iVOD / 167237

Field Value
IVOD_ID 167237
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167237
日期 2026-01-26
會議資料.會議代碼 委員會-11-4-20-18
會議資料.會議代碼:str 第11屆第4會期財政委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第18次全體委員會議
影片種類 Clip
開始時間 2026-01-26T10:40:54+08:00
結束時間 2026-01-26T10:52:36+08:00
影片長度 00:11:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/eb9c45f2fd6188106bd5b0def412c9162e6dd44a39c46b2553e5fca86ad1f1ab025346619b12521c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:40:54 - 10:52:36
會議時間 2026-01-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第18次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆、中央銀行楊總裁金龍、經濟部龔部長明鑫、農業部陳部長駿季、國家發展委員會葉主任委員俊顯就「針對台美關稅貿易協議內容,對國家整體財經、國內產業與就業、股匯市場與各項民生通膨之影響與因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 4.14846875
transcript.pyannote[0].end 8.18159375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 8.55284375
transcript.pyannote[1].end 10.07159375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 10.51034375
transcript.pyannote[2].end 16.41659375
transcript.pyannote[3].speaker SPEAKER_04
transcript.pyannote[3].start 13.58159375
transcript.pyannote[3].end 14.20596875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 16.73721875
transcript.pyannote[4].end 19.13346875
transcript.pyannote[5].speaker SPEAKER_04
transcript.pyannote[5].start 17.10846875
transcript.pyannote[5].end 19.03221875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 19.52159375
transcript.pyannote[6].end 26.86221875
transcript.pyannote[7].speaker SPEAKER_04
transcript.pyannote[7].start 23.03159375
transcript.pyannote[7].end 23.68971875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 23.68971875
transcript.pyannote[8].end 24.33096875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 25.24221875
transcript.pyannote[9].end 25.79909375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 27.70596875
transcript.pyannote[10].end 28.53284375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 29.42721875
transcript.pyannote[11].end 39.11346875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 39.24846875
transcript.pyannote[12].end 41.79659375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 42.23534375
transcript.pyannote[13].end 44.10846875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 44.56409375
transcript.pyannote[14].end 48.63096875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 48.93471875
transcript.pyannote[15].end 50.60534375
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 50.97659375
transcript.pyannote[16].end 52.46159375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 51.01034375
transcript.pyannote[17].end 51.90471875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 52.63034375
transcript.pyannote[18].end 53.96346875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 53.96346875
transcript.pyannote[19].end 71.56409375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 54.21659375
transcript.pyannote[20].end 54.73971875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 61.27034375
transcript.pyannote[21].end 61.77659375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 62.04659375
transcript.pyannote[22].end 63.10971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 71.02409375
transcript.pyannote[23].end 74.17971875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 74.95596875
transcript.pyannote[24].end 80.79471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 83.02221875
transcript.pyannote[25].end 83.51159375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 84.23721875
transcript.pyannote[26].end 85.82346875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 87.07221875
transcript.pyannote[27].end 88.74284375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 88.20284375
transcript.pyannote[28].end 89.18159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 89.18159375
