iVOD / 167246

Field Value
IVOD_ID 167246
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167246
日期 2026-01-26
會議資料.會議代碼 委員會-11-4-20-18
會議資料.會議代碼:str 第11屆第4會期財政委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第18次全體委員會議
影片種類 Clip
開始時間 2026-01-26T11:40:17+08:00
結束時間 2026-01-26T11:52:47+08:00
影片長度 00:12:30
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/eb9c45f2fd618810ac10d638fb43697a2e6dd44a39c46b25f80b2b3af3c693787a77234ac69c45595ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 11:40:17 - 11:52:47
會議時間 2026-01-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第18次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆、中央銀行楊總裁金龍、經濟部龔部長明鑫、農業部陳部長駿季、國家發展委員會葉主任委員俊顯就「針對台美關稅貿易協議內容,對國家整體財經、國內產業與就業、股匯市場與各項民生通膨之影響與因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.04784375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 0.21659375
transcript.pyannote[1].end 2.66346875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 3.22034375
transcript.pyannote[2].end 7.21971875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 7.21971875
transcript.pyannote[3].end 8.31659375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 8.31659375
transcript.pyannote[4].end 8.33346875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 8.33346875
transcript.pyannote[5].end 8.40096875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 8.40096875
transcript.pyannote[6].end 14.49284375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 10.74659375
transcript.pyannote[7].end 11.33721875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 16.18034375
transcript.pyannote[8].end 57.97971875
transcript.pyannote[9].speaker SPEAKER_04
transcript.pyannote[9].start 58.13159375
transcript.pyannote[9].end 60.22409375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 58.92471875
transcript.pyannote[10].end 60.05534375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 60.10596875
transcript.pyannote[11].end 108.73971875
transcript.pyannote[12].speaker SPEAKER_04
transcript.pyannote[12].start 62.94096875
transcript.pyannote[12].end 63.16034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 97.97346875
transcript.pyannote[13].end 98.24346875
transcript.pyannote[14].speaker SPEAKER_04
transcript.pyannote[14].start 108.94221875
transcript.pyannote[14].end 123.06659375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 112.53659375
transcript.pyannote[15].end 112.95846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 116.48534375
transcript.pyannote[16].end 116.94096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 120.68721875
transcript.pyannote[17].end 130.89659375
transcript.pyannote[18].speaker SPEAKER_04
transcript.pyannote[18].start 131.43659375
transcript.pyannote[18].end 134.60909375
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 134.60909375
transcript.pyannote[19].end 141.73034375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 142.20284375
transcript.pyannote[20].end 142.23659375
transcript.pyannote[21].speaker SPEAKER_04
transcript.pyannote[21].start 142.23659375
transcript.pyannote[21].end 142.96221875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 142.96221875
transcript.pyannote[22].end 143.04659375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 143.09721875
transcript.pyannote[23].end 149.15534375
transcript.pyannote[24].speaker SPEAKER_04
transcript.pyannote[24].start 150.21846875
transcript.pyannote[24].end 157.12034375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 152.36159375
transcript.pyannote[25].end 152.71596875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 156.81659375
transcript.pyannote[26].end 158.82471875
transcript.pyannote[27].speaker SPEAKER_04
transcript.pyannote[27].start 158.23409375
transcript.pyannote[27].end 159.65159375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 159.22971875
transcript.pyannote[28].end 164.71409375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 165.30471875
transcript.pyannote[29].end 178.56846875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 179.15909375
transcript.pyannote[30].end 193.46909375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 193.82346875
transcript.pyannote[31].end 220.23284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 221.41409375
transcript.pyannote[32].end 221.78534375
transcript.pyannote[33].speaker SPEAKER_03
transcript.pyannote[33].start 224.78909375
transcript.pyannote[33].end 232.11284375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 230.67846875
