iVOD / 167344

Field Value
IVOD_ID 167344
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167344
日期 2026-01-29
會議資料.會議代碼 委員會-11-4-26-22
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 22
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
影片種類 Clip
開始時間 2026-01-29T12:40:10+08:00
結束時間 2026-01-29T12:50:49+08:00
影片長度 00:10:39
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/58229044bac95a88e9ac263079a3a29c52fd623850d83d5b653d38850f4f1179b6d5a35e119f76195ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 葉元之
委員發言時間 12:40:10 - 12:50:49
會議時間 2026-01-29T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議(事由:邀請衛生福利部就「春節急診醫療人力調度與跨院協調機制之現況與精進作為」暨「假日及連續假期急重症分級醫療政策之執行成效與改進方向」進行專題報告,並備質詢。 討論事項 審查 一、 委員何欣純等17人擬具「國民年金法第五十四條之一及第五十五條條文修正草案」案。 二、 委員邱鎮軍等17人擬具「國民年金法第十五條及第五十四條之一條文修正草案」案。 三、 委員王美惠等18人擬具「國民年金法第五十四條之一條文修正草案」案。 四、 委員劉建國等16人擬具「國民年金法第五十四條之一條文修正草案」案。 五、 委員馬文君等20人擬具「國民年金法第五十四條之一條文修正草案」案。 六、 委員徐巧芯等18人擬具「國民年金法第五十四條之一條文修正草案」案。 七、 台灣民眾黨黨團擬具「國民年金法第五十四條之一條文修正草案」案。 八、 委員邱鎮軍等21人擬具「國民年金法第十五條及第五十條條文修正草案」案。 九、 委員陳俊宇等29人擬具「國民年金法第五十四條之一條文修正草案」案。 十、 台灣民眾黨黨團擬具「國民年金法第十五條及第五十條條文修正草案」案。 十一、 委員黃秀芳等21人擬具「國民年金法第五十四條之一條文修正草案」案。 十二、 委員羅廷瑋等16人擬具「國民年金法第五十四條之一條文修正草案」案。 十三、 民進黨黨團擬具「國民年金法部分條文修正草案」案。 十四、 委員蔡易餘等17人擬具「國民年金法部分條文修正草案」案。 十五、 委員吳思瑤等18人擬具「國民年金法部分條文修正草案」案。 十六、 委員郭國文等17人擬具「國民年金法第五十四條之一條文修正草案」案。 十七、 委員王美惠等22人擬具「國民年金法部分條文修正草案」案。 十八、 委員徐富癸等18人擬具「國民年金法第五十四條之一條文修正草案」案。 十九、 委員陳亭妃等16人擬具「國民年金法部分條文修正草案」案。 【專題報告與討論事項綜合詢答,討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 7.84409375
transcript.pyannote[0].end 9.91971875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 13.37909375
transcript.pyannote[1].end 14.30721875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 14.44221875
transcript.pyannote[2].end 25.09034375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 21.37784375
transcript.pyannote[3].end 22.20471875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 25.17471875
transcript.pyannote[4].end 31.13159375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 31.55346875
transcript.pyannote[5].end 31.57034375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 31.57034375
transcript.pyannote[6].end 31.58721875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 31.58721875
transcript.pyannote[7].end 31.97534375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 31.97534375
transcript.pyannote[8].end 60.94971875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 36.51471875
transcript.pyannote[9].end 37.02096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 37.45971875
transcript.pyannote[10].end 37.81409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 41.02034375
transcript.pyannote[11].end 42.40409375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 46.85909375
transcript.pyannote[12].end 46.94346875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 46.94346875
transcript.pyannote[13].end 46.97721875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 46.97721875
transcript.pyannote[14].end 47.58471875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 51.24659375
transcript.pyannote[15].end 51.61784375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 56.05596875
transcript.pyannote[16].end 56.15721875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 60.03846875
transcript.pyannote[17].end 98.86784375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 68.45909375
transcript.pyannote[18].end 69.31971875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 76.93034375
transcript.pyannote[19].end 77.40284375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 86.75159375
transcript.pyannote[20].end 87.15659375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 88.10159375
transcript.pyannote[21].end 88.47284375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 99.77909375
transcript.pyannote[22].end 101.61846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 102.05721875
transcript.pyannote[23].end 113.63346875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 114.40971875
transcript.pyannote[24].end 121.56471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 122.10471875
transcript.pyannote[25].end 133.05659375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 133.30971875
transcript.pyannote[26].end 145.66221875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 140.21159375
