iVOD / 167228

Field Value
IVOD_ID 167228
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167228
日期 2026-01-26
會議資料.會議代碼 委員會-11-4-20-18
會議資料.會議代碼:str 第11屆第4會期財政委員會第18次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 18
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第18次全體委員會議
影片種類 Clip
開始時間 2026-01-26T09:34:56+08:00
結束時間 2026-01-26T09:48:53+08:00
影片長度 00:13:57
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/eb9c45f2fd61881029b5fac24a0426b82e6dd44a39c46b254a86d8c93a01be21f6611687e07821165ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 林德福
委員發言時間 09:34:56 - 09:48:53
會議時間 2026-01-26T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第18次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆、中央銀行楊總裁金龍、經濟部龔部長明鑫、農業部陳部長駿季、國家發展委員會葉主任委員俊顯就「針對台美關稅貿易協議內容,對國家整體財經、國內產業與就業、股匯市場與各項民生通膨之影響與因應策略」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.08159375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 0.50346875
transcript.pyannote[1].end 8.23221875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 8.70471875
transcript.pyannote[2].end 10.72971875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 12.50159375
transcript.pyannote[3].end 13.61534375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 29.39346875
transcript.pyannote[4].end 37.45971875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 30.37221875
transcript.pyannote[5].end 31.09784375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 35.68784375
transcript.pyannote[6].end 35.78909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 37.62846875
transcript.pyannote[7].end 94.04159375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 96.85971875
transcript.pyannote[8].end 105.12846875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 104.62221875
transcript.pyannote[9].end 107.33909375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 107.00159375
transcript.pyannote[10].end 108.36846875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 108.62159375
transcript.pyannote[11].end 108.92534375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 110.22471875
transcript.pyannote[12].end 112.67159375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 112.67159375
transcript.pyannote[13].end 112.89096875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 112.89096875
transcript.pyannote[14].end 113.32971875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 112.92471875
transcript.pyannote[15].end 113.31284375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 113.32971875
transcript.pyannote[16].end 113.43096875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 114.49409375
transcript.pyannote[17].end 114.84846875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 115.54034375
transcript.pyannote[18].end 118.71284375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 116.53596875
transcript.pyannote[19].end 117.21096875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 117.21096875
transcript.pyannote[20].end 117.63284375
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 117.63284375
transcript.pyannote[21].end 117.68346875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 117.68346875
transcript.pyannote[22].end 117.93659375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 117.93659375
transcript.pyannote[23].end 117.97034375
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 117.97034375
transcript.pyannote[24].end 118.72971875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 118.72971875
transcript.pyannote[25].end 118.76346875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 118.76346875
transcript.pyannote[26].end 119.03346875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 119.03346875
transcript.pyannote[27].end 119.05034375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 119.05034375
transcript.pyannote[28].end 119.74221875
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 119.74221875
transcript.pyannote[29].end 119.97846875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 119.97846875
transcript.pyannote[30].end 120.06284375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 120.58596875
