.whisperx[31].start 2583.945
transcript.whisperx[31].end 2612.643
transcript.whisperx[31].text 有關本市會議各項書面資料均列入紀錄刊登公報現在我們要開始詢問今天這個題目是年輕父爸爸媽媽非常大的壓力包括育嬰的問題男女可以請育嬰假彈性育嬰另外一個就是小孩子在學校在托兒所如果有流行性的疾病那怎麼
transcript.whisperx[32].start 2613.942
transcript.whisperx[32].end 2635.571
transcript.whisperx[32].text 突然要請假突然發燒要回家等等還有企業怎麼來申請設施等等這個都非常大的題目我們現在開始詢答本委員會委員8分鐘列席委員4分鐘10點半截止法院登記委員如果書面質詢請於上會前提出
transcript.whisperx[33].start 2636.986
transcript.whisperx[33].end 2650.036
transcript.whisperx[33].text 預期不受理 我們暫定10點半左右 休息10分鐘原則上11點半處理臨時提案 11點截止收案好 那現在我們請第一位委員陳昭芝發言謝謝主席 麻煩洪部長
transcript.whisperx[34].start 2666.852
transcript.whisperx[34].end 2680.738
transcript.whisperx[34].text 部長,我的辦公室門口一直貼著每個月持續更新的月出生數跟月死亡人數,而且我還提供了每年的累積的數字。我想請問部長,你知道你出生那一年,台灣的新生兒有多少嗎?1984年,你知道嗎?出生人口有多少人?
transcript.whisperx[35].start 2690.032
transcript.whisperx[35].end 2709.526
transcript.whisperx[35].text 33萬7972人 OK的33萬 對 將近34萬但是請你看看 民進黨二次執政以後當然不是 我是說數字是如此大概2016年民進黨二次執政 當年出生人數大概20萬可是每年降1萬 你看看 那一直到去年2024年是榮年
transcript.whisperx[36].start 2712.128
transcript.whisperx[36].end 2730.991
transcript.whisperx[36].text 農年結果出生數到13萬4856比起你出生那一年少了六成只剩下四成的人口所以部長過去勞動部傾向用經濟的誘因來作為鼓勵生育的手段你認為成果如何
transcript.whisperx[37].start 2733.249
transcript.whisperx[37].end 2757.086
transcript.whisperx[37].text 我想當然現在這個少子女化的問題其實是各部會都要一起來共同因應的我理解部長 你看這個數字 你看這個曲線就知道成果如何不管是多少部會要來承擔的嘛這個一看就知道 而且最近四個月來部長完全沒有回升的這個趨勢上個星期內政府公告了五月份的
transcript.whisperx[38].start 2757.546
transcript.whisperx[38].end 2780.158
transcript.whisperx[38].text 那個數字是8,4338千多喔那媒體使用這個下探新低這個意思來處理所以出生人數下跌恐怕政府沒有辦法再用單純的就是說生育不是單純靠金錢誘因可以處理這嚴重的你如果把這個8千多乘以12不得了了比起你出生的那一年的人數
transcript.whisperx[39].start 2781.238
transcript.whisperx[39].end 2806.638
transcript.whisperx[39].text 那部長您上任部長之前12天你有到這個未還組參加一個公聽會你有提到其實很多年輕的爸爸媽媽有說現行的育嬰留庭制度太難用了可能就是因為申請要用單位月做單位譬如說小孩子突然發燒了也許幾天那你不可能因此就請一個月的育嬰留庭所以爸爸媽媽只能用家庭照顧假
transcript.whisperx[40].start 2807.398
transcript.whisperx[40].end 2826.873
transcript.whisperx[40].text 但是家裡照顧家就是併入到市價裡面一起其實是天數很有限總共是七天嘛等於有點說你要照顧孩子可是你又要被扣薪嘛因為市價是要扣薪的那許多年在工作局他本來薪水就不高那你現在有點像懲罰稅有點像生孩子那你就給他懲罰一樣部長你記不記得你在2023年總質詢
transcript.whisperx[41].start 2829.575
transcript.whisperx[41].end 2842.253
transcript.whisperx[41].text 您還像這個當時陳俊宇院長說現行的這個育嬰留庭這個制度並不符合實際的需求這都你講給我,你會嗎?我一定會有你的投影片裡面常有我的投影片
transcript.whisperx[42].start 2844.006
transcript.whisperx[42].end 2868.902
transcript.whisperx[42].text 對 我很關心你 我們互相關心但問題是 大家都知道這個制度不好啊制度是沒有改變 那很沒有改變譬如說彈性育嬰假今年3月我真的想請教一下李次長李建宏次長接受媒體採訪時他說以日為單位的彈性育嬰假不再考慮範圍內但是一個月後部長您又在媒體表示說彈性育嬰假是未來的推動改革目標
transcript.whisperx[43].start 2870.162
transcript.whisperx[43].end 2891.748
transcript.whisperx[43].text 這個說法都不一致那很多爸爸媽媽會想說到你們是真的要做還是說喊喊口號那另外就是說這個育嬰假的彈性改革就是說這個是一個體制性的變革那你是打算用行政命令處理還是說可以這個法制面的修法來調整呢你看你跟次長的講話不一樣先了解這個部分
transcript.whisperx[44].start 2892.413
transcript.whisperx[44].end 2911.894
transcript.whisperx[44].text 我想關於談運營留庭的部分,我目前會先考慮能夠在不修法的範圍內,就可以來處理為什麼官員都很怕修法?修法就違法是不是?都要用行政命令或其他的方式處理反正你的態度是什麼?就是到底運營留庭制度要不要檢討?
transcript.whisperx[45].start 2913.376
transcript.whisperx[45].end 2932.758
transcript.whisperx[45].text 市長跟你的態度不一樣嗎暈流停的制度目前都在檢討中對彈性化那目前都在檢討中那我想我們也是朝向更短的天數來進行這個檢討更有彈性了市長但接下來我給你談法條部分因為現行的性平法第20條家庭照顧價仍列入市價
transcript.whisperx[46].start 2934.18
transcript.whisperx[46].end 2946.617
transcript.whisperx[46].text 這個全年最多七天但是市價跟家庭照顧價其實是本質不同的兩回事嘛前者有點像比較個人的事務要處理或者是照顧責任把這兩個價放在一起計算我想確認說我想了解說
transcript.whisperx[47].start 2948.98
transcript.whisperx[47].end 2964.538
transcript.whisperx[47].text 您也這樣子認為嗎那因為現在我們今天會討論這個題目就是除了就是說我們想要努力提高生育率那又面對高齡化的問題照顧家人跟處理個人事務是兩件事當然我知道在疫情期間那時候有點特別因為很多小朋友確診
transcript.whisperx[48].start 2965.619
transcript.whisperx[48].end 2986.957
transcript.whisperx[48].text 所以2022年確實全序部有一個含釋他提到公務員的家庭照顧假應該是一個案事實從寬認定並且提高民間企業提到了他提到民間也可以使用他在暗示民間企業可以使用但隨著少數化高齡化的需求增加所以我們有一些主張麻煩這個部長關心一下第一個我們希望把家庭照顧假從市價
transcript.whisperx[49].start 2988.238
transcript.whisperx[49].end 3005.937
transcript.whisperx[49].text 獨立出來另立一個價別叫家庭照顧價那家庭照顧當然可以討論那本版我們提出來的是14天因為這是柯文哲在競選總統時的一個承諾那我不知道勞動部是否支持這個修法的這個方向呢那為什麼家庭照顧價提出來因為現在老的小的都要照顧啊
transcript.whisperx[50].start 3008.018
transcript.whisperx[50].end 3035.721
transcript.whisperx[50].text 您有同意這個方向嗎我想第一個現在包括說第五類傳染病等等的請假是目前這都在家庭照顧假的適用的範圍裡面對我的意思說家庭照顧假要跟市假綁在一起嗎這個沒有想過嗎勞動部有沒有思考一下我們其實是目前家庭照顧假的部分也是朝希望能夠可以讓他更彈性的運用的方向在思考
transcript.whisperx[51].start 3036.104
transcript.whisperx[51].end 3060.903
transcript.whisperx[51].text 但是它跟市價是不一樣的,你同意嗎?家庭照顧跟市價本質不一樣耶有事情要辦啊,辦點什麼事情那家庭照顧是照顧人啊,這個不一樣啊所以就是請部長想想看,這兩個價是不是可以價別可以把它分開來部長,您擔任立委時提案修正,成立提案修正,姓平法裡面要增加生產準備價,列記了生產準備價,其實原來叫那個產檢價
transcript.whisperx[52].start 3066.167
transcript.whisperx[52].end 3080.793
transcript.whisperx[52].text 那希望能夠這個生產準備價希望能夠促進友善育兒的這個職場環境也是今天我們的主題這是一項你跟我都有一樣的主張就是這個生產準備價那我在這個版本上我們黨又提了一個就是說受孕者的配偶他如果要參加這個產權教育
transcript.whisperx[53].start 3085.646
transcript.whisperx[53].end 3087.548
transcript.whisperx[53].text 因為產權現在不是試油不是這個賠生產他當然他叫賠生產他本身不是生產賠生產準備價那我先請教部長部長你當時的這個生產準備價你是不是還維持自己的初衷的主張呢
transcript.whisperx[54].start 3100.14
transcript.whisperx[54].end 3116.438
transcript.whisperx[54].text 我想其實關於聖誕準備現在立法院有蠻多的版本嘛那這部分當然我們其實也願意跟立法院來做這個整體的來討論部長你要有信心啊你以前主張的東西因為是對人民是好的你有時候就是要站在站穩你的腳步
transcript.whisperx[55].start 3117.119
transcript.whisperx[55].end 3124.589
transcript.whisperx[55].text 你的位子你要就是向上爭取就是說我希望部長能夠回到你當立委的時候那種信心十足的樣子你就是說將產權教育產權教育這個適由納入這個生產準備價你同意嗎
transcript.whisperx[56].start 3132.132
transcript.whisperx[56].end 3147.947
transcript.whisperx[56].text 我覺得我們怎麼讓我們怎麼讓懷孕的婦女然後其實包括她的配偶然後整體能夠有更好的或更友善的環境我覺得這部分我們願意來做這個相關的思考我們願意來做這個相關政策評估
transcript.whisperx[57].start 3152.491
transcript.whisperx[57].end 3176.561
transcript.whisperx[57].text 賠生產準備價當然都有責任我們願意來做這個整體的政策評估那先請法規盤點一下家長本來就有兩種義務這是法規教育基本法第八條家長負有輔導子女的責任又叫法第四十一條規範的更明確講得非常清楚父母應該參加教保服務機構舉辦的個案研討會或相關親職活動請問部長那這個法規是規定父母親要做這件事情但是如果你在制度上
transcript.whisperx[58].start 3177.481
transcript.whisperx[58].end 3197.108
transcript.whisperx[58].text 沒有給予這個他行使保障他的責任的一個做法那你說削弱他履行這個義務的一個能力嘛我們其實也是因為這些相關的條文我們認為我們有義務來協助父母有更好的更友善的環境來去履行他包括要照顧跟教養子女這樣子的
transcript.whisperx[59].start 3197.568
transcript.whisperx[59].end 3201.749
transcript.whisperx[59].text 但是做法要具體跟快一點因為現在家長都是透過休假跟試假來處理所以部長請問你針對家長的輕職我們廣稱輕職責任的支持制度你要不要先進行一個法規盤點就是說明明它是被規範的當然我們有跟我們說明這也是為什麼我們現在正在檢討也預計想要來調整淵流亭的彈性化很重要的原因
transcript.whisperx[60].start 3225.075
transcript.whisperx[60].end 3242.443
transcript.whisperx[60].text 部長我們黨有提出輕職假跟期職假稍微跟部長說明一下民眾黨在性平法第十六條之一徵定輕職假他受雇者任職滿六個月後在子女滿八歲之前得申請輕職假可以用日或小時但是他是併入這個育嬰假的合併計算最長兩年
transcript.whisperx[61].start 3243.363
transcript.whisperx[61].end 3254.831
transcript.whisperx[61].text 這個是我們參考瑞典輕職假彈性化的制度目的是讓家長能夠兼顧工作跟育兒因為有時候譬如幼兒他停託或上半天班 半天課那家長就會請假請個假來照顧孩子那這是第一點就我們是主張放在這個
transcript.whisperx[62].start 3260.494
transcript.whisperx[62].end 3277.044
transcript.whisperx[62].text 運營假裡面它是合併只是時間更長可以用的時間是更長那但是未來讓老闆們剛剛你也提到雇主不要太擔心我們也在規範裡面寫說是因為這個是可以計劃的你可以在10天前提出申請讓雇主有所準備那請部長再瞭解我們的第12條輕職教育假
transcript.whisperx[63].start 3279.905
transcript.whisperx[63].end 3296.976
transcript.whisperx[63].text 為了讓親子教育更有效的進行我們要鼓勵他們參加校慶我那個年代叫母姐會你那個年代可能叫親師會其實有親子座談因為法官也就是我也承認我們年代差不多好 差很多我出生是四十幾萬人你出生才三十幾萬人所以爸爸媽媽在受護單位滿六個月
transcript.whisperx[64].start 3299.398
transcript.whisperx[64].end 3324.333
transcript.whisperx[64].text 得請輕職教育教育我們的設計是這樣你有幾個小孩你就要讓他去參加譬如母姐會或親師會嘛那兩個小孩就兩天嘛一年就多兩天給他嘛我覺得這個很合理啊那請問部長我剛剛跟你介紹了我們提出的這個法案已經在排隊等了請問你是否支持我們這樣的修法方向我想其實這裡面有很多的精神就是看到這個相關法案的精神我覺得我們都可以來思考
transcript.whisperx[65].start 3325.505
transcript.whisperx[65].end 3351.506
transcript.whisperx[65].text 博敦你要回答到具體要有信心啦我要看到當年的你啦就是很堅定的覺得對的方向就往前當然不信你這個人的決定委員這不是不堅定就是因為這裡面相關的制度涉及到很多的變動每一個制度其實都有它對應的配套或者是對應其實要怎麼樣讓各方都能夠可以運作的情況每個政黨爭取執政要福國利民的
transcript.whisperx[66].start 3352.166
transcript.whisperx[66].end 3373.858
transcript.whisperx[66].text 當然所以其實在很多的精神上面目前朝野提出來的方向我認為是相近的我第一章已經告訴你現在人口是到亡國滅種的程度了亡國滅種了這也是為什麼勞動部認為雖然看起來這勞動部是為服務組的可是各部會都有義務跟責任要一起來促成讓這個相關的政策能夠更友善的執行
transcript.whisperx[67].start 3374.278
transcript.whisperx[67].end 3398.108
transcript.whisperx[67].text 最後一件事情就業保險法裡面就業保險津貼可不可能再考慮這個因為有新的價別這個親職價津貼親職教育價津貼及家庭照顧價津貼這幾項讓家長不用擔心說我養個育女我會有一些經濟上的損失陪伴的時候因為都喊國家也喊0到6歲國家養這個其實距離0到6歲國家養境界還非常遙遠但是至少要往這個方向
transcript.whisperx[68].start 3399.273
transcript.whisperx[68].end 3427.71
transcript.whisperx[68].text 來推動這也是民進黨的口號這樣可以嗎這幾項跟我的說明這個救保的基金它主要在處理其實是在處理這個就業失業這個相關的給付所以它其實是跟這個就業失業有關的部分可以討論因為剛剛就把爸爸媽媽留在職場他們這個相對年輕都是最重要的生產力的來源那孩子也要養孩子是國家的資產所以這個就是在這個地方看看要怎麼處理
transcript.whisperx[69].start 3429.05
transcript.whisperx[69].end 3443.981
transcript.whisperx[69].text 這個方向你的態度跟立場可以支持嗎這是為什麼我們現在比較希望由育嬰留庭的彈性化來著手因為育嬰留庭是目前救保裡面已經有的給付
transcript.whisperx[70].start 3445.098
transcript.whisperx[70].end 3465.826
transcript.whisperx[70].text 我今天提了好幾個因為瘤亭是舊保裡面既有的脊腹從舊保既有的脊腹裡面讓他能夠更好用更彈性比較能夠去處理我們現在的各種可能覺得小孩子要臨時會遇到照顧的需求其實是這個原因所以我們才目前是朝向這個方面來著手
transcript.whisperx[71].start 3467.026
transcript.whisperx[71].end 3485.615
transcript.whisperx[71].text 部長就請你記得當你站在民意這邊的時候當你身為民意代表的時候跟你現在真的有權利來做的時候我也希望你這個想法就是一致的我們當時的主張我現在在做部長的時候我們現在就是盡力在落實謝謝陳委員 謝謝部長繼續我們請林業勤委員質詢麻煩洪部長
transcript.whisperx[72].start 3505.579
transcript.whisperx[72].end 3520.846
transcript.whisperx[72].text 部長早在談我們的職場育兒政策的時候往往常常都講說家長的職癌還有企業的成本還有政府的財政不過今天要提醒部長就是說
transcript.whisperx[73].start 3522.914
transcript.whisperx[73].end 3543.172
transcript.whisperx[73].text 這個議題的最核心 最不能忽略的就是孩子 也就是兒童的最佳利益那兒權公約在2014年已經國內法化 它第18條大概也提到說那我們的國家應該盡最大努力來確保父母雙方都能夠對兒童的養育跟發展都有共同的責任的原則
transcript.whisperx[74].start 3544.333
transcript.whisperx[74].end 3564.503
transcript.whisperx[74].text 那也要有享有這樣子的一個就因為父母有權利享有他們有資格得到的育兒服務跟措施那所以想問部長說你是否同意這樣子的一個基本立場那你們目前的職場育兒政策有沒有把兒權公約所說的最佳利益納入到政策評估的標準跟過程
transcript.whisperx[75].start 3566.93
transcript.whisperx[75].end 3574.055
transcript.whisperx[75].text 我們當然同意這個相關的公約的精神那當然也是希望就像剛才說的其實這個
transcript.whisperx[76].start 3576.693
transcript.whisperx[76].end 3603.172
transcript.whisperx[76].text 兒童的養育其實父母雙方雙親其實對他有相關的責任這也是為什麼我們其實也在規劃這個讓職場更友善然後能夠讓父母雙方對兒童的養育盡他的責任的時候有一個更好更友善的環境尤其是也不希望我們只是偏廢父親或母親其中一方而是希望雙方都有這個共同的責任我想共同的責任是很關鍵的
transcript.whisperx[77].start 3605.417
transcript.whisperx[77].end 3628.547
transcript.whisperx[77].text 三ILO聯合國的那個僚工組織同樣也是這樣子的一個有這樣子的一個要求那像我們自己的兒少權法裡邊甚至民法裡邊大概都有去講到說父母跟監護人對兒童跟少年應付保護教養的責任甚至不可以讓孩子獨處那我們的
transcript.whisperx[78].start 3629.947
transcript.whisperx[78].end 3651.845
transcript.whisperx[78].text 教育基本法跟國民教育法裡面有類似的一些條文也就是說家長未未婦之女的學習權益跟協助正常發展應該配合學校的教學目標跟活動所以要督促孩子的活動上禮拜我們在討論兒託法的時候也有委員提出版本說未來父母都要盡力的去配合保母
transcript.whisperx[79].start 3652.766
transcript.whisperx[79].end 3666.974
transcript.whisperx[79].text 或者是托嬰中心有辦的活動都要去積極甚至兒少全法說如果你們這樣做到的話事實上還有一些罰則換句話說我們的國家不是只有要求家長在孩子生病的時候要照顧他
transcript.whisperx[80].start 3668.377
transcript.whisperx[80].end 3696.636
transcript.whisperx[80].text 而且要要求家长要积极参与孩子的生活那就回到一个这个应该也很熟悉就是这些调查这是台湾长期的一个现象七成的女性没有申请家庭照顾假是一半以上是因为各年龄层都有一些育儿照顾的一些感到的困难比如说29岁以下的话还有63%在工作上他认为的他的瓶颈是
transcript.whisperx[81].start 3697.389
transcript.whisperx[81].end 3717.758
transcript.whisperx[81].text 因為生育中會中斷子癌所以這次你大概也是因為要提出這個政策也是希望能夠照顧不離子那30到39歲的大概有58%是因為工作家庭之後身心俱疲所以政府搭配的措施非常的重要可是現行法律明明就已經要求家長要
transcript.whisperx[82].start 3719.299
transcript.whisperx[82].end 3742.023
transcript.whisperx[82].text 盡到育兒的責任 可是我們的嫁別的制度 坦白講真的跟得上嗎 像性平法裡邊我們的性工法裡面第20條 我們受僱者與家庭的成員要請家庭照顧嫁的時候第一個預防接種否則就是發生嚴重的疾病或其他的重大事故需親自照顧時才可以請
transcript.whisperx[83].start 3742.694
transcript.whisperx[83].end 3767.795
transcript.whisperx[83].text 我們的家庭照顧價而且顧主會不會合價也不確定那可是孩子有很多需求所以我說上週託法的時候還討論到說未來保母未來託嬰中心如果有辦活動的話那如果今天講育嬰假三歲以下那這些人都是會碰到的那他必須要去參與甚至有特殊需求的孩子那如果學校要
transcript.whisperx[84].start 3768.195
transcript.whisperx[84].end 3768.735
transcript.whisperx[84].text 當初當初在
transcript.whisperx[85].start 3793.53
transcript.whisperx[85].end 3819.673
transcript.whisperx[85].text 育嬰留庭的這個假裡邊要拿出來我們就非常肯認要拿出來可是看到示範的時候兩次的示範都不是用小時或者事實上是那大概都是要用天來看那個彈性程度所以難怪申請的人保母臨時有事長病毒停託課小孩需要陪伴員工想自行照顧新生兒這些的假期
transcript.whisperx[86].start 3820.433
transcript.whisperx[86].end 3835.665
transcript.whisperx[86].text 那比較難去看到有沒有有更多元的所以想問部長家長到底能請什麼假孩子如果沒有生病這些算是法條規範的重大事故嗎如果不准假的話那家長又該怎麼辦
transcript.whisperx[87].start 3837.199
transcript.whisperx[87].end 3857.678
transcript.whisperx[87].text 其實跟委員報告其實在這段時間我們其實也跟蠻多這個企業主那產業的代表在溝通討論這事因為剛才委員談的事情裡面其實委員你剛才談的一些部分裡面其實照理來說勞工如果提出雇主是不得拒絕的
transcript.whisperx[88].start 3858.779
transcript.whisperx[88].end 3882.044
transcript.whisperx[88].text 其實很多雇主是不得拒絕的但是我們的確知道雇主會用各種方式明示暗示的方式那這個不希望這個勞工請這些相關的假這個我們也清楚可是我們也在跟雇主在溝通跟討論其實現在有很多的產業也一面一直在跟我們
transcript.whisperx[89].start 3883.7
transcript.whisperx[89].end 3904.349
transcript.whisperx[89].text 抱怨跟提醒說少子化的問題讓這個缺工造成勞動力的匱乏其實僱主一方面也他們也很關心這件事情少子少子女化所以我也跟他們溝通說可是如果我們沒有辦法把我們的職場把它打造得更友善育兒育嬰的話那這個
transcript.whisperx[90].start 3906.953
transcript.whisperx[90].end 3935.732
transcript.whisperx[90].text 勞工願意生小孩的比例就會再更降低當勞工生小孩降低的時候我們的少子女化只會越嚴重少子女化越嚴重對未來整體台灣社會的勞動力的需求必定也會再更嚴峻這其實是一個循環所以我們其實也在跟僱主溝通像這樣子的概念所以剛剛在講的有些部分是法律上面確實已經有明定你是不能拒絕的這部分是有明定的但這裡面確實也還有一些是僱主觀念的問題
transcript.whisperx[91].start 3936.773
transcript.whisperx[91].end 3957.126
transcript.whisperx[91].text 當我們這樣跟僱主在溝通的時候我認為其實會有一些僱主蠻多僱主他是願意聽了下去的他也願意來看看說他自己在這個公司裡面相關的制度是不是有還可以再做調整對育兒育嬰能夠更友善的地方因為整體來說我想只要是這個活在台灣這個國家的一份子都不希望我們少子女化
transcript.whisperx[92].start 3958.067
transcript.whisperx[92].end 3978.06
transcript.whisperx[92].text 像現在這個趨勢一直嚴重的這樣嚴重下去大家也不希望因為這會影響到社會很多層面所以這部分我們也在跟僱主在做相關的溝通要讓企業了解到因為影響的搞不好是五年十年後我們會問題更嚴峻所以可是解放都知道因為我們去年的11月13號也開了公聽會因為很多的民間團體跟專家學者
transcript.whisperx[93].start 3979.541
transcript.whisperx[93].end 4000.642
transcript.whisperx[93].text 都在預告說那你可不可以變成是親子家不是只有育嬰留庭這樣的一個方式那因為友善育兒的職場政策都講了很多年了因為2002年在訂育嬰家的時候中間有四次的變革然後加上去年的公聽會那民間解放也很多次在跟甚至
transcript.whisperx[94].start 4001.262
transcript.whisperx[94].end 4020.111
transcript.whisperx[94].text 論證說國際大概怎麼去做所以我們是不是應該要去考量到更多元的方式是不是可以育嬰假延伸為親子假這個來做考量甚至延長到孩子小學階段因為日本事實上他們在前年的6月17號通過育兒介護修業法裡面
transcript.whisperx[95].start 4022.592
transcript.whisperx[95].end 4051.79
transcript.whisperx[95].text 那就已經有搭配到到小學階段都有各式各種的親子的請假方式那韓國呢是到8歲這個我覺得應該要去考慮為什麼因為前幾個李政次也說不考慮修法只做彈性措施可是彈性措施如果說今天你的身增加一個月可是彈性度不高的話不是有10或者是半天或者事實上是有更多元的甚至延長到更大的大齡的孩子的話
transcript.whisperx[96].start 4052.53
transcript.whisperx[96].end 4068.383
transcript.whisperx[96].text 所以我相信要用真的事實上是蠻難的因為我們目前看到連事辦的企業都很少勞工申請的也不多如果不修法的話我覺得部長你要怎麼讓企業能夠去願意配合如何讓勞工有法律預計來改善現在的現況
transcript.whisperx[97].start 4069.304
transcript.whisperx[97].end 4086.818
transcript.whisperx[97].text 我想之前現在大家都確實看到之前事辦的狀況那之前事辦的狀況當然是有帶經濟的空間但我們也分析了裡面其實幾個原因包括當時事辦其實這個最低的時間其實是到三日三日到五日其實是到三日然後他其實也是讓很多的企業是自願性的來參與
transcript.whisperx[98].start 4088.499
transcript.whisperx[98].end 4115.913
transcript.whisperx[98].text 那這答案都是當時我們現在在檢討當時事辦為什麼成效上面大家覺得會跟期待上面有一段落差的原因所以剛剛現在委員在講到比方說促進男性的育幼參與的確我們在我們相關的數據裡面是可以看得出來當我們把這個像雲流亭他可以申請的日數在縮短的時候越縮短的時候其實男性的申請的比例就大幅的提高
transcript.whisperx[99].start 4116.753
transcript.whisperx[99].end 4141.247
transcript.whisperx[99].text 那這的確是很有助於促成在育兒上面的雙親的平均照顧的狀況所以我建議勞動部可能再去做考量是不是第一個事實上可不可以考量親子假然後把時間拉長像日本他們為了促進男性
transcript.whisperx[100].start 4141.727
transcript.whisperx[100].end 4161.136
transcript.whisperx[100].text 他們的那個育嬰留庭給薪還給到百分之百真的讓他們男性來做參與部長再來就是我想提一個我一直很關心的青少年就業這一塊因為目前看到的就是說青少年就業問題呢像很多未升學未就業中錯的青少年是需要就業協助
transcript.whisperx[101].start 4162.436
transcript.whisperx[101].end 4177.745
transcript.whisperx[101].text 跟職癌輔導的可是十多年來勞動部的救助的資源對這群年輕人來講成效事實上是非常低那這個數字也左手邊數字事實上是勞動部上週提供給我的許多的方案服務的數字都是
transcript.whisperx[102].start 4179.367
transcript.whisperx[102].end 4192.483
transcript.whisperx[102].text 各位甚至掛鈴那過去經由民間團體倡議這個議題是交給職安署的兒少職場安全權益小組來統整 可是部長請問一下你對這個小組的運作有掌握嗎這之前是
transcript.whisperx[103].start 4198.426
transcript.whisperx[103].end 4224.349
transcript.whisperx[103].text 跟委員報告這個部分的召集人是我們的李政事那我們是有定期在開會那相關的議題包括涉及到教育部或我們自己本身的發展組的部分我們都會在那邊提案因為這個小組有決議而且原本就是每半年大概因為我過去有參與就是說要檢討勞動部的各項方案的成效可是現在不只是成效低相關的分析也沒有有沒有去像甚至有
transcript.whisperx[104].start 4225.31
transcript.whisperx[104].end 4251.918
transcript.whisperx[104].text 就是說現在你已經輔導有就業的那到底他們有穩定就業嗎那到底他們的整個狀況是什麼可是追蹤的數據都看不到因為我們每年有兩千多位的那個中離或處罰的少年他們就業就是生活所需而且不是去打工玩票的性質所以請問部長面對這種長期比較低效能的狀況裡邊你怎麼去看待勞動部對青少年的服務成效
transcript.whisperx[105].start 4254.262
transcript.whisperx[105].end 4272.971
transcript.whisperx[105].text 我想我會再來瞭解一下目前這個兒少安全權益小組相關的決議落實的狀況我們會來看一下那也會來看一下就是說在這個小組的運作裡面有哪些議題那可能會要再去深化或延伸這部分我們會來
transcript.whisperx[106].start 4275.558
transcript.whisperx[106].end 4284.726
transcript.whisperx[106].text 會請責任署跟法案署來這個地方來再跟積木掌握一下 另外一個就是如果我們要有很對應的政策的話 照理來講你的數據要清楚 可是我們
transcript.whisperx[107].start 4285.985
transcript.whisperx[107].end 4309.342
transcript.whisperx[107].text 過去一直在倡議可不可以數據而且CRC在第一次國家國際審查的時候在2017年就一直在提醒政府部門的那個數據收集要按照比較合宜的國際的標準的那個年齡可是始終我們是18歲以下叫做我們的兒少可是你現在用到19歲所以我們沒辦法充分掌握
transcript.whisperx[108].start 4310.143
transcript.whisperx[108].end 4325.189
transcript.whisperx[108].text 所以我們過去建議說你要不要有18歲以下的年齡因為我們15到16就業有另外一套措施可是17到18事實上是所以我們就沒辦法去充分掌握說那到底就業的狀況是什麼是沒辦法了解的
transcript.whisperx[109].start 4325.589
transcript.whisperx[109].end 4341.841
transcript.whisperx[109].text 所以這部分我覺得是不是也要請我們的勞動部這邊是不是給出一個你如果沒有這些數據的話我們坦白講我們不知道青少年整個工作樣態是什麼那你就沒有辦法定出來真的事實上是比較晚輩的18歲的未滿18歲的勞動政策所以這邊也麻煩部長這邊
transcript.whisperx[110].start 4346.804
transcript.whisperx[110].end 4370.042
transcript.whisperx[110].text 拜託請你們可以針對我們他們通常會去就業就是家裡有一些經濟狀況有困難甚至事實上是可能是沒有家庭的狀態裡邊那麼可能要用我們政府的自立生活方案那我覺得就業政策是不是有一些能夠去有一些好的數據能夠提供出來那以上是
transcript.whisperx[111].start 4371.124
transcript.whisperx[111].end 4390.861
transcript.whisperx[111].text 那部長這邊可不可以兩週內把針對這兩個再給我我想我針對青少年勞動救出的這個方案的部分我兩個星期應該是可以的好不好其實我們做相關的的一些檢討或者是剛才說數據統計上面的檢視我們再提供給你好謝謝部長謝謝謝謝林耀清委員謝謝部長林委員是啊是全民公約好OK
transcript.whisperx[112].start 4399.738
transcript.whisperx[112].end 4402.419
transcript.whisperx[112].text 好我們繼續請陳秀慧委員好謝謝主席謝謝委員好那我們請部長陳委員好部長好上次我們曾經在這個大院做未還總質詢5月6號的時候您有討論到
