iVOD / 167050

Field Value
IVOD_ID 167050
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167050
日期 2026-01-12
會議資料.會議代碼 聯席會議-11-4-26,20-1
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 20
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.委員會代碼:str[1] 財政委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議
影片種類 Clip
開始時間 2026-01-12T11:26:48+08:00
結束時間 2026-01-12T11:38:31+08:00
影片長度 00:11:43
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3ab52049cf0a1ce0fcec6760c454a79e307671192a7c66aa7fca8e6801c49bddb01f5819580778665ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 11:26:48 - 11:38:31
會議時間 2026-01-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議(事由:審查國民黨黨團、台灣民眾黨黨團擬具「臺灣未來帳戶特別條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 12.51846875
transcript.pyannote[0].end 27.55409375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 25.05659375
transcript.pyannote[1].end 25.22534375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 37.40909375
transcript.pyannote[2].end 38.60721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 38.74221875
transcript.pyannote[3].end 51.53346875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 39.72096875
transcript.pyannote[4].end 40.21034375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 51.48284375
transcript.pyannote[5].end 51.85409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 51.85409375
transcript.pyannote[6].end 53.45721875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 53.45721875
transcript.pyannote[7].end 53.81159375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 53.72721875
transcript.pyannote[8].end 57.52409375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 57.57471875
transcript.pyannote[9].end 68.79659375
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 61.43909375
transcript.pyannote[10].end 61.89471875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 68.83034375
transcript.pyannote[11].end 69.31971875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 69.25221875
transcript.pyannote[12].end 82.97159375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 83.34284375
transcript.pyannote[13].end 84.05159375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 83.88284375
transcript.pyannote[14].end 110.27534375
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 104.70659375
transcript.pyannote[15].end 104.79096875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 110.27534375
transcript.pyannote[16].end 110.61284375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 110.57909375
transcript.pyannote[17].end 111.89534375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 113.66721875
transcript.pyannote[18].end 115.40534375
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 115.40534375
transcript.pyannote[19].end 115.69221875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 115.69221875
transcript.pyannote[20].end 125.44596875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 115.70909375
transcript.pyannote[21].end 115.72596875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 119.60721875
transcript.pyannote[22].end 120.92346875
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 122.47596875
transcript.pyannote[23].end 123.52221875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 124.73721875
transcript.pyannote[24].end 125.63159375
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 125.53034375
transcript.pyannote[25].end 125.54721875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 125.56409375
transcript.pyannote[26].end 131.04846875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 131.65596875
transcript.pyannote[27].end 134.44034375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 132.87096875
transcript.pyannote[28].end 133.15784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 134.44034375
transcript.pyannote[29].end 135.40221875
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 135.40221875
transcript.pyannote[30].end 135.57096875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 135.57096875
transcript.pyannote[31].end 137.22471875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 137.22471875
transcript.pyannote[32].end 137.24159375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 137.24159375
