iVOD / 167087

Field Value
IVOD_ID 167087
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167087
日期 2026-01-12
會議資料.會議代碼 聯席會議-11-4-26,20-1
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 20
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.委員會代碼:str[1] 財政委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議
影片種類 Clip
開始時間 2026-01-12T13:39:02+08:00
結束時間 2026-01-12T13:46:19+08:00
影片長度 00:07:17
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3ab52049cf0a1ce01ec15a17cd3a3805307671192a7c66aa7971867d125216caf0e74eb070a3a03c5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 13:39:02 - 13:46:19
會議時間 2026-01-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議(事由:審查國民黨黨團、台灣民眾黨黨團擬具「臺灣未來帳戶特別條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 20.88846875
transcript.pyannote[0].end 24.17909375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 27.73971875
transcript.pyannote[1].end 32.41409375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 33.29159375
transcript.pyannote[2].end 34.01721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 34.15221875
transcript.pyannote[3].end 35.51909375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 35.95784375
transcript.pyannote[4].end 36.29534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 36.44721875
transcript.pyannote[5].end 38.75909375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 39.85596875
transcript.pyannote[6].end 42.97784375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 43.36596875
transcript.pyannote[7].end 45.25596875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 45.55971875
transcript.pyannote[8].end 52.24221875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 52.90034375
transcript.pyannote[9].end 54.43596875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 54.62159375
transcript.pyannote[10].end 55.31346875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 56.32596875
transcript.pyannote[11].end 57.76034375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 60.51096875
transcript.pyannote[12].end 61.06784375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 62.35034375
transcript.pyannote[13].end 67.10909375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 67.51409375
transcript.pyannote[14].end 68.77971875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 69.97784375
transcript.pyannote[15].end 71.68221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 72.77909375
transcript.pyannote[16].end 73.84221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 74.04471875
transcript.pyannote[17].end 75.76596875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 77.16659375
transcript.pyannote[18].end 79.17471875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 79.71471875
transcript.pyannote[19].end 81.62159375
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 81.80721875
transcript.pyannote[20].end 82.93784375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 83.24159375
transcript.pyannote[21].end 85.16534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 85.60409375
transcript.pyannote[22].end 87.07221875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 88.06784375
transcript.pyannote[23].end 90.36284375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 90.66659375
transcript.pyannote[24].end 92.74221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 95.64471875
transcript.pyannote[25].end 96.69096875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 97.24784375
transcript.pyannote[26].end 97.56846875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 98.56409375
transcript.pyannote[27].end 99.03659375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 99.23909375
transcript.pyannote[28].end 99.44159375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 99.86346875
transcript.pyannote[29].end 100.18409375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 100.80846875
transcript.pyannote[30].end 103.22159375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 103.81221875
transcript.pyannote[31].end 105.34784375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 106.05659375
transcript.pyannote[32].end 107.81159375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 108.40221875
transcript.pyannote[33].end 109.51596875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 110.20784375
transcript.pyannote[34].end 111.27096875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 111.40596875
transcript.pyannote[35].end 115.28721875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 116.55284375
transcript.pyannote[36].end 122.03721875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 122.59409375
transcript.pyannote[37].end 124.18034375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 124.83846875
transcript.pyannote[38].end 127.45409375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 128.16284375
transcript.pyannote[39].end 130.01909375
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 130.13721875
transcript.pyannote[40].end 134.42346875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 135.36846875
transcript.pyannote[41].end 141.42659375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 142.57409375
transcript.pyannote[42].end 143.21534375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 144.00846875
transcript.pyannote[43].end 148.71659375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 149.44221875
transcript.pyannote[44].end 150.94409375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 151.26471875
transcript.pyannote[45].end 154.84221875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 155.87159375
transcript.pyannote[46].end 160.12409375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 160.73159375
transcript.pyannote[47].end 161.60909375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 162.41909375
transcript.pyannote[48].end 163.58346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 164.47784375