transcript.whisperx[113].start 4429.349
transcript.whisperx[113].end 4447.698
transcript.whisperx[113].text 院長很稱讚你啊那當時院長非常稱讚您說他知道您很重視彈性暈假這個議題那你也提到說現在事辦計畫是有問題的所以你要重新調整但當時我們時間不足所以你沒有具體說你遇到最大的問題是什麼可以在這邊請教你嗎
transcript.whisperx[114].start 4450.352
transcript.whisperx[114].end 4463.731
transcript.whisperx[114].text 其實的確這個應該是說彈性暈暈流停其實在彈性暈暈流停裡面其實要處理的幾個挑戰都包括對於很多的僱主來說他
transcript.whisperx[115].start 4465.874
transcript.whisperx[115].end 4487.329
transcript.whisperx[115].text 要怎麼來應對可能這種比較臨時性的請假的需求他在人力調度上面需要怎麼樣的配套來去協助他尤其是台灣的中小企業比較多他在這個當他的員工數比較少的時候他要在做這種比較臨時性的調度的時候他遇到的挑戰會比較大我想這是這是你最主要的問題所以這是現在的問題
transcript.whisperx[116].start 4489.991
transcript.whisperx[116].end 4506.662
transcript.whisperx[116].text 當時您在院長前面說所以事辦計畫做得不好那你會再調整並且一個月會給我報告可是其實已經過了一個月了那你會針對這個調整其實我們只是想知道說你要如何做這個最大的調整去修正是
transcript.whisperx[117].start 4507.782
transcript.whisperx[117].end 4532.472
transcript.whisperx[117].text 呃我還是因為其實關心的關心的委員很多第一個我們還是在希望那個這個方向就是能夠縮短能夠申請的日數他的日數的間隔那個單位能夠再更縮短這是第一個那第二個就是說剛才兼顧說那我們要怎麼兼顧尤其是剛才說到台灣很多中小企業的雇主他在會在臨時性的人力排班上面我們要怎麼去協助他那
transcript.whisperx[118].start 4534.619
transcript.whisperx[118].end 4559.52
transcript.whisperx[118].text 避免比方說這個如果這個部分沒有弄好可能很多雇主還是會用各種方式不想要讓讓員工來請休所以他需要一個配套讓這件事情的執行性可行性能夠更高那您會有一個進度嗎因為當時您說你要改版再重新提出來可是我們不知道您這個改版的進度您預期什麼時候推出
transcript.whisperx[119].start 4560.12
transcript.whisperx[119].end 4584.329
transcript.whisperx[119].text 新的事項跟委員報告其實我們其實現在是也在跟行政院來爭取配套的資源目前正在跟行政院來爭取配套的資源那我們也希望盡快但確實這個政策之所以歷經了這麼多任的部長一個很重要的原因確實是因為他需要處理的關卡還不少
transcript.whisperx[120].start 4585.509
transcript.whisperx[120].end 4594.428
transcript.whisperx[120].text 包括執行面上面的關卡包括行政端上面的關卡其實還不少所以我們現在也一個一個在把這些關卡要把它給解開
transcript.whisperx[121].start 4595.987
transcript.whisperx[121].end 4614.698
transcript.whisperx[121].text 所以你其實你還沒有一個進度的計劃表啦因為你要慢慢的把它解開絕對不是慢慢的我說我們希望競速而且我希望都可以在這個也許希望到這個夏天我們就能夠做一些相關的讓大家公布
transcript.whisperx[122].start 4617.299
transcript.whisperx[122].end 4631.465
transcript.whisperx[122].text 那下一個這邊要先稱讚您因為你看歷年來育嬰留庭幾戶的金額其實是在升高的表示他是往一個正向的發展但是針對就業保險法第19之2條要嚴密將育嬰津貼從6個月延長到7個月這個修法的進度第一想問這個修法進度如何第二是有蠻多人去反映說怕看得到吃不到因為必須同時
transcript.whisperx[123].start 4647.292
transcript.whisperx[123].end 4674.773
transcript.whisperx[123].text 雙方都請了六個月才可以來延長到這第七個月那實際上真的雙方有達到六個月的你有統計出來嗎是很少的大概有兩萬多個人兩萬多個人是是對所以兩萬2.1萬個爸爸媽媽來取得這個第七個月的育兒津貼對對現行的資料那想問您這個修法進度如何
transcript.whisperx[124].start 4676.774
transcript.whisperx[124].end 4687.435
transcript.whisperx[124].text 因為這個要涉及到修舊保我們目前預計應該是在下半年或者是在年底前我們希望能夠跟行政院提出舊保修法的版本
transcript.whisperx[125].start 4687.947
transcript.whisperx[125].end 4711.743
transcript.whisperx[125].text 好那我們等一下來討論一下是不是實際會幫助到這個申請的人增加因為你其實就是要提供誘因嘛好那第一個我想提供部長一個新的數據也就是台灣的離婚率一直在節節的上升目前是亞洲第二高去年我們就五萬多對離婚那
transcript.whisperx[126].start 4713.023
transcript.whisperx[126].end 4736.069
transcript.whisperx[126].text 統計起來呢每一天平均是有146對離婚所以我是想爭取包括未來部長也很在意的人工生殖法也許會有單身的女性想要自己生小孩你會不會考慮你在做這個育嬰或是延長到七個月等等也可以含瓜進去單親家庭的這個範疇
transcript.whisperx[127].start 4737.745
transcript.whisperx[127].end 4748.066
transcript.whisperx[127].text 要不要來你如果現在你現在如果你可以可以請申請運營留庭的就會有相關的權益啊是我說未來這個新的族群
transcript.whisperx[128].start 4750.281
transcript.whisperx[128].end 4777.26
transcript.whisperx[128].text 當我們人工生殖法如果修過了之後你只要是你只要有育嬰留庭的你就可以有相關的權益啊我並沒有這個並沒有限對就是你有育嬰留庭的就可以有好因為這等一下我們再來講你的報告你的報告裡面其實是有列出有婚姻狀態或者是分居或者是離婚的狀態等等所申請育嬰留庭的數據好沒關係等一下我們再看就好了
transcript.whisperx[129].start 4777.68
transcript.whisperx[129].end 4789.452
transcript.whisperx[129].text 那第二個我們來看一下這個表格你會不會覺得男跟女來申請這個合附的件數這個差距你要想要怎麼樣把它縮短
transcript.whisperx[130].start 4791.96
transcript.whisperx[130].end 4810.32
transcript.whisperx[130].text 根本說明就目前我們從統計的數字上看得到如果把請領可以申請的這個天數縮短男性申請的比例就會很明顯的上升比方說之前我們從原本因為留庭只能一次請六個月到應該是111年
transcript.whisperx[131].start 4813.197
transcript.whisperx[131].end 4839.974
transcript.whisperx[131].text 110年當時110年的時候改成最短是可以用月來請的時候這個制度的變革就讓男性申請的比例提高蠻多的所以我們預計如果可以把它再更縮短可以請這個申請的天數的話男性申請的比例還會再提高所以今年夏天到年底以前你把它改得更彈性你會預計男女的比例會縮短我認為會
transcript.whisperx[132].start 4840.774
transcript.whisperx[132].end 4869.166
transcript.whisperx[132].text 好是但我們還有一個結構性的問題啦當然就是要提到這個114年同酬日是2月27日也就是說女性需要比男性多工作58天才可以達到全年相同的薪資比較去年的2月25日其實是延後兩天的因此這個也有可能是一個變數那為什麼說這個是你需要分析的數據呢就是
transcript.whisperx[133].start 4870.846
transcript.whisperx[133].end 4879.571
transcript.whisperx[133].text 113年勞動部最新的調查報告你們把育嬰留庭的申請人的數據做一個很好的分析但是
transcript.whisperx[134].start 4882.343
transcript.whisperx[134].end 4906.463
transcript.whisperx[134].text 但是我在這邊要指出一個很具體的問題這樣子的分析如果在大學拿給這個教授看教授可能沒有辦法很認可也不是一個很好的論文你的男性只有分四項第一個是有12歲以下子女然後第二個有未滿3歲子女子女均在3歲以上沒有然後沒有就這樣子
transcript.whisperx[135].start 4907.364
transcript.whisperx[135].end 4922.274
transcript.whisperx[135].text 女性的話你們是做的很具姓名義喔年齡層就分了五項教育程度從國中以下一直到研究所婚姻狀態那我當然也是從這邊看到你這邊婚姻狀態的話申請運流停的是非常非常少的關於
transcript.whisperx[136].start 4923.114
transcript.whisperx[136].end 4936.58
transcript.whisperx[136].text 離婚上偶或是分居等等然後小孩的年紀有幾位小孩每月的薪資薪資還分成七八個級距有沒有特殊身份然後你還把女性分的職業別非常詳細裡面還包括名義代表農林漁牧業機械什麼
transcript.whisperx[137].start 4943.263
transcript.whisperx[137].end 4964.033
transcript.whisperx[137].text 非常多大概有10項然後行業別行業別至少就有20項公司的所在地就有4個地區的分別然後還細分說他們是不是有遇到雇主刁難啊離職啊歧視不平等待遇還有是不是因為擔心收入減少擔心失去工作業務繁忙等等
transcript.whisperx[138].start 4965.253
transcript.whisperx[138].end 4983.363
transcript.whisperx[138].text 這個會不會不管是從性別的角度來看或者是你想要解決問題的角度來看分析數據你以後對你政策的推動或是革新會不會覺得這樣子的分類好像不太公平這個資料應該是不是行政性評會我請
transcript.whisperx[139].start 4986.482
transcript.whisperx[139].end 4993.785
transcript.whisperx[139].text 因為當時行政院憲評會會希望我們勞動部在調查的時候針對女性一些相關的個別的包含剛剛委員提到的年齡啊教育程度婚姻狀況等等會希望我們並同在本來我們其實是針對有育兒的那個小孩的歲數的調查裡面那併進去去了解女性這邊的相關的狀況所以才會有委員您看到我們的調查裡面為什麼男女的項目別會有差異
transcript.whisperx[140].start 5015.413
transcript.whisperx[140].end 5038.974
transcript.whisperx[140].text 這大概差了十萬八千里但您剛剛其實一直強調你的政策是希望男生也要請嘛男性也要請而且是多請可是你這樣的數據可能沒辦法協助你了解一些資訊啊如果你可以把兩邊的數據都做得一樣這樣不是可以更方便嗎我舉前幾天衛福部的案例他們的十大死因自殺率
transcript.whisperx[141].start 5040.336
transcript.whisperx[141].end 5063.452
transcript.whisperx[141].text 跑到十大以前沒有他們就開始分年齡層分男女去分析結果每一個年齡層包括性別他的原因是不同的所以如果你沒有知道說為何男生跟女生會有差距然後他在意的點是什麼他是不是薪資結構不同學歷不同而申請育嬰假有所差別這樣你如何去修改你的
transcript.whisperx[142].start 5064.132
transcript.whisperx[142].end 5088.643
transcript.whisperx[142].text 這些政策呢這樣好不好 因為其實剛才就像市長說就是之所以女性會統計到這麼細當時是因為性評會裡面要求女性的地方希望特別再做更細但的確我也覺得如果女性的部分做得到這麼細的統計那其實男性的部分要比照我認為也是合理的事情所以這部分我們在統計的過程裡面我們就來把項目做得更細我想這沒有問題好 那我就期待您明年的報告好嗎好 謝謝
transcript.whisperx[143].start 5090.137
transcript.whisperx[143].end 5114.082
transcript.whisperx[143].text 再來我是想提醒這個是我們在高速公路上有可能會看到臨時或是例行的路面修護必須要有的這個緩撞車或是緩衝車但是我們看右邊的數據你會覺得非常可怕因為從110年到113年他逐年事故的案件是上升那除了上升以外你也會在新聞上看到不只是追撞的駕駛會傷亡
transcript.whisperx[144].start 5115.302
transcript.whisperx[144].end 5135.244
transcript.whisperx[144].text 作業的勞工也會有傷亡像四月就有一名這個工人同時跟駕駛當場就身亡了那我們會想要知道說像這樣子的緩衝車都是編制外的他就是民間的自行購買或是委外承攬的可是我們有求證過交通部交通部的道路管理規範裡面
transcript.whisperx[145].start 5136.465
transcript.whisperx[145].end 5139.328
transcript.whisperx[145].text 他有針對這個緩衝車做出指導比如說這個車屁股後面多長要放出警示多長的距離要引導車流變化然後500公尺為限制等等的那比起來呢
transcript.whisperx[146].start 5153.003
transcript.whisperx[146].end 5174.819
transcript.whisperx[146].text 這個緩衝車我們有一個叫做高空作業車職安署就有很詳細的去做有高空吊掛或是懸吊的勞工是不是要怎麼管理還有約束雇主來確保安全是不是在這邊可以具體的建議你要不要對這樣子的緩衝車也來做一個作業的安全管理指引呢
transcript.whisperx[147].start 5176.668
transcript.whisperx[147].end 5189.465
transcript.whisperx[147].text 跟委員報告 謝謝關於這個議題這個確實涉及到交通安全跟職業安全所以我們後面會再跟交通部這邊來洽商是不是請你方便一個月跟交通部有所聯繫嗎
transcript.whisperx[148].start 5191.389
transcript.whisperx[148].end 5216.906
transcript.whisperx[148].text 一個月聯繫沒問題那如果要訂定這個相關的職業可能要再給我們一段時間我知道 那一個月可以跟您要一個報告你會朝哪一些方向這個是幫您找出來的就各種不同的職業他們會訂出比如在國道工作的人可能會對於保護眼睛是不是被砂石噴到噪音但是又同時可以知道後面是不是有車子以及背心 頭盔 安全鞋等等這一類的
transcript.whisperx[149].start 5220.026
transcript.whisperx[149].end 5237.659
transcript.whisperx[149].text 好 那我想 我覺得跟文說我會請詹姍我們就一個月內 跟交通部聯絡那跟交通部聯絡 那先初步一些會上那怎麼把這個部分再做一些精進我們會把初步的跟交通部會上的結果再跟文說明好 謝謝 謝謝部長 謝謝主席謝謝陳委員 謝謝部長接下來我們請王毅民委員質詢
transcript.whisperx[150].start 5252.847
transcript.whisperx[150].end 5254.488
transcript.whisperx[150].text 謝謝主席 我們有請部長部長好今天的主題是友善育兒照顧不離職那我們就要來檢討勞動部你們在友善育兒做的成效如何
transcript.whisperx[151].start 5271.533
transcript.whisperx[151].end 5298.907
transcript.whisperx[151].text 第一個我要請部長看一下就是勞動部你們有責任去鼓勵企業新建這個托爾的設施或者是去更新改善托爾的措施但是這幾年來這個部長看一下新建托爾設施在113年竟然是掛零你們的補助經費是零所以代表新建的加速也是零這樣的成績部長請問你滿意嗎
transcript.whisperx[152].start 5302.114
transcript.whisperx[152].end 5324.891
transcript.whisperx[152].text 確實我們認為其實這個新建其實我們都盡力的在推廣那當然這個會跟一些企業有沒有意願有關係所以今年其實我們目前也修正了把這個300萬的補助提高到500萬所以在今年這個今年第一期的補助裡面我們其實也看到有一家歷年得到最高的450萬的補助
transcript.whisperx[153].start 5326.232
transcript.whisperx[153].end 5334.257
transcript.whisperx[153].text 今年有一家可以打破鴨蛋但是也只有一家耶這個已經是六月了 那目前只有一家這個成績喔
transcript.whisperx[154].start 5336.683
transcript.whisperx[154].end 5347.287
transcript.whisperx[154].text 這個成績本席不得不說這個成績真的是非常的差然後我們看到歷年來你都每一年大概不會超過5家從109年1家然後4家4家3家每況愈下113年是0家那即使剛剛有說今年可能預估會有2家來申請已經有了不是預估對
transcript.whisperx[155].start 5357.85
transcript.whisperx[155].end 5361.132
transcript.whisperx[155].text 那這個成績還是非常的差我要講的是說如果這個我們要講照顧不離職那你要讓這個女性的勞工她可以很安心在職場那他們現在最在乎的其實就是托育的問題
transcript.whisperx[156].start 5373.258
transcript.whisperx[156].end 5396.782
transcript.whisperx[156].text 我們現在少子化非常的嚴重你要他多生育那他照顧的問題這的確是他一個很大的負擔所以從勞動部的角度我知道你們過去比較著重在一些其他的勞動安全跟勞動條件的事務上面但是現在大家對於勞動部的期待是更高的對於友善職場這一塊事實上你們可以去
transcript.whisperx[157].start 5397.382
transcript.whisperx[157].end 5425.625
transcript.whisperx[157].text 去多增加你們的力量所以這一塊我看到你們報告說你們今年有去辦一些輔導說明會我希望這個部長你要再加大力道因為這一塊如果企業他可以在他的相關的場域裡面去設置這一些托兒事實上我不知道你有沒有去參訪過過去我去參訪過有些企業設置的真的是很好那這個可以讓勞工真的非常穩定的在他的這個工作職場上面
transcript.whisperx[158].start 5426.045
transcript.whisperx[158].end 5450.305
transcript.whisperx[158].text 所以這一塊我希望這個部長你應該要再加把勁我想說的是說因為新建的托兒設施這當然是我們相關措施的其中之一啦是也很重要啊對那第二個是因為確實新建設施會牽涉到企業他是不是有足夠的空間包括土地等等所以我們這也是為什麼我們除了準備了這個相關的補助的的裁員以外
transcript.whisperx[159].start 5450.985
transcript.whisperx[159].end 5460.929
transcript.whisperx[159].text 其實我們現在也希望能夠更積極如果企業有遇到相關的困難的話我們也願意派專家進場來去給予輔導來給予相關的建議你們去聯合衛福部這個我們也願意來做這個很重要另外一個
transcript.whisperx[160].start 5466.591
transcript.whisperx[160].end 5471.434
transcript.whisperx[160].text 我認為還要再增加的就是這個未來我也會提相關修法版本鼓勵企業他去投資那如果他因為你現在只補助500萬其實是不夠的他自己還要出很多錢那這個部分我們如果鼓勵他的話將來應該可以修法你們可以去跟這個經濟部討論就是可以減抵他的盈利事業所得稅等於說鼓勵企業在托爾設施的投資這一塊這個可以算入他的另外一個成本
transcript.whisperx[161].start 5496.269
transcript.whisperx[161].end 5502.734
transcript.whisperx[161].text 那這一塊我希望這個部長你也可以支持往這個方向就是我們多去獎勵企業做對的事情我想這個對於減緩我們國內的這個少子化也會有相關的幫忙這個部長你這個方向你支持嗎
transcript.whisperx[162].start 5511.274
transcript.whisperx[162].end 5535.763
transcript.whisperx[162].text 我想這個我們都願意跟包括衛福部經濟部來做討論我們都願意一起參與這個討論那另外一個呢很重要的就是你自己過去也很支持的我們育嬰留庭以日請休的這件事情那你在接受專訪的時候你也公開表示你沒有放棄要提方案及配套但是今天呢在你們的報告當中我沒有看到任何的配套
transcript.whisperx[163].start 5536.583
transcript.whisperx[163].end 5548.074
transcript.whisperx[163].text 或者是方案是什麼那我就要請教部長你這個育嬰留情以日請休什麼時候可以上路在您的規劃當中您的方案是什麼然後預計什麼時候可以開始做讓勞工可以按照日數來請假
transcript.whisperx[164].start 5553.338
transcript.whisperx[164].end 5579.435
transcript.whisperx[164].text 我們現在確實是目前正在這個方案最後盤整的階段預計什麼時候完成你告訴我期程就好我先讓委員知道就是說相關配套的資源我們目前在跟行政院爭取中所以當然這裡面會涉及到跟行政院爭取到之後那我們比較有更多的確認以後那我們會盡快的來跟大家公布我們的方案
transcript.whisperx[165].start 5579.775
transcript.whisperx[165].end 5598.742
transcript.whisperx[165].text 好 預計要多久 部長告訴我們期程就好我其實當然希望越快越好啊一個月這不是我現在跟你說一個月沒有 你做事情總要有目標嘛 你自己設定的目標我的目標當然是越快越好一個月甚至我心裡比你更急啊是喔 那下週公佈
transcript.whisperx[166].start 5602.183
transcript.whisperx[166].end 5609.506
transcript.whisperx[166].text 我想跟委員說明這個政策其實歷經了好幾任的所以你要努力去落實你現在握有權利好不好所以這個部分來委員會這個提醒部長不能都是用模糊這樣子沒有報告一個期程事實上作為部長你就是要掌握那個方向跟目標你自己要設定
transcript.whisperx[167].start 5624.453
transcript.whisperx[167].end 5646.326
transcript.whisperx[167].text 在這個政策上面我們是非常非常積極的甚至非常密集的會議在做這件事情那不早就問你一件事你會推到底就對了一定會讓彈性育嬰留庭以日請休在你任內你一定會讓這件事情實現這是你重要的政績跟目標可不可以這樣允諾我當然希望全力能夠去促成
transcript.whisperx[168].start 5646.92
transcript.whisperx[168].end 5675.65
transcript.whisperx[168].text 好那我們就是希望你趕快提出你的方案是什麼不能只是接受專訪的時候都講近期你4月4月講的近期跟現在已經6月了這個近期可能沒有時間那麼久跟我說明齁其實這個政策歷經了幾任的部長為什麼其實一直在演繹中確實他需要去突破的關卡我知道但是你比歷任的部長更支持這件事啊因為你是曾經公開表態你做立委的時候你也是要立推的好不好所以你不一樣
transcript.whisperx[169].start 5676.71
transcript.whisperx[169].end 5704.632
transcript.whisperx[169].text 我希望你這件事情就是要在你任內要把它完成自己講的要做到夠好那另外一個是家庭照顧假的部分這個部分現在其實很多女性在請假過程當中還是有遭到歧視的問題我希望你們可以去在你的那個彈性育嬰還沒有可以以日去請假的時候他們現在能用的大概就是家庭照顧假那在這個部分如果有這樣的情況的話請問勞動部如果他有遭到歧視你們可以提供什麼協助
transcript.whisperx[170].start 5708.047
transcript.whisperx[170].end 5728.688
transcript.whisperx[170].text 第一個其實確實這裡面涉及到剛剛就像之前討論到其實一些雇主我覺得他其實在這個職場的文化上面對於請這些假其實都還有不友善的地方我覺得這部分我們也希望能夠一步一步的跟我們的雇主跟企業能夠做觀念上的溝通
transcript.whisperx[171].start 5729.209
transcript.whisperx[171].end 5747.18
transcript.whisperx[171].text 的確因為台灣的中小企業比較多所以在溝通上面我們會再更努力來做這方面的溝通那第二個事情第二個是說這個家庭照顧假的請休我們其實也希望能夠讓他更彈性如果家庭照顧假能夠更彈性的話
transcript.whisperx[172].start 5749.781
transcript.whisperx[172].end 5773.042
transcript.whisperx[172].text 也許今天有一個室友他不一定非得要請到一整天是啊 可以以小時為單位那如果能夠更彈性的話應該也有助於牢固雙方更容易接受這個申請的狀況所以這一塊你也要鬆綁嗎家庭照顧假以按小時可以請我們都在整體的願意那你會跟著你的那個育嬰假就是以日可以請假的一起嗎
transcript.whisperx[173].start 5774.211
transcript.whisperx[173].end 5797.507
transcript.whisperx[173].text 我們都是在做整體的研議所以這會是一個整體我們對於照顧部理整體的方案的規劃好我希望部長你不要只是一直講近日這件事情大家有所期待所以大家其實會希望你們盡快這個有利於勞工也有利於未來改善少子化的政策你應該要很用力的去推最後我要問你就是最近關稅的議題
transcript.whisperx[174].start 5799.028
transcript.whisperx[174].end 5816.68
transcript.whisperx[174].text 昨天有非常多的勞工團體才召開記者會他說這個卓院長是重勞板輕勞工卓院長跟資方包括總統開了非常多的溝通會議那到目前為止他們說跟勞工公會的座談是掛鈴
transcript.whisperx[175].start 5818.081
transcript.whisperx[175].end 5839.323
transcript.whisperx[175].text 卓院長是不是比較重企業老闆比較忽略勞工為什麼可以跟資方開這麼多的溝通會議但是關稅這件事情也衝擊到勞工為什麼不肯坐下來跟勞工可以有一場面對面的至少開一場都好但是到目前為止勞工的說法是一場都沒有為什麼會有這樣的一個現象
transcript.whisperx[176].start 5843.439
transcript.whisperx[176].end 5855.908
transcript.whisperx[176].text 其實從4月初美國政府宣布官方後其實我想勞動部裡面尤其是我自己親自其實一直到上禮拜我們都還在跟不是你他們講的是院長他們開記者會是說院長竟然這麼重視職方那行政院也應該要重視勞方啊
transcript.whisperx[177].start 5865.554
transcript.whisperx[177].end 5870.637
transcript.whisperx[177].text 我們其實到現在都還非常非常主動的去邀集這個部分其實也是院長指示我們來做的那這件事你可以促成嗎工會已經勞工官網已經提出這樣的一個訴求了他希望可以也邀請勞方一起來座談你跟卓院長關係也很好啊你可以去告訴他說應該他也要坐下來親自聽一下勞工朋友的意見是什麼他們在焦慮什麼在擔心什麼因為到目前為止無薪假已經是38家超過1000人了
transcript.whisperx[178].start 5893.789
transcript.whisperx[178].end 5906.84
transcript.whisperx[178].text 最近不只是關稅的問題加上美國的這個我們的台幣升值這個我連自己在走訪一些企業的時候這個傳產企業他們就說這一波的這個新台幣的升值對他們的傷比關稅還要來得更大是超過10%所以他說這個再不改善的話他們有些人是真的撐不下去
transcript.whisperx[179].start 5918.01
transcript.whisperx[179].end 5937.325
transcript.whisperx[179].text 所以這件事情不只衝擊到老闆勞工也是首當其衝因為他就五星家他就裁員了他一個家庭他的收入就沒有了所以我覺得這件事情既然這個勞官盟都已經公開這個開了記者會我希望這個部長你要跟主任打反應我們會把相關的聲音反映給行政院
transcript.whisperx[180].start 5937.805
transcript.whisperx[180].end 5960.295
transcript.whisperx[180].text 近期內儘快召開一場會議來安勞工的心因為他們要聽到不只是部長你的聲音而是院長因為這件關稅的事情知識體大是要院長層級的才可以解決好不好我們會把相關聲音反映給行政院好 謝謝好 謝謝王議員 謝謝部長那接著我們請邱正軍委員質詢
transcript.whisperx[181].start 5971.531
transcript.whisperx[181].end 5972.772
transcript.whisperx[181].text 主席好 我們請洪部長我先讓你聽一段錄音
transcript.whisperx[182].start 5988.433
transcript.whisperx[182].end 5995.138
transcript.whisperx[182].text 任何的一個決策但是如果有想要建立所謂的單位的企業公路那還是比較容易再次強調這個就是跟便利公路
transcript.whisperx[183].start 6005.946
transcript.whisperx[183].end 6027.702
transcript.whisperx[183].text 我們絕對不會再客氣因為過去總是成立產業公會、加入企業公會那是你個人的一個權利但是你如果要成立單位的企業公會那不要緊因為目前台電唯一合法的企業公會就是產業公會你不要再搞那麼多的權利這部分我們絕對會嚴厲的來主張感謝
transcript.whisperx[184].start 6037.094
transcript.whisperx[184].end 6061.425
transcript.whisperx[184].text 部長我剛讓你聽到的是在台電配售店系統勞資溝通協商會議上的正式發言那台電總工會秘書長蕭玄宗對全體的這個主管和員工說如果今天有人想成立廠廠企業工會就是跟我們為敵我們不會再客氣那勞動部身為這個主管機關部長
transcript.whisperx[185].start 6063.286
transcript.whisperx[185].end 6090.732
transcript.whisperx[185].text 根據憲法第14條 憲判制第7號還有工會法第6條這段話有沒有違法或違憲請你告訴大家這段言論違反了哪些法律保障的這個權利這個這個錄音是真的嗎當然是真的啊我其實沒有聽得很清楚耶待會再拿我們等一下傳一份給我們部長回去慢慢聽啊
transcript.whisperx[186].start 6093.306
transcript.whisperx[186].end 6112.307
transcript.whisperx[186].text 對,所以...因為我剛才真的...我其實真的沒有辦法講...我就講啦,像他現在講的重點就是說這個...如果有人要成立這個廠廠企業工會的話就是以他們工會為敵嘛那他們就不會再客氣請問部長這有沒有違憲?有沒有違反法律保障的這個權利?
transcript.whisperx[187].start 6115.705
transcript.whisperx[187].end 6142.933
transcript.whisperx[187].text 我想其實因為第一個我剛才還是要說我真的沒有不確定我聽到的內容然後那這個工會裡面的成員他怎麼樣去做這個事情的表述當然這就是我們很難我們很難去說工會他說他與誰會敵我們就說他違反什麼法律啊
transcript.whisperx[188].start 6143.843
transcript.whisperx[188].end 6151.049
transcript.whisperx[188].text 這是工會 你是意思說這是工會內部的言論是吧這是邱委員你說的啊那你的意思是什麼
transcript.whisperx[189].start 6156.758
transcript.whisperx[189].end 6173.743
transcript.whisperx[189].text 邱委員你不是說這是工會內部的言論嗎那他內部的這個言論你現在的意思是什麼啊對啊就是邱委員我不是我們不是法官我們沒有辦法說工會他那我現在把他的成員我現在把他跟你講嘛有這件事情嘛有這件事情嘛你們是主管機關嘛你認為怎麼
transcript.whisperx[190].start 6175.703
transcript.whisperx[190].end 6196.777
transcript.whisperx[190].text 你的看法是什麼?我們沒有辦法去跟工會說你不能說自己跟誰好跟誰為敵我們沒有辦法去說這個是不是就已經違反了憲判的這個憲判第七還有我們工會法第六條的這個精神如果你剛才講你講的這個錄音跟內容為真可是這也是工會的成員
transcript.whisperx[191].start 6198.058
transcript.whisperx[191].end 6222.52
transcript.whisperx[191].text 他自己在敘述的今天任何一個人說他與誰為敵我要說他違法他是工會的秘書長你這樣是不是等於恐嚇我們的老公工會的秘書長就是工會的成員啊對 他是不是恐嚇他們的人呢第一個我不確定他是在什麼場合裡面說明的我剛剛就講了嘛是配售店系統的勞資溝通協商會議上講的嘛
transcript.whisperx[192].start 6229.547
transcript.whisperx[192].end 6253.969
transcript.whisperx[192].text 我們很難透過這樣子片段的資訊因為我其實也沒有辦法了解他現場的情境我們現在假設這件事情我現在講你現在是質疑這個東西是不是什麼場合你不知道然後甚至於說是不是真的錄影你不知道那如果是真的
transcript.whisperx[193].start 6255.325
transcript.whisperx[193].end 6270.467
transcript.whisperx[193].text 如果是真的今天任何一個工會的成員他表達他跟誰好他主張什麼事情他不主張什麼事情這件事情就要我們作為一個勞動部的行政機關去說你這是違法的
transcript.whisperx[194].start 6273.503
transcript.whisperx[194].end 6290.062
transcript.whisperx[194].text 這個當然不是言論自由,我認為這個是組織性的寒蟬效益,這個也是一種壓制性的這個壓制結社打壓的一個行為,那如果主管機關連這個叫做表達意見,那工會霸權以後會更囂張不是嗎?