transcript.pyannote[33].end 137.25846875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 137.25846875
transcript.pyannote[34].end 137.35971875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 137.27534375
transcript.pyannote[35].end 137.29221875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 137.35971875
transcript.pyannote[36].end 137.41034375
transcript.pyannote[37].speaker SPEAKER_03
transcript.pyannote[37].start 137.41034375
transcript.pyannote[37].end 142.15221875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 139.78971875
transcript.pyannote[38].end 139.87409375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 140.70096875
transcript.pyannote[39].end 159.22971875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 143.78909375
transcript.pyannote[40].end 144.53159375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 144.53159375
transcript.pyannote[41].end 144.54846875
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 150.74159375
transcript.pyannote[42].end 151.61909375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 159.07784375
transcript.pyannote[43].end 159.46596875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 159.33096875
transcript.pyannote[44].end 162.41909375
transcript.pyannote[45].speaker SPEAKER_03
transcript.pyannote[45].start 162.38534375
transcript.pyannote[45].end 162.79034375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 162.65534375
transcript.pyannote[46].end 166.08096875
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 166.50284375
transcript.pyannote[47].end 169.10159375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 169.06784375
transcript.pyannote[48].end 169.33784375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 169.30409375
transcript.pyannote[49].end 177.97784375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 178.46721875
transcript.pyannote[50].end 182.26409375
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 182.21346875
transcript.pyannote[51].end 182.87159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 182.65221875
transcript.pyannote[52].end 183.90096875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 183.90096875
transcript.pyannote[53].end 184.27221875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 184.27221875
transcript.pyannote[54].end 187.71471875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 188.54159375
transcript.pyannote[55].end 197.02971875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 197.26596875
transcript.pyannote[56].end 198.39659375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 199.51034375
transcript.pyannote[57].end 202.81784375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 202.81784375
transcript.pyannote[58].end 206.27721875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 207.81284375
transcript.pyannote[59].end 216.25034375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 208.45409375
transcript.pyannote[60].end 208.94346875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 211.40721875
transcript.pyannote[61].end 211.91346875
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 212.82471875
transcript.pyannote[62].end 213.48284375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 216.13221875
transcript.pyannote[63].end 216.45284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 216.41909375
transcript.pyannote[64].end 217.75221875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 218.41034375
transcript.pyannote[65].end 221.02596875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 221.02596875
transcript.pyannote[66].end 222.08909375
transcript.pyannote[67].speaker SPEAKER_03
transcript.pyannote[67].start 222.30846875
transcript.pyannote[67].end 231.21846875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 231.21846875
transcript.pyannote[68].end 236.93909375
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 231.26909375
transcript.pyannote[69].end 231.35346875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 236.41596875
transcript.pyannote[70].end 236.55096875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 236.87159375
transcript.pyannote[71].end 237.17534375
