iVOD / 167311

Field Value
IVOD_ID 167311
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167311
日期 2026-01-29
會議資料.會議代碼 委員會-11-4-35-29
會議資料.會議代碼:str 第11屆第4會期外交及國防委員會第29次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 29
會議資料.種類 委員會
會議資料.委員會代碼[0] 35
會議資料.委員會代碼:str[0] 外交及國防委員會
會議資料.標題 第11屆第4會期外交及國防委員會第29次全體委員會議
影片種類 Clip
開始時間 2026-01-29T10:00:05+08:00
結束時間 2026-01-29T10:11:30+08:00
影片長度 00:11:25
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/58229044bac95a883e466084783330815ca6c4b86dd6b28f9da39f225449bb57b63d252e14d10cbe5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王定宇
委員發言時間 10:00:05 - 10:11:30
會議時間 2026-01-29T09:00:00+08:00
會議名稱 立法院第11屆第4會期外交及國防委員會第29次全體委員會議(事由:邀請僑務委員會委員長徐佳青報告「面對全球經貿變局挑戰,如何協輔僑臺商穩健發展布局全球之具體策略及措施」,併請衛生福利部列席,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 0.28409375
transcript.pyannote[0].end 1.34721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 1.34721875
transcript.pyannote[1].end 1.44846875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 1.87034375
transcript.pyannote[2].end 1.90409375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 1.90409375
transcript.pyannote[3].end 2.03909375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 2.03909375
transcript.pyannote[4].end 5.48159375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 5.93721875
transcript.pyannote[5].end 7.82721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 10.20659375
transcript.pyannote[6].end 11.16846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 11.28659375
transcript.pyannote[7].end 16.90596875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 17.07471875
transcript.pyannote[8].end 18.91409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 18.96471875
transcript.pyannote[9].end 19.01534375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 19.13346875
transcript.pyannote[10].end 25.12409375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 25.52909375
transcript.pyannote[11].end 31.78971875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 32.16096875
transcript.pyannote[12].end 44.68221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 37.86471875
transcript.pyannote[13].end 37.93221875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 37.93221875
transcript.pyannote[14].end 37.96596875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 37.96596875
transcript.pyannote[15].end 38.25284375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 45.05346875
transcript.pyannote[16].end 45.76221875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 46.09971875
transcript.pyannote[17].end 49.62659375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 49.64346875
transcript.pyannote[18].end 49.71096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 49.72784375
transcript.pyannote[19].end 49.86284375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 49.91346875
transcript.pyannote[20].end 53.79471875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 53.79471875
transcript.pyannote[21].end 53.91284375
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 53.91284375
transcript.pyannote[22].end 53.98034375
transcript.pyannote[23].speaker SPEAKER_02
transcript.pyannote[23].start 54.31784375
transcript.pyannote[23].end 57.91221875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 57.96284375
transcript.pyannote[24].end 61.13534375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 61.67534375
transcript.pyannote[25].end 70.12971875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 70.83846875
transcript.pyannote[26].end 72.18846875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 72.42471875
transcript.pyannote[27].end 73.57221875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 74.46659375
transcript.pyannote[28].end 80.54159375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 79.86659375
transcript.pyannote[29].end 81.43596875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 80.81159375
