iVOD / 167345

Field Value
IVOD_ID 167345
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167345
日期 2026-01-29
會議資料.會議代碼 委員會-11-4-26-22
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 22
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
影片種類 Clip
開始時間 2026-01-29T12:50:57+08:00
結束時間 2026-01-29T13:10:16+08:00
影片長度 00:19:19
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/58229044bac95a8803739612ddea285452fd623850d83d5b653d38850f4f1179b72b967369a5ca435ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 劉建國
委員發言時間 12:50:57 - 13:10:16
會議時間 2026-01-29T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議(事由:邀請衛生福利部就「春節急診醫療人力調度與跨院協調機制之現況與精進作為」暨「假日及連續假期急重症分級醫療政策之執行成效與改進方向」進行專題報告,並備質詢。 討論事項 審查 一、 委員何欣純等17人擬具「國民年金法第五十四條之一及第五十五條條文修正草案」案。 二、 委員邱鎮軍等17人擬具「國民年金法第十五條及第五十四條之一條文修正草案」案。 三、 委員王美惠等18人擬具「國民年金法第五十四條之一條文修正草案」案。 四、 委員劉建國等16人擬具「國民年金法第五十四條之一條文修正草案」案。 五、 委員馬文君等20人擬具「國民年金法第五十四條之一條文修正草案」案。 六、 委員徐巧芯等18人擬具「國民年金法第五十四條之一條文修正草案」案。 七、 台灣民眾黨黨團擬具「國民年金法第五十四條之一條文修正草案」案。 八、 委員邱鎮軍等21人擬具「國民年金法第十五條及第五十條條文修正草案」案。 九、 委員陳俊宇等29人擬具「國民年金法第五十四條之一條文修正草案」案。 十、 台灣民眾黨黨團擬具「國民年金法第十五條及第五十條條文修正草案」案。 十一、 委員黃秀芳等21人擬具「國民年金法第五十四條之一條文修正草案」案。 十二、 委員羅廷瑋等16人擬具「國民年金法第五十四條之一條文修正草案」案。 十三、 民進黨黨團擬具「國民年金法部分條文修正草案」案。 十四、 委員蔡易餘等17人擬具「國民年金法部分條文修正草案」案。 十五、 委員吳思瑤等18人擬具「國民年金法部分條文修正草案」案。 十六、 委員郭國文等17人擬具「國民年金法第五十四條之一條文修正草案」案。 十七、 委員王美惠等22人擬具「國民年金法部分條文修正草案」案。 十八、 委員徐富癸等18人擬具「國民年金法第五十四條之一條文修正草案」案。 十九、 委員陳亭妃等16人擬具「國民年金法部分條文修正草案」案。 【專題報告與討論事項綜合詢答,討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 7.62471875
transcript.pyannote[0].end 8.33346875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 8.95784375
transcript.pyannote[1].end 11.67471875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 12.07971875
transcript.pyannote[2].end 12.82221875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 16.07909375
transcript.pyannote[3].end 16.70346875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 17.24346875
transcript.pyannote[4].end 17.74971875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 19.11659375
transcript.pyannote[5].end 19.45409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 20.44971875
transcript.pyannote[6].end 21.39471875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 21.85034375
transcript.pyannote[7].end 22.54221875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 23.87534375
transcript.pyannote[8].end 24.75284375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 25.24221875
transcript.pyannote[9].end 25.64721875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 26.50784375
transcript.pyannote[10].end 28.00971875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 28.00971875
transcript.pyannote[11].end 28.02659375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 28.02659375
transcript.pyannote[12].end 28.61721875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 28.61721875
transcript.pyannote[13].end 28.73534375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 28.73534375
transcript.pyannote[14].end 29.10659375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 30.67596875
transcript.pyannote[15].end 36.97034375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 37.61159375
transcript.pyannote[16].end 41.05409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 41.27346875
transcript.pyannote[17].end 46.15034375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 46.01534375
transcript.pyannote[18].end 46.04909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 46.04909375
transcript.pyannote[19].end 46.62284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 46.62284375
transcript.pyannote[20].end 46.74096875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 46.74096875
transcript.pyannote[21].end 48.24284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 47.73659375
transcript.pyannote[22].end 48.22596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 48.22596875
transcript.pyannote[23].end 48.51284375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 48.51284375
transcript.pyannote[24].end 54.25034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 54.28409375
transcript.pyannote[25].end 54.31784375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 54.31784375
transcript.pyannote[26].end 54.58784375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 54.85784375
transcript.pyannote[27].end 57.99659375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 56.54534375
transcript.pyannote[28].end 57.00096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 58.40159375
transcript.pyannote[29].end 59.19471875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 59.19471875
transcript.pyannote[30].end 59.54909375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 59.61659375
transcript.pyannote[31].end 64.37534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 64.57784375
transcript.pyannote[32].end 65.64096875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 66.14721875
transcript.pyannote[33].end 77.40284375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 68.49284375
transcript.pyannote[34].end 68.74596875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 77.40284375
transcript.pyannote[35].end 77.74034375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 77.68971875
transcript.pyannote[36].end 84.01784375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 84.13596875
transcript.pyannote[37].end 84.18659375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 84.18659375
transcript.pyannote[38].end 84.40596875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 84.40596875
transcript.pyannote[39].end 85.70534375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 84.42284375
transcript.pyannote[40].end 84.49034375
transcript.pyannote[41].speaker SPEAKER_03
transcript.pyannote[41].start 85.70534375
transcript.pyannote[41].end 102.20909375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 102.63096875
transcript.pyannote[42].end 130.10346875
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 104.45346875
transcript.pyannote[43].end 104.55471875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 110.30909375
transcript.pyannote[44].end 110.51159375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 117.51471875
transcript.pyannote[45].end 117.85221875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 126.94784375
transcript.pyannote[46].end 126.96471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 126.96471875
transcript.pyannote[47].end 127.13346875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 127.13346875
transcript.pyannote[48].end 127.15034375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 130.10346875
transcript.pyannote[49].end 131.72346875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 131.90909375