transcript.pyannote[29].end 93.48471875
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 94.15971875
transcript.pyannote[30].end 106.46159375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 107.08596875
transcript.pyannote[31].end 114.42659375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 113.29596875
transcript.pyannote[32].end 114.25784375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 114.71346875
transcript.pyannote[33].end 120.83909375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 120.26534375
transcript.pyannote[34].end 148.59846875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 149.17221875
transcript.pyannote[35].end 151.02846875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 151.36596875
transcript.pyannote[36].end 152.22659375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 152.41221875
transcript.pyannote[37].end 154.97721875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 154.55534375
transcript.pyannote[38].end 156.05721875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 156.05721875
transcript.pyannote[39].end 158.18346875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 158.09909375
transcript.pyannote[40].end 159.98909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 161.47409375
transcript.pyannote[41].end 166.92471875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 167.24534375
transcript.pyannote[42].end 169.72596875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 170.08034375
transcript.pyannote[43].end 170.29971875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 170.29971875
transcript.pyannote[44].end 171.56534375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 172.02096875
transcript.pyannote[45].end 174.04596875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 174.99096875
transcript.pyannote[46].end 175.91909375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 176.30721875
transcript.pyannote[47].end 178.56846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 178.95659375
transcript.pyannote[48].end 182.80409375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 183.09096875
transcript.pyannote[49].end 186.24659375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 186.85409375
transcript.pyannote[50].end 188.30534375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 188.30534375
transcript.pyannote[51].end 188.32221875
transcript.pyannote[52].speaker SPEAKER_04
transcript.pyannote[52].start 188.47409375
transcript.pyannote[52].end 188.77784375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 189.01409375
transcript.pyannote[53].end 190.90409375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 190.97159375
transcript.pyannote[54].end 194.70096875
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 193.24971875
transcript.pyannote[55].end 193.58721875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 195.13971875
transcript.pyannote[56].end 200.80971875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 201.63659375
transcript.pyannote[57].end 203.25659375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 203.76284375
transcript.pyannote[58].end 204.74159375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 204.96096875
transcript.pyannote[59].end 205.41659375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 206.15909375
transcript.pyannote[60].end 213.88784375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 213.97221875
transcript.pyannote[61].end 217.76909375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 218.20784375
transcript.pyannote[62].end 218.76471875
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 219.64221875
transcript.pyannote[63].end 221.04284375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 222.20721875
transcript.pyannote[64].end 223.47284375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 222.22409375