transcript.pyannote[27].end 140.26221875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 140.31284375
transcript.pyannote[28].end 140.44784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 145.78034375
transcript.pyannote[29].end 146.08409375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 146.03346875
transcript.pyannote[30].end 147.13034375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 147.77159375
transcript.pyannote[31].end 150.57284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 150.77534375
transcript.pyannote[32].end 151.51784375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 151.51784375
transcript.pyannote[33].end 152.68221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 151.95659375
transcript.pyannote[34].end 161.79471875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 162.01409375
transcript.pyannote[35].end 164.10659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 164.22471875
transcript.pyannote[36].end 167.26221875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 164.61284375
transcript.pyannote[37].end 164.62971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 167.61659375
transcript.pyannote[38].end 176.67846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 174.97409375
transcript.pyannote[39].end 183.34409375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 178.43346875
transcript.pyannote[40].end 179.81721875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 180.79596875
transcript.pyannote[41].end 182.17971875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 183.34409375
transcript.pyannote[42].end 193.60409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 192.06846875
transcript.pyannote[43].end 209.55096875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 194.24534375
transcript.pyannote[44].end 194.49846875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 195.46034375
transcript.pyannote[45].end 195.94971875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 196.99596875
transcript.pyannote[46].end 198.49784375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 201.75471875
transcript.pyannote[47].end 202.09221875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 208.31909375
transcript.pyannote[48].end 224.41784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 212.16659375
transcript.pyannote[49].end 212.57159375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 218.57909375
transcript.pyannote[50].end 218.59596875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 218.59596875
transcript.pyannote[51].end 219.50721875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 219.69284375
transcript.pyannote[52].end 219.72659375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 224.70471875
transcript.pyannote[53].end 239.53784375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 239.45346875
transcript.pyannote[54].end 239.97659375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 239.79096875
transcript.pyannote[55].end 261.13784375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 245.78159375
transcript.pyannote[56].end 246.22034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 249.96659375
transcript.pyannote[57].end 250.25346875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 250.91159375
transcript.pyannote[58].end 251.19846875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 260.29409375
transcript.pyannote[59].end 283.04159375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 261.32346875
transcript.pyannote[60].end 261.94784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 269.25471875
transcript.pyannote[61].end 270.92534375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 271.54971875
transcript.pyannote[62].end 271.90409375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 273.76034375
transcript.pyannote[63].end 273.96284375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 274.03034375
transcript.pyannote[64].end 274.04721875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 274.23284375
transcript.pyannote[65].end 274.97534375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 283.04159375
transcript.pyannote[66].end 283.76721875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 283.76721875
transcript.pyannote[67].end 283.83471875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 283.83471875
transcript.pyannote[68].end 284.76284375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 283.85159375