transcript.pyannote[50].end 132.22971875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 132.56721875
transcript.pyannote[51].end 139.11471875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 138.87846875
transcript.pyannote[52].end 139.09784375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 139.11471875
transcript.pyannote[53].end 139.30034375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 139.30034375
transcript.pyannote[54].end 139.89096875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 139.38471875
transcript.pyannote[55].end 139.80659375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 140.29596875
transcript.pyannote[56].end 159.95534375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 160.17471875
transcript.pyannote[57].end 167.41409375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 168.17346875
transcript.pyannote[58].end 176.91471875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 177.58971875
transcript.pyannote[59].end 189.43596875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 189.58784375
transcript.pyannote[60].end 189.60471875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 189.60471875
transcript.pyannote[61].end 189.87471875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 189.87471875
transcript.pyannote[62].end 189.89159375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 190.54971875
transcript.pyannote[63].end 190.98846875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 190.98846875
transcript.pyannote[64].end 191.35971875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 191.56221875
transcript.pyannote[65].end 192.01784375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 192.01784375
transcript.pyannote[66].end 226.88159375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 192.47346875
transcript.pyannote[67].end 192.87846875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 201.36659375
transcript.pyannote[68].end 201.67034375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 214.64721875
transcript.pyannote[69].end 215.25471875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 226.88159375
transcript.pyannote[70].end 230.98221875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 230.35784375
transcript.pyannote[71].end 234.88034375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 234.20534375
transcript.pyannote[72].end 246.01784375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 242.50784375
transcript.pyannote[73].end 242.62596875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 246.08534375
transcript.pyannote[74].end 254.74221875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 246.16971875
transcript.pyannote[75].end 246.57471875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 247.09784375
transcript.pyannote[76].end 247.99221875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 247.99221875
transcript.pyannote[77].end 248.04284375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 248.32971875
transcript.pyannote[78].end 248.78534375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 249.12284375
transcript.pyannote[79].end 249.49409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 254.86034375
transcript.pyannote[80].end 256.00784375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 256.96971875
transcript.pyannote[81].end 258.18471875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 259.01159375
transcript.pyannote[82].end 259.90596875
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 259.38284375
transcript.pyannote[83].end 260.68221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 260.78346875
transcript.pyannote[84].end 261.72846875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 261.72846875
transcript.pyannote[85].end 262.01534375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 262.01534375
transcript.pyannote[86].end 263.16284375
transcript.pyannote[87].speaker SPEAKER_03
transcript.pyannote[87].start 263.38221875
transcript.pyannote[87].end 263.63534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 263.63534375
transcript.pyannote[88].end 264.20909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 264.63096875
transcript.pyannote[89].end 265.66034375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 265.93034375
transcript.pyannote[90].end 269.35596875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 269.35596875
transcript.pyannote[91].end 283.58159375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 278.90721875
transcript.pyannote[92].end 279.48096875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 280.37534375
transcript.pyannote[93].end 286.95659375
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 287.54721875
transcript.pyannote[94].end 289.03221875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 289.38659375
transcript.pyannote[95].end 297.70596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 297.99284375
transcript.pyannote[96].end 305.62034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 305.55284375
transcript.pyannote[97].end 305.89034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 305.83971875
transcript.pyannote[98].end 308.80971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 309.09659375
transcript.pyannote[99].end 311.08784375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 309.16409375
transcript.pyannote[100].end 317.02784375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 317.39909375
transcript.pyannote[101].end 320.50409375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 318.90096875
transcript.pyannote[102].end 320.01471875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 320.87534375
transcript.pyannote[103].end 326.98409375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 329.11034375
transcript.pyannote[104].end 330.62909375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 332.01284375
transcript.pyannote[105].end 333.02534375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 332.94096875
transcript.pyannote[106].end 333.78471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 333.78471875
transcript.pyannote[107].end 333.81846875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 333.83534375
transcript.pyannote[108].end 337.95284375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 335.40471875
transcript.pyannote[109].end 339.87659375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 338.00346875
transcript.pyannote[110].end 349.20846875
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 346.96409375
transcript.pyannote[111].end 347.43659375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 347.52096875
transcript.pyannote[112].end 347.70659375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 347.87534375