transcript.whisperx[195].start 6293.117
transcript.whisperx[195].end 6315.749
transcript.whisperx[195].text 這個跟委員說我們怎麼促成讓工會的自主性或者是可以更有空間這件事情我們可以討論可是很難拿這工會的內部成員的一句話就來斷定這是打壓還是霸權還是什麼畢竟工會的成員他也沒有掌權憲法有沒有保障結社自由嗎當然有那工會法第六條有沒有禁止干涉勞工組織自由
transcript.whisperx[196].start 6318.345
transcript.whisperx[196].end 6329.636
transcript.whisperx[196].text 有沒有 你就要配答原文就好跟文說明就是你剛才如果是只是針對他的這一句話然後就要我們斷定說這是一個違法的或者是所以你的意思說以後都可以這樣來恐嚇員工就對了部長的態度是這樣嗎
transcript.whisperx[197].start 6334.998
transcript.whisperx[197].end 6350.634
transcript.whisperx[197].text 這個是不是恐嚇我想這部分就是有法律這個當然沒有法律有法律司法來再去做斷定我跟你講這個是沒有法則沒錯但是我覺得你勞動部必須要有一個立場有一個原則是不是不能鼓勵這種情形發生這個我今天問你是這個態度第一個跟各位說我們並沒有鼓勵
transcript.whisperx[198].start 6354.238
transcript.whisperx[198].end 6380.174
transcript.whisperx[198].text 我們並沒有鼓勵這些任何的言論我們並沒有鼓勵但是委員你叫我去斷定說這樣講是不是就違法我沒有說他違法我現在跟你講你跟他講是違法啊沒有 我沒有說他不行沒有罰則嘛 對不對現在是沒有罰則對不對不是 那我現在講的意思是說這種言論發生在國營事業內部你們身為這個主管機關如果你們都不管那就是默認這種行為是對的啦
transcript.whisperx[199].start 6383.021
transcript.whisperx[199].end 6410.014
transcript.whisperx[199].text 郭文在說明這個工會內部成員他在主觀上面做的這個敘述我們真的是沒有辦法直接去斷定你這就是違法或判定他就是違法不管有罰則或沒罰則我沒有說叫你去判斷我只是說這種行為對不對這個文你可以有自己的評價但是我想還是要提醒你啦法律寫得再不漂亮啦我們遇到懦弱的官員一樣沒有用啦
transcript.whisperx[200].start 6411.038
transcript.whisperx[200].end 6415.793
transcript.whisperx[200].text 那接下來第二題啦 因為時間也不夠那我再問一下
transcript.whisperx[201].start 6417.842
transcript.whisperx[201].end 6443.648
transcript.whisperx[201].text 五名來自越南勞工所受僱於某食品公司任職期間遭公司董事長的配偶也就是公司董事周軍多次以交包粽子為由肢體碰觸包包臉靠近申訴人的這個臉貼很近手往前抱或用雙手夾緊手等這個行為那麼新北市政府認定
transcript.whisperx[202].start 6444.828
transcript.whisperx[202].end 6447.311
transcript.whisperx[202].text 這個是符合職場性騷擾並開罰州軍10萬元州軍不服嘛然後提起疏遠
transcript.whisperx[203].start 6451.462
transcript.whisperx[203].end 6473.823
transcript.whisperx[203].text 那部長我想請問一下現在我們訴願會說因為董事不是最高負責人所以不能罰那你們自己的法條第三條第三款明擺寫代表僱主行使管理權之人適同僱主請問這位董事長掛名董事長的配偶掛名董事他現在他在現場親自指揮員工在現場交包粽子
transcript.whisperx[204].start 6477.006
transcript.whisperx[204].end 6485.704
transcript.whisperx[204].text 甚至給指示下命令安排員工做出工作指示那他就是行使管理權的人嘛依法應該適同雇主這樣對吧
transcript.whisperx[205].start 6489.063
transcript.whisperx[205].end 6502.194
transcript.whisperx[205].text 跟委員報告 委員關心的這個案子這家公司的員工的性騷擾我們是肯認他的確性騷擾成立並且地方政府依法裁罰這件事情是成立的對 但是後來你不是撤銷他的我們針對請新北市再查明的是說我們的性騷擾的相關的規定是這家公司他針對相關的作為
transcript.whisperx[206].start 6513.122
transcript.whisperx[206].end 6532.716
transcript.whisperx[206].text 我們是肯定說他有違反性騷擾我們保護這個勞工可是性騷擾他的那個行為人是不是該公司的最高負責人這是另外一條的處分那因為他公司有另外一個最高負責人所以我們請新北市再查明說你針對這個行為人你認定是最高最高負責人這一塊請他再查明另處
transcript.whisperx[207].start 6538.64
transcript.whisperx[207].end 6567.518
transcript.whisperx[207].text 對我知道你現在也對他們的公司罰了嘛對不對是是是那現在行為人沒有受罰我的重點在這裡對他的關鍵點是說他公司本身是有一個最高負責人所以你們是只罰公司所以行為人不用罰就對了那我們針對行為人這個就像一個你知道就是房子啊失火了被人縱火然後你去罰那個房子的人沒有消防安檢不合格然後縱火的人就放了
transcript.whisperx[208].start 6568.377
transcript.whisperx[208].end 6592.692
transcript.whisperx[208].text 我知道你的意思你現在想要你現在想要提出來的事情是說對於最高負責任的認定的資格的範圍的問題那我有聽聞過這個案子那也有工會的成員來跟我表達這個案子希望我們再來多研議關於這個最高負責任的範圍應該要怎麼去認定這件事我認為這部分我們也願意來再做一些檢視我現在講的就是我們這個是法規的問題
transcript.whisperx[209].start 6596.674
transcript.whisperx[209].end 6622.016
transcript.whisperx[209].text 還是這個標準的問題我想這個可能要講就是關於最高的話我們不能夠去這個行為人我們不能夠說這樣就不處分就是最高負責人的認定的這個範圍其實這個其實確實現在會有不同的尤其是工會的朋友其實有來跟我們說希望我們再做一些檢視然後跟確認好不然你是答應就是會去做我們願意來這個事情
transcript.whisperx[210].start 6624.218
transcript.whisperx[210].end 6652.297
transcript.whisperx[210].text 最高負責的範圍但是這一個案例裡面就我知道其實性騷擾是成立的對 沒錯性騷擾是成立的只是要不要適用那個最高負責人的這一個條文來去處理這個案件我現在的意思就是說他現在你去處理公司這個本來是規定嘛那但是現在行為人漏了是我的意思是這樣所以我說這個部分我們願意再來檢視一次這樣子那最後我提醒一下啦因為今天的主題啦給我一分鐘我們知道我們這個
transcript.whisperx[211].start 6655.338
transcript.whisperx[211].end 6678.323
transcript.whisperx[211].text 職場育兒環境的這個部分所以我們男性請育嬰假大部分都能夠回歸這個職場那到去年底大概有32.3萬人勤領女性占了24萬男性只有8.2萬人雖然男性成長了64%但比例仍是偏低啦我現在提醒的就是說我們的上限就是最高投保薪資的這個
transcript.whisperx[212].start 6679.523
transcript.whisperx[212].end 6691.296
transcript.whisperx[212].text 是四萬五千八對不對四萬五千八那我們現在是以這個八成來計算那有些男性他的薪水可能更高可能更高那是不是就造成他不願意去
transcript.whisperx[213].start 6693.329
transcript.whisperx[213].end 6710.998
transcript.whisperx[213].text 領這個 你懂我意思嗎 去請領這個因為請領這個他等一下 剩下三萬多那他還不如請保姆嘛所以這個也是一個問題啦就是說請部裡面把這個東西也列入考量我們認為男性身群遺留庭並不是障礙在哪裡的問題
transcript.whisperx[214].start 6712.295
transcript.whisperx[214].end 6731.581
transcript.whisperx[214].text 它之所以比例比較低我認為它不是比女性有更多的障礙確實我們過去的職場文化裡面容易把照顧的責任比較多的是押注在女性身上所以我們不是用怎麼樣這個障礙的角度去看我們怎麼樣去通過制度來促成大家共同的責任
transcript.whisperx[215].start 6732.574
transcript.whisperx[215].end 6760.359
transcript.whisperx[215].text 那我覺得我們的制度設計是這樣而不是把說現在男性情侶比較低是因為他遇到了什麼障礙或比女性更多的障礙我們倒不覺得是這樣但我是這樣覺得啦就是說這個部分你們還是列入考量啦就因為男性他情侶比較低會不會是因為他的這個薪資比較高那但是你這樣扣減下來對他來講划不來所以他就沒有事情如果你要去處理的話應該是想辦法讓女性的薪資
transcript.whisperx[216].start 6762.179
transcript.whisperx[216].end 6782.647
transcript.whisperx[216].text 這個盡量拉近男性而不是不只是把說設定說男性性質比較高所以我為了要讓男性多親所以你的意思是說女性的話你可以拉高就對了想拉高我們政策上當然希望但是政策上當然希望好那我們各等部長兩性的政策這會我們的我們的目標當然是我們做這樣的希望我們都等不完的好消息好不好好謝謝好謝謝邱委員謝謝部長
transcript.whisperx[217].start 6788.854
transcript.whisperx[217].end 6795.723
transcript.whisperx[217].text 那我們請黃秀芳委員執行,那在圖前級委員執行完畢後,我們休息六分鐘謝謝主席,我們請部長
transcript.whisperx[218].start 6812.636
transcript.whisperx[218].end 6832.891
transcript.whisperx[218].text 我們今天討論營造友善職場育兒環境落實照顧不離職的政策規劃我想請教邱委員有特別提到好像一般育兒的這個部分好像這種責任在我們現在目前好像感覺是落在女性的身上
transcript.whisperx[219].start 6833.872
transcript.whisperx[219].end 6846.621
transcript.whisperx[219].text 那也會造成就是說這個女性從結婚然後生完小孩之後有很多如果是孩子是自己顧的話通常都是女性就是離開職場然後照顧小孩
transcript.whisperx[220].start 6849.544
transcript.whisperx[220].end 6873.079
transcript.whisperx[220].text 這個通常大部分都是這樣子我想請教就是說我們也看到就是說勞發署這邊也很積極就是說如果孩子長大之後那婦女能夠二度就業的這個媒合我看到你們也都非常的積極那也跟民間的很多團體有一些合作像地方的一些婦女團體他們也有特別
transcript.whisperx[221].start 6875.26
transcript.whisperx[221].end 6894.815
transcript.whisperx[221].text 針對這個婦女的二度就業有提出來一些譬如說研討或者是讓這些婦女能夠透過一些座談然後讓他們再進到職場我想請教部長就是說我們看到這個國外的一些例子就是說以芬蘭為例就是說芬蘭他們針對未滿三歲然後沒有送托的這個家長
transcript.whisperx[222].start 6900.679
transcript.whisperx[222].end 6925.563
transcript.whisperx[222].text 發放每個月高達一萬三千元一萬三千元的育兒津貼那後來他們也有發現就是說這個津貼每增加一百歐元那女性的勞參率就會下降1.5那我想請教部長就是說你們有針對這個去做一些研究那怎麼樣讓我們透過什麼樣的政策然後讓婦女的勞參率能夠
transcript.whisperx[223].start 6929.746
transcript.whisperx[223].end 6937.227
transcript.whisperx[223].text 能夠不會因為我們補助的關係然後降低這個勞參率我不知道說你們有沒有做這樣的一個研究
transcript.whisperx[224].start 6938.168
transcript.whisperx[224].end 6960.324
transcript.whisperx[224].text 可能跟文說沒有因為確實像育兒津貼目前我們的業管單位是在衛福部是那勞工部部分我們主要會是針對勞保或國民研經的生育給付的部分的發放不過我們也很清楚文的提醒這也是為什麼我們其實現在當然就是像在推動這個彈性病流停像這樣子的
transcript.whisperx[225].start 6961.485
transcript.whisperx[225].end 6977.021
transcript.whisperx[225].text 的政策在目前在規劃中其實就是希望更多的把女性留在職場上那維持勞產率我現在問就是如果是針對育兒津貼的發放的金額的高跟低對於勞產率目前我們應該看起來
transcript.whisperx[226].start 6977.481
transcript.whisperx[226].end 6993.581
transcript.whisperx[226].text 是還沒有這樣子相關的數據的研究是是是好那我們也當然希望就是說婦女都能夠留在這個職場上那當然如果婦女要留在職場上應該就是說讓她能夠安心的上班
transcript.whisperx[227].start 6994.242
transcript.whisperx[227].end 7019.107
transcript.whisperx[227].text 那孩子有人照顧這個就是一個非常重要的一個環節那我想請教就是說我們看到我們目前的這個育兒政策就是說以目前來講我們以我們的助理來講好了就是說我們的助理他本身也有孩子那他要來上班把孩子送到幼兒園那幼兒園通常他們的那個上課時間可能到4點
transcript.whisperx[228].start 7020.427
transcript.whisperx[228].end 7039.52
transcript.whisperx[228].text 也許到4點那國小的話也是到4點左右那如果你要在時間如果要再增加的話或者是要延長的話如果國小的話通常都到安親班那如果幼兒園的話可能要請幼兒園的老師可能我們可能會再著收費用然後請幼兒
transcript.whisperx[229].start 7040.18
transcript.whisperx[229].end 7063.544
transcript.whisperx[229].text 幼兒園的老師在照顧可能再多一兩個小時這樣子那我想請教部長就是說我們有沒有可能針對這個家庭育兒的需求那我們來建置這樣的一個公共化的幼兒園或者是國小針對這樣的一個家庭的需求然後這個時間是往後延的其實我們現在這個在協助
transcript.whisperx[230].start 7068.012
transcript.whisperx[230].end 7094.075
transcript.whisperx[230].text 很多婦女平衡他的工作跟家庭照顧需求其實我們現在就有這個雇主的工時調整的獎勵就是說如果這個雇主願意來協助做工時上面的挪移跟調整那更方便我們這家長來去包括像這些小孩等等的話其實我們可以獎勵其實我們就有這樣方面的獎勵那是針對雇主方面嗎
transcript.whisperx[231].start 7095.196
transcript.whisperx[231].end 7108.671
transcript.whisperx[231].text 那如果像一般的我們的幼兒園或者是國小其實我覺得這個應該勞動部應該也可以跟國小就是教育部這邊可能也可以來做一些討論就是針對家庭的需求
transcript.whisperx[232].start 7109.772
transcript.whisperx[232].end 7133.307
transcript.whisperx[232].text 那是不是這個時間可以延長我覺得說因為以目前來講的話如果國小的話四點下課那通常孩子可能就會直接送到安親班那有的如果沒有送到安親班的話也許是家人接走這樣子那我不知道說有沒有可能就是因為要有一些友善的職場
transcript.whisperx[233].start 7134.247
transcript.whisperx[233].end 7162.212
transcript.whisperx[233].text 那是不是說我們勞動部跟教育部也可以針對也是一個跨部會的討論是不是有可能是這樣子我知道委員現在的在這個想法的用意當然就是說就勞工的下班的時間跟這個兒童他可能離開學校的時間怎麼樣子能夠去做結合的對接讓大家可以更方便那這部分我們其實是願意跟教育部或者是衛福部因為如果是
transcript.whisperx[234].start 7163.292
transcript.whisperx[234].end 7190.094
transcript.whisperx[234].text 托嬰托兒的話主要是衛福部這邊在管理我們當然願意跟他們來做討論不過的確現在剛剛就委員講說包括這個托兒所或者是學校這部分他們的時間這可能還是其他目的世界主管機關在主管但我們很願意跟他們來討論這兩邊怎麼協調能夠讓這個銜接的部分然後更沒有阻礙或者是更沒有落差我們當然願意大家來研擬跟討論這個想法
transcript.whisperx[235].start 7192.934
transcript.whisperx[235].end 7210.713
transcript.whisperx[235].text 我們希望可以啦因為確實很多家長他們因為工作的關係然後你學校可能四點然後幼兒園可能也四點下課所以會造成一些困擾我覺得應該我們可以朝著這個方向去努力
transcript.whisperx[236].start 7210.913
transcript.whisperx[236].end 7231.642
transcript.whisperx[236].text 所以我們也是考慮到在這一點所以我們其實才推出這個雇主工時調整的獎勵就是至少在職場的工時端希望讓他更有彈性去去滿足可能這個家長婦女他要去照顧小孩或接送小孩的這樣的需求其實我們也是因為這個原因才推出這樣的獎勵所以用意是相同的
transcript.whisperx[237].start 7232.842
transcript.whisperx[237].end 7237.706
transcript.whisperx[237].text 那部長接下來我想請教就是說在前陣子就是那個長榮在2019年就是長榮的那個空服員發動這個罷工事件那後來到今年就是2025年的4月24就是最高法院民事判決駁回長榮航空的上訴就是
transcript.whisperx[238].start 7255.5
transcript.whisperx[238].end 7269.63
transcript.whisperx[238].text 資方就是有去告這些工會的人那我想請教就是說這個罷工應該也是勞工的一個權利啦那如果說因為罷工然後資方又提起訴訟那這樣
transcript.whisperx[239].start 7272.052
transcript.whisperx[239].end 7285.871
transcript.whisperx[239].text 訴訟就經過了六年的時間其實對勞工來講其實是一個很大的煎熬尤其是長榮是一個大公司那這些工會的成員被這樣子六年的時間其實我覺得
transcript.whisperx[240].start 7287.693
transcript.whisperx[240].end 7314.395
transcript.whisperx[240].text 到目前我們看到就是說還繼續留在這個公司就剩下四個人繼續留在公會繼續擔任幹部那有的就已經離職了那我想請教就是說部長針對這一部分因為我覺得罷工應該是勞工的一個權利那因為罷工然後公司提起訴訟那這樣子的話如果未來還是有這樣的一個情形發生的話
transcript.whisperx[241].start 7315.796
transcript.whisperx[241].end 7318.917
transcript.whisperx[241].text 我覺得對整個勞工會有一個寒蟬效應我想聽聽我們部長的一個想法另外就是說其實資方提起訴訟的時候其實很多
transcript.whisperx[242].start 7332.943
transcript.whisperx[242].end 7361.58
transcript.whisperx[242].text 這個這些空服員他們也會擔心就是有被秋後算帳的這樣的一個情形所以我想聽聽部長的一個想法就是說未來也許還有其他的這個工會或其他的公司有這樣的一個罷工的情形然後資方可能又提起訴訟會讓這個可能勞方可能會未來不太敢因為某種因素然後不敢再提出這樣的一個罷工的這種情形那我想聽聽部長的一個想法
transcript.whisperx[243].start 7364.171
transcript.whisperx[243].end 7376.739
transcript.whisperx[243].text 這個跟黃委員說明這個目前這個案子那現在經過勞動部裡面不當勞動行為的裁決委員會那目前其實已經做成認定就是說這個長榮的資方其實對幹部
transcript.whisperx[244].start 7378.16
transcript.whisperx[244].end 7393.346
transcript.whisperx[244].text 他們提起相關的訴訟因為罷工的問題那目前其實是已經認定長榮是有這個行為已經是構成了不當勞動行為所以我想我們在這上面的態度是清楚的那有一些細節我可以請好
transcript.whisperx[245].start 7395.721
transcript.whisperx[245].end 7416.961
transcript.whisperx[245].text 跟委員報告當初我們裁決委員會是這樣認為因為罷工後第二天他馬上向法院提起非常高的訴訟的金額那不僅是對工會還對所有的幹部個人第二個就是他的速度很快我們認為他是某程度是施壓於工會的罷工
transcript.whisperx[246].start 7417.541
transcript.whisperx[246].end 7437.999
transcript.whisperx[246].text 所以當初我們裁決委員會就認為說這已經構成不當容的行為了那高等刑侍法院也很支持我們當然最高刑侍法院認為說訴訟權是每一個人在憲法上擁有的那他最高法院的看法跟我們不太一樣不過民事法院也支持民事法院認為說這是合法的訴訟不應該有任何的求償
transcript.whisperx[247].start 7439
transcript.whisperx[247].end 7459.551
transcript.whisperx[247].text 那也跟委員報告我們在公會法適應細則都有明定第三十條我們明定如果雇主對於勞工參與或支持公會決議所為的行為威脅提起或提起顯不相當的民事訴訟賠償訴訟我們認為這就是不利待遇所以我們也是這一條呢也就是說我們現在也是對我們的資防的呼籲
transcript.whisperx[248].start 7460.712
transcript.whisperx[248].end 7468.815
transcript.whisperx[248].text 不可以對公會提起他們提起的合法的正義行為是你其實顯不相當的一個訴訟要求的賠償這會構成不當行為是好其實我看到這個其實我會擔心就是說未來這個公會提起他們的這個權利的話那資方如果提起訴訟的話其實會真的會有一個寒產效應
transcript.whisperx[249].start 7484.001
transcript.whisperx[249].end 7504.314
transcript.whisperx[249].text 所以我也希望就是說勞動部針對這一件事也需要去正視那未來如果有類似的一個狀況我覺得你們動作也很快當然就是說勞工有自己的權利那我覺得勞動部就是要去保障勞工的一個基本的權利你們要成為勞工最好的後盾
transcript.whisperx[250].start 7505.311
transcript.whisperx[250].end 7523.038
transcript.whisperx[250].text 那個我想這個黃委員提的這個類似的案件的話我想勞工部的態度是清楚的這個罷工是只要是合法的其實都是勞工或公會其實有的相關的權益那不應該用任何的方式去做阻擾妨礙甚至是打壓是好好謝謝好謝謝好謝謝黃委員謝謝部長那接著我們請圖前幾位質詢
transcript.whisperx[251].start 7539.303
transcript.whisperx[251].end 7542.592
transcript.whisperx[251].text 好 謝謝主席 那請我們洪聖范 洪部長還有我們勞動條件室 黃師長
transcript.whisperx[252].start 7550.244
transcript.whisperx[252].end 7567.273
transcript.whisperx[252].text 部長你好我想今天跟你討論一下有關於我們國防部新制教育召集新制跟我們勞工上班休假之間的關係那因為我們現在國際地緣政治的劇烈變化我們國軍從民國111年開始
transcript.whisperx[253].start 7570.555
transcript.whisperx[253].end 7580.65
transcript.whisperx[253].text 就提出我們教育召集新制那請問一下部長知道這個教召新制的內容跟我們過去的舊制有什麼不同嗎
transcript.whisperx[254].start 7585.54
transcript.whisperx[254].end 7613.785
transcript.whisperx[254].text 好 沒關係我沒有那麼了解這個問題沒關係大概我們說明一下因為我們111年那時候開始提出我們教召新制到113年它是舊制跟新制來並行到114年我們大概新制就到達八成那我們在115年我們教召新制會全面上路那就是全部會採用14天的新制
transcript.whisperx[255].start 7614.505
transcript.whisperx[255].end 7632.081
transcript.whisperx[255].text 大概跟部長說明一下那新制跟舊制最大的不同就是舊制它是5天到7天新制是14天那它裡面的項目之前舊制是射擊跟戰鬥大概各12個小時
transcript.whisperx[256].start 7633.522
transcript.whisperx[256].end 7656.359
transcript.whisperx[256].text 那可是推新制之後我們射擊會到28個小時戰鬥訓練會到56個小時那特別他還增加了很多的項目像行軍訴贏戰傷急救障礙物破壞與通過戰鬥間各種狀況處置等等而且其實他每天這個訓練白天8個小時晚上2個小時
transcript.whisperx[257].start 7661.283
transcript.whisperx[257].end 7678.339
transcript.whisperx[257].text 那最主要是要跟部長討論其實這個教招新制推動之後很多網友也在討論這個訓練真的是非常的精實那說教招新制對後備軍人的訓練是非常非常的扎實
transcript.whisperx[258].start 7679.42
transcript.whisperx[258].end 7695.951
transcript.whisperx[258].text 那現在重點是他14天受完這個訓練之後其實嚴格來講這訓練很扎實其實也是很操啦可是如果說他這14天受完訓之後馬上回到職場馬上就要接著要上班
transcript.whisperx[259].start 7696.651
transcript.whisperx[259].end 7721.753
transcript.whisperx[259].text 要上工那有些他甚至是輪班制的有可能馬上就要上五六天那等於說他大概會有19天到20天他都是沒有休假的那這一部分的問題我覺得對於勞工沒有這個緩衝休息的時間那部長你有沒有一個看法那等於說其實他等於是一個月內他就連上20天的班
transcript.whisperx[260].start 7725.027
transcript.whisperx[260].end 7748.413
transcript.whisperx[260].text 委員這邊關心的是我們當我們叫招14天完之後勞工是不是又要立即上工那這個部分的話其實現在的勞基法規定相關的例假休假每7天一定要有例假休假那當一個勞工去做接受叫招的時候第二天回來的時候雇主跟勞工可以協商他的例假休假就是排在第二天要上班的那個時間
transcript.whisperx[261].start 7749.753
transcript.whisperx[261].end 7769.535
transcript.whisperx[261].text 因為他去叫招期間是沒有相關的例假休假那個是因為叫招的部分其實是沒有需要例假休假但是他們雙方可以去協商第二天就排例假休假讓勞工有充足的休息之後再上班其實對於雇主也是會有更好的勞動力
transcript.whisperx[262].start 7771.192
transcript.whisperx[262].end 7781.739
transcript.whisperx[262].text 那協商是勞工自己跟雇主自行協商還是有一個規定就是說因為你擔心如果以雇主來講他會認為你已經
transcript.whisperx[263].start 7783.649
transcript.whisperx[263].end 7810.374
transcript.whisperx[263].text 叫招14天那你回來待會馬上要到工作崗位上那有沒有明定說是不是他14天回來第二天應該要給他休息因為現在不像以前說一上去到好像是只是上上課像度假一樣我剛剛那個凸顯的重點是這14天是非常精實耶白天8個小時晚上2個小時10個小時而且你看他的訓練內容那是很糙的耶
transcript.whisperx[264].start 7810.894
transcript.whisperx[264].end 7830.611
transcript.whisperx[264].text 那回來14天就很累第二天馬上開始到職場有時候又輪班他等到休假等於連上19天連上20天那會不會有工作上的職場的一些安全疑慮因為他這個教召不像以前我們印象中好像去上上課上課好像還可以
transcript.whisperx[265].start 7832.452
transcript.whisperx[265].end 7855.814
transcript.whisperx[265].text 睡覺還可以休息他這個很紮實很堅實而且受過訓的都說這個真的就像完全在當兵一樣甚至還不輸以前當兵是謝謝委員過去教召的確5日的狀況之下勞工回來其實就是剛好5天剛好回來就是他的例假休假但是因為各行各業相關的排班不盡相同
transcript.whisperx[266].start 7856.434
transcript.whisperx[266].end 7884.711
transcript.whisperx[266].text 那這個部分委員其實提醒我們我們其實會跟地方政府大家做好一致就是輔導轄區內的事業單位其實這個部分讓事業單位知道說我們相關國家的法令叫招的規定的改變那讓我們的這個地方政府去告訴事業單位其實雙方因為這個14天的叫招例假休假的排定其實最好對於勞資雙方最好的方式就是回來就像委員講的其實應該把他的例假休假就
transcript.whisperx[267].start 7885.732
transcript.whisperx[267].end 7908.07
transcript.whisperx[267].text 應該讓他排定讓他休息我這邊建議啦因為這個事情因為其實很多的像總工會還有很多的勞團都有提出啦那因為剛剛我們黃師長的說法是他們自行去協調我覺得應該要有一個明確就是說他今天去教早14天之後他回來那一天
transcript.whisperx[268].start 7909.116
transcript.whisperx[268].end 7933.914
transcript.whisperx[268].text 休假的部分我們宿民地要怎麼去處理應該勞動部跟國防部這邊應該要去跨部會去研議這個問題不然你對我們現在大家一直說要推動全民國防那這樣子對社會大眾對這個叫招的觀感我們要如何去讓他建立去叫招也不是他願意的他去到受訓又這麼辛苦回來馬上
transcript.whisperx[269].start 7935.975
transcript.whisperx[269].end 7959.387
transcript.whisperx[269].text 如果以雇主來講你已經14天沒上班你會當然馬上要進入職場啊所以這部分勞動部跟國防部應該要有一個研議一個方法是不是怎麼去完善怎麼去調整這樣子的問題那個對因為剛剛其實黃長其實我們也有有談到說我們來思考一下怎麼促成比方說這個
transcript.whisperx[270].start 7961.819
transcript.whisperx[270].end 7977.35
transcript.whisperx[270].text 老公跟雇主的協商裡面能夠讓這個在叫到14天之後能夠有一些適當的休息的這個狀況我想我們來來來思考一下怎麼盡量的方式來去更多的促成這件事情
transcript.whisperx[271].start 7977.87
transcript.whisperx[271].end 8005.409
transcript.whisperx[271].text 好我希望這個勞動部跟國防部你們去研議一下看是不是後面可以給我們一個書面報告有沒有什麼比較研議出來一個比較具體的方法怎麼去做就是說我們怎麼樣來鼓勵我們怎麼樣來鼓勵這個雇主其實應該把這個教召的14天剛剛就是委員講說他現在是很矜持的那在這麼矜持的狀況之下他有一定身心上面負荷的強度那怎麼樣大家在這個結束教召以後他
transcript.whisperx[272].start 8006.189
transcript.whisperx[272].end 8030.046
transcript.whisperx[272].text 有機會可以有多一點的適當的休息這部分我想我們願意來在這部分做多一點思考對啊我希望說演繹一個比較明確的方法剛剛司長講的說讓僱主跟勞工自己去協調這個基本上沒有任何的強制力啦那到時候說不行就不行那他還是要乖乖去上班啦那到時候萬一發生職場一些安全疑慮的時候誰負責並不是他這14天不是去度假
transcript.whisperx[273].start 8032.112
transcript.whisperx[273].end 8043.639
transcript.whisperx[273].text 那這部分請我們勞動部國防部來研議一下那還有針對我們最近我們大家知道最近詐騙很猖獗像2024年我們詐騙這個金額就高達到502億是兩2019年前的11倍
transcript.whisperx[274].start 8052.384
transcript.whisperx[274].end 8081.416
transcript.whisperx[274].text 那這一部分當然我們勞動部在暑假求職期間也一直在宣導年輕人小心求職詐騙那這一部分我們勞動部也做得蠻落實的也一直提醒大家說在FB社群網站或者LINE即時通訊這一部分很多的不實廣告很多的詐騙的陷阱也告訴我們勞工這些求職的時候一定要特別的注意
transcript.whisperx[275].start 8082.176
transcript.whisperx[275].end 8093.444
transcript.whisperx[275].text 可是現在我們發現一個問題就是在104應聘履歷這一部分我們發現他不是現在不是詐騙勞工現在感覺是詐騙雇主
transcript.whisperx[276].start 8097.509
transcript.whisperx[276].end 8120.821
transcript.whisperx[276].text 就是他這個去投這個履歷其實裡面設了很多的陷阱像我們我們這次招聘助理的時候我們發現他們來應徵電話是空號而且說自己是民國90年生然後又講年齡23歲然後條件也寫得很好在公研院擔任助理參與先進資料研究
transcript.whisperx[277].start 8122.021
transcript.whisperx[277].end 8149.653
transcript.whisperx[277].text 專案獨立收集整理科學文獻然後又在實驗室執行樣品測試數據分析優化測試流程讓實驗效率提升20%這個經驗各方面的資歷給我們感覺非常好但是有點太誇大了然後我們感覺可能是AI去寫的那這一部分我們要講的這一部分就是說後來我們去
transcript.whisperx[278].start 8152.457
transcript.whisperx[278].end 8161.821
transcript.whisperx[278].text 點開他這個點開他這個電子電子通訊我們去跟他聯繫喔發現他裡面好像要我們開啟這個檔案好像
transcript.whisperx[279].start 8164.636
transcript.whisperx[279].end 8187.83
transcript.whisperx[279].text 感覺電腦怕會中毒而且進去以後可能就是一些詐騙的情勢那針對這部分我們發現104裡面本身並沒有一個平台讓我們去投訴可以說是求助無門所以這部分勞動部是不是應該跟我們104這個平台系統去演繹一下不但是我們
transcript.whisperx[280].start 8188.61
transcript.whisperx[280].end 8215.306
transcript.whisperx[280].text 今天去求職有可能碰到陷阱今天連這個僱主都有可能會被這個印證的這些資料而去收到這個假的檔案進去可能電腦中毒甚至有可能也會被僱主也會被詐騙那是不是這一部分我們勞動部有沒有發現到這個情勢啊所以委員你們當中是被剛剛那個照片騙了
transcript.whisperx[281].start 8217.452
transcript.whisperx[281].end 8240.503
transcript.whisperx[281].text 可是他們進去以後發現有問題以後他就沒有再點進去我們今天要講的意思是說本來我們以為只是求職會被騙結果沒有想到你今天連雇主去徵才都有這麼多的陷阱所以當然我們的助理在第一時間發現不對他就沒有點進去
transcript.whisperx[282].start 8241.463
transcript.whisperx[282].end 8257.519
transcript.whisperx[282].text 所以我們今天凸顯這個事情就是說連僱主都有可能被這個詐騙的陷阱所受騙到所以呃第一個這委員這表示你的注意非常優秀就是他很有治安的意思那第二個是說呃
transcript.whisperx[283].start 8260.151
transcript.whisperx[283].end 8281.819
transcript.whisperx[283].text 我們會我們我們可以來跟這個內政部來來討論一下那針對這部分如果類型目前真的有越來越普遍的話那我們怎麼防範這個類型的詐騙那那確實就是我應該提醒的可能不是只是目前的求職詐騙不只是針對勞工求職的勞工甚至會針對針對雇主所以但
transcript.whisperx[284].start 8283.208
transcript.whisperx[284].end 8308.77
transcript.whisperx[284].text 我們自己也清楚說如果能夠做相關的後續的面試等等其實都有助於其實可以去做這部分的篩選不過相關的機制我們能不能夠更協助更多的僱主他去避免跟預防或誤踩這部分的地雷我想我們也可以來跟內政部再做一些討論會請我們發言署跟內政部因為為什麼一般來講我說勞動部都一直提醒
transcript.whisperx[285].start 8309.751
transcript.whisperx[285].end 8333.606
transcript.whisperx[285].text 勞工去求職的時候很多的陷阱結果我們突然發現這個檔案有問題然後想要找104去了解一下這個狀況結果發現104這個平台根本沒有這個機制求助無門所以我說勞動部應該也跟104研議一下因為現在詐騙真的是層出不窮我們一直說要求職可能很多陷阱結果你看現在連
transcript.whisperx[286].start 8334.446
transcript.whisperx[286].end 8345.508
transcript.whisperx[286].text 雇主都有可能掉到陷阱裡面所以這部分也希望勞動部跟我們行政院很多部會針對詐騙有很多的陷阱像這個類似的應該也要提出
transcript.whisperx[287].start 8347.062
transcript.whisperx[287].end 8356.008
transcript.whisperx[287].text 是那這部分請我們勞動部也來幫我們關心一下尤其這104這個它是不是有這個機制也要讓民眾歡迎發現這問題應該要有一個投訴專線或者跟他們講說這個應該是有問題他們104應該要去注意不能讓這個詐騙的一直在104上應聘連這個僱主都有可能會受騙是好 謝謝部長
transcript.whisperx[288].start 8373.04
transcript.whisperx[288].end 8379.644
transcript.whisperx[288].text 謝謝圖委員 謝謝部長我們現在休息六分鐘那我們11點30分左右我們處理臨時提案有兩件
transcript.whisperx[289].start 8820.865
transcript.whisperx[289].end 8826.071
transcript.whisperx[289].text 我發現未婚是不錯好我們繼續開會我們請劉建國召回質詢
transcript.whisperx[290].start 8835.088
transcript.whisperx[290].end 8861.33
transcript.whisperx[290].text 好 謝謝主席 謝謝有請部長今天照理安排這個營造友善職場與環境若是照顧不離職的政策規劃這非常重要非常好了然後我要進入這個主題之前本席有一個數據要請部長看一下
transcript.whisperx[291].start 8863.939
transcript.whisperx[291].end 8879.89
transcript.whisperx[291].text 從這個數據大致上可以看出每年的畢業生畢業之後沒有立即進入職場的狀況從108年以前大約沒有在這個表格上但是108年以前大約平均是落在12%左右但從109年、110年一直到111年就從14%、15%一直到112年的18%
transcript.whisperx[292].start 8887.74
transcript.whisperx[292].end 8897.067
transcript.whisperx[292].text 這個是畢業生?對下面這個數據我講的是未投保率但是你看到了去年從112年的18%一直到113年馬上跳升到將近快到33%幾乎是80%的成長
transcript.whisperx[293].start 8911.055
transcript.whisperx[293].end 8920.219
transcript.whisperx[293].text 也就是說當年度的畢業生未投保率竟然從12年的18%跳到113年的33%部長有掌握到這個訊息嗎?謝謝委員提供這個資訊今年的畢業季會不會再成長?未投保率未投保率代表什麼?