transcript.pyannote[31].end 123.20159375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 124.19721875
transcript.pyannote[32].end 126.54284375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 125.20971875
transcript.pyannote[33].end 126.93096875
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 129.12471875
transcript.pyannote[34].end 138.11909375
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 129.61409375
transcript.pyannote[35].end 130.20471875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 138.47346875
transcript.pyannote[36].end 139.73909375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 140.05971875
transcript.pyannote[37].end 141.56159375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 141.76409375
transcript.pyannote[38].end 143.41784375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 143.56971875
transcript.pyannote[39].end 147.01221875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 147.19784375
transcript.pyannote[40].end 147.92346875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 148.26096875
transcript.pyannote[41].end 152.10846875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 152.32784375
transcript.pyannote[42].end 153.66096875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 153.93096875
transcript.pyannote[43].end 156.29346875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 156.36096875
transcript.pyannote[44].end 159.58409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 159.58409375
transcript.pyannote[45].end 159.60096875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 159.82034375
transcript.pyannote[46].end 159.83721875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 159.83721875
transcript.pyannote[47].end 159.85409375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 159.85409375
transcript.pyannote[48].end 159.93846875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 159.93846875
transcript.pyannote[49].end 194.48159375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 194.53221875
transcript.pyannote[50].end 196.20284375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 196.33784375
transcript.pyannote[51].end 200.96159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 201.14721875
transcript.pyannote[52].end 203.29034375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 203.49284375
transcript.pyannote[53].end 205.75409375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 206.14221875
transcript.pyannote[54].end 208.40346875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 208.65659375
transcript.pyannote[55].end 211.71096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 212.04846875
transcript.pyannote[56].end 214.39409375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 214.64721875
transcript.pyannote[57].end 216.60471875
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 216.84096875
transcript.pyannote[58].end 218.41034375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 218.69721875
transcript.pyannote[59].end 220.14846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 220.28346875
transcript.pyannote[60].end 221.97096875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 221.97096875
transcript.pyannote[61].end 222.10596875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 222.32534375
transcript.pyannote[62].end 222.34221875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 222.34221875
transcript.pyannote[63].end 223.03409375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 223.03409375
transcript.pyannote[64].end 224.18159375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 224.97471875
transcript.pyannote[65].end 233.81721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 234.81284375
transcript.pyannote[66].end 234.96471875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 234.96471875
transcript.pyannote[67].end 237.66471875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 237.81659375
transcript.pyannote[68].end 240.49971875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 240.88784375