transcript.pyannote[113].end 347.89221875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 348.22971875
transcript.pyannote[114].end 352.61721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 350.96346875
transcript.pyannote[115].end 374.52096875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 374.70659375
transcript.pyannote[116].end 385.40534375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 386.11409375
transcript.pyannote[117].end 392.29034375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 388.40909375
transcript.pyannote[118].end 388.42596875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 388.42596875
transcript.pyannote[119].end 389.42159375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 389.47221875
transcript.pyannote[120].end 393.23534375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 393.23534375
transcript.pyannote[121].end 393.40409375
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 393.40409375
transcript.pyannote[122].end 396.03659375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 393.43784375
transcript.pyannote[123].end 394.90596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 395.86784375
transcript.pyannote[124].end 396.01971875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 396.03659375
transcript.pyannote[125].end 396.17159375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 396.07034375
transcript.pyannote[126].end 398.34846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 398.34846875
transcript.pyannote[127].end 399.04034375
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 400.37346875
transcript.pyannote[128].end 402.43221875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 402.55034375
transcript.pyannote[129].end 402.58409375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 403.02284375
transcript.pyannote[130].end 403.98471875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 403.29284375
transcript.pyannote[131].end 403.34346875
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 403.37721875
transcript.pyannote[132].end 403.57971875
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 403.98471875
transcript.pyannote[133].end 405.57096875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 405.43596875
transcript.pyannote[134].end 407.35971875
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 405.62159375
transcript.pyannote[135].end 410.41409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 410.41409375
transcript.pyannote[136].end 419.67846875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 417.78846875
transcript.pyannote[137].end 419.57721875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 419.67846875
transcript.pyannote[138].end 419.89784375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 419.89784375
transcript.pyannote[139].end 423.34034375
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 420.15096875
transcript.pyannote[140].end 420.72471875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 423.44159375
transcript.pyannote[141].end 431.44034375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 426.14159375
transcript.pyannote[142].end 426.73221875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 426.93471875
transcript.pyannote[143].end 427.47471875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 432.09846875
transcript.pyannote[144].end 434.95034375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 435.42284375
transcript.pyannote[145].end 448.87221875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 449.10846875
transcript.pyannote[146].end 451.69034375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 451.97721875
transcript.pyannote[147].end 456.46596875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 456.70221875
transcript.pyannote[148].end 462.35534375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 464.65034375
transcript.pyannote[149].end 466.13534375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 466.40534375
transcript.pyannote[150].end 468.59909375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 469.59471875
transcript.pyannote[151].end 469.86471875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 472.86846875
transcript.pyannote[152].end 473.83034375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 473.72909375
transcript.pyannote[153].end 497.25284375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 479.85471875
transcript.pyannote[154].end 480.88409375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 497.80971875
transcript.pyannote[155].end 629.38409375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 516.81096875
transcript.pyannote[156].end 516.89534375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 526.07534375
transcript.pyannote[157].end 526.36221875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 629.77221875
transcript.pyannote[158].end 632.96159375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 633.85596875
transcript.pyannote[159].end 636.89346875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 637.24784375
transcript.pyannote[160].end 638.02409375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 638.15909375
transcript.pyannote[161].end 638.54721875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 638.61471875
transcript.pyannote[162].end 646.30971875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 647.25471875
transcript.pyannote[163].end 648.84096875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 648.84096875
transcript.pyannote[164].end 649.44846875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 649.44846875
transcript.pyannote[165].end 650.05596875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 649.83659375
transcript.pyannote[166].end 653.46471875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 654.07221875
transcript.pyannote[167].end 655.05096875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 655.25346875
transcript.pyannote[168].end 655.97909375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 656.72159375
transcript.pyannote[169].end 657.44721875
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 657.61596875
transcript.pyannote[170].end 658.84784375
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 659.30346875
transcript.pyannote[171].end 670.86284375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 668.14596875
transcript.pyannote[172].end 670.18784375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 671.60534375
transcript.pyannote[173].end 673.24221875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 673.64721875
transcript.pyannote[174].end 675.55409375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 675.77346875
