iVOD / 167272

Field Value
IVOD_ID 167272
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167272
日期 2026-01-28
會議資料.會議代碼 委員會-11-4-20-19
會議資料.會議代碼:str 第11屆第4會期財政委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第19次全體委員會議
影片種類 Clip
開始時間 2026-01-28T10:35:18+08:00
結束時間 2026-01-28T10:47:33+08:00
影片長度 00:12:15
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0b5ec5fbcfced67df0c4161072ef766e11b3bb87f1b5dc7ac551decc99d7f3b2fd113443f1ac9aa35ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 10:35:18 - 10:47:33
會議時間 2026-01-28T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第19次全體委員會議(事由:邀請財政部莊部長翠雲就「統一發票經費編列及宣傳推廣業務執行情形」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_04
transcript.pyannote[0].start 0.68909375
transcript.pyannote[0].end 18.25596875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 4.45221875
transcript.pyannote[1].end 4.48596875
transcript.pyannote[2].speaker SPEAKER_04
transcript.pyannote[2].start 18.59346875
transcript.pyannote[2].end 24.83721875
transcript.pyannote[3].speaker SPEAKER_04
transcript.pyannote[3].start 27.18284375
transcript.pyannote[3].end 28.56659375
transcript.pyannote[4].speaker SPEAKER_04
transcript.pyannote[4].start 29.98409375
transcript.pyannote[4].end 31.04721875
transcript.pyannote[5].speaker SPEAKER_04
transcript.pyannote[5].start 31.78971875
transcript.pyannote[5].end 36.04221875
transcript.pyannote[6].speaker SPEAKER_09
transcript.pyannote[6].start 36.36284375
transcript.pyannote[6].end 43.50096875
transcript.pyannote[7].speaker SPEAKER_04
transcript.pyannote[7].start 43.88909375
transcript.pyannote[7].end 76.05284375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 51.65159375
transcript.pyannote[8].end 52.02284375
transcript.pyannote[9].speaker SPEAKER_09
transcript.pyannote[9].start 52.02284375
transcript.pyannote[9].end 52.14096875
transcript.pyannote[10].speaker SPEAKER_09
transcript.pyannote[10].start 52.96784375
transcript.pyannote[10].end 53.22096875
transcript.pyannote[11].speaker SPEAKER_09
transcript.pyannote[11].start 77.23409375
transcript.pyannote[11].end 80.84534375
transcript.pyannote[12].speaker SPEAKER_04
transcript.pyannote[12].start 79.09034375
transcript.pyannote[12].end 84.67596875
transcript.pyannote[13].speaker SPEAKER_06
transcript.pyannote[13].start 86.02596875
transcript.pyannote[13].end 106.98471875
transcript.pyannote[14].speaker SPEAKER_04
transcript.pyannote[14].start 91.20659375
transcript.pyannote[14].end 91.59471875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 91.59471875
transcript.pyannote[15].end 91.61159375
transcript.pyannote[16].speaker SPEAKER_04
transcript.pyannote[16].start 96.74159375
transcript.pyannote[16].end 96.97784375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 96.97784375
transcript.pyannote[17].end 97.14659375
transcript.pyannote[18].speaker SPEAKER_04
transcript.pyannote[18].start 103.27221875
transcript.pyannote[18].end 103.60971875
transcript.pyannote[19].speaker SPEAKER_04
transcript.pyannote[19].start 107.05221875
transcript.pyannote[19].end 110.12346875
transcript.pyannote[20].speaker SPEAKER_06
transcript.pyannote[20].start 109.90409375
transcript.pyannote[20].end 112.87409375
transcript.pyannote[21].speaker SPEAKER_04
transcript.pyannote[21].start 114.08909375
transcript.pyannote[21].end 118.44284375
transcript.pyannote[22].speaker SPEAKER_04
transcript.pyannote[22].start 118.84784375
transcript.pyannote[22].end 123.64034375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 123.74159375
transcript.pyannote[23].end 129.85034375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 130.12034375
transcript.pyannote[24].end 137.20784375
transcript.pyannote[25].speaker SPEAKER_04
transcript.pyannote[25].start 137.37659375
transcript.pyannote[25].end 137.76471875