transcript.pyannote[34].end 233.10846875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 232.11284375
transcript.pyannote[35].end 232.14659375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 234.62721875
transcript.pyannote[36].end 237.78284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 237.10784375
transcript.pyannote[37].end 238.94721875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 238.89659375
transcript.pyannote[38].end 240.21284375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 238.96409375
transcript.pyannote[39].end 239.01471875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 239.40284375
transcript.pyannote[40].end 239.53784375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 240.01034375
transcript.pyannote[41].end 248.16096875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 248.51534375
transcript.pyannote[42].end 255.97409375
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 256.75034375
transcript.pyannote[43].end 264.37784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 261.03659375
transcript.pyannote[44].end 261.44159375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 263.97284375
transcript.pyannote[45].end 269.38971875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 269.38971875
transcript.pyannote[46].end 270.97596875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 270.97596875
transcript.pyannote[47].end 270.99284375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 270.99284375
transcript.pyannote[48].end 271.88721875
transcript.pyannote[49].speaker SPEAKER_03
transcript.pyannote[49].start 271.00971875
transcript.pyannote[49].end 271.29659375
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 272.62971875
transcript.pyannote[50].end 277.00034375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 277.20284375
transcript.pyannote[51].end 293.04846875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 281.35409375
transcript.pyannote[52].end 281.75909375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 283.76721875
transcript.pyannote[53].end 284.17221875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 288.08721875
transcript.pyannote[54].end 288.10409375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 288.10409375
transcript.pyannote[55].end 288.50909375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 292.35659375
transcript.pyannote[56].end 297.67221875
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 297.90846875
transcript.pyannote[57].end 305.73846875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 300.57471875
transcript.pyannote[58].end 301.01346875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 304.67534375
transcript.pyannote[59].end 309.43409375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 309.43409375
transcript.pyannote[60].end 310.44659375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 310.44659375
transcript.pyannote[61].end 315.18846875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 315.05346875
transcript.pyannote[62].end 315.93096875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 315.93096875
transcript.pyannote[63].end 319.82909375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 320.13284375
transcript.pyannote[64].end 333.51471875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 334.17284375
transcript.pyannote[65].end 337.76721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 338.02034375
transcript.pyannote[66].end 339.21846875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 339.99471875
transcript.pyannote[67].end 346.00221875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 346.00221875
transcript.pyannote[68].end 346.76159375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 346.25534375
transcript.pyannote[69].end 347.72346875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 347.77409375
transcript.pyannote[70].end 349.79909375
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 351.55409375
transcript.pyannote[71].end 366.48846875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 366.75846875
transcript.pyannote[72].end 370.08284375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 370.09971875
transcript.pyannote[73].end 370.11659375
transcript.pyannote[74].speaker SPEAKER_04
transcript.pyannote[74].start 370.11659375
transcript.pyannote[74].end 381.27096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 372.74909375