transcript.pyannote[69].end 284.45909375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 284.76284375
transcript.pyannote[70].end 286.60221875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 284.89784375
transcript.pyannote[71].end 286.61909375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 286.61909375
transcript.pyannote[72].end 288.52596875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 288.52596875
transcript.pyannote[73].end 294.82034375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 288.67784375
transcript.pyannote[74].end 294.60096875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 294.63471875
transcript.pyannote[75].end 297.67221875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 295.14096875
transcript.pyannote[76].end 297.63846875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 297.67221875
transcript.pyannote[77].end 319.86284375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 297.70596875
transcript.pyannote[78].end 298.41471875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 301.41846875
transcript.pyannote[79].end 301.48596875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 301.68846875
transcript.pyannote[80].end 301.77284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 307.83096875
transcript.pyannote[81].end 307.88159375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 312.38721875
transcript.pyannote[82].end 312.75846875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 316.33596875
transcript.pyannote[83].end 316.72409375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 320.38596875
transcript.pyannote[84].end 332.75534375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 324.77346875
transcript.pyannote[85].end 325.12784375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 326.42721875
transcript.pyannote[86].end 326.52846875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 331.55721875
transcript.pyannote[87].end 331.72596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 331.72596875
transcript.pyannote[88].end 331.75971875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 333.24471875
transcript.pyannote[89].end 340.46721875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 338.54346875
transcript.pyannote[90].end 339.01596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 340.31534375
transcript.pyannote[91].end 340.51784375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 340.51784375
transcript.pyannote[92].end 348.58409375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 340.61909375
transcript.pyannote[93].end 340.66971875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 348.58409375
transcript.pyannote[94].end 348.76971875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 348.76971875
transcript.pyannote[95].end 353.86596875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 354.15284375
transcript.pyannote[96].end 357.74721875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 357.91596875
transcript.pyannote[97].end 358.99596875
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 358.99596875
transcript.pyannote[98].end 361.42596875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 359.01284375
transcript.pyannote[99].end 359.04659375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 361.94909375
transcript.pyannote[100].end 366.37034375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 363.75471875
transcript.pyannote[101].end 363.77159375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 363.83909375
transcript.pyannote[102].end 363.97409375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 364.39596875
transcript.pyannote[103].end 366.58971875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 366.58971875
transcript.pyannote[104].end 366.60659375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 366.60659375
transcript.pyannote[105].end 366.69096875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 366.69096875
transcript.pyannote[106].end 366.84284375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 366.84284375
transcript.pyannote[107].end 366.89346875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 366.89346875
transcript.pyannote[108].end 366.97784375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 366.97784375