transcript.pyannote[26].speaker SPEAKER_04
transcript.pyannote[26].start 138.13596875
transcript.pyannote[26].end 140.26221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 140.56596875
transcript.pyannote[27].end 142.77659375
transcript.pyannote[28].speaker SPEAKER_04
transcript.pyannote[28].start 142.30409375
transcript.pyannote[28].end 147.67034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 144.56534375
transcript.pyannote[29].end 145.84784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 147.11346875
transcript.pyannote[30].end 151.09596875
transcript.pyannote[31].speaker SPEAKER_04
transcript.pyannote[31].start 148.58159375
transcript.pyannote[31].end 148.61534375
transcript.pyannote[32].speaker SPEAKER_04
transcript.pyannote[32].start 150.82596875
transcript.pyannote[32].end 156.79971875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 156.79971875
transcript.pyannote[33].end 157.18784375
transcript.pyannote[34].speaker SPEAKER_04
transcript.pyannote[34].start 158.04846875
transcript.pyannote[34].end 170.35034375
transcript.pyannote[35].speaker SPEAKER_05
transcript.pyannote[35].start 171.21096875
transcript.pyannote[35].end 184.03596875
transcript.pyannote[36].speaker SPEAKER_04
transcript.pyannote[36].start 172.18971875
transcript.pyannote[36].end 173.40471875
transcript.pyannote[37].speaker SPEAKER_04
transcript.pyannote[37].start 174.33284375
transcript.pyannote[37].end 174.56909375
transcript.pyannote[38].speaker SPEAKER_04
transcript.pyannote[38].start 177.69096875
transcript.pyannote[38].end 177.97784375
transcript.pyannote[39].speaker SPEAKER_04
transcript.pyannote[39].start 179.85096875
transcript.pyannote[39].end 180.03659375
transcript.pyannote[40].speaker SPEAKER_04
transcript.pyannote[40].start 180.07034375
transcript.pyannote[40].end 180.12096875
transcript.pyannote[41].speaker SPEAKER_04
transcript.pyannote[41].start 184.03596875
transcript.pyannote[41].end 184.35659375
transcript.pyannote[42].speaker SPEAKER_05
transcript.pyannote[42].start 184.28909375
transcript.pyannote[42].end 187.69784375
transcript.pyannote[43].speaker SPEAKER_04
transcript.pyannote[43].start 187.69784375
transcript.pyannote[43].end 188.06909375
transcript.pyannote[44].speaker SPEAKER_05
transcript.pyannote[44].start 188.06909375
transcript.pyannote[44].end 193.51971875
transcript.pyannote[45].speaker SPEAKER_04
transcript.pyannote[45].start 193.51971875
transcript.pyannote[45].end 195.07221875
transcript.pyannote[46].speaker SPEAKER_04
transcript.pyannote[46].start 195.29159375
transcript.pyannote[46].end 196.47284375
transcript.pyannote[47].speaker SPEAKER_05
transcript.pyannote[47].start 195.94971875
transcript.pyannote[47].end 197.65409375
transcript.pyannote[48].speaker SPEAKER_04
transcript.pyannote[48].start 197.80596875
transcript.pyannote[48].end 200.06721875
transcript.pyannote[49].speaker SPEAKER_05
transcript.pyannote[49].start 198.16034375
transcript.pyannote[49].end 199.03784375
transcript.pyannote[50].speaker SPEAKER_04
transcript.pyannote[50].start 200.37096875
transcript.pyannote[50].end 200.80971875
transcript.pyannote[51].speaker SPEAKER_04
transcript.pyannote[51].start 201.14721875
transcript.pyannote[51].end 203.50971875
transcript.pyannote[52].speaker SPEAKER_05
transcript.pyannote[52].start 203.35784375
transcript.pyannote[52].end 206.22659375
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 206.22659375
transcript.pyannote[53].end 207.84659375
transcript.pyannote[54].speaker SPEAKER_05
transcript.pyannote[54].start 207.67784375
transcript.pyannote[54].end 207.82971875
transcript.pyannote[55].speaker SPEAKER_05
transcript.pyannote[55].start 207.84659375
transcript.pyannote[55].end 208.20096875
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 208.20096875