transcript.pyannote[175].end 679.63784375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 679.63784375
transcript.pyannote[176].end 679.85721875
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 679.87409375
transcript.pyannote[177].end 681.98346875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 681.98346875
transcript.pyannote[178].end 682.35471875
transcript.pyannote[179].speaker SPEAKER_03
transcript.pyannote[179].start 682.30409375
transcript.pyannote[179].end 685.67909375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 685.67909375
transcript.pyannote[180].end 687.97409375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 686.05034375
transcript.pyannote[181].end 690.11721875
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 689.64471875
transcript.pyannote[182].end 694.69034375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 694.84221875
transcript.pyannote[183].end 721.90971875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 722.63534375
transcript.pyannote[184].end 729.70596875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 726.71909375
transcript.pyannote[185].end 726.98909375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 727.83284375
transcript.pyannote[186].end 728.25471875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 728.59221875
transcript.pyannote[187].end 730.93784375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 729.87471875
transcript.pyannote[188].end 734.92034375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 732.57471875
transcript.pyannote[189].end 733.75596875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 734.80221875
transcript.pyannote[190].end 735.17346875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 735.15659375
transcript.pyannote[191].end 735.86534375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 736.81034375
transcript.pyannote[192].end 742.26096875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 741.94034375
transcript.pyannote[193].end 741.97409375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 742.09221875
transcript.pyannote[194].end 743.22284375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 742.66596875
transcript.pyannote[195].end 744.31971875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 743.74596875
transcript.pyannote[196].end 744.45471875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 744.45471875
transcript.pyannote[197].end 745.60221875
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 745.70346875
transcript.pyannote[198].end 745.75409375
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 745.75409375
transcript.pyannote[199].end 746.05784375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 745.95659375
transcript.pyannote[200].end 747.71159375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 747.98159375
transcript.pyannote[201].end 749.21346875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 748.03221875
transcript.pyannote[202].end 748.67346875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 749.21346875
transcript.pyannote[203].end 749.55096875
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 749.55096875
transcript.pyannote[204].end 750.07409375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 749.92221875
transcript.pyannote[205].end 750.19221875
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 750.19221875
transcript.pyannote[206].end 750.20909375
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 750.25971875
transcript.pyannote[207].end 754.47846875
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 755.77784375
transcript.pyannote[208].end 758.07284375
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 756.26721875
transcript.pyannote[209].end 763.03409375
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 763.57409375
transcript.pyannote[210].end 765.90284375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 763.77659375
transcript.pyannote[211].end 763.82721875
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 763.82721875
transcript.pyannote[212].end 765.58221875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 765.95346875
transcript.pyannote[213].end 766.81409375
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 767.16846875
transcript.pyannote[214].end 771.11721875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 771.35346875
transcript.pyannote[215].end 773.76659375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 773.76659375
transcript.pyannote[216].end 774.07034375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 774.74534375
transcript.pyannote[217].end 776.11221875
transcript.pyannote[218].speaker SPEAKER_00
transcript.pyannote[218].start 776.43284375
transcript.pyannote[218].end 777.09096875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 777.46221875
transcript.pyannote[219].end 778.66034375
transcript.pyannote[220].speaker SPEAKER_03
transcript.pyannote[220].start 778.64346875
transcript.pyannote[220].end 779.23409375
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 779.03159375
transcript.pyannote[221].end 783.11534375
transcript.pyannote[222].speaker SPEAKER_03
transcript.pyannote[222].start 783.04784375
transcript.pyannote[222].end 806.36909375
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 787.73909375
transcript.pyannote[223].end 788.16096875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 804.85034375
transcript.pyannote[224].end 818.46846875
transcript.pyannote[225].speaker SPEAKER_03
transcript.pyannote[225].start 808.59659375
transcript.pyannote[225].end 808.63034375
transcript.pyannote[226].speaker SPEAKER_01
transcript.pyannote[226].start 808.63034375
transcript.pyannote[226].end 809.92971875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 816.93284375
transcript.pyannote[227].end 816.96659375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 817.35471875
transcript.pyannote[228].end 817.86096875
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 818.31659375
transcript.pyannote[229].end 819.10971875
transcript.pyannote[230].speaker SPEAKER_00
transcript.pyannote[230].start 818.65409375
transcript.pyannote[230].end 826.41659375
transcript.pyannote[231].speaker SPEAKER_02
transcript.pyannote[231].start 821.25284375
transcript.pyannote[231].end 821.55659375
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 825.91034375
transcript.pyannote[232].end 826.11284375
transcript.pyannote[233].speaker SPEAKER_02
transcript.pyannote[233].start 826.41659375
transcript.pyannote[233].end 826.60221875
transcript.pyannote[234].speaker SPEAKER_00
transcript.pyannote[234].start 826.60221875
transcript.pyannote[234].end 826.61909375
transcript.pyannote[235].speaker SPEAKER_00
transcript.pyannote[235].start 826.92284375