transcript.pyannote[30].end 85.75596875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 85.75596875
transcript.pyannote[31].end 87.91596875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 85.77284375
transcript.pyannote[32].end 85.78971875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 85.85721875
transcript.pyannote[33].end 86.22846875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 86.85284375
transcript.pyannote[34].end 87.37596875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 88.21971875
transcript.pyannote[35].end 91.27409375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 91.86471875
transcript.pyannote[36].end 97.38284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 95.37471875
transcript.pyannote[37].end 96.87659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 97.77096875
transcript.pyannote[38].end 98.80034375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 98.29409375
transcript.pyannote[39].end 109.56659375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 101.73659375
transcript.pyannote[40].end 102.09096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 109.92096875
transcript.pyannote[41].end 110.91659375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 110.91659375
transcript.pyannote[42].end 111.27096875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 111.45659375
transcript.pyannote[43].end 112.13159375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 112.51971875
transcript.pyannote[44].end 115.15221875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 115.33784375
transcript.pyannote[45].end 136.12784375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 136.12784375
transcript.pyannote[46].end 136.53284375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 136.53284375
transcript.pyannote[47].end 141.34221875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 141.67971875
transcript.pyannote[48].end 142.64159375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 142.82721875
transcript.pyannote[49].end 151.77096875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 152.36159375
transcript.pyannote[50].end 155.24721875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 155.68596875
transcript.pyannote[51].end 165.79409375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 166.19909375
transcript.pyannote[52].end 183.52971875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 184.01909375
transcript.pyannote[53].end 194.31284375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 194.65034375
transcript.pyannote[54].end 200.18534375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 200.69159375
transcript.pyannote[55].end 201.29909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 200.72534375
transcript.pyannote[56].end 205.61909375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 202.64909375
transcript.pyannote[57].end 204.92721875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 205.75409375
transcript.pyannote[58].end 206.34471875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 206.46284375
transcript.pyannote[59].end 208.23471875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 208.69034375
transcript.pyannote[60].end 211.67721875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 211.79534375
transcript.pyannote[61].end 214.98471875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 215.32221875
transcript.pyannote[62].end 222.32534375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 222.51096875
transcript.pyannote[63].end 226.03784375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 226.39221875
transcript.pyannote[64].end 236.01096875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 236.66909375
transcript.pyannote[65].end 254.89409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 255.13034375
transcript.pyannote[66].end 256.05846875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 257.18909375
transcript.pyannote[67].end 266.48721875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 264.59721875