transcript.whisperx[294].start 8933.904
transcript.whisperx[294].end 8958.89
transcript.whisperx[294].text 報告委員就是這個數據的這個32%未投保率這個是畢業生他在半年內還沒有這個投保的一個比例那他在歷年的情況是其實都是差異不大的那不過因為這個半年呢是因為畢業生他可能是會準備在升學或者是進修那在畢業後一年那他其實投保率就是有達到
transcript.whisperx[295].start 8960.65
transcript.whisperx[295].end 8974.679
transcript.whisperx[295].text 7成75%那這個其實是歷年是差不多的所以你的掌握現在回答我是如此就對了是不是就是你的掌握是這樣就是說你們是看一年的你們不是要看半年的是這樣嗎
transcript.whisperx[296].start 8976.048
transcript.whisperx[296].end 8997.92
transcript.whisperx[296].text 我們在歷年這個還是你要跟我講說我現在提供給部長給你看的這個數據109到113就是這五年嘛對不對好那你下面說前面差不多但是109到127死救輕不是差不多了109是14到112就變成18是增加了4%到113你看增加了將近快80%以上了
transcript.whisperx[297].start 8999.161
transcript.whisperx[297].end 9020.776
transcript.whisperx[297].text 我們回去確認一下我們其實這個相關的數據跟這個數據統計的這個每一個去那個應用的狀況我們跟來跟在跟留言這邊把我們去我們確認的數據來跟留言這邊來再做一些討論好部長所以我剛剛第一句話問說部長這個有沒有掌握嘛對不對那第二個這樣的數據凸顯什麼樣的問題的存在
transcript.whisperx[298].start 9023.718
transcript.whisperx[298].end 9032.889
transcript.whisperx[298].text 那剛剛他回答我是說前面是差不多很平均但一年過後一年過後的數據就不是如此嗎
transcript.whisperx[299].start 9034.465
transcript.whisperx[299].end 9055.344
transcript.whisperx[299].text 你到底有沒有掌握嗎你要回答我這個問題然後這個數據代表什麼意思嗎劉仁我自己確實第一次看到這個數據我是第一次看到這個數據不過如果這個數據有劉仁目前要提醒的這個趨勢的話那這確實是需要注意的這個狀況所以我剛才也請同仁我們再把這個數據的統計的
transcript.whisperx[300].start 9058.306
transcript.whisperx[300].end 9076.843
transcript.whisperx[300].text 的代表性跟統計的各種應用的狀況我們會再做一輪釐清如果有像現在委員想提醒的這個狀況的話這當然我們我想我們當然是必須注意也要有所因應對 我是想說未投保率在這一個對照確認度它是提高了將近80幾%
transcript.whisperx[301].start 9079.622
transcript.whisperx[301].end 9100.148
transcript.whisperx[301].text 位投保率當年度的畢業生的位投保率差一年既然高達提高了八十幾%這代表什麼意義啊主席要回答我這個問題啊你要掌握相關的數據要用一年的對照表我都沒有意見但是請部長要答覆我我的問題很簡單嘛位投保率當年度的畢業生節節上升
transcript.whisperx[302].start 9105.256
transcript.whisperx[302].end 9129.124
transcript.whisperx[302].text 然後今年對照,對不起,2013年對照2012年增加到這是2013年對照2012,2014年還沒有嘛,對不對?今年畢業生已經即將來臨你們預估又是幾%?我第二個問題第一個問題,部長要回去再釐清,再去掌握,我沒有意見那第二個,為投保率代表什麼意義?那第三個,那今年度你們的掌握是怎麼樣?
transcript.whisperx[303].start 9131.953
transcript.whisperx[303].end 9143.233
transcript.whisperx[303].text 這個未投保當然可能有很多的不同的原因,但是當然他如果沒有投保的話,其實代表可能他是不是他就業上面會比較不順利,或者是他
transcript.whisperx[304].start 9145.475
transcript.whisperx[304].end 9163.439
transcript.whisperx[304].text 可能各種的原因就他除非生血或其實可能有很多不同的原因我知道啊 總是有主因的比例嘛對不對有主因跟次因嘛那你們過去累積這麼多年來的這樣的一個調查評估掌握主因是什麼嘛 啊次因是什麼嘛簡單簡單講一下好不好報告委員因為那個如果
transcript.whisperx[305].start 9167.199
transcript.whisperx[305].end 9191.178
transcript.whisperx[305].text 要再分次序的話大概我們可以再進一步研究那他其實 什麼你們叫做進一步研究 你們幫幫忙就是再進一步做一個分析比較那因為其實 為什麼到現在才要再做一次的分析他的原因就會包含說升學那或者是進修或者是出國這些是都有可能的那照排序上的話我們就是會再依照委員的再來
transcript.whisperx[306].start 9192.168
transcript.whisperx[306].end 9200.354
transcript.whisperx[306].text 做這個排序的一個瞭解不好意思啦今天如果不是飆升這麼多我想這個問題也不會突顯出來嘛
transcript.whisperx[307].start 9201.394
transcript.whisperx[307].end 9230.553
transcript.whisperx[307].text 那今天竟然飆升這麼多你應該知道非常清楚知道是什麼原因嘛而且這是113年對照112年我現在請部長來預防114年會不會再如此的飆升發生我知道我也想提醒的事情這數據裡面是不是透露著因為就這篇媒體報導上面其實當然他是在暗示說是不是有很多我們的青年畢業以後其實是不想工作的是想要躺平的
transcript.whisperx[308].start 9232.034
transcript.whisperx[308].end 9253.819
transcript.whisperx[308].text 那大家是不是就業的意願降低很多其實他是在提示會不會有這個問題所以我說我們必須從這個數據的在更詳細的調查裡面去看一下數據的釐清的狀況但是我想關於青年就業的意願的狀況其實我們這幾年來看的話其實青年整體的失業率並沒有比較高
transcript.whisperx[309].start 9255.339
transcript.whisperx[309].end 9280.293
transcript.whisperx[309].text 我們如果從青年的失業率來看的話這幾年青年失業率並沒有比較高所以在這個指標來說的話跟那個報導想要提示的事情看起來又不太一樣的地方部長你不用用報導來跟我講如果你要用報導來跟我講那今天就更糟糕了我提供這張數據你還沒辦法打復活你旁邊那一位也沒辦法打復活主要原因那你也不應該只有講說我們的畢業生畢業之後
transcript.whisperx[310].start 9283.275
transcript.whisperx[310].end 9307.936
transcript.whisperx[310].text 只是不想工作 只是想談評 絕對不是只有這些因素嘛我們的職場有不友善 你剛才是這麼答我 你小心喔真的喔 我們的職場有不友善 難道不是主要的研究嗎我們的薪資到底符不符合現在畢業生他們的期待還是他們還在等待 這個是不是你們主要調查去做的相關的面向的一個研究嘛 對不對
transcript.whisperx[311].start 9308.576
transcript.whisperx[311].end 9321.168
transcript.whisperx[311].text 很掌握我們等一下我再說明我剛才說講到躺平這兩個字是因為當時的是這篇報導上面他的標題上面用了這兩個字所以你不應該用報導來答覆因為我的問題並沒有去提到這樣嘛應該是這麼講嘛我剛才的說明裡面我是說到說
transcript.whisperx[312].start 9326.353
transcript.whisperx[312].end 9340.86
transcript.whisperx[312].text 這一個數據裡面是不是有比方說青年的就業意願降低那就意願降低可能就有很多的原因存在那職場有不友善當然這裡面會是其中之一的
transcript.whisperx[313].start 9341.977
transcript.whisperx[313].end 9368.751
transcript.whisperx[313].text 七年的就業不高在他畢業之後你們要去抓半年、一年、兩年相關的數據希望提供給委員做參考但是應該我現在在循詢的時候應該是可以馬上打我如果你們沒有馬上打我是很奇怪一件事情我們是有數據的為什麼不打我那第二個七年的就業一直不高但是市場一直在缺工是不是
transcript.whisperx[314].start 9370.935
transcript.whisperx[314].end 9373.871
transcript.whisperx[314].text 那這兩兆的衝突兩兆的矛盾
transcript.whisperx[315].start 9374.895
transcript.whisperx[315].end 9390.139
transcript.whisperx[315].text 到底發生什麼事情所以今天要虛說年輕人他可能不願工作他可能怎麼樣那要不要來回歸來討論今天張偉排的主題我們的職場友善嗎我簡單用一個例子啦齁因為時間的關係啦齁你看這個月十四號桃園市舉行清潔隊隊員的徵選徵選啦齁徵選對不起435個職缺那一共開出一共有4143人來報名
transcript.whisperx[316].start 9403.722
transcript.whisperx[316].end 9417.792
transcript.whisperx[316].text 錄取率才12%這麼辛苦的清潔隊員的工作還是這麼多人去擠啊去排嘛因為最主要他一個月最高可以看到上看4萬5這是什麼情況
transcript.whisperx[317].start 9422.554
transcript.whisperx[317].end 9437.284
transcript.whisperx[317].text 我給部長當一個思考嘛組計總書在11日的時候公佈喔也是這個事情而已喔要看報導我們大家用報導來討論這事情嘛114年4月的時候全體受雇員工的薪資每年經常限的薪資平均是47807嗎
transcript.whisperx[318].start 9439.205
transcript.whisperx[318].end 9460.324
transcript.whisperx[318].text 又是4萬多對不對那經常限的這個薪資綜藝數是38000多顯示多數的薪資能低於這個平均嘛這也是一個不爭的事實嘛對不對好如果再對照你們勞動部公布的全台各縣市薪資排行榜齁各位發現全國有9個縣市薪資水平是連綜藝數都沒有連38000都沒有的一個狀況
transcript.whisperx[319].start 9462.606
transcript.whisperx[319].end 9483.901
transcript.whisperx[319].text 所以勞動部每年都有在調整這個最低工資但這隨著這個最低工資的上漲啦更有個業兼常性的工資也應該有相對的提升才對嘛所以我說這個整個國家的職場這個環境可能他就會越來越糟嘛畢業生要馬上投入職場的意願他可能就會大大降低嘛
transcript.whisperx[320].start 9485.473
transcript.whisperx[320].end 9506.403
transcript.whisperx[320].text 我要表達是這樣但是這個畢業生未托保率怎麼會在113年對照12年的時候從18%熊熊變成32%那前面可能一年多了1% 2%大致如此那你要用一年的數據來跟我講我可以接受但你要馬上提供出來你如果沒有馬上提供出來我又覺得
transcript.whisperx[321].start 9507.083
transcript.whisperx[321].end 9532.237
transcript.whisperx[321].text 你們這樣掌握都是有問題的嘛然後最主要原因為什麼沒有辦法馬上進入到職場絕對不是只有什麼要再進修啦要出國絕對不是不只這些原因嘛主因到底是什麼嘛是不是我們的職場不夠友善是不是我們薪資還一直維持沒有辦法超越過這個主計處公告的平均薪資的中位數以上嘛
transcript.whisperx[322].start 9533.368
transcript.whisperx[322].end 9544.42
transcript.whisperx[322].text 我先把我們其實現在手邊關於大專畢業生半年後為統計的基礎為投保率的數據我提供了大概從109年到113年基本上大概都是在31%30%32%大概在
transcript.whisperx[323].start 9549.506
transcript.whisperx[323].end 9568.797
transcript.whisperx[323].text 30%到32%之間的區間但這是以半年為統計的基礎這是我們手上有的數據是這樣所以確實跟剛剛的那個數據之間好像看起來是有些落差所以我們去釐清那個落差的來源好像有一些落差這個落差不是好像是落差太大了是實際上落差是太大了過去
transcript.whisperx[324].start 9570.237
transcript.whisperx[324].end 9593.464
transcript.whisperx[324].text 108年我剛剛有講表格沒有做出來因為我是做五年的表格嘛是平均都在12%嘛那確實它每年有逐漸在上升嘛對不對但是很奇怪1.2到1.3熊熊變成就是從18起來32左右嘛不是 我的問題最後一個問題最簡單嘛我就請教一下你今年的掌握怎麼樣今年的掌握一樣是32是35是變成40
transcript.whisperx[325].start 9597.848
transcript.whisperx[325].end 9610.035
transcript.whisperx[325].text 還是你可以回到12年的18因為你們有做相關的配套相關的積極的政策引導讓我們的畢業生可以儘早投入他選擇友善的職場
transcript.whisperx[326].start 9611.141
transcript.whisperx[326].end 9638.182
transcript.whisperx[326].text 那個跟我說明因為確實從比方說如果從青年失業率來看的話青年失業率並沒有顯著的改變但是我提醒部長嘛青年失業率不高但是市場上也一直在缺工嘛對不對因為這幾年來青年的失業率現在是歷年來最低的狀況所以因為青年失業率相對是最低的狀況跟剛剛的這個數據本身其實看起來的訊息
transcript.whisperx[327].start 9639.443
transcript.whisperx[327].end 9651.806
transcript.whisperx[327].text 不太一致青年如果近年來現在是失業率最低的狀態我要肯定勞動部嗎現在這個數據我們是確定的我現在提供這個未投保率這個數據是假的嗎所以我等於說我們要看一下統計的方式那個統計是來自於我們對於大專畢業生
transcript.whisperx[328].start 9664.284
transcript.whisperx[328].end 9687.951
transcript.whisperx[328].text 去做的一個就業流向調查那去區分這一群的這個畢業生他在畢業的隨著期間的拉長的一個投保的狀況所以這個的母體跟這個青年的失業率的母體也是兩個是不能這樣等同吃嘛對不對你們是講總total嘛這個是在講大專嘛對不對你要打呼我是這樣嘛那一樣道理啊你回答我這個問題啊
transcript.whisperx[329].start 9688.991
transcript.whisperx[329].end 9699.78
transcript.whisperx[329].text 我問你大專畢業生為什麼投保率節節上升而且是百分之八十的為投保率的增加你要回答我這個問題啊因為你為什麼不掌握啊我問你應該是可以馬上答問我啊不是跟我講說不願意工作啊不是跟我講他們去修 他們去建修啊 他們去出國啊
transcript.whisperx[330].start 9711.072
transcript.whisperx[330].end 9738.861
transcript.whisperx[330].text 部長這樣好不好 對整體薪資的改善我想勞動部還是有一定程度的責任啦可以 可不可以提供一個具體的一個方案啦一個月內啦 這個其一那其二大專 你講大專 我們就講大專今年度有沒有辦法降低還是一樣維持節節升高現在已經32這個我們來請郵單位來檢討這事情有沒有辦法降低到30%嘛
transcript.whisperx[331].start 9741.445
transcript.whisperx[331].end 9753.619
transcript.whisperx[331].text 你要先了解什麼原因節節上升嘛18變成32你應該有辦法答問我嘛你知道在大中的這一塊領域它為什麼會投保率會從12變成113的時候從18變成32嘛你最起碼有辦法答問我這個問題吧
transcript.whisperx[332].start 9757.984
transcript.whisperx[332].end 9766.126
transcript.whisperx[332].text 委員我們是不是補充一下剛才會看到數據的差異其實是統計時間點的一個落差那為什麼呢因為這個譬如說以112年他這一群的畢業生到現在這個統計時間為止他其實對他來說已經經歷了畢業兩年的一個時間那所以他的未投保率當然是下降的那如果以113年這個統計時間點來說他的未投保率是高的
transcript.whisperx[333].start 9786.232
transcript.whisperx[333].end 9812.092
transcript.whisperx[333].text 那所以我們其實要比較的應該會是說這個畢業生他同樣在這個畢業半年內他的一個投保率情況這個在歷年的比較是差不多的都是在剛才的30到30百分之30到32之間不是啦你這麼講會很奇怪他對不起回到那個表格主席我不好意思我叫阿伯還有問題我把這題問到旁邊他有母宿啊可工作人口啊
transcript.whisperx[334].start 9816.645
transcript.whisperx[334].end 9821.092
transcript.whisperx[334].text 這個有問題嗎為投保人數這個有問題嗎他一直要保護我還是平均在30%嗎所以你就要保護我現在提供這樣的一個數據他是有問題的
transcript.whisperx[335].start 9830.381
transcript.whisperx[335].end 9835.283
transcript.whisperx[335].text 你是不是要這樣子不是 你就針對我的問題答誤就好我的意思是說這個數據比方說是109年的未投保率來說的話它其實會隨著時間這樣我知道啦 我知道它會隨著時間啦做這個表格一定有一個同一個時間嘛我的意思是說
transcript.whisperx[336].start 9850.527
transcript.whisperx[336].end 9866.714
transcript.whisperx[336].text 意思是說這個假設109年的這個表格這個的話14.2他會隨著時間降低因為當時間拉長的時候他去就業的機會就越來越多所以當你離這個時間畢業的時間比較近的時候他的未投保率都會比較
transcript.whisperx[337].start 9867.995
transcript.whisperx[337].end 9881.924
transcript.whisperx[337].text 高那這是為什麼剛剛說如果以半年如果都是用半年畢業後半年來看的話基本上都在30%的上下如果從這個角度來看的話其實他並沒有顯著的高或低這樣子
transcript.whisperx[338].start 9883.465
transcript.whisperx[338].end 9904.734
transcript.whisperx[338].text 我是覺得你們答覆我的我都聽懂啦我要問的問題你們好像一直聽不懂好 那沒關係那你們就把相關的統計數據怎樣做一個對照提供給委員會來做參考可不可以一個禮拜內我們提供給委員會然後包括我們如果有需要檢討的地方我們也把檢討的措施都提供給委員會好 謝謝主席謝謝各位各位
transcript.whisperx[339].start 9909.522
transcript.whisperx[339].end 9915.229
transcript.whisperx[339].text 謝謝劉昭偉,謝謝部長繼續我們請廖偉祥委員資訊謝謝主席,請洪部長
transcript.whisperx[340].start 9934.898
transcript.whisperx[340].end 9951.138
transcript.whisperx[340].text 廖委員好部長好部長部長這個依性別平等工作法的規定那父母在子女未滿三歲前可以各自申請孕留職停薪假最長達兩年嘛那現行的津貼是投保薪資的80%
transcript.whisperx[341].start 9952.691
transcript.whisperx[341].end 9973.498
transcript.whisperx[341].text 那但是據媒體報導這個勞動部正在研議修法當雙清都滿了六個月之後可以各增加一個月的津貼那這邊你們是說預計最快是2026年的實施那預計有2.1萬的家庭可以受惠不過我這部分其實是蠻擔憂啊因為就媒體預估今年新生兒人數可能不到12萬
transcript.whisperx[342].start 9974.838
transcript.whisperx[342].end 9995.975
transcript.whisperx[342].text 那這樣的低生育率是不是有這麼多家庭可以受惠我是很質疑但是另外我覺得比較擔心的是這麼岌岌可危的生育率是不是這樣子的措施能夠在今年就實行不要等到明年那因為你們的勞動部甚至的說法叫做最快是明年那這樣緩不濟急啊所以我想要問說那這部分你們預計是什麼時候
transcript.whisperx[343].start 9997.982
transcript.whisperx[343].end 10020.068
transcript.whisperx[343].text 跟人說因為這部分涉及到救保險法的修法那因為救保法的修法其實需要研議的部分很多可能也不是只有這一條所以我們現在內部也在研擬這個修法的版本那我目前是會在今年底然後來提出救保法修法的草案所以
transcript.whisperx[344].start 10022.049
transcript.whisperx[344].end 10039.079
transcript.whisperx[344].text 提出這個草案送行政院會是在今年底所以這時間算起來的話這個部長這部分可不可以加速啊因為像我說的這個拖到拖到明年會不會也太久跟跟跟跟我說因為舊保法的修法他牽涉的面向真的比較多
transcript.whisperx[345].start 10040.16
transcript.whisperx[345].end 10067.8
transcript.whisperx[345].text 那如果要修法的話也不是只是修這一個條文那這個部分有什麼加速的方案嗎就是說如果只針對這個部分的話因為如果舊保法要修法的話它可能會有幾個面向都要一起放進來那這部分我們也在做相關的研議中那你們的研議我意思是說那如果針對這件事情我剛剛提到這件事情你們有沒有什麼加速的方案除了修這個法的部分之外這個事情如果要做的話就是要修法
transcript.whisperx[346].start 10068.649
transcript.whisperx[346].end 10090.161
transcript.whisperx[346].text 那你們預計的進度這個跟委員說明確實因為如果要修法的話因為修法確實涉及到方方面面的考慮包括各方對這事情其實就保要修的部分我想如果委員了解的話就保其實大家提出要修訂的部分其實真的也不只是這個面當然
transcript.whisperx[347].start 10091.121
transcript.whisperx[347].end 10117.163
transcript.whisperx[347].text 那需要做比較細膩的考慮下確實一定會需要一點時間部長那我再進一步講目前這個育嬰假的申請資格是勞工需要至少工作六個月是可以申請但在實務上其實我們也關注到有很多是非典型就業者包含可能有一些什麼契約工、臨時工等等的他皆無法申請那是不是造成有部分的群體被遺漏
transcript.whisperx[348].start 10118.311
transcript.whisperx[348].end 10127.903
transcript.whisperx[348].text 接下來是不是可以規劃將這個資格門檻放寬啊比如說把它降低到13個月或者是採雇主自願參加規範照顧更多這種彈性的勞動人口呢
transcript.whisperx[349].start 10134.651
transcript.whisperx[349].end 10160.785
transcript.whisperx[349].text 跟我們報告因為這個部分其實暈流亭的部分有一個很重要的是其實勞工在暈流亭期間他其實經濟生活上面政府還是需要照顧他那所以這裡面就會連結到什麼樣的對象可以暈流亭那暈流亭的人其實救保那邊的津貼其實我們就應該支持他的生活這樣子一個因素底下如果他是一個非典型的可能他的救保資格
transcript.whisperx[350].start 10161.685
transcript.whisperx[350].end 10179.788
transcript.whisperx[350].text 或者是我們的救保財源這都是我們必須要考量的因素是所以我是說這個部分是不是可以也進一步的去研擬是否要放寬這個部分的條件因為以不要漏接這個部分的群體因為你指的是說要來放寬到譬如說本來是六個月嘛是不是要降到三個月
transcript.whisperx[351].start 10183.075
transcript.whisperx[351].end 10206.313
transcript.whisperx[351].text 這是不是一個你們可以去思考的方向跟委員報告 舊保是要加保滿一年啦那這個一年不是說這個勞工 這個雇主啦就是所有的舊保的年資要滿一年所以一般對於這個新手爸媽來講這個條件不是 這個主要是配合跟就業就事業給付的條件是一樣的
transcript.whisperx[352].start 10209.87
transcript.whisperx[352].end 10229.678
transcript.whisperx[352].text 對那這個部分所以您的意思是說因為目前申請是寫說勞工至少需要工作6個月嘛對不對連續啊連續工作6個月那我只是說這個部分有沒有放寬的可能性我覺得我們可能會需要綜合的考慮啊因為確實整個救保的給付他其實他很重要的目的是維持就業上面的安定
transcript.whisperx[353].start 10230.638
transcript.whisperx[353].end 10254.677
transcript.whisperx[353].text 所以他的時間點的設計要怎麼樣設計比較能夠達成大家希望的就是說他救保其實最重要的目的還是希望促成就業上面的安定只是暈流停是他裡面其中一個給付的項目所以我們還是必須回到整個救保基金包括整個救保險其實他的目的去做這個事情的思考
transcript.whisperx[354].start 10255.017
transcript.whisperx[354].end 10275.914
transcript.whisperx[354].text 那這個部分所以我剛剛說我提出這個放寬的方向那你們是不是也可以去演繹一下有沒有可能性以照顧到更多的需要被照顧的勞工們那這部分請部長這邊可以去演繹一下我們都可以再綜合的再做一些考慮跟思考但就像我剛剛說包括像自營作業因為自營作業者他其實並沒有雇主
transcript.whisperx[355].start 10277.458
transcript.whisperx[355].end 10306.205
transcript.whisperx[355].text 那這個所以因為他沒有僱主他工作相對比較自由所以他在整個這個這個救保的概念裡面那我覺得我們怎麼樣再去可能要另外再多做一些多做一些思考跟考慮但我了解委員都希望說這個相關的資源能夠讓更多的勞工可以享有可是這確實我們也可能要回到我們包括救保險的政策包括救保基金的政策原本的方向它的設定是什麼
transcript.whisperx[356].start 10307.205
transcript.whisperx[356].end 10324.205
transcript.whisperx[356].text 那每個政客都有他設定的範圍跟他設定的目標所以在這個方面請部長可以回去思考一下不要漏接這些人或是在這部分這些勞工的形態上面有沒有什麼可以去照顧到他們的方案好不好那下一個就是
transcript.whisperx[357].start 10325.846
transcript.whisperx[357].end 10343.833
transcript.whisperx[357].text 根據這個現行的性別工作平等法跟我們勞工請假規則嘛那一般勞工僅有7天的家庭照顧假那也且是併入14天的試駕範疇那這試駕的期間是無薪的所以也導致很多勞工是不敢請假那家庭照顧假形同是虛設
transcript.whisperx[358].start 10344.993
transcript.whisperx[358].end 10367.091
transcript.whisperx[358].text 那相較於一些軍公教人員享有有薪的家庭照顧假這個一般勞工的部分是明顯有這個不足的地方所以再來此外現行的育嬰留職停薪雖然有津貼但是請假的彈性不足也許多家長有反應無法因應托嬰中心突發的一些不管是停課啊臨時的狀況
transcript.whisperx[359].start 10368.292
transcript.whisperx[359].end 10395.678
transcript.whisperx[359].text 所以我在這邊是不是也可以建議我們勞動部是不是未來啊積極推動這個家庭照顧假有心化跟彈性化那或是並參考國際經驗喔例如新加坡是有彈性工時與有心照顧假那將這個家庭照顧假的天數也增至14天而且並給予這個薪資的保障喔那這部分是不是可以問我們的部長有沒有意願往這方向來研擬來推動
transcript.whisperx[360].start 10397.358
transcript.whisperx[360].end 10412.034
transcript.whisperx[360].text 那個跟各位說明家照架的彈性化我們這部分我們也有在做研擬的思考那至於現在大家很多在談到說是不是能夠讓家庭照顧下能夠有心那這部分其實會有心的話
transcript.whisperx[361].start 10413.395
transcript.whisperx[361].end 10429.446
transcript.whisperx[361].text 呃要嘛就是這個薪水是雇主付要嘛就是政府來補貼對政府補貼的部分那可是我也要提醒委員這個貴院修的才化法讓中央政府的財政的域度大幅的降低
transcript.whisperx[362].start 10430.327
transcript.whisperx[362].end 10453.922
transcript.whisperx[362].text 那有薪的加造價其實每多一天其實他需要的財源的其實你的財源的部分除了公務預算還有一些基金啊相關的東西其實我覺得是不用再去扯這個我們的意思就是說有人這不是扯這是在任何的政策可以去思考怎麼推動有人我們去估算如果每一天的加造價算起來他其實他的他需要的
transcript.whisperx[363].start 10455.642
transcript.whisperx[363].end 10483.632
transcript.whisperx[363].text 有薪的加造價會需要多的這個預算的支應其實量是很大的那你們現在算下來是多少七天的話是900億一天可能都是要上百億啊一天上百億因為因為這個是每一個勞工這是每一個勞工你是用總數是不是就是說假設1100多萬的總數的勞工然後每一天如果是用七天然後七天下去算這樣子是嗎
transcript.whisperx[364].start 10484.976
transcript.whisperx[364].end 10486.429
transcript.whisperx[364].text 七天要再乘以七啊
transcript.whisperx[365].start 10487.441
transcript.whisperx[365].end 10515.92
transcript.whisperx[365].text 那所以你的意思是說家庭照顧價因為家照價家照價是每個勞工都會有的剛才講暈流亭你還是針對你有生小孩的的勞工家照價是每天都會有的話所以他賺起來他的金額是真的是非常高那我想要講的事情是任何哪一個基金都很難去所以我剛有特別講到說參考國際經驗那你們是不是也可以去研擬說那國際上面他們怎麼做的那我們可不可以做到或者是我們怎麼樣去整合到我們地方我們的我們的這個
transcript.whisperx[366].start 10517.041
transcript.whisperx[366].end 10535.439
transcript.whisperx[366].text 政府的這個解方上跟人說明我們當然可以來看一下國際上我們怎麼做但是當現在中央政府的整個財政的狀況被這樣子削弱的時候對於這種可能會增加的大筆的支出我們都只有更加的困難這樣子講
transcript.whisperx[367].start 10539.2
transcript.whisperx[367].end 10559.833
transcript.whisperx[367].text 確定是這樣嗎?你們每這個這個今年的稅計剩餘也是非常的多還有在包含各種的基金那現在沒有說你馬上是全部要補這不能用稅計剩餘來想因為每年的稅計剩餘並不是固定的部長我跟你講現在沒有要吵這另外一件事我們可不可以針對這件事情就事論事就針對這件事情我說你們應該要去參考國際上的經驗然後再回來
transcript.whisperx[368].start 10565.876
transcript.whisperx[368].end 10581.325
transcript.whisperx[368].text 務實的去算說我們怎麼達成這件事情我當然願意來看國際的經驗怎麼來做但是當中央政府的財政賬被大幅削弱的時候對於這樣新的支出而且它是固定的這不能用稅率剩餘來想因為稅率剩餘可能今年是比較高來部長我剛剛的問題有叫你馬上實施嗎
transcript.whisperx[369].start 10583.766
transcript.whisperx[369].end 10609.7
transcript.whisperx[369].text 我剛剛問題不是說你們要往這邊去研擬的方向我們怎麼達成這件事情又或者說一種就是我們剛剛就講了兩件事一種是你要不要提升家庭照顧假或者是往有心的這個家庭照顧假的方向去研擬這部長我這部分我要提醒的事情就像你說如果要政府您要去解決百姓的需求和百姓的聲音那你也說了現在社會上普遍有這個聲音
transcript.whisperx[370].start 10610.78
transcript.whisperx[370].end 10617.082
transcript.whisperx[370].text 那這部分是不是應該由你們去思考說到底怎麼做到或者是做不做得到這應該都是所謂的研擬的方向我們當然願意研擬但我們也很希望立法院可以對於中央政府的財政狀況
transcript.whisperx[371].start 10627.185
transcript.whisperx[371].end 10642.731
transcript.whisperx[371].text 可以給你支持這才有辦法讓行政部去做大家期望的事情絕對支持弱勢的福利這部分我們從來沒有支持過但是現在在財化法下中央政府的財政的域度被大幅的降低中央現在你要去大幅的增加像這樣子政府的支出
transcript.whisperx[372].start 10644.171
transcript.whisperx[372].end 10669.801
transcript.whisperx[372].text 這都會增加非常非常多的困難因為你不能夠一句話就這樣子打死喔這不是一句話我只是告訴你說往這邊去研擬這樣的方向對不對 部長我只是說你們可不可以去了解一下人家國際經驗怎麼做那我就問你到底人家怎麼做人家花了多少錢委員我們當然你如果黨農沒有辦法回答的情況之下你就用這個東西來搪塞我覺得是絕對不是責任的喔一個政策要能夠落實一個政策要能夠打死所以我剛剛沒有當方面面的支持包括財政上面的支持
transcript.whisperx[373].start 10672.942
transcript.whisperx[373].end 10696.814
transcript.whisperx[373].text 今天立法院一直削弱中央政府的財政的狀況卻又要中央政府做更多的事情你不覺得這是衝突的嗎不衝突 原因為什麼我要告訴你的事情是第一個我剛剛是說你是不是要去借鏡你們要去了解說國際上面他們怎麼做這件事我們當然可以那我就問你嘛但是其他國家的中央政府財政有被削弱嗎那我問你其他國家的中央政府跟地方政府的比例是多少你也不能這樣比嘛
transcript.whisperx[374].start 10699.335
transcript.whisperx[374].end 10724.516
transcript.whisperx[374].text 人家有像我們這樣嗎過去中央政府比例占到75%以上你這樣子講你這樣去比較合理的嗎我只是要提醒我們願意做更多的事情所以希望立法院對我們的財政狀況有更多的支持立法院絕對支持對於勞工的福利但是之前就是被削弱啦什麼叫削弱 這已經講過了地方政府跟中央政府的比例這已經講到不用再講了中央政府就是在這個國家你說財政狀況被削弱別人的話
transcript.whisperx[375].start 10727.558
