iVOD / 167230

Field Value
IVOD_ID 167230
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167230
日期 2026-01-26
會議資料.會議代碼 委員會-11-4-20-18
會議資料.會議代碼:str 第11屆第4會期財政委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第18次全體委員會議
影片種類 Clip
開始時間 2026-01-26T09:48:58+08:00
結束時間 2026-01-26T10:01:40+08:00
影片長度 00:12:42
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/eb9c45f2fd6188101fd28b2cfcf2216f2e6dd44a39c46b2553e5fca86ad1f1ab7bd1442b9f89c7a65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:48:58 - 10:01:40
會議時間 2026-01-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第18次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆、中央銀行楊總裁金龍、經濟部龔部長明鑫、農業部陳部長駿季、國家發展委員會葉主任委員俊顯就「針對台美關稅貿易協議內容,對國家整體財經、國內產業與就業、股匯市場與各項民生通膨之影響與因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 1.63409375
transcript.pyannote[0].end 6.86534375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 7.00034375
transcript.pyannote[1].end 8.67096875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 8.01284375
transcript.pyannote[2].end 9.54846875
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 10.00409375
transcript.pyannote[3].end 10.74659375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 11.47221875
transcript.pyannote[4].end 11.84346875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.00721875
transcript.pyannote[5].end 17.81721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 18.39096875
transcript.pyannote[6].end 19.01534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 19.01534375
transcript.pyannote[7].end 31.68846875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 32.34659375
transcript.pyannote[8].end 34.52346875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 34.92846875
transcript.pyannote[9].end 35.72159375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 36.43034375
transcript.pyannote[10].end 37.44284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 38.30346875
transcript.pyannote[11].end 41.29034375
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 42.23534375
transcript.pyannote[12].end 49.18784375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 50.20034375
transcript.pyannote[13].end 51.92159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 52.88346875
transcript.pyannote[14].end 54.04784375
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 54.92534375
transcript.pyannote[15].end 56.86596875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 57.43971875
transcript.pyannote[16].end 66.45096875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 67.61534375
transcript.pyannote[17].end 70.02846875
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 70.72034375
transcript.pyannote[18].end 80.11971875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 80.35596875
transcript.pyannote[19].end 82.48221875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 82.48221875
transcript.pyannote[20].end 87.47721875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 87.47721875
transcript.pyannote[21].end 100.74096875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 87.49409375
transcript.pyannote[22].end 88.47284375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 100.74096875
transcript.pyannote[23].end 101.21346875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 108.63846875
transcript.pyannote[24].end 113.75159375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 114.39284375
transcript.pyannote[25].end 125.64846875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 125.64846875
transcript.pyannote[26].end 125.73284375
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 125.96909375
transcript.pyannote[27].end 128.56784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 129.17534375
transcript.pyannote[28].end 129.76596875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 131.40284375
transcript.pyannote[29].end 137.69721875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 138.40596875
transcript.pyannote[30].end 140.07659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 140.93721875
transcript.pyannote[31].end 144.21096875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 145.27409375
transcript.pyannote[32].end 146.92784375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 147.90659375
transcript.pyannote[33].end 149.52659375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 150.25221875