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 237.09096875
transcript.pyannote[72].end 237.83346875
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 237.71534375
transcript.pyannote[73].end 238.00221875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 238.00221875
transcript.pyannote[74].end 239.84159375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 239.84159375
transcript.pyannote[75].end 240.17909375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 240.17909375
transcript.pyannote[76].end 241.29284375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 240.19596875
transcript.pyannote[77].end 240.21284375
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 241.66409375
transcript.pyannote[78].end 269.92971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 270.77346875
transcript.pyannote[79].end 271.17846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 271.27971875
transcript.pyannote[80].end 272.47784375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 272.73096875
transcript.pyannote[81].end 275.71784375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 276.12284375
transcript.pyannote[82].end 283.14284375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 283.37909375
transcript.pyannote[83].end 291.96846875
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 293.89221875
transcript.pyannote[84].end 300.81096875
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 300.54096875
transcript.pyannote[85].end 300.79409375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 300.81096875
transcript.pyannote[86].end 301.04721875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 300.86159375
transcript.pyannote[87].end 306.07596875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 306.53159375
transcript.pyannote[88].end 308.03346875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 308.03346875
transcript.pyannote[89].end 317.12909375
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 317.12909375
transcript.pyannote[90].end 317.71971875
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 317.19659375
transcript.pyannote[91].end 317.70284375
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 317.71971875
transcript.pyannote[92].end 318.96846875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 318.96846875
transcript.pyannote[93].end 332.89034375
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 333.17721875
transcript.pyannote[94].end 337.27784375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 337.46346875
transcript.pyannote[95].end 340.66971875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 340.50096875
transcript.pyannote[96].end 341.49659375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 341.31096875
transcript.pyannote[97].end 342.01971875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 342.18846875
transcript.pyannote[98].end 345.04034375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 344.17971875
transcript.pyannote[99].end 344.46659375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 345.49596875
transcript.pyannote[100].end 346.05284375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 346.49159375
transcript.pyannote[101].end 350.96346875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 350.96346875
transcript.pyannote[102].end 351.03096875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 351.03096875
transcript.pyannote[103].end 353.59596875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 351.13221875
transcript.pyannote[104].end 351.21659375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 353.93346875
transcript.pyannote[105].end 356.65034375
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 356.97096875
transcript.pyannote[106].end 357.67971875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 357.84846875
transcript.pyannote[107].end 358.77659375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 359.19846875
transcript.pyannote[108].end 363.56909375
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 363.77159375
transcript.pyannote[109].end 367.66971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 366.47159375
transcript.pyannote[110].end 366.96096875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 367.66971875