transcript.pyannote[109].end 367.02846875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 367.02846875
transcript.pyannote[110].end 367.19721875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 367.19721875
transcript.pyannote[111].end 367.28159375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 367.28159375
transcript.pyannote[112].end 367.38284375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 367.38284375
transcript.pyannote[113].end 369.32346875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 367.45034375
transcript.pyannote[114].end 372.73221875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 371.01096875
transcript.pyannote[115].end 373.15409375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 373.15409375
transcript.pyannote[116].end 376.96784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 373.17096875
transcript.pyannote[117].end 373.20471875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 376.96784375
transcript.pyannote[118].end 377.65971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 377.65971875
transcript.pyannote[119].end 399.09096875
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 377.67659375
transcript.pyannote[120].end 377.74409375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 380.98409375
transcript.pyannote[121].end 381.59159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 390.94034375
transcript.pyannote[122].end 391.22721875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 391.24409375
transcript.pyannote[123].end 391.26096875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 391.27784375
transcript.pyannote[124].end 391.61534375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 396.67784375
transcript.pyannote[125].end 396.86346875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 399.54659375
transcript.pyannote[126].end 401.97659375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 401.09909375
transcript.pyannote[127].end 401.33534375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 401.97659375
transcript.pyannote[128].end 402.36471875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 403.14096875
transcript.pyannote[129].end 425.39909375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 425.39909375
transcript.pyannote[130].end 433.44846875
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 433.36409375
transcript.pyannote[131].end 438.02159375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 433.70159375
transcript.pyannote[132].end 441.54846875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 442.17284375
transcript.pyannote[133].end 446.22284375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 446.32409375
transcript.pyannote[134].end 451.94346875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 452.39909375
transcript.pyannote[135].end 454.49159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 454.86284375
transcript.pyannote[136].end 456.82034375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 457.51221875
transcript.pyannote[137].end 466.59096875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 466.57409375
transcript.pyannote[138].end 467.85659375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 466.60784375
transcript.pyannote[139].end 466.62471875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 466.87784375
transcript.pyannote[140].end 470.87721875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 470.40471875
transcript.pyannote[141].end 506.65221875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 470.97846875
transcript.pyannote[142].end 471.51846875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 502.63596875
transcript.pyannote[143].end 503.54721875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 504.37409375
transcript.pyannote[144].end 527.30721875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 527.30721875
transcript.pyannote[145].end 556.14659375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 541.95471875
transcript.pyannote[146].end 542.14034375
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 551.89409375
transcript.pyannote[147].end 552.24846875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 552.78846875
transcript.pyannote[148].end 553.39596875
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 555.82596875
transcript.pyannote[149].end 556.21409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 556.21409375