transcript.pyannote[68].end 271.34721875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 272.05596875
transcript.pyannote[69].end 277.94534375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 277.94534375
transcript.pyannote[70].end 278.31659375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 278.68784375
transcript.pyannote[71].end 283.54784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 283.54784375
transcript.pyannote[72].end 283.80096875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 283.66596875
transcript.pyannote[73].end 293.31846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 285.50534375
transcript.pyannote[74].end 285.69096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 293.31846875
transcript.pyannote[75].end 294.11159375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 294.11159375
transcript.pyannote[76].end 299.14034375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 294.12846875
transcript.pyannote[77].end 294.65159375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 300.10221875
transcript.pyannote[78].end 307.54409375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 307.89846875
transcript.pyannote[79].end 308.28659375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 308.89409375
transcript.pyannote[80].end 334.45971875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 334.81409375
transcript.pyannote[81].end 344.29784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 344.68596875
transcript.pyannote[82].end 346.57596875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 347.14971875
transcript.pyannote[83].end 350.62596875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 350.91284375
transcript.pyannote[84].end 352.19534375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 352.19534375
transcript.pyannote[85].end 364.66596875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 365.25659375
transcript.pyannote[86].end 370.72409375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 371.07846875
transcript.pyannote[87].end 392.42534375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 392.42534375
transcript.pyannote[88].end 392.49284375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 392.49284375
transcript.pyannote[89].end 392.52659375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 392.52659375
transcript.pyannote[90].end 392.62784375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 392.62784375
transcript.pyannote[91].end 394.29846875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 394.29846875
transcript.pyannote[92].end 394.31534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 394.31534375
transcript.pyannote[93].end 395.09159375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 395.42909375
transcript.pyannote[94].end 407.68034375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 407.74784375
transcript.pyannote[95].end 409.13159375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 409.40159375
transcript.pyannote[96].end 411.02159375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 411.54471875
transcript.pyannote[97].end 412.48971875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 413.01284375
transcript.pyannote[98].end 424.28534375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 424.94346875
transcript.pyannote[99].end 432.68909375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 433.02659375
transcript.pyannote[100].end 435.70971875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 435.96284375
transcript.pyannote[101].end 438.22409375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 439.96221875
transcript.pyannote[102].end 441.76784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 442.52721875
transcript.pyannote[103].end 445.86846875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 447.08346875
transcript.pyannote[104].end 447.52221875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 448.29846875