transcript.pyannote[56].end 209.83784375
transcript.pyannote[57].speaker SPEAKER_04
transcript.pyannote[57].start 209.97284375
transcript.pyannote[57].end 210.04034375
transcript.pyannote[58].speaker SPEAKER_04
transcript.pyannote[58].start 210.15846875
transcript.pyannote[58].end 212.79096875
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 213.70221875
transcript.pyannote[59].end 223.96221875
transcript.pyannote[60].speaker SPEAKER_07
transcript.pyannote[60].start 224.48534375
transcript.pyannote[60].end 242.01846875
transcript.pyannote[61].speaker SPEAKER_04
transcript.pyannote[61].start 228.67034375
transcript.pyannote[61].end 229.07534375
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 238.45784375
transcript.pyannote[62].end 238.81221875
transcript.pyannote[63].speaker SPEAKER_04
transcript.pyannote[63].start 242.11971875
transcript.pyannote[63].end 247.40159375
transcript.pyannote[64].speaker SPEAKER_07
transcript.pyannote[64].start 245.57909375
transcript.pyannote[64].end 247.36784375
transcript.pyannote[65].speaker SPEAKER_07
transcript.pyannote[65].start 247.40159375
transcript.pyannote[65].end 247.80659375
transcript.pyannote[66].speaker SPEAKER_07
transcript.pyannote[66].start 248.29596875
transcript.pyannote[66].end 248.44784375
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 248.44784375
transcript.pyannote[67].end 253.13909375
transcript.pyannote[68].speaker SPEAKER_07
transcript.pyannote[68].start 248.48159375
transcript.pyannote[68].end 248.65034375
transcript.pyannote[69].speaker SPEAKER_07
transcript.pyannote[69].start 253.83096875
transcript.pyannote[69].end 255.21471875
transcript.pyannote[70].speaker SPEAKER_07
transcript.pyannote[70].start 255.61971875
transcript.pyannote[70].end 260.04096875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 260.19284375
transcript.pyannote[71].end 261.13784375
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 261.35721875
transcript.pyannote[72].end 261.76221875
transcript.pyannote[73].speaker SPEAKER_07
transcript.pyannote[73].start 262.06596875
transcript.pyannote[73].end 265.37346875
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 264.25971875
transcript.pyannote[74].end 276.51096875
transcript.pyannote[75].speaker SPEAKER_07
transcript.pyannote[75].start 276.51096875
transcript.pyannote[75].end 276.54471875
transcript.pyannote[76].speaker SPEAKER_07
transcript.pyannote[76].start 276.56159375
transcript.pyannote[76].end 276.74721875
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 276.94971875
transcript.pyannote[77].end 278.56971875
transcript.pyannote[78].speaker SPEAKER_07
transcript.pyannote[78].start 278.56971875
transcript.pyannote[78].end 278.99159375
transcript.pyannote[79].speaker SPEAKER_04
transcript.pyannote[79].start 279.48096875
transcript.pyannote[79].end 280.71284375
transcript.pyannote[80].speaker SPEAKER_07
transcript.pyannote[80].start 280.27409375
transcript.pyannote[80].end 287.90159375
transcript.pyannote[81].speaker SPEAKER_04
transcript.pyannote[81].start 288.18846875
transcript.pyannote[81].end 297.40221875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 296.59221875
transcript.pyannote[82].end 296.72721875
transcript.pyannote[83].speaker SPEAKER_04
transcript.pyannote[83].start 297.48659375
transcript.pyannote[83].end 303.27471875
transcript.pyannote[84].speaker SPEAKER_04
transcript.pyannote[84].start 303.39284375
transcript.pyannote[84].end 308.89409375
transcript.pyannote[85].speaker SPEAKER_08
transcript.pyannote[85].start 303.78096875
transcript.pyannote[85].end 303.88221875
transcript.pyannote[86].speaker SPEAKER_08
transcript.pyannote[86].start 311.27346875
transcript.pyannote[86].end 322.15784375
transcript.pyannote[87].speaker SPEAKER_04
transcript.pyannote[87].start 322.39409375