transcript.pyannote[111].end 371.51721875
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 367.68659375
transcript.pyannote[112].end 368.68221875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 371.60159375
transcript.pyannote[113].end 372.91784375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 373.57596875
transcript.pyannote[114].end 385.01721875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 385.50659375
transcript.pyannote[115].end 386.78909375
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 386.78909375
transcript.pyannote[116].end 387.21096875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 387.56534375
transcript.pyannote[117].end 392.39159375
transcript.pyannote[118].speaker SPEAKER_03
transcript.pyannote[118].start 392.23971875
transcript.pyannote[118].end 392.59409375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 392.50971875
transcript.pyannote[119].end 396.89721875
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 396.82971875
transcript.pyannote[120].end 396.86346875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 396.89721875
transcript.pyannote[121].end 397.08284375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 397.08284375
transcript.pyannote[122].end 423.00284375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 423.27284375
transcript.pyannote[123].end 430.22534375
transcript.pyannote[124].speaker SPEAKER_03
transcript.pyannote[124].start 430.32659375
transcript.pyannote[124].end 430.83284375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 431.11971875
transcript.pyannote[125].end 432.08159375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 432.70596875
transcript.pyannote[126].end 436.33409375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 438.08909375
transcript.pyannote[127].end 446.05409375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 446.62784375
transcript.pyannote[128].end 452.36534375
transcript.pyannote[129].speaker SPEAKER_03
transcript.pyannote[129].start 452.33159375
transcript.pyannote[129].end 453.36096875
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 453.12471875
transcript.pyannote[130].end 457.61346875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 457.61346875
transcript.pyannote[131].end 458.05221875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 457.68096875
transcript.pyannote[132].end 461.81534375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 462.59159375
transcript.pyannote[133].end 463.62096875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 463.63784375
transcript.pyannote[134].end 464.46471875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 464.59971875
transcript.pyannote[135].end 466.87784375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 466.86096875
transcript.pyannote[136].end 467.33346875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 467.33346875
transcript.pyannote[137].end 468.88596875
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 469.40909375
transcript.pyannote[138].end 471.34971875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 471.70409375
transcript.pyannote[139].end 472.34534375
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 472.53096875
transcript.pyannote[140].end 472.93596875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 473.52659375
transcript.pyannote[141].end 475.31534375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 475.80471875
transcript.pyannote[142].end 477.71159375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 478.13346875
transcript.pyannote[143].end 479.71971875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 481.49159375
transcript.pyannote[144].end 481.50846875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 481.50846875
transcript.pyannote[145].end 481.79534375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 481.79534375
transcript.pyannote[146].end 482.20034375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 482.01471875
transcript.pyannote[147].end 483.33096875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 482.52096875
transcript.pyannote[148].end 483.82034375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 483.83721875