transcript.pyannote[34].end 153.61034375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 154.06596875
transcript.pyannote[35].end 162.41909375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 162.84096875
transcript.pyannote[36].end 164.14034375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 164.30909375
transcript.pyannote[37].end 165.35534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 165.59159375
transcript.pyannote[38].end 168.78096875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 169.27034375
transcript.pyannote[39].end 174.16409375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 174.78846875
transcript.pyannote[40].end 178.14659375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 178.72034375
transcript.pyannote[41].end 181.01534375
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 181.63971875
transcript.pyannote[42].end 182.92221875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 183.69846875
transcript.pyannote[43].end 184.42409375
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 184.71096875
transcript.pyannote[44].end 196.06784375
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 196.28721875
transcript.pyannote[45].end 199.08846875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 199.45971875
transcript.pyannote[46].end 210.00659375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 210.46221875
transcript.pyannote[47].end 211.91346875
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 212.53784375
transcript.pyannote[48].end 213.33096875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 213.82034375
transcript.pyannote[49].end 214.90034375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 215.57534375
transcript.pyannote[50].end 226.88159375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 227.45534375
transcript.pyannote[51].end 229.36221875
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 229.93596875
transcript.pyannote[52].end 231.72471875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 232.21409375
transcript.pyannote[53].end 234.25596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 234.82971875
transcript.pyannote[54].end 237.04034375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 237.79971875
transcript.pyannote[55].end 240.49971875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 241.29284375
transcript.pyannote[56].end 253.54409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 254.10096875
transcript.pyannote[57].end 257.83034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 258.80909375
transcript.pyannote[58].end 262.65659375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 263.93909375
transcript.pyannote[59].end 268.02284375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 269.05221875
transcript.pyannote[60].end 280.45971875
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 280.72971875
transcript.pyannote[61].end 283.24409375
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 283.61534375
transcript.pyannote[62].end 285.25221875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 286.43346875
transcript.pyannote[63].end 288.40784375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 289.23471875
transcript.pyannote[64].end 294.39846875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 295.37721875
transcript.pyannote[65].end 301.62096875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 302.07659375
transcript.pyannote[66].end 308.89409375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 309.41721875
transcript.pyannote[67].end 311.67846875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 312.28596875
transcript.pyannote[68].end 314.91846875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 316.69034375
transcript.pyannote[69].end 320.18346875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 321.01034375
transcript.pyannote[70].end 324.36846875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 325.83659375
transcript.pyannote[71].end 328.48596875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 328.70534375
transcript.pyannote[72].end 329.68409375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 329.76846875
transcript.pyannote[73].end 333.34596875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 333.56534375
transcript.pyannote[74].end 333.90284375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 334.39221875
