iVOD / 167319

Field Value
IVOD_ID 167319
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167319
日期 2026-01-29
會議資料.會議代碼 委員會-11-4-26-22
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 22
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議
影片種類 Clip
開始時間 2026-01-29T10:42:09+08:00
結束時間 2026-01-29T10:54:26+08:00
影片長度 00:12:17
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/58229044bac95a88626c6db3f5ef7fe952fd623850d83d5b9da39f225449bb57f91eb0f286b10d555ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:42:09 - 10:54:26
會議時間 2026-01-29T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境委員會第22次全體委員會議(事由:邀請衛生福利部就「春節急診醫療人力調度與跨院協調機制之現況與精進作為」暨「假日及連續假期急重症分級醫療政策之執行成效與改進方向」進行專題報告,並備質詢。 討論事項 審查 一、 委員何欣純等17人擬具「國民年金法第五十四條之一及第五十五條條文修正草案」案。 二、 委員邱鎮軍等17人擬具「國民年金法第十五條及第五十四條之一條文修正草案」案。 三、 委員王美惠等18人擬具「國民年金法第五十四條之一條文修正草案」案。 四、 委員劉建國等16人擬具「國民年金法第五十四條之一條文修正草案」案。 五、 委員馬文君等20人擬具「國民年金法第五十四條之一條文修正草案」案。 六、 委員徐巧芯等18人擬具「國民年金法第五十四條之一條文修正草案」案。 七、 台灣民眾黨黨團擬具「國民年金法第五十四條之一條文修正草案」案。 八、 委員邱鎮軍等21人擬具「國民年金法第十五條及第五十條條文修正草案」案。 九、 委員陳俊宇等29人擬具「國民年金法第五十四條之一條文修正草案」案。 十、 台灣民眾黨黨團擬具「國民年金法第十五條及第五十條條文修正草案」案。 十一、 委員黃秀芳等21人擬具「國民年金法第五十四條之一條文修正草案」案。 十二、 委員羅廷瑋等16人擬具「國民年金法第五十四條之一條文修正草案」案。 十三、 民進黨黨團擬具「國民年金法部分條文修正草案」案。 十四、 委員蔡易餘等17人擬具「國民年金法部分條文修正草案」案。 十五、 委員吳思瑤等18人擬具「國民年金法部分條文修正草案」案。 十六、 委員郭國文等17人擬具「國民年金法第五十四條之一條文修正草案」案。 十七、 委員王美惠等22人擬具「國民年金法部分條文修正草案」案。 十八、 委員徐富癸等18人擬具「國民年金法第五十四條之一條文修正草案」案。 十九、 委員陳亭妃等16人擬具「國民年金法部分條文修正草案」案。 【專題報告與討論事項綜合詢答,討論事項僅詢答】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 3.54096875
transcript.pyannote[0].end 7.37159375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.92409375
transcript.pyannote[1].end 9.97034375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 8.97471875
transcript.pyannote[2].end 9.93659375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 9.97034375
transcript.pyannote[3].end 11.79284375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 11.79284375
transcript.pyannote[4].end 11.84346875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 11.84346875
transcript.pyannote[5].end 13.54784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 11.87721875
transcript.pyannote[6].end 15.47159375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 17.93534375
transcript.pyannote[7].end 18.84659375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 21.52971875
transcript.pyannote[8].end 22.57596875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 23.74034375
transcript.pyannote[9].end 25.76534375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 26.40659375
transcript.pyannote[10].end 26.99721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 27.92534375
transcript.pyannote[11].end 29.27534375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 29.27534375
transcript.pyannote[12].end 29.57909375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 30.37221875
transcript.pyannote[13].end 33.52784375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 33.67971875
transcript.pyannote[14].end 34.08471875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 34.08471875
transcript.pyannote[15].end 35.51909375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 36.14346875
transcript.pyannote[16].end 37.88159375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 38.16846875
transcript.pyannote[17].end 39.73784375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 40.44659375
transcript.pyannote[18].end 41.86409375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 43.65284375
transcript.pyannote[19].end 44.59784375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 44.90159375
transcript.pyannote[20].end 46.16721875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 46.60596875
transcript.pyannote[21].end 49.33971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 49.69409375
transcript.pyannote[22].end 53.55846875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 53.94659375
transcript.pyannote[23].end 55.78596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 57.13596875
transcript.pyannote[24].end 58.30034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 58.45221875