transcript.pyannote[75].end 373.05284375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 379.41471875
transcript.pyannote[76].end 388.42596875
transcript.pyannote[77].speaker SPEAKER_04
transcript.pyannote[77].start 382.01346875
transcript.pyannote[77].end 382.19909375
transcript.pyannote[78].speaker SPEAKER_04
transcript.pyannote[78].start 388.29096875
transcript.pyannote[78].end 390.92346875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 390.92346875
transcript.pyannote[79].end 392.15534375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 392.44221875
transcript.pyannote[80].end 397.60596875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 397.92659375
transcript.pyannote[81].end 399.66471875
transcript.pyannote[82].speaker SPEAKER_04
transcript.pyannote[82].start 399.85034375
transcript.pyannote[82].end 405.95909375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 405.97596875
transcript.pyannote[83].end 412.77659375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 413.73846875
transcript.pyannote[84].end 414.75096875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 413.99159375
transcript.pyannote[85].end 415.22346875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 414.98721875
transcript.pyannote[86].end 417.70409375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 417.75471875
transcript.pyannote[87].end 419.76284375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 418.83471875
transcript.pyannote[88].end 421.11284375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 421.33221875
transcript.pyannote[89].end 424.74096875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 421.34909375
transcript.pyannote[90].end 422.26034375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 424.31909375
transcript.pyannote[91].end 438.42659375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 430.34346875
transcript.pyannote[92].end 430.49534375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 433.76909375
transcript.pyannote[93].end 434.17409375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 438.84846875
transcript.pyannote[94].end 440.77221875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 440.16471875
transcript.pyannote[95].end 441.73409375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 441.73409375
transcript.pyannote[96].end 445.88534375
transcript.pyannote[97].speaker SPEAKER_00
transcript.pyannote[97].start 443.21909375
transcript.pyannote[97].end 443.59034375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 445.88534375
transcript.pyannote[98].end 446.18909375
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 446.20596875
transcript.pyannote[99].end 448.21409375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 447.64034375
transcript.pyannote[100].end 448.18034375
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 448.21409375
transcript.pyannote[101].end 448.43346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 448.43346875
transcript.pyannote[102].end 459.35159375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 453.15846875
transcript.pyannote[103].end 453.74909375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 459.26721875
transcript.pyannote[104].end 460.06034375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 460.06034375
transcript.pyannote[105].end 462.27096875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 462.20346875
transcript.pyannote[106].end 462.50721875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 462.33846875
transcript.pyannote[107].end 470.20221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 470.47221875
transcript.pyannote[108].end 476.24346875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 475.06221875
transcript.pyannote[109].end 475.38284375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 476.51346875
transcript.pyannote[110].end 481.22159375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 480.34409375
transcript.pyannote[111].end 483.83721875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 483.60096875
transcript.pyannote[112].end 484.37721875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 484.74846875
transcript.pyannote[113].end 486.48659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 486.11534375
transcript.pyannote[114].end 490.67159375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 490.30034375
transcript.pyannote[115].end 500.27346875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 500.27346875