transcript.pyannote[75].end 337.54784375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 337.98659375
transcript.pyannote[76].end 339.37034375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 340.48409375
transcript.pyannote[77].end 347.77409375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 348.93846875
transcript.pyannote[78].end 352.85346875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 353.00534375
transcript.pyannote[79].end 355.16534375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 355.40159375
transcript.pyannote[80].end 358.03409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 358.70909375
transcript.pyannote[81].end 361.94909375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 363.29909375
transcript.pyannote[82].end 366.20159375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 366.75846875
transcript.pyannote[83].end 369.03659375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 369.35721875
transcript.pyannote[84].end 376.73159375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 377.49096875
transcript.pyannote[85].end 379.71846875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 380.22471875
transcript.pyannote[86].end 383.34659375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 383.98784375
transcript.pyannote[87].end 386.89034375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 387.26159375
transcript.pyannote[88].end 388.45971875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 389.08409375
transcript.pyannote[89].end 391.46346875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 392.84721875
transcript.pyannote[90].end 396.00284375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 396.49221875
transcript.pyannote[91].end 401.13284375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 401.65596875
transcript.pyannote[92].end 404.27159375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 404.62596875
transcript.pyannote[93].end 410.44784375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 411.88221875
transcript.pyannote[94].end 414.71721875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 415.37534375
transcript.pyannote[95].end 416.16846875
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 416.84346875
transcript.pyannote[96].end 418.27784375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 418.80096875
transcript.pyannote[97].end 425.63534375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 426.19221875
transcript.pyannote[98].end 438.22409375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 439.70909375
transcript.pyannote[99].end 442.12221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 443.64096875
transcript.pyannote[100].end 445.76721875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 445.76721875
transcript.pyannote[101].end 453.81659375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 454.13721875
transcript.pyannote[102].end 459.23346875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 459.52034375
transcript.pyannote[103].end 460.98846875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 460.27971875
transcript.pyannote[104].end 463.28346875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 462.00096875
transcript.pyannote[105].end 478.04909375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 471.51846875
transcript.pyannote[106].end 473.30721875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 474.04971875
transcript.pyannote[107].end 474.82596875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 477.35721875
transcript.pyannote[108].end 489.52409375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 489.94596875
transcript.pyannote[109].end 496.40909375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 497.28659375
transcript.pyannote[110].end 503.58096875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 503.90159375
transcript.pyannote[111].end 504.30659375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 504.30659375
transcript.pyannote[112].end 505.52159375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 506.66909375
transcript.pyannote[113].end 513.97596875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 514.53284375
transcript.pyannote[114].end 517.33409375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 517.58721875
transcript.pyannote[115].end 523.72971875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 524.65784375