transcript.pyannote[149].end 483.85409375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 483.87096875
transcript.pyannote[150].end 487.83659375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 487.97159375
transcript.pyannote[151].end 491.65034375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 492.94971875
transcript.pyannote[152].end 495.41346875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 495.51471875
transcript.pyannote[153].end 496.18971875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 496.66221875
transcript.pyannote[154].end 499.36221875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 499.36221875
transcript.pyannote[155].end 499.53096875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 499.88534375
transcript.pyannote[156].end 501.75846875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 502.01159375
transcript.pyannote[157].end 504.12096875
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 504.86346875
transcript.pyannote[158].end 514.46534375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 515.03909375
transcript.pyannote[159].end 517.65471875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 518.11034375
transcript.pyannote[160].end 528.58971875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 521.90721875
transcript.pyannote[161].end 522.63284375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 527.67846875
transcript.pyannote[162].end 540.65534375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 540.92534375
transcript.pyannote[163].end 545.21159375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 544.87409375
transcript.pyannote[164].end 546.24096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 546.07221875
transcript.pyannote[165].end 547.08471875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 546.73034375
transcript.pyannote[166].end 551.25284375
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 551.75909375
transcript.pyannote[167].end 552.13034375
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 552.24846875
transcript.pyannote[168].end 554.13846875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 554.13846875
transcript.pyannote[169].end 555.85971875
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 554.64471875
transcript.pyannote[170].end 555.40409375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 555.85971875
transcript.pyannote[171].end 558.18846875
transcript.pyannote[172].speaker SPEAKER_02
transcript.pyannote[172].start 559.11659375
transcript.pyannote[172].end 562.84596875
transcript.pyannote[173].speaker SPEAKER_03
transcript.pyannote[173].start 560.73659375
transcript.pyannote[173].end 560.75346875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 560.75346875
transcript.pyannote[174].end 560.97284375
transcript.pyannote[175].speaker SPEAKER_03
transcript.pyannote[175].start 560.97284375
transcript.pyannote[175].end 561.09096875
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 563.36909375
transcript.pyannote[176].end 563.82471875
transcript.pyannote[177].speaker SPEAKER_03
transcript.pyannote[177].start 563.84159375
transcript.pyannote[177].end 564.33096875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 563.99346875
transcript.pyannote[178].end 567.87471875
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 567.89159375
transcript.pyannote[179].end 567.90846875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 567.99284375
transcript.pyannote[180].end 570.11909375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 570.38909375
transcript.pyannote[181].end 572.76846875
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 573.73034375
transcript.pyannote[182].end 577.93221875
transcript.pyannote[183].speaker SPEAKER_02
transcript.pyannote[183].start 578.16846875
transcript.pyannote[183].end 578.53971875
transcript.pyannote[184].speaker SPEAKER_01
transcript.pyannote[184].start 578.48909375
transcript.pyannote[184].end 578.50596875
transcript.pyannote[185].speaker SPEAKER_01
transcript.pyannote[185].start 578.53971875
transcript.pyannote[185].end 578.57346875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 578.57346875
transcript.pyannote[186].end 578.89409375
transcript.pyannote[187].speaker SPEAKER_01
transcript.pyannote[187].start 578.89409375
