iVOD / 167250

Field Value
IVOD_ID 167250
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167250
日期 2026-01-26
會議資料.會議代碼 委員會-11-4-20-18
會議資料.會議代碼:str 第11屆第4會期財政委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第18次全體委員會議
影片種類 Clip
開始時間 2026-01-26T12:05:42+08:00
結束時間 2026-01-26T12:17:22+08:00
影片長度 00:11:40
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/eb9c45f2fd618810c6ed7bf8067b37052e6dd44a39c46b25c95edea359322c40e168438cab24f24f5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 12:05:42 - 12:17:22
會議時間 2026-01-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第18次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆、中央銀行楊總裁金龍、經濟部龔部長明鑫、農業部陳部長駿季、國家發展委員會葉主任委員俊顯就「針對台美關稅貿易協議內容,對國家整體財經、國內產業與就業、股匯市場與各項民生通膨之影響與因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 5.11034375
transcript.pyannote[0].end 5.39721875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 6.00471875
transcript.pyannote[1].end 9.54846875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 18.96471875
transcript.pyannote[2].end 21.32721875
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 22.17096875
transcript.pyannote[3].end 25.25909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 25.49534375
transcript.pyannote[4].end 27.73971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 28.60034375
transcript.pyannote[5].end 31.43534375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 32.22846875
transcript.pyannote[6].end 33.22409375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 33.59534375
transcript.pyannote[7].end 35.68784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 36.27846875
transcript.pyannote[8].end 48.24284375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 48.44534375
transcript.pyannote[9].end 55.80284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 56.49471875
transcript.pyannote[10].end 57.22034375
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 58.21596875
transcript.pyannote[11].end 58.65471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 59.22846875
transcript.pyannote[12].end 61.03409375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 61.55721875
transcript.pyannote[13].end 63.05909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 63.43034375
transcript.pyannote[14].end 64.35846875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 64.76346875
transcript.pyannote[15].end 68.12159375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 68.45909375
transcript.pyannote[16].end 116.67096875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 117.04221875
transcript.pyannote[17].end 123.80909375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 124.14659375
transcript.pyannote[18].end 128.24721875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 129.36096875
transcript.pyannote[19].end 130.93034375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 131.30159375
transcript.pyannote[20].end 153.67784375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 154.08284375
transcript.pyannote[21].end 156.76596875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 157.42409375
transcript.pyannote[22].end 158.26784375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 159.07784375
transcript.pyannote[23].end 169.91159375
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 170.45159375
transcript.pyannote[24].end 172.99971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 173.74221875
transcript.pyannote[25].end 177.33659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 178.88909375
transcript.pyannote[26].end 180.23909375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 181.03221875
transcript.pyannote[27].end 215.06909375
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 215.76096875
transcript.pyannote[28].end 222.56159375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 223.08471875
transcript.pyannote[29].end 223.86096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 224.78909375
transcript.pyannote[30].end 225.91971875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 226.12221875
transcript.pyannote[31].end 226.89846875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 228.33284375
transcript.pyannote[32].end 229.81784375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 231.04971875
transcript.pyannote[33].end 231.50534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 232.09596875
transcript.pyannote[34].end 233.74971875
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 234.61034375