transcript.pyannote[25].end 59.00909375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 59.26221875
transcript.pyannote[26].end 63.54846875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 64.18971875
transcript.pyannote[27].end 68.27346875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 68.69534375
transcript.pyannote[28].end 75.05721875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 75.24284375
transcript.pyannote[29].end 75.58034375
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 75.58034375
transcript.pyannote[30].end 75.98534375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 77.63909375
transcript.pyannote[31].end 79.74846875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 80.10284375
transcript.pyannote[32].end 80.44034375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 82.63409375
transcript.pyannote[33].end 82.98846875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 83.78159375
transcript.pyannote[34].end 84.89534375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 86.09346875
transcript.pyannote[35].end 89.09721875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 89.14784375
transcript.pyannote[36].end 89.35034375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 90.68346875
transcript.pyannote[37].end 93.51846875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 93.95721875
transcript.pyannote[38].end 95.61096875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 96.10034375
transcript.pyannote[39].end 99.20534375
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 99.44159375
transcript.pyannote[40].end 100.16721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 101.44971875
transcript.pyannote[41].end 102.74909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 103.91346875
transcript.pyannote[42].end 106.02284375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 106.90034375
transcript.pyannote[43].end 107.11971875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 107.71034375
transcript.pyannote[44].end 109.83659375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 110.35971875
transcript.pyannote[45].end 114.98346875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 115.87784375
transcript.pyannote[46].end 117.37971875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 117.59909375
transcript.pyannote[47].end 118.51034375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 118.62846875
transcript.pyannote[48].end 120.02909375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 120.51846875
transcript.pyannote[49].end 121.49721875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 122.25659375
transcript.pyannote[50].end 124.09596875
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 124.50096875
transcript.pyannote[51].end 125.98596875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 127.04909375
transcript.pyannote[52].end 136.00971875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 137.03909375
transcript.pyannote[53].end 146.06721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 146.21909375
transcript.pyannote[54].end 152.14221875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 153.07034375
transcript.pyannote[55].end 154.87596875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 155.60159375
transcript.pyannote[56].end 156.73221875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 156.91784375
transcript.pyannote[57].end 158.70659375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 159.33096875
transcript.pyannote[58].end 162.14909375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 163.00971875
transcript.pyannote[59].end 167.09346875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 168.15659375
transcript.pyannote[60].end 175.41284375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 175.76721875
transcript.pyannote[61].end 178.97346875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 178.97346875
transcript.pyannote[62].end 180.30659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 180.99846875
transcript.pyannote[63].end 186.71909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 187.03971875
transcript.pyannote[64].end 192.99659375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 193.82346875
