iVOD / 167267

Field Value
IVOD_ID 167267
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167267
日期 2026-01-28
會議資料.會議代碼 委員會-11-4-20-19
會議資料.會議代碼:str 第11屆第4會期財政委員會第19次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 19
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第19次全體委員會議
影片種類 Clip
開始時間 2026-01-28T09:48:23+08:00
結束時間 2026-01-28T10:00:16+08:00
影片長度 00:11:53
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/0b5ec5fbcfced67d11d0426ce93b73ab11b3bb87f1b5dc7ac551decc99d7f3b282b6391befdefecc5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 09:48:23 - 10:00:16
會議時間 2026-01-28T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第19次全體委員會議(事由:邀請財政部莊部長翠雲就「統一發票經費編列及宣傳推廣業務執行情形」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.63846875
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 1.78596875
transcript.pyannote[1].end 2.95034375
transcript.pyannote[2].speaker SPEAKER_05
transcript.pyannote[2].start 7.62471875
transcript.pyannote[2].end 7.87784375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 7.87784375
transcript.pyannote[3].end 8.04659375
transcript.pyannote[4].speaker SPEAKER_05
transcript.pyannote[4].start 8.04659375
transcript.pyannote[4].end 8.06346875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 8.06346875
transcript.pyannote[5].end 8.31659375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 8.51909375
transcript.pyannote[6].end 15.65721875
transcript.pyannote[7].speaker SPEAKER_06
transcript.pyannote[7].start 16.99034375
transcript.pyannote[7].end 20.55096875
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 19.23471875
transcript.pyannote[8].end 19.31909375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 19.33596875
transcript.pyannote[9].end 26.23784375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 27.16596875
transcript.pyannote[10].end 29.83221875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 30.40596875
transcript.pyannote[11].end 32.11034375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 32.95409375
transcript.pyannote[12].end 36.51471875
transcript.pyannote[13].speaker SPEAKER_05
transcript.pyannote[13].start 36.81846875
transcript.pyannote[13].end 40.81784375
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 40.95284375
transcript.pyannote[14].end 43.16346875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 43.24784375
transcript.pyannote[15].end 44.93534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 46.04909375
transcript.pyannote[16].end 51.41534375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 51.75284375
transcript.pyannote[17].end 52.66409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 52.66409375
transcript.pyannote[18].end 54.16596875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 54.28409375
transcript.pyannote[19].end 57.16971875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 57.79409375
transcript.pyannote[20].end 58.11471875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 58.23284375
transcript.pyannote[21].end 59.41409375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 59.78534375
transcript.pyannote[22].end 61.67534375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 65.97846875
transcript.pyannote[23].end 67.68284375
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 69.85971875
transcript.pyannote[24].end 70.45034375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 71.29409375
transcript.pyannote[25].end 71.53034375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 71.74971875
transcript.pyannote[26].end 72.23909375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 72.40784375
transcript.pyannote[27].end 73.16721875
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 73.97721875
transcript.pyannote[28].end 76.55909375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 77.14971875