transcript.whisperx[375].end 10756.433
transcript.whisperx[375].text 那我想請問你過去的比例怎麼算過去其他的中央政府跟地方政府的財政收支的比例我們是不是比其他國家地方政府更加的少所以這部分我想喔不要用這個來談論我只想要告訴我們需要做更多的事就需要在財政上有更多的支持就希望財政能力更加的健全這部分是不是有可行性以及7天增加14天是一個方向另外一個是有心化的部分有沒有可能做到參考國外的經驗
transcript.whisperx[376].start 10758.094
transcript.whisperx[376].end 10778.444
transcript.whisperx[376].text 我們都願意來看國外的經驗也願意來思考跟參考但是這個事情要教政府做越多的事情的話更需要更多財政上面的支持這部分要麻煩立法院請問你們去年五月推動的育嬰留庭的事辦計畫到去年底告一個段落根據你們勞動部自己的統計事辦的單位是大概89家
transcript.whisperx[377].start 10779.765
transcript.whisperx[377].end 10796.174
transcript.whisperx[377].text 那累計24家的事業單位182人申請申請天數是以三天為多那部長請問你這樣的成效覺得是好嗎推廣是普及到有普及嗎之前在雲流亭的事辦的狀況其實成果當然有精進的空間我們必須承認
transcript.whisperx[378].start 10796.983
transcript.whisperx[378].end 10822.436
transcript.whisperx[378].text 是啊那你們現在打算怎麼進進因為之前是用三到五日所以我們當然是現在希望能夠再更縮短能夠申請的這個日數那之前也是透過企業的自願性就是說你有自願意願的才進到這個事辦的pool裡面那我們的確現在是希望說我們能夠把配套做好那
transcript.whisperx[379].start 10824.557
transcript.whisperx[379].end 10846.155
transcript.whisperx[379].text 希望能夠做到更普及其實這個報導中也有說很多家長是反應無法因應托嬰中心突然停課等的臨時的狀況所以整體比例不應該這麼低啊那但是另外我去年其實也有質詢過小孩在剛上幼兒園托兒所之後因為他環境的變化差異所以有時候家長會比較有臨時請假的需求
transcript.whisperx[380].start 10848.797
transcript.whisperx[380].end 10867.73
transcript.whisperx[380].text 是不是要把這種短期的彈性育嬰假也適用對象是不是也可以擴大到六歲比較符合家長的實際需求因為包含上了幼兒園現在常常有什麼腸病毒啊或等等的臨時的感冒的狀況突發狀況比較多我們是不是應該要研擬去變到六歲擴大到六歲因為確實現在因為
transcript.whisperx[381].start 10872.472
transcript.whisperx[381].end 10879.777
transcript.whisperx[381].text 就像剛才說的我們現在是朝向是用育嬰留庭的彈性化的方式的確現在育嬰留庭目前是在三歲以內
transcript.whisperx[382].start 10881.381
transcript.whisperx[382].end 10902.197
transcript.whisperx[382].text 對 所以這個有沒有考慮要把它擴大到六歲我們目前的確是在研擬目前是先以運營留庭來做彈性化的做法我們這個階段可能是希望能夠先做像朝向這個方向先來做調整跟優化你說朝向把它擴大到六歲嗎不是 我說現在目前確實運營留庭就是比較是現在三歲以內
transcript.whisperx[383].start 10903.123
transcript.whisperx[383].end 10914.321
transcript.whisperx[383].text 所以你的意思是說你沒有要考慮擴大到六歲我覺得那可能會是下一個階段之後再來考慮我們會在這個階段也讓企業有一個能夠去適應這部分的一個階段
transcript.whisperx[384].start 10915.652
transcript.whisperx[384].end 10944.038
transcript.whisperx[384].text 當然但是部長我覺得這部分你們可能要去盡早的研擬因為我剛說到6歲上幼兒園的情況會蠻多的其實這個家長他會他要應付的突發狀況可能是更多的所以這部分可以請部長往這方向去思考然後也去溝通看0到6歲是不是有這個需求而且是不是家長真的很需要到6歲的這個這個Range好不好那另外就是因為這部分其實也有看到我們勞動部的新聞稿
transcript.whisperx[385].start 10945.225
transcript.whisperx[385].end 10950.155
transcript.whisperx[385].text 所以無論什麼方式做調整但是總之就是不會涉及修法所以是代表這部分
transcript.whisperx[386].start 10951.331
transcript.whisperx[386].end 10977.179
transcript.whisperx[386].text 因為你們是想說不會涉及修法那這部分你們怎麼說就是因為剛你說你可以考慮到六歲可是你們新聞稿又說不會考慮修法因為我們在這個階段我們會先來進行就不修法的狀況下面能做的部分我們先來做一輪的彈性化的處理那我想要告訴部長其實照顧工作是很沉重但這個我想母親父母親的身份不要成為職場身份的緊箍咒謝謝
transcript.whisperx[387].start 10995.891
transcript.whisperx[387].end 10997.512
transcript.whisperx[387].text 請蘇清泉委員謝謝主席然後請部長第一張第一張史萊姆史萊姆好保定都要正幹齁掰掰來這個這一張齁是是
transcript.whisperx[388].start 11027.038
transcript.whisperx[388].end 11049.968
transcript.whisperx[388].text 媽媽的看法跟企業的看法好現在育嬰留庭你們是半年是不是我要問清楚一下應該是說育嬰留庭可以兩年但是有薪資補助的是半年有薪資補助是半年六個月那你現在是六要加一個月所以是七個月就是要六加七的話要修九寶法
transcript.whisperx[389].start 11051.46
transcript.whisperx[389].end 11074.431
transcript.whisperx[389].text 要修法那現在是媽媽可以請6個月再來爸爸再請6個月都可以請6個月那就12個月是不是就是各自都有6個月的有薪的這個有薪孕留庭的權利好就是現在是6加6就對了啦那6加6加1加1這兩個是要修法是不是對
transcript.whisperx[390].start 11075.509
transcript.whisperx[390].end 11100.003
transcript.whisperx[390].text 那現在是補助投保薪資的80%舊保是補助六成那另外兩成是公務預算所以六成加兩成加起來是八成所以他是拿到投保薪資的八成那另外兩成呢基本上我們現在是八成就給他補滿就好啦
transcript.whisperx[391].start 11102.271
transcript.whisperx[391].end 11108.334
transcript.whisperx[391].text 講到這個我們又要講到預算的問題沒有啦現在真的是小孩子太少了啦那又有一個20%這個20%由企業來補你認為怎麼樣
transcript.whisperx[392].start 11125.532
transcript.whisperx[392].end 11140.618
transcript.whisperx[392].text 換企業靠腰其實你也是經營企業我們員工非常多但是生產的不多現在真的很少我是覺得企業如果有的話
transcript.whisperx[393].start 11141.978
transcript.whisperx[393].end 11168.851
transcript.whisperx[393].text 補那兩成應該還可以啦如果比較比較財務比較OK的真的我是覺得那在醫療界事實上說育嬰六個月或者所以如果是單單媽媽六個月讓他延長到一年那個六個月是沒有薪水的被留子停薪了那是很糟糕的所以現在爸爸來請也請六個月那這個錢是哪裡來
transcript.whisperx[394].start 11171.858
transcript.whisperx[394].end 11196.191
transcript.whisperx[394].text 單說六成是來自舊保基金然後兩成的部分是來自公務預算舊保基金,所以是勞保基金,勞保基金你會嗎?你會請嗎?不是舊安定基金啦,是舊保所以這樣一年的支出差不多多少?現在剩那麼少?去年大概107億啊107億
transcript.whisperx[395].start 11199.415
transcript.whisperx[395].end 11205.502
transcript.whisperx[395].text 這做6加6的 爸爸媽媽都申請這樣差不多一年這樣子一年就是107不多啊
transcript.whisperx[396].start 11211.266
transcript.whisperx[396].end 11229.123
transcript.whisperx[396].text 所以你們應該用公務預算再補兩層或者是補三層然後企業老闆補一層這樣讓他主惡我是覺得真的是這樣那個我們其實在110年的時候當時其實就是那時候是六層那希望能夠再增加就公務預算補兩層可是確實現在
transcript.whisperx[397].start 11233.206
transcript.whisperx[397].end 11246.411
transcript.whisperx[397].text 我還是必須跟文坦承在目前所以這地方政府沒有出錢?地方政府沒有出啦全部都是中央出我沒怪你在靠夭啦好 下一張這個是育嬰設備的補乳室是兩萬塊然後呢
transcript.whisperx[398].start 11257.074
transcript.whisperx[398].end 11263.169
transcript.whisperx[398].text 受僱者居家市抽菸這個是60萬新建的是300萬最高500萬嘛你剛剛有講嘛齁
transcript.whisperx[399].start 11269.373
transcript.whisperx[399].end 11289.863
transcript.whisperx[399].text 這個是企業如果有設拖曳的設備或者建築你補助最多是500萬是不是?是,就是新設的新設的,所以今年有一家、兩家500萬實在太少了,講坦白話現在的建築成本太高,現在什麼都各樣上
transcript.whisperx[400].start 11291.458
transcript.whisperx[400].end 11304.387
transcript.whisperx[400].text 應該說不一定是新蓋一個建築但是可能是用企業裡面的空間然後把它再去設定再去整理出一個所以這個我具體建議的就是說不要打死收入百萬應該是
transcript.whisperx[401].start 11306.508
transcript.whisperx[401].end 11321.322
transcript.whisperx[401].text 裡面去平和,有的是自己有建築物了,只是裡面裝修嘛那另外有的是新蓋,像我們就打算新蓋,但是要蓋幾千萬,我們才要錢啊你補著五百萬,你也想補著一兩千萬,我們才蓋下去
transcript.whisperx[402].start 11324.679
transcript.whisperx[402].end 11347.597
transcript.whisperx[402].text 所以上限比我高你的時報時銷因為現在的建築準備實在太高太高我們現在已經從300萬拉高到500萬了可以一千兩千這樣這是什麼錢這是救保那這個侮辱是兩萬塊也太少了所以這個都要增加
transcript.whisperx[403].start 11349.69
transcript.whisperx[403].end 11377.64
transcript.whisperx[403].text 我們可以來看一下哪些部分有增加的空間可是這個但是我還是要跟委員提醒因為其實長期以來因為救保基金他其實主要是在處理的問題其實是關於就業跟失業上面的議題那其實很多勞工朋友包括很多的工會勞工團體其實也一直在提醒其實處理就業失業的問題才是原本就救保基金他一開始成立的時候他的最重要的
transcript.whisperx[404].start 11378.76
transcript.whisperx[404].end 11387.572
transcript.whisperx[404].text 的設定的目的還有那個育嬰是6加6我也覺得不太夠應該差不多要到18個月
transcript.whisperx[405].start 11391.488
transcript.whisperx[405].end 11420.088
transcript.whisperx[405].text 我不是在開普拉普,我是在說真的因為我們自己我自己有四個小孩,這樣過來很辛苦這樣讓我兒子生一孫,那個更辛苦我們非常願意跟所有人一起合作我們在醫療界,看我們先來推動那醫療的,像譬如說護理師他育嬰他育嬰假回來你說會遭遇什麼問題,我們是沒有什麼問題
transcript.whisperx[406].start 11421.429
transcript.whisperx[406].end 11441.686
transcript.whisperx[406].text 但是它自己本身有時候是健保本身的電腦軟體一直在更新所以回來有時候會要踏足了會跟不上的感覺是有這個問題所以我們像我們在鄉下在屏東
transcript.whisperx[407].start 11443.8
transcript.whisperx[407].end 11446.005
transcript.whisperx[407].text 小孩子要下課如果當安親班是OK的如果沒有的話我們很多都中間請
transcript.whisperx[408].start 11453.766
transcript.whisperx[408].end 11457.889
transcript.whisperx[408].text 所以說回來沒有工作什麼職場我也覺得沒有這個問題然後再來就是說什麼女性的薪水比男性低我也沒有這種感覺
transcript.whisperx[409].start 11475.067
transcript.whisperx[409].end 11499.807
transcript.whisperx[409].text 只要你在獅子輩你是婦理獅你知道就是你的價碼就你是藥師那價碼更高啦所以沒有婚男女那是在行政職方面可能會有點差啦行政職啦就目前現在數據上看起來確實男女性質上面還是有差異我們必須承認這件事情那這也是我想也是勞動部必須努力的目標好那下一張
transcript.whisperx[410].start 11504.037
transcript.whisperx[410].end 11532.95
transcript.whisperx[410].text 這個是男性比例啦現在有在增加是好事啦那屏東的話我們男性生哺乳價是17%增加到20%這也是都是好事情那希望能夠更更有效啦那你剛剛講的這個一個月譬如說小孩子發燒啦什麼的幼兒園突然間說說要不然孩子吵吵鬧鬧有人發燒啊傳病毒啊那個是用市價的喔
transcript.whisperx[411].start 11535.166
transcript.whisperx[411].end 11557.435
transcript.whisperx[411].text 呃現在其實很多對很多老公來說他可能必須用試駕或者用自己的特休來因應所以這也是為什麼他可能這種臨時性家庭照顧假或者是家庭照顧假試駕或家庭照顧假有一個月的試駕是14天7天啊7天沒有薪水的啊7天但是7天是算在14天的試駕裡面的對試駕哦試駕啊試駕也沒薪水啊對試駕也沒薪水那你們補啊
transcript.whisperx[412].start 11564.258
transcript.whisperx[412].end 11591.529
transcript.whisperx[412].text 所以我們為什麼我們現在也才從這個育嬰留庭的範圍裡面去思考怎麼樣去幫助這些生小孩的勞工家庭去解決這個問題我們為什麼才從這裡面去思考的原因就是這樣因為他在如果從育嬰留庭去想的話他裡面本身就救保其實可以有六成的補助那再加兩成的這個公務預算的補助
transcript.whisperx[413].start 11592.489
transcript.whisperx[413].end 11603.814
transcript.whisperx[413].text 他比較不用再要再去畫一個非常大的財源來去補貼因為現在在整體的財政上面其實都有其實是挑戰是很大的好下一張最後一張了
transcript.whisperx[414].start 11607.741
transcript.whisperx[414].end 11618.326
transcript.whisperx[414].text 這個是我們事業單位申請補助的嘛齁我跟部長講一個那個現在澳洲啊 澳洲他們生育後育嬰階段是多久你知道嗎三年三年是國家補助的所以三年後再生一個 又三年再三年 又生一個這樣十年 齁澳洲現在就這樣所以我
transcript.whisperx[415].start 11636.038
transcript.whisperx[415].end 11660.251
transcript.whisperx[415].text 他們是這樣幹的,所以我們這邊是一直往上啦比不完啦,所以我的建議啦因為這個錢都是中央出的錢地方政府沒有,地方政府在說的是在說什麼?公民都沒錢啊,他也是老人啊,孩子都沒錢,他們在說的是連高雄市也在挨,台南市也在挨,是在挨什麼?
transcript.whisperx[416].start 11665.556
transcript.whisperx[416].end 11683.43
transcript.whisperx[416].text 你說地方政府來地方政府說他們要補助啊他們的錢被扣了27%嘛 對不對那是跟這個是重疊的嗎我想這個應該不是不是這個部分我們的補助是來自酒保好查清楚 好 謝謝
transcript.whisperx[417].start 11716.803
transcript.whisperx[417].end 11720.104
transcript.whisperx[417].text 好 那我們先處理臨時提案 馬上處理兩案 來 第一件第一案 考量在快速道路與國道工作環境操作緩衝車時往往遭遇車輛噪音甚大或是高度可能面臨車輛濺起砂石噴進眼睛徒增作業者本身與車輛駕駛發生重大傷亡車禍等可能
transcript.whisperx[418].start 11744.515
transcript.whisperx[418].end 11768.033
transcript.whisperx[418].text 特决议劳动部应恰商交通部限期于三个月内定定缓冲车使用安全管理指引并落实规范主被动式对缓冲车操作人员之人身防护标准事后并向立法院社会福利及卫生环境委员会提交书面报告提案人委员陈金辉苏清泉陈昭芝第二案
transcript.whisperx[419].start 11768.914
transcript.whisperx[419].end 11776.003
transcript.whisperx[419].text 目前已有官方提出之勞動檢察員專業能力及工作支持提升方案並規劃改善原此特決議勞檢員不論是勞動條件檢察員或職業安全衛生檢察員
transcript.whisperx[420].start 11784.594
transcript.whisperx[420].end 11806.829
transcript.whisperx[420].text 接應平等享有官方積極於加級提升和獎金給予等工作支持措施並請勞動部限期於一個月內向立法院社會福利及衛生環境委員會提交書面報告提案人委員陳金輝、蘇清泉、陳昭芝宣讀完畢好行政大會沒有意見沒有意見好
transcript.whisperx[421].start 11814.502
transcript.whisperx[421].end 11839.946
transcript.whisperx[421].text 好 解釋一下好 針對於案由一的部分我們會跟交通部這邊來進行研擬有關於緩衝車的使用安全指引我們也會在三個月內提交書面報告到我們大委員會那案由二的部分我們現在目前已經有有關檢查員的專案能力跟公共支持方案
transcript.whisperx[422].start 11840.646
transcript.whisperx[422].end 11847.64
transcript.whisperx[422].text 那有關於這個方案裡面委員希望是擴增到這個勞動條件檢查員的部分我們會一併納入考量
transcript.whisperx[423].start 11850.073
transcript.whisperx[423].end 11875.17
transcript.whisperx[423].text 這個緩衝車我還是一個建議啦因為我每天都在來來回回在快速路、在高速公路看到緩衝車洪隆的機會這麼大所以那個緩衝車一定要再拉就是說裡面的設施要更適合就是說可潰爛式的裡面要裝水箱、裝火壺都沒意見但是就是說讓我們的車隆了之後那個車開車的人忙到最終
transcript.whisperx[424].start 11877.552
transcript.whisperx[424].end 11890.896
transcript.whisperx[424].text 因為攤位沒意思啊而且那個速度都蠻快的我看緩衝車被撞的我常常看到所以這個你要跟公務單位說這個緩衝車的設計要快速 要高速一點這樣是保護駕駛人那第一案 第二案都沒有意見那我們就
transcript.whisperx[425].start 11906.612
transcript.whisperx[425].end 11908.735
transcript.whisperx[425].text 臨時提案全部處理完畢接下來我們請臨時委員執行
transcript.whisperx[426].start 11930.441
transcript.whisperx[426].end 11947.667
transcript.whisperx[426].text 好謝謝主席喔我再要說一下這個我們的警員在國道上面配備有緩衝車標配是我要求的是我提案的以前都沒有好那個這個跟今天無關那我們是不是還是請洪部長
transcript.whisperx[427].start 11954.342
transcript.whisperx[427].end 11970.635
transcript.whisperx[427].text 部長營造友善的職場育兒環境要落實照顧不離職的政策那我現在要問你第一個問題你知道現在什麼都漲的時代只有剩下人力和社畜的薪水最便宜都不太漲
transcript.whisperx[428].start 11971.636
transcript.whisperx[428].end 11985.002
transcript.whisperx[428].text 但生養小孩啊 我要問你第一個問題連教育基金都是年年增加你知道養一個小孩大概要多少的教育基金嗎教育基金就好了那如果你不知道的話 你知道嗎我可能有人會抓高一點 有人抓低一點吧
transcript.whisperx[429].start 11997.182
transcript.whisperx[429].end 12022.279
transcript.whisperx[429].text 你講這個不是空話嗎我現在顯然你不知道教育局要準備多少那你這樣養一個小孩要多少錢嗎這有高一點的跟低一點的部長你就說你不知道就好了你為什麼要這樣子胡扯呢都跟你講剛剛講空話有人就不是胡扯啊就是有些人有些小孩有些人高一點有些人低一點你叫阿嬤或狗來講也會講
transcript.whisperx[430].start 12024.349
transcript.whisperx[430].end 12031.772
transcript.whisperx[430].text 我現在跟你講喔 那你要大概一個概念嘛 你不能讓人家說你吃飯卡中 寶釘兩枚 四個孩子要開多少錢 都不知道所以我們 我也是很訝異 因為我個人覺得沒花這麼多但是呢 還是有人講喔 那如果有一個民間的保存人壽他們去做2024年的教育金準備大調查 因為準備嘛 可能從
transcript.whisperx[431].start 12049.838
transcript.whisperx[431].end 12061.95
transcript.whisperx[431].text 幼兒園一路準備到他要出國留學如果到家了出國留學我肯定不是這個數字啊你知道如果要準備小孩出國留學一年要多少錢嗎到美國留學一年要花多少錢
transcript.whisperx[432].start 12063.288
transcript.whisperx[432].end 12080.896
transcript.whisperx[432].text 到英國要多少錢可能兩三百以上兩三百以上那不可能不夠一年不夠那我們就不講出國留學就是說從小的幼兒園到大學畢業那他們的調查顯示每位子女的教育準備金在2023年是459萬那2024年增加了22萬要481萬而且有30%
transcript.whisperx[433].start 12093.182
transcript.whisperx[433].end 12109.753
transcript.whisperx[433].text 8%的受訪者認為需要準備到500萬元以上如果你要留學一年還要再增加400萬元一年啦至少啦到美國400萬跑不掉除非他拿公費補助除非他留學的時候說我
transcript.whisperx[434].start 12110.914
transcript.whisperx[434].end 12116.636
transcript.whisperx[434].text 我要去打工這樣子所以我們今天要討論一個營造友善職場育兒環境之前我們希望我們的政府要了解為什麼現在的年輕人不想婚婚了以後不想生因為生一個小孩光是教育成本要為他準備的就要這麼多在這種狀況裡面我們希望說照顧不離職
transcript.whisperx[435].start 12139.045
transcript.whisperx[435].end 12141.266
transcript.whisperx[435].text 不能離職,可是如果你沒有足夠的配套給他支持的話,事實上他就只能選擇不生
transcript.whisperx[436].start 12159.375
transcript.whisperx[436].end 12187.153
transcript.whisperx[436].text 不生啊所以我們來講營造友善職場的育兒環境前提是他願意生他生了以後我們需要這個國家來介入所以為什麼現在女性啊她絕對不會想說我沒有獨立的經濟經濟考量是影響生育決策的很重要的一個因素那我在這裡也跟你講其實經濟負擔最大的還是房子房貸
transcript.whisperx[437].start 12188.354
transcript.whisperx[437].end 12214.335
transcript.whisperx[437].text 所以請你回去行政院跟他們講願意婚生的婦女願意婚生的年輕夫妻要打造一條龍式的然後打五折的社會住宅社會住宅裡面就有幼兒園就有托嬰中心然後甚至還有老人家長輩的安置的日照
transcript.whisperx[438].start 12216.023
transcript.whisperx[438].end 12234.624
transcript.whisperx[438].text 這樣子一條龍才能夠真正的鼓勵人家來婚生所以這我要打造一個讓家長安心生養的環境很重要那我們知道職業不中斷呢除了我剛剛講最務實的一條龍式的打五折的社會住宅以外
transcript.whisperx[439].start 12235.545
transcript.whisperx[439].end 12256.609
transcript.whisperx[439].text 當然是勞動環境勞動條件而我們檢視一個政府做的好不好啊很簡單大家講拿出來講兩個指標一個是出生率一個指標就是勞參率勞動參與率出生率出生率部長你知道現在出生率是怎麼一回事啊現在出生率是很低的
transcript.whisperx[440].start 12261.81
transcript.whisperx[440].end 12273.901
transcript.whisperx[440].text 每況愈下每況愈下我說過 古年流年龍年生的小孩應該會多有史以來專呆玩的狼 專呆玩的狼從來長眼睛沒見過龍年出生的小孩比氣骨厚頭
transcript.whisperx[441].start 12283.286
transcript.whisperx[441].end 12297.991
transcript.whisperx[441].text 比他們還要低這是一個非常大的警訊那我要講說啊那如果不講出生率啦你檢視你友善又育兒政策的另外一個指標就是勞參率
transcript.whisperx[442].start 12299.651
transcript.whisperx[442].end 12320.37
transcript.whisperx[442].text 那根據112年勞動部的性別勞動統計表分析男女勞動的參與率的差距這10年裡面他本來差距了16.28%現在下降到15.23%顯然看起來好像女性的勞參率多了1%
transcript.whisperx[443].start 12322.231
transcript.whisperx[443].end 12333.883
transcript.whisperx[443].text 看起來好像有進步那等一下再來講可是我們還有一個看有配偶或同居的男性勞參率有65.12相對的有配偶或同居的女性勞參率
transcript.whisperx[444].start 12335.407
transcript.whisperx[444].end 12351.216
transcript.whisperx[444].text 女郎還是49.34差了15.78個百分點那如果再講單離婚的分居的上偶的變成單親的這個單身的男性勞參率51.96然後女性
transcript.whisperx[445].start 12354.878
transcript.whisperx[445].end 12368.127
transcript.whisperx[445].text 上偶的離婚的分居的女性的勞參率30.18%遠遠男生高出了21.78%這個到底是怎麼一回事啊部長你覺得呢目前現在看起來確實單身的男性的勞參率遠遠高於女性
transcript.whisperx[446].start 12379.244
transcript.whisperx[446].end 12399.03
transcript.whisperx[446].text 比一般平均的男女的勞參率還要更高目前看到確實女性的勞參率在20歲以前其實相對是維持著很不錯的可是30歲以後就會快速的蠻快速的降低我不是問你這個問題我是問你離婚分居和上偶老實說因為我想不懂因為這是你們統計數字嘛
transcript.whisperx[447].start 12400.47
transcript.whisperx[447].end 12427.946
transcript.whisperx[447].text 如果這些你們的統計數字那顯然是有意義的為什麼離婚分居尚偶的性別的勞參率勞參率的這個性別的差異會擴大為什麼你們這個統計的人你們自己要出來給我們解說啊但我要問你啦如果我們去思考說從這裡面的男女性的勞參率的數字這裡面有子女的人有沒有差異有沒有差異
transcript.whisperx[448].start 12434.031
transcript.whisperx[448].end 12453.527
transcript.whisperx[448].text 不然你們做這個統計是在做什麼心臟的你們的統計單位做這間統計的人你們在做什麼異議的意思是什麼你們自己在做你們不知道甘委員你是問句嗎對我在問你們啊你們的心理的勞動統計分析報告的啊蛤
transcript.whisperx[449].start 12456.943
transcript.whisperx[449].end 12482.711
transcript.whisperx[449].text 你們自己做統計分析你們不知道你們做這個變數的意義是什麼因為你剛才講的好幾個數據我要講離婚分居上我們現在確實是看到我覺得很明顯的事情是女性的勞參率低於男性一個很大的原因是因為他必須要從自己的職場給離開去做家庭的照顧不管是顧小或顧老
transcript.whisperx[450].start 12483.717
transcript.whisperx[450].end 12512.375
transcript.whisperx[450].text 都會涵蓋在這裡面所以這也是這個我們大家都知道啦但是我要跟你講我剛剛講2002到2020抱歉102年到112年看起來女性勞參率好像上升對不對可是不要忘囉不要忘囉102年到112年女性勞參率上升的同時女性的生育率是下降的小孩的出生人口數是下降的這有沒有意義
transcript.whisperx[451].start 12514.042
transcript.whisperx[451].end 12516.724
transcript.whisperx[451].text 不要看得好像你們勞參與增加很開心很開心不生小孩啦所以這是什麼意思這是說所有的女性有工作在職場的女性還是必須在工作跟生小孩之間做抉擇啊只能擇一啊如果你要工作可能你就會選擇不生小孩
transcript.whisperx[452].start 12542.933
transcript.whisperx[452].end 12545.116
transcript.whisperx[452].text 這一趴顯示的有這個現象啊那為什麼這樣子所以在這裡大家都在講說
transcript.whisperx[453].start 12564.418
transcript.whisperx[453].end 12569.761
transcript.whisperx[453].text 104銀行也有講 因為剛才林月琴委員有諮詢29歲以下他的職業來中斷 職場的瓶頸是什麼29歲以下就跟人家說要生小孩 會中斷嗎30到39歲當中有58%是白天上班 晚上顧家 疲於奔命 影響工作表現或身心俱疲還有一個也是生小孩
transcript.whisperx[454].start 12590.73
transcript.whisperx[454].end 12613.003
transcript.whisperx[454].text 40到49歲將近六成也是白天上班晚上顧家疲於奔命影響工作表現或俱疲到50歲以上67%就是職業中斷以後想重返職場因年紀大或專業過時而無法銜接所以這個裡面其實大家顯示出來都很累很累大家不分年紀就是很累很累很累
transcript.whisperx[455].start 12615.117
transcript.whisperx[455].end 12632.641
transcript.whisperx[455].text 無論顧小或顧老 其實就是要這樣子 就是這樣子那我們現在在講說 玩意心的 玩意心的 讓他們友善一點 國家做一點什麼國家做一點什麼 我舉一個例子 你知道為什麼需要彈性輕職價嗎 我再問你第二個問題
transcript.whisperx[456].start 12635.962
transcript.whisperx[456].end 12643.352
transcript.whisperx[456].text 你知道台北市去年的托嬰中心因為腸病毒而停課的天數是幾天嗎
transcript.whisperx[457].start 12645.947
transcript.whisperx[457].end 12667.394
transcript.whisperx[457].text 大概20天出頭我告訴你平均公立的托嬰中心19.9天私立的托嬰中心平均一年停課18.9天那我要舉喔台北市有幾大行政區域松山區公立的平均一年停課天數
transcript.whisperx[458].start 12669.774
transcript.whisperx[458].end 12695.565
transcript.whisperx[458].text 28天28天私立平均一年停課天數在南港區也是28天28天你知道一個腸病毒就這麼多天那你知道六都其他五都的平均多少天嗎就我看到的數據是比台北市低一些新北市平均一年停課11天高雄公立
transcript.whisperx[459].start 12696.897
transcript.whisperx[459].end 12709.74
transcript.whisperx[459].text 新北市統計數字比較粗糙啦但高雄公立的平均一年停課天數25天私立的一年平均停課天數22天請問你 請問你 保定我們要去哪每一個勞工 女性勞工年輕父母要去哪 28天 25天 22天啊我們要請什麼假 請特休特休是什麼 特休是讓這個勞工
transcript.whisperx[460].start 12726.199
transcript.whisperx[460].end 12736.169
transcript.whisperx[460].text 幾年來身心俱肥讓他能休息一下現在大家特殊都不是拿來自己充電再出發的大家特殊都拿來照顧孩子因為不要講這個空中的大便有新家庭照顧這麼不可能那一年就爆了那不可能的啦所以
transcript.whisperx[461].start 12750.185
transcript.whisperx[461].end 12763.454
transcript.whisperx[461].text 不但如此 政府沒有配套然後沒有作為就算了 現在還落井下石雪上加霜你知道要做什麼嗎政府的政策跨部會之間都不協調為什麼不協調 你知道嗎利益良善缺乏配套加重家長的負擔變成不敢生今年4月我們衛福部修正了 預告了
transcript.whisperx[462].start 12776.923
transcript.whisperx[462].end 12790.131
transcript.whisperx[462].text 托嬰中心定型化契約應記載及不得記載事項新增加了一款如果兒童健康不佳時托嬰中心有權要求家長配合接回照顧
transcript.whisperx[463].start 12792.268
transcript.whisperx[463].end 12804.518