transcript.pyannote[235].end 836.35596875
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 828.37409375
transcript.pyannote[236].end 832.59284375
transcript.pyannote[237].speaker SPEAKER_02
transcript.pyannote[237].start 833.72346875
transcript.pyannote[237].end 834.01034375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 835.90034375
transcript.pyannote[238].end 835.91721875
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 835.91721875
transcript.pyannote[239].end 836.10284375
transcript.pyannote[240].speaker SPEAKER_01
transcript.pyannote[240].start 836.20409375
transcript.pyannote[240].end 836.23784375
transcript.pyannote[241].speaker SPEAKER_02
transcript.pyannote[241].start 836.23784375
transcript.pyannote[241].end 836.50784375
transcript.pyannote[242].speaker SPEAKER_00
transcript.pyannote[242].start 836.50784375
transcript.pyannote[242].end 838.29659375
transcript.pyannote[243].speaker SPEAKER_00
transcript.pyannote[243].start 838.65096875
transcript.pyannote[243].end 839.91659375
transcript.pyannote[244].speaker SPEAKER_00
transcript.pyannote[244].start 840.60846875
transcript.pyannote[244].end 842.81909375
transcript.pyannote[245].speaker SPEAKER_00
transcript.pyannote[245].start 843.34221875
transcript.pyannote[245].end 846.19409375
transcript.pyannote[246].speaker SPEAKER_00
transcript.pyannote[246].start 846.59909375
transcript.pyannote[246].end 856.79159375
transcript.pyannote[247].speaker SPEAKER_00
transcript.pyannote[247].start 858.14159375
transcript.pyannote[247].end 859.81221875
transcript.pyannote[248].speaker SPEAKER_00
transcript.pyannote[248].start 860.45346875
transcript.pyannote[248].end 871.11846875
transcript.pyannote[249].speaker SPEAKER_00
transcript.pyannote[249].start 871.48971875
transcript.pyannote[249].end 871.84409375
transcript.pyannote[250].speaker SPEAKER_00
transcript.pyannote[250].start 872.08034375
transcript.pyannote[250].end 877.04159375
transcript.pyannote[251].speaker SPEAKER_00
transcript.pyannote[251].start 877.17659375
transcript.pyannote[251].end 879.13409375
transcript.pyannote[252].speaker SPEAKER_00
transcript.pyannote[252].start 879.64034375
transcript.pyannote[252].end 880.60221875
transcript.pyannote[253].speaker SPEAKER_00
transcript.pyannote[253].start 881.20971875
transcript.pyannote[253].end 882.91409375
transcript.pyannote[254].speaker SPEAKER_00
transcript.pyannote[254].start 882.96471875
transcript.pyannote[254].end 890.28846875
transcript.pyannote[255].speaker SPEAKER_00
transcript.pyannote[255].start 890.89596875
transcript.pyannote[255].end 891.48659375
transcript.pyannote[256].speaker SPEAKER_00
transcript.pyannote[256].start 891.85784375
transcript.pyannote[256].end 893.64659375
transcript.pyannote[257].speaker SPEAKER_00
transcript.pyannote[257].start 894.20346875
transcript.pyannote[257].end 895.78971875
transcript.pyannote[258].speaker SPEAKER_00
transcript.pyannote[258].start 896.22846875
transcript.pyannote[258].end 898.57409375
transcript.pyannote[259].speaker SPEAKER_00
transcript.pyannote[259].start 899.40096875
transcript.pyannote[259].end 899.89034375
transcript.pyannote[260].speaker SPEAKER_00
transcript.pyannote[260].start 900.85221875
transcript.pyannote[260].end 902.10096875
transcript.pyannote[261].speaker SPEAKER_00
transcript.pyannote[261].start 902.35409375
transcript.pyannote[261].end 903.55221875
transcript.pyannote[262].speaker SPEAKER_00
transcript.pyannote[262].start 904.76721875
transcript.pyannote[262].end 905.15534375
transcript.pyannote[263].speaker SPEAKER_00
transcript.pyannote[263].start 905.42534375
transcript.pyannote[263].end 906.43784375
transcript.pyannote[264].speaker SPEAKER_00
transcript.pyannote[264].start 907.09596875
transcript.pyannote[264].end 908.15909375
transcript.pyannote[265].speaker SPEAKER_00
transcript.pyannote[265].start 908.58096875
transcript.pyannote[265].end 908.88471875
transcript.pyannote[266].speaker SPEAKER_03
transcript.pyannote[266].start 908.88471875
transcript.pyannote[266].end 908.90159375
transcript.pyannote[267].speaker SPEAKER_03
transcript.pyannote[267].start 909.15471875
transcript.pyannote[267].end 946.56659375
transcript.pyannote[268].speaker SPEAKER_02
transcript.pyannote[268].start 946.56659375
transcript.pyannote[268].end 946.68471875
transcript.pyannote[269].speaker SPEAKER_03
transcript.pyannote[269].start 946.68471875
transcript.pyannote[269].end 947.03909375
transcript.pyannote[270].speaker SPEAKER_00
transcript.pyannote[270].start 947.03909375
transcript.pyannote[270].end 947.68034375
transcript.pyannote[271].speaker SPEAKER_03
transcript.pyannote[271].start 947.68034375
transcript.pyannote[271].end 947.76471875
transcript.pyannote[272].speaker SPEAKER_00
transcript.pyannote[272].start 947.76471875
transcript.pyannote[272].end 948.23721875
transcript.pyannote[273].speaker SPEAKER_03
transcript.pyannote[273].start 948.59159375
transcript.pyannote[273].end 948.60846875
transcript.pyannote[274].speaker SPEAKER_00
transcript.pyannote[274].start 948.60846875
transcript.pyannote[274].end 949.58721875
transcript.pyannote[275].speaker SPEAKER_02
transcript.pyannote[275].start 949.60409375
transcript.pyannote[275].end 950.00909375
transcript.pyannote[276].speaker SPEAKER_00
transcript.pyannote[276].start 950.00909375
transcript.pyannote[276].end 951.24096875
transcript.pyannote[277].speaker SPEAKER_00
transcript.pyannote[277].start 951.98346875
transcript.pyannote[277].end 955.86471875
transcript.pyannote[278].speaker SPEAKER_00
transcript.pyannote[278].start 956.18534375
transcript.pyannote[278].end 959.23971875
transcript.pyannote[279].speaker SPEAKER_00
transcript.pyannote[279].start 959.76284375
transcript.pyannote[279].end 962.54721875
transcript.pyannote[280].speaker SPEAKER_02
transcript.pyannote[280].start 962.54721875
transcript.pyannote[280].end 962.83409375
transcript.pyannote[281].speaker SPEAKER_00
transcript.pyannote[281].start 963.27284375
transcript.pyannote[281].end 971.11971875
transcript.pyannote[282].speaker SPEAKER_00
transcript.pyannote[282].start 971.40659375
transcript.pyannote[282].end 972.62159375
transcript.pyannote[283].speaker SPEAKER_00
transcript.pyannote[283].start 972.63846875
transcript.pyannote[283].end 972.65534375
transcript.pyannote[284].speaker SPEAKER_02
transcript.pyannote[284].start 972.65534375
transcript.pyannote[284].end 973.00971875
transcript.pyannote[285].speaker SPEAKER_01
transcript.pyannote[285].start 973.00971875
transcript.pyannote[285].end 973.02659375
transcript.pyannote[286].speaker SPEAKER_00
transcript.pyannote[286].start 973.21221875
transcript.pyannote[286].end 974.52846875
transcript.pyannote[287].speaker SPEAKER_01
transcript.pyannote[287].start 974.79846875