transcript.pyannote[65].end 222.89909375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 225.04221875
transcript.pyannote[66].end 229.51409375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 225.88596875
transcript.pyannote[67].end 226.03784375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 226.03784375
transcript.pyannote[68].end 226.40909375
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 226.40909375
transcript.pyannote[69].end 226.51034375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 230.02034375
transcript.pyannote[70].end 232.55159375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 234.18846875
transcript.pyannote[71].end 243.84096875
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 235.85909375
transcript.pyannote[72].end 236.44971875
transcript.pyannote[73].speaker SPEAKER_04
transcript.pyannote[73].start 243.84096875
transcript.pyannote[73].end 244.49909375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 244.51596875
transcript.pyannote[74].end 248.61659375
transcript.pyannote[75].speaker SPEAKER_04
transcript.pyannote[75].start 246.16971875
transcript.pyannote[75].end 246.23721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 249.27471875
transcript.pyannote[76].end 249.98346875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 250.48971875
transcript.pyannote[77].end 251.41784375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 251.70471875
transcript.pyannote[78].end 259.82159375
transcript.pyannote[79].speaker SPEAKER_04
transcript.pyannote[79].start 261.32346875
transcript.pyannote[79].end 262.52159375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 262.03221875
transcript.pyannote[80].end 262.87596875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 263.51721875
transcript.pyannote[81].end 264.76596875
transcript.pyannote[82].speaker SPEAKER_04
transcript.pyannote[82].start 263.77034375
transcript.pyannote[82].end 263.97284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 265.00221875
transcript.pyannote[83].end 266.55471875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 266.72346875
transcript.pyannote[84].end 267.12846875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 267.36471875
transcript.pyannote[85].end 268.42784375
transcript.pyannote[86].speaker SPEAKER_04
transcript.pyannote[86].start 267.48284375
transcript.pyannote[86].end 268.71471875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 268.51221875
transcript.pyannote[87].end 270.38534375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 270.41909375
transcript.pyannote[88].end 276.96659375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 277.23659375
transcript.pyannote[89].end 287.96909375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 288.25596875
transcript.pyannote[90].end 292.25534375
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 294.16221875
transcript.pyannote[91].end 294.92159375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 295.10721875
transcript.pyannote[92].end 296.62596875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 297.09846875
transcript.pyannote[93].end 304.01721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 304.16909375
transcript.pyannote[94].end 309.40034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 309.63659375
transcript.pyannote[95].end 313.26471875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 314.26034375
transcript.pyannote[96].end 314.96909375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 315.13784375
transcript.pyannote[97].end 317.04471875
transcript.pyannote[98].speaker SPEAKER_04
transcript.pyannote[98].start 317.85471875
transcript.pyannote[98].end 318.15846875
transcript.pyannote[99].speaker SPEAKER_04
transcript.pyannote[99].start 318.41159375
transcript.pyannote[99].end 318.42846875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 318.42846875
transcript.pyannote[100].end 322.76534375