transcript.pyannote[65].end 198.10971875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 201.43409375
transcript.pyannote[66].end 205.11284375
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 205.93971875
transcript.pyannote[67].end 212.40284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 212.40284375
transcript.pyannote[68].end 212.65596875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 212.65596875
transcript.pyannote[69].end 217.85346875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 218.64659375
transcript.pyannote[70].end 220.55346875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 221.16096875
transcript.pyannote[71].end 221.73471875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 223.18596875
transcript.pyannote[72].end 233.32784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 233.80034375
transcript.pyannote[73].end 239.99346875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 240.53346875
transcript.pyannote[74].end 241.49534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 241.71471875
transcript.pyannote[75].end 242.08596875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 242.08596875
transcript.pyannote[76].end 243.94221875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 244.34721875
transcript.pyannote[77].end 244.56659375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 245.64659375
transcript.pyannote[78].end 246.35534375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 246.47346875
transcript.pyannote[79].end 246.79409375
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 246.79409375
transcript.pyannote[80].end 247.43534375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 248.07659375
transcript.pyannote[81].end 251.85659375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 252.49784375
transcript.pyannote[82].end 254.01659375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 255.24846875
transcript.pyannote[83].end 259.53471875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 260.17596875
transcript.pyannote[84].end 265.81221875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 267.04409375
transcript.pyannote[85].end 274.24971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 274.55346875
transcript.pyannote[86].end 284.17221875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 280.78034375
transcript.pyannote[87].end 280.98284375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 282.11346875
transcript.pyannote[88].end 283.44659375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 284.56034375
transcript.pyannote[89].end 287.17596875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 288.28971875
transcript.pyannote[90].end 289.35284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 289.53846875
transcript.pyannote[91].end 289.94346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 289.94346875
transcript.pyannote[92].end 289.96034375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 289.97721875
transcript.pyannote[93].end 294.41534375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 291.79971875
transcript.pyannote[94].end 291.83346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 291.91784375
transcript.pyannote[95].end 292.06971875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 295.09034375
transcript.pyannote[96].end 296.11971875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 296.57534375
transcript.pyannote[97].end 300.57471875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 300.72659375
transcript.pyannote[98].end 302.09346875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 301.90784375
transcript.pyannote[99].end 302.26221875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 302.81909375
transcript.pyannote[100].end 303.94971875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 303.94971875
transcript.pyannote[101].end 304.55721875
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 304.55721875
transcript.pyannote[102].end 310.49721875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 311.23971875