transcript.pyannote[87].end 327.72659375
transcript.pyannote[88].speaker SPEAKER_04
transcript.pyannote[88].start 328.31721875
transcript.pyannote[88].end 340.66971875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 342.28971875
transcript.pyannote[89].end 351.97596875
transcript.pyannote[90].speaker SPEAKER_04
transcript.pyannote[90].start 346.20471875
transcript.pyannote[90].end 346.44096875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 352.06034375
transcript.pyannote[91].end 352.43159375
transcript.pyannote[92].speaker SPEAKER_04
transcript.pyannote[92].start 352.51596875
transcript.pyannote[92].end 353.49471875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 353.79846875
transcript.pyannote[93].end 355.36784375
transcript.pyannote[94].speaker SPEAKER_04
transcript.pyannote[94].start 355.97534375
transcript.pyannote[94].end 362.92784375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 358.47284375
transcript.pyannote[95].end 358.54034375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 364.98659375
transcript.pyannote[96].end 372.39471875
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 372.73221875
transcript.pyannote[97].end 375.33096875
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 375.82034375
transcript.pyannote[98].end 385.59096875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 376.95096875
transcript.pyannote[99].end 377.59221875
transcript.pyannote[100].speaker SPEAKER_04
transcript.pyannote[100].start 385.74284375
transcript.pyannote[100].end 385.77659375
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 385.77659375
transcript.pyannote[101].end 385.79346875
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 385.79346875
transcript.pyannote[102].end 386.02971875
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 386.02971875
transcript.pyannote[103].end 386.16471875
transcript.pyannote[104].speaker SPEAKER_04
transcript.pyannote[104].start 386.38409375
transcript.pyannote[104].end 389.03346875
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 389.03346875
transcript.pyannote[105].end 389.55659375
transcript.pyannote[106].speaker SPEAKER_04
transcript.pyannote[106].start 389.96159375
transcript.pyannote[106].end 389.97846875
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 389.97846875
transcript.pyannote[107].end 390.65346875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 391.51409375
transcript.pyannote[108].end 411.34221875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 396.67784375
transcript.pyannote[109].end 396.89721875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 398.63534375
transcript.pyannote[110].end 398.97284375
transcript.pyannote[111].speaker SPEAKER_04
transcript.pyannote[111].start 400.89659375
transcript.pyannote[111].end 400.94721875
transcript.pyannote[112].speaker SPEAKER_04
transcript.pyannote[112].start 410.86971875
transcript.pyannote[112].end 411.29159375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 411.34221875
transcript.pyannote[113].end 419.52659375
transcript.pyannote[114].speaker SPEAKER_04
transcript.pyannote[114].start 420.08346875
transcript.pyannote[114].end 420.77534375
transcript.pyannote[115].speaker SPEAKER_04
transcript.pyannote[115].start 420.99471875
transcript.pyannote[115].end 425.24721875
transcript.pyannote[116].speaker SPEAKER_09
transcript.pyannote[116].start 425.68596875
transcript.pyannote[116].end 426.36096875
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 426.47909375
transcript.pyannote[117].end 430.91721875
transcript.pyannote[118].speaker SPEAKER_09
transcript.pyannote[118].start 428.89221875
transcript.pyannote[118].end 429.36471875
transcript.pyannote[119].speaker SPEAKER_09
transcript.pyannote[119].start 430.76534375
transcript.pyannote[119].end 451.85909375