transcript.pyannote[29].end 77.55471875
transcript.pyannote[30].speaker SPEAKER_04
transcript.pyannote[30].start 80.35596875
transcript.pyannote[30].end 86.11034375
transcript.pyannote[31].speaker SPEAKER_03
transcript.pyannote[31].start 86.21159375
transcript.pyannote[31].end 93.18096875
transcript.pyannote[32].speaker SPEAKER_04
transcript.pyannote[32].start 90.26159375
transcript.pyannote[32].end 91.02096875
transcript.pyannote[33].speaker SPEAKER_07
transcript.pyannote[33].start 91.02096875
transcript.pyannote[33].end 91.10534375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 93.29909375
transcript.pyannote[34].end 93.63659375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 94.32846875
transcript.pyannote[35].end 95.18909375
transcript.pyannote[36].speaker SPEAKER_07
transcript.pyannote[36].start 95.81346875
transcript.pyannote[36].end 100.18409375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 97.68659375
transcript.pyannote[37].end 98.27721875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 100.50471875
transcript.pyannote[38].end 102.58034375
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 102.96846875
transcript.pyannote[39].end 104.09909375
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 104.52096875
transcript.pyannote[40].end 104.77409375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 105.34784375
transcript.pyannote[41].end 109.29659375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 108.95909375
transcript.pyannote[42].end 110.27534375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 110.79846875
transcript.pyannote[43].end 110.96721875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 110.96721875
transcript.pyannote[44].end 111.03471875
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 111.03471875
transcript.pyannote[45].end 111.05159375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 111.05159375
transcript.pyannote[46].end 112.21596875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 112.58721875
transcript.pyannote[47].end 112.62096875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 112.62096875
transcript.pyannote[48].end 112.80659375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 112.80659375
transcript.pyannote[49].end 112.82346875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 113.73471875
transcript.pyannote[50].end 118.03784375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 118.81409375
transcript.pyannote[51].end 120.41721875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 120.78846875
transcript.pyannote[52].end 121.59846875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 122.25659375
transcript.pyannote[53].end 123.70784375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 124.06221875
transcript.pyannote[54].end 124.46721875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 126.01971875
transcript.pyannote[55].end 126.03659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 126.03659375
transcript.pyannote[56].end 130.93034375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 126.47534375
transcript.pyannote[57].end 126.79596875
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 126.86346875
transcript.pyannote[58].end 127.06596875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 130.93034375
transcript.pyannote[59].end 145.62846875
transcript.pyannote[60].speaker SPEAKER_05
transcript.pyannote[60].start 146.26971875
transcript.pyannote[60].end 153.13784375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 149.18909375
transcript.pyannote[61].end 149.49284375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 150.53909375
transcript.pyannote[62].end 150.89346875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 153.28971875
transcript.pyannote[63].end 159.33096875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 159.88784375