transcript.pyannote[103].end 313.50096875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 313.77096875
transcript.pyannote[104].end 316.04909375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 316.74096875
transcript.pyannote[105].end 317.29784375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 317.56784375
transcript.pyannote[106].end 324.03096875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 324.46971875
transcript.pyannote[107].end 327.89534375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 327.86159375
transcript.pyannote[108].end 328.23284375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 328.09784375
transcript.pyannote[109].end 329.27909375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 329.90346875
transcript.pyannote[110].end 330.69659375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 331.72596875
transcript.pyannote[111].end 334.34159375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 334.34159375
transcript.pyannote[112].end 335.08409375
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 334.93221875
transcript.pyannote[113].end 344.09534375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 344.60159375
transcript.pyannote[114].end 349.81596875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 350.32221875
transcript.pyannote[115].end 351.19971875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 351.77346875
transcript.pyannote[116].end 351.79034375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 355.06409375
transcript.pyannote[117].end 355.08096875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 355.08096875
transcript.pyannote[118].end 355.09784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 355.09784375
transcript.pyannote[119].end 355.13159375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 355.13159375
transcript.pyannote[120].end 355.97534375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 355.14846875
transcript.pyannote[121].end 355.57034375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 355.97534375
transcript.pyannote[122].end 356.05971875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 356.05971875
transcript.pyannote[123].end 356.11034375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 356.97096875
transcript.pyannote[124].end 359.11409375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 359.55284375
transcript.pyannote[125].end 360.12659375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 360.98721875
transcript.pyannote[126].end 376.24221875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 376.37721875
transcript.pyannote[127].end 424.45409375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 424.42034375
transcript.pyannote[128].end 424.94346875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 424.85909375
transcript.pyannote[129].end 447.03284375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 447.03284375
transcript.pyannote[130].end 449.56409375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 450.32346875
transcript.pyannote[131].end 456.02721875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 456.66846875
transcript.pyannote[132].end 458.42346875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 459.26721875
transcript.pyannote[133].end 478.87596875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 479.11221875
transcript.pyannote[134].end 479.38221875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 479.78721875
transcript.pyannote[135].end 481.60971875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 481.96409375
transcript.pyannote[136].end 482.57159375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 483.55034375
transcript.pyannote[137].end 484.98471875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 486.18284375
transcript.pyannote[138].end 491.05971875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 491.53221875
transcript.pyannote[139].end 494.50221875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 496.24034375
transcript.pyannote[140].end 497.97846875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 498.33284375
transcript.pyannote[141].end 505.80846875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 508.03596875