transcript.pyannote[116].end 527.76284375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 528.10034375
transcript.pyannote[117].end 529.48409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 530.12534375
transcript.pyannote[118].end 537.02721875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 537.31409375
transcript.pyannote[119].end 539.10284375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 540.30096875
transcript.pyannote[120].end 542.20784375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 542.79846875
transcript.pyannote[121].end 545.73471875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 546.81471875
transcript.pyannote[122].end 554.13846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 555.25221875
transcript.pyannote[123].end 560.73659375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 561.56346875
transcript.pyannote[124].end 565.05659375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 566.23784375
transcript.pyannote[125].end 567.87471875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 568.11096875
transcript.pyannote[126].end 575.46846875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 576.26159375
transcript.pyannote[127].end 580.32846875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 580.59846875
transcript.pyannote[128].end 582.21846875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 582.79221875
transcript.pyannote[129].end 586.20096875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 587.61846875
transcript.pyannote[130].end 589.42409375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 589.98096875
transcript.pyannote[131].end 592.69784375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 593.52471875
transcript.pyannote[132].end 594.85784375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 595.14471875
transcript.pyannote[133].end 604.34159375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 605.30346875
transcript.pyannote[134].end 607.98659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 608.59409375
transcript.pyannote[135].end 610.04534375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 610.51784375
transcript.pyannote[136].end 613.52159375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 613.90971875
transcript.pyannote[137].end 615.20909375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 615.61409375
transcript.pyannote[138].end 617.23409375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 618.73596875
transcript.pyannote[139].end 622.61721875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 624.55784375
transcript.pyannote[140].end 625.82346875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 626.00909375
transcript.pyannote[141].end 628.38846875
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 628.91159375
transcript.pyannote[142].end 634.04159375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 634.61534375
transcript.pyannote[143].end 636.67409375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 636.82596875
transcript.pyannote[144].end 649.24596875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 649.75221875
transcript.pyannote[145].end 651.27096875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 651.57471875
transcript.pyannote[146].end 653.16096875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 654.20721875
transcript.pyannote[147].end 656.83971875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 657.85221875
transcript.pyannote[148].end 659.32034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 659.47221875
transcript.pyannote[149].end 665.19284375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 666.71159375
transcript.pyannote[150].end 672.60096875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 673.22534375
transcript.pyannote[151].end 677.52846875
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 678.55784375
transcript.pyannote[152].end 679.11471875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 679.75596875
transcript.pyannote[153].end 680.97096875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 681.61221875
transcript.pyannote[154].end 684.04221875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 685.24034375
transcript.pyannote[155].end 685.78034375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 686.38784375