transcript.pyannote[116].end 502.26471875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 501.40409375
transcript.pyannote[117].end 508.79534375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 509.41971875
transcript.pyannote[118].end 513.45284375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 510.98909375
transcript.pyannote[119].end 511.37721875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 513.70596875
transcript.pyannote[120].end 515.52846875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 515.98409375
transcript.pyannote[121].end 516.27096875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 516.30471875
transcript.pyannote[122].end 517.35096875
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 517.35096875
transcript.pyannote[123].end 519.12284375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 520.35471875
transcript.pyannote[124].end 527.84721875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 521.19846875
transcript.pyannote[125].end 521.24909375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 527.77971875
transcript.pyannote[126].end 528.20159375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 528.20159375
transcript.pyannote[127].end 532.30221875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 532.53846875
transcript.pyannote[128].end 539.91284375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 540.06471875
transcript.pyannote[129].end 543.03471875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 543.03471875
transcript.pyannote[130].end 543.11909375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 543.64221875
transcript.pyannote[131].end 554.13846875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 554.32409375
transcript.pyannote[132].end 560.02784375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 555.45471875
transcript.pyannote[133].end 555.84284375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 560.36534375
transcript.pyannote[134].end 560.39909375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 560.39909375
transcript.pyannote[135].end 564.26346875
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 564.75284375
transcript.pyannote[136].end 566.77784375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 566.91284375
transcript.pyannote[137].end 569.02221875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 569.32596875
transcript.pyannote[138].end 570.05159375
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 570.70971875
transcript.pyannote[139].end 571.75596875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 572.34659375
transcript.pyannote[140].end 573.86534375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 575.38409375
transcript.pyannote[141].end 575.83971875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 575.97471875
transcript.pyannote[142].end 576.00846875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 576.39659375
transcript.pyannote[143].end 587.85471875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 587.85471875
transcript.pyannote[144].end 593.27159375
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 593.44034375
transcript.pyannote[145].end 605.84346875
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 606.31596875
transcript.pyannote[146].end 609.89346875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 610.45034375
transcript.pyannote[147].end 614.95596875
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 611.47971875
transcript.pyannote[148].end 612.64409375
transcript.pyannote[149].speaker SPEAKER_01
transcript.pyannote[149].start 614.78721875
transcript.pyannote[149].end 617.48721875
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 617.48721875
transcript.pyannote[150].end 617.50409375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 619.19159375
transcript.pyannote[151].end 629.50221875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 627.93284375
transcript.pyannote[152].end 630.63284375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 631.45971875
transcript.pyannote[153].end 632.86034375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 632.97846875
transcript.pyannote[154].end 639.22221875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 639.57659375
transcript.pyannote[155].end 641.06159375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 641.23034375
transcript.pyannote[156].end 648.40221875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 648.92534375