transcript.pyannote[142].end 509.18346875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 510.22971875
transcript.pyannote[143].end 516.37221875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 516.89534375
transcript.pyannote[144].end 519.89909375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 520.10159375
transcript.pyannote[145].end 520.86096875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 521.45159375
transcript.pyannote[146].end 530.37846875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 530.37846875
transcript.pyannote[147].end 530.64846875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 530.64846875
transcript.pyannote[148].end 533.58471875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 533.50034375
transcript.pyannote[149].end 533.78721875
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 533.78721875
transcript.pyannote[150].end 534.78284375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 535.35659375
transcript.pyannote[151].end 540.11534375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 540.85784375
transcript.pyannote[152].end 541.70159375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 542.12346875
transcript.pyannote[153].end 544.70534375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 543.47346875
transcript.pyannote[154].end 543.50721875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 543.50721875
transcript.pyannote[155].end 543.67596875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 545.05971875
transcript.pyannote[156].end 548.31659375
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 549.81846875
transcript.pyannote[157].end 563.52096875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 564.88784375
transcript.pyannote[158].end 583.34909375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 567.38534375
transcript.pyannote[159].end 569.73096875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 583.92284375
transcript.pyannote[160].end 584.78346875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 585.37409375
transcript.pyannote[161].end 587.88846875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 589.15409375
transcript.pyannote[162].end 590.03159375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 590.40284375
transcript.pyannote[163].end 591.04409375
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 591.07784375
transcript.pyannote[164].end 594.70596875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 595.17846875
transcript.pyannote[165].end 601.35471875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 602.89034375
transcript.pyannote[166].end 603.68346875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 605.74221875
transcript.pyannote[167].end 608.39159375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 608.86409375
transcript.pyannote[168].end 611.80034375
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 612.47534375
transcript.pyannote[169].end 619.05659375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 620.08596875
transcript.pyannote[170].end 624.37221875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 625.23284375
transcript.pyannote[171].end 628.59096875
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 629.18159375
transcript.pyannote[172].end 629.89034375
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 630.21096875
transcript.pyannote[173].end 630.75096875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 631.17284375
transcript.pyannote[174].end 631.94909375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 634.00784375
transcript.pyannote[175].end 669.31034375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 636.35346875
transcript.pyannote[176].end 637.12971875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 637.48409375
transcript.pyannote[177].end 637.87221875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 663.72471875
transcript.pyannote[178].end 664.45034375
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 664.72034375
transcript.pyannote[179].end 665.42909375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 665.91846875