transcript.whisperx[463].text 這個修正方向其實是好的 我覺得是好的自己小孩生病趕快自己接回去照顧這也是基於公共衛生防疫需求 利益良善啦但是我問你 只藏病毒的28天20天啊小孩健康不佳 我這有經驗了小孩剛從保姆到幼兒園的時候 一個月整天都在生病
transcript.whisperx[464].start 12818.67
transcript.whisperx[464].end 12826.094
transcript.whisperx[464].text 健康不佳托嬰中心就有權利要求家長接回去自己照顧我要去寫假出來保證我問你沒有配套然後你要保護孩子沒有錯這些家長要去哪裡長出那個假要去哪裡長出來
transcript.whisperx[465].start 12839.946
transcript.whisperx[465].end 12864.483
transcript.whisperx[465].text 所以就算透過應徵性的停課規定放寬了每年的停課日數有可能下降到平均只有十多天但是因為你們定型化契約這樣子一改下去所以大家家長都要很緊繃的本來是大家都覺得說願意升了結果法律上沒有配套就說你就要坐等 家長都要坐等這大家就不要死啊
transcript.whisperx[466].start 12867.97
transcript.whisperx[466].end 12896.641
transcript.whisperx[466].text 雪上加霜你們在有生育意願的這個年輕父母身上雪上加霜啊讓他們情何以堪啊所以我剛剛講說特休假本來是為了工作及生活平衡結果因為生了孩子以後特休假不要忘了年輕父母的特休假天數最少因為之前嘛結果特休假全部要用來照顧小孩情何以堪啊
transcript.whisperx[467].start 12901.879
transcript.whisperx[467].end 12920.877
transcript.whisperx[467].text 所以這部分我們為什麼正在研議這個雲流亭希望能夠更多更時間更短的可以讓大家可以請休的原因就是希望要去補足這部分你講的很有道理啊我們的法案躺在那裡已經躺兩三年了躺好幾年了啦
transcript.whisperx[468].start 12921.798
transcript.whisperx[468].end 12931.711
transcript.whisperx[468].text 但是呢 我問你 你的現憑工作平等法你的就業保險法 你的修法你說就是要 那請問你什麼時候要拿出來修什麼時候要排審查 張偉什麼時候要排審查
transcript.whisperx[469].start 12937.305
transcript.whisperx[469].end 12940.406
transcript.whisperx[469].text 對啊 我沒有增加天數 沒有讓雇主多付錢欸我把育嬰留庭的那幾天育嬰留庭增加一個月啦那我們再把這一個月從0到3歲給他放到0到8歲或是0到12歲然後呢 請假的方法 不同說限制1個月1年1個月到2年你都通通給他鬆綁掉 彈性化了
transcript.whisperx[470].start 12964.577
transcript.whisperx[470].end 12986.921
transcript.whisperx[470].text 沒有增加天數欸沒有增加這個錢欸在這種狀況你都沒有辦法做然後你說你就是靠這個配套要來幫家長解決問題可是你口惠實不至連法案都沒有拿出來審我們已經提案多久了都沒有提出來審我上一屆就提大家上一屆都提了提到這一屆還繼續提好 現在叫我時間到了我現在要說國家做了什麼
transcript.whisperx[471].start 12993.867
transcript.whisperx[471].end 13016.132
transcript.whisperx[471].text 國家做了什麼 沒有所以年輕世代這個年輕世代我告訴大家沒有人會為了生兒育女而放棄工作沒有人如果這個要育兒而且不要放棄工作的話只能很辛苦很辛苦的在那裡撐著大家都想要繼續工作大家都想要繼續賺錢養家大家都覺得經濟很困難
transcript.whisperx[472].start 13022.593
transcript.whisperx[472].end 13048.966
transcript.whisperx[472].text 這個是事實所以在這種狀況裡面女人要照顧小的然後到40歲左右又要照顧老的在這種狀況裡面在身心俱疲而你能做的政策面你能端出來的有限啦阿就跟你講台性親職假這種最簡單的你今天說一件事都說你自己你的法案沒有排審
transcript.whisperx[473].start 13050.492
transcript.whisperx[473].end 13075.622
transcript.whisperx[473].text 法案都沒有排審欸提案提多久了什麼時候要拿出來審什麼時候要通過這才是真正的真正的落實你的口會沒有實質啊對不對保定我講這個沒道理那個有根文說我們前面階段我們會先從在可以不修法的範圍內我們會先做那
transcript.whisperx[474].start 13077.14
transcript.whisperx[474].end 13087.532
transcript.whisperx[474].text 以日請休或者是這幾相關的談心話目前可以做我覺得我們會再先第一段先來這部分我們會來還是往這個方向如果我們要修法你支不支持問得就簡單咧我們的價沒有增加天數我們的錢沒有增加
transcript.whisperx[475].start 13097.819
transcript.whisperx[475].end 13107.069
transcript.whisperx[475].text 當然是雇主的行政成本 它是增加的就是這樣子 如果錢跟天數都沒有增加了這樣子你們都沒有辦法協調我告訴你國安危機內 去年13萬 今年22萬阿拉美礦獄下你留步先倒 全國大家一起倒
transcript.whisperx[476].start 13119.604
transcript.whisperx[476].end 13144.978
transcript.whisperx[476].text 事情很嚴重的到現在我們還不願意正視這個國家沒有人要生孩子這個國家國家的政策端不出友善育兒的制度來誰願意生啊我再告訴你我再說一遍年輕人沒有人會放棄工作因為我們都必須工作才有飯吃沒有人要放棄工作只能放棄不生小孩啦只能放棄生小孩啦
transcript.whisperx[477].start 13149.432
transcript.whisperx[477].end 13150.352
transcript.whisperx[477].text 這件事很嚴重,到現在你們還拚拚拚拚拚拚拚拚拚拚拚拚拚拚拚拚拚拚
transcript.whisperx[478].start 13173.496
transcript.whisperx[478].end 13182.623
transcript.whisperx[478].text 我找出來 我馬上來排謝謝林淑雯委員那接續我們請黃振旭委員執行花便當喔 肚子餓著趕快吃飯好 謝謝主席 謝謝蘇昭偉我們還是請洪部長
transcript.whisperx[479].start 13208.277
transcript.whisperx[479].end 13231.113
transcript.whisperx[479].text 部長好 聽了剛剛很多很多的意見我想部長也知道大家的期待是在哪裡我就用兩個議題來跟部長來討論第一個就是有關於有心彈性育嬰架演繹規劃的進度第二部分呢 是不是能夠考慮來提高及擴大育嬰留庭給父的可能
transcript.whisperx[480].start 13231.773
transcript.whisperx[480].end 13252.299
transcript.whisperx[480].text 那剛剛趙委還有其他委員希望能不能夠把這個目前規劃中的八成這樣的替代能夠補好補滿那當然很多的議題也需要透過這樣的方式來討論的同時也希望也知道這個方向可以往那邊走
transcript.whisperx[481].start 13253.459
transcript.whisperx[481].end 13266.977
transcript.whisperx[481].text 那其實過去我也很多次跟部長討論過有關於這個有性彈性照顧假的研議的規劃進度今天我們看到部長的書面報告還有剛剛早上的口頭報告裡面有提到這個試辦過程
transcript.whisperx[482].start 13269.439
transcript.whisperx[482].end 13292.568
transcript.whisperx[482].text 去年的事辦有89家的事業單位來參加看到勞工的部分方面以申請三天的占最多申請大多以保母臨時有事、腸病毒的停託課、小孩子需要陪伴以及員工想要自行照顧新生兒占為主要的原因
transcript.whisperx[483].start 13293.388
transcript.whisperx[483].end 13313.195
transcript.whisperx[483].text 那有一些是沒有提出這個申請那不提出申請的人大部分是以家庭照顧價或用其他的價別來替代而不是用我們所規劃中的這個可能的價值那雇主方面呢其中其末焦點座談會當中他們表示未來的制度如果要放寬彈性的話
transcript.whisperx[484].start 13314.676
transcript.whisperx[484].end 13341.743
transcript.whisperx[484].text 他們擔心的是影響人力的調配跟公司的營運這個就是我們看到書面的報告那其實我們也知道在這個過程需要有更好的研議的這個可能性包括時間還有更多的面向我們很期待從這個四個地方來麻煩部長能不能也讓我們知道彈性照護架
transcript.whisperx[485].start 13342.703
transcript.whisperx[485].end 13368.851
transcript.whisperx[485].text 是不是還是希望部長之前提到的是以日為單位有一些是希望用週或者是幾個小時那這樣的彈性的照護假是有薪呢還是部分的薪資或者是維持現在是無薪的那如果是有薪部分薪資那是雇主來負擔呢還是透過社會保險的機制還是用政府的公務預算來補助
transcript.whisperx[486].start 13370.151
transcript.whisperx[486].end 13384.809
transcript.whisperx[486].text 那企業的排班很多企業尤其是小型的這些微型企業他們排班的配套措施未來會是如何的規劃部長請就幾個方面來幫忙說明一下根本說明
transcript.whisperx[487].start 13385.069
transcript.whisperx[487].end 13400.29
transcript.whisperx[487].text 因為現在因為大家也在講說關於家庭照顧家的部分可是家庭照顧家目前是是沒有薪資的那如果家庭照顧家要有薪的話那這裡面就會下面的問題是要由雇主來負擔還是要由政府來負擔
transcript.whisperx[488].start 13401.872
transcript.whisperx[488].end 13416.162
transcript.whisperx[488].text 那當然如果要從雇主來負擔的話那這部分可能會遇到的的整體的在產業上面的阻力會比較大那如果是從政府來負擔的話確實以現在整體現在政府尤其是財化法修訂
transcript.whisperx[489].start 13417.543
transcript.whisperx[489].end 13437.478
transcript.whisperx[489].text 修正以後的財政的狀況要來負擔這部分確實是會非常辛苦因為幾乎是每個勞工都有這個家庭照顧價所以假設以千萬的勞工來計算大家都有家庭照顧價權利的話那這個請領下去每一天的家庭照顧價我們算起來可能會是超過百億的
transcript.whisperx[490].start 13438.459
transcript.whisperx[490].end 13451.397
transcript.whisperx[490].text 好那如果是7天的話那就要再乘以7所以這也是為什麼我們比較現在比較是從暈流亭的角度來去切入希望從這部分來去做來去著手
transcript.whisperx[491].start 13452.741
transcript.whisperx[491].end 13471.833
transcript.whisperx[491].text 讓他可以更加的彈性那因為因為劉庭他的目前他的給付那六成部分會是來自於舊保的基金在這邊比較是可以來去處理這個問題不過剛剛林委員其實非常期待也很要求我們也知道
transcript.whisperx[492].start 13473.034
transcript.whisperx[492].end 13498.103
transcript.whisperx[492].text 雙薪的家庭雙就業的情形之下如果沒有這樣好的一個彈性照護的假期來使用的話相對來講就真的很難讓我們那個少子化能夠至少這部分能夠有效的來改善這個其實林委員剛剛也非常非常的希望部長這邊能夠多用心更用心的把這個部分處理的更有效率
transcript.whisperx[493].start 13500.929
transcript.whisperx[493].end 13516.079
transcript.whisperx[493].text 我還是想跟文說明因為其實在整體的制度上面要去做到這個變革他其實要去處理的挑戰跟關卡是真的是蠻多的包括在執行面
transcript.whisperx[494].start 13516.98
transcript.whisperx[494].end 13541.897
transcript.whisperx[494].text 那也包括是在財務的部分在人力的部分其實他需要涉及到的部分真的是很這也是為什麼過去其實這個議題其實談很久那你當然希望能夠更進一步的去突破這件事情是好對那我還是要說這不是用不用心的問題了解了解可是我們還是希望有策略當然除了用心以外還是需要有一個策略來推進
transcript.whisperx[495].start 13542.958
transcript.whisperx[495].end 13546.04
transcript.whisperx[495].text 那我們就往下來看一下 提高跟擴大育嬰留庭給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給給
transcript.whisperx[496].start 13571.994
transcript.whisperx[496].end 13599.374
transcript.whisperx[496].text 平均月投資的這個保障的這個薪資的替代率就可以達到八成那剛才我一直希望能夠把它補好補滿那當然這個會牽扯到你提到想相關的一些費用還有如何來編好這個預算不過我們如果從另外一個方向來看的話其實目前我們所看到的這個即使最高的這個替代率的八成是透過
transcript.whisperx[497].start 13601.195
transcript.whisperx[497].end 13627.154
transcript.whisperx[497].text 我們目前的45800乘以八成這樣的薪資來做一個給付的一個他的這個所有的費用那到目前為止我們從這個就業保險的人數來看的話超過這個費用45800這個上限的佔了41%意思就是說這樣的需求似乎我們需要能夠針對這個級距來做一些調控
transcript.whisperx[498].start 13629.537
transcript.whisperx[498].end 13633.821
transcript.whisperx[498].text 那依照這個新勞退的薪資的統計的話超過這個45800是占了33.4%那平均的這些提繳的這個工資已經達到46000
transcript.whisperx[499].start 13646.691
transcript.whisperx[499].end 13662.419
transcript.whisperx[499].text 928元也都比這個45800高那我們再看下一個數據可以看到就是如果以這個可能在生育的年齡當中如果是25歲到40歲的話那男性的這些平均落差這個45800以上的其實是超過1萬元
transcript.whisperx[500].start 13667.181
transcript.whisperx[500].end 13695.681
transcript.whisperx[500].text 30歲以上的話也會更明顯一些那可是女性到44歲多沒有辦法達到這樣的費用那表示說未來如果我們要鼓勵性平能夠同時來照顧這個新生兒的話未來在男性跟女性當中還是會有落差因為男性的薪資相對就比較高一些那如果從這個另外一個角度來看這個就業保險目前有
transcript.whisperx[501].start 13696.822
transcript.whisperx[501].end 13721.124
transcript.whisperx[501].text 將近自願投保者就是自僱自營自僱的這些人數佔了將近5%那這些人其實是無法在這個過程裡面去領用到這樣的這個替代的這種八成的這個機會所以對於某一些的自僱自營的人他是無法受這個非受僱者就沒有辦法領到這筆費用所以造成的問題其實是蠻多元的
transcript.whisperx[502].start 13721.684
transcript.whisperx[502].end 13745.322
transcript.whisperx[502].text 所以如果我們用現在那個就業保險給付的這個制度來看的話事實上是真的會有出現下一個一些問題就是就保來綁這個勞保那當然就擔心如果我們把這個剛剛講的45800的上限提升以後可能就會導致這個勞保財務的負擔會突然大量的這種提高之下就沒有辦法
transcript.whisperx[503].start 13746.263
transcript.whisperx[503].end 13765.664
transcript.whisperx[503].text 把這個45800的這個上限打開那45800的上限沒有辦法打開的話以我在這個醫院所看到的我們的住院醫師為例我們住院醫師如果是女性住院醫師或是男性住院醫師平均的一些薪資目前在私立的醫院差不多是10萬到12萬元的薪資
transcript.whisperx[504].start 13767.694
transcript.whisperx[504].end 13788.673
transcript.whisperx[504].text 那如果是公立的醫院 他可能是在六萬多 將近七萬到九萬之間當他去生孩子的時候 如果他因為要生孩子以後他想要請假的話 那他的能夠抖到八成的這個替代率那八成的替代率最高性是四五八零零 其實才三萬多
transcript.whisperx[505].start 13789.634
transcript.whisperx[505].end 13803.691
transcript.whisperx[505].text 所以如果他有一個孩子當他選擇我到底要來持續就業呢還是說我要來照顧孩子當然這個落差就非常非常的大所以如果我們不去調這個45800對於這些相對
transcript.whisperx[506].start 13807.896
transcript.whisperx[506].end 13833.748
transcript.whisperx[506].text 高薪的這個勞動朋友來講或者是在這個勞基法裡面處理的部分就會受到蠻大的影響那剛剛我們這個所看到的這個百分比其實已經有41%是超過這個45800這樣的上去的這個級距所以我們會看到相當多的問題那第二個就是就業保險如果有失業給付當初的這個需求是為了政策上來不要讓這個
transcript.whisperx[507].start 13835.589
transcript.whisperx[507].end 13855.431
transcript.whisperx[507].text 太多的人是故意來領這個失業金這是有他的需求可是如果我們持續這樣綁定的話呢其實是有在政策上是有一些問題的那另外如果因為劉婷的津貼會和這個托寶薪資急劇綁定的很太實的話剛剛所提到誘因其實是受影響的
transcript.whisperx[508].start 13856.332
transcript.whisperx[508].end 13880.489
transcript.whisperx[508].text 那另外就是有關身份上這些會變成一定要有受雇者才能請領的話那剛左提到的那些自營者事實上也會被受到影響他是無法來請領這些費用所以我們想要跟部長再繼續討論的就是我們有沒有辦法來提高跟擴大育嬰留庭的幾乎的可能性
transcript.whisperx[509].start 13881.389
transcript.whisperx[509].end 13906.25
transcript.whisperx[509].text 就是包括這些就是老保跟舊保的脫鉤來打開這個舊保新增的上限就是我們其實好幾次都有跟部長討論過這個問題另外就是育嬰留庭的津貼不綁舊保的話就是用六成的這個舊保的部分是不是能夠跟其他的兩成一樣都改為公務補助這樣就可以打開這方面的限制
transcript.whisperx[510].start 13907.471
transcript.whisperx[510].end 13926.104
transcript.whisperx[510].text 當然直接墊高衛福部未滿兩歲的育兒津貼也是另外一種方式其實最重要我們期待的就是成立新的這個薪職照護保險或基金來處理就是把現在在勞工朋友所受到的限制呢有沒有將來用不同的方式來做處理
transcript.whisperx[511].start 13927.145
transcript.whisperx[511].end 13940.95
transcript.whisperx[511].text 那當然這個是需要到行政院的層級一起來共同跨部會來討論所以將來部長在跟這個行政院那邊討論的時候因為今年剛好又是我國少子化對策計畫在114年
transcript.whisperx[512].start 13943.651
transcript.whisperx[512].end 13967.483
transcript.whisperx[512].text 今年這個計畫就會結束了所以就會啟動下一波有關於少子化的對策我是不是可以透過這樣的方式能夠讓整體的這些跨部會的想法也麻煩部長能夠主動的來把這些想法能夠提供給行政院來做參考那各位請部長針對這樣的想法能不能夠提供意見給我們做參考
transcript.whisperx[513].start 13969.68
transcript.whisperx[513].end 13997.289
transcript.whisperx[513].text 跟委員報告就是委員提到我們的舊保的投保薪資上限45800的這個部分那主要是我們舊保他是一個社會保險那他目的是在保障我們這個被保險人在失業或者是在育嬰留子停薪期間的基本生活的經濟安全所以我們投保薪資有所謂的上限跟下限那目前我們領育嬰留子停薪津貼的平均投保薪資大概是在三萬六千塊錢
transcript.whisperx[514].start 13998.309
transcript.whisperx[514].end 14016.854
transcript.whisperx[514].text 所以它是可以涵蓋大部分運營流停的人那所以另外就是我們也用兩層來加強它的經濟補助嘛那另外就是委員提到說有沒有辦法脫鉤的部分那就會保險它的保險給付很多包括事業給付
transcript.whisperx[515].start 14017.934
transcript.whisperx[515].end 14037.229
transcript.whisperx[515].text 那投保薪資上限如果打開的話那拉高了以後就會連帶的把失業給戶的合戶的金額因為他是六成嘛也會提高所以對於勞工在重返職場的意願的可能性會不會受到影響的這個可能性我們也必須要來考量
transcript.whisperx[516].start 14038.51
transcript.whisperx[516].end 14063.657
transcript.whisperx[516].text 所以這一些就是要再考量到說因為它是放在社會保險放在就業保險裡面的一個限制所以沒有辦法單從雲林流停津貼這個部分來看那另外就是委員有提到說能不能增加救保的投保身份讓自營作業者也進來的這個部分那當然現在救保的投保的對象現在是受僱勞工
transcript.whisperx[517].start 14065.237
transcript.whisperx[517].end 14082.537
transcript.whisperx[517].text 主要是要來保障這些勞工遭遇非失業離職的時候他的經濟生活安全那我們是考量到自營作業者他因為工作比較自主他的失業的原因比較難以認定而且在育嬰留庭的這個部分他是要跟雇主請假的
transcript.whisperx[518].start 14083.698
transcript.whisperx[518].end 14109.443
transcript.whisperx[518].text 他沒有雇主所以也沒有辦法去請育嬰留庭假沒有辦法符合我們性供法的規定所以在有關育嬰留庭津貼的這部分即使他就算納進來他也沒有辦法來請那以上是當然我聽您這樣說明了解就是有這些限制那我們也很期待就是說如果知道問題是所在我們如何去解套
transcript.whisperx[519].start 14112.407
transcript.whisperx[519].end 14132.432
transcript.whisperx[519].text 其實現在我們就是希望能夠去解套啦吼那但的確比方說談到說比方像雲柳亭今天如果不綁舊保開公務上面補助的部分這當然就會有公務預算裁員上面的的議題現在公務預算在裁員上面其實都是相對是是非常辛苦的
transcript.whisperx[520].start 14133.484
transcript.whisperx[520].end 14158.036
transcript.whisperx[520].text 那對所以就是說這個薪資頭髮上限要打開他他最多的考慮點就是關於我們這整個在勞保財務上面的思考是所以才希望上一次才希望說能不能試算去推估造成的影響其實我們我們有試算了就是是會有更大的壓力的影響是
transcript.whisperx[521].start 14159.383
transcript.whisperx[521].end 14180.107
transcript.whisperx[521].text 好那最後當然如果將來有機會到行政院討論的時候希望也把這些需求再往上提報好謝謝王正熙醫師他的健保投保是用20萬的18萬多的然後他的勞保是用45,800欸差太多了對不對好謝謝王委員那繼續我們請羅廷惠委員質詢
transcript.whisperx[522].start 14195.677
transcript.whisperx[522].end 14219.059
transcript.whisperx[522].text 好 謝謝主席 有請部長好 部長好部長 之前您為受命擔任我們勞動部部長首要的任務是推動照顧不離職如何讓勞工不用為了照顧家庭而被迫選擇離職身為最年輕的勞動部長
transcript.whisperx[523].start 14221.821
transcript.whisperx[523].end 14248.263
transcript.whisperx[523].text 我認為你一定了解年輕家庭的需求在今年4月初我想部長也接受中央社的一個專訪那你有說育嬰留庭要更彈性好用以育為單位的請假並不容易沒有你們還沒有放棄近日將提方案及配套請問部長育嬰留庭要更彈性好用彈性指的是什麼部分有沒有規劃方向為何
transcript.whisperx[524].start 14249.858
transcript.whisperx[524].end 14265.076
transcript.whisperx[524].text 就是最早因為流停基本上它是要六個月那在110年的時候當時其實把它限縮到最短其實它可以一個月那我們認為這個最短的時間還可以再縮短日數可以再縮短那有沒有計畫要修法
transcript.whisperx[525].start 14266.217
transcript.whisperx[525].end 14282.266
transcript.whisperx[525].text 有沒有計畫要修法我們現在會先以這個不用修法的範圍裡面來做到以日為單位希望大概何時會推出我們現在其實正在跟行政院爭取相關配套的資源都會希望儘快
transcript.whisperx[526].start 14283.834
transcript.whisperx[526].end 14304.81
transcript.whisperx[526].text 好有兩個問題先請教部長第一產檢價從2021年7月1日開始產檢的項目已經從10次改為14次配合產檢的次數增加所以產檢價由原本的5天改成7天請問一下其他國家對於產檢價有何規定你有沒有研究過這個我可以提
transcript.whisperx[527].start 14309.38
transcript.whisperx[527].end 14326.299
transcript.whisperx[527].text 我想這樣子喔 從過去10次的產檢 產檢價變5到現在14次的產檢 產檢價變7勞動部的思維我希望說能夠再去研究一下喔因為我個人認為現階段的產檢真的只需要半天就可以了嗎
transcript.whisperx[528].start 14327.912
transcript.whisperx[528].end 14349.951
transcript.whisperx[528].text 可能嗎 部長你覺得現在的產檢因為這部分當然我們可以再跟衛福部討論因為這個產檢的到底要多少時間的需求這主要其實是衛福部來跟我們當然當然 但現在我要講的是食物面現在每一個媽媽去做產檢的時候絕大多數你認為她會請半天還請一天
transcript.whisperx[529].start 14355.895
transcript.whisperx[529].end 14372.382
transcript.whisperx[529].text 其實多數有可能這種狀況我都聽過因為一種對啦沒有一定的數據啦但是我們認為他如果請半天真的是非常的匆忙那現階段很多的職場女性仍需要用上班日來完成產檢這無庸置疑吧部長您覺得
transcript.whisperx[530].start 14374.891
transcript.whisperx[530].end 14390.869
transcript.whisperx[530].text 應該是說就產檢架的需求到底到多大我想其實因為我自己不是這方面的專業了那這個部分我們也很願意跟衛福部來做討論看他們有沒有覺得需要再再延長或者是在時間調整上的需求這當然我們我們會跟我們也跟衛福部來討論
transcript.whisperx[531].start 14391.89
transcript.whisperx[531].end 14407.401
transcript.whisperx[531].text 我是覺得說如果還要做羊毛穿刺啊那如果家裡又是偏鄉偏遠或甚至是山區甚至不是在市中心他還要去到市中心的醫院做產檢我個人認為這樣子的一個所謂的半天根本是不夠的
transcript.whisperx[532].start 14408.564
transcript.whisperx[532].end 14431.919
transcript.whisperx[532].text 那14次的產檢 產檢假7天的設計明顯不足以支應現在的產檢需求那至於孕婦要動用到市價特休甚至是影響到職場的權益跟健康所以我認為產檢假應該要以完整的一天來思考14次的產檢應該要以14天的產檢假部長 你可以認同嗎
transcript.whisperx[533].start 14436.684
transcript.whisperx[533].end 14464.889
transcript.whisperx[533].text 我想委員在談的這個精神我們是了解的順便想跟你來聊一下這個賠產價那對不起因為我要聊賠產價之前我剛剛還特別搜尋一下就是Google洪森翰然後突然就跳出空格老婆然後也想一下說你有沒有另外一半那因為我自己本身就是我太太生三個啦那所以我們對這個賠產我也想跟你分享就是說
transcript.whisperx[534].start 14466.614
transcript.whisperx[534].end 14490.465
transcript.whisperx[534].text 產檢不可能就他一個人去嘛 一定要有人賠產對不對 信免平等工作法實行細則第七條除賠產檢 配偶所謂在這個過程當中請假外 受僱者賠產之請假其因與配偶分免之當日及前後合計15日的期間內為之
transcript.whisperx[535].start 14492.626
transcript.whisperx[535].end 14502.172
transcript.whisperx[535].text 陪產家有使用時間的一個限制就是我剛剛說的分免的當日期前後合計15日請問部長為什麼要有15日的限制你不覺得不太合理嗎
transcript.whisperx[536].start 14507.947
transcript.whisperx[536].end 14528.341
transcript.whisperx[536].text 各位報告基本上這個部分是我們當時設計的時候一個女性如果分娩的時候假設他是用剖腹的他其實最常要待在醫院7天那我們認為說這一個假的需求是基本上是希望這個勞工可以陪伴他另外一半這個從分娩然後出院照顧新生兒
transcript.whisperx[537].start 14531.963
transcript.whisperx[537].end 14551.273
transcript.whisperx[537].text 那合理的期間因為我們不是要增加這個勞工其他的假所以希望在他最需要的時候然後合理性他的請假的這個室友所以依照實務上面來看一個女性分娩如果最常需要在醫院待7天所以前後15日是我們當時這個設計的本意
transcript.whisperx[538].start 14554.375
transcript.whisperx[538].end 14574.383
transcript.whisperx[538].text 好那我也是想用剖腹的部分來做一個案例那不謀而合但是我還是認為就是說在這個剖腹的過程醫院休養的這個部分現行制度我只有7日的陪產假剛剛你有說到然後我就要回職場我覺得這不利於產婦的休養跟新生兒的一個照顧還有初期的忙亂
transcript.whisperx[539].start 14575.863
transcript.whisperx[539].end 14595.723
transcript.whisperx[539].text 所以7日難以充分協助產婦恢復與新生兒的照護對家庭的實際支持我認為是有限的那所以部長我希望說這個分娩之當日及其前後合計15日天數能不能再拉長您可以評估看看嗎
transcript.whisperx[540].start 14596.414
transcript.whisperx[540].end 14624.409
transcript.whisperx[540].text 我想我們這部分我們可以來依照實際的需求但實際的需求我覺得我們可以再來做一些思考不過這部分我想我們會來跟衛福部來做討論可以討論吧我先提出這問題我先跟委員說明這部分其實當然都會是來自於比方說這個生育政策上面或者是生育的需求那哪些部分會需要我們在整體的工時的制度上面或休假的制度上面來去做因應跟配套
transcript.whisperx[541].start 14624.889
transcript.whisperx[541].end 14643.479
transcript.whisperx[541].text 我們還是這部分還是會跟衛福部當然我們都希望越來越寬鬆了但你也有提到實務面實務面到底不符不符合需求這我也尊重但我希望你可以再調查一下那目前我們有看到這樣的一個需求我們都願意來再做檢視一下這方面的需要那如果可以拉長的話賠產假期日你認為可不可以再拉長
transcript.whisperx[542].start 14645.543
transcript.whisperx[542].end 14669.804
transcript.whisperx[542].text 那個我現在都不是只是單純說我認為可不可以可以或不可以我覺得沒關係我沒有要你承諾我們都要在我們都會朝向這個方向我們都會再做一些評估好不好那你願不願意朝這個方向評估可以吧我沒有要你承諾這個部分我們也要考慮裁人因為現在這個五天五天是由雇主付那兩天是由政府來補
transcript.whisperx[543].start 14671.223
transcript.whisperx[543].end 14690.442
transcript.whisperx[543].text 好那當然這個相關的補助的金額當然這個如果要拉長的話這補助的金額會要提高那我認為我們可能方方面面這個財源上考慮也要考慮進來好那我過去也蠻關心這個早產和照護的一個問題那您過去也關心這個輕職假
transcript.whisperx[544].start 14693.269
transcript.whisperx[544].end 14720.578
transcript.whisperx[544].text 是那根據國民健康署出生統計的年報顯示台灣出生率逐年下降但是早產兒的比例不降反升去年5月31我有召開一場早產兒計友善輕職政策的一個公聽會當時會議結論早產兒的視網膜病變治療藥物納入健保已經在今年2月執行母乳的補充照物今年5月1日納入補助但是
transcript.whisperx[545].start 14721.959
transcript.whisperx[545].end 14747.873
transcript.whisperx[545].text 對於醫療照護假這個部分目前還在努力雖然對早產兒家庭而言有育嬰留職停薪有家庭照顧假有所謂的特休可以運用但對於這些早產兒的家庭我認為還是不夠要再給予更多的一些支持因為畢竟早產兒對於這個早療的次數早療的時段路程甚至有可能要跨縣市因為有些早療要跨縣市去執行
transcript.whisperx[546].start 14749.111
transcript.whisperx[546].end 14753.255
transcript.whisperx[546].text 這些問題我認為現在的天數均有所不足忽略早產兒
transcript.whisperx[547].start 14754.83
transcript.whisperx[547].end 14776.429
transcript.whisperx[547].text 特殊這樣子的一個狀況實際的需求對於整個早產兒的家庭而言我認為是工作以及孩子真的是特別特別的兩頭燒所以通常都會照顧到離子要落實現今的專報照顧不離子很難啊不只早產兒罕病家庭也面臨一樣的狀況部長對於這些家長為了照顧早產兒