transcript.pyannote[157].end 649.90409375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 650.12346875
transcript.pyannote[158].end 657.09284375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 657.83534375
transcript.pyannote[159].end 660.61971875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 661.10909375
transcript.pyannote[160].end 663.62346875
transcript.pyannote[161].speaker SPEAKER_01
transcript.pyannote[161].start 664.56846875
transcript.pyannote[161].end 666.76221875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 667.21784375
transcript.pyannote[162].end 700.52909375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 700.91721875
transcript.pyannote[163].end 701.86221875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 702.41909375
transcript.pyannote[164].end 705.16971875
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 705.33846875
transcript.pyannote[165].end 706.40159375
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 707.21159375
transcript.pyannote[166].end 708.07221875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 708.57846875
transcript.pyannote[167].end 717.91034375
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 718.41659375
transcript.pyannote[168].end 733.43534375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 733.72221875
transcript.pyannote[169].end 736.59096875
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 737.13096875
transcript.pyannote[170].end 737.65409375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 738.12659375
transcript.pyannote[171].end 739.30784375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 739.54409375
transcript.pyannote[172].end 740.05034375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 741.70409375
transcript.pyannote[173].end 743.50971875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 743.98221875
transcript.pyannote[174].end 745.18034375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 745.39971875
transcript.pyannote[175].end 745.66971875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 747.32346875
transcript.pyannote[176].end 748.67346875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 748.99409375
transcript.pyannote[177].end 750.81659375
transcript.whisperx[0].start 0.811
transcript.whisperx[0].end 14.172
transcript.whisperx[0].text 我們請財政部莊部長經貿談判辦公室徐執密請莊部長徐執密經濟部何次長何次長國發會的高副主委高副主委
transcript.whisperx[1].start 16.206
transcript.whisperx[1].end 21.209
transcript.whisperx[1].text 好 謝謝當然首先先謝謝羅委員今天因為股市上三萬點請大家吃雞排那我也希望這個在野黨的委員能夠早一點讓總預算能夠通過總預算能夠早一點附委通過我相信我們的股市一定還會再漲
transcript.whisperx[2].start 37.779
transcript.whisperx[2].end 57.754
transcript.whisperx[2].text 很快就可以再輪到我們農民宅委員再請一次雞排啦但是前提是總運32線讓我們過來好不好再拜託一下好來我先請教一下莊部長好了莊部長昨天那個美國的這個自由攀登的好手Alex爬上這個101你有沒有看這個直播啊
transcript.whisperx[3].start 58.374
transcript.whisperx[3].end 62.258
transcript.whisperx[3].text 有看有看直播這個應該也是看得心驚膽跳不過我這邊要肯定我們賈永傑董事長因為他說他把101外面的五根旗幟全部都換成我們中華民國的國旗所以Netflix不管你從哪個角度拍
transcript.whisperx[4].start 78.992
transcript.whisperx[4].end 88.579
transcript.whisperx[4].text 都可以拍到這個中華民國的國旗是一個非常成功的行銷台灣我覺得做得非常好我覺得這個要給賈文傑董事長要肯定他要稱讚他這個也做了一個大膽的決定但是結果對於台灣整體的形象來講是非常好的那我請教一下部長我們這一次請Alex來攀登101有沒有財政部或是101有沒有花到任何錢
transcript.whisperx[5].start 109.332
transcript.whisperx[5].end 130.444
transcript.whisperx[5].text 沒有 101也沒有提供任何經費還有贊助或資金這各方面的支持只是提供場地 然後做相關的協調跟宣傳那財政部也更沒有出資了完全沒有 完全沒有那等於是說我們101在零出資的情況之下然後讓整個全世界暫時看到台灣
transcript.whisperx[6].start 131.845
transcript.whisperx[6].end 140.816
transcript.whisperx[6].text 讓全世界看到台灣以及我們的國旗的飄揚那我覺得真的很不容易啦我本來還以為說我們101有出錢所以這次101也沒有出到半毛錢沒有那之前101蔣永傑他答應的時候你知不知道這件事情
transcript.whisperx[7].start 150.43
transcript.whisperx[7].end 163.043
transcript.whisperx[7].text 這個部分是他們公司治理以及他們一個策略的規劃這個部分並不需要提報到財政部等於就是尊重101的決定就對了這是我要稱讚傑奧文傑董事長 稱讚101
transcript.whisperx[8].start 165.385
transcript.whisperx[8].end 190.871
transcript.whisperx[8].text 尤其是用零出資的方式然後成功的行銷台灣我覺得這個值得肯定那也值得我覺得所有的公務人員其實都可以想一下有時候你用非常少的資本甚至像這次零資本然後創造那麼大的效益其實我覺得都應該給予肯定跟鼓勵好 謝謝部長那我請教一下這個接下來可能要請教一下國發會還有徐執密
transcript.whisperx[9].start 194.752
transcript.whisperx[9].end 219.858
transcript.whisperx[9].text 這個 因為一直在提到說這個五千億美元的這個投資那其實現在大家都知道說兩千五百億是由民間企業自主投資那另外兩千五百億呢等於是這個政府的這個信保嘛那我請教一下這個如果經濟部和市長知道也幫忙協助一下目前這兩千五百億的企業自主投資是不是包含了一千六百五十億台積電的投資有嗎
transcript.whisperx[10].start 226.655
transcript.whisperx[10].end 231.28
transcript.whisperx[10].text 這個應該投資的計算應該還要再跟美方那邊再確認一下徐直銘知道嗎
transcript.whisperx[11].start 234.746
transcript.whisperx[11].end 255.425
transcript.whisperx[11].text 是有包含正在計畫中的投資就是包含這1650億包含計畫中的投資包含進去了那所以2500已經扣掉1650億了然後那不然徐殖民來來再請答覆那所以這個剩下的這一個投資應該也是這一個跟台積電相關的這些企業會在過去投資嗎
