iVOD / 167041

Field Value
IVOD_ID 167041
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/167041
日期 2026-01-12
會議資料.會議代碼 聯席會議-11-4-26,20-1
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 20
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.委員會代碼:str[1] 財政委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議
影片種類 Clip
開始時間 2026-01-12T10:56:07+08:00
結束時間 2026-01-12T11:06:29+08:00
影片長度 00:10:22
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/3ab52049cf0a1ce028d89ce0c9debd17307671192a7c66aa7fca8e6801c49bdd5e42fc9f2fe0e8b55ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 蘇清泉
委員發言時間 10:56:07 - 11:06:29
會議時間 2026-01-12T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境、財政委員會第1次聯席會議(事由:審查國民黨黨團、台灣民眾黨黨團擬具「臺灣未來帳戶特別條例草案」案。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 2.32596875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 3.37221875
transcript.pyannote[1].end 5.73471875
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 6.44346875
transcript.pyannote[2].end 8.90721875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 9.75096875
transcript.pyannote[3].end 9.91971875
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 9.91971875
transcript.pyannote[4].end 9.97034375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 9.97034375
transcript.pyannote[5].end 11.25284375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 11.82659375
transcript.pyannote[6].end 11.97846875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 12.09659375
transcript.pyannote[7].end 12.73784375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 12.97409375
transcript.pyannote[8].end 15.13409375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 16.36596875
transcript.pyannote[9].end 16.77096875
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 17.15909375
transcript.pyannote[10].end 20.61846875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 21.24284375
transcript.pyannote[11].end 21.86721875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 22.52534375
transcript.pyannote[12].end 31.31721875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 31.31721875
transcript.pyannote[13].end 32.39721875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 31.33409375
transcript.pyannote[14].end 31.38471875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 31.89096875
transcript.pyannote[15].end 33.07221875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 33.20721875
transcript.pyannote[16].end 33.98346875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 33.93284375
transcript.pyannote[17].end 34.84409375
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 35.24909375
transcript.pyannote[18].end 35.70471875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 35.97471875
transcript.pyannote[19].end 40.22721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 40.27784375
transcript.pyannote[20].end 40.29471875
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 40.29471875
transcript.pyannote[21].end 40.64909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 40.32846875
transcript.pyannote[22].end 40.51409375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 40.64909375
transcript.pyannote[23].end 43.48409375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 44.36159375
transcript.pyannote[24].end 52.51221875
transcript.pyannote[25].speaker SPEAKER_02
transcript.pyannote[25].start 46.69034375
transcript.pyannote[25].end 47.63534375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 52.81596875
transcript.pyannote[26].end 56.10659375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 56.76471875
transcript.pyannote[27].end 71.10846875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 72.79596875
transcript.pyannote[28].end 88.59096875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 88.81034375
transcript.pyannote[29].end 94.46346875
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 94.51409375
transcript.pyannote[30].end 98.14221875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 98.71596875
transcript.pyannote[31].end 107.08596875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 107.60909375
transcript.pyannote[32].end 111.06846875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 111.22034375
transcript.pyannote[33].end 115.91159375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 115.37159375
transcript.pyannote[34].end 118.59471875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 119.42159375
transcript.pyannote[35].end 121.53096875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 121.69971875
transcript.pyannote[36].end 127.63971875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 122.22284375
transcript.pyannote[37].end 123.31971875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 128.12909375
transcript.pyannote[38].end 128.60159375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 129.05721875
transcript.pyannote[39].end 140.02596875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 141.05534375
transcript.pyannote[40].end 142.16909375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 142.57409375
transcript.pyannote[41].end 144.91971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 145.56096875
transcript.pyannote[42].end 152.90159375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 153.15471875
transcript.pyannote[43].end 177.03284375
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 177.10034375
transcript.pyannote[44].end 193.24971875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 193.38471875
transcript.pyannote[45].end 194.26221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 194.49846875
transcript.pyannote[46].end 209.55096875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 207.23909375
transcript.pyannote[47].end 241.05659375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 241.96784375
transcript.pyannote[48].end 250.86096875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 251.21534375
transcript.pyannote[49].end 278.82284375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 278.62034375
transcript.pyannote[50].end 303.93284375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 285.91034375
transcript.pyannote[51].end 286.73721875
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 287.37846875
transcript.pyannote[52].end 288.37409375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 302.31284375
transcript.pyannote[53].end 308.92784375
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 310.31159375
transcript.pyannote[54].end 310.83471875
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 310.78409375
transcript.pyannote[55].end 315.66096875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 312.25221875
transcript.pyannote[56].end 312.62346875
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 315.96471875
transcript.pyannote[57].end 322.09034375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 317.83784375
transcript.pyannote[58].end 317.85471875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 317.87159375
transcript.pyannote[59].end 317.88846875
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 318.20909375
transcript.pyannote[60].end 318.22596875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 318.22596875
transcript.pyannote[61].end 318.25971875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 322.20846875
transcript.pyannote[62].end 324.95909375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 325.51596875
transcript.pyannote[63].end 327.16971875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 327.37221875
transcript.pyannote[64].end 332.14784375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 332.31659375
transcript.pyannote[65].end 342.27284375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 339.33659375
transcript.pyannote[66].end 339.40409375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 339.48846875
transcript.pyannote[67].end 339.65721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 342.44159375