transcript.pyannote[105].end 449.64846875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 450.20534375
transcript.pyannote[106].end 451.79159375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 452.23034375
transcript.pyannote[107].end 454.69409375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 454.96409375
transcript.pyannote[108].end 468.19409375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 468.53159375
transcript.pyannote[109].end 470.80971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 471.92346875
transcript.pyannote[110].end 474.91034375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 475.39971875
transcript.pyannote[111].end 480.17534375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 481.23846875
transcript.pyannote[112].end 490.78971875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 491.44784375
transcript.pyannote[113].end 503.14221875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 503.59784375
transcript.pyannote[114].end 504.59346875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 504.91409375
transcript.pyannote[115].end 526.34534375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 527.69534375
transcript.pyannote[116].end 538.03971875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 536.84159375
transcript.pyannote[117].end 539.81159375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 538.09034375
transcript.pyannote[118].end 543.13596875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 542.03909375
transcript.pyannote[119].end 553.14284375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 543.76034375
transcript.pyannote[120].end 544.04721875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 547.50659375
transcript.pyannote[121].end 547.84409375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 553.51409375
transcript.pyannote[122].end 553.88534375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 554.34096875
transcript.pyannote[123].end 558.61034375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 556.36596875
transcript.pyannote[124].end 560.93909375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 561.42846875
transcript.pyannote[125].end 569.37659375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 565.71471875
transcript.pyannote[126].end 568.73534375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 569.95034375
transcript.pyannote[127].end 571.43534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 571.43534375
transcript.pyannote[128].end 572.17784375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 571.45221875
transcript.pyannote[129].end 571.46909375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 571.99221875
transcript.pyannote[130].end 575.82284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 576.36284375
transcript.pyannote[131].end 576.98721875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 576.37971875
transcript.pyannote[132].end 582.58971875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 578.80971875
transcript.pyannote[133].end 578.84346875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 582.70784375
transcript.pyannote[134].end 587.92221875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 588.29346875
transcript.pyannote[135].end 595.65096875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 596.29221875
transcript.pyannote[136].end 598.01346875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 598.01346875
transcript.pyannote[137].end 599.11034375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 598.75596875
transcript.pyannote[138].end 599.43096875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 599.29596875
transcript.pyannote[139].end 599.88659375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 599.95409375
transcript.pyannote[140].end 616.67721875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 617.06534375
transcript.pyannote[141].end 617.35221875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 617.74034375