transcript.pyannote[287].end 974.81534375
transcript.pyannote[288].speaker SPEAKER_00
transcript.pyannote[288].start 974.81534375
transcript.pyannote[288].end 976.46909375
transcript.pyannote[289].speaker SPEAKER_00
transcript.pyannote[289].start 976.75596875
transcript.pyannote[289].end 979.97909375
transcript.pyannote[290].speaker SPEAKER_01
transcript.pyannote[290].start 980.11409375
transcript.pyannote[290].end 980.31659375
transcript.pyannote[291].speaker SPEAKER_00
transcript.pyannote[291].start 980.31659375
transcript.pyannote[291].end 984.40034375
transcript.pyannote[292].speaker SPEAKER_00
transcript.pyannote[292].start 984.83909375
transcript.pyannote[292].end 987.82596875
transcript.pyannote[293].speaker SPEAKER_01
transcript.pyannote[293].start 987.82596875
transcript.pyannote[293].end 988.14659375
transcript.pyannote[294].speaker SPEAKER_00
transcript.pyannote[294].start 988.01159375
transcript.pyannote[294].end 989.53034375
transcript.pyannote[295].speaker SPEAKER_00
transcript.pyannote[295].start 989.80034375
transcript.pyannote[295].end 994.57596875
transcript.pyannote[296].speaker SPEAKER_01
transcript.pyannote[296].start 994.67721875
transcript.pyannote[296].end 995.03159375
transcript.pyannote[297].speaker SPEAKER_00
transcript.pyannote[297].start 995.03159375
transcript.pyannote[297].end 996.12846875
transcript.pyannote[298].speaker SPEAKER_00
transcript.pyannote[298].start 996.41534375
transcript.pyannote[298].end 1004.12721875
transcript.pyannote[299].speaker SPEAKER_00
transcript.pyannote[299].start 1004.53221875
transcript.pyannote[299].end 1004.85284375
transcript.pyannote[300].speaker SPEAKER_00
transcript.pyannote[300].start 1006.67534375
transcript.pyannote[300].end 1007.85659375
transcript.pyannote[301].speaker SPEAKER_00
transcript.pyannote[301].start 1008.83534375
transcript.pyannote[301].end 1010.48909375
transcript.pyannote[302].speaker SPEAKER_00
transcript.pyannote[302].start 1011.33284375
transcript.pyannote[302].end 1012.54784375
transcript.pyannote[303].speaker SPEAKER_00
transcript.pyannote[303].start 1012.91909375
transcript.pyannote[303].end 1026.97596875
transcript.pyannote[304].speaker SPEAKER_00
transcript.pyannote[304].start 1027.24596875
transcript.pyannote[304].end 1028.57909375
transcript.pyannote[305].speaker SPEAKER_00
transcript.pyannote[305].start 1028.96721875
transcript.pyannote[305].end 1030.57034375
transcript.pyannote[306].speaker SPEAKER_00
transcript.pyannote[306].start 1031.32971875
transcript.pyannote[306].end 1042.85534375
transcript.pyannote[307].speaker SPEAKER_01
transcript.pyannote[307].start 1040.59409375
transcript.pyannote[307].end 1040.72909375
transcript.pyannote[308].speaker SPEAKER_00
transcript.pyannote[308].start 1044.15471875
transcript.pyannote[308].end 1047.17534375
transcript.pyannote[309].speaker SPEAKER_00
transcript.pyannote[309].start 1047.78284375
transcript.pyannote[309].end 1056.37221875
transcript.pyannote[310].speaker SPEAKER_00
transcript.pyannote[310].start 1056.45659375
transcript.pyannote[310].end 1057.97534375
transcript.pyannote[311].speaker SPEAKER_00
transcript.pyannote[311].start 1060.42221875
transcript.pyannote[311].end 1061.28284375
transcript.pyannote[312].speaker SPEAKER_00
transcript.pyannote[312].start 1062.39659375
transcript.pyannote[312].end 1062.71721875
transcript.pyannote[313].speaker SPEAKER_00
transcript.pyannote[313].start 1063.35846875
transcript.pyannote[313].end 1065.87284375
transcript.pyannote[314].speaker SPEAKER_00
transcript.pyannote[314].start 1066.63221875
transcript.pyannote[314].end 1068.20159375
transcript.pyannote[315].speaker SPEAKER_02
transcript.pyannote[315].start 1068.47159375
transcript.pyannote[315].end 1068.69096875
transcript.pyannote[316].speaker SPEAKER_00
transcript.pyannote[316].start 1068.70784375
transcript.pyannote[316].end 1069.12971875
transcript.pyannote[317].speaker SPEAKER_00
transcript.pyannote[317].start 1069.63596875
transcript.pyannote[317].end 1070.32784375
transcript.pyannote[318].speaker SPEAKER_00
transcript.pyannote[318].start 1070.78346875
transcript.pyannote[318].end 1072.08284375
transcript.pyannote[319].speaker SPEAKER_00
transcript.pyannote[319].start 1072.97721875
transcript.pyannote[319].end 1082.22471875
transcript.pyannote[320].speaker SPEAKER_00
transcript.pyannote[320].start 1082.24159375
transcript.pyannote[320].end 1094.59409375
transcript.pyannote[321].speaker SPEAKER_02
transcript.pyannote[321].start 1096.02846875
transcript.pyannote[321].end 1097.34471875
transcript.pyannote[322].speaker SPEAKER_00
transcript.pyannote[322].start 1097.63159375
transcript.pyannote[322].end 1099.11659375
transcript.pyannote[323].speaker SPEAKER_02
transcript.pyannote[323].start 1099.47096875
transcript.pyannote[323].end 1099.80846875
transcript.pyannote[324].speaker SPEAKER_02
transcript.pyannote[324].start 1099.87596875
transcript.pyannote[324].end 1100.34846875
transcript.pyannote[325].speaker SPEAKER_00
transcript.pyannote[325].start 1100.34846875
transcript.pyannote[325].end 1101.04034375
transcript.pyannote[326].speaker SPEAKER_02
transcript.pyannote[326].start 1101.04034375
transcript.pyannote[326].end 1101.07409375
transcript.pyannote[327].speaker SPEAKER_00
transcript.pyannote[327].start 1102.44096875
transcript.pyannote[327].end 1102.87971875
transcript.pyannote[328].speaker SPEAKER_00
transcript.pyannote[328].start 1103.13284375
transcript.pyannote[328].end 1104.19596875
transcript.pyannote[329].speaker SPEAKER_02
transcript.pyannote[329].start 1104.31409375
transcript.pyannote[329].end 1104.55034375
transcript.pyannote[330].speaker SPEAKER_00
transcript.pyannote[330].start 1104.68534375
transcript.pyannote[330].end 1105.88346875
transcript.pyannote[331].speaker SPEAKER_00
transcript.pyannote[331].start 1106.30534375
transcript.pyannote[331].end 1108.21221875
transcript.pyannote[332].speaker SPEAKER_02
transcript.pyannote[332].start 1108.43159375
transcript.pyannote[332].end 1108.70159375
transcript.pyannote[333].speaker SPEAKER_00
transcript.pyannote[333].start 1108.83659375
transcript.pyannote[333].end 1109.14034375
transcript.pyannote[334].speaker SPEAKER_00
transcript.pyannote[334].start 1109.78159375
transcript.pyannote[334].end 1110.27096875
transcript.pyannote[335].speaker SPEAKER_00
transcript.pyannote[335].start 1110.86159375
transcript.pyannote[335].end 1133.33909375
transcript.pyannote[336].speaker SPEAKER_00
transcript.pyannote[336].start 1133.40659375
transcript.pyannote[336].end 1135.80284375
transcript.pyannote[337].speaker SPEAKER_01
transcript.pyannote[337].start 1135.73534375
transcript.pyannote[337].end 1135.98846875
transcript.pyannote[338].speaker SPEAKER_00
transcript.pyannote[338].start 1135.98846875
transcript.pyannote[338].end 1147.12596875