transcript.pyannote[187].end 580.27784375
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 578.92784375
transcript.pyannote[188].end 582.03284375
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 582.30284375
transcript.pyannote[189].end 586.53846875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 582.89346875
transcript.pyannote[190].end 583.26471875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 586.25159375
transcript.pyannote[191].end 590.23409375
transcript.pyannote[192].speaker SPEAKER_02
transcript.pyannote[192].start 591.29721875
transcript.pyannote[192].end 597.49034375
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 597.50721875
transcript.pyannote[193].end 598.67159375
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 599.17784375
transcript.pyannote[194].end 600.47721875
transcript.pyannote[195].speaker SPEAKER_02
transcript.pyannote[195].start 600.84846875
transcript.pyannote[195].end 603.36284375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 603.95346875
transcript.pyannote[196].end 609.37034375
transcript.pyannote[197].speaker SPEAKER_02
transcript.pyannote[197].start 609.79221875
transcript.pyannote[197].end 612.37409375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 612.62721875
transcript.pyannote[198].end 614.28096875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 614.28096875
transcript.pyannote[199].end 614.73659375
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 615.04034375
transcript.pyannote[200].end 622.02659375
transcript.pyannote[201].speaker SPEAKER_02
transcript.pyannote[201].start 618.44909375
transcript.pyannote[201].end 619.69784375
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 621.06471875
transcript.pyannote[202].end 629.38409375
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 630.21096875
transcript.pyannote[203].end 635.91471875
transcript.pyannote[204].speaker SPEAKER_01
transcript.pyannote[204].start 635.99909375
transcript.pyannote[204].end 636.10034375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 636.10034375
transcript.pyannote[205].end 636.13409375
transcript.pyannote[206].speaker SPEAKER_01
transcript.pyannote[206].start 636.13409375
transcript.pyannote[206].end 636.20159375
transcript.pyannote[207].speaker SPEAKER_02
transcript.pyannote[207].start 636.20159375
transcript.pyannote[207].end 636.79221875
transcript.pyannote[208].speaker SPEAKER_01
transcript.pyannote[208].start 636.79221875
transcript.pyannote[208].end 636.84284375
transcript.pyannote[209].speaker SPEAKER_02
transcript.pyannote[209].start 636.84284375
transcript.pyannote[209].end 638.12534375
transcript.pyannote[210].speaker SPEAKER_01
transcript.pyannote[210].start 638.12534375
transcript.pyannote[210].end 638.22659375
transcript.pyannote[211].speaker SPEAKER_02
transcript.pyannote[211].start 638.22659375
transcript.pyannote[211].end 639.03659375
transcript.pyannote[212].speaker SPEAKER_01
transcript.pyannote[212].start 639.03659375
transcript.pyannote[212].end 641.06159375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 639.91409375
transcript.pyannote[213].end 641.85471875
transcript.pyannote[214].speaker SPEAKER_01
transcript.pyannote[214].start 641.38221875
transcript.pyannote[214].end 641.98971875
transcript.pyannote[215].speaker SPEAKER_01
transcript.pyannote[215].start 642.14159375
transcript.pyannote[215].end 643.05284375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 643.27221875
transcript.pyannote[216].end 644.09909375
transcript.pyannote[217].speaker SPEAKER_01
transcript.pyannote[217].start 644.09909375
transcript.pyannote[217].end 644.16659375
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 644.40284375
transcript.pyannote[218].end 647.15346875
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 645.65159375
transcript.pyannote[219].end 645.93846875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 646.71471875
transcript.pyannote[220].end 655.72596875
transcript.pyannote[221].speaker SPEAKER_00
transcript.pyannote[221].start 657.86909375
transcript.pyannote[221].end 657.88596875
transcript.pyannote[222].speaker SPEAKER_01
transcript.pyannote[222].start 657.88596875
transcript.pyannote[222].end 658.81409375