transcript.pyannote[64].end 170.82284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 168.39284375
transcript.pyannote[65].end 168.54471875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 171.34596875
transcript.pyannote[66].end 171.90284375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 172.45971875
transcript.pyannote[67].end 173.52284375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 174.18096875
transcript.pyannote[68].end 174.58596875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 175.04159375
transcript.pyannote[69].end 175.61534375
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 175.64909375
transcript.pyannote[70].end 178.60221875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 178.48409375
transcript.pyannote[71].end 180.20534375
transcript.pyannote[72].speaker SPEAKER_03
transcript.pyannote[72].start 180.98159375
transcript.pyannote[72].end 183.12471875
transcript.pyannote[73].speaker SPEAKER_07
transcript.pyannote[73].start 185.21721875
transcript.pyannote[73].end 185.80784375
transcript.pyannote[74].speaker SPEAKER_07
transcript.pyannote[74].start 186.07784375
transcript.pyannote[74].end 190.90409375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 189.68909375
transcript.pyannote[75].end 192.50721875
transcript.pyannote[76].speaker SPEAKER_03
transcript.pyannote[76].start 192.70971875
transcript.pyannote[76].end 193.51971875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 193.63784375
transcript.pyannote[77].end 195.05534375
transcript.pyannote[78].speaker SPEAKER_07
transcript.pyannote[78].start 195.05534375
transcript.pyannote[78].end 196.47284375
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 196.48971875
transcript.pyannote[79].end 201.16409375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 201.36659375
transcript.pyannote[80].end 201.97409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 201.97409375
transcript.pyannote[81].end 202.17659375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 203.93159375
transcript.pyannote[82].end 206.83409375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 207.07034375
transcript.pyannote[83].end 208.55534375
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 208.94346875
transcript.pyannote[84].end 211.93034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 214.22534375
transcript.pyannote[85].end 214.24221875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 214.24221875
transcript.pyannote[86].end 215.77784375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 215.77784375
transcript.pyannote[87].end 215.82846875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 215.82846875
transcript.pyannote[88].end 215.87909375
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 216.21659375
transcript.pyannote[89].end 217.02659375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 217.61721875
transcript.pyannote[90].end 219.00096875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 219.38909375
transcript.pyannote[91].end 224.80596875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 227.08409375
transcript.pyannote[92].end 230.10471875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 230.10471875
transcript.pyannote[93].end 231.01596875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 231.50534375
transcript.pyannote[94].end 237.46221875
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 238.03596875
transcript.pyannote[95].end 238.47471875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 239.63909375
transcript.pyannote[96].end 240.07784375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 241.61346875
transcript.pyannote[97].end 247.77284375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 248.36346875