transcript.pyannote[339].speaker SPEAKER_00
transcript.pyannote[339].start 1147.27784375
transcript.pyannote[339].end 1147.68284375
transcript.pyannote[340].speaker SPEAKER_00
transcript.pyannote[340].start 1147.85159375
transcript.pyannote[340].end 1147.91909375
transcript.pyannote[341].speaker SPEAKER_02
transcript.pyannote[341].start 1147.91909375
transcript.pyannote[341].end 1148.08784375
transcript.pyannote[342].speaker SPEAKER_00
transcript.pyannote[342].start 1148.13846875
transcript.pyannote[342].end 1149.57284375
transcript.pyannote[343].speaker SPEAKER_00
transcript.pyannote[343].start 1150.14659375
transcript.pyannote[343].end 1151.05784375
transcript.pyannote[344].speaker SPEAKER_00
transcript.pyannote[344].start 1151.31096875
transcript.pyannote[344].end 1152.50909375
transcript.pyannote[345].speaker SPEAKER_00
transcript.pyannote[345].start 1152.55971875
transcript.pyannote[345].end 1156.91346875
transcript.pyannote[346].speaker SPEAKER_00
transcript.pyannote[346].start 1159.30971875
transcript.pyannote[346].end 1161.65534375
transcript.whisperx[0].start 9.992
transcript.whisperx[0].end 36.748
transcript.whisperx[0].text 謝謝召委,有請石部長請石部長歐元豪部長好社保司有來?有社家屬沒有來?社家屬沒有好,部長行政院在上週二十二日通過國民年輕法的不問條文修正草案就像現行的
transcript.whisperx[1].start 37.717
transcript.whisperx[1].end 64.784
transcript.whisperx[1].text 每個月4049要提高到包含這個移屬年金及原名的企務上調為每月5000嘛沒有錯嘛然後身心障礙年金從每月的5437調高到6715漲幅將近23.5這是行政院的一個圖卡就公民年金企務再提高保險津貼都調整是這樣那簡單的算數
transcript.whisperx[2].start 66.384
transcript.whisperx[2].end 85.488
transcript.whisperx[2].text 有算過這樣一年要增加多少嗎?就是從原有老年金、一屬年金及原民的幾乎五千然後如果減四零四九所以要增加九百五十一嘛,對不對?那身障年金是六七一五減原有的五四三七所以要增加到一二七八所以估計要多少預算?
transcript.whisperx[3].start 86.008
transcript.whisperx[3].end 100.443
transcript.whisperx[3].text 跟文包這裡三塊一個是基本年金的部分這裡一調整大概會需要多增加156.3億那另外一個是排富因為我們把門檻拉
transcript.whisperx[4].start 102.885
transcript.whisperx[4].end 125.123
transcript.whisperx[4].text 把它拉高啦所以等於放寬排富啦放寬排富之後呢會多受益的人數就會增加大概2萬多人這邊會多增加13.5億那如果我們再根據CPI去調超過3%我們又再調一次那這邊又會再多受益176萬人所以大概會再增加25.1億所以整個合起來大概會增加194億
transcript.whisperx[5].start 132.923
transcript.whisperx[5].end 137.056
transcript.whisperx[5].text 就這兩大項加起來每年要再增加194億對沒有錯嘛對對對
transcript.whisperx[6].start 141.175
transcript.whisperx[6].end 167.068
transcript.whisperx[6].text 那因為我們現在要將國民年金的企務再提高那基本上我本人也有提案 絕對是雙手雙腳 仗著因為物價的指數一直在飆高嘛 對不對但是部長的思考的範疇裡面就只有針對國民年金跟身障的年金其他的牽涉到大四五津貼沒有一併做通盤檢討然後給行政院做具體的建議
transcript.whisperx[7].start 168.223
transcript.whisperx[7].end 176.499
transcript.whisperx[7].text 因為你一旦動到國民年金基本上就之前我們就跟行政有提醒過我們希望趕快將國民年金的這樣的一個
transcript.whisperx[8].start 177.785
transcript.whisperx[8].end 202.751
transcript.whisperx[8].text 幾乎可以提高但是我們也必須要很坦誠的只要提高公園金那相對的八大事務津貼你通通必須一併思考考量甚至你通通要往上提高是有嗎有有另外還有我們一共是八大您提到的有八大福利津貼那還有六個沒有調整這個調完之後調了兩個了那還有六個沒有調整
transcript.whisperx[9].start 203.291
transcript.whisperx[9].end 225.095
transcript.whisperx[9].text 那六個裡面有三個是屬於低收入戶的包含他的這個家庭生活補助包含他的這個兒童補助還有這個就學的補助這個還有三個那另外還有兩個是屬於中低收入戶一個是屬於弱勢而少的那我們也一併提了建議案那麼在行政院很快就會有
transcript.whisperx[10].start 225.895
transcript.whisperx[10].end 244.974
transcript.whisperx[10].text 會有決定下來所以有一併都提到行政院讓行政院去做有有有一併這時間上會陸陸續續那個我有中低勞嘛中低產嘛對不對那還有低收入各款嘛對還有就學的嘛還有包含這個家庭的嘛包含兒童的嘛還有特勤的嘛對
transcript.whisperx[11].start 246.355
transcript.whisperx[11].end 255.283
transcript.whisperx[11].text 全部通通有提供給好那如果全部要一併8到15現在應該叫8加1啦全部如果全部調整的話扣掉這16919多
transcript.whisperx[12].start 259.042
transcript.whisperx[12].end 285.388
transcript.whisperx[12].text 那其他還要多少這邊194對 這邊194嘛將近200億了啦對那還要增加到多少那個等行政院拍板才知道那個金額是多少沒有 這怎麼會削減到行政院拍板是衛生部本身就要盤整然後把這個相關的一個預算規模都抓出來給行政院去做最後一個裁定才對啊怎麼會變成行政院在幫你們抓預算有方案會影響到那個這個
transcript.whisperx[13].start 287.859
transcript.whisperx[13].end 308.032
transcript.whisperx[13].text 預算的規模啦所以您問我預算要會影響到多少這個還沒有辦法拍板因為是根據那個方案才決定那個預算規模假設以現在的國民年金跟現在的津貼你已經基本上調高將近23.5那其他的如果依照這樣
transcript.whisperx[14].start 310.234
transcript.whisperx[14].end 325.17
transcript.whisperx[14].text 不只這樣那以最低這樣來講嘛更高的當然是最好啊那大致上是多少你應該讓委員會知道一下因為這個原本我們也在之前有具體建議過也希望一併來全面思考8加1的社會津貼該條就該條了
transcript.whisperx[15].start 332.071
transcript.whisperx[15].end 338.814
transcript.whisperx[15].text 幾百億啦沒有那個叫幾百億的確實是你的專業啦但是因為你當了部長這一塊你還是要惡補要趕快惡補你怎麼可以回答委員會回答我說是幾百億這一定要行政院拍板之後我知道啦我知道
transcript.whisperx[16].start 352.899
transcript.whisperx[16].end 362.547
transcript.whisperx[16].text 因為貿易經濟你以為他算規模才有多少嘛,我不是說你今年要拍完定案啦嘛你總是要給我知道多少多少嘛,要給社會大眾知道多少嘛政府要給他特別價值,他不會說檔局多少嘛,跟金融快樂獎金要兩百多嘛所以還有6加1嘛,那從民運總統加起來可能要達700至800億,還是800到1000億嘛
transcript.whisperx[17].start 374.858
transcript.whisperx[17].end 389.863
transcript.whisperx[17].text 我想給社會大眾知道這個事情非常的正確也應該讓大家知道行政院衛部有這樣的決心要針對8加1的社會基金的對象要好好提升照顧啊但是你現在回答我幾百億這個很奇怪現在都精準醫療啊大約啦 大約大概在300億左右不只啦
transcript.whisperx[18].start 400.427
transcript.whisperx[18].end 408.973
transcript.whisperx[18].text 新增 我說的是新增預算喔新增預算不是全部喔那你這兩項 這裡新增是差不多194億嘛這兩項的新增就194億的其他還有 我就講8加1嘛8加1等於9嘛 9擴掉這兩項 還有7嘛你算6也沒關係嘛 那怎麼可能才300多億
transcript.whisperx[19].start 423.742
transcript.whisperx[19].end 433.551
transcript.whisperx[19].text 6的人數因為他有一部分是低收入戶當然啦一部分是低收入戶然後再加上的是弱勢而少啦人數沒有這麼多這邊是176萬人
transcript.whisperx[20].start 435.438
transcript.whisperx[20].end 455.97
transcript.whisperx[20].text 好啦我姑且相信你啦好不好你要不要把那個你們評估起來相關的預算的大概給委員會給我做參考可不可以好不好不要落差太大啦你也會有漏氣喔然後跟部長要請教的是500減4049所以增加9516715減5437增加1278你覺得這樣合理嗎
transcript.whisperx[21].start 464.69
transcript.whisperx[21].end 466.498
transcript.whisperx[21].text 因為他現在在周圍的便當店簽了一個便當額一百塊
transcript.whisperx[22].start 472.898
transcript.whisperx[22].end 496.038
transcript.whisperx[22].text 不想覺得這樣合理嗎?因為國民年金還是需要永續當然啦現在新增的部分都是由中央政府直接撥補的預算這個也受到財化法的影響所以我們希望未來行政院版本的財化法如果修正之後我們再繼續檢討
transcript.whisperx[23].start 498.059
transcript.whisperx[23].end 504.481
transcript.whisperx[23].text 我是建議部長啦好不好就是越弱勢的我們更應該照顧嘛所以當然不能說所有的每一項的津貼都等同資嘛但是朝向一個最大的一個一個大家可接受的一個調漲然後來保障照顧這些最弱勢的對象我想部長有起這個責任啦所以這個預算應該提高到什麼程度如果說你經過有詳細的一個盤整盤算
transcript.whisperx[24].start 523.747
transcript.whisperx[24].end 540.015
transcript.whisperx[24].text 我想今天應該你答我就會很肯定嘛那甚至於我們還可以大家一起共同努力來跟行政院來做這個反應也讓全國的針對這8加1的社會津貼的對象都有感在行政院在衛福部的主政之下對這些對象有特別的這樣的一個
transcript.whisperx[25].start 542.556
transcript.whisperx[25].end 570.957
transcript.whisperx[25].text 因應現在的經濟狀況物價指數的情形然後有所對他們更高的這樣的一個協助跟支持我想這樣會讓人民感受到政府的溫度也感受到這樣溫暖所以還是要提醒一個星期內應該可以把這些資料給我們可以啦好不管怎麼樣我今天還是要提醒就是我們我們很少這樣包含老紅津貼包含津貼料照牌的公民年金很少我們需要去調整到
transcript.whisperx[26].start 571.937
transcript.whisperx[26].end 592.706
transcript.whisperx[26].text 這個提高整個津貼的這樣的一個金額的時候我們的總預算還沒有通過啦大家都非常清楚這個新增預算新興項目延續性的新增預算基本上總預算沒有過就是即便法律通過了也通通不可以動之的所以我們是希望努力的可以來跟
transcript.whisperx[27].start 593.526
transcript.whisperx[27].end 615.562
transcript.whisperx[27].text 在兩位委員溝通我們竟然把法案都排進來了然後行政院也表示了這樣的一個正面的正向的態度那我想總預算真的是要快速的來審查不然今天我們在這邊討論包含老人今天也好包含前兩天通過了農民儲金也好要由公部門來負擔比例提高基本上總預算沒有過這些法律過通通還是沒有辦法去執行了
transcript.whisperx[28].start 617.944
transcript.whisperx[28].end 643.455
transcript.whisperx[28].text 所以這是一個非常非常非常矛盾,也非常現實的一個狀況我在這邊也公開再度來做呼籲那第二件事情,我時間到了嗎?時間比較快,我的主持都比較快這個印度發生立百病毒的疫情,部長知道嗎?知道已經引起周邊國家警戒,亞洲多個國際機場都已經加強的篩檢,台灣有嗎?