transcript.pyannote[35].end 236.39909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 237.10784375
transcript.pyannote[36].end 238.77846875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 239.33534375
transcript.pyannote[37].end 242.11971875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 242.52471875
transcript.pyannote[38].end 244.68471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 245.20784375
transcript.pyannote[39].end 249.47721875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 250.37159375
transcript.pyannote[40].end 258.58971875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 259.01159375
transcript.pyannote[41].end 260.37846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 261.15471875
transcript.pyannote[42].end 271.95471875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 272.49471875
transcript.pyannote[43].end 285.08346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 285.79221875
transcript.pyannote[44].end 287.22659375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 287.51346875
transcript.pyannote[45].end 288.50909375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 288.89721875
transcript.pyannote[46].end 293.50409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 294.60096875
transcript.pyannote[47].end 308.89409375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 309.04596875
transcript.pyannote[48].end 326.81534375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 327.23721875
transcript.pyannote[49].end 336.31596875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 331.03409375
transcript.pyannote[50].end 332.09721875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 335.65784375
transcript.pyannote[51].end 352.48221875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 337.93596875
transcript.pyannote[52].end 339.60659375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 353.25846875
transcript.pyannote[53].end 354.70971875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 355.89096875
transcript.pyannote[54].end 358.64159375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 358.64159375
transcript.pyannote[55].end 361.93221875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 363.72096875
transcript.pyannote[56].end 364.68284375
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 364.93596875
transcript.pyannote[57].end 366.99471875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 367.51784375
transcript.pyannote[58].end 371.93909375
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 372.34409375
transcript.pyannote[59].end 377.22096875
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 378.36846875
transcript.pyannote[60].end 379.97159375
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 381.06846875
transcript.pyannote[61].end 384.12284375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 384.59534375
transcript.pyannote[62].end 399.15846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 399.73221875
transcript.pyannote[63].end 400.08659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 400.45784375
transcript.pyannote[64].end 402.33096875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 402.66846875
transcript.pyannote[65].end 409.94159375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 410.66721875
transcript.pyannote[66].end 412.32096875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 412.84409375
transcript.pyannote[67].end 415.98284375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 416.74221875
transcript.pyannote[68].end 417.41721875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 417.46784375
transcript.pyannote[69].end 424.26846875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 425.19659375
transcript.pyannote[70].end 439.43909375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 440.02971875
transcript.pyannote[71].end 441.75096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 442.42596875
transcript.pyannote[72].end 445.27784375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 446.52659375
transcript.pyannote[73].end 457.73159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 457.98471875
transcript.pyannote[74].end 463.23284375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 464.88659375
transcript.pyannote[75].end 480.20909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 481.01909375
transcript.pyannote[76].end 487.00971875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 487.71846875