transcript.pyannote[98].end 249.62909375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 250.97909375
transcript.pyannote[99].end 252.56534375
transcript.pyannote[100].speaker SPEAKER_06
transcript.pyannote[100].start 252.12659375
transcript.pyannote[100].end 254.30346875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 254.35409375
transcript.pyannote[101].end 264.73221875
transcript.pyannote[102].speaker SPEAKER_06
transcript.pyannote[102].start 265.84596875
transcript.pyannote[102].end 270.19971875
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 269.11971875
transcript.pyannote[103].end 287.17596875
transcript.pyannote[104].speaker SPEAKER_06
transcript.pyannote[104].start 271.46534375
transcript.pyannote[104].end 272.25846875
transcript.pyannote[105].speaker SPEAKER_06
transcript.pyannote[105].start 287.41221875
transcript.pyannote[105].end 289.52159375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 288.13784375
transcript.pyannote[106].end 288.71159375
transcript.pyannote[107].speaker SPEAKER_03
transcript.pyannote[107].start 289.67346875
transcript.pyannote[107].end 294.21284375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 294.75284375
transcript.pyannote[108].end 297.68909375
transcript.pyannote[109].speaker SPEAKER_06
transcript.pyannote[109].start 295.00596875
transcript.pyannote[109].end 296.01846875
transcript.pyannote[110].speaker SPEAKER_06
transcript.pyannote[110].start 297.23346875
transcript.pyannote[110].end 302.38034375
transcript.pyannote[111].speaker SPEAKER_03
transcript.pyannote[111].start 301.68846875
transcript.pyannote[111].end 304.52346875
transcript.pyannote[112].speaker SPEAKER_06
transcript.pyannote[112].start 304.52346875
transcript.pyannote[112].end 305.58659375
transcript.pyannote[113].speaker SPEAKER_03
transcript.pyannote[113].start 304.64159375
transcript.pyannote[113].end 311.03721875
transcript.pyannote[114].speaker SPEAKER_06
transcript.pyannote[114].start 308.59034375
transcript.pyannote[114].end 311.23971875
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 311.39159375
transcript.pyannote[115].end 311.96534375
transcript.pyannote[116].speaker SPEAKER_06
transcript.pyannote[116].start 311.42534375
transcript.pyannote[116].end 314.53034375
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 314.53034375
transcript.pyannote[117].end 316.11659375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 316.75784375
transcript.pyannote[118].end 323.72721875
transcript.pyannote[119].speaker SPEAKER_05
transcript.pyannote[119].start 323.52471875
transcript.pyannote[119].end 323.55846875
transcript.pyannote[120].speaker SPEAKER_05
transcript.pyannote[120].start 323.72721875
transcript.pyannote[120].end 323.79471875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 323.79471875
transcript.pyannote[121].end 324.26721875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 324.43596875
transcript.pyannote[122].end 327.32159375
transcript.pyannote[123].speaker SPEAKER_05
transcript.pyannote[123].start 325.56659375
transcript.pyannote[123].end 325.80284375
transcript.pyannote[124].speaker SPEAKER_05
transcript.pyannote[124].start 326.76471875
transcript.pyannote[124].end 327.28784375
transcript.pyannote[125].speaker SPEAKER_05
transcript.pyannote[125].start 327.32159375
transcript.pyannote[125].end 327.42284375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 327.42284375
transcript.pyannote[126].end 327.52409375
transcript.pyannote[127].speaker SPEAKER_03
transcript.pyannote[127].start 327.54096875
transcript.pyannote[127].end 330.15659375
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 331.74284375
transcript.pyannote[128].end 336.31596875
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 337.49721875
transcript.pyannote[129].end 367.78784375
transcript.pyannote[130].speaker SPEAKER_05
transcript.pyannote[130].start 368.22659375