transcript.pyannote[120].speaker SPEAKER_04
transcript.pyannote[120].start 437.09346875
transcript.pyannote[120].end 437.44784375
transcript.pyannote[121].speaker SPEAKER_04
transcript.pyannote[121].start 451.92659375
transcript.pyannote[121].end 469.67909375
transcript.pyannote[122].speaker SPEAKER_09
transcript.pyannote[122].start 469.79721875
transcript.pyannote[122].end 473.77971875
transcript.pyannote[123].speaker SPEAKER_04
transcript.pyannote[123].start 473.96534375
transcript.pyannote[123].end 484.73159375
transcript.pyannote[124].speaker SPEAKER_09
transcript.pyannote[124].start 480.88409375
transcript.pyannote[124].end 481.28909375
transcript.pyannote[125].speaker SPEAKER_09
transcript.pyannote[125].start 482.50409375
transcript.pyannote[125].end 486.75659375
transcript.pyannote[126].speaker SPEAKER_04
transcript.pyannote[126].start 486.21659375
transcript.pyannote[126].end 528.03284375
transcript.pyannote[127].speaker SPEAKER_09
transcript.pyannote[127].start 529.09596875
transcript.pyannote[127].end 537.07784375
transcript.pyannote[128].speaker SPEAKER_04
transcript.pyannote[128].start 530.90159375
transcript.pyannote[128].end 531.25596875
transcript.pyannote[129].speaker SPEAKER_04
transcript.pyannote[129].start 534.91784375
transcript.pyannote[129].end 535.32284375
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 535.93034375
transcript.pyannote[130].end 536.33534375
transcript.pyannote[131].speaker SPEAKER_09
transcript.pyannote[131].start 537.44909375
transcript.pyannote[131].end 537.51659375
transcript.pyannote[132].speaker SPEAKER_04
transcript.pyannote[132].start 537.51659375
transcript.pyannote[132].end 541.53284375
transcript.pyannote[133].speaker SPEAKER_04
transcript.pyannote[133].start 542.69721875
transcript.pyannote[133].end 544.13159375
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 544.58721875
transcript.pyannote[134].end 557.42909375
transcript.pyannote[135].speaker SPEAKER_04
transcript.pyannote[135].start 557.61471875
transcript.pyannote[135].end 560.34846875
transcript.pyannote[136].speaker SPEAKER_06
transcript.pyannote[136].start 561.17534375
transcript.pyannote[136].end 569.89971875
transcript.pyannote[137].speaker SPEAKER_07
transcript.pyannote[137].start 566.55846875
transcript.pyannote[137].end 566.79471875
transcript.pyannote[138].speaker SPEAKER_07
transcript.pyannote[138].start 569.89971875
transcript.pyannote[138].end 570.03471875
transcript.pyannote[139].speaker SPEAKER_06
transcript.pyannote[139].start 570.03471875
transcript.pyannote[139].end 577.72971875
transcript.pyannote[140].speaker SPEAKER_07
transcript.pyannote[140].start 577.69596875
transcript.pyannote[140].end 578.03346875
transcript.pyannote[141].speaker SPEAKER_06
transcript.pyannote[141].start 577.86471875
transcript.pyannote[141].end 593.79471875
transcript.pyannote[142].speaker SPEAKER_07
transcript.pyannote[142].start 585.20534375
transcript.pyannote[142].end 585.40784375
transcript.pyannote[143].speaker SPEAKER_04
transcript.pyannote[143].start 593.79471875
transcript.pyannote[143].end 597.91221875
transcript.pyannote[144].speaker SPEAKER_04
transcript.pyannote[144].start 598.14846875
transcript.pyannote[144].end 599.27909375
transcript.pyannote[145].speaker SPEAKER_06
transcript.pyannote[145].start 599.36346875
transcript.pyannote[145].end 601.15221875
transcript.pyannote[146].speaker SPEAKER_04
transcript.pyannote[146].start 601.05096875
transcript.pyannote[146].end 603.00846875
transcript.pyannote[147].speaker SPEAKER_06
transcript.pyannote[147].start 602.70471875
transcript.pyannote[147].end 603.68346875
transcript.pyannote[148].speaker SPEAKER_04
transcript.pyannote[148].start 603.59909375
transcript.pyannote[148].end 607.17659375
transcript.pyannote[149].speaker SPEAKER_04