transcript.whisperx[12].start 256.806
transcript.whisperx[12].end 258.569
transcript.whisperx[12].text 那所以大概有有有些特定的廠商會過去投資的嗎?經濟部 市長
transcript.whisperx[13].start 273.169
transcript.whisperx[13].end 296.54
transcript.whisperx[13].text 其實我們在跟美方談判之前都已經有跟我們台灣的這些電子資訊大廠都有開過一個會議大概也了解一下他們現在正在進行中還有未來想要去投資的這個金額所以我們才會所以大概就是談定了說大概會有這些企業會進去投資大概就是2500億
transcript.whisperx[14].start 298.642
transcript.whisperx[14].end 318.619
transcript.whisperx[14].text 應該是說會朝這樣的一個方向但是多少年倒是沒有提到大概有多少所以這2500億也不是隨便畫出來的數字是 應該是這樣就是跟我們台灣的企業半導體的企業都談過就對了有談過了好 接下來我問高副主委另外2500億
transcript.whisperx[15].start 320.46
transcript.whisperx[15].end 349.126
transcript.whisperx[15].text 這個就是說這個等於是國家信用保證那你們有提到就是說這個財政部這邊莊部長也留住這個會由國發基金來籌措邀請公民銀行公股銀行來這個參與就對了那目前的這個準備的情況怎麼樣我們正在跟一些公股銀行跟那個民銀行在做協商當中就是說在進行當中莊部長有跟公股銀行有談過嗎
transcript.whisperx[16].start 351.601
transcript.whisperx[16].end 363.637
transcript.whisperx[16].text 跟委員報告這個部分國發會在整體的規劃那未來呢會由公股銀行還有民營的銀行一起加入以及國發基金一起加入那這整個的期程以及出資的一個狀況會再進一步的做詳細的研議
transcript.whisperx[17].start 366.789
transcript.whisperx[17].end 391.401
transcript.whisperx[17].text 那我相信這2500億也不是這個憑空化出來的2500億並沒有一步到位他只是提供一個支持然後支持金融機構對提供一個最高額度2500億因為你們有提到就是說這個信保的機制大概需要62.5億到100億但是也不是一次到位嘛對 都是分年分期來做的好 那這個錢這個總是要有
transcript.whisperx[18].start 394.682
transcript.whisperx[18].end 412.509
transcript.whisperx[18].text 低筒金嘛那這低筒金的低筆錢是從哪裡來的當然會目前的規劃國發基金也好還有公股銀行跟民營銀行一起加入那國發基金這個高富足委所以部分還是會用到政府的預算
transcript.whisperx[19].start 414.137
transcript.whisperx[19].end 437.959
transcript.whisperx[19].text 還是用基金的方式用基金 用國發基金出資的方式用國發基金的方式對 國發基金出資所以第一筆大概要出多少錢我們目前預估如果是62.5億的話大概是會300到400億的台幣然後基本上就是由國發基金跟公民銀行一起
transcript.whisperx[20].start 438.928
transcript.whisperx[20].end 459.54
transcript.whisperx[20].text 所以初期大概就是三四百億那就是由國發基金跟我們的公民銀行一起來來籌措這是第一桶金就對了但是會過去的我認為也是跟半導體高科技相關的產業吧因為一般的產業它不會特別過去那這些產業老實講也都很有錢是沒錯
transcript.whisperx[21].start 460.14
transcript.whisperx[21].end 473.919
transcript.whisperx[21].text 也都很有錢他們自己有資金然後就算是要跟銀行借錢需要國家信用保證的話我認為這些企業其實第一個不缺資金第二個就算來借錢未來都會還錢其實我們都會賺
transcript.whisperx[22].start 477.282
transcript.whisperx[22].end 498.293
transcript.whisperx[22].text 所以公股跟民營銀行才有加入的用意對於公民銀行來講 他們也可以賺錢啊是不是 也算是投資啊所以他們才願意共同來參與那這是雙贏啊那我覺得這部分 外界一直在做誤解在誤導 政府要出2500億 總共要出5000億
transcript.whisperx[23].start 501.635
transcript.whisperx[23].end 518.704
transcript.whisperx[23].text 這個還在洗我是覺得說相關的這些說明還是要說得更清楚公民銀行就算來投資也是最後也是會賺因為這些都是非常有信用的大公司有助於他的放款的業務國際放款的業務好 那請一下徐子密
transcript.whisperx[24].start 520.527
transcript.whisperx[24].end 536.3
transcript.whisperx[24].text 接下來大家會更關心我們現在簽的是台美投資合作備忘錄MOU對不對是請問一下台美對等貿易協定大概要多久的時間目前雙方正在做法律文字的檢視還有項目的核對我們預計是數週內可以完成簽署
transcript.whisperx[25].start 542.044
transcript.whisperx[25].end 563.8
transcript.whisperx[25].text 數週內農曆年前可以完成嗎我們目前雙方其實都很努力的在聯繫事實上我們最近跟美方的聯繫美方也說雖然現在美東大學他們在放學假但是他們不會就不工作他們還是會繼續工作所以我們雙方都持續在聯繫我們希望能夠盡快完成所以數週內算一算其實也是在
transcript.whisperx[26].start 564.801
transcript.whisperx[26].end 573.336
transcript.whisperx[26].text 台灣的農曆年前我們是二月中嗎我們會盡快盡快好那這個協定要送到立法院來做審議
transcript.whisperx[27].start 576.576
transcript.whisperx[27].end 605.459
transcript.whisperx[27].text 在簽署台美對等貿易協定之後行政院會依據條約締結法的程序將投資MOU跟貿易協定都一起送到立法院好 那立法院來做審議那狀況就會很多了它有可能全部都通過但是有可能全部都否定那有可能修改內部的文字那我先講不要講最極端的情況那如果它去修改你們
transcript.whisperx[28].start 606.68
transcript.whisperx[28].end 630.337
transcript.whisperx[28].text 談定了這個協定的話那協定沒有生效嗎協定就沒有生效了如果有修改的話那是那協定沒有生效的話第一個重談如果要重談必須要雙方都同意跟委員報告剛剛其實也有說明過就是說我們不方便去對於這個假設性的狀況沒關係就是你如果
transcript.whisperx[29].start 631.499
transcript.whisperx[29].end 648.165
transcript.whisperx[29].text 立法院做了更改第一個沒有生效嘛這是確定的嘛那沒有確定就兩個一個就是重談那要看美國要不要跟你談但是我認為呢美國不會跟你重談按照川普他的這個態度啊他就不跟你重談了
transcript.whisperx[30].start 648.945
transcript.whisperx[30].end 663.413
transcript.whisperx[30].text 他就是從這個本來的20再疊加或許再回到更早之前32%或是更慘的有可能因為好不容易跟美國就已經談妥了那結果呢 台灣的立法院不同意
transcript.whisperx[31].start 664.594
transcript.whisperx[31].end 690.842
transcript.whisperx[31].text 那本已經談到這15%不疊加了那現在有可能回到最壞的情況就是回到過去剛開始去年4月哈索提出來的那個告關稅啊對台灣來講傷害傷害是非常的大非常的嚴重啊我覺得要把這個嚴重性你雖然說不是假設性的問題但是你們要預想到如果這樣子的話對我們現在所有的企業它的影響會有多大我看很多的這些
transcript.whisperx[32].start 691.582
transcript.whisperx[32].end 705.949
transcript.whisperx[32].text 工具業也好 機具業也好許多產業他們講說談到15%不疊加對他們來講都非常好我們的預估經濟成長也會再增加結果如果因為談判不生效那因為談判作廢了
transcript.whisperx[33].start 707.23
transcript.whisperx[33].end 736.153
transcript.whisperx[33].text 那整個你們談了這麼久的這個貿易的協定那最後就作廢了那按照川普我認為啦川普就直接給你灌上去了他就不管你了這對於台灣來講危害是非常大的我覺得你們要把最壞的情況算在內就是立法院有可能會不同意或是有可能會去更改你們跟美方談妥的那些協定你們要把最壞的情況要跟國人講
transcript.whisperx[34].start 737.154
transcript.whisperx[34].end 745.547
transcript.whisperx[34].text 知道嗎謝謝委員指教好 謝謝好 謝謝李坤城委員好 次長請回 OK好 接下來我們請黃珊珊委員質詢