transcript.pyannote[130].end 379.81971875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 369.61034375
transcript.pyannote[131].end 370.60596875
transcript.pyannote[132].speaker SPEAKER_03
transcript.pyannote[132].start 379.80284375
transcript.pyannote[132].end 381.84471875
transcript.pyannote[133].speaker SPEAKER_05
transcript.pyannote[133].start 379.92096875
transcript.pyannote[133].end 380.27534375
transcript.pyannote[134].speaker SPEAKER_05
transcript.pyannote[134].start 380.74784375
transcript.pyannote[134].end 381.69284375
transcript.pyannote[135].speaker SPEAKER_05
transcript.pyannote[135].start 382.13159375
transcript.pyannote[135].end 385.47284375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 385.25346875
transcript.pyannote[136].end 388.37534375
transcript.pyannote[137].speaker SPEAKER_05
transcript.pyannote[137].start 387.10971875
transcript.pyannote[137].end 393.06659375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 391.59846875
transcript.pyannote[138].end 399.19221875
transcript.pyannote[139].speaker SPEAKER_05
transcript.pyannote[139].start 394.39971875
transcript.pyannote[139].end 396.49221875
transcript.pyannote[140].speaker SPEAKER_05
transcript.pyannote[140].start 398.93909375
transcript.pyannote[140].end 400.98096875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 399.64784375
transcript.pyannote[141].end 399.83346875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 400.35659375
transcript.pyannote[142].end 422.09159375
transcript.pyannote[143].speaker SPEAKER_05
transcript.pyannote[143].start 404.10284375
transcript.pyannote[143].end 404.55846875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 411.19034375
transcript.pyannote[144].end 412.48971875
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 422.49659375
transcript.pyannote[145].end 428.58846875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 423.74534375
transcript.pyannote[146].end 424.16721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 424.82534375
transcript.pyannote[147].end 425.17971875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 426.20909375
transcript.pyannote[148].end 428.52096875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 429.11159375
transcript.pyannote[149].end 471.48471875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 471.78846875
transcript.pyannote[150].end 509.50409375
transcript.pyannote[151].speaker SPEAKER_06
transcript.pyannote[151].start 509.94284375
transcript.pyannote[151].end 525.67034375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 524.35409375
transcript.pyannote[152].end 530.88471875
transcript.pyannote[153].speaker SPEAKER_06
transcript.pyannote[153].start 528.45471875
transcript.pyannote[153].end 529.24784375
transcript.pyannote[154].speaker SPEAKER_07
transcript.pyannote[154].start 529.24784375
transcript.pyannote[154].end 529.31534375
transcript.pyannote[155].speaker SPEAKER_06
transcript.pyannote[155].start 530.73284375
transcript.pyannote[155].end 530.86784375
transcript.pyannote[156].speaker SPEAKER_06
transcript.pyannote[156].start 530.88471875
transcript.pyannote[156].end 530.90159375
transcript.pyannote[157].speaker SPEAKER_03
transcript.pyannote[157].start 530.90159375
transcript.pyannote[157].end 559.04909375
transcript.pyannote[158].speaker SPEAKER_07
transcript.pyannote[158].start 530.98596875
transcript.pyannote[158].end 531.10409375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 540.01409375
transcript.pyannote[159].end 540.48659375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 542.88284375
transcript.pyannote[160].end 543.22034375
transcript.pyannote[161].speaker SPEAKER_06
transcript.pyannote[161].start 553.48034375
transcript.pyannote[161].end 553.49721875
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 553.49721875