transcript.pyannote[150].end 556.34909375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 556.34909375
transcript.pyannote[151].end 591.71909375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 557.53034375
transcript.pyannote[152].end 560.97284375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 562.00221875
transcript.pyannote[153].end 562.01909375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 562.01909375
transcript.pyannote[154].end 563.14971875
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 563.14971875
transcript.pyannote[155].end 563.16659375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 564.28034375
transcript.pyannote[156].end 564.29721875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 564.29721875
transcript.pyannote[157].end 564.31409375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 564.31409375
transcript.pyannote[158].end 566.00159375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 571.78971875
transcript.pyannote[159].end 575.53596875
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 580.12596875
transcript.pyannote[160].end 580.81784375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 585.52596875
transcript.pyannote[161].end 585.67784375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 585.67784375
transcript.pyannote[162].end 586.69034375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 592.37721875
transcript.pyannote[163].end 596.37659375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 594.62159375
transcript.pyannote[164].end 595.34721875
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 595.76909375
transcript.pyannote[165].end 598.62096875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 597.01784375
transcript.pyannote[166].end 624.82784375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 599.38034375
transcript.pyannote[167].end 600.13971875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 604.93221875
transcript.pyannote[168].end 605.53971875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 608.57721875
transcript.pyannote[169].end 608.89784375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 608.89784375
transcript.pyannote[170].end 608.91471875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 624.82784375
transcript.pyannote[171].end 625.53659375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 625.53659375
transcript.pyannote[172].end 626.81909375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 626.31284375
transcript.pyannote[173].end 631.57784375
transcript.pyannote[174].speaker SPEAKER_01
transcript.pyannote[174].start 627.96659375
transcript.pyannote[174].end 630.66659375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 633.51846875
transcript.pyannote[175].end 633.97409375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 633.97409375
transcript.pyannote[176].end 638.73284375
transcript.whisperx[0].start 7.87
transcript.whisperx[0].end 30.88
transcript.whisperx[0].text 主席好,麻煩請部長,謝謝好,議員好部長好,您現在就是為了要那個紓解像類似去年過年期間,急診室的用色狀況嘛現在有一個做法是說,希望診所可以多開嘛那我現在就您的了解,現在門診在診所願意開的那個醫院高嘛
transcript.whisperx[1].start 32.078
transcript.whisperx[1].end 58.943
transcript.whisperx[1].text 我們統計的去年最低的時候大概是在初一、初二、初三這三天大概都不到5%2%到4%的開診率那我們今年就弄了這些方案然後現在一直在登記當中現在初三的開診率已經可以超過10%初一、初二我們還在努力醫院的部分大概開診率過去初一、初二也都是休息的現在也有開診
transcript.whisperx[2].start 61.004
transcript.whisperx[2].end 76.494
transcript.whisperx[2].text 我現在先針對那個門診部分跟您討論因為我當然也有去了解一下其實大家其實意願不是太高啦為什麼 誘因不足因為現在衛福部你們提出來的誘因是讓他的診查費可以兩倍嘛對不對 兩倍嘛
transcript.whisperx[3].start 78.655
transcript.whisperx[3].end 98.7
transcript.whisperx[3].text 但是他在春節開診像初一初二初三開診的話成本也會提高為什麼呢因為不可能醫師自己來開診嘛你總是有護理師嘛掛號員啊藥師啊那通常這些相關的工作人員他的薪水門診的院長就是診所的院長也要給他們大概兩到三倍啊
transcript.whisperx[4].start 99.86
transcript.whisperx[4].end 111.367
transcript.whisperx[4].text 所以他們會有一個低門檻嘛這成本嘛那如果你在過年期間開業然後結果病人沒有到大概平均30個以上的話實際上他還會虧本啊
transcript.whisperx[5].start 114.488
transcript.whisperx[5].end 136.596
transcript.whisperx[5].text 所以大家可能就會覺得誘因不足那乾脆去放假也不用拗那些護理師春節來加班所以我覺得當然我覺得部長你們想到這個方法希望門診可以多開去紓解大醫院的急診的量我覺得不錯可是在執行面上會有這樣的問題所以我其實再給你一個建議其實你就可以直接把
transcript.whisperx[6].start 137.276
transcript.whisperx[6].end 165.498
transcript.whisperx[6].text 他們可能延伸的固定成本直接給他們舉例來講你今天如果願意開業的話一整了一整就給他們一萬塊那你現在全國的門診全國的診所大概多少個一萬間一萬兩千間一萬兩千間嘛你今天如果有兩成兩成的人願意在春節假設啦很良好的狀況兩成的人願意在春節開診的話一個診大概如果一萬塊大概就兩千萬就是大概兩千萬
transcript.whisperx[7].start 166.098
transcript.whisperx[7].end 193.225