transcript.whisperx[29].start 647.313
transcript.whisperx[29].end 654.78
transcript.whisperx[29].text 篩檢沒有啦 台灣沒有嘛亞洲很多的國際機場都已經篩檢了 台灣沒有台灣沒有 是台灣覺得還好沒有這麼重要這個應該是講 不是什麼篩檢 就是發燒篩檢戰啦那因為我們的機場從來沒有測過我們一直 其他的機場他們測掉了可是台灣的機場 這個發燒篩檢啊
transcript.whisperx[30].start 672.133
transcript.whisperx[30].end 677.655
transcript.whisperx[30].text 這一個是強調圖為泰國蘇納萬府的機場嘛他們是加強篩檢他下標是這樣嗎?因為我們台灣的發燒篩檢站從來沒有撤離過啦所以等同吃就對了因為立百病毒的RO值第一不會大流行
transcript.whisperx[31].start 695.722
transcript.whisperx[31].end 721.724
transcript.whisperx[31].text 應該是說它目前的數據R0是0.2到0.7啦就是說一個人傳染下一個的人數是0.2個到0.7所以它不會擴大像過去我們那個都是5啊6啊一個人傳好多人的那這個R0值是低於1但是因為雖然它傳播力沒有那麼強可是它的致死率很高才會引發大家的關注
transcript.whisperx[32].start 722.694
transcript.whisperx[32].end 735.646
transcript.whisperx[32].text 但是部長知道1998年在馬來西亞經歷了那個立百仙村當時的災難發生什麼事情嘛我知道對不對它是造成三個國家將近300人感染的病例其中100多人死亡耶對然後
transcript.whisperx[33].start 736.874
transcript.whisperx[33].end 752.831
transcript.whisperx[33].text 然後還在馬來西亞進900個豬場,90多萬隻豬頭被捕殺的,這樣算是嚴重嗎?嚴重啊第三個嚴重,對人的性命、胖腔八卦也不算輕的,對不對?對啊,所以它不只是可以人傳人,還可以豬傳人,還可以豬傳豬的
transcript.whisperx[34].start 756.596
transcript.whisperx[34].end 773.446
transcript.whisperx[34].text 這個比我們在要防治非洲疫情的情況之下應該是大家要提高更高的警覺才對吧所以對人而言但是對產業而言我想那個落差值非常非常大
transcript.whisperx[35].start 774.873
transcript.whisperx[35].end 802.062
transcript.whisperx[35].text 是不是要請部長 不能大意 沒有鬆懈的本錢 不能因為病毒 脖子低 我們就掉個清心嘛對 我們已經提高那個警戒程度了 包含從機場的部分 除了發燒篩檢會注意之外也提醒旅客出現相關的症狀 要去就醫 要表明他的旅遊史然後我們也發了醫界通函 提醒這些可能的症狀是什麼
transcript.whisperx[36].start 805.404
transcript.whisperx[36].end 821.558
transcript.whisperx[36].text 我今天會提醒這個事情因為農曆春節快到了反國的鄉親你還能預估嘛所以我們要加強警戒我們可能整個篩檢什麼都要再提高所以變態比較辛苦是不是你可以直接就連結農業部看這個事情要怎麼應應對付
transcript.whisperx[37].start 827.223
transcript.whisperx[37].end 856.122
transcript.whisperx[37].text 我覺得這是有其必要的一週內提供給我們做你們要怎麼提升的這樣一個處理的方式最後一項WHO也是一樣上週22號川普大帝已經宣布了退出WHO這個世界衛生組織昨天我原本想要發表一些看法其實這個世界衛生組織是世界最不衛生組織
transcript.whisperx[38].start 858.744
transcript.whisperx[38].end 880.117
transcript.whisperx[38].text 現在美國已經退出了那理由很簡單2019年台灣早就對新型的冠狀病毒發生事情但WHO卻假裝台灣不存在錯失了防疫的先機我們原本有觀察員身份後來被他們取消掉年年好幾年要扣關要申請一個觀察員的身份通通不給我們
transcript.whisperx[39].start 881.278
transcript.whisperx[39].end 903.461
transcript.whisperx[39].text 然後我們提出這麼嚴重相信已經算是有人類原始以來造成最大人員死傷的新冠病毒COVID-19台灣2019就已經提出來WHO適合不見所以它叫做世界最不衛生組織現在全世界第一強國美國就已經退出了
transcript.whisperx[40].start 905.494
transcript.whisperx[40].end 918.888
transcript.whisperx[40].text 台灣的態度是什麼?明年還在扣關嗎?這個跟委員說明,確實美國退出WHO,我相信對WHO的衝擊影響比對台灣還要大
transcript.whisperx[41].start 920.149
transcript.whisperx[41].end 945.222
transcript.whisperx[41].text 所以我們會密切的觀察後續WHO它的影響會多大但是在目前而言WHO還是全球最主要的衛生醫療平台公共衛生醫療平台所以我們還是會持續的有意義的參與當然未來如果美國有成立新的平台的時候當然我們也會積極爭取去參與
transcript.whisperx[42].start 947.003
transcript.whisperx[42].end 972.474
transcript.whisperx[42].text 我覺得有時候是借力使力啦借機發揮啦讓台灣的整個對世界衛生的貢獻醫療的這樣的一個付出真的是你要趁這個機會順勢而為啦我想今天在兩年前AI國際台北AI國際電腦展可以辦了這麼大的盛會這是全世界級的
transcript.whisperx[43].start 973.474
transcript.whisperx[43].end 994.11
transcript.whisperx[43].text 雖然名稱叫台北但是他還是一個世界級的那今天川普已經宣布退出WHO那其實也跟世界衛生組織宣戰嘛你們這個就是不公平嘛你們這個就是不公正嘛你們這個還在隱匿嘛然後針對這麼嚴重的事情台灣提出這麼嚴重的事情你還敢視而不見嘛
transcript.whisperx[44].start 995.111
transcript.whisperx[44].end 1009.608
transcript.whisperx[44].text 那其實因為部長我為什麼希望今天用這個會期最後一次委員會再用多一點的時間來提醒部長因為部長在衛生醫療這個單位公務部門已經滿久的時間
transcript.whisperx[45].start 1011.557
transcript.whisperx[45].end 1029.603
transcript.whisperx[45].text 當AI的國際展 台北AI的國際展可以辦到如此的盛大那台灣整體的醫療 台灣整體的衛生的維護台灣整體的很多的 這樣的一個面向的一個整體提升醫療環境 衛生環境我們努力貢獻 是不是也可以趁這個機會
transcript.whisperx[46].start 1031.383
transcript.whisperx[46].end 1057.719
transcript.whisperx[46].text 可以達到某種程度的一個渲染然後一個一個一個一個一個一個發揚我們更精準的這樣的一個作為就好比台北醫療電腦廠的道理一樣那甚至也可以邀請美國一起來共同來研辦這件事情那AI醫療現在已經都不用再介紹了那AI的機器人 醫療的機器人其實基本上這個都是台灣應該要走在世界的前端
transcript.whisperx[47].start 1062.544
transcript.whisperx[47].end 1071.856
transcript.whisperx[47].text 趁這個機會啊應該部長有你的能耐跟你的經驗嘛而且這速度要快嘛對不對有沒有機會上半年度我們就可以
transcript.whisperx[48].start 1073.018
transcript.whisperx[48].end 1096.849
transcript.whisperx[48].text 搞一個比世界衛生組織開會更具有效果的然後提出前瞻預警性的相關的對醫療對衛生環境有所有所示警全世界還是建置什麼樣的一個模範讓全世界可以來瞭解到對台灣對這樣的一個付出貢獻確實有達到某種程度的效益還有智慧趕快來思考
transcript.whisperx[49].start 1102.452
transcript.whisperx[49].end 1109.979
transcript.whisperx[49].text 這真的可以做 你要趁這個機會 其實我看川普在大補台給你他沒有機會大補台給總統 總統有外交的管理他要去發表什麼 要去某個地方 你要保證在這個時間是可以很充分的典型 台灣的醫療 台灣的環境衛生
transcript.whisperx[50].start 1125.314
transcript.whisperx[50].end 1152.108
transcript.whisperx[50].text 很多制度 基本上是可以跟世界 走在世界前面然後今天又有這樣的一個情勢發生真的請部長展示智慧啦 好不好對 好好讓我們台灣可以再持續讓台灣可以做世界的台灣啦讓台灣的整個衛生醫療可以在世界再度的躍升這個舞台 好不好好 好啦 一個二來對啦 好不好好 謝謝 好 謝謝召委 謝謝
transcript.whisperx[51].start 1153.549
transcript.whisperx[51].end 1156.932
transcript.whisperx[51].text 好 謝謝劉建國召委接下來最後一位請陳英委員發言這個很辛苦喔 剛到了