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 657.91971875
transcript.pyannote[223].end 667.36971875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 658.81409375
transcript.pyannote[224].end 658.88159375
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 667.42034375
transcript.pyannote[225].end 681.98346875
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 682.50659375
transcript.pyannote[226].end 689.98221875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 690.47159375
transcript.pyannote[227].end 698.95971875
transcript.pyannote[228].speaker SPEAKER_01
transcript.pyannote[228].start 692.20971875
transcript.pyannote[228].end 692.54721875
transcript.pyannote[229].speaker SPEAKER_01
transcript.pyannote[229].start 698.82471875
transcript.pyannote[229].end 701.67659375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 698.99346875
transcript.pyannote[230].end 700.42784375
transcript.pyannote[231].speaker SPEAKER_01
transcript.pyannote[231].start 703.73534375
transcript.pyannote[231].end 703.75221875
transcript.pyannote[232].speaker SPEAKER_02
transcript.pyannote[232].start 703.75221875
transcript.pyannote[232].end 703.85346875
transcript.pyannote[233].speaker SPEAKER_01
transcript.pyannote[233].start 703.85346875
transcript.pyannote[233].end 703.90409375
transcript.pyannote[234].speaker SPEAKER_02
transcript.pyannote[234].start 703.90409375
transcript.pyannote[234].end 703.93784375
transcript.pyannote[235].speaker SPEAKER_01
transcript.pyannote[235].start 703.93784375
transcript.pyannote[235].end 704.10659375
transcript.pyannote[236].speaker SPEAKER_02
transcript.pyannote[236].start 704.10659375
transcript.pyannote[236].end 704.15721875
transcript.pyannote[237].speaker SPEAKER_01
transcript.pyannote[237].start 704.15721875
transcript.pyannote[237].end 704.20784375
transcript.pyannote[238].speaker SPEAKER_02
transcript.pyannote[238].start 704.20784375
transcript.pyannote[238].end 704.95034375
transcript.pyannote[239].speaker SPEAKER_01
transcript.pyannote[239].start 704.95034375
transcript.pyannote[239].end 704.96721875
transcript.pyannote[240].speaker SPEAKER_02
transcript.pyannote[240].start 704.96721875
transcript.pyannote[240].end 705.65909375
transcript.whisperx[0].start 12.777
transcript.whisperx[0].end 23.266
transcript.whisperx[0].text 主席 再討論先進 歷史主席的政府機關事長官員會長工作夥伴媒體記者女士先生讓部長休息一下 待會還有人要繼續請教您讓次長上來 呂次長請好 請呂次長辛苦了
transcript.whisperx[1].start 39.202
transcript.whisperx[1].end 63.156
transcript.whisperx[1].text 市長你好 我想整載去聽很多國民黨和民眾黨的委員請教這個問題心裡有很多的想法我也把這個疑問 我跟你一樣有很多疑問要一個一個問說到這個川普其實很特別 在美國總統很威可以去委內瑞拉 如如無人之境美軍他們的司法官那麼強
transcript.whisperx[2].start 64.516
transcript.whisperx[2].end 82.662
transcript.whisperx[2].text 但是他做的很多事情很多國家都是驚嘆號藍白在野黨的委員對川普總統說各國民主同盟應該強化自己的國防應該增加自己的預算來保護自己的國家維持區域的安定你覺得這個有他的道理嗎
transcript.whisperx[3].start 83.922
transcript.whisperx[3].end 111.525
transcript.whisperx[3].text 沒錯那他提出一個川普帳戶感覺上也好像有他的道理嘛我說他的道理但是很特別的台灣在野黨呢只對於川普帳戶情有獨鍾對於要求增強台灣的國防自己防衛的預算好像不太買單不過我們還是一樣還要肯定一下川普的做法你了解吧他是說他任期內的新生兒每個新生兒出來美國政府給他一千美金存在那個帳戶裡面後面呢後面靠誰
transcript.whisperx[4].start 113.717
transcript.whisperx[4].end 126.212
transcript.whisperx[4].text 後面靠誰 後面靠他的父母嘛對川普總統有沒有每年都繼續給這個新生兒一歲也給 二歲也給 三歲也給沒有 他只給第一筆1000塊給你開辦的一個帳號 開帳你覺得啦 從所得分配來講這個是對比較窮的人有利還是對有錢人有利
transcript.whisperx[5].start 131.798
transcript.whisperx[5].end 140.565
transcript.whisperx[5].text 報告委員喔 他這中年是對有錢的人嘛沒有啦 我是說阿尊是一千塊給每一個人啦喔 每一千塊 如果這樣中年就是對他沒有錢的人我本來欠一個十塊我都有困啦你現在給我一千塊 我很高興的對有錢人的家庭 沒關係啦可能他老婆老公一年都給他一萬塊都沒問題嘛所以川普總統這一千塊
transcript.whisperx[6].start 153.576
transcript.whisperx[6].end 170.942
transcript.whisperx[6].text 對於一個六四家庭連欠錢都有困難只有他有一個一千塊派對後面的老闆老婦有辦法每年欠錢嗎這不知道對於後面的人來說你沒有發一千塊川普你沒有發一千塊我也是每天每年都給你放一萬塊美金對不對一千塊對於一萬塊來說未來十八年人家十八萬人家一千塊所以川普這個政策看起來是對
transcript.whisperx[7].start 178.564
transcript.whisperx[7].end 198.141
transcript.whisperx[7].text 普通的美国人的家庭尤其是没有厨师的家庭有个高的厨师嘛你知不知道现在在野党的版本是什么 往下看蓝白的未来账户是年给12年我看到一下嘛 他的第六条试用对象只要出生未满12岁是不是免年给啊
transcript.whisperx[8].start 199.517
transcript.whisperx[8].end 216.895
transcript.whisperx[8].text 他們是 他的版本是說每年都還要加一萬進去每年還要再加一萬喔有沒有要求他們的父母要加沒有嘛 對所以說白色的午餐最香嘛那建物開請就好了嘛這當然要是我是弱勢家庭我也歡迎啦但是有個問題
transcript.whisperx[9].start 218.476
transcript.whisperx[9].end 225.663
transcript.whisperx[9].text 你們有沒有算過 你們算過嗎 差不多隆重要開多少報告委員 我們這樣算算的 可能第一年就要開多少這樣總共的方案4030啦 4000控30億第一年就要開多少 隆重12年 隆重要開4000多億4000億 12年4000億 看起來跟