transcript.whisperx[7].text 那如果多幾個多幾天大概一兩億就可以解決了你現在是說變多少錢要來解決這個春節紓解的問題因為我們是根據就醫量大概16億但是他包含住院他包含住院對所以增加一點點增加一點點你就可以讓門診願意開業的這個意願會高很多你研究看看好我們研究看看你研究看看
transcript.whisperx[8].start 194.325
transcript.whisperx[8].end 209.564
transcript.whisperx[8].text 這個用統包制啦這個跟委員講說現在這個UCC我們那個假日期就是用這個概念我們直接付那個終點費啦幾個小時多少錢這個概念跟您講的是一致的我現在就把我們
transcript.whisperx[9].start 210.545
transcript.whisperx[9].end 239.407
transcript.whisperx[9].text 因為我也希望說春節的時候我們比如說鄉親們啊都在看醫生不要遇到這種不舒服擁擠的狀況對不對那大家能夠去就近去診所看我也是樂觀其成啊但我的了解的狀況意願就是我把剛剛可能你聽不到的東西講給你聽了啦那現在就看你願不願意做嘛你提高一點點的工作獎金讓大家覺得說至少可以支付我固定成本
transcript.whisperx[10].start 239.867
transcript.whisperx[10].end 255.517
transcript.whisperx[10].text 那就不會他們就不會考慮說好我願意配合初一開業啊大家都來啦負三倍薪水啊然後可能沒有什麼沒有什麼病人那一天等於就沒有收入嘛然後而且支出變多嘛啊你就讓醫生護理師在這從過年而已啊
transcript.whisperx[11].start 257.597
transcript.whisperx[11].end 276.762
transcript.whisperx[11].text 你這個研議一下你覺得這個可能性高嗎我們會有一個調整的就是先開啦到時候如果沒有那麼多了但是你開了我們再來看看怎麼補給你對 補給他啦對 也可以或者是說你直接如果你超了已經超出的那超出就OK啊你可以啊你有這個承諾也很好如果用一個後續的
transcript.whisperx[12].start 277.562
transcript.whisperx[12].end 301.212
transcript.whisperx[12].text 因為病人沒有出來我們預算已經框在這裡的我們就去回田我覺得你今天能夠做出這樣承諾也很好啊至少那一些願意開業的醫生大家都沒有生病沒有用到最好嘛那我最好嘛那但是我們預算跟他開了嘛對不對然後他會有成本嘛你就補給他嘛可以可以好不好就朝這個方向啦我相信大家願意開的那個意願可能就更高了啦
transcript.whisperx[13].start 301.792
transcript.whisperx[13].end 319.583
transcript.whisperx[13].text 然後第二個問題同樣也是醫療資源問題因為我們我是板橋嘛我們板橋55萬人口但我們只有一間大型醫院就是雅東醫院那所以有時候有病人的話都要往別區跑跑雙河啊或者是跑跑其他的地方
transcript.whisperx[14].start 320.475
transcript.whisperx[14].end 341.398
transcript.whisperx[14].text 那本來我們新北市政府是有規劃一個板橋的醫療園區這個部長您應該很清楚啦我也清楚之前流標了嘛那流標原因我也覺得非常奇怪啦因為當時三年前新北市政府就跟衛福部申請了大概要開499床衛福部也同意了然後結果呢
transcript.whisperx[15].start 342.359
transcript.whisperx[15].end 361.089
transcript.whisperx[15].text 準備要蓋的時候都規劃好要蓋的時候然後要上網招標健保署忽然有一個新的規定出來就是說新的如果新設醫院大概一年只給兩億對吧所以有這個新的沒有這是假消息是不是沒有沒有沒有這個規定沒有這個規定那為什麼那為什麼之前
transcript.whisperx[16].start 362.049
transcript.whisperx[16].end 376.651
transcript.whisperx[16].text 所以你用這個機會澄清我覺得是好事因為他們現在要重新招標沒有這個規定啦那當初是什麼是怎麼講的我不知道這個消息完全不知道因為那時候就是傳出來說要總額控管嘛
transcript.whisperx[17].start 377.748
transcript.whisperx[17].end 401.998
transcript.whisperx[17].text 總和控管各大型醫院都已經分配好了量了然後如果說有新設醫院的話就2億那當然就沒有人要來投標啊本來有一家醫院投標後來就聽到這個消息之後不投標這過程你很清楚啊然後你很清楚啊因為2億的話大概就是一般的門一個門診啊那怎麼可能是499床啊結果那所以你可以澄清一下因為我們要鼓勵
transcript.whisperx[18].start 403.238
transcript.whisperx[18].end 425.144
transcript.whisperx[18].text 優質的醫院來投標跟委員說明第一個我們鼓勵雖然醫院是一家大型的可是診所還是很多所以要新開的這一家絕對是以急重症優先不是在看一般的門診這是第一個第二個我看最近新北市也在做了一些調整那個調整的方向我是蠻支持的
transcript.whisperx[19].start 427.426
transcript.whisperx[19].end 441.082
transcript.whisperx[19].text 調整的方向就是第一個配合衛福部嘛所以他還有100個長照的床嘛對不對 然後就針對長輩嘛區域是缺乏的對啊 但關鍵是關鍵就是說我覺得為什麼我覺得你們
transcript.whisperx[20].start 442.344
transcript.whisperx[20].end 456.505
transcript.whisperx[20].text 要了解為什麼一開始有一家大型醫院要投標後來他要測標就是因為健保總額管制嘛當初是傳兩億那你可能不是兩億那是多少對不對因為你總額的量會讓那些醫院
transcript.whisperx[21].start 457.526
transcript.whisperx[21].end 476.214
transcript.whisperx[21].text 提高也是剛剛一樣提高誘因嘛如果你今天是給30億30億那當然他意願就會高嘛那2億就不高那新北市政府為什麼會做調整他是等於是降低的醫院來來投標的成本嘛委員我跟您說明齁這個事實上是每個醫院的總額會一個區一個固定的總額
transcript.whisperx[22].start 476.934
transcript.whisperx[22].end 477.054
transcript.whisperx[22].text 對 我知道這個
transcript.whisperx[23].start 504.148
transcript.whisperx[23].end 527.169
transcript.whisperx[23].text 已經蠻多醫院醫院有醫院了這個我都知道但關鍵就是大家的顧慮還是在於健保署會不會有一個總額總額控管然後那個總額控管的量會不會很小所以不等大概啦因為2億是控管會議的決定但是不是衛福部的決定嘛對吧那衛福部你們認為像這種大型的醫院大概可以到多少你覺得合理
transcript.whisperx[24].start 527.589
transcript.whisperx[24].end 551.801
transcript.whisperx[24].text 因為要這麼說這個一定會影響到地方的資源的重分配啦因為人口就這麼多啦也沒有增加啦所以一定是這邊有新的就有的地方會替代過來所以我們才會說這每年以100到150場的規模然後我們核給的這個額度就是跟它一樣規模的醫院一年是多少
transcript.whisperx[25].start 552.461
transcript.whisperx[25].end 575.638
transcript.whisperx[25].text 就是這樣大概多少那就要看他是那一個層級的醫院所以不會有一個像類似講的什麼先把那個額度框出來那我重新這個詮釋一下你的意思大概就是說那個像這樣的一個大型的醫院他應該多少就可以拿到多少對就是他的同等級醫院這麼多床大概是大概多少所以就是多少所以就跟
transcript.whisperx[26].start 576.559
transcript.whisperx[26].end 591.033
transcript.whisperx[26].text 這個全國的各大型的醫院講說不用擔心就放心來投標請大家拿出你的用品質服務的品質來這邊但是新的案子還是比以前的好我知道這為什麼是就是因為
transcript.whisperx[27].start 592.478
transcript.whisperx[27].end 608.738
transcript.whisperx[27].text 之前傳出的消息出來嘛大家不願意來投嘛 覺得怕虧本嘛所以市府後來就編了很多公務預算進去嘛對不對 包括停車場都市府自己興建嘛所以看得出來市府真的很想促成這件事情啦所以也希望說中央也可以在旁邊協助因為這個對板橋來說 如果
transcript.whisperx[28].start 610.72
transcript.whisperx[28].end 631.436
transcript.whisperx[28].text 我們在板橋五十五萬人口如果有多一家大型醫院一定可以紓解很多我們的鄉親看病的醫療可以增加醫療資源啦所以希望衛福部可以站在協助促成的立場 好不好好 新的案子比較OK啦好 謝謝部長 新的案子不OK好 謝謝好 謝謝葉援之委員發言接下來請劉建國委員發言