transcript.pyannote[149].start 608.25659375
transcript.pyannote[149].end 612.74534375
transcript.pyannote[150].speaker SPEAKER_04
transcript.pyannote[150].start 613.40346875
transcript.pyannote[150].end 614.85471875
transcript.pyannote[151].speaker SPEAKER_05
transcript.pyannote[151].start 614.12909375
transcript.pyannote[151].end 632.72534375
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 617.58846875
transcript.pyannote[152].end 617.92596875
transcript.pyannote[153].speaker SPEAKER_05
transcript.pyannote[153].start 632.74221875
transcript.pyannote[153].end 632.75909375
transcript.pyannote[154].speaker SPEAKER_04
transcript.pyannote[154].start 632.75909375
transcript.pyannote[154].end 645.87096875
transcript.pyannote[155].speaker SPEAKER_05
transcript.pyannote[155].start 636.03284375
transcript.pyannote[155].end 636.47159375
transcript.pyannote[156].speaker SPEAKER_04
transcript.pyannote[156].start 645.95534375
transcript.pyannote[156].end 653.66721875
transcript.pyannote[157].speaker SPEAKER_05
transcript.pyannote[157].start 653.81909375
transcript.pyannote[157].end 671.65596875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 661.86846875
transcript.pyannote[158].end 662.20596875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 664.46721875
transcript.pyannote[159].end 664.48409375
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 664.48409375
transcript.pyannote[160].end 664.75409375
transcript.pyannote[161].speaker SPEAKER_04
transcript.pyannote[161].start 668.14596875
transcript.pyannote[161].end 668.36534375
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 668.38221875
transcript.pyannote[162].end 668.56784375
transcript.pyannote[163].speaker SPEAKER_04
transcript.pyannote[163].start 671.65596875
transcript.pyannote[163].end 675.92534375
transcript.pyannote[164].speaker SPEAKER_04
transcript.pyannote[164].start 676.95471875
transcript.pyannote[164].end 678.11909375
transcript.pyannote[165].speaker SPEAKER_04
transcript.pyannote[165].start 678.43971875
transcript.pyannote[165].end 678.45659375
transcript.pyannote[166].speaker SPEAKER_05
transcript.pyannote[166].start 678.45659375
transcript.pyannote[166].end 678.62534375
transcript.pyannote[167].speaker SPEAKER_04
transcript.pyannote[167].start 678.62534375
transcript.pyannote[167].end 678.65909375
transcript.pyannote[168].speaker SPEAKER_05
transcript.pyannote[168].start 678.65909375
transcript.pyannote[168].end 678.74346875
transcript.pyannote[169].speaker SPEAKER_04
transcript.pyannote[169].start 678.74346875
transcript.pyannote[169].end 678.79409375
transcript.pyannote[170].speaker SPEAKER_05
transcript.pyannote[170].start 678.79409375
transcript.pyannote[170].end 696.31034375
transcript.pyannote[171].speaker SPEAKER_04
transcript.pyannote[171].start 682.33784375
transcript.pyannote[171].end 682.82721875
transcript.pyannote[172].speaker SPEAKER_04
transcript.pyannote[172].start 688.46346875
transcript.pyannote[172].end 689.00346875
transcript.pyannote[173].speaker SPEAKER_04
transcript.pyannote[173].start 691.70346875
transcript.pyannote[173].end 692.17596875
transcript.pyannote[174].speaker SPEAKER_04
transcript.pyannote[174].start 696.12471875
transcript.pyannote[174].end 700.59659375
transcript.pyannote[175].speaker SPEAKER_05
transcript.pyannote[175].start 700.76534375
transcript.pyannote[175].end 701.23784375
transcript.pyannote[176].speaker SPEAKER_04
transcript.pyannote[176].start 701.37284375
transcript.pyannote[176].end 716.02034375
transcript.pyannote[177].speaker SPEAKER_05
transcript.pyannote[177].start 716.02034375
transcript.pyannote[177].end 719.51346875
transcript.pyannote[178].speaker SPEAKER_04
transcript.pyannote[178].start 716.07096875
transcript.pyannote[178].end 716.18909375
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 716.44221875