transcript.pyannote[162].end 553.51409375
transcript.pyannote[163].speaker SPEAKER_06
transcript.pyannote[163].start 553.51409375
transcript.pyannote[163].end 554.27346875
transcript.pyannote[164].speaker SPEAKER_06
transcript.pyannote[164].start 559.48784375
transcript.pyannote[164].end 560.21346875
transcript.pyannote[165].speaker SPEAKER_06
transcript.pyannote[165].start 560.38221875
transcript.pyannote[165].end 564.82034375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 560.48346875
transcript.pyannote[166].end 561.05721875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 563.21721875
transcript.pyannote[167].end 596.14034375
transcript.pyannote[168].speaker SPEAKER_06
transcript.pyannote[168].start 573.37596875
transcript.pyannote[168].end 574.92846875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 597.35534375
transcript.pyannote[169].end 599.05971875
transcript.pyannote[170].speaker SPEAKER_06
transcript.pyannote[170].start 597.87846875
transcript.pyannote[170].end 598.82346875
transcript.pyannote[171].speaker SPEAKER_06
transcript.pyannote[171].start 599.27909375
transcript.pyannote[171].end 605.43846875
transcript.pyannote[172].speaker SPEAKER_03
transcript.pyannote[172].start 603.86909375
transcript.pyannote[172].end 610.29846875
transcript.pyannote[173].speaker SPEAKER_06
transcript.pyannote[173].start 607.05846875
transcript.pyannote[173].end 609.03284375
transcript.pyannote[174].speaker SPEAKER_06
transcript.pyannote[174].start 610.29846875
transcript.pyannote[174].end 612.67784375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 612.66096875
transcript.pyannote[175].end 620.38971875
transcript.pyannote[176].speaker SPEAKER_06
transcript.pyannote[176].start 614.56784375
transcript.pyannote[176].end 615.00659375
transcript.pyannote[177].speaker SPEAKER_07
transcript.pyannote[177].start 615.00659375
transcript.pyannote[177].end 615.02346875
transcript.pyannote[178].speaker SPEAKER_06
transcript.pyannote[178].start 615.02346875
transcript.pyannote[178].end 615.27659375
transcript.pyannote[179].speaker SPEAKER_07
transcript.pyannote[179].start 615.27659375
transcript.pyannote[179].end 615.49596875
transcript.pyannote[180].speaker SPEAKER_03
transcript.pyannote[180].start 620.81159375
transcript.pyannote[180].end 623.14034375
transcript.pyannote[181].speaker SPEAKER_06
transcript.pyannote[181].start 620.91284375
transcript.pyannote[181].end 621.08159375
transcript.pyannote[182].speaker SPEAKER_06
transcript.pyannote[182].start 622.85346875
transcript.pyannote[182].end 626.14409375
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 624.18659375
transcript.pyannote[183].end 654.71346875
transcript.pyannote[184].speaker SPEAKER_06
transcript.pyannote[184].start 632.40471875
transcript.pyannote[184].end 632.77596875
transcript.pyannote[185].speaker SPEAKER_06
transcript.pyannote[185].start 655.54034375
transcript.pyannote[185].end 664.75409375
transcript.pyannote[186].speaker SPEAKER_03
transcript.pyannote[186].start 659.47221875
transcript.pyannote[186].end 663.18471875
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 663.99471875
transcript.pyannote[187].end 666.89721875
transcript.pyannote[188].speaker SPEAKER_06
transcript.pyannote[188].start 666.45846875
transcript.pyannote[188].end 684.63284375
transcript.pyannote[189].speaker SPEAKER_03
transcript.pyannote[189].start 673.61346875
transcript.pyannote[189].end 674.00159375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 674.00159375
transcript.pyannote[190].end 674.01846875
transcript.pyannote[191].speaker SPEAKER_03
transcript.pyannote[191].start 674.50784375
transcript.pyannote[191].end 674.94659375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 674.94659375
transcript.pyannote[192].end 674.96346875
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 680.93721875