transcript.pyannote[142].end 620.05221875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 620.49096875
transcript.pyannote[143].end 637.83846875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 624.52409375
transcript.pyannote[144].end 624.55784375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 624.84471875
transcript.pyannote[145].end 624.96284375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 638.96909375
transcript.pyannote[146].end 647.15346875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 647.45721875
transcript.pyannote[147].end 648.08159375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 648.94221875
transcript.pyannote[148].end 661.58159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 661.95284375
transcript.pyannote[149].end 662.54346875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 662.54346875
transcript.pyannote[150].end 662.88096875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 663.03284375
transcript.pyannote[151].end 675.84096875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 676.49909375
transcript.pyannote[152].end 681.12284375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 680.73471875
transcript.pyannote[153].end 684.75096875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 684.31221875
transcript.pyannote[154].end 685.61159375
transcript.whisperx[0].start 0.289
transcript.whisperx[0].end 10.977
transcript.whisperx[0].text 好謝謝主席麻煩我們信保基金的董事長請信保基金董事長主席我也好
transcript.whisperx[1].start 11.568
transcript.whisperx[1].end 29.755
transcript.whisperx[1].text 待會有其他需要補充的話不管是副委員長或其他業管單位就歡迎自己上來啦第一個請教一個問題我們信保根據我調查我們在2025年大概信保出去我們擔保的信保額度是1億5147萬美金
transcript.whisperx[2].start 32.876
transcript.whisperx[2].end 60.91
transcript.whisperx[2].text 2024年是1億4986萬美金當然壽星的額度比這還高大概是一半就是說有點像我買房子我要去買我要買一個2億5千151萬的房子然後呢這個你們來幫我擔保大概一半的錢當我這個擔保的保證人大概是這個概念那我要請教你我們一般要比較難理解的是如果我們信保基金海外信保
transcript.whisperx[3].start 61.79
transcript.whisperx[3].end 64.473
transcript.whisperx[3].text 去承擔1億5147萬美金或1億4986萬美金我用1億來講好了那你們要準備多少錢
transcript.whisperx[4].start 75.202
transcript.whisperx[4].end 81.926
transcript.whisperx[4].text 因為目前我們所謂的貸償率就是等於是假如是100塊我們貸償率是1.4塊就是1.4%那我這樣講不知道對不對就是說我今天如果信保一億
transcript.whisperx[5].start 91.912
transcript.whisperx[5].end 109.343
transcript.whisperx[5].text 我大概要準備的是1億的1.4%這個就是我的成本當然這個成本將來還可以去追啦我們把它當作呆帳不一定會追回來那前面有人說你要幫人家擔保1億4那1億4跳掉了你要全部負擔沒錯 所以有一個真性嘛
transcript.whisperx[6].start 110.583
transcript.whisperx[6].end 135.257
transcript.whisperx[6].text 連針嘛 銀行又銀行股啊 又不是隨便放款他一定會去看你的信用 你的所得你的營業額 甚至你有沒有不動產 資產 負債都會看完 經過徵信完我決定 我銀行要借你一億可是我覺得對你信用上我有所疑慮 要你找個保證人這個保證人呢 在海外就是海外信保基金 你們來當保證人
transcript.whisperx[7].start 136.658
transcript.whisperx[7].end 151.011
transcript.whisperx[7].text 在家庭通常呢配偶買房子連帶保證人就找另外一個配偶嘛綁在一起啊所以政府擔任所謂信保的角色就是當我們中小企業如果在海外他要去拚經濟
transcript.whisperx[8].start 152.412
transcript.whisperx[8].end 176.708
transcript.whisperx[8].text 可是他拿不到銀行啊 海外美國的銀行不借他錢啊歐洲銀行不借他錢啊或者因為你誰擔保的身份差別 利率會有所差別美國的話 如果你是初次來這邊做生意 大概是6%那一般信用比較好 有往來的大概是2%以下啦這個是海外資金運作的所以我再跟你確認這件事情就是我們長年以來 這個又不是我們現在執政才有
transcript.whisperx[9].start 177.408
transcript.whisperx[9].end 194.043
transcript.whisperx[9].text 長年以來喬委會的海外信保基金為了幫助我們喬台商我們在信保的額度每一億你們要準備的成本大概是1.4%左右我這樣全是沒有錯嘛這個就是成本嘛
transcript.whisperx[10].start 195.284
transcript.whisperx[10].end 221.904
transcript.whisperx[10].text 所以100塊要準備1.4塊100億要準備1.4億140萬美金140萬美金要準備這個額度所以從這來看我們最近跟美國談到的所謂的最惠國待遇或者是關稅談判我覺得它是一個專業問題政治的口水沒辦法去掩蓋真實如果這個談判的條件不好企業界會知道
transcript.whisperx[11].start 223.206
transcript.whisperx[11].end 233.942
transcript.whisperx[11].text 產業界會知道如果這個談判的條件不錯產業界也會知道也許對政治人物的評價可以透過抹黑啊 造謠啊可以有一時的影響但是這是紮紮實實的經濟議題
transcript.whisperx[12].start 236.738
transcript.whisperx[12].end 255.364
transcript.whisperx[12].text 所以2500億所謂的對美投資那個是指私人部分包含台積電的1600億美金還有我們要購買我們的能源等等那個大概就消化掉了很多人把後面那2500億美金的信用單保直接把它加上去你們會這樣加嗎
transcript.whisperx[13].start 258.399
transcript.whisperx[13].end 278.064
transcript.whisperx[13].text 應該不一定啦 因為事實上本身這個企業他的投資的錢到底是自己的錢或者是跟銀行借來的錢其實是都有可能的 用家法就不對嘛就好像你兒子去買一間房子一千萬叫你這個老爸來擔保一千萬難道你還要在另外拿一千萬放在那裡 不是你是擔保他那一千萬不還的時候你的貸產嘛 是
transcript.whisperx[14].start 278.752