transcript.pyannote[101].speaker SPEAKER_04
transcript.pyannote[101].start 318.61409375
transcript.pyannote[101].end 318.91784375
transcript.pyannote[102].speaker SPEAKER_04
transcript.pyannote[102].start 323.20409375
transcript.pyannote[102].end 328.84034375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 328.84034375
transcript.pyannote[103].end 331.47284375
transcript.pyannote[104].speaker SPEAKER_04
transcript.pyannote[104].start 329.34659375
transcript.pyannote[104].end 329.51534375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 332.04659375
transcript.pyannote[105].end 335.50596875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 335.79284375
transcript.pyannote[106].end 338.13846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 339.21846875
transcript.pyannote[107].end 340.33221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 341.04096875
transcript.pyannote[108].end 341.78346875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 342.74534375
transcript.pyannote[109].end 343.60596875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 343.67346875
transcript.pyannote[110].end 347.80784375
transcript.pyannote[111].speaker SPEAKER_04
transcript.pyannote[111].start 348.49971875
transcript.pyannote[111].end 354.25409375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 353.59596875
transcript.pyannote[112].end 364.91909375
transcript.pyannote[113].speaker SPEAKER_04
transcript.pyannote[113].start 356.53221875
transcript.pyannote[113].end 356.78534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 365.84721875
transcript.pyannote[114].end 375.29721875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 370.50471875
transcript.pyannote[115].end 371.41596875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 376.17471875
transcript.pyannote[116].end 378.41909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 376.19159375
transcript.pyannote[117].end 376.59659375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 378.60471875
transcript.pyannote[118].end 379.27971875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 379.51596875
transcript.pyannote[119].end 381.77721875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 381.97971875
transcript.pyannote[120].end 385.60784375
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 385.60784375
transcript.pyannote[121].end 387.46409375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 387.48096875
transcript.pyannote[122].end 390.56909375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 390.78846875
transcript.pyannote[123].end 393.18471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 393.28596875
transcript.pyannote[124].end 393.79221875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 394.56846875
transcript.pyannote[125].end 396.98159375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 397.18409375
transcript.pyannote[126].end 400.64346875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 400.79534375
transcript.pyannote[127].end 406.93784375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 407.27534375
transcript.pyannote[128].end 408.55784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 409.14846875
transcript.pyannote[129].end 409.62096875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 410.22846875
transcript.pyannote[130].end 413.77221875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 414.09284375
transcript.pyannote[131].end 418.17659375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 418.78409375
transcript.pyannote[132].end 430.02284375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 430.36034375
transcript.pyannote[133].end 431.13659375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 431.32221875
transcript.pyannote[134].end 433.81971875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 434.78159375