transcript.pyannote[69].end 242.94659375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 243.21659375
transcript.pyannote[70].end 244.81971875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 245.20784375
transcript.pyannote[71].end 247.33409375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 247.53659375
transcript.pyannote[72].end 248.86971875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 249.12284375
transcript.pyannote[73].end 250.70909375
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 250.97909375
transcript.pyannote[74].end 252.97034375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 253.20659375
transcript.pyannote[75].end 254.65784375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 254.91096875
transcript.pyannote[76].end 257.62784375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 257.98221875
transcript.pyannote[77].end 258.85971875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 258.87659375
transcript.pyannote[78].end 258.89346875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 258.91034375
transcript.pyannote[79].end 259.45034375
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 259.75409375
transcript.pyannote[80].end 262.72409375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 263.24721875
transcript.pyannote[81].end 266.16659375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 266.38596875
transcript.pyannote[82].end 268.22534375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 268.42784375
transcript.pyannote[83].end 271.02659375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 271.02659375
transcript.pyannote[84].end 271.24596875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 271.54971875
transcript.pyannote[85].end 298.70159375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 298.70159375
transcript.pyannote[86].end 298.73534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 298.73534375
transcript.pyannote[87].end 298.97159375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 298.97159375
transcript.pyannote[88].end 308.23596875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 306.98721875
transcript.pyannote[89].end 307.00409375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 307.00409375
transcript.pyannote[90].end 307.96596875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 307.96596875
transcript.pyannote[91].end 308.08409375
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 308.50596875
transcript.pyannote[92].end 310.71659375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 310.96971875
transcript.pyannote[93].end 325.34721875
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 313.88909375
transcript.pyannote[94].end 314.32784375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 324.53721875
transcript.pyannote[95].end 325.54971875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 325.76909375
transcript.pyannote[96].end 359.40096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 325.80284375
transcript.pyannote[97].end 326.68034375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 359.77221875
transcript.pyannote[98].end 360.44721875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 360.68346875
transcript.pyannote[99].end 360.75096875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 360.75096875
transcript.pyannote[100].end 361.49346875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 360.78471875
transcript.pyannote[101].end 366.80909375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 366.94409375
transcript.pyannote[102].end 370.04909375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 370.04909375
transcript.pyannote[103].end 370.26846875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 370.26846875
transcript.pyannote[104].end 371.02784375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 371.02784375
transcript.pyannote[105].end 371.38221875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 371.90534375
transcript.pyannote[106].end 392.05409375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 392.56034375