transcript.pyannote[77].end 490.50284375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 491.24534375
transcript.pyannote[78].end 494.36721875
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 494.60346875
transcript.pyannote[79].end 498.14721875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 498.36659375
transcript.pyannote[80].end 501.10034375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 501.92721875
transcript.pyannote[81].end 503.15909375
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 504.39096875
transcript.pyannote[82].end 522.44721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 515.03909375
transcript.pyannote[83].end 517.21596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 523.03784375
transcript.pyannote[84].end 527.13846875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 527.89784375
transcript.pyannote[85].end 528.40409375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 529.23096875
transcript.pyannote[86].end 551.06721875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 551.60721875
transcript.pyannote[87].end 579.16409375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 579.45096875
transcript.pyannote[88].end 581.29034375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 582.38721875
transcript.pyannote[89].end 583.68659375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 584.37846875
transcript.pyannote[90].end 585.34034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 585.54284375
transcript.pyannote[91].end 590.45346875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 590.68971875
transcript.pyannote[92].end 600.86534375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 601.35471875
transcript.pyannote[93].end 607.12596875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 607.96971875
transcript.pyannote[94].end 617.74034375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 617.99346875
transcript.pyannote[95].end 620.13659375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 620.71034375
transcript.pyannote[96].end 624.01784375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 624.03471875
transcript.pyannote[97].end 624.05159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 624.05159375
transcript.pyannote[98].end 635.00346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 630.90284375
transcript.pyannote[99].end 631.32471875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 635.13846875
transcript.pyannote[100].end 635.17221875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 635.17221875
transcript.pyannote[101].end 635.22284375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 635.22284375
transcript.pyannote[102].end 635.23971875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 635.23971875
transcript.pyannote[103].end 635.96534375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 635.96534375
transcript.pyannote[104].end 637.73721875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 636.60659375
transcript.pyannote[105].end 675.26721875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 675.82409375
transcript.pyannote[106].end 688.98659375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 690.23534375
transcript.pyannote[107].end 693.35721875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 693.66096875
transcript.pyannote[108].end 694.40346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 695.38221875
transcript.pyannote[109].end 697.71096875
transcript.whisperx[0].start 6.415
transcript.whisperx[0].end 9.437
transcript.whisperx[0].text 謝謝主席 我請財政部莊部長好 請莊部長委員好莊部長 辛苦了我今天要問三個問題這三個問題啊過去你一向是三不啦不解釋 不交代 不給答案
transcript.whisperx[1].start 32.284
transcript.whisperx[1].end 51.475
transcript.whisperx[1].text 那我認為這個時候我們國家已經跟美國這個關稅談判也談得OK啦所以我希望今天這三個問題你都能夠清楚肯定的回答我好不好這三個問題就是說我們汽車這麼高關稅17.5%我們保健食品高關稅30%
transcript.whisperx[2].start 59.941
transcript.whisperx[2].end 79.617
transcript.whisperx[2].text 這兩個關稅是不是要調降第三個問題就是說財政部這一兩年來都一直提起要取消兩千元小額包裹的免稅所以這三個問題那首先這汽車高關稅我相信你非常清楚嘛日本香港零
transcript.whisperx[3].start 80.518
transcript.whisperx[3].end 89.168
transcript.whisperx[3].text 美國2.5%中東的國家不管是阿拉伯、科威特、卡達人家他們都是5%加拿大5.9%韓國8%啦歐盟9.8%只有我看起來全世界大概我們台灣最高啦17.5%
transcript.whisperx[4].start 98.699
transcript.whisperx[4].end 109.593
transcript.whisperx[4].text 那這17.5%因為稅率是相乘的如果再加上貨物稅加值營業稅大概都會來到54%啦也就是說100萬的進口車為什麼在我們國內我們消費者必須154萬去購買
transcript.whisperx[5].start 117.162
transcript.whisperx[5].end 127.652
transcript.whisperx[5].text 所以一支我們國人同胞這六七十年來一直都沒辦法享有在國外生產的這些價廉物美的車輛