transcript.pyannote[135].end 438.96659375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 440.29971875
transcript.pyannote[136].end 445.02471875
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 445.51409375
transcript.pyannote[137].end 450.37409375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 450.37409375
transcript.pyannote[138].end 451.77471875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 450.39096875
transcript.pyannote[139].end 450.42471875
transcript.pyannote[140].speaker SPEAKER_03
transcript.pyannote[140].start 450.55971875
transcript.pyannote[140].end 451.53846875
transcript.pyannote[141].speaker SPEAKER_03
transcript.pyannote[141].start 451.77471875
transcript.pyannote[141].end 451.89284375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 451.89284375
transcript.pyannote[142].end 458.64284375
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 459.33471875
transcript.pyannote[143].end 469.03784375
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 463.26659375
transcript.pyannote[144].end 464.56596875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 467.53596875
transcript.pyannote[145].end 468.36284375
transcript.pyannote[146].speaker SPEAKER_01
transcript.pyannote[146].start 469.03784375
transcript.pyannote[146].end 470.57346875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 471.85596875
transcript.pyannote[147].end 473.69534375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 473.96534375
transcript.pyannote[148].end 485.79471875
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 476.41221875
transcript.pyannote[149].end 477.42471875
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 479.29784375
transcript.pyannote[150].end 479.70284375
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 480.00659375
transcript.pyannote[151].end 480.58034375
transcript.pyannote[152].speaker SPEAKER_03
transcript.pyannote[152].start 486.33471875
transcript.pyannote[152].end 490.87409375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 490.87409375
transcript.pyannote[153].end 490.89096875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 490.89096875
transcript.pyannote[154].end 490.90784375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 490.90784375
transcript.pyannote[155].end 490.97534375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 490.97534375
transcript.pyannote[156].end 491.75159375
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 491.75159375
transcript.pyannote[157].end 491.76846875
transcript.pyannote[158].speaker SPEAKER_03
transcript.pyannote[158].start 492.30846875
transcript.pyannote[158].end 493.13534375
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 493.13534375
transcript.pyannote[159].end 498.23159375
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 499.10909375
transcript.pyannote[160].end 499.91909375
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 500.66159375
transcript.pyannote[161].end 504.69471875
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 504.96471875
transcript.pyannote[162].end 515.51159375
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 515.59596875
transcript.pyannote[163].end 524.53971875
transcript.pyannote[164].speaker SPEAKER_01
transcript.pyannote[164].start 525.01221875
transcript.pyannote[164].end 529.01159375
transcript.pyannote[165].speaker SPEAKER_01
transcript.pyannote[165].start 529.21409375
transcript.pyannote[165].end 530.00721875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 530.47971875
transcript.pyannote[166].end 531.49221875
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 531.82971875
transcript.pyannote[167].end 532.90971875
transcript.pyannote[168].speaker SPEAKER_03
transcript.pyannote[168].start 533.16284375
transcript.pyannote[168].end 534.19221875
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 534.19221875
transcript.pyannote[169].end 535.40721875
transcript.pyannote[170].speaker SPEAKER_03