transcript.pyannote[156].end 686.97846875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 688.09221875
transcript.pyannote[157].end 688.69971875
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 691.82159375
transcript.pyannote[158].end 696.37784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 693.59346875
transcript.pyannote[159].end 698.33534375
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 701.67659375
transcript.pyannote[160].end 716.69534375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 708.96659375
transcript.pyannote[161].end 711.14346875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 711.14346875
transcript.pyannote[162].end 711.17721875
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 711.53159375
transcript.pyannote[163].end 711.61596875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 711.61596875
transcript.pyannote[164].end 711.68346875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 711.68346875
transcript.pyannote[165].end 711.97034375
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 717.58971875
transcript.pyannote[166].end 719.22659375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 719.83409375
transcript.pyannote[167].end 722.63534375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 722.97284375
transcript.pyannote[168].end 724.91346875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 726.33096875
transcript.pyannote[169].end 727.95096875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 729.08159375
transcript.pyannote[170].end 731.46096875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 731.83221875
transcript.pyannote[171].end 733.26659375
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 734.56596875
transcript.pyannote[172].end 735.15659375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 735.56159375
transcript.pyannote[173].end 740.87721875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 741.36659375
transcript.pyannote[174].end 749.97284375
transcript.pyannote[175].speaker SPEAKER_02
transcript.pyannote[175].start 750.64784375
transcript.pyannote[175].end 753.12846875
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 755.25471875
transcript.pyannote[176].end 757.24596875
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 757.93784375
transcript.pyannote[177].end 758.30909375
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 760.67159375
transcript.pyannote[178].end 761.97096875
transcript.whisperx[0].start 1.636
transcript.whisperx[0].end 10.407
transcript.whisperx[0].text 主席麻煩請行政院經貿談判辦公室徐執行秘書請徐執行秘書還有經濟部何次長何次長請
transcript.whisperx[1].start 17.245
transcript.whisperx[1].end 40.856
transcript.whisperx[1].text 委員好我是很敬佩各個委員在這邊很努力問政但是你們回答的資訊如果他原來提出來的數字是不正確的你們也要趕距離力爭確實跟他回答投資都是2500億美金不是5000億換算成台幣的話就不是15兆台幣
transcript.whisperx[2].start 42.318
transcript.whisperx[2].end 66.147
transcript.whisperx[2].text 而且裡面台積電已經本來就承諾投資1650億美金了嘛對不對所以剩下的擴大其實是剩多少其實才剩下850億嘛這個還沒有算環球金沒有算鴻海沒有算偽創這些現在正要前往美國投資的這些企業所以把它講成這麼大
transcript.whisperx[3].start 70.725
transcript.whisperx[3].end 100.445
transcript.whisperx[3].text 我跟你說啦監督問證是很好啦不要背於事實啦我們還是要基於在事實的基礎上來問證我講的是不是對的有哪一個地方不正確你請你給我指出來是委員講的都對齁那因為五千億不能加總來看啦兩千五百億的信用保證魏董事長在這個地方來魏董事長請你上台跟我們講一下現在中小信保齁在台灣如果你要融資兩千五百億你那個槓桿的比例大概是多少
transcript.whisperx[4].start 100.725
transcript.whisperx[4].end 101.505
transcript.whisperx[4].text 跟委員報告那我們信保基金保證的成數是13.77就是現在事實上操作是13.77對 那如果說是以這樣來講的話2500億美金的話是181.55億好 請你回座好 謝謝所以
transcript.whisperx[5].start 131.465
transcript.whisperx[5].end 148.767
transcript.whisperx[5].text 要信用保證2500億的美金一位董事長如果以在國內操作的比例來講是100多億美金其實我們要融資這些都是國際知名的大廠你怕台積電跟你倒賬嗎你怕鴻海跟你倒賬嗎
transcript.whisperx[6].start 150.382
transcript.whisperx[6].end 177.039
transcript.whisperx[6].text 所以將來這些投資的信用保證它其實的風險的係數可以做到比台灣的中小信保在台灣對中小微企業的信用保證還要低的這個還要高的這個槓桿因為它導的風險更低啊所以你們才會說60到100億美金之內就夠了嘛對不對然後他一直跟你宣傳說你就是政府要花2500億
transcript.whisperx[7].start 178.78
transcript.whisperx[7].end 182.474
transcript.whisperx[7].text 那為什麼講了這麼多次他們還是硬不聽
transcript.whisperx[8].start 183.752
transcript.whisperx[8].end 191.537
transcript.whisperx[8].text 因為他是中稅的人叫不行啦他要這樣講嘛台灣的股市剛剛破三萬兩千點啦還在跟你說台灣經濟不好啦民不聊生啦你去機場看一看排隊出國的人喔都擠滿了好這一個講不贏他說M型化社會啦很慘的人很慘啦很好的人很好啦一個再強再棒全世界經濟第一名的社會喔都會有很可憐的
transcript.whisperx[9].start 212.614
transcript.whisperx[9].end 239.609
transcript.whisperx[9].text 弱勢者這無法避免那我們台灣就是作為一個中間政策上面中間偏左我們的社會福利努力在做社會安全網把所有的最可憐的人都要承接起來但是不要睜著眼睛說瞎話這一個經貿的談判喔在我來看應該給予鼓勵台灣因為被中共打壓很多國家沒有辦法跟我們簽FTA