transcript.pyannote[49].end 166.08096875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 166.70534375
transcript.pyannote[50].end 168.49409375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 169.06784375
transcript.pyannote[51].end 171.00846875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 171.71721875
transcript.pyannote[52].end 173.18534375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 173.60721875
transcript.pyannote[53].end 174.28221875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 175.36221875
transcript.pyannote[54].end 175.68284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 176.86409375
transcript.pyannote[55].end 177.45471875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 177.47159375
transcript.pyannote[56].end 178.43346875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 178.65284375
transcript.pyannote[57].end 179.90159375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 180.13784375
transcript.pyannote[58].end 182.28096875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 182.28096875
transcript.pyannote[59].end 182.29784375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 182.68596875
transcript.pyannote[60].end 184.03596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 184.03596875
transcript.pyannote[61].end 184.45784375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 185.57159375
transcript.pyannote[62].end 186.60096875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 185.63909375
transcript.pyannote[63].end 185.85846875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 186.60096875
transcript.pyannote[64].end 186.65159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 186.70221875
transcript.pyannote[65].end 212.20034375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 212.43659375
transcript.pyannote[66].end 213.70221875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 214.00596875
transcript.pyannote[67].end 219.97971875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 214.84971875
transcript.pyannote[68].end 214.91721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 217.98846875
transcript.pyannote[69].end 219.50721875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 220.62096875
transcript.pyannote[70].end 226.40909375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 226.83096875
transcript.pyannote[71].end 232.61909375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 233.00721875
transcript.pyannote[72].end 233.02409375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 233.02409375
transcript.pyannote[73].end 234.93096875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 235.85909375
transcript.pyannote[74].end 235.97721875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 235.97721875
transcript.pyannote[75].end 237.14159375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 237.56346875
transcript.pyannote[76].end 240.07784375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 240.51659375
transcript.pyannote[77].end 243.19971875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 243.50346875
transcript.pyannote[78].end 245.10659375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 244.81971875
transcript.pyannote[79].end 244.87034375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 245.19096875
transcript.pyannote[80].end 247.80659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 247.94159375
transcript.pyannote[81].end 248.19471875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 249.64596875
transcript.pyannote[82].end 253.32471875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 254.08409375
transcript.pyannote[83].end 255.80534375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 256.36221875
transcript.pyannote[84].end 257.32409375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 258.40409375
transcript.pyannote[85].end 261.45846875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 262.15034375
transcript.pyannote[86].end 263.80409375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 264.69846875
transcript.pyannote[87].end 267.24659375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 267.76971875
transcript.pyannote[88].end 270.84096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 271.60034375
transcript.pyannote[89].end 273.57471875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 273.96284375
transcript.pyannote[90].end 275.46471875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 277.40534375
transcript.pyannote[91].end 278.50221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 279.17721875
transcript.pyannote[92].end 280.54409375
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 281.21909375
transcript.pyannote[93].end 282.29909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 282.75471875
transcript.pyannote[94].end 285.18471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 285.23534375
transcript.pyannote[95].end 285.80909375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 285.80909375
transcript.pyannote[96].end 285.82596875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 286.26471875
transcript.pyannote[97].end 289.52159375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 290.16284375
transcript.pyannote[98].end 296.01846875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 297.03096875
transcript.pyannote[99].end 297.46971875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 298.39784375
transcript.pyannote[100].end 301.23284375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 302.34659375
transcript.pyannote[101].end 305.67096875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 306.41346875
transcript.pyannote[102].end 308.92784375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 308.96159375
transcript.pyannote[103].end 309.34971875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 309.53534375