transcript.pyannote[170].start 535.37346875
transcript.pyannote[170].end 535.50846875
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 535.50846875
transcript.pyannote[171].end 537.09471875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 537.73596875
transcript.pyannote[172].end 538.14096875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 538.69784375
transcript.pyannote[173].end 538.96784375
transcript.pyannote[174].speaker SPEAKER_03
transcript.pyannote[174].start 538.96784375
transcript.pyannote[174].end 539.03534375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 539.03534375
transcript.pyannote[175].end 539.96346875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 539.96346875
transcript.pyannote[176].end 540.03096875
transcript.pyannote[177].speaker SPEAKER_01
transcript.pyannote[177].start 540.03096875
transcript.pyannote[177].end 552.24846875
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 552.72096875
transcript.pyannote[178].end 554.13846875
transcript.pyannote[179].speaker SPEAKER_01
transcript.pyannote[179].start 554.44221875
transcript.pyannote[179].end 555.31971875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 556.02846875
transcript.pyannote[180].end 556.88909375
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 557.37846875
transcript.pyannote[181].end 566.69346875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 567.11534375
transcript.pyannote[182].end 569.88284375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 570.57471875
transcript.pyannote[183].end 574.89471875
transcript.pyannote[184].speaker SPEAKER_03
transcript.pyannote[184].start 576.48096875
transcript.pyannote[184].end 585.18846875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 580.37909375
transcript.pyannote[185].end 581.94846875
transcript.pyannote[186].speaker SPEAKER_01
transcript.pyannote[186].start 583.48409375
transcript.pyannote[186].end 584.10846875
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 584.80034375
transcript.pyannote[187].end 587.39909375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 587.61846875
transcript.pyannote[188].end 589.37346875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 589.60971875
transcript.pyannote[189].end 593.28846875
transcript.pyannote[190].speaker SPEAKER_01
transcript.pyannote[190].start 594.57096875
transcript.pyannote[190].end 598.18221875
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 598.70534375
transcript.pyannote[191].end 606.73784375
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 607.66596875
transcript.pyannote[192].end 610.55159375
transcript.pyannote[193].speaker SPEAKER_01
transcript.pyannote[193].start 610.88909375
transcript.pyannote[193].end 631.12221875
transcript.pyannote[194].speaker SPEAKER_01
transcript.pyannote[194].start 631.52721875
transcript.pyannote[194].end 640.16721875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 640.36971875
transcript.pyannote[195].end 650.27534375
transcript.pyannote[196].speaker SPEAKER_01
transcript.pyannote[196].start 651.00096875
transcript.pyannote[196].end 652.01346875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 652.08096875
transcript.pyannote[197].end 652.84034375
transcript.pyannote[198].speaker SPEAKER_01
transcript.pyannote[198].start 652.63784375
transcript.pyannote[198].end 663.35346875
transcript.pyannote[199].speaker SPEAKER_02
transcript.pyannote[199].start 663.35346875
transcript.pyannote[199].end 663.75846875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 663.84284375
transcript.pyannote[200].end 666.49221875
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 667.08284375
transcript.pyannote[201].end 668.01096875
transcript.pyannote[202].speaker SPEAKER_01
transcript.pyannote[202].start 668.48346875
transcript.pyannote[202].end 668.97284375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 669.25971875