transcript.pyannote[179].end 717.40409375
transcript.pyannote[180].speaker SPEAKER_04
transcript.pyannote[180].start 719.64846875
transcript.pyannote[180].end 725.35221875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 725.50409375
transcript.pyannote[181].end 728.33909375
transcript.pyannote[182].speaker SPEAKER_04
transcript.pyannote[182].start 726.34784375
transcript.pyannote[182].end 726.36471875
transcript.pyannote[183].speaker SPEAKER_08
transcript.pyannote[183].start 726.36471875
transcript.pyannote[183].end 726.90471875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 728.47409375
transcript.pyannote[184].end 730.14471875
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 731.05596875
transcript.pyannote[185].end 733.68846875
transcript.whisperx[0].start 1.838
transcript.whisperx[0].end 24.554
transcript.whisperx[0].text 請我們財政部莊部長因為我也同樣關心年終獎金的問題所以我再請一下我們台灣銀行的董事長土地銀行的董事長然後兆豐金控董事長第一金控董事長華南金控董事長合作金庫董事長彰化銀行的董事長台灣中小企業銀行的董事長請各位董事長
transcript.whisperx[1].start 30.154
transcript.whisperx[1].end 41.289
transcript.whisperx[1].text 先問一下部長我們這個公股銀行去年的績效好不好去年績效很好然後剛剛董事長也都報告他們的營收都創新高
transcript.whisperx[2].start 43.942
transcript.whisperx[2].end 72.347
transcript.whisperx[2].text 您說的創新高那表示台灣去年的這個經濟成長率真的不錯那也顯現在我們的這個銀行的這個績效上面嘛對不對是的那我就請教一下啦那銀行的績效好那其實也要鼓勵我們銀行的員工嘛那當然大家也都很關心說那我們所有這個公股銀行那我們的這個員工的這個年終獎金因為今天是1月底了嘛那年終獎金應該是
transcript.whisperx[3].start 73.667
transcript.whisperx[3].end 84.461
transcript.whisperx[3].text 过年前发还是有些是在过年后发我想银行的部分可能有他们稍微想自己来说明一下那依序来好了好不好那是不是先请我们林董事长
transcript.whisperx[4].start 86.332
transcript.whisperx[4].end 106.642
transcript.whisperx[4].text 委員好因為我們的獎金年終獎金兩個月是會先發至於績效獎金因為要等到財政部考核我們確定以後我們才能發所以績效獎金是不會發但是因為同仁還是有過年資金的需求所以我們會先借給他然後每個月再扣回來
transcript.whisperx[5].start 107.202
transcript.whisperx[5].end 123.332
transcript.whisperx[5].text 所以就是還是會在過年前先發4.4個月就對了但是先借但是每個月再扣回來這個我們自己的台灣銀行就是就是最多就4.4個月對不對來 那圖銀呢謝謝 謝謝林董事長那我們圖銀何董事長
transcript.whisperx[6].start 124.313
transcript.whisperx[6].end 139.874
transcript.whisperx[6].text 土銀的部分的話是在過年前會有先戒資1.5個月然後我們全年的年終獎金大概落在每年的七八月的時候才會把這4.4個月花完所以那過年前咧
transcript.whisperx[7].start 140.732
transcript.whisperx[7].end 170.08
transcript.whisperx[7].text 過年前就是先戒指它一年五個月那所以跟這個台灣銀行是一樣應該正常是一樣然後是到七八月的時候才對 考了下來以後才會把四點四個月全部花了對啊 因為過年前總是希望大家要領年終你七八月再領就不叫年終獎金了那也是一樣四點四個月是你看這個部長這個你直屬下面的這個大概台灣銀行跟土地銀行就是四點四個月來 那我們這一個公股洋龍頭來 招風的董董事長
transcript.whisperx[8].start 171.209
transcript.whisperx[8].end 198.647
transcript.whisperx[8].text 委員好我們的程序大概差不多不過我們的獎金包括就是兩個月的年終獎金那另外還有呢就是績效那績效當然就要看整個績效情況那另外還有一項就是我們的員工酬勞所以那個部分就變成要開了董事會的時候才能決定的所以整個加起來今年如果發去年的話大概是八個月左右八個月那所以今年呢今年應該不會今年是發的是去年的那去
transcript.whisperx[9].start 201.229
transcript.whisperx[9].end 223.593
transcript.whisperx[9].text 今年的年終獎是發去年的對 發去年整個年度的經營績效好 那大概是八個月左右八個月八個月左右 好 謝謝接下來第一金控 邱董事長八個月喔哇 這個其他我看這個林董事長跟這個何董事長我們員工表現也不差啦但是沒有辦法這個財政部這邊有一關卡住了來 邱董事長
transcript.whisperx[10].start 225.668
transcript.whisperx[10].end 252.545
transcript.whisperx[10].text 第一青鳳這邊去年已經也是創新高我們年終獎金大概包括所謂的考積績效跟員工酬勞將近八個月會在年結的時候先預支一個月然後在四月份再將剩餘的款項再撥給同仁也是一樣大概八個月左右所以也是先預支一個月一個月會不會太少我看其他比如說像台銀土地銀行都有兩個月
transcript.whisperx[11].start 253.928
transcript.whisperx[11].end 261.544
transcript.whisperx[11].text 我們一個月但是我們春節獎金也有一個月這樣子所以是
transcript.whisperx[12].start 262.17
transcript.whisperx[12].end 286.826
transcript.whisperx[12].text 大概在年中的時候會發兩個月發兩個月這樣比較合理不然其他的你們績效也很好其他都可以先發到兩個月你們如果只發一個月看起來是稍微少一點所以是可以發到兩個月是嗎 還是一個月中間的中是有一個月然後在春節前介是一個月將近兩個月這樣子
transcript.whisperx[13].start 288.24
transcript.whisperx[13].end 308.599
transcript.whisperx[13].text 那我覺得還是你們要去檢討一下啦如果說大家都可以發到兩個月因為這個只是先給你拿未來還是會還你啊對不對那我覺得你們考慮一下啦如果可以的話我覺得還是給員工兩個月啦好不好好謝謝謝謝邱董事長接下來黃藍金寇陳董事長
transcript.whisperx[14].start 311.345
transcript.whisperx[14].end 340.334
transcript.whisperx[14].text 我們一直以來都是年前先發1.5個月然後剩餘的是在4月的時候會發放那預計今年的話會超過7個月超過7個月那我也建議啦就是兩個月啦你們也是1.5個月嘛對啊這個我覺得也是可以兩個月啦好不好如果其他銀行都有兩個月的話這個不然大家會互相比較啊好不好好謝謝謝謝陳董事長合作金庫林董事長