transcript.whisperx[548].start 14780.612
transcript.whisperx[548].end 14803.424
transcript.whisperx[548].text 含病兒的一個醫療需求因長期醫療照顧而離開的職場你認為有什麼想法我想包括早產兒或早療其實的需求其實也是我們現在在研議把暈流亭給更彈性可以讓大家有更多的價別可以來請求其中一個原因
transcript.whisperx[549].start 14804.724
transcript.whisperx[549].end 14827.763
transcript.whisperx[549].text 我還是要再次特別拜託因為我有提出《性別平等工作法》的20條修正那明定受僱者子女未滿6歲有早療、罕病的一個需求可以請醫療照顧假全年以18日為限這假不記錄家庭照顧假的天數是分開的我希望你能夠獲得你的支持那您覺得呢
transcript.whisperx[550].start 14830.328
transcript.whisperx[550].end 14844.982
transcript.whisperx[550].text 我覺得我們可以綜合來思考跟評估委員的意識跟精神委員的意識跟精神我們了解但你能夠想像就是說別人的家庭突如其來當然有早療的孩子當然
transcript.whisperx[551].start 14845.723
transcript.whisperx[551].end 14870.568
transcript.whisperx[551].text 有早產的孩子甚至有所謂的寒病的孩子哇那真的是一開始就很忙碌對於新生兒措手不及還有很多要在忙那更何況是寒病更何況是需要早產需要早療的所以我希望說你今天不用答應我但我是希望說提出這樣的需求希望作為一個部長你要再次設身處地去想這件事情如果今天發生在你我
transcript.whisperx[552].start 14871.348
transcript.whisperx[552].end 14895.383
transcript.whisperx[552].text 每個人都可能發生的家庭上我們該怎麼辦我們是不是要有政府更多的支持或者是有其他的方式由勞動部來幫忙想辦法來支持早產兒 罕病家庭在這個運作維持蠟燭兩頭燒工作跟所謂的新生兒的到來這部分我希望你能夠再研議可以嗎我們會再回來思考好 謝謝
transcript.whisperx[553].start 14898.019
transcript.whisperx[553].end 14901.142
transcript.whisperx[553].text 謝謝委員 謝謝部長 接下來我們請李坤城委員發言謝謝 請部長請部長
transcript.whisperx[554].start 14918.75
transcript.whisperx[554].end 14936.525
transcript.whisperx[554].text 來 部長 這個我們現在有鼓勵企業要興建這個托兒設施那也給予相關的補助那我看一下你們第一期你們就是說有這個興建托兒設施的有補助然後如果是這一個設置托兒設施那如果是改善或更新的也有補助
transcript.whisperx[555].start 14937.526
transcript.whisperx[555].end 14964.221
transcript.whisperx[555].text 那辦理居家室托兒服務或受雇者子女送托兒的服務機構也有補助不過就是前提是雇主要先提供托兒津貼那我看了一下第一期的話大部分有兩家是有爭取到整個設置幼兒園有七家是申請托兒設備設施但是還是最多是有136家是提供托兒津貼的補助
transcript.whisperx[556].start 14966.313
transcript.whisperx[556].end 14981.72
transcript.whisperx[556].text 所以我們這個補助最主要是希望達到什麼樣的目的我想其實還是希望職場能夠友善育兒所以這裡面有好幾種做法但是的確新建比方新建拓而設施這對企業來說他可能要找到
transcript.whisperx[557].start 14982.877
transcript.whisperx[557].end 15003.358
transcript.whisperx[557].text 這個相對應的空間企業才比較有可能吧土地對就是說他其實他自己要去找到這空間所以他的門檻會比較高所以因為這樣所以我們才設定了這四五個其實他都可以來去提升這個育兒的友善程度的做法那的確現在比較多的還是是這個托兒津貼的部分比較多
transcript.whisperx[558].start 15003.558
transcript.whisperx[558].end 15017.543
transcript.whisperx[558].text 那這個托兒津貼是說 雇主他有先提供我們勞工朋友還有這個托兒津貼那我們在補助嗎 還是怎麼樣是目前是這樣子是那補助相對補助比例是怎麼樣
transcript.whisperx[559].start 15019.195
transcript.whisperx[559].end 15029.301
transcript.whisperx[559].text 比例的部分大概是在就是他如果提供這個勞工大概一萬塊那可能會是三千塊到四千塊這樣這個比如說一萬塊我們補貼三千到四千就對了那應該是給這個勞工吧
transcript.whisperx[560].start 15034.929
transcript.whisperx[560].end 15056.692
transcript.whisperx[560].text 因為這是雇主付給勞工了嘛所以我們是鼓勵雇主所以是補助雇主來做這件事情所以是補助 雇主就對了不是補貼給我們的這個勞工朋友雇主已經他願意他來做這件事情我們可以托於補助就是說他如果他那個補助一萬那我們再補貼他三四千塊就對了
transcript.whisperx[561].start 15058.559
transcript.whisperx[561].end 15082.222
transcript.whisperx[561].text 是那個勞工的部分的話其實他另外走的包括我們衛福部有一些育兒津貼的那個部分所以我們這個就是鼓勵雇主就對了那我請問一下像這個就是我們企業的這個友善職場這個有沒有列入這個ESG的這個考核啊比如說這個社會責任這部分有列入ESG的考核嗎友善職場的部分
transcript.whisperx[562].start 15083.88
transcript.whisperx[562].end 15106.862
transcript.whisperx[562].text 社會責任的部分的話有關我們有跟經管會做一些建議那另外的話在我們本部有辦理一個工作生活平衡的這個相關的獎項還有包括勞動力發展署也有一些相關的獎項我們會列入這邊的獎項的平和我是認為說這個有很多是大企業啦那當然有很多算是歸公司我認為是可以列入ESG的考核啦
transcript.whisperx[563].start 15107.302
transcript.whisperx[563].end 15125.467
transcript.whisperx[563].text 這部分我們來跟金管會討論對啊來跟金管會討論一下我想這部分我們可以來討論如果他願意就是我們把提供我們這個這個友善的這個職場的確應該值得鼓勵嘛好不好那老問題了啦上次也問過這個部長就是有關這個家庭照顧假還有這個營業留庭
transcript.whisperx[564].start 15129.008
transcript.whisperx[564].end 15152.74
transcript.whisperx[564].text 這個上次大概是半個月問的嘛那不曉得這半個月來因為有一些是不用透過修法就可以來做處理的家庭照顧假也可以啊然後這個暈流停也可以那目前有沒有比較一個完整的一個措施因為你上次我本來想說下一個會期你們能夠提出來你還說你可以提早我不曉得這個時間可不可以再提早
transcript.whisperx[565].start 15153.949
transcript.whisperx[565].end 15180.052
transcript.whisperx[565].text 或是一個確確的日期我們現在還是希望在下個會期前我們可以把這個方案來跟大家說明那大概方向啦比如說像上次我問的就是說那個家庭照顧家希望用小時用這個小時來請然後呢這個運營流程呢那我們希望說用日這個來請那大概方向是不是是朝這個方向來做我們基本上都是這樣不管是照我家照價
transcript.whisperx[566].start 15180.632
transcript.whisperx[566].end 15192.251
transcript.whisperx[566].text 或者是運流停能夠更彈性可以請的申請的時間可以更短我們都是朝這個方向在進行但是現在的重點是配套規劃的嚴厲因為
transcript.whisperx[567].start 15196.372
transcript.whisperx[567].end 15215.171
transcript.whisperx[567].text 我必須跟您坦白說因為台灣的中小企業多所以當今天正合的這些休假的制度其實常常對於大的企業來說問題比較不大比方說如果對於那些中小微的企業它如果是30人以下10人以下的時候它在人力上面的調度真的會比較辛苦
transcript.whisperx[568].start 15216.312
transcript.whisperx[568].end 15244.359
transcript.whisperx[568].text 所以我們其實也是必須要為這件事情的配套爭取一些資源然後怎麼樣來協助這個企業能夠來因應就是說如果今天我們都這個這個彈性其實基本上是勞工需要彈性因為過去我們在想要彈性其實常常是有企業他為了排班或生產的彈性這部分是勞工需要彈性我們現在希望企業更大來包容勞工需要的職場彈性的時候我們政府可以怎麼樣來支持企業現在我們在處理的是這一段
transcript.whisperx[569].start 15244.878
transcript.whisperx[569].end 15254.425
transcript.whisperx[569].text 的配套的工作那這有涉及到修法嗎我們是希望現在是在不修法狀況下面就可以來進行OK好那我知道謝謝謝謝部長謝謝請張雅琳委員謝謝主席我們邀請部長請部長
transcript.whisperx[570].start 15277.835
transcript.whisperx[570].end 15295.964
transcript.whisperx[570].text 我想今天就是來跟部長一樣來討論有關於女性的這個職場的這個勞動參與率那我先用幾個數字來跟部長來聊聊我們現在面對到一個狀況就是根據行政院主計處的2019年的已婚婦女中因為結婚而離職的人大概佔了21%
transcript.whisperx[571].start 15297.245
transcript.whisperx[571].end 15315.117
transcript.whisperx[571].text 那生育離職的呢大概是22.7%其中有60%曾經復職那他們離職到復職的間隔大概是4到4.5年這是第一個數字所以我們大概可以了解說他們是會重返職場的但是間距比較長那第二個數字呢
transcript.whisperx[572].start 15316.318
transcript.whisperx[572].end 15342.356
transcript.whisperx[572].text 是他们有说他们回到职场之后呢根据111人力银行的调查认为说其实是颇为困难46.9%的人认为那其中有38%的人觉得相当吃力那甚至说只有6.8%的人觉得说他是可以顺利回来所以等于是说他们回到职场上他们想要回去可是难度非常的高那这是第一个
transcript.whisperx[573].start 15343.197
transcript.whisperx[573].end 15357.453
transcript.whisperx[573].text 我們待會會問的就是有關於我們婦女的這個再就業計畫那第二個主題想要來講是說我們的女性的勞參與跟男性來比其實相對來說我們可以看到深色的那條黑色線男性的這個職場參與率呢到50歲以
transcript.whisperx[574].start 15359.195
transcript.whisperx[574].end 15374.435
transcript.whisperx[574].text 錢喔都還是維持在一個將近90%的一個參與率可是我們的女性呢是從29歲以後開始一路往下掉那這件事情我們可以非常清楚的知道生小孩了嘛可能要照顧家庭結婚了嘛這是第一個那再來我們再來看跟亞洲相比我們現在
transcript.whisperx[575].start 15375.296
transcript.whisperx[575].end 15395.108
transcript.whisperx[575].text 跟亞洲相比我們除了29歲是一個年紀我們從45歲以後我們是雪崩式下跌而且是遠低於我們的日本新加坡跟韓國所以這個是什麼這是因為他長照的時候可能又進來這是第二個他會面臨到必須要離開職場的問題所以好我們先回來第一個題目
transcript.whisperx[576].start 15397.253
transcript.whisperx[576].end 15413.877
transcript.whisperx[576].text 就在我們現在的這個女性勞動力的參與力的女性的這個婦女在就業的這個方案裡面呢其實我們是有提供了一系列的一些就業措施啦育嬰留庭啦或者是推動企業參與員工子女為什麼按不到下頁好
transcript.whisperx[577].start 15417.452
transcript.whisperx[577].end 15431.704
transcript.whisperx[577].text 好等等我們可是呢我也依據2019年的中高齡婦女的需求研究評估報告他們其實也發現說雖然說他可以回去但是有39.5%的人認為自己的專業度不夠那其實也非常高度的
transcript.whisperx[578].start 15432.685
transcript.whisperx[578].end 15454.576
transcript.whisperx[578].text 有50%的人認為感到焦慮缺乏信心那同時呢他們也認為說因為他們必須要承擔不管是育兒或長照的責任呢工作彈性不足造成他們必須離職所以這也是其中的第二個原因那再來第三個就是說雖然婦女現在無法下一頁可以幫我按嗎謝謝再上一頁再上一頁再上一頁好
transcript.whisperx[579].start 15457.639
transcript.whisperx[579].end 15479.094
transcript.whisperx[579].text 好那再來就是說我們的雖然有保障彈性工時但是多數的企業實踐不到位而且呢第四點是很多的雇主認為對於育兒女性其實是一律偏高的也造成他們的招聘率偏低所以我們現在雖然有這個三年期的婦女在就業計畫那我們從112年9月1號上路到115年
transcript.whisperx[580].start 15483.417
transcript.whisperx[580].end 15506.814
transcript.whisperx[580].text 8月31號預計就要結束了那我看了一下我們目標在2026年的8月我們要達到53.5%可是我看了一下2023年我們的女性勞參率才51.82%經過了一年半大概也才到51.9%這個中間增加不到1%可是我們如何在只剩下的一年半要提升到增加將近2%呢
transcript.whisperx[581].start 15508.356
transcript.whisperx[581].end 15512.952
transcript.whisperx[581].text 這個部分我是蠻質疑的是不是可以請部長來告訴我說我們是有可能達到這個數字嗎
transcript.whisperx[582].start 15521.021
transcript.whisperx[582].end 15546.733
transcript.whisperx[582].text 其實就這個時間點來看當然挑戰是蠻大的那但是我們現在其實我其實也跟法案署其實在討論我們關於我們現在老八署有很多的就業計畫那在他的這個執行率上面會請法案署其實我們再做一輪的檢討甚至一些計畫如果該整病的部分該整病就是希望能夠把
transcript.whisperx[583].start 15547.213
transcript.whisperx[583].end 15567.929
transcript.whisperx[583].text 就計劃他的執行的效能能夠提升這部分我們會盡力來做所以聽起來是說目前我們現在在重新檢討我們過去的再就業計劃我們不只檢討之後修正嗎應該是不只是只有婦女再就業計劃我們其實有蠻多相關的這些就業促進的計劃
transcript.whisperx[584].start 15569.19
transcript.whisperx[584].end 15591.305
transcript.whisperx[584].text 其實我都請發案署我們是用一個總體檢的方式再做一次的重新的整理然後希望能夠把執行的效果跟效率能夠提升之前陳新輝委員其實也質詢過這個部分那這個檢討跟這個總體檢的部分目前也如火如荼正在進行之中那就是希望把效能夠再做一些提升
transcript.whisperx[585].start 15592.085
transcript.whisperx[585].end 15611.919
transcript.whisperx[585].text 那這個總體檢大概是什麼時候會完成我們那時候是希望三個月的時間所以是預計在何時是不是到時候也可以把這份報告提供當然好不好因為我想因為剛剛其實提到了這個是我們過去發現他們回去職場遇到一些困難所以我認為我們這總體檢應該都要去盤點我們現在所做的一些相關計畫不管是不是婦女在就業計畫都應該去回應這個問題不然這個勞參率永遠都是
transcript.whisperx[586].start 15615.842
transcript.whisperx[586].end 15641.715
transcript.whisperx[586].text 只能歸步向前啦齁那最終犧牲的還是女性那再來下一個 下一個題目想要繼續來討論就是說我也想要分享一下日本改革的一個政策的重點齁那他們其實也是除了就是擴大了育兒支持與托育服務但是他們有一個我覺得蠻重要的點是在於他們樓性工時以及呢他們提供了日本產後爸爸育休的一個育嬰假下業
transcript.whisperx[587].start 15642.855
transcript.whisperx[587].end 15671.052
transcript.whisperx[587].text 允許男性在產後八週內分兩次請假政府補助薪資100%那我認為這兩件事情是非常重要的因為台灣的現況是配偶分免的時候他只有七天賠產假那七日內領全薪剩下的再由政府補助兩天可是其實坦白說這樣子的一個制度呢就間接的讓男性認為讓雇主認為育兒是女性的責任
transcript.whisperx[588].start 15672.212
transcript.whisperx[588].end 15691.979
transcript.whisperx[588].text 所以我認為說我們是不是可以比照日本的機制讓爸爸也可以參與育兒有更多的休假這個部分是可以來往這個方向我們當然是希望這個方向所以不管是剛才在講到雲流亭的彈性化這也是爸爸也是可以來參與的
transcript.whisperx[589].start 15692.999
transcript.whisperx[589].end 15708.344
transcript.whisperx[589].text 事實上我們也看到當你把這個可以請休的請申請的時間在縮短的時候他可以更彈性的時候這個爸爸他來申請來參與的比率是蠻明顯的顯著的提高的
transcript.whisperx[590].start 15708.684
transcript.whisperx[590].end 15730.332
transcript.whisperx[590].text 這就是在這也是裡面其中一個很重要的誘因那也包括之前在講到說這個暈流停六個月再加一個月為什麼是希望雙親都要請滿六個月才能夠再加一也是希望不要變成最後都是女性在承擔這個照顧小孩的狀況而是希望兩個雙親之間可以平均分攤以後但是如果因為我們剛講你剛講是談性暈假
transcript.whisperx[591].start 15732.893
transcript.whisperx[591].end 15753.812
transcript.whisperx[591].text 所以現在這個彈性暈價同樣適用在爸爸這個機制那產後 我想先出一點點事情喔就是彈性暈價包含了產價還是是不包含的我們現在你們不包含啦當然不包含啦是分開的嘛當然分開的那這個是一樣的啊就是爸爸的這個產後的預休是不是也可以再更多呢
transcript.whisperx[592].start 15755.049
transcript.whisperx[592].end 15775.063
transcript.whisperx[592].text 因為你們現在是分開的嘛那這個爸爸你懂我意思嗎我們現在針對於爸爸的部分是針對那個家庭育嬰留庭爸爸就可以用那個育嬰留庭的部分所以爸爸現在你們的規劃裡面就是只有育嬰留庭沒有說是像是那個當然家庭照顧的部分他也是可以請
transcript.whisperx[593].start 15776.181
transcript.whisperx[593].end 15803.771
transcript.whisperx[593].text OK 好了解那我再回到剛剛講的那個流性工時因為日本的這個流性工時呢其實對他們的幫助非常大如果我們來看到日本部分工時的就業比率就會達到25.6%而且南韓也是16.1%我們現在台灣其實只有3.2%其實是非常低也遠低於OECD的平均16.5%所以我只是在想說因為如果今天談性工時的話就像其實前面很多的委員也都有提到
transcript.whisperx[594].start 15804.511
transcript.whisperx[594].end 15830.009
transcript.whisperx[594].text 因為她可能為了要照顧小孩她照顧很多事情她最後因為沒有辦法fulfill企業的一個需求她就會選擇離開嘛但是如果我們進入更多彈性工時的工作的模式的話這個工作的制度再設計的話那是不是就可以讓這些女性可以更有機會能夠留在職場所以我想要請問一下說我們是不是可以針對部分工時的這件事情再去做一些鬆綁因為我知道現在我們在討論彈性育嬰溜庭的時候其實也是在往這個方向來努力嘛
transcript.whisperx[595].start 15831.21
transcript.whisperx[595].end 15845.925
transcript.whisperx[595].text 跟趙委員說明其實包括日本的所謂的柔性工職其實我們都看到一個狀況它其實跟現在台灣很多勞工的需求其實也是很相近的都是希望能夠給更多勞工需要的彈性
transcript.whisperx[596].start 15847.466
transcript.whisperx[596].end 15872.901
transcript.whisperx[596].text 因為過去談到彈性常常都是指企業想要的彈性 雇主想要的彈性他的這個要彈性他可能針對他的排班可能針對他希望的生產的這個週期去他的彈性所以我們的法規裡面會去做很多部分是要去限縮或者是去管控企業不能夠讓他的彈性太大變成會可能會造成勞工在加班或者是過勞上面的問題過去其實方向是這樣
transcript.whisperx[597].start 15873.761
transcript.whisperx[597].end 15903.081
transcript.whisperx[597].text 可是我们陆陆续续看到现在很多的劳工他有劳工期望的弹性劳工期望的弹性跟雇主期望的弹性可能是不太一样的事情所以我们其实也是想要借由这一次的弹性的运营流停在这个部分去尝试因为这个就是明显的一个例子这个是劳工期望的弹性怎么让企业的职场的制度能够包容劳工需要的弹性现在这个命题我们希望先从这个地方开始做未来如果我们开始有些成果企业开始有一些相关的适应
transcript.whisperx[598].start 15903.921
transcript.whisperx[598].end 15920.868
transcript.whisperx[598].text 也開始理解到這事情的重要我們的配套也可以運作的話當然我們當然不會排除把這個勞工所需要的彈性是不是能夠擴及到更多的層面但是這個彈性雖然都是同樣都是用彈性兩個字可是如果仔細去細究你就會發現企業要彈性跟勞工要彈性可能是很不一樣的概念
transcript.whisperx[599].start 15922.065
transcript.whisperx[599].end 15942.626
transcript.whisperx[599].text 對 所以我理解喔但是我就是希望說如果所以我們現在這個你剛剛講說就是跟企業在溝通就是因為運營流停的這件事情我們像彈性這件事情是在往這個方向溝通嗎那我們是不是有個規劃就是說大概可能多久之後我們可以有機會再來跟企業進一步的來討論其實現在就是跟企業這樣我在舉個例子委員這邊有提到像彈性工時的制度
transcript.whisperx[600].start 15943.467
transcript.whisperx[600].end 15958.668
transcript.whisperx[600].text 這過去這個所謂彈性工程制度就是主要都是在規範企業所需的彈性在這個這個標的下所以我說我們把這可能雖然用同樣兩個我們把它分開但我自己也很期待這次如果我們可以往前走這一步的話那
transcript.whisperx[601].start 15959.469
transcript.whisperx[601].end 15980.69
transcript.whisperx[601].text 開始讓企業理解或者是相關的配套讓大家知道勞工所需要的彈性我們可以怎麼樣去支持跟企業要如何包容而且我們也讓企業知道當你越能夠包容的時候其實你在員工的招聘上面你可能是更容易的你更不會面對缺工上面的問題我們也逐步的在跟企業溝通這個概念對我知道我的意思是說我們有沒有規劃一個時程
transcript.whisperx[602].start 15983.238
transcript.whisperx[602].end 16001.571
transcript.whisperx[602].text 我是希望能夠把這個腳步先踩穩這個腳步踩穩了以後這個概念大家開始也是比較熟悉了以後那我們希望慢慢的就像剛剛瑋瑜講說包括柔性工時因為它的柔性工時可能包括在很多面向上面我們有沒有可能哪些部分再設定一個優先順序
transcript.whisperx[603].start 16002.372
transcript.whisperx[603].end 16015.996
transcript.whisperx[603].text 我聽我懂意思就是說我們現在基本上就是跟企業談完之後呢我們其實也會盤定一下哪些勞工需要的彈性工時的模式然後開始慢慢的來跟企業來溝通跟討論對不對好謝謝謝謝委員謝謝部長關心婦女在就業計劃楊瓊英委員改書面質詢接著請張其凱委員質詢
transcript.whisperx[604].start 16043.234
transcript.whisperx[604].end 16045.595
transcript.whisperx[604].text 請部長蔡委員好我們可以說要落實讓爸爸媽媽可以好好照顧小孩而且可以留在職場這樣一個很重要的就是落實家庭照顧家這個制度打造一個友善的育兒環境台灣民眾黨已經提出了相關的這個修法所以請教的人比較多
transcript.whisperx[605].start 16075.994
transcript.whisperx[605].end 16104.074
transcript.whisperx[605].text 現在是腸病毒的高峰期我們臺灣腸病毒大概兩個高峰期一個五六月 第二天就是九月份開學的時候那我最近接到很多爸爸媽媽的這個信陳情我要練一段一位年輕媽媽的來信她的故事啊代表著千千萬萬家庭現在碰到的一個問題她說我只是一位有位小孩的年輕媽媽她現在碰到的問題就是
transcript.whisperx[606].start 16105.65
transcript.whisperx[606].end 16116.018
transcript.whisperx[606].text 長病毒這個挑戰他說長病毒這個停課標準它是一個政策性的停課可是呢卻要由育兒的家庭的父母自行以家庭照顧假 試假
transcript.whisperx[607].start 16118.342
transcript.whisperx[607].end 16145.511
transcript.whisperx[607].text 未繞假 甚至是各種名目的假來承擔所有假都用上了以後 不夠啊有時候公司還不准假所以你只能犧牲自己的薪水去請假來照顧這一點太不合理了所以說啊應該這個規定要調整希望可以照顧更多的家庭也讓我們更多年輕人願意生養小孩生養小孩不是只有從來不是只有錢的問題是環境的不友善
transcript.whisperx[608].start 16147.438
transcript.whisperx[608].end 16173.252
transcript.whisperx[608].text 那個柏定 現在家庭照顧假一年你知道幾天嗎 七天而且是不知心的 對不對那公務員這七天是有假的可是他不扣考機的同時他要跟那個試駕也是要合併最多也是只有七天啦那現在好了 他腸病毒現在這個挑戰來了他是一個政策性的這個這個休假柏定你知道嗎 腸病毒來休假要休幾天
transcript.whisperx[609].start 16177.666
transcript.whisperx[609].end 16195.172
transcript.whisperx[609].text 規定 政府規定要休館幾天五天五天 五到七天對 七天就過了 加起來這次就不夠了來看這個統計這是這個統計我們每一年我國偷鷹中心藏病毒這個停課平均要幾年要19天
transcript.whisperx[610].start 16197.884
transcript.whisperx[610].end 16212.934
transcript.whisperx[610].text 特別在六都裡面 你看高雄市的這個公立托嬰中心一年因為腸病毒停課要25天台北市19.9 將近20天桃園17我們現在把所有六都把它平均起來台中市稍微低一點點19天耶哇 差太多了
transcript.whisperx[611].start 16218.479
transcript.whisperx[611].end 16239.426
transcript.whisperx[611].text 你現在給他的家庭照顧價值7天結果你是政策性要他停課的你只要一個班級一個班級有兩位小朋友在一週裡面有腸病毒就停7天平均下來全台灣喔一年大概19天因為腸病毒放假顯然不過用嘛
transcript.whisperx[612].start 16242.387
transcript.whisperx[612].end 16267.154
transcript.whisperx[612].text 對不對 我們說當家父母 前天下的這個父母碰到這種狀況 價都不夠用了那這個談的是小朋友啦 我們還要照顧家裡很多人還是長輩 對不對所以顯然這個價是不夠的好 那台灣民眾黨已經提出修正案 針對這個問題我們要修正性別平等工作法
transcript.whisperx[613].start 16268.573
transcript.whisperx[613].end 16282.097
transcript.whisperx[613].text 我們的建議是這樣子 我們的條文是明定的本來7天剛才講過 明顯不夠我們把7天增加為14天第二個 家庭照顧假不要記入這個私假 因為私假就沒錢了我們這個去比照這個育嬰留子這個津貼給予這個嬰友的這個津貼
transcript.whisperx[614].start 16293.417
transcript.whisperx[614].end 16312.455
transcript.whisperx[614].text 你贊成這樣一個修法的方向嗎跟委員說明我們其實想要處理的問題是同樣的問題但我們現在想採取的方式是透過運營流停的彈性化如果可以朝更短的時間來請修的話其實他的可以去運用的天數可以比現在的這個方案其實來的更多
transcript.whisperx[615].start 16313.592
transcript.whisperx[615].end 16332.605
transcript.whisperx[615].text 我看你接受專訪有提到嘛你說如何讓這個休假應應留庭可以更基於彈性嘛對不對這個做法可以比要用彈性彈性照顧假的這個目前的現在14天來的更多你的彈性有辦法達到14比14天多嗎我們是朝這個方向
transcript.whisperx[616].start 16334.008
transcript.whisperx[616].end 16354.557
transcript.whisperx[616].text 我們是朝向這個方向我們提出具體的而且育嬰留庭的也是有薪資補助的就是來自舊保跟公預算薪資補助所以他其實也是有薪的那他的天數也可以比14天來得更多所以我們是認為這可能會是一個更能夠來去處理需求的解法
transcript.whisperx[617].start 16355.285
transcript.whisperx[617].end 16378.627
transcript.whisperx[617].text 不定 不定 不管是台灣民眾黨提出的具體的修正案或者是你剛剛講的 這應該對我們的爸爸媽媽們應該都是一個很好的消息啦實際上對小朋友是一個很好的消息那儘快做 不要等到下個會期 儘快對 我們現在是正全力的趕快正正進行而且這個會期現在已經延會了嘛 還儘快一點點來 我們看一下民眾黨 民眾黨怎麼做除了剛剛我們的訴求 至少要14天的有薪
transcript.whisperx[618].start 16379.508
transcript.whisperx[618].end 16408.454
transcript.whisperx[618].text 家庭照顧假不要跟市價合併那如果是政策性因素的停課的話都要管長病毒這個應該要這個家庭勞動力的這個補償這個措施因為是你政府規定的嘛對不對跟文說明因為現在確實有一些訴求談到有薪的家庭照顧假可是如果家庭照顧假要有薪的話其實每一年可能這個預算上面的支出會超過百億每一天要超過百億如果七天的話還要再乘以七
transcript.whisperx[619].start 16409.674
transcript.whisperx[619].end 16438.718
transcript.whisperx[619].text 這其實對整體的財政的負擔是蠻大的如果是一個如果這個負責任的企業是一個優良的企業他讓他的員工可以留下來然後讓他回家可以好好照顧小孩子這個投資是值得的對 但是就是說這個有薪是是誰要付整個台灣一直往和諧方向走這個薪是誰要付比方說我也想就是說這個薪水是僱主要付還是政府要付公務員這一塊當然就是政府付嘛對不對然後這個企業你剛有提到嘛跟企業都溝通啊
transcript.whisperx[620].start 16439.508
transcript.whisperx[620].end 16443.472
transcript.whisperx[620].text 事實上有某些企業 我跟你講 我民眾黨就會說我民眾黨目前已經給黨工七天前薪七天的 我先給你聽 大家看看民眾黨怎麼做民眾黨走在前面 我們給黨工七天前薪的家庭照顧假
transcript.whisperx[621].start 16459.288
transcript.whisperx[621].end 16473.96
transcript.whisperx[621].text 從今年開始我們民眾黨對於生理假生理假這個規範已經超越現行規範我們給我們女性的黨工每個月有一天的生理假然後去年開始柯文哲就宣布了民眾黨用於法規我們把這個家庭照顧假
transcript.whisperx[622].start 16475.051
transcript.whisperx[622].end 16496.149
transcript.whisperx[622].text 加碼7天給予14天的親職照顧假他在加碼現行法規的7天是算在私家無薪的我們從去年5月開始這7天都是全薪所以大家可以參考一下台灣民眾黨這個宣布民眾黨現在民進黨跟國民黨應該也可以這個家庭照顧假
transcript.whisperx[623].start 16500.272
transcript.whisperx[623].end 16525.089
transcript.whisperx[623].text 因為我們政策上都不是只規範政黨我們要觸及的範圍是所有的職場甚至我們也不是只是說公務員的職場是所有的職場這個職場裡面有很多是中小企業所以確實現在會有一些委員的主張是有新的家庭照顧假他是要政府出這是一種那如果按照委員這樣講民眾黨的是要
transcript.whisperx[624].start 16526.07
transcript.whisperx[624].end 16549.006
transcript.whisperx[624].text 企業出這當然也是一個做法那的確這個部分就要來跟企業跟產業來溝通這部分的支出對我們就希望不是只有民眾黨的黨工啦我們就希望全台灣就可以拓展到每個人都享受這個福利所以我們才要提的這個修法嘛然後每個黨都有他的優點啦國民黨民進黨台灣民眾黨各個黨都有他的優點那好的我們就盡量去推動好不好那保定你剛才說的我剛
transcript.whisperx[625].start 16550.987
transcript.whisperx[625].end 16570.94
transcript.whisperx[625].text 講說這個我們這個法是一個好消息你剛提到你說你的目前想的這個方法比14天還多啊他一樣有津貼啊你要準備怎麼做當然就是從運營留庭的角度來從運營留庭的方向來去可以讓大家來做清零那其實天數應該是可以比14天還更多的
transcript.whisperx[626].start 16571.662
transcript.whisperx[626].end 16600.355
transcript.whisperx[626].text 這個做好事我們就共同來努力好不好我們共同來推這個修法盡快看到這個部長做的這個對我們的爸爸媽媽跟小朋友照顧謝謝謝謝張七角委員 謝謝部長鍾嘉斌 鍾嘉斌 鍾嘉斌委員不在林德甫 林德甫 林德甫委員改成書面執行何新淳 何新淳 何新淳委員不在陳培宇 陳培宇 陳培宇委員不在
transcript.whisperx[627].start 16601.634
transcript.whisperx[627].end 16603.675