transcript.pyannote[203].end 670.72784375
transcript.pyannote[204].speaker SPEAKER_00
transcript.pyannote[204].start 670.72784375
transcript.pyannote[204].end 671.43659375
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 671.43659375
transcript.pyannote[205].end 678.91221875
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 679.08096875
transcript.pyannote[206].end 687.29909375
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 689.23971875
transcript.pyannote[207].end 690.06659375
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 689.35784375
transcript.pyannote[208].end 690.01596875
transcript.pyannote[209].speaker SPEAKER_03
transcript.pyannote[209].start 690.06659375
transcript.pyannote[209].end 690.13409375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 690.13409375
transcript.pyannote[210].end 690.18471875
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 690.18471875
transcript.pyannote[211].end 690.20159375
transcript.pyannote[212].speaker SPEAKER_03
transcript.pyannote[212].start 690.52221875
transcript.pyannote[212].end 690.62346875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 690.62346875
transcript.pyannote[213].end 691.26471875
transcript.pyannote[214].speaker SPEAKER_03
transcript.pyannote[214].start 692.78346875
transcript.pyannote[214].end 694.55534375
transcript.pyannote[215].speaker SPEAKER_03
transcript.pyannote[215].start 696.56346875
transcript.pyannote[215].end 699.39846875
transcript.whisperx[0].start 4.318
transcript.whisperx[0].end 23.853
transcript.whisperx[0].text 主席 在場的委員先進列席的政務機關所長官員會場工作夥伴媒體記者女士先生我們有請經濟部何次長然後主計總處陳主計長還有農業部的杜次長以及經貿談判辦公室的徐執行秘書依序來請教這幾位杜次長中委員好
transcript.whisperx[1].start 29.628
transcript.whisperx[1].end 49.303
transcript.whisperx[1].text 次長好我們這次關稅降到15%聽說傳產也共同受惠但是如果預算也不省關稅協議也不過那會誰受害呢我們來看一下有一個說法已經講了一年多了就是說台積電會變成美積電請問次長你怎麼看這樣說法經過這樣的一個協議談判之後台積電會變美積電嗎台積電你說
transcript.whisperx[2].start 53.205
transcript.whisperx[2].end 80.143
transcript.whisperx[2].text 這絕對不會的因為台積電我剛提到台積電在台灣的投資其實還是不斷的在加碼8成多產能8成多而且按照我們的統計到2030年台積電在5奈米以下的產能在台灣會是在8成5我們簡短那這些公司這9家公司是怎樣是在未來在美國的台灣模式的共同供應鏈嗎
transcript.whisperx[3].start 83.192
transcript.whisperx[3].end 104.949
transcript.whisperx[3].text 這些 這些都是在美國投資的吧有些是美國公司嘛 對不對對 是好 那請問一下這個美光美光買了一個利基電美光會變成台光嗎沒有沒有 是所以你說怎麼解釋這一次在我們半導體產業經過台美協議談判之後這些半導體的大哥們他們到底會形成怎麼樣的一個產業關係呢
transcript.whisperx[4].start 107.433
transcript.whisperx[4].end 123.403
transcript.whisperx[4].text 其實這個就可以看得出來其實半導體這個產業它需要是一個全球佈局台美而且跟歐盟日本這些合作的這樣的一個生態系我們必須要把它建立起來來 那我們看一下來 那台美半導體是相輔相成那傳產 傳統產業也可以順路共成嗎這裡面談到的所謂的15%不疊加談到了未來有232還有最優惠待遇我想請教一下往下看
transcript.whisperx[5].start 136.01
transcript.whisperx[5].end 158.565
transcript.whisperx[5].text 哪些傳統產業的競爭力不降反增因為人家說船廠現在很虛弱好的都是海盜半導體電子產業汽車零組件 自行車 塑膠 工具機手工具 水五金 醫療器材還有機械這些未來的競爭力怎麼樣市長你怎麼看是 這些都是受惠的產業受惠 為什麼說要受惠因為它的關稅大幅降低了不是從0變成15 還是怎麼樣
transcript.whisperx[6].start 161.496
transcript.whisperx[6].end 173.881
transcript.whisperx[6].text 我們來看一下是不是跟大聯盟我們台灣的船廠跟大聯盟哪些德國 日本 韓國 歐盟這些都是大聯盟對不對過去我們的工具機是不是跟人家相較起來我們的
transcript.whisperx[7].start 175.214
transcript.whisperx[7].end 199.923
transcript.whisperx[7].text 稅都是比較高 對那相當於歐盟 韓國 德國 日本都是15%那這是我們談到的結果你覺得跟大聯盟我們相較之下我們有沒有劣勢我們絕對沒有劣勢好 所以這次的結果呢我們降到跟他們一樣15%來 我們來看小聯盟好了我們的手工具 水五金 塑膠製品 自行車跟墨西哥 越南 中國競爭
transcript.whisperx[8].start 201.67
transcript.whisperx[8].end 223.031
transcript.whisperx[8].text 我們現在降到15%了對不對這些國家呢 怎麼樣他們這些國家的稅率還是蠻高的所以我們跟大聯盟並駕齊驅跟小聯盟拉開距離是不是這樣子是好 那我們往下看來 接下來我們請主席長主席長主席長已經先離開好 那現在是
transcript.whisperx[9].start 225.18
transcript.whisperx[9].end 243.476
transcript.whisperx[9].text 蔡副主席很抱歉是是是好來預算不審誰倒楣來我們請教一下今年度的預算規模是不是3兆0351億3兆0351億沒錯啦對對對好那其中相較於去年我們多增加了新興計畫還有延續計畫的新增額度是不是增加了2992億對對對你對著麥克風講請說是現在呢我們現在
transcript.whisperx[10].start 249.312
transcript.whisperx[10].end 257.876
transcript.whisperx[10].text 目前在野黨說透過預算法54條要先放行718億是不是等同砍掉了76%幹掉了2000多億這2000多億未來有機會用嗎有沒有辦法使用如果預算不省這2000多億還能用嗎
transcript.whisperx[11].start 267.53
transcript.whisperx[11].end 291.831