transcript.whisperx[15].start 342.403
transcript.whisperx[15].end 360.798
transcript.whisperx[15].text 包括我們的年終獎金大概預期也是會超過七個月那過年前也是會先發考核獎金一個月然後還有一個月的戒指那所以是兩個月我還是希望如果有機會還是超兩個月啦好謝謝謝謝林董事長來張華銀行胡董事長
transcript.whisperx[16].start 365.792
transcript.whisperx[16].end 390.33
transcript.whisperx[16].text 我們今年一季大概發總共接近八個月那我們會先發一個半月然後另外介資一個半月所以你們有三個月是三個月那看起來是這樣比較起來是彰化銀行的這一個對員工來講是最溫暖的好謝謝謝謝吳董事長台灣中小企業銀行李董事長
transcript.whisperx[17].start 391.511
transcript.whisperx[17].end 407.355
transcript.whisperx[17].text 是 報告委員我們的講述辦法裡面三節是發兩個月所以春節會先發一個月然後再戒支1.5個月所以是2.5個月是那全年呢全年今年預估去年因為獲利創新高大概會超過8個月超過8個月是
transcript.whisperx[18].start 409.816
transcript.whisperx[18].end 424.719
transcript.whisperx[18].text 好 謝謝等一下所有董事長在留步等一下還有問題要問你們來 莊部長所以先聽起來大概其實除了台灣銀行跟土地銀行之外大概都有七八個月的水準對不對
transcript.whisperx[19].start 426
transcript.whisperx[19].end 451.786
transcript.whisperx[19].text 是的对啊所以这个落差你还是要想办法这个同样都是银行人员是那这个部分因为涉及到整个国营事业的一个福利以及待遇的部分是由整个人总以及行政院那边来做统一规划然后原来我们的国营事业是可以到4.6个月但后来因为立法院的决议把它改成4.4个月这个部分我们也希望能够是不是可以给予
transcript.whisperx[20].start 452.086
transcript.whisperx[20].end 469.283
transcript.whisperx[20].text 這個當然有些是我們行政院內部的整體那我是覺得說既然都是銀行的公股銀行的我們的從業人員那其實待遇真的是不要差太多那怎麼樣去做爭取部長也要幫他們爭取我們會積極的來跟行政院來做爭取
transcript.whisperx[21].start 474.148
transcript.whisperx[21].end 490.653
transcript.whisperx[21].text 對啊那不要說這個好像就是案子送到行政院去然後好像沒有動靜了然後就一年一年這樣子我來這邊也兩年了金融事業的競爭也很激烈的對啊好那我現在就問到說大家也很關心關稅的問題那其實昨天有討論過
transcript.whisperx[22].start 494.035
transcript.whisperx[22].end 509.352
transcript.whisperx[22].text 這個總共還有分兩個層次一個是2500億由企業自所投資這樣其實大家都知道說其實我們大企業這個大概扣掉這個台積電之外1650億其他的一些我們跟半導體相關的這些大的一些企業他們
transcript.whisperx[23].start 510.774
transcript.whisperx[23].end 524.205
transcript.whisperx[23].text 因為台積電會過去投資他們也會再過去投資這是一部分那另外一部分就是屬於這個信用保證那這個信用保證我們昨天有提到說2500億那這2500億這個就是由國發基金這邊來統籌但是需要我們公股銀行這邊來做配合 對不對就國發會來做規劃做一個專案規劃然後國發基金出資以及公股銀行還有民營銀行一起來參與
transcript.whisperx[24].start 537.557
transcript.whisperx[24].end 559.852
transcript.whisperx[24].text 好 那我問一下那我先問一下台銀好了林董事長因為這個企業都會大企業啦當然有些大企業他們自己不一定需要跟這個銀行來借錢但是有一些中小企業可能他要去美國投資需要跟銀行這邊來借錢那就你們來講的話就這一部分那個信用保證基金你們一般都是怎麼樣處理的
transcript.whisperx[25].start 562.03
transcript.whisperx[25].end 584.933
transcript.whisperx[25].text 其實這個對中小企業的保證有一個是叫中小企業信保基金那這是針對規模比較小的中小型的企業那目前要規劃的這個國發基金規劃的這個就是國家融資保證機制這個是會針對比較大型的企業那如果看中小企業的規模如果他覺得中小信保足夠他運用的話他就可以來申請中小信保
transcript.whisperx[26].start 585.293
transcript.whisperx[26].end 606.758
transcript.whisperx[26].text 那因為整個國保的機制目前還在規劃當中所以也不太知道說這個未來的費率還有這整個額度現在都還沒有定案那如果這些企業要去美國投資跟你台灣銀行借錢你會借給他們嗎有保證我們就會借有保證 你說有政府的保證就會借對對對好 那我請教一下這一個趙峰董董事長
transcript.whisperx[27].start 608.328
transcript.whisperx[27].end 632.459
transcript.whisperx[27].text 那如果企業要去美國投資要跟你們借錢的話呢敢不敢借 可不肯借 要不要借我想還是回到5P的原則不管他去哪個國家投資我們還是要先看看他的風險情況他的5P我們審核過的話那當然我們就會借但如果說在這個屬於信用的有一個margin的話那當然就是說如果有保證那我們的借貸的意願會更高
transcript.whisperx[28].start 633.36
transcript.whisperx[28].end 653.039
transcript.whisperx[28].text 這等於是國家來當這個靠山了國家由我們的國發基金它有當一個靠山然後就是擔心因為就像你講的就是說你們要考慮這麼多的因素在這種情況之下有一些企業可能不一定不一定有這個機會借到錢如果說有國發基金當靠山的話
transcript.whisperx[29].start 654.38
transcript.whisperx[29].end 677.785
transcript.whisperx[29].text 他的情況還是這樣就是他不會是百分之百的不會是百分之百的這個信用保證如果百分之百信用保證的話他會有一個道德風險所以大概譬如說保個八成保個七成這樣子所以如果保七成保八成的話對銀行來講我們還是有風險的所以我們當然還是要回到5P原則來審查老實講這些要去美國投資的這些企業規模也不會太小
transcript.whisperx[30].start 679.079
transcript.whisperx[30].end 701.031
transcript.whisperx[30].text 當然如果以現在所談的這些關稅的話應該都是大企業大企業基本上他們的財務狀況都不錯所以當然本來我們對他的信用對他的這個整個信心就比較高但是如果他的相對其他的一些供應鏈的話那當然我們還是必須要回到這裡基本上我們還是都會從5P的方式來所以其實如果你們借給這些大企業你們也能夠活力啊當然
transcript.whisperx[31].start 702.171
transcript.whisperx[31].end 718.756
transcript.whisperx[31].text 所以我是希望說有關於這個信用保證未來跟公股銀行借錢的這部分我是希望能夠達到雙贏就是說讓企業有這個更多的資金去美國投資那也能夠讓你們銀行能夠賺錢信用保證是一個信用加強的機制
transcript.whisperx[32].start 720.117
transcript.whisperx[32].end 726.925
transcript.whisperx[32].text 好OK好謝謝好謝謝主席謝謝我們部長還有所有的功夫洋董事長謝謝好謝謝李分審委員的質詢好部長請回接下來我們請黃珊珊委員質詢