transcript.pyannote[107].end 409.75596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 409.97534375
transcript.pyannote[108].end 413.82284375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 414.31221875
transcript.pyannote[109].end 414.66659375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 414.66659375
transcript.pyannote[110].end 414.71721875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 414.71721875
transcript.pyannote[111].end 418.90221875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 419.29034375
transcript.pyannote[112].end 425.90534375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 426.42846875
transcript.pyannote[113].end 434.24159375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 434.74784375
transcript.pyannote[114].end 435.99659375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 436.36784375
transcript.pyannote[115].end 438.03846875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 438.12284375
transcript.pyannote[116].end 439.15221875
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 439.30409375
transcript.pyannote[117].end 439.62471875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 439.87784375
transcript.pyannote[118].end 440.75534375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 442.91534375
transcript.pyannote[119].end 443.91096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 446.56034375
transcript.pyannote[120].end 447.04971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 447.92721875
transcript.pyannote[121].end 483.85409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 484.69784375
transcript.pyannote[122].end 521.82284375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 521.53596875
transcript.pyannote[123].end 535.72784375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 536.45346875
transcript.pyannote[124].end 554.03721875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 554.03721875
transcript.pyannote[125].end 559.67346875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 558.49221875
transcript.pyannote[126].end 570.72659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 570.67596875
transcript.pyannote[127].end 571.53659375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 571.03034375
transcript.pyannote[128].end 571.50284375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 571.53659375
transcript.pyannote[129].end 571.62096875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 571.62096875
transcript.pyannote[130].end 582.21846875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 582.70784375
transcript.pyannote[131].end 592.09034375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 592.09034375
transcript.pyannote[132].end 601.01721875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 592.10721875
transcript.pyannote[133].end 592.25909375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 601.47284375
transcript.pyannote[134].end 606.58596875
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 606.82221875
transcript.pyannote[135].end 610.43346875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 610.33221875
transcript.pyannote[136].end 626.24534375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 626.73471875
transcript.pyannote[137].end 628.40534375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 628.57409375
transcript.pyannote[138].end 636.52221875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 636.60659375
transcript.pyannote[139].end 637.70346875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 637.92284375
transcript.pyannote[140].end 673.24221875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 673.76534375
transcript.pyannote[141].end 690.50534375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 690.89346875
transcript.pyannote[142].end 692.31096875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 692.58096875
transcript.pyannote[143].end 723.00659375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 723.14159375
transcript.pyannote[144].end 766.83096875
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 767.15159375