transcript.whisperx[6].start 129.537
transcript.whisperx[6].end 155.362
transcript.whisperx[6].text 那當然原因只有一個這原因也不是現在我們的政府去造成的因為六七十年來就是高關稅為了保護這個裕隆啦當時有當時的政治背景那這個阿斗我們保護了他六七十年到底還要保護這個阿斗還要保護多久那在去年我問起這個問題的時候當時
transcript.whisperx[7].start 159.144
transcript.whisperx[7].end 177.121
transcript.whisperx[7].text 的經濟部長他竟然回答他竟然說如果我們降低我們汽車關稅我們台灣將會有十幾萬相關從業人員會失業他當時這個叫我四個字胡說八道
transcript.whisperx[8].start 178.923
transcript.whisperx[8].end 199.996
transcript.whisperx[8].text 他全然不知我們台灣的汽車產業我們在零組件大多數這10萬位從業的人員有9萬6千位人家他們的工廠是零組件工廠我們總共有4500億的零組件產值有2500家廠商
transcript.whisperx[9].start 206.519
transcript.whisperx[9].end 223.168
transcript.whisperx[9].text 從業人員有九萬六千人耶人家他們很好很強百分之八十八出口而且都是國外的大廠Mercedes Benz BMW Audi這些大廠跟他們來購買從車燈保險桿到這個排檔到
transcript.whisperx[10].start 238.233
transcript.whisperx[10].end 259.888
transcript.whisperx[10].text 這個 啟動馬達等等人家是那麼的強 那麼的好所以高官稅只保護了一個啊這個阿斗現在人家也轉型了啊他汽車不做啦他現在改做不動產去設大商場 大型辦公大樓他去當包租公了那我們高官稅
transcript.whisperx[11].start 261.249
transcript.whisperx[11].end 284.159
transcript.whisperx[11].text 汽車高關稅還量在那個地方這對我們國人同胞非常的不公平啦所以我今天希望你能夠具體答覆我跟美國都談好了嘛那是不是我們應該把汽車17.5的高關稅降低甚至我認為一次一步到位就降到0
transcript.whisperx[12].start 286.011
transcript.whisperx[12].end 312.078
transcript.whisperx[12].text 這才是合理的嘛來對我們國人同胞做一個起碼的補償你的看法呢跟委員報告對於美國進口台灣的汽車還有保健食品那他的關稅的稅率以及是不是在這一次台美貿易這個台美關稅貿易協議裡面有沒有納入這個品項以及未來的關稅稅率那目前來說
transcript.whisperx[13].start 313.098
transcript.whisperx[13].end 325.862
transcript.whisperx[13].text 就我們所知經貿辦公室的談判經貿OTN也講了就是說在雙方還在做法律文字的校對之後檢核之後那在台美簽署以後自然會對社會大眾來做報告你是說要等
transcript.whisperx[14].start 329.384
transcript.whisperx[14].end 339.452
transcript.whisperx[14].text 談好了還要等簽署那你現在就可以告知我們嘛那都已經談好確定了嘛只差簽署不是嗎所以你的看法怎樣你認為該不該降對於這個部分是不是要降我相信OTN在跟美方談判的時候都已經對相關的評估跟討論那我想在簽署以後自然會對外做一個說明的你還是不回答就對了
transcript.whisperx[15].start 355.936
transcript.whisperx[15].end 379.162
transcript.whisperx[15].text 你還是 你就是三步就對了是 我想最後簽署就會對外做說明的 對如果這個簽署是正面的那我相信如果我們把汽車關稅降到零對美國 對歐盟 對日本 他們更高興不是嗎大家來公平競爭
transcript.whisperx[16].start 381.158
transcript.whisperx[16].end 409.724
transcript.whisperx[16].text 那他們的原廠車就可以平行來輸入我們國家他們是歡迎的啊這我們還有什麼好顧慮的那就我剛剛跟你講啦我們國內其實我們自己汽車產業是在這些零組件的部分我們那些很強包括變速箱等等你看那個車燈全世界量產最大的大概就是我們台灣這你非常清楚嘛
transcript.whisperx[17].start 410.731
transcript.whisperx[17].end 438.838
transcript.whisperx[17].text 好那保健品呢保健品也是很離譜欸保健品部長您知道嗎我們的保健品關稅30%竟然比香菸還高天啊香菸是有害身體的保健食品維他命等等吃了是要有益我們身體健康的竟然比那個香菸還要高我真不懂那就鼓勵大家去抽香菸囉
transcript.whisperx[18].start 440.137
transcript.whisperx[18].end 445.02
transcript.whisperx[18].text 鼓勵抽香菸好過吃維他命是這樣嗎你看我在國外保健食品的關稅很清楚美國6.4 韓國8%中國8.5 日本14.5我們啊是他們這幾個加起來總和30%
transcript.whisperx[19].start 464.929
transcript.whisperx[19].end 488.122
transcript.whisperx[19].text 我們一年我們國人同胞用在保健食品這部分有1200億之多我們竟然在莫名其妙的30%高關稅之下讓我們國人同胞沒辦法跟歐美日國家一樣享有同等的價廉物美的保健品你想想這多離譜 一顆維他命
transcript.whisperx[20].start 491.314
transcript.whisperx[20].end 501.023
transcript.whisperx[20].text 我們台灣是美國的三倍價格這不是很莫名其妙嗎其他保健品更是啊有的甚至高達五倍七倍之多所以部長你幹嘛呢
transcript.whisperx[21].start 504.637
transcript.whisperx[21].end 526.41
transcript.whisperx[21].text 跟委員報告還是對於美國進口台灣的保健食品他的關稅的稅率這些品項都會在台美關稅貿易協議裡面在討論所以你結論還是不給答案就對了還是會等到簽署以後談判團隊就會對社會大眾報告的好吧那我最後一題你至少這一題這個很小的問題喔這個
transcript.whisperx[22].start 531.603
transcript.whisperx[22].end 550.601
transcript.whisperx[22].text 關於這個小額包裹的關稅這個其實很清楚啊這個小額包裹的關稅事實上我們有訂兩千元以內然後半年六次那當然先前你們一兩年前說要取消你們說的原因是說怕
transcript.whisperx[23].start 551.741
transcript.whisperx[23].end 575.697
transcript.whisperx[23].text 中共藉由這個來洗產地那部長你們很清楚嘛小兒包裹這是我們國人同胞來自購買的國家有美國有日本有韓國等等也不是只有中國啊不是這樣嗎然後兩千元還限半年六次而已這簡單講啊這是我們國人同胞的小確訊
transcript.whisperx[24].start 582.501
transcript.whisperx[24].end 602.968
transcript.whisperx[24].text 小缺席也要被計較 也要被取消是這樣嗎 2000塊你看能買什麼就是買 我剛剛講的嘛 國外價廉物美的保健品啊2000元連一雙好的球鞋都買不到耶結果我們還要把它取消這不是莫名其妙嗎 2000元還包括運費在內天啊 竟然這麼摳
transcript.whisperx[25].start 608.058
transcript.whisperx[25].end 619.291
transcript.whisperx[25].text 所以我用 那你至少第三題最簡單嘛你至少答覆我 承諾我這兩千元小額包裹的關稅不要 免稅
transcript.whisperx[26].start 620.782
transcript.whisperx[26].end 636.939
transcript.whisperx[26].text 不要取消可不可以這一題最小最簡單嘛好 跟委員報告這個目前來說因為兩千塊以小額包含免稅而且每半年有六次的限制嘛那這個部分目前還沒有規劃到要把它取消沒有規劃沒有規劃到要把它取消非常好關稅法
transcript.whisperx[27].start 639.542
transcript.whisperx[27].end 656.512
transcript.whisperx[27].text 第49條有訂難得有一次我們的關稅稅收的法規有這麼好的這一條這一條要好好珍惜他就是訂得很清楚2000元以內的小額包裹每半年六次免費
transcript.whisperx[28].start 658.392
transcript.whisperx[28].end 672.759
transcript.whisperx[28].text 這個給我們全體國人通報的小確性千萬不要取消今天我得到你這麼明確的這個答覆我這點很感謝你啦部長辛苦啦但是另外那兩項高額的契稅關稅高額的
transcript.whisperx[29].start 675.905
transcript.whisperx[29].end 697.043
transcript.whisperx[29].text 那個保健食品30%關稅這個我希望你能夠最短時間內給我們全體國人同胞一個清楚明確的答覆不要再三不啦好不好謝謝好謝謝王世堅委員部長請回好謝謝接下來我們請王宏威委員質詢