transcript.pyannote[180].end 665.93534375
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 665.93534375
transcript.pyannote[181].end 668.83784375
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 669.31034375
transcript.pyannote[182].end 669.36096875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 669.37784375
transcript.pyannote[183].end 673.56284375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 673.68096875
transcript.pyannote[184].end 677.76471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 678.38909375
transcript.pyannote[185].end 684.73409375
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 684.78471875
transcript.pyannote[186].end 695.24721875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 695.53409375
transcript.pyannote[187].end 696.59721875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 696.61409375
transcript.pyannote[188].end 696.85034375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 696.85034375
transcript.pyannote[189].end 699.36471875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 696.88409375
transcript.pyannote[190].end 696.93471875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 699.68534375
transcript.pyannote[191].end 706.46909375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 707.02596875
transcript.pyannote[192].end 708.27471875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 708.79784375
transcript.pyannote[193].end 713.67471875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 711.51471875
transcript.pyannote[194].end 711.70034375
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 712.25721875
transcript.pyannote[195].end 712.64534375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 713.67471875
transcript.pyannote[196].end 713.77596875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 713.77596875
transcript.pyannote[197].end 713.79284375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 713.79284375
transcript.pyannote[198].end 714.36659375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 714.36659375
transcript.pyannote[199].end 723.24284375
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 723.91784375
transcript.pyannote[200].end 727.02284375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 726.48284375
transcript.pyannote[201].end 729.30096875
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 727.10721875
transcript.pyannote[202].end 728.00159375
transcript.whisperx[0].start 3.564
transcript.whisperx[0].end 12.81
transcript.whisperx[0].text 好 謝謝主席 大家辛苦部長 請署長護睡署專門委員部長辛苦啦 醫院就像一條船每一個人都很重要
transcript.whisperx[1].start 30.427
transcript.whisperx[1].end 46.718
transcript.whisperx[1].text 準定,大副、二副、準機長主崩也很重要這麼準,台北人主崩也沒人吃所以上升重要,不定大家都很重要醫院裡面有醫師有放射檢驗15個醫事相關人力
transcript.whisperx[2].start 57.165
transcript.whisperx[2].end 79.252
transcript.whisperx[2].text 沒有說誰重要到不行但是婦理人員真的是很重要一個醫院婦理人力如果能夠搞定這個醫院差不多解這三分之二的事情所以保證得婦理界者得天下你把婦理搞定了你就可以出來選了來這是
transcript.whisperx[3].start 86.141
transcript.whisperx[3].end 104.38
transcript.whisperx[3].text 急診室觀察床的護理點數,上面那個是703,那第二天開始629點喔,那是點不是圓,護理的費用來下一頁,這個是經濟病床,一天是819點
transcript.whisperx[4].start 107.76
transcript.whisperx[4].end 135.153
transcript.whisperx[4].text 那有另外一個是734那如果一個婦女在那裡照顧10床就8190點但是是三班子喔三個人要搬喔所以搬下來一個人差不多兩千多那一個護理人員一個要上班上二十二天勞資法的規定所以一天兩千多二十二天差不多四萬幾個
transcript.whisperx[5].start 137.093
transcript.whisperx[5].end 149.879
transcript.whisperx[5].text ICU的,我昨天給他查了一下,他一天的護理費ICU,這裡面沒有ICU,沒有,沒有都出出來ICU三千九百幾點,有的是四千幾點但是ICU是一個護士夠兩層
transcript.whisperx[6].start 153.14
transcript.whisperx[6].end 178.627
transcript.whisperx[6].text 所以兩成都要八千多 也三萬多 也兩千多元所以一個人差不多四萬多 失了喔這四萬多還要含他的退休準備金什麼什麼所以是遠遠不足啦 所以癥結就出在這裡啦處理說你們核定的點數太低嘛沒有啦沒有對不對委員你做完議長做清楚
transcript.whisperx[7].start 181.038
transcript.whisperx[7].end 202.945
transcript.whisperx[7].text 不是這樣算啦因為我們還有很多的儲置費裡面都有人力費用啦所以放一個鼻胃管有一個費用啦所以這個護理費是基本的當然我們要調我們連續去年調25億今年還會再調25億所以我們四年會打算調100億都給護理費啦
transcript.whisperx[8].start 206.004
transcript.whisperx[8].end 219.458
transcript.whisperx[8].text 把它調起來啊但是其他的費用在調的時候裡面也包含人力費用啦在ICU最明顯啦ICU會有很多處置裡面都有護理人員執行的費用所以不是把護理費這條啦啊你一個企業裡面有
transcript.whisperx[9].start 223.263
transcript.whisperx[9].end 242.755
transcript.whisperx[9].text 清潔的有電力的有什麼東西都在裡面那個另外一筆是訂房費所以我要跟部長報告就是癥結點就在這裡昨天某一個醫學中心的院長跟我講他們的N1他們一年已經給他86萬