transcript.pyannote[145].end 785.91659375
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 786.37221875
transcript.pyannote[146].end 792.78471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 792.78471875
transcript.pyannote[147].end 821.38784375
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 808.64721875
transcript.pyannote[148].end 809.86221875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 819.46409375
transcript.pyannote[149].end 827.07471875
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 822.14721875
transcript.pyannote[150].end 823.10909375
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 825.97784375
transcript.pyannote[151].end 826.36596875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 826.68659375
transcript.pyannote[152].end 826.99034375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 827.31096875
transcript.pyannote[153].end 827.36159375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 827.36159375
transcript.pyannote[154].end 827.39534375
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 827.39534375
transcript.pyannote[155].end 829.47096875
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 831.58034375
transcript.pyannote[156].end 833.65596875
transcript.whisperx[0].start 1.93
transcript.whisperx[0].end 10.394
transcript.whisperx[0].text 議會各列席官員還有各位媒體記者 女士先生 各位同仁是不是請我們中央銀行楊總裁請楊總裁
transcript.whisperx[1].start 30.315
transcript.whisperx[1].end 50.286
transcript.whisperx[1].text 總裁你好我請教因為美國宣布對台灣關稅降至15%那台灣承諾由企業自主投資2500億的美元那政府信用保證2500億元換取對等關稅有20%進一步降至15%並且不疊加稅率取得日韓歐盟相同的最
transcript.whisperx[2].start 59.291
transcript.whisperx[2].end 79.786
transcript.whisperx[2].text 惠國的待遇那總裁當行政院對這次關稅協議談判結果表示滿意的同時那我請問你認為是不是有哪些產業例如像國內的汽車產業可能因為這次關稅談判造成市場開放
transcript.whisperx[3].start 81.027
transcript.whisperx[3].end 93.871
transcript.whisperx[3].text 而發生負面的衝擊影響對於這些可能因為市場開放受程度不等的這些衝擊的產業政府到底有哪些因應的對策那個總裁你的看法呢報告委員這個題目應該是要來請教因為我說實在那個經濟部經貿辦公室是是是
transcript.whisperx[4].start 110.427
transcript.whisperx[4].end 126.556
transcript.whisperx[4].text 最起碼你們要說清楚講明白那個停一下他那個經貿辦公室沒有人來有執密那個 執密來市長或者那個經貿辦公室的代表還有經濟部來你們要說清楚講明白
transcript.whisperx[5].start 129.076
transcript.whisperx[5].end 144.553
transcript.whisperx[5].text 好跟委員報告那這一次因應這個美國頓等關稅我們在立法院的支持下我們經濟部也編列了460億元的這個任期特別預算來協助我們產業因應這一次美國關稅那大概有分成幾項幾項措施包括貸款還有
transcript.whisperx[6].start 147.516
transcript.whisperx[6].end 171.831
transcript.whisperx[6].text 出國的加碼保證還有轉型升級的補助以及市場拓銷的補助大概就這四項我們來因應讓這些傳統產業它能夠來做因應因為現在最嚴重就是什麼因為你經過這九個多月那你包括我們的很多傳統產業包括工具機 水五金 腳踏車 蝴蝶籃等等
transcript.whisperx[7].start 173.231
transcript.whisperx[7].end 193.956
transcript.whisperx[7].text 因為有很多的客戶已經流失了經過這九個多月因為日本韓國跟我們不一樣又是我們鄰近的國家那這些衝擊啊到底我們他們到底可不可以回復因為已經移轉客戶了你就是回復百分之十五不疊加人家不一定會要你的東西
transcript.whisperx[8].start 195.276
transcript.whisperx[8].end 223.815
transcript.whisperx[8].text 你有什么看法根文报告上个礼拜五卓院长也到台南去跟汽车零组件的业者来座谈其中有一家业者他是专门做汽车改装件的零组件一听到就说我们的关税已经谈成书不叠加他们的董事长马上飞到美国去接单所以这代表说我们这样的一个谈判其实对订单的回流是有帮助的那个去接单问题是
transcript.whisperx[9].start 226.087
transcript.whisperx[9].end 233.075
transcript.whisperx[9].text 你像那些傳統產業包括汽車到底汽車有沒有確定在這個裡面
transcript.whisperx[10].start 235.502
transcript.whisperx[10].end 257.501
transcript.whisperx[10].text 这个零组件的部分我们现在争取到的是15%不叠加那相较于我们的其他竞争对手国来讲我们有相当大的这个税率的优惠我们原先的税率是汽车零组件是26.25%现在一下子降到15%跟欧盟日本跟韩国的这样的一个基础
transcript.whisperx[11].start 258.221
transcript.whisperx[11].end 275.634
transcript.whisperx[11].text 是一樣的所以這個就剛我提到就為什麼那個董事長急於這個跑到美國再去這個跟客戶洽談這個訂單就是因為稅率大幅降低有利於我們這樣的一個條件那以前報導那個阿拉斯加那個液化天然氣管線需要耗資440億的美元
transcript.whisperx[12].start 279.676
transcript.whisperx[12].end 305.744
transcript.whisperx[12].text 這個美國川普總統也希望日本韓國跟台灣一起來參與那我請問依你們的看法因為畢竟中油是你們管的這個阿拉斯加天然氣這個傳言到底是在規劃中還是有沒有在這一次整個承諾裡面來扣除到底有沒有要說清楚講明白跟委員報告這個其實中油已經跟這個阿拉斯加那家公司已經有簽了一個
transcript.whisperx[13].start 306.464
transcript.whisperx[13].end 323.531
transcript.whisperx[13].text 簽了這個有沒有從裡面購出嘛你總不能一直加上去啊當然我們是希望就是說未來這個整個油氣的供應要能夠穩定啦所以我們希望從這個美國的這個阿拉斯加那一條航道是相對來講是比較安全的
transcript.whisperx[14].start 325.071
transcript.whisperx[14].end 352.338
transcript.whisperx[14].text 問題是不要賠熱婦人又責兵這個裡面你不要說我們跟他這次談沒有把這個納進去那個對我們來講講實在話那個實在不應該啦對不對你不能我們身為國會的議員民意代表就是幫人民來勘請政府的荷包不是讓你們為所欲為但是這次這樣簽法以後講實在話很多民間大家都在講