transcript.whisperx[11].text 沒辦法用了嘛所以包括我們永續的人才資源發展AI 自動導航等等這些都會延到我們國家數位轉型來往下看好 這些其他的部會社安網2.0我們的社工人員要加薪我們的關懷訓練要拓展我們所有的增額人手要增加還能做嗎為了少子女化長照社會救助伸張這些新計畫能做嗎
transcript.whisperx[12].start 294.195
transcript.whisperx[12].end 316.565
transcript.whisperx[12].text 有沒有錢做 如果預算不審可以過嗎就是新增的就不能做新增的都不能做 是不是這些強化社會安全網第二期有400億然後再來這些本來從400億變成819億擴增了新增的對象 獨居老人 新手父母 近貧人口 受侵害者這些人的服務都沒有了 是這樣嗎
transcript.whisperx[13].start 318.655
transcript.whisperx[13].end 337.679
transcript.whisperx[13].text 我們從400億變成819億新政要做的都不能做了是這樣嗎總的來講2992億就是影響經濟成長率1.1個百分點OK好了我們的腳本好像不太一樣來往下看我來問你好無人機科研中小企業賽事跟場館這些我們主席總書有沒有盤點這些都還能做嗎運動部
transcript.whisperx[14].start 343.239
transcript.whisperx[14].end 363.024
transcript.whisperx[14].text 經濟部因為今天的運動部沒有人來你可以待會回答嗎這還能做嗎只要是新增的或者NC線的計畫比去年多增加的所以你就是很清楚的告訴大家新增的都做不了了啦2990而已除了718億他們放贏了之外其他的都空了來我們請到杜次長農業部我們屏東農業縣我們關心的來
transcript.whisperx[15].start 365.885
transcript.whisperx[15].end 392.264
transcript.whisperx[15].text 如果關稅協議我們不用審查通過誰會受害我請教一下台灣目前對美銷售的出口的是什麼有毛豆 胡天蘭 鱸魚 烏過魚跟鬼頭刀所有出口主要產品都受害都受害那目前我們這些出口的價值過去呢在我們的出口占比美國市場很重要對不對美國是我們第一農產品出口市場所以美國是我們第一農產品市場好 那往下看那如果我們這次關稅協議過了
transcript.whisperx[16].start 394.605
transcript.whisperx[16].end 417.684
transcript.whisperx[16].text 那跟我們的主要競爭國 您覺得呢我們的毛豆跟中國競爭 蝴蝶蘭跟加拿大競爭鱸魚跟中國 土耳其競爭吳郭魚還有越南 印尼跟中國 鬼頭刀跟厄瓜多如果我們這次貿易談判協議通過了你覺得對我們農民 蘇美是利多嗎當然是利多 所以一定要維持現在十五而且不疊加的狀況最好
transcript.whisperx[17].start 418.806
transcript.whisperx[17].end 443.264
transcript.whisperx[17].text 所以我們這次的台美關稅談判不是只有半導體全球佈局成功多營連我們的船產也受惠連我們的農產品也需要對不對完全需要好那接下來我要請我們的徐執行秘書是委員號來這些問題呢你不見得現在都能答得完你試著答答看跟美國的關稅談判哪些國家已經完成了關稅協議完成了簽訂有沒有
transcript.whisperx[18].start 445.94
transcript.whisperx[18].end 470.068
transcript.whisperx[18].text 完成簽訂的是像柬埔寨跟馬來西亞這個是確定的已經完成簽訂了 是的好 那這些國家跟美國的關稅協議在他們國內是照案通過嗎我們目前的了解應該是大部分都照案通過不是 你說那兩個 馬來西亞跟誰馬來西亞跟柬埔寨柬埔寨 那他們是照案通過嗎是他們國內照案通過嗎
transcript.whisperx[19].start 472.029
transcript.whisperx[19].end 497.809
transcript.whisperx[19].text 對不起 請委員再說一次來 我問你哪些國家已經跟美國完成關稅協議的簽訂是你說有兩個國家嗎柬埔寨跟馬來西亞那這些國家他們跟美國的關稅協定的簽訂在他們國內的國會是召喚通過嗎這部分我們再確認一下但我們的了解應該是都召喚通過有沒有重談沒有重談好 如果關稅協議回到各國的國內去審查有更改要不要重談
transcript.whisperx[20].start 500.782
transcript.whisperx[20].end 523.616
transcript.whisperx[20].text 如果有更改就沒有辦法生效 能不能重談要看雙方OK 目前有沒有哪個國家因為跟美國談妥了回到自己的國會 國會有意見要更改有沒有這樣的情形 有沒有還發生了沒目前沒有看到目前沒有看到 再講一次 對著白鴿鵬再講一次目前跟美國的關稅談判已經敲定了 結果回到國會裡面
transcript.whisperx[21].start 525.558
transcript.whisperx[21].end 536.533
transcript.whisperx[21].text 有沒有哪個國家的國會因為他反對要修改而造成協定沒有辦法簽訂沒有辦法生效 有沒有目前還沒有看到你會希望看到是台灣嗎
transcript.whisperx[22].start 538.803
transcript.whisperx[22].end 554.642
transcript.whisperx[22].text 站在台曼辦公室的立場希望不要希望不要好 那我先問你假設你剛剛講到了如果未來我們國會對於台曼團隊談來的這個台美的關稅協議或者協定有任何的修改你剛剛說了
transcript.whisperx[23].start 556.084
transcript.whisperx[23].end 574.474
transcript.whisperx[23].text 就無法生效那無法生效我剛剛講了農業會受損 船廠會受損半導體我們要擴大對全世界的市場的佈局但是如果發生這種情況我們有沒有機會重談你說他看對方那我再問你 假設可以重談你有把握談出更好的條件嗎
transcript.whisperx[24].start 576.816
transcript.whisperx[24].end 592.704
transcript.whisperx[24].text 謝謝委員關心但我們可不可以不要回答假設性的問題不要回答假設性的問題對 行政部門來講是比較困難是比較困難是 抱歉所以你不認為我們需要重談你也不認為重談有機會談得更好是這樣嗎
transcript.whisperx[25].start 594.602
transcript.whisperx[25].end 606.156
transcript.whisperx[25].text 你是不是希望維持現在的協議能夠簽訂能夠生效站在行政部門的立場是的所以你認為目前這個協議簽訂生效是對台灣的最佳狀況也是對美國的最佳狀況
transcript.whisperx[26].start 608.368
transcript.whisperx[26].end 636.927
transcript.whisperx[26].text 是好目前為止已經簽訂生效的兩個國家他的國會並沒有做協議做任何的更改不然的話就不能生效了對不對是那現在還在進行已經敲定了回到國內再談的國家你有沒有聽說哪個國家有國會要去修改去影響他們談定的這個內容有沒有目前沒有目前沒有好那我希望呢談判辦公室要好好的告訴國人
transcript.whisperx[27].start 638.088
transcript.whisperx[27].end 665.098
transcript.whisperx[27].text 我們要談來的結果再重述一次就經濟部來講我們這次的半導體產業是能夠跟先進國我們同時的形成全球佈局擴大台灣的影響力對不對 何市長是不是這樣 是的好 然後就我們的傳產來講我們有效的降低過去比較高關稅我們跟大聯盟並駕齊驅我們跟小聯盟拉開差距對我們傳產是有利的對不對 對杜市長 那如果說這個協議生效
transcript.whisperx[28].start 667.119
transcript.whisperx[28].end 687.094
transcript.whisperx[28].text 那對我們農業出口美國是有幫助的對不對具有優勢具有優勢而且優勢加強了對不對好所以呢就這些立場來講希望談判辦公室跟國人號說明如果這個協議不能夠國會完全的審定通過完全生效對台灣是不利的執行長是不是這樣好謝謝好謝謝鍾嘉賓委員
transcript.whisperx[29].start 697.388
transcript.whisperx[29].end 697.69
transcript.whisperx[29].text 謝謝 接下來請賴會員委員質詢