transcript.whisperx[627].text 接下來我們請陳穎委員質詢謝主席麻煩請我們那個勞動部紅部長陳委員好部長好
transcript.whisperx[628].start 16659.742
transcript.whisperx[628].end 16671.028
transcript.whisperx[628].text 抱歉 想請教部長我們看一下第一個簡報110年台灣外勞勤領勞保生育給付的3632人111年4900人前年112年是5687人到了去年的113年應該有突破6000人了
transcript.whisperx[629].start 16690.856
transcript.whisperx[629].end 16711.53
transcript.whisperx[629].text 應該我不知道部長你們那邊有沒有這個統計人數有我們其實113年目前的數字應該是6000人你們也抓6000是不是對差不多那這邊這個數字當中我是有注意到就是說112年比111年多了1268人
transcript.whisperx[630].start 16717.301
transcript.whisperx[630].end 16742.975
transcript.whisperx[630].text 那其實這個增加是比這個111年到112年要等一下就是等一下100有他112年那一年他就是增加的特別多比之前還要多很多你們有注意到是什麼原因嗎
transcript.whisperx[631].start 16748.254
transcript.whisperx[631].end 16762.592
transcript.whisperx[631].text 因為其實移工的人數也一直在增加其實這幾年其實移工的人數增加的也很快可是他後面是減少的啊地檢我只是說那一年就特別多可能是因為疫情
transcript.whisperx[632].start 16764.403
transcript.whisperx[632].end 16782.974
transcript.whisperx[632].text 因為疫情所以大家都跑去生小孩有關邊境管制的時候所以人數有略低那後來的人數比較高應該是回到之前比較高的水準對 但後面又下降啊112年111年到112年又我們112跟113是逐年上升現在從110年之後應該都是逐年上升的
transcript.whisperx[633].start 16792.844
transcript.whisperx[633].end 16794.769
transcript.whisperx[633].text 但我這邊沒有看到下降我是說110年到
transcript.whisperx[634].start 16798.879
transcript.whisperx[634].end 16825.567
transcript.whisperx[634].text 114年到113年就是委員你的數據其實看起來都是上升的都有上升沒錯啦但我是說上升有一年就是多了突然多了1000多人啦那部長說因為疫情的關係也包括可能有移工的人數跟邊境的管制沒關係我想這個只是我在看這個數據的時候發現的一個有趣的一個數字那想知道原因所以你們可能後續
transcript.whisperx[635].start 16826.767
transcript.whisperx[635].end 16849.375
transcript.whisperx[635].text 整理一下看是研究一下看是怎麼樣明確的原因我想這個是值得研究那也請你們在關心一下就其中未婚的有多少人然後已婚的又有多少這樣子你們現在應該沒有這個數據吧我們可能沒有好可以了解一下他會告訴你很多事的數字會說話好
transcript.whisperx[636].start 16851.058
transcript.whisperx[636].end 16872.59
transcript.whisperx[636].text 那因為這個社福外勞不能參加勞保所以光是這個產業女性外勞14萬人呢每年新生兒人數就超過6000人了那部長我國今年5月份的年初出生率為4.25那請問這個外籍勞工的這個初出生率是多少
transcript.whisperx[637].start 16874.332
transcript.whisperx[637].end 16889.146
transcript.whisperx[637].text 我想我們可能沒有去統計外籍勞工的這個出生率的部分你們沒有統計喔我們目前有的就是關於他的清零生育給付好沒關係我們有幫你們試算了
transcript.whisperx[638].start 16890.827
transcript.whisperx[638].end 16906.993
transcript.whisperx[638].text 這個看一下簡報的部分因為我國男女比例大概就是1比1所以標準化之後呢這個外籍勞工換算起來他們的出生率為每千人21.43那是我們台灣4.25的5倍看來部長應該沒有掌握這樣的一個數字
transcript.whisperx[639].start 16914.645
transcript.whisperx[639].end 16937.717
transcript.whisperx[639].text 這個可能換算不一定能夠這樣直接換算沒有直接換算是因為這個還要這個是有公式的我們是套公式下去換算的好這個是因為這個計算公式這個出生率是年出生人數要除以這個年平均人口數碼
transcript.whisperx[640].start 16939.622
transcript.whisperx[640].end 16952.684
transcript.whisperx[640].text 所以這個部分你們可以自己去試算一下那我們算出來是大概是這樣那如果你們覺得有什麼問題你們可以找人再算一下
transcript.whisperx[641].start 16954.073
transcript.whisperx[641].end 16972.979
transcript.whisperx[641].text 那是這樣子在部長接任之初外界有曾經質疑過部長就是說在過去力挺這個外籍勞工的態度當時部長的回答是說身為勞動部挺移工那還有就是說勞工是理所當然的
transcript.whisperx[642].start 16973.559
transcript.whisperx[642].end 16996.281
transcript.whisperx[642].text 那么今天的题目要营造职场友善育儿环境就应该不分彼此也要支持社福外籍劳工能够因为育儿不离职才对所以呢在下一个简报就是说部长支持社福外籍劳工在台湾也能够自由生养小孩吗
transcript.whisperx[643].start 17000.662
transcript.whisperx[643].end 17014.989
transcript.whisperx[643].text 呃應該是說這個我想想想跟委員說外籍勞工因為其實有很多時候我們這個外籍勞工其實進來台灣以後他其實有些真的是還在就是說二十幾歲二十幾歲三十幾歲是那
transcript.whisperx[644].start 17018.291
transcript.whisperx[644].end 17042.433
transcript.whisperx[644].text 所以他可能真的會有他會生小孩的狀況這可能是他的人權所以我們的角度不是說支持或鼓勵他生小孩而是他如果生小孩的話我們要怎麼來整個整個社會怎麼來去協助這件事情所以鼓勵他生小孩我們我們的態度並不是要去鼓勵他生小孩或這個到底不是這樣可是當
transcript.whisperx[645].start 17044.643
transcript.whisperx[645].end 17064.259
transcript.whisperx[645].text 這個年齡的勞工他如果遇到生小孩的狀況的時候怎麼樣子我們從人道的角度從各種人權的角度我們怎麼樣來去協助不要變成是人道上面的困境我們的角度是這個部長是這樣我想我今天的質詢我並沒有就是說
transcript.whisperx[646].start 17065.64
transcript.whisperx[646].end 17079.829
transcript.whisperx[646].text 沒有什麼惡意是好那我們因為在必須要指出台灣目前我們面臨的一個狀況那就是說其實部長剛剛回的很好就是說你剛剛講說病
transcript.whisperx[647].start 17082.93
transcript.whisperx[647].end 17101.262
transcript.whisperx[647].text 應該我這樣聽起來我應該沒有希望沒有理解錯誤部長應該沒有鼓勵他們我們的政策並不是鼓勵但是部長是講政策沒有鼓勵但我們後續會去檢視實際上我們政策是不是真的確實指鼓勵了
transcript.whisperx[648].start 17102.503
transcript.whisperx[648].end 17126.124
transcript.whisperx[648].text 大家都去生孩子你可能不理解我等一下繼續講你就會知道所以我們基本上不鼓勵但是因為這個剛好是在健康適合生育的年齡所以會遇到這樣的狀況所以我們政府就必須來面臨這些外籍勞工在台灣生產的這個狀況生育的這個狀況
transcript.whisperx[649].start 17128.806
transcript.whisperx[649].end 17158.007
transcript.whisperx[649].text 好那但是我要指出的是說但是他們沒有勞保那不能請領這個生育給付那所以這個部分部長要如何去處理這個攝服外籍勞工的生育問題但是有人講到比方說是講到家庭的看護工現在比較他沒有強制性的勞保那當然我們其實也希望我們也跟部長說如果要幫他保勞這並不是他不可以有勞保
transcript.whisperx[650].start 17163.379
transcript.whisperx[650].end 17186.229
transcript.whisperx[650].text 我們其實現在有相關的安置的中心在處理我聽起來聽沒有很明白你們要協助回答一下嗎有關外籍義工在台生子的部分因為他們有這樣的需求所以我們目前在桃園、彰化跟高雄設有三處義工的婦幼中心等一下那個不是我問的問題
transcript.whisperx[651].start 17188.742
transcript.whisperx[651].end 17213.355
transcript.whisperx[651].text 我只是說對 因為他們不能不能申請這個生育給付因為沒有勞保嘛那產業的可以申請我現在只是點出這個落差啦那所以當然這個落差之後我們接下來他們在這個生育給付的請領就會有不同啊
transcript.whisperx[652].start 17215.095
transcript.whisperx[652].end 17239.565
transcript.whisperx[652].text 我現在要點出是這樣啦那沒關係我們先繼續就是說那本勞的這個出生率這麼低部長要怎麼看待確實本勞的應該是說整體台灣的出生率都降低那這降低我想從勞動部角度我們當然很願意我們也在研擬相關的政策怎麼樣職場能夠對於這個
transcript.whisperx[653].start 17243.186
transcript.whisperx[653].end 17270.24
transcript.whisperx[653].text 育嬰育兒的勞工能夠更加的友善沒錯好那我們來看一下外籍勞工在台灣懷孕的話可以去北中南區的婦幼關懷中心待產剛剛說的每個月有一萬五千元的安置費用生產後每個月一萬八千元但是我們本國的勞工就沒有這樣子是不是不到底有沒有公平
transcript.whisperx[654].start 17273.446
transcript.whisperx[654].end 17283.461
transcript.whisperx[654].text 根本說明其實就這個本國的勞工的部分其實我們當然也是有一些社福的資源但這個社福社政的資源可能主要會是來自衛福部
transcript.whisperx[655].start 17284.983
transcript.whisperx[655].end 17298.589
transcript.whisperx[655].text 所以並不是說本國的勞工就沒有相關的資源來去因為畢竟那個也是我們的勞工了本國的勞工也是更是我們應該要照顧的對象好沒有關係我們再繼續談就是說不知道你知道台灣
transcript.whisperx[656].start 17303.611
transcript.whisperx[656].end 17317.48
transcript.whisperx[656].text 還有很多的黑戶寶寶有六個關愛之家在照顧那因為是黑戶那他們的父母親是不是也可以享受勞動部營造的友善職場育兒環境來落實照顧不離職的政策規劃
transcript.whisperx[657].start 17322.72
transcript.whisperx[657].end 17332.73
transcript.whisperx[657].text 我想我們整個照顧不理的政策其實當然比較是針對現在主要的規劃但是現在是從本勞的狀況來去做做做做規劃的好
transcript.whisperx[658].start 17338.654
transcript.whisperx[658].end 17365.772
transcript.whisperx[658].text 那个回答我没有很满意但没关系我们再继续往下那部长知道就是说在某些外籍劳工在台湾非法生子在他们的来源国如果是这样的状况是触犯刑法的那面对这样的问题部长是如何看待外籍劳工在台湾生小孩的问题然后又如何来保障他们的友善职场育儿环境呢
transcript.whisperx[659].start 17368.987
transcript.whisperx[659].end 17390.831
transcript.whisperx[659].text 跟文說我們基本上現在相關的措施一樣還是剛剛在講的原則我們其實並不是要鼓勵外籍勞工生小孩我們是當如果真的遇到這個狀況的話我們怎麼從人道上面從人權上面可以協助我們的原則還是這個態度那我再請教就是說外籍勞工生養小孩是不是雇主的責任應該不是啦除非這個孩子是雇主的
transcript.whisperx[660].start 17398.454
transcript.whisperx[660].end 17419.371
transcript.whisperx[660].text 那僱主能不能要求禁止外籍勞工生養小孩應該也不行啦那我們可以在勞動契約規範嗎也不可以好那假設因為生養小孩無法提供勞務的時候那僱主能不能要求解雇
transcript.whisperx[661].start 17424.83
transcript.whisperx[661].end 17444.061
transcript.whisperx[661].text 包委員這個移工在國內同樣是用性平法規定那在性平法裡面規定他必須要不能隨意支錢好那那個假設這個他們因為要生養小孩那可以要求可以要求離職是不是就是說他們可以要求離職嗎
transcript.whisperx[662].start 17448.772
transcript.whisperx[662].end 17475.73
transcript.whisperx[662].text 包圍雇主不能單方面去要求離職那如果移工他因為生育無法去履行他的勞動契約還有雇主他沒有辦法這個這個他已經有要求應該要移工要依約來履約但是後來雙方有協議這個履約在上面有困難的話那這個部分經雙方合意可以去終止聘僱關係但是勞動部這邊還是會
transcript.whisperx[663].start 17477.091
transcript.whisperx[663].end 17498.013
transcript.whisperx[663].text 我的問題是我現在不是說要終止我現在只是說暫停因為中間就是說他可能要待產或育兒他可能就要求要就是需要這個離開一段時間暫停的話是可以的但是暫停跟解雇不一樣
transcript.whisperx[664].start 17499.134
transcript.whisperx[664].end 17523.534
transcript.whisperx[664].text 她如果中間一離職因為要立刻離開台灣但是一回國可能又要觸犯法律好算那這個這個要怎麼辦如果她是就法規上面來說她是不能夠因為懷孕而要求她離職或解雇的
transcript.whisperx[665].start 17525.677
transcript.whisperx[665].end 17533.996
transcript.whisperx[665].text 但是如果是 就是說我們回來如果是待產他就沒辦法繼續工作 待產或有一些特殊狀況他要養育一段時間 這段時間
transcript.whisperx[666].start 17537.332
transcript.whisperx[666].end 17559.004
transcript.whisperx[666].text 但因為會有這個人力缺乏的問題因為那是一對一啊 僱主跟這個社福 跟這個我們的家事外勞是一對一這不像那個工廠有很多的勞工一起這個人力資源上會出現問題嗎
transcript.whisperx[667].start 17560.902
transcript.whisperx[667].end 17587.037
transcript.whisperx[667].text 委員這個可能是透過勞資雙方協議如果說資方願意讓這個勞方在國內待產或者是產後因為我現在點出這些問題假如你們沒有很確定也都沒有關係你就說我們可能這個狀況過去沒有遇到還是我們常遇到我們沒有好好討論那就是說因為他可能面臨就是說好他一離職他就要立刻離開台灣可是一回國又可能又觸犯法律嘛
transcript.whisperx[668].start 17587.757
transcript.whisperx[668].end 17596.985
transcript.whisperx[668].text 所以我們就他可能也不曉得該怎麼辦那會不會就是立刻又逃逸了或者把小孩送到這個關愛之家這樣到底合不合適
transcript.whisperx[669].start 17599.253
transcript.whisperx[669].end 17626.619
transcript.whisperx[669].text 有合適嗎委員其實移工在台灣生產他是可以依照我們相關的規定在國內他是可以生養他的孩子但是很多移工因為考慮到他養育的成本所以他會讓孩子返國或是攜子返國那生產完畢之後再返好沒關係你現在講都是一個很理想的狀態但是我們我們的社會裡存在著很多的迫不得已那所以就是說
transcript.whisperx[670].start 17628.795
transcript.whisperx[670].end 17645.659
transcript.whisperx[670].text 基於我剛點出的這些 這個我們外籍勞工生養小孩的立場所以勞動部秉持著不鼓勵 不支持 不鼓勵 不鼓勵但是我們支持他必須能夠繼續生活
transcript.whisperx[671].start 17652.935
transcript.whisperx[671].end 17658.355
transcript.whisperx[671].text 因為你們對於生養小孩的立場不然我問你們對於生養小孩立場到底是支持還是不支持
transcript.whisperx[672].start 17659.435
transcript.whisperx[672].end 17687.234
transcript.whisperx[672].text 應該是說其實他有他相關的權利這不是我支持或鼓勵的問題而是他會有他相關的權利這其實涉及到他的人權的狀況所以我們會要讓他的人權跟他的權利會要留有一些空間好謝謝部長因為我們畢竟所有的政策看起來確實都有做到這些而且是非常支持因為畢竟在你們的文宣跟實際行動上其實都是支持的那我想今天
transcript.whisperx[673].start 17690.375
transcript.whisperx[673].end 17716.98
transcript.whisperx[673].text 結論 部長今天像你們詢問勞動部對於外籍勞工生養小孩的立場其實我是要釐清一個嚴肅的問題就是如果勞動部是支持的話那麼勞動部就要有一個支持的政策那也就是要保障他們在職場的友善工作環境但是友善的環境營造的主體還是要靠雇主來落實
transcript.whisperx[674].start 17718.34
transcript.whisperx[674].end 17746.581
transcript.whisperx[674].text 那但是呢雇主不見得是能夠支持的我這樣講你們應該很清楚啦那特別是這個社福外籍勞工的雇主因為會影響到影響這個勞務的提供所以這個部分可能就產生衝突需要你們的勞動部明確的態度跟解決還有的方法跟做法所以在未來呢社福的部分社福的這些外籍勞工
transcript.whisperx[675].start 17748.483
transcript.whisperx[675].end 17777.082
transcript.whisperx[675].text 因应这个就是说我们接下来80岁以上的长者可以申请外籍看护那劳动部你们就是推估将近20万的这个外籍看护进来那所以生育率10万也是很多所以生育率也会跟着增加
transcript.whisperx[676].start 17779.703
transcript.whisperx[676].end 17784.724
transcript.whisperx[676].text 我趕快點出這個問題你們要正視到因此勞動部面對這個問題應該要很嚴肅來看待第一步就是要統計各個外籍勞工族群的實際生育人數並且讓勞保局公開統計這個數據
transcript.whisperx[677].start 17799.989
transcript.whisperx[677].end 17812.267
transcript.whisperx[677].text 那這樣你才能夠估計未來成長的幅度提出一個正確友善的職場的這個政策規劃這一點部長你同意嗎你同意公開這些數據嗎
transcript.whisperx[678].start 17814.786
transcript.whisperx[678].end 17841.102
transcript.whisperx[678].text 我想現在一些數據當然其實在大家外界是都有的就像剛剛這個聲音幾乎的數據你確定都有很容易查尋到嗎我是想跟委員說明我覺得我們怎麼樣在這過程裡面其實多不管是外籍勞工或者是雇主其實在這上面會有一些權益上面的這個要怎麼其實能夠去維護到彼此的一些權益我想我們是可以在這邊我們再多做一些研討
transcript.whisperx[679].start 17843.876
transcript.whisperx[679].end 17857.356
transcript.whisperx[679].text 我想我在这边要强调的就是这个就业服务法的条文到今天都没有一共两个字那只有外国人那另外在52条第三项
transcript.whisperx[680].start 17858.317
transcript.whisperx[680].end 17873.189
transcript.whisperx[680].text 還是有這個外籍勞工警戒指標的用詞那基於本席尊重法令所以剛才呢從一開始有很多的時候我使用了外勞這樣的一個名詞來討論
transcript.whisperx[681].start 17875.37
transcript.whisperx[681].end 17900.143
transcript.whisperx[681].text 那並沒有任何歧視的意思如果你們認為外勞有歧視的意思的話那我們就也請你們就趕快來提案修訂好不好不然我每次在台上我到底要講什麼我講移工可是我們的這個法律用詞又不是這樣那我們又立法委員我們有時候用詞又要精準那我到底要講什麼
transcript.whisperx[682].start 17901.083
transcript.whisperx[682].end 17925.68
transcript.whisperx[682].text 講了等一下不用移工又被批評用了移工又不專業那到底是什麼東西你們趕快把這個這個名詞做一個法律上的修訂嘛這樣大家就統一比較有個依據啊好我們對我們來其實我們都看到會有人使用啊對外籍勞工或移工都會有人但也都會有人批評啦
transcript.whisperx[683].start 17927.387
transcript.whisperx[683].end 17949.597
transcript.whisperx[683].text 對啊 那個罵就有一點就是到底我們就遵守法規啊就這樣好 謝謝好 謝謝陳以為請教部長如果這個外籍移工生小孩那爸爸也是外籍移工那這個小孩子還可以留在台灣嗎如果是合法的他們兩個公司都有這樣的區域的話
transcript.whisperx[684].start 17961.433
transcript.whisperx[684].end 17980.747
transcript.whisperx[684].text 那如果爸爸是台灣人那就用就領養 領養啦齁好 他們這六千個生下來也算我們的總生產數現在我們台灣吃得還慘真的很慘齁這不算
transcript.whisperx[685].start 17988.192
transcript.whisperx[685].end 18012.135
transcript.whisperx[685].text 這是黑戶喔?沒有在戶政系統裡面所以他們也沒有勞保沒有生產補助什麼都沒有所以是老闆做回來
transcript.whisperx[686].start 18017.824
transcript.whisperx[686].end 18023.43
transcript.whisperx[686].text 好,最後一個,楊耀文好,謝謝主席,主席請一下紅部長好,現在請部長
transcript.whisperx[687].start 18047.723
transcript.whisperx[687].end 18067.777
transcript.whisperx[687].text 確實是這樣子,剛剛蘇信全委員在講,因為我家也有外籍的家庭看護工就是說最給來這件事情還真的是外籍看護工,假如在雇主的家裡面
transcript.whisperx[688].start 18069.472
transcript.whisperx[688].end 18095.073
transcript.whisperx[688].text 生育生產生病其實都是雇主的照顧責任都會落在雇主這邊那這個當然這個方向我們是支持的可是對於對於受看護的家庭其實大家都不像蘇英前召委的安泰醫院人力很夠
transcript.whisperx[689].start 18096.189
transcript.whisperx[689].end 18118.969
transcript.whisperx[689].text 那家庭看護工是這樣子,原本我家裡就需要一個人來照顧,照顧一個老人或者是必須要受照護者。等到家庭看護工也生病,或者是生產的時候,我同時要有兩個人力來補充這個缺口。
transcript.whisperx[690].start 18121.071
transcript.whisperx[690].end 18147.148
transcript.whisperx[690].text 這個很多制度的設計總是沒有辦法應付所有的變化所以我就剛剛聽到很高興趙偉率先講了在醫院裡面他臉醉了來躲一躲這會算是很基於人道精神確實因為他理想背景部長我來
transcript.whisperx[691].start 18149.267
transcript.whisperx[691].end 18158.713
transcript.whisperx[691].text 問一下根據行政院主席總署2021年的調查勞工因為照顧65歲以上的家屬離職的人數大概2010年大概有將近1500人已經超過要照顧未滿12歲子女的離職人數
transcript.whisperx[692].start 18177.589
transcript.whisperx[692].end 18199.268
transcript.whisperx[692].text 也就是說高齡化社會可能高齡化加上少子化所以這個數據可能沒有錯那勞工為了要長期照顧然後離職返家不僅讓家庭少了一份經濟來源
transcript.whisperx[693].start 18200.902
transcript.whisperx[693].end 18209.495
transcript.whisperx[693].text 對於理直的勞工來講他的退休保障也會減少,年資會中斷嘛那雇主也會減少一個熟練
transcript.whisperx[694].start 18215.768
transcript.whisperx[694].end 18237.098
transcript.whisperx[694].text 就是在公司的運作上比較選手的員工就是等於各方面來看都是一件不利的事情對公司員工跟國家來看都是不利的根據勞動部2024年雇用管理局
transcript.whisperx[695].start 18238.581
transcript.whisperx[695].end 18261.67
transcript.whisperx[695].text 工作場所就業平均概況的調查報告指出勞工最近一年有照顧家人需求的比例是28%而最近一年曾經申請家庭照顧假的女性的受僱者只有5.8%男性只有2.4%
transcript.whisperx[696].start 18264.734
transcript.whisperx[696].end 18271.925
transcript.whisperx[696].text 有照顧需求跟申請家庭照顧價兩者的落差部長覺得原因是什麼
transcript.whisperx[697].start 18274.001
transcript.whisperx[697].end 18299.418
transcript.whisperx[697].text 家庭照顧價確實有幾個原因第一個當然有些資產文化的原因那第二個也有一個原因的確是因為家庭照顧價目前是沒有薪資的所以對於員工來說勞工來說他其實對於去申請比較沒有薪資的這個家庭照顧價他的誘因會比較低沒有薪資啊而且他併入市價來計算
transcript.whisperx[698].start 18300.979
transcript.whisperx[698].end 18327.776
transcript.whisperx[698].text 所以可能反而有的時候就是直接用市價來請了啦我的看法是這樣子有可能那家庭照顧假併入就是無薪嘛然後併入市價來看那剛剛講的那一份報告呢也講說假如說未來法令有新增
transcript.whisperx[699].start 18329.195
transcript.whisperx[699].end 18346.141
transcript.whisperx[699].text 沒有不擠薪也沒有津貼補助的長期照顧安排假這個跟剛才的照顧假不一樣照顧假大概就是家裡的人發生重大的疾病啦或是接種疫苗
transcript.whisperx[700].start 18348.163
transcript.whisperx[700].end 18368.724
transcript.whisperx[700].text 預防接種等等因素這個是假是單日的我現在講的是長時間的就是說也是你們的調查報告裡面假如說有長照安排假或是長照留職停薪勞工會申請的比例高於75%
transcript.whisperx[701].start 18371.067
transcript.whisperx[701].end 18382.604
transcript.whisperx[701].text 這個是你們的報告的書子顯示說縱使我國長照制度設計把長照安排價
transcript.whisperx[702].start 18383.905
transcript.whisperx[702].end 18399.233
transcript.whisperx[702].text 等等設計為無薪或者沒有補助勞工還是有申請長照假的意願代表有需求那我們邁入超高齡社會以後啊對於長者
transcript.whisperx[703].start 18402.282
transcript.whisperx[703].end 18424.676
transcript.whisperx[703].text 長者照顧的需求會一直增加我們勞動部這邊有沒有要參考日本建立的介護休業制度就是可以請93天假或者是國內民團倡議的長照安排假勞動部的看法是怎麼樣
transcript.whisperx[704].start 18426.176
transcript.whisperx[704].end 18442.484
transcript.whisperx[704].text 跟我們說明喔其實針對因為我們今天討論比較多是顧小那我們現在在講的是顧老的部分那顧老部分確實現在會有一個整體的是這個衛福部現在也在研擬所謂的長照3.0
transcript.whisperx[705].start 18443.945
transcript.whisperx[705].end 18461.713
transcript.whisperx[705].text 希望能夠針對僱老的部分跟我們的整體的照顧制度尤其是長照照顧的僱老的部分再做一個整體的規劃所以我們目前會先針對僱小的部分先來做處理那當然僱老的部分我們會來看衛福部這邊的長照3.0的規劃他們整個這個政策的規劃的架構來需求
transcript.whisperx[706].start 18468.836
transcript.whisperx[706].end 18485.588
transcript.whisperx[706].text 我們當然願意跟衛福部一起來做這個事情的討論但是這部分會來自因為顧老要不要有假要不要有留庭要不要有什麼等等的這個概念或者他的概念要限縮還是擴大這裡面會來自於我們整個照顧政策的需求
transcript.whisperx[707].start 18486.848
transcript.whisperx[707].end 18499.757
transcript.whisperx[707].text 對 所以我們其實跟衛福部針對這部分我們有交換意見過可是現在會先看衛福部整體的照顧政策除了長照制度的配合以外其實勞動部這邊要思考的還有勞資雙方怎麼去達到一個平衡
transcript.whisperx[708].start 18507.741
transcript.whisperx[708].end 18533.628
transcript.whisperx[708].text 跟委員說明其實這個政策邏輯應該是會是從兩位服務這邊的長照政策他的需求他必須開始他整體的需求是如何這個需求上面有沒有需要職場上面的這些架或者是留庭的制度去協助銜接這裡面可能我們其實從勞動部角度我們是在是配合需求端再去做相關的研理就像顧曉
transcript.whisperx[709].start 18534.67
transcript.whisperx[709].end 18537.449
transcript.whisperx[709].text 我們是先看到有需求我們才來做規劃配合
transcript.whisperx[710].start 18539.337
transcript.whisperx[710].end 18564.029
transcript.whisperx[710].text 因為部長這樣子講我大概知道啦不過我覺得勞動部的政策擬定除了衛福部的長照政策以外你們還是必須要達到勞資雙方到底怎樣取得一個平衡點部長我問最後一個問題
transcript.whisperx[711].start 18568.82
transcript.whisperx[711].end 18573.235
transcript.whisperx[711].text 就是說日本為了減輕在職的育兒壓力
transcript.whisperx[712].start 18577.509
transcript.whisperx[712].end 18600.218
transcript.whisperx[712].text 並且用彈性制度強制義務化為核心避免因為育兒導致離職強化制度和職場友善提升實際使用透過修法大概從今年10月起他們會要求所有的企業含中小企業
transcript.whisperx[713].start 18604.142
transcript.whisperx[713].end 18625.617
transcript.whisperx[713].text 從底下五項 就是在家工作 調整上下班時間 縮短工時每年至少十天的一日有三假以及企業提供托育措施他們就是從十月起會要求所有的企業從這五項裡面
transcript.whisperx[714].start 18628.905
transcript.whisperx[714].end 18649.64
transcript.whisperx[714].text 最少要實施兩項那我們我們勞動部覺得這個這樣子的政策值不值得我們會不會會不會參考然後推行像我們我們其實都願意來參考各國的制度甚至也不只是日本但是他就就
transcript.whisperx[715].start 18650.42
transcript.whisperx[715].end 18668.105
transcript.whisperx[715].text 這五項裡面它其實也包括了育嬰留庭 家庭照顧 其實我們也有大家是說強制的五選二啦就是強制性的我們的育嬰留庭跟家庭照顧現在在法律上的概念其實也是強制的就是說怎麼減輕在職者的育兒壓力
transcript.whisperx[716].start 18674.787
transcript.whisperx[716].end 18701.119
transcript.whisperx[716].text 其實算是國家一個很重要的政策因為育兒的環境越不友善少子化的趨勢就會越嚴重還有一些問題今天因為時間的關係我下一次再跟部長做探討謝謝部長 謝謝主席
transcript.whisperx[717].start 18706.697
transcript.whisperx[717].end 18733.954
transcript.whisperx[717].text 好 謝謝 謝謝楊耀仁 謝謝部長本日會議詢答全部結束委員林德甫楊瓊所提書面執行列入紀錄刊登公報現在作以下決定 報告及詢答完畢委員執行未及答覆或補充資料者請相關機關以兩週內以書面答覆委員另要求期限者從其所定
transcript.whisperx[718].start 18735.25
transcript.whisperx[718].end 18736.995
transcript.whisperx[718].text 本次會議到此結束 現在散會
transcript.whisperx[719].start 18771.052
transcript.whisperx[719].end 18771.152
transcript.whisperx[719].text 谢谢大家