transcript.whisperx[10].start 241.363
transcript.whisperx[10].end 267.751
transcript.whisperx[10].text 沒有辦法去參加一些中共阻撓的這些所謂的東南亞經貿組織各類的經貿組織包括我們一直想要參加的泛太平洋的經濟協定都一直被中國共產黨阻撓被中國阻撓台灣的處境特別艱難這跟哪一黨執政無關啊以前國民黨也有執政過八年的期間中國也要不讓你參加嘛
transcript.whisperx[11].start 269.09
transcript.whisperx[11].end 285.055
transcript.whisperx[11].text 那所以我們本來的關稅就比人家高啊台灣的企業家非常的了不起耶在逆境當中我們仍然有辦法跟人家去拼一場短提著一個皮包走全世界這是台灣精神嘛那這一次談判完之後我們的關稅降到跟日本跟韓國一樣韓國搓在蛋啦
transcript.whisperx[12].start 295.421
transcript.whisperx[12].end 324.042
transcript.whisperx[12].text 因為台灣的中小企業韓國是沒有辦法比的韓國都是幾個大集團大財團嘛他們的中小企業所以美國現在向台灣取經要複製台灣科學園區的經驗這也是這今天談判中的一環我們台積電在美國投資他們把我們講成說是掏空台灣這是天大的笑話台積電在台灣的哪一個廠有關掉 有沒有關掉的
transcript.whisperx[13].start 325.865
transcript.whisperx[13].end 347.475
transcript.whisperx[13].text 那市長有沒有關掉 台積電在台灣的廠有沒有關掉的 包圍沒有不但沒有關掉 一年還一直增加 還要增加很多廠 對不對那請問廠一直蓋一直增加 沒有關掉任何一間 偷摳台灣什麼東西啊我這間公司一直不停的擴大 從全世界後面的排名一直往前衝現在衝到全世界市值第六大
transcript.whisperx[14].start 348.973
transcript.whisperx[14].end 361.681
transcript.whisperx[14].text 就代表我生意越做越大我的產能越來越大所以我台灣也在增加我在德國我在中國我在日本我在美國都要增加社廠嘛
transcript.whisperx[15].start 363.342
transcript.whisperx[15].end 391.001
transcript.whisperx[15].text 那個這個是壯大的過程中必須要增加投資的地方怎麼會偷空台灣呢如果今天他移到美國是台灣要關廠台灣這些產能要收掉然後台灣的工人都失業你勉強可以講說這樣對台灣的經濟不利你台灣已經飽和做不出來了都滿滿滿了那一部分到別的國家去生產
transcript.whisperx[16].start 393.078
transcript.whisperx[16].end 410.386
transcript.whisperx[16].text 為什麼就是掏空台灣 這種邏輯我不懂啊那被人家這樣攻擊 你們都沒有辦法用很大的聲量很清楚的聲音 讓國人能夠了解然後因為現在小眾媒體 現在網路一直給你抹黑 一直給你造謠啊所以我每次看到說什麼掏空台灣
transcript.whisperx[17].start 415.438
transcript.whisperx[17].end 441.513
transcript.whisperx[17].text 很奇怪欸我跟你講我的有一些做工程營造的朋友跟我講說現在工人很難請的原因就是因為這些電子大廠喔他們在設廠的時候都在趕進度他寧願給兩倍三倍的工資把這些建築做這個營造的工人請去所以讓我們的公共工程還有我們的普通的營造都缺工啊那奇怪了他掏空為什麼一直在蓋廠
transcript.whisperx[18].start 443.703
transcript.whisperx[18].end 451.728
transcript.whisperx[18].text 市長你會不會跟我回答啊為什麼一直在蓋廠然後講說是掏空呢是 我跟委員報告其實如同委員講到的就是其實台積電在台灣的投資大過於任而在其他國家的投資而且剛剛委員講得很對因為其實現在我跟你講相信政府的都在股票市場都賺大錢了台積電它的整個產業鏈很長所以許多的包括廠物這個半導設備 材料還有許多的這些化學品協力廠商也要去啊不然他才
transcript.whisperx[19].start 473.643
transcript.whisperx[19].end 496.235
transcript.whisperx[19].text 非常多的工業類語錄精湛一定要讓他做的產品我舉個例子這些做無塵室的事要提供台積電的這些設備那台積電在美國設廠的部分他當然也要跟著去就近來做比較方便溝通也方便嘛所以是打群架的台灣的企業是打群架的跟韓國那種集團是不一樣的嘛
transcript.whisperx[20].start 497.795
transcript.whisperx[20].end 523.101
transcript.whisperx[20].text 那總共光台積電就已經承諾1650了而且這個投資也沒有期限啊這是一個承諾錢會沒用啦就是說我將來要來這邊投資多少也沒有期間也沒有期限不知道把它講成什麼台灣要完蛋了我跟你說相信政府今天台灣股市又創新高了破三萬二了相信政府的都賺錢了
transcript.whisperx[21].start 524.79
transcript.whisperx[21].end 538.516
transcript.whisperx[21].text 那人家講說台積電會跌到五百塊以下的喔不知道他有沒有去放空他既然他的預測這麼高明 要不要害死人當初聽他的話賣掉台積電的現在是不是都賠都沒有賺到啦甚至趕快賣了是不是都賠啦所以不要在那邊胡言亂語政治問政要基於事實在那邊亂講常常嘴巴在那邊掛起來就名不聊生台灣經濟要完蛋了 怎麼樣怎麼樣我看要完蛋的是中國啦
transcript.whisperx[22].start 555.479
transcript.whisperx[22].end 575.175
transcript.whisperx[22].text 中國的經濟一塌糊塗莫名其妙當初馬政府時代鼓勵大膽吸盡害死很多人那個才叫真正叫掏空台灣我們投資台灣我們返鄉計畫我們壯大台灣之後我們就有能力投資全世界因為我們產能的需要要擴大
transcript.whisperx[23].start 576.611
transcript.whisperx[23].end 585.819
transcript.whisperx[23].text 這對台灣是大好事啊台灣去年對美國出超一千五百億美金耶這站在國際貿易上啊如果美國要對付你的話這很正當的理由啊但是人家美國其實對我們沒有不好這個投資是雙向的即使說我們去美國投資台積電輝達來台灣投資Google來台灣投資這個一大堆的美國企業來台灣投資他為什麼不講說是掏空美國
transcript.whisperx[24].start 605.997
transcript.whisperx[24].end 622.255
transcript.whisperx[24].text 去哪裡投資就是掏空那個國家他的母國那這樣的話輝達是掏空美國嗎因為輝達要來台灣設這個企業總部啊他不是在台北市嗎現在不是談了東亞的企業總部不是在那邊嗎那算不算輝達掏空美國
transcript.whisperx[25].start 624.805
transcript.whisperx[25].end 650.522
transcript.whisperx[25].text 所以我是覺得台灣要趕快進行這個工作一年一千五百億的出鈔而且今年度看起來還會再繼續擴大一直擴大下去美國會受不了所以重要的東西趕快跟美國採購大宗物資趕快跟美國採購能夠行有餘力可以投資去美國投資做貿易帳金融帳的平衡不然台灣的這個貿易出鈔這麼多
transcript.whisperx[26].start 654.406
transcript.whisperx[26].end 665.17
transcript.whisperx[26].text 對全世界的國際貿易來講是對人家不公平啦光只要想自己都不要換位思考站在美國人的角度你一年賺我這麼多錢你是用這種態度對待我所以我是覺得我個人將心比心我覺得美國對我們是因為很需要台灣這一個夥伴所以他對我們這個條件是給的很好喔在我來看啦
transcript.whisperx[27].start 679.937
transcript.whisperx[27].end 688.567
transcript.whisperx[27].text 問一個最嚴重的問題 萬一本院沒有通過這個協定會怎麼樣 萬一啊不是啦 你就照實回答嘛 我就不搖你 我就問你說萬一通不過會怎麼辦嘛
transcript.whisperx[28].start 701.884
transcript.whisperx[28].end 724.321
transcript.whisperx[28].text 像委員報告因為這個協定要能夠生效是要雙方都完成內部程序之後才能生效所以如果我方沒有辦法通過的話我方就沒有辦法完成我方的內部程序我看你們在說不完喔你是怕得罪誰啊說實話會有什麼問題沒有通過台灣大災難啦我跟你講這個東西沒有通過
transcript.whisperx[29].start 729.127
transcript.whisperx[29].end 752.494
transcript.whisperx[29].text 回到以前的疊加 關稅跟以前的條件一樣以前罵得要死說那個條件那麼差現在條件要變比較好還要不要考慮要不要簽還說這個是掏空台灣我跟你講 全國人民睜著眼睛在看所有的產業睜著眼睛在看沒有過的話 台灣倒大霉啦這工業啦 大家加油喔 謝謝
transcript.whisperx[30].start 755.325
transcript.whisperx[30].end 756.266
transcript.whisperx[30].text 好 謝謝吳秉瑞委員 謝謝接下來請賴世寶