transcript.pyannote[104].end 309.97409375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 310.32846875
transcript.pyannote[105].end 315.42471875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 316.38659375
transcript.pyannote[106].end 316.80846875
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 317.46659375
transcript.pyannote[107].end 322.90034375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 323.18721875
transcript.pyannote[108].end 323.20409375
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 323.20409375
transcript.pyannote[109].end 346.23846875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 343.67346875
transcript.pyannote[110].end 350.08596875
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 346.69409375
transcript.pyannote[111].end 346.74471875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 350.44034375
transcript.pyannote[112].end 353.15721875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 353.57909375
transcript.pyannote[113].end 363.04596875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 356.83596875
transcript.pyannote[114].end 356.92034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 357.15659375
transcript.pyannote[115].end 357.20721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 364.29471875
transcript.pyannote[116].end 382.03034375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 382.36784375
transcript.pyannote[117].end 383.39721875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 383.92034375
transcript.pyannote[118].end 388.30784375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 388.44284375
transcript.pyannote[119].end 390.43409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 391.27784375
transcript.pyannote[120].end 393.64034375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 393.99471875
transcript.pyannote[121].end 399.32721875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 397.52159375
transcript.pyannote[122].end 397.92659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 399.42846875
transcript.pyannote[123].end 403.84971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 399.46221875
transcript.pyannote[124].end 400.86284375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 401.74034375
transcript.pyannote[125].end 401.77409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 402.16221875
transcript.pyannote[126].end 402.41534375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 403.91721875
transcript.pyannote[127].end 418.93596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 416.01659375
transcript.pyannote[128].end 416.50596875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 418.93596875
transcript.pyannote[129].end 427.77846875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 425.80409375
transcript.pyannote[130].end 433.33034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 429.36471875
transcript.pyannote[131].end 435.30471875
transcript.whisperx[0].start 20.916
transcript.whisperx[0].end 38.606
transcript.whisperx[0].text 好主席有請部長請時部長好這麼也好部長好辛苦了還有所有的官員都辛苦了這個今天談這個台灣未來賬戶特別條例
transcript.whisperx[1].start 39.912
transcript.whisperx[1].end 68.294
transcript.whisperx[1].text 他有他的這個立法的目的這個在相關的剛才說明也多很多這個衛護部相關的部會也都很清楚了這個最主要我們這個抱歉我們少子女化真的是一個非常的嚴重國安的危機
transcript.whisperx[2].start 70.014
transcript.whisperx[2].end 96.429
transcript.whisperx[2].text 刚才部长也提了少子女化这样的一个问题除了这个我们的劳工现在都很清楚了外劳一直进来劳工真的是缺工非常非常的严重我们这个相关的这些我们的刚才也提到
transcript.whisperx[3].start 98.601
transcript.whisperx[3].end 127.23
transcript.whisperx[3].text 不分所以這個都是要去解決了在這樣的一個情形之下國民黨團跟立法院黨團提出相關這些台灣未來帳戶特別條例的草案主要還是要去解決少子女化的挑戰跨世代貧富差距希望能夠去建設台灣未來帳戶的制度
transcript.whisperx[4].start 128.343
transcript.whisperx[4].end 151.46
transcript.whisperx[4].text 當然他這裡面會涉及到西亞紀討論的還可以大家可以及時廣益但是如果我們從這個我們看下一張這個衛福部的報告裡面來看的話這個從107年核定我國少子女化對策計畫經過了7年現在114年115年了
transcript.whisperx[5].start 156.833
transcript.whisperx[5].end 184.184
transcript.whisperx[5].text 這個錢也變類了這總共將近6千億將近6千億但是我們真的是從整個人口數急速的下降然後出生率各方面對於我們先講這個除了這樣的一個少子女化的一個對策有新的想法嗎
transcript.whisperx[6].start 185.689
transcript.whisperx[6].end 213.332
transcript.whisperx[6].text 去解決這個問題跟委員報告確實我們在過去這8年投注了很多在減輕這個育兒家庭的經濟負擔還有協助這個托育的資源的部件那這個是花了最多那另外一個就是生育的補助啦包含人工生殖啦等等這些那但是我們看到的就是說這個有生育的家庭維持住啦但是因為這個跟婚
transcript.whisperx[7].start 214.113
transcript.whisperx[7].end 234.459
transcript.whisperx[7].text 台灣的這個不婚的問題更嚴峻這個有去研議對策嗎對 所以下一步我們應該要更著重在這個不婚這個問題上要去處理不然很難完全去解決這個生育率低的問題好 這個我們看下一張
transcript.whisperx[8].start 236.288
transcript.whisperx[8].end 262.841
transcript.whisperx[8].text 這個衛福部這個教育局行政已經送來了這個在提出這個法案之前賴總統也特別宣佈而且還提到了解決少子女化是其中之一但是我們如果一直去從組織當然組織是可以檢討的但是如果我們從過去
transcript.whisperx[9].start 265.484
transcript.whisperx[9].end 288.589
transcript.whisperx[9].text 這個衛生署到衛福部然後也設了社會家庭署兒童家庭署去解決這些問題如果我們去回顧我們回顧過去孩子生太多就鼓勵大家兩個恰恰好在那個年代也沒有成立一個機關
transcript.whisperx[10].start 290.219
transcript.whisperx[10].end 314.897
transcript.whisperx[10].text 都是透過鄉鎮公所的那些公職衛生所的人員去宣傳對不對所以我們中央一直成立然後一直擴大但是地方政府還是沒有還是維持那個樣子所以這個部分是一個整體性的這個機關可以檢討但是他要不要去解決真正的問題
transcript.whisperx[11].start 317.723
transcript.whisperx[11].end 343.163
transcript.whisperx[11].text 我不知道這樣的成立這個署會增加人數會增加嗎隨著我們業務上的需要還是要做一些人力的調整特別是這個以這個兒少及家庭署來講他除了是把一些業務做整合之外更希望那麼更專業的更聚焦的對這個兒少的問題包含從健康到他的福利
transcript.whisperx[12].start 343.723
transcript.whisperx[12].end 362.562
transcript.whisperx[12].text 到保部 到發展因為今天不是這個為主我只不過是請衛福部包括相關的官員怎麼樣去解決真正要解決的問題所以這個部分也希望能夠去考慮我們看下一張
transcript.whisperx[13].start 364.486
transcript.whisperx[13].end 387.554
transcript.whisperx[13].text 當然我們過去在107年6月6號公布施行兒童及少年未來教育與發展丈夫的條例本席當初也有提出相關的意見當然原住民的部分沒有被納入好我們看下一條下一條這個部分實施到現在當然時間的關係我就不多說了這個也請這個
transcript.whisperx[14].start 391.868
transcript.whisperx[14].end 418.062
transcript.whisperx[14].text 衛福部提供我們下一張提供這個目前的執行的人數然後既有原住民身份的到底有多少因為之前我本來有提修正的條文大家說還要先執行一段時間現在已經執行這麼多年了107年現在已經115年了是不是請提供這樣的一個數據
transcript.whisperx[15].start 419.162
transcript.whisperx[15].end 434.619
transcript.whisperx[15].text 我們再來跟園民會討論 比對一下我們要比對一下才知道因為我們在身份上並沒有特別註記內政部副政司也可以比對對 去比對一下這個身份好 謝謝謝謝委員 我們再提供給委員