transcript.whisperx[10].start 241.798
transcript.whisperx[10].end 269.725
transcript.whisperx[10].text 在野黨堅持的年改增加的國家負債好像又是一筆反年改倒退的一個負擔耶今天我是主計總署他們就不用了我們都知道這個錢國家的錢那有人說這個會不會排擠到現在預算我很懷疑未來12年國家總共要支付4000多億跟我們的年金改革未來10年未來每年要付3600億哇 這筆錢很大有人覺得中華民國國庫很有錢繼續花來往下看
transcript.whisperx[11].start 270.796
transcript.whisperx[11].end 291.719
transcript.whisperx[11].text 好 那民眾怎麼看呢民眾認為說 這個投票的結果多數的民眾 6成5是反對有部分民眾是保留 他說金額要小不能亂花錢有條件贊成只應照顧弱勢請問你覺得這兩點你支不支持金額要小不要亂花錢有條件贊成限於弱勢家庭
transcript.whisperx[12].start 293.959
transcript.whisperx[12].end 320.824
transcript.whisperx[12].text 反對的我們不講啦 有人都反對說政府亂花錢啊資源有限啊 財政負擔啊 政策好聽啊 效果有限啊對於沒有小孩或小孩長大下來不公平啊 這就不看了對於說金額要適度要照顧弱勢家庭 你支持嗎包委員 這個其實也是卓院長在元旦他有一個政策說明其中有很重要的事實上就是要擴大我們現在目前但是要弱勢優先弱勢優先 好 那我們現在看啦
transcript.whisperx[13].start 321.784
transcript.whisperx[13].end 345.754
transcript.whisperx[13].text 所以說我們覺得在野黨在幫助有錢人的世代財富傳承你看看根據這個第12條跟13條未來中的特別條例他這個開戶是在怎樣開戶人或他的法定代理人最近親屬他要存好啦其實富裕家庭的人他本來就會存如果是弱智家庭的可能沒有辦法存所以如果
transcript.whisperx[14].start 346.584
transcript.whisperx[14].end 372.523
transcript.whisperx[14].text 弱勢家庭的都只是靠政府存他的福利效果有限有錢家庭的他利上加利等於是政府幫他住很大的一臂之力這樣子在我們的國家的一個社會公平正義來講這會不會是一種所得的逆分配啊包圍這可能複製現有的這個階級的還有家庭複製現有的階級差異因為等於是什麼呢我們看來下一張等於是窮人家
transcript.whisperx[15].start 373.644
transcript.whisperx[15].end 385.808
transcript.whisperx[15].text 今日的麵包成為富二代的未來金幣啊我們把這第一年的一千多億未來的十一年還加上三千多億這些都是用當年度政府的預算納稅人繳的稅嘛沒錯
transcript.whisperx[16].start 388.062
transcript.whisperx[16].end 408.735
transcript.whisperx[16].text 納稅人我知道目前有56%的人要繳薪資所得稅其他的人44%所得未達這個程度那現在這些沒有繳稅的經濟能力未達繳稅額度的是不是就是我們衛務部你們要去關注的對象要把大家繳來的錢有能力繳稅的56%的人他繳了稅
transcript.whisperx[17].start 411.216
transcript.whisperx[17].end 435.502
transcript.whisperx[17].text 讓我們政府來照顧這沒有能力角色的44%這是衛福部的事情沒錯 所以我們市部長說資源要用在刀口上是 好但是如果我們現在為了這個未來帳戶12年拿了4000億每年等於是你第一年1000億 每年要拿300億出來預算要編在哪裡編在衛福部名下衛福部有辦法漲出每年多300億嗎
transcript.whisperx[18].start 438.303
transcript.whisperx[18].end 461.234
transcript.whisperx[18].text 還是說我們的錢還是從納稅人的錢來所以納稅人繳來的錢本來叫衛福部要照顧弱勢的現在在幫誰的忙幫那些富家庭的二代放他18歲以後的明日金幣啊對沒錯我先問一下你知道目前因為我在財政委員會今天實戰聯席啊我們都知道保險業者最喜歡做什麼業務
transcript.whisperx[19].start 462.645
transcript.whisperx[19].end 479.26
transcript.whisperx[19].text 高資產客戶用保單來做什麼財富傳承因為保險的受益人保險的保費繳那麼多高額保費受益人當被保險人頑固的時候受益人他的那個保險的幾戶要不要課稅
transcript.whisperx[20].start 481.499
transcript.whisperx[20].end 510.411
transcript.whisperx[20].text 不用課稅不用課稅那現在你這樣的一個版本就當於有錢家庭的人他放到這個帳戶的錢未來他小孩用的時候要不要課稅這個不知道啦那宋署長一點點時間趕快你講一下這樣到底有沒有對富家庭來講節稅的效果我要是買保單傳承財富我可以免於被課稅那這個呢這個衛福部的麵包牛奶貧困家庭的這個錢拿來給藍白板的未來家庭
transcript.whisperx[21].start 510.971
transcript.whisperx[21].end 539.153
transcript.whisperx[21].text 他們父母啊 你每年存那麼多我存十倍下去存在帳戶的錢未來可以不用繳稅嗎如果他已經存到小孩的帳戶就變成小孩的錢了那要怎麼所以未來小孩體靈本金的部分沒有稅的問題當他產生的知習是有稅的問題來 目前如果我們有錢家庭在場的有錢家庭像財富傳承財政部一年給多少的這樣的一個證語或者是幫小孩子存錢的利息的這個租稅優惠
transcript.whisperx[22].start 541.007
transcript.whisperx[22].end 558.015
transcript.whisperx[22].text 如果是正宇的話每年是244萬以現在的額度244萬我每年要想辦法挪244萬給我兒子在他未成年之前我想都有困難那這244萬是不用稅啦是不用課金一歲好 所以來 部長請你上台啦
transcript.whisperx[23].start 559.478
transcript.whisperx[23].end 572.587
transcript.whisperx[23].text 總究你要來做個Ending我請了次長 請了署長那請問一下那麼川普的賬戶給其他國家一個參考有沒有其他國家曾經做過類似的事情
transcript.whisperx[24].start 573.949
transcript.whisperx[24].end 590.024
transcript.whisperx[24].text 据了解的话在英国也做过类似更早做过英国做过类似更早那英国有继续做吗没有了没有没有办法在财务上永续没有办法在财务上永续所以我们规节我们对于
transcript.whisperx[25].start 591.385
transcript.whisperx[25].end 612.007
transcript.whisperx[25].text 仿造川普帳戶這樣的一個操作業到台灣之後變成是一個每年都要給父母也不見得要給然後造成的是一個逆所得的逆分配造成還是國家的財政負擔還造成了會排擠到衛福部其他照顧弱勢家庭你們現在有在照顧弱勢家庭的類似這樣的政策嗎
transcript.whisperx[26].start 612.708
transcript.whisperx[26].end 629.177
transcript.whisperx[26].text 有多少人受益这个受益目标是应该6万人左右目前有多少万人目前是近4万3万9千多人很好所以如果我们要照顾这些弱势家庭的孩子目标6万我们的卫护部一年要放多少钱进去
transcript.whisperx[27].start 630.633
transcript.whisperx[27].end 655.534
transcript.whisperx[27].text 因為這個目前開戶的最高我們一年對波是一萬五所以目前的預算投入大概多少了幾億啊 一萬五大概簡單講 已經投入都好了六億左右投了六億了對 一年大概要編六億但是目前在我們國家給需要照顧人六億跟給所有有錢的家庭的小孩每個人加起來全部一千億你認為會不會有排擠效果
transcript.whisperx[28].start 658.576
transcript.whisperx[28].end 681.783
transcript.whisperx[28].text 我想這個事情我還是覺得我的意見不能代表全體的意見但是我想我們來自不同的家庭不同的社會階層有夢最美但是現實是很骨感的想像很豐滿但是這件事情到底要怎麼樣才能齊全我們支持國家要來支持人民的下一代讓下一代他出生之後他未來有保障
transcript.whisperx[29].start 682.683
transcript.whisperx[29].end 701.21
transcript.whisperx[29].text 如果有該公聽會您覺得你會推薦哪些團體或希望我們找哪些團體來參與意見請你回去想一下好不好那麼一個星期內給我個名單未來可能我們要是要辦公廳的話我們希望邀請各種不同的團體來討論這一點好不好好一個星期好謝謝謝謝中嘉賓委員發言