transcript.whisperx[14].end 308.044
transcript.whisperx[14].text 那代償率1.4%我就要準備1000萬我就準備個這個14萬嘛就代償率的概念是這樣子所以2500億美金的擔保或信保其實我準備就是2500億乘上1.4%大概35億美金35億啦何況像台積電那種公司哪需要你信保啊所以還會更小大概會低於25億美金因為許多會到美國投資的大型公司他本身的Credibility在
transcript.whisperx[15].start 309.603
transcript.whisperx[15].end 333.52
transcript.whisperx[15].text 國際任何銀行都搶到借他錢根本不用你去信保他所以他真正幫助到的是比較少涉足海外投資的或者是首次去海外投資的或者是屬於中小型規模欠缺他的這個Credibility這樣的企業我們在幫助的是 輔助的是這樣的弱勢或中小或者他有能力只是缺乏過去的時機
transcript.whisperx[16].start 334.941
transcript.whisperx[16].end 350.459
transcript.whisperx[16].text 就像我們的性保基金一樣 對不對所以第一個命題我剛才請教的就是透過我們政府長年就存在的對海外叫海外性保在國內的就是中小性保這個不是現在才有欸你們海外性保操作幾年了
transcript.whisperx[17].start 351.634
transcript.whisperx[17].end 370.346
transcript.whisperx[17].text 37年多了37年多啊我們在場大概沒有幾個比37年小啦我們都比他大但37年也算蠻長的時間所以37年來歷經多任的政府信保是一個我們我們的企業家我們的產業界去海外打拼的時候他的一個工具
transcript.whisperx[18].start 371.447
transcript.whisperx[18].end 394.868
transcript.whisperx[18].text 從來沒有人說我信保 我們僑委會信保我們的信保金 信保1億5千147萬美金哇 那你僑委會的預算 大概一半就拿去花掉了沒有人這樣算的所以我們該透過這樣子 讓他理解信保的概念那個貸償率1.4%才是一個潛在的成本而且那還可以再追償的你只是擔任擔保 所以
transcript.whisperx[19].start 396.41
transcript.whisperx[19].end 410.646
transcript.whisperx[19].text 2500億準備起來是35億美金如果扣掉大型企業那種自己就可以擔保自己的大概還要比35億美金更小現在任何人再把2500億信保那就不是不懂囉如果看到我們這段不是不懂囉
transcript.whisperx[20].start 411.607
transcript.whisperx[20].end 426.774
transcript.whisperx[20].text 那就裝不懂直接要亂帶風去破壞台灣好朋友談到這麼優惠那台灣的傳統產業不管在台中在彰化在任何地方因為這樣子 韓國已經吃雞了韓國變25%15%不疊加跟25%要疊加差多少如果你原始稅率是21或27要疊加的意思就是變50多%欸跟15%封頂不疊加
transcript.whisperx[21].start 439.977
transcript.whisperx[21].end 445.007
transcript.whisperx[21].text 台灣的中小企業的命脈在這裡那我現在要請教你的第二個問題我們也請副委員長上來
transcript.whisperx[22].start 447.13
transcript.whisperx[22].end 470.356
transcript.whisperx[22].text 那個現在有產生一個情形台灣確實在對等關稅談判達到了15%另外還有2.5倍的投資可以豁免抵稅歸零還有232條款對九大產業的列入不管是汽車零組件我們的水五金工具機腳踏車零組件等等等等
transcript.whisperx[23].start 471.974
transcript.whisperx[23].end 485.59
transcript.whisperx[23].text 那我現在要請教僑委會跟信保基金的是我們有一些僑台商他的工廠是在台美以外的第三國而像東南亞有的是19%有的21%有的還要疊加有的還有懲罰稀產地幫中國稀產地的懲罰性關稅20%
transcript.whisperx[24].start 491.516
transcript.whisperx[24].end 510.675
transcript.whisperx[24].text 那我們的橋台商如果因為在越南啊在哪裡遇到這樣困難他轉去美國投資我請教橋友會這個投資額度有沒有列入台灣對美投資額度他從第三地比如說我們某某橋台商現在他的工廠設在非洲設在東南亞
transcript.whisperx[25].start 511.415
transcript.whisperx[25].end 525.995
transcript.whisperx[25].text 而他現在決定因應這個關稅我在這邊生產把我的利潤吃掉了我現在某某橋台商呢把我們的資金要拿到美國加州投資德州投資這個有沒有列入我們中華民國對美投資的額度內
transcript.whisperx[26].start 528.048
transcript.whisperx[26].end 539.277
transcript.whisperx[26].text 謝謝委員的關心喔 僑委會的工作主要是做僑台商的平台那您剛剛的問題呢 可能專業的經濟部或者是這個我們的談判小組來回答比較適合 對 那我們一定是全力配合不是配合 你們要了解這一點 僑台商如果你們服務夠好 僑台商第一個會找到你們欸 請教一下 我現在在印尼這個工場齁我準備挪一億美金去投資美國
transcript.whisperx[27].start 554.429
transcript.whisperx[27].end 558.993
transcript.whisperx[27].text 阿這個有沒有算我們國家對美投資因為這個題目會決定下一題喔但是僑委會的立場我們不是這個主事的機關我們還是要以這個對其他的像經濟部或者是談判小組我要你們去了解嘛
transcript.whisperx[28].start 569.983
transcript.whisperx[28].end 595.434
transcript.whisperx[28].text Q&A要答得出來啊你Q&A都答不出來你怎麼服務橋台商答完之後說請找經貿辦請找經濟部國貿局他有他業管單位但橋台商我從第三國移到美國去投資的時候有沒有列入我們國家對美投資這個很重要這牽涉到我們一開始那2500億台積電已經投資1600億了第二個他如果從第三國到美國投資信保金金
transcript.whisperx[29].start 596.565
transcript.whisperx[29].end 615.833
transcript.whisperx[29].text 可不可以列入我們服務的對象是可以嘛所以這兩題是相關的如果我們今天有一個在印尼的橋台商他從印尼到美國去投資我們國家納稅人的信保基金縱使就1.7%的成本潛在成本我去擔保他去美國他可以取得比較低的競爭優勢
transcript.whisperx[30].start 617.153
transcript.whisperx[30].end 636.683
transcript.whisperx[30].text 那他到底有沒有列入我們對美投資問清楚啊如果沒有你可以提醒我們談判辦說這個要列進去啊這一旦列進去我們的信保海外信保基金等於變成整體國家的作戰而且我們國家的那2500億美金的信保是不是要把你們這個納入裡面
transcript.whisperx[31].start 639.025
transcript.whisperx[31].end 647.925
transcript.whisperx[31].text include列在額度裡面而不是列在外面因為光列在額度我看你們2025年就吃下了一億五千萬美金啊不錯啊
transcript.whisperx[32].start 649.071
transcript.whisperx[32].end 675.62
transcript.whisperx[32].text 這不錯啊 這個減輕我們的負擔啊縱使就1.7% 1.4%也是一個負擔啊那個信保董事長知道我的意思嗎就是說這一個額度有沒有列入我們對美投資額度有不錯啊第二個他現在已經算是我們信保服務的客戶那我信保這一個額度有沒有列入那第二段2500億的美金的信保的額度裡面如果有更好我現在在做就可以扣掉
transcript.whisperx[33].start 676.547
transcript.whisperx[33].end 684.363
transcript.whisperx[33].text 你這樣懂我意思嗎那你們現在如果沒有答案請盡速回答本委員會跟本席這樣好不好好 謝謝委員的戰略思維我們就配合趕快來去這個好 謝謝