transcript.whisperx[15].start 353.339
transcript.whisperx[15].end 359.109
transcript.whisperx[15].text 講的你是陪了夫人又責兵因為我們跟人家的軍具體那個一比較落差太大了
transcript.whisperx[16].start 359.961
transcript.whisperx[16].end 369.908
transcript.whisperx[16].text 對不對我相信你們也很清楚是跟我們報告其實中友其實他們還在評估當中也就是說如果這個投資具可行性的話我想後面還是會有
transcript.whisperx[17].start 390.161
transcript.whisperx[17].end 413.423
transcript.whisperx[17].text 我們為什麼什麼都要聽人家的對不對我們要有自主性啊你像那個韓國日本甚至於現在歐洲對這個川普很多作為啊他們都不能接受對不對不是人家講於我們作善人家對不對講什麼我們就配合什麼那個講實在話你們身為政府的官員應該要有原則有尊嚴啊
transcript.whisperx[18].start 415.509
transcript.whisperx[18].end 435.517
transcript.whisperx[18].text 我們會跟美方那邊來爭取如果真的有做成投資投資這樣的一個決定的話那絕對會是加到我們的投資的額度裡面來我是希望說你們要站在人民的角度不是人家講什麼我們什麼都配合我請國發會國發會也來列舉我們高副主委
transcript.whisperx[19].start 442.932
transcript.whisperx[19].end 444.394
transcript.whisperx[19].text 那個總裁請回吧在
transcript.whisperx[20].start 449.465
transcript.whisperx[20].end 476.575
transcript.whisperx[20].text 國發會這個關稅協議中的2500億信用保證是由國發會主責針對這項的信用保證這個信保的機制國發會提出4點來規劃說明整個融資總額度保證對象專款來源以出資方式打算由國發基金來出資並邀請公股民營銀行來共同參與 那我請問
transcript.whisperx[21].start 477.495
transcript.whisperx[21].end 483.61
transcript.whisperx[21].text 主委 那個國發會要如何來契合這些到海外投資的產業要如何
transcript.whisperx[22].start 485.639
transcript.whisperx[22].end 507.43
transcript.whisperx[22].text 跟委員報告所有申請的企業都必須要跟融資保證中心來提供他所有申請企業的相關資料我們也會設置一個融資保證的委員會到時候融資保證基金合約相關的文件之後都會送到融資保證委員會來進行融資保證的評估
transcript.whisperx[23].start 510.652
transcript.whisperx[23].end 534.32
transcript.whisperx[23].text 所以我們會確保我們整個的將來的對銀行對企業的受信其實我們有一套的所謂的減核的這些行政的程序因為那個對比經濟部中小企業信用這個信保基金的組織執掌本席對於國發會是否有足夠的能力來控管海外融資的這些投資過程與結果
transcript.whisperx[24].start 536.799
transcript.whisperx[24].end 558.708
transcript.whisperx[24].text 講實在話本席是感到存疑啦再者海外投資後續如果發生個案的追長對於信用保證下的這個債權查封執行會不會因為時空差距而發生追長無門的結果會不會不會我們會有一我們會有一套審核的機制剛才已經有跟委員報告過
transcript.whisperx[25].start 559.988
transcript.whisperx[25].end 581.954
transcript.whisperx[25].text 因為畢竟國發基金過去執行率並不好尤其有有甚者還頻頻踩雷那我請問跟委員報告我們到時候要成立一個國家融資保證中心其實我們國發基金只是擔任出資方
transcript.whisperx[26].start 583.655
transcript.whisperx[26].end 599.664
transcript.whisperx[26].text 目前國家如果要依照現行的國家融資保證機制的話國家融資保證中心的執行單位是輸出入銀行因為國外基金優化投錢投後管理的做法會不會落實在這些海外
transcript.whisperx[27].start 601.747
transcript.whisperx[27].end 625.177
transcript.whisperx[27].text 投資的產業上實際上要怎麼樣去操作海外的集合我認為這個很重要那個你也來做一個說明我想謝謝委員的提醒那我想因為我們不管是國家融資保證基金做融資保證委員會這相關的機制的話我們都一定會在後續研擬的過程中間我們會審慎的處理包括委員講的投錢
transcript.whisperx[28].start 626.778
transcript.whisperx[28].end 644.499
transcript.whisperx[28].text 投前的評估投中投後等等的相關的審查信用這些保證對象的一些信用的徵信我們都會審慎的處理請委員放心在面對美國要求台灣付出如此龐大的投資金額相當於15兆台幣
transcript.whisperx[29].start 645.6
transcript.whisperx[29].end 672.935
transcript.whisperx[29].text 五年中央政府的總預算規模台灣半導體產業與相關上下游的這些供應鏈將大量資金移往美國未來可能會排擠整個台灣產地這個產業的升級資源對美國投資大幅增加對台灣投資大幅度的減少將不利整個台灣未來的發展那我國政府
transcript.whisperx[30].start 673.855
transcript.whisperx[30].end 691.933
transcript.whisperx[30].text 包括你們談判代表卻沒有告訴大家美國的要求完成投資期限在何時這個讓大家也十分憂心因為你沒有實現的那請我們經濟部包括經貿辦公室你們要做跟大家做說明
transcript.whisperx[31].start 692.642
transcript.whisperx[31].end 710.522
transcript.whisperx[31].text 好 各位委員報告其實200億美金的這個是企業的自主投資而且是應客戶的要求也會分年逐步的推動那其實我想我們知道說其實以台積電來說現在已經成為全球第六大的企業了
transcript.whisperx[32].start 711.042
transcript.whisperx[32].end 727.217
transcript.whisperx[32].text 那他是面對AI的基礎建設強勁需求他其實一定要做全球佈局那目前我們75%的營收台積電來自於北美客戶所以他在美國設廠其實應該是某個程度上也可以紓解台灣資源難以支應的這些困擾而且我們這次是雙向投資所以到時候
transcript.whisperx[33].start 734.543
transcript.whisperx[33].end 745.646
transcript.whisperx[33].text 美國其實也會來投資台灣的AI還有這些半導體還有五大信賴產業所以我們認為其實用動態的觀點來看其實我們覺得200億美元對企業的自主投資其實反而有助於台美所謂戰略夥伴關係的鞏固其實應該不會對台灣所謂產生對台灣的投資其實有減損的這些效應然後另外的200億的
transcript.whisperx[34].start 764.492
transcript.whisperx[34].end 789.988
transcript.whisperx[34].text 2500億的信用保證額度跟前面那個是完全不一樣的這只是我們用信用保證的方式支持金融機構提供最高到2500億的企業授信額度所以我們政府提出的包括我們國發基金跟公營跟民營企業我們提出的所謂的保證專款最多我想副院長有講到是62.5億到100億之間
transcript.whisperx[35].start 792.87
transcript.whisperx[35].end 807.888
transcript.whisperx[35].text 好啦我希望最重要就是我們身為民意代表國會議員就是要幫人民勘請荷包你們那個大原則一定要保住不是人家講義你們作善現在民眾的感覺就這樣子
transcript.whisperx[36].start 808.789
transcript.whisperx[36].end 829.323
transcript.whisperx[36].text 對不對 為所欲為那你沒有把人民放在眼裡沒有把 我們是希望說經濟好起來兩岸和平你不是人家講什麼我們就去配合什麼我們一定會確保台灣的競爭優勢那台灣在全球供應鏈的重要的角色請委員放心好 謝謝好 謝謝林德福委員接下來請吳秉瑞委員質詢