transcript.pyannote[193].end 681.22409375
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 682.86096875
transcript.pyannote[194].end 687.26534375
transcript.pyannote[195].speaker SPEAKER_06
transcript.pyannote[195].start 686.60721875
transcript.pyannote[195].end 688.17659375
transcript.pyannote[196].speaker SPEAKER_03
transcript.pyannote[196].start 688.17659375
transcript.pyannote[196].end 698.20034375
transcript.pyannote[197].speaker SPEAKER_06
transcript.pyannote[197].start 688.19346875
transcript.pyannote[197].end 688.26096875
transcript.pyannote[198].speaker SPEAKER_06
transcript.pyannote[198].start 689.64471875
transcript.pyannote[198].end 691.02846875
transcript.pyannote[199].speaker SPEAKER_06
transcript.pyannote[199].start 695.41596875
transcript.pyannote[199].end 696.78284375
transcript.pyannote[200].speaker SPEAKER_06
transcript.pyannote[200].start 697.64346875
transcript.pyannote[200].end 703.68471875
transcript.pyannote[201].speaker SPEAKER_03
transcript.pyannote[201].start 698.47034375
transcript.pyannote[201].end 701.42346875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 705.23721875
transcript.pyannote[202].end 706.78971875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 710.50221875
transcript.pyannote[203].end 712.39221875
transcript.whisperx[0].start 0.029
transcript.whisperx[0].end 3.231
transcript.whisperx[0].text 莊部長好 請莊部長我也好部長 本期想教教您一下去年我們現在八大工庫行庫當中總共賺了多少錢這個總金額我先不清楚是不是那沒關係我們請八大行庫的工庫行庫董事長上來一下請各位董事長上台
transcript.whisperx[1].start 27.202
transcript.whisperx[1].end 44.434
transcript.whisperx[1].text 我一一詢問我先問一下台銀的部分林董事長你們去年賺了多少錢委員好我們去年是創新高327億創新高然後土銀賺了多少錢
transcript.whisperx[2].start 46.272
transcript.whisperx[2].end 61.583
transcript.whisperx[2].text 公務員報告我們去年是賺的稅錢是兩百億三千四百萬兩百多少兩百億三千四百萬兩百一億喔那有沒有創新高啊有有創新高好那個兆豐銀行多少三百九十五億有沒有創新高
transcript.whisperx[3].start 70.238
transcript.whisperx[3].end 77.362
transcript.whisperx[3].text 應該還好差不多好那第一銀行邱董事長多少去年也是創新高金控加起來是稅前是330幾億330幾億330好然後接下來是那個華南陳董事長
transcript.whisperx[4].start 96.365
transcript.whisperx[4].end 124.308
transcript.whisperx[4].text 我們去年也是創新高創新高稅前是超過300億稅前超過300億好合作金庫林董各位報告我們去年213億也是創新高也是創新高那彰化銀行胡董包委我們彰化銀行去年創新高稅前211億2101111好來中小企業銀行李董
transcript.whisperx[5].start 126.499
transcript.whisperx[5].end 144.901
transcript.whisperx[5].text 報告委員我們去年也是獲利創新高稅前是152.5億好像只有兆豐沒有創新高而已其他都創新高一個一個來問創新高我請問一下林董既然創新高股票也上升對不對我問一下員工年終獎金要給幾個月
transcript.whisperx[6].start 146.748
transcript.whisperx[6].end 174.354
transcript.whisperx[6].text 我們國營事業就受到這個國營事業管理法的規範不管我創多高都是4.44.4那土銀也不用問了就4.4好 趙鋒趙鋒要給幾個月報告委員目前規劃大概是8個月因為營運跟金融差不多8個月8個月平均都8個月沒有最高8個月平均平均平均8個月好然後那個接下來邱董事長易營幾個月
transcript.whisperx[7].start 175.834
transcript.whisperx[7].end 183.056
transcript.whisperx[7].text 報告委員 目前我們也是規劃在八個月上下也是八個月上下好 接下來華南銀行幾個月詳細的數字還沒有出來不過我們會比 應該會比去年高一點現在已經快過年了 還沒出來大概多少 比照八個月可以嗎七個多月七個多月 七個多月 幕僚給說七個多月那核庫呢
transcript.whisperx[8].start 204.105
transcript.whisperx[8].end 211.687
transcript.whisperx[8].text 我們目前規劃是應該會超過七個月也超過七個月 你是有說好嗎 差不多 張華英好我們接近八個月八個月 也接近八個月我請問一下 中小企業運行幾個月 中小企業運行來
transcript.whisperx[9].start 227.199
transcript.whisperx[9].end 248.707
transcript.whisperx[9].text 幫委員依照我們的講求辦法的話應該會超過8個月要超過8個月請各位董事長請回我就剩下我問部長全部都創新高幾乎只有趙風鈞可能還不太確定有沒有有沒有創新高
transcript.whisperx[10].start 251.204
transcript.whisperx[10].end 264.441
transcript.whisperx[10].text 也創新高金控也創新高八大公股都是創新高都創新高那我問一下這年總獎金有沒有創新高部長
transcript.whisperx[11].start 266.382
transcript.whisperx[11].end 293.985
transcript.whisperx[11].text 我想他們會依照績效來發給應該的你應該要求他們因為不是給公司就給股東就給員工股東就已經股票帳面價值已經有提升了你是不是銀行獲利創新高是不是員工的年終獎金也應該要創新高這比較符合比例原則不是嗎是啊 支持委員的說法所以說如果沒有創新高的你就好好要求他們一下可不可以
transcript.whisperx[12].start 295.284
transcript.whisperx[12].end 315.96
transcript.whisperx[12].text 我不敢要求他們我只能要求你啊他們不需要要求他們自動就會鼓勵員工然後會給你好的一個獎金我給你一個數字你會後跟我講如果年終獎金沒有創新高你一個列舉給我好不好沒有創新高一個月可以嗎我不知道委員您是說沒有創新高要怎麼樣營業額有創新高你
transcript.whisperx[13].start 316.841
transcript.whisperx[13].end 336.057