transcript.whisperx[10].start 245.7
transcript.whisperx[10].end 264.437
transcript.whisperx[10].text 年薪啦,這付不去嘛,但是平時也是拿其他地方來賺,你以前的部長,大家都叫人家按來切去,因為你什麼都做過,你夫妻急診直接做,幼稚園直接做到急診,做到什麼什麼公務,你都做了
transcript.whisperx[11].start 267.076
transcript.whisperx[11].end 293.806
transcript.whisperx[11].text 你想知道這個問題是出在哪裡所以你剛剛講的我們很欣慰啦那對於中華民國在第一線執行婦女的工作人員19萬人嘛那領召的30萬人我們對於在第一線執行的人我們都對他們非常的致敬跟最高的謝意啦台灣的健保能夠
transcript.whisperx[12].start 295.271
transcript.whisperx[12].end 310.208
transcript.whisperx[12].text 世界第一名台灣的國民平均壽命能夠一年一年增加最大的貢獻者是護理人員因為一個病人跟護理人員接觸的時間是超過所有醫事人員瞎起來
transcript.whisperx[13].start 311.574
transcript.whisperx[13].end 328.345
transcript.whisperx[13].text 有統計 差不多一個月兩次要跟病人差不多半個月八十個時間都跟護理監管接觸其他的醫師相關的都是很短暫醫師也是占5%到7%的時間所以護理人員是真的是要好好的照顧那這個護病皮 這個是
transcript.whisperx[14].start 331.738
transcript.whisperx[14].end 350.954
transcript.whisperx[14].text 你們也是往這個方向在挪念嘛 對不對雖然沒有入伐我為了跟從要入伐的事情提一個案被罵得要死不然我看人家沒人在美麗耶不錯耶你不錯 你都沒人在美麗耶所以你真的得婦女戒耶 你要得天下耶你講一下我聽你 你講一下你這樣問我也要怎麼講
transcript.whisperx[15].start 361.227
transcript.whisperx[15].end 375.624
transcript.whisperx[15].text 其實跟委員報告確實那個剛剛講的護理費我們在調嘛去年調了25億今年還會再調連四年要一共調100億進來那這次調我們特別去扣合那個薪資的成長
transcript.whisperx[16].start 376.645
transcript.whisperx[16].end 393.747
transcript.whisperx[16].text 所以不是調性去前就進去醫院的口袋啦是一定要搭配那個護理人員的薪資要調升我們會監測那個投保薪資所以我們看起來確實投保薪資去年年中12月跟前一年113年的投保薪資都有增加
transcript.whisperx[17].start 394.147
transcript.whisperx[17].end 414.59
transcript.whisperx[17].text 沒有錯所以不會說我們只把護理費調升結果護理人員都沒有薪資的調整倒是我們很欣慰說大家有在做這方面的努力那我們會持續的來逐年逐年把它調升這個護理費的部分
transcript.whisperx[18].start 415.325
transcript.whisperx[18].end 438.22
transcript.whisperx[18].text 至於偏鄉的部分我們現在是也在爭取公立醫院能夠讓醫護人員在偏鄉加急讓願意留在偏鄉的醫護人員因為多數偏鄉的地方都是公立醫院所以我們公立醫院爭取行政院的預算我知道也有一些醫院
transcript.whisperx[19].start 438.96
transcript.whisperx[19].end 457.997
transcript.whisperx[19].text 是在偏鄉的私立醫院,我們更敬佩所以我們來看看有什麼方式來一起協助你會主動講到偏鄉,我很佩服你三地離島、偏鄉這個真的,我們在做第一線我做第一線重生,我感觸想最深
transcript.whisperx[20].start 459.338
transcript.whisperx[20].end 478.129
transcript.whisperx[20].text 租會區裡面醫院大部分都比較正常租會區裡面的人他們的保險也多個人現金保險也多所以他們對於醫療的給付醫療額外支出他們都沒問題整咖吃飯都沒問題啊 大家說要吃土啊他還有負的錢啊 偏鄉的衣服呢金門就找不到 金門就欠
transcript.whisperx[21].start 486.223
transcript.whisperx[21].end 494.31
transcript.whisperx[21].text 不然你看恆春半島,你如果在那裡不久以後,那點就找不到人了,所以這點最重要
transcript.whisperx[22].start 496.511
transcript.whisperx[22].end 520.498
transcript.whisperx[22].text 剛才說得富你得天下,偏香港搞定了你也可以得天下所以我現在都給你幾點名錄,你要去選都沒問題來,下一張這個春節這個剛剛你也講很多了啦所以我覺得這個錢一定一定一定會回饋給所有的人力
transcript.whisperx[23].start 521.776
transcript.whisperx[23].end 544.221
transcript.whisperx[23].text 錢最好是落到員工的口袋最好啦其他的都不重要現在最重要就是讓他們能夠有實質的回饋那你說80%多回饋給第一線嘛對不對對那這個可以這個很簡單啊你就看幾個三人三人的身份證資料回報回來一審查就知道了嘛那很簡單的啦對
transcript.whisperx[24].start 545.137
transcript.whisperx[24].end 562.058
transcript.whisperx[24].text 健保署什麼都不要,這最厲害啦所以我對這個我一點都不擔心我們現在醫院真的大家都很戰戰兢兢雖然是很辛苦,大家忙很久
transcript.whisperx[25].start 565.046
transcript.whisperx[25].end 569.568
transcript.whisperx[25].text 對醫療院所要聽受啦,對醫務人員要聽受啦,很感謝的,沒有那種鼓勵我告訴你最近,我們屏東某醫院,其實沒有藏人住耶用坐的也坐到年齡,反正是騎在吊墊上用手騎耶,這樣有誇張嗎?藏本不進去耶,所以
transcript.whisperx[26].start 589.676
transcript.whisperx[26].end 600.969
transcript.whisperx[26].text 這個都要持續的關注啦都會區的醫院就好好的合而營造他的環境他就會做得很好了啦好來最後一個我們護睡署
transcript.whisperx[27].start 605.768
transcript.whisperx[27].end 629.703
transcript.whisperx[27].text 我三天前,我找你們署長,我說這說得怎麼樣?補典給我答應,補典跟你們財政部部長答應,說年底要改革,醫生的加班費、值班費,結果現在怎麼樣?陳時中次政委也出來協調,他跟我說,這個案已經上議,行政院院長要回答,有沒有?補典說沒有。
transcript.whisperx[28].start 638.508
transcript.whisperx[28].end 648.42
transcript.whisperx[28].text 我們一直在跟負稅署財政部跟還有人總大家都在討論所以差不多共識差不多了
transcript.whisperx[29].start 648.86
transcript.whisperx[29].end 677.108
transcript.whisperx[29].text 我們應該在這個二月的時候我們就會發一個這個函給財政部來做這個未來這個醫師在加班費的這個認定跟他施用 加班跟施班啦對 加班跟施班 醫生已經十五年不夠新歲了耶我知道 知道十五年都沒頂檔了耶所以現在這個誘人啊 遭料料耶現在這個重症醫師傳播門的醫生都早早一開業
transcript.whisperx[30].start 678.667
transcript.whisperx[30].end 698.423
transcript.whisperx[30].text 我那天有跟負稅署說開業地也要處理,看要怎麼處理但是醫院這邊加班費、值班費,川普總統你看他笑笑,但是他說加班費免稅我覺得這真的不夠大家人,跟他說一戰加班費、值班費還有小費
transcript.whisperx[31].start 699.824
transcript.whisperx[31].end 723.11
transcript.whisperx[31].text 免費 免稅啊所以不然你把人家帶去這樣我這間種族診院我還可以幫你忙喔沒關係 不行不行這樣這個一定要解決啊不然的話越來越嚴重很快會有好消息長庚醫院 亭口長庚五個GS醫師一幫肝臟外科醫師最近三個跑去診所這像話嗎部長這個太嚴重了 好不好好 謝謝謝謝委員