transcript.whisperx[13].text 年终奖金也要创新高年终奖金如果跟着这个获利没有创新高的话就应该被检讨对不对就是没有善待员工好 是来接下来那个麻烦那个台湾银行上来一下台湾银行那个林董林董好
transcript.whisperx[14].start 337.577
transcript.whisperx[14].end 352.211
transcript.whisperx[14].text 林董那黃金的RWA台銀去年的部分的專案已經創辦已經成功在創新園區辦得不錯它已經達到四個效果了不論是自動化也好或者是同步交割要縮短這個結算也好降低風險也好
transcript.whisperx[15].start 353.112
transcript.whisperx[15].end 366.403
transcript.whisperx[15].text 那我問一下因為這個RWA的部分應用面的部分可以到一個現實的資產的部分還有包括台幣跟資產跟日幣你這個部分你們會要求去申請這個事辦嗎
transcript.whisperx[16].start 368.785
transcript.whisperx[16].end 384.178
transcript.whisperx[16].text 會的 跟委員報告大概什麼時候這個我們跟財經公司還有其他八家不管是公股的或者是其他的純民營的金融同業我們本來就組建了一個平台什麼時候 什麼時候試辦我們去年就已經做成這個實驗的成功實驗是什麼
transcript.whisperx[17].start 385.779
transcript.whisperx[17].end 400.705
transcript.whisperx[17].text 實驗事辦是事辦事辦就是今年開始我們會因為金管會也有指示說希望我們可以成立一個對啊你們都實驗成功了你們還在拖這沒有意思吧你們是一個指標嘛你們去年成功今年就應該事辦嘛會會會今年會去申請那這個事辦的重要性你如果擴大到其他的法幣的話的用意是什麼呢如果將來金管會它這個專法如果通過的話虛擬貨幣專法通過你就馬上可以接軌了沒錯
transcript.whisperx[18].start 413.531
transcript.whisperx[18].end 427.941
transcript.whisperx[18].text 因为台言师有一个示范性的作用我希望把这个部分做一个关键的一个引导麻烦你给我一个答复一个月内给我一个答复你们进度预计是什么样的方式接下来我请部长
transcript.whisperx[19].start 429.162
transcript.whisperx[19].end 445.587
transcript.whisperx[19].text 部長 因為最近高齡化的社會大家對退休的經濟安全保障都非常的在意相對勞工的部分相對是比較少但是以部分的話勞工目前的話不管是企業這一個相對提撥6%或勞工自體6%基本上已經經過20年了已經有開始許多多人想要倡議把它提高
transcript.whisperx[20].start 452.549
transcript.whisperx[20].end 470.542
transcript.whisperx[20].text 那除了勞動部問題之外其實最關鍵的其實是在財政部為什麼因為這裡頭有稅差損的問題一個呢如果說假設以6%提高到8%的話以個人的部分的話大概可以增加到173億企業的部分大概增加到800
transcript.whisperx[21].start 472.924
transcript.whisperx[21].end 486.371
transcript.whisperx[21].text 33億那以整個有效稅率來換算的話以企業大概是17%的話他的這個稅損的大概是150億那勞工的朋友的話大概有效稅率大概平均大概應該是大概3%左右但我已算5
transcript.whisperx[22].start 487.432
transcript.whisperx[22].end 508.855
transcript.whisperx[22].text 大概稅損大概增加8億這種情況底下勞動部是不是應該去評估一下這樣的稅損是不是勞動部可以承受得了然後我們可以增加讓勞工呢有更多一個經濟安全保障然後呢減少國家的這個稅收的情況底下這可以讓整個勞工的福利可以提升有沒有可能 部長請說
transcript.whisperx[23].start 509.991
transcript.whisperx[23].end 534.423
transcript.whisperx[23].text 我想委员这个部分我们会后是不是再跟劳动部再来做一个讨论以及他有没有要做一些提高到6%提高到8%以及未来对税收的相关的影响我们会跟劳动部再做进一步的了解你可以先跟本席讨论因为劳动部还没有提案本席有提案本席现在就就教于你因为本席的提案当中除了劳动部的因素之外就是财政部
transcript.whisperx[24].start 535.523
transcript.whisperx[24].end 558.84
transcript.whisperx[24].text 財政部的部分有兩個面向一個是自提的部分一個是企業提撥的部分顯然企業提撥的稅差損是大概150億但是勞工的部分的稅差損不過是8億也就是說自提的部分其實可以先行事辦企業的部分主力相對比較大後行事辦你可以提供出來介意你可以分階段性的處理有沒有可能
transcript.whisperx[25].start 561.501
transcript.whisperx[25].end 587.677
transcript.whisperx[25].text 我想这个部分我们会后再来跟委员请教你会后的部分我给你一个月的时间你评估一下好不好然后依照你这个评估的内容当中接下来我们跟劳动部讨论的时候会有所依据你们是提早准备最后一个问题我请教于您大家都非常关心因为我们想说在台美官报谈判的时候朝向FTA我们都一提到说我们要向美方争取先向免税的一个项目
transcript.whisperx[26].start 588.197
transcript.whisperx[26].end 595.673
transcript.whisperx[26].text 那我問你啊我們跟人家爭取千項免稅那我問部長美方現在要求我們要爭取多少免稅
transcript.whisperx[27].start 598.224
transcript.whisperx[27].end 609.812
transcript.whisperx[27].text 幾項 我問幾項而已這個部分因為涉及到他們相互還在簽相關的協議的文本內容既然是涉及我們跟他要求一千項可以講要求的可以講我們被要求的不能講簽署以後會向社會大眾報告你從昨天到現在都回答這句話都沒有邊跟為什麼我們跟他要求說有一千項我們被要求幾項不能講
transcript.whisperx[28].start 620.879
transcript.whisperx[28].end 632.844
transcript.whisperx[28].text 你站在財政部長你要去面對這個問題我們當然知道是我們會面對從汽車關稅的部分大概多少我們至少要去面對這個問題我根本本性也不是問你說稅率要降到多少都不是我問一個比較具體的問題好了另外一個
transcript.whisperx[29].start 636.785
transcript.whisperx[29].end 654.335
transcript.whisperx[29].text 這個台美之間啊這個重複科稅的問題啊就避免重複科稅的這個檢免法案已經在這個那個眾議院參過了接下來就經過這個參議院參議院通過以後就可以達成就完成這個效力了嘛 對不對就算財政部的一個政績嘛 對不對
transcript.whisperx[30].start 656.556
transcript.whisperx[30].end 683.854
transcript.whisperx[30].text 参议院通过后那要因为他是修国内法第一阶段他修国内法然后经过川普总统签署以后我们双方那你有没有算出两边的税差损多少这个双方这个部分会要签个国际文书那至于税差的部分因为其实这双方都相互投资都可以相互适用那事实上税差不是主要的一个议题因为事实上相互投资是会促进双向的贸易以及经济的成长我觉得这个部分是更重要的
transcript.whisperx[31].start 684.795
transcript.whisperx[31].end 700.059
transcript.whisperx[31].text 那一定會有避免重複課稅的部分嗎避免重複課稅還是會有數字上的問題數字上的問題牽扯到台商或美商之間他們減少稅損的問題當然是有數字的問題啊是有數字我們那只有初估而已初估 好不好可以吧好 謝謝好 謝謝郭國文委員接下來請羅明財委員質詢