transcript.pyannote[68].end 344.29784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 344.12909375
transcript.pyannote[69].end 344.98971875
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 344.98971875
transcript.pyannote[70].end 345.02346875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 345.12471875
transcript.pyannote[71].end 345.64784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 345.81659375
transcript.pyannote[72].end 346.72784375
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 347.74034375
transcript.pyannote[73].end 369.32346875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 370.20096875
transcript.pyannote[74].end 374.52096875
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 374.60534375
transcript.pyannote[75].end 379.36409375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 379.80284375
transcript.pyannote[76].end 380.27534375
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 380.27534375
transcript.pyannote[77].end 380.88284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 380.34284375
transcript.pyannote[78].end 380.89971875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 380.89971875
transcript.pyannote[79].end 381.52409375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 381.52409375
transcript.pyannote[80].end 381.74346875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 381.74346875
transcript.pyannote[81].end 383.78534375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 384.22409375
transcript.pyannote[82].end 388.17284375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 388.37534375
transcript.pyannote[83].end 394.02846875
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 392.93159375
transcript.pyannote[84].end 393.40409375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 394.02846875
transcript.pyannote[85].end 395.07471875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 395.22659375
transcript.pyannote[86].end 399.76596875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 399.81659375
transcript.pyannote[87].end 404.72721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 404.91284375
transcript.pyannote[88].end 406.95471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 407.27534375
transcript.pyannote[89].end 408.84471875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 409.33409375
transcript.pyannote[90].end 414.26159375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 414.90284375
transcript.pyannote[91].end 417.02909375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 417.02909375
transcript.pyannote[92].end 417.53534375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 417.53534375
transcript.pyannote[93].end 421.07909375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 418.83471875
transcript.pyannote[94].end 419.17221875
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 419.74596875
transcript.pyannote[95].end 420.40409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 421.19721875
transcript.pyannote[96].end 422.58096875
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 423.13784375
transcript.pyannote[97].end 448.14659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 448.93971875
transcript.pyannote[98].end 449.20971875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 449.93534375
transcript.pyannote[99].end 451.72409375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 452.24721875
transcript.pyannote[100].end 456.88784375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 456.88784375
transcript.pyannote[101].end 456.95534375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 457.00596875
transcript.pyannote[102].end 468.34596875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 468.63284375
transcript.pyannote[103].end 470.91096875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 471.60284375
transcript.pyannote[104].end 475.19721875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 475.87221875
transcript.pyannote[105].end 479.85471875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 479.85471875
transcript.pyannote[106].end 490.84034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 487.48221875
transcript.pyannote[107].end 488.32596875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 490.73909375
transcript.pyannote[108].end 495.26159375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 494.33346875
transcript.pyannote[109].end 495.43034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 495.43034375
transcript.pyannote[110].end 495.46409375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 495.83534375
transcript.pyannote[111].end 497.32034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 497.69159375
transcript.pyannote[112].end 501.80909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 501.79221875
transcript.pyannote[113].end 502.09596875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 502.09596875
transcript.pyannote[114].end 504.50909375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 504.42471875
transcript.pyannote[115].end 505.70721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 505.31909375
transcript.pyannote[116].end 529.92284375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 513.13221875
transcript.pyannote[117].end 513.30096875
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 518.75159375
transcript.pyannote[118].end 519.00471875
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 522.63284375
transcript.pyannote[119].end 523.49346875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 530.46284375
transcript.pyannote[120].end 537.46596875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 538.15784375
transcript.pyannote[121].end 571.60409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 556.34909375
transcript.pyannote[122].end 556.88909375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 567.26721875
transcript.pyannote[123].end 567.87471875
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 572.49846875
transcript.pyannote[124].end 577.37534375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 578.08409375
transcript.pyannote[125].end 580.88534375
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 581.40846875
transcript.pyannote[126].end 583.53471875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 584.04096875
transcript.pyannote[127].end 586.45409375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 587.16284375
transcript.pyannote[128].end 608.08784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 612.32346875
transcript.pyannote[129].end 612.34034375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 612.34034375
transcript.pyannote[130].end 614.09534375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 615.69846875
transcript.pyannote[131].end 615.95159375
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 616.10346875
transcript.pyannote[132].end 618.28034375
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 619.00596875
transcript.pyannote[133].end 619.02284375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 619.02284375
transcript.pyannote[134].end 619.86659375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 620.77784375
transcript.pyannote[135].end 621.84096875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 621.97596875
transcript.pyannote[136].end 622.12784375
transcript.whisperx[0].start 0.85
transcript.whisperx[0].end 10.961
transcript.whisperx[0].text 謝謝 謝謝主席 謝謝王雲喔好 那我請呂次還有我們勞保局的白局長請呂次長跟白局長
transcript.whisperx[1].start 12.194
transcript.whisperx[1].end 31.888
transcript.whisperx[1].text 委員長很久沒看了是來 我今天問三個問題 三個問題第一個 我們衛福部從2017年就設這個兒童及少年未來教育及發展帳戶對不對是 沒錯可是現在已經八九年了對
transcript.whisperx[2].start 35.31
transcript.whisperx[2].end 53.06
transcript.whisperx[2].text 那你是用中低收入到低收入家庭的孩子那到現在到目前就是三萬九千多人然後存款才三十二億這樣平均起碼一人存八萬塊而已
transcript.whisperx[3].start 59.545
transcript.whisperx[3].end 70.791
transcript.whisperx[3].text 這個案子很好地擴大整個方向整個限制都打開這個本身就是一個好的方法了是不是 市長
transcript.whisperx[4].start 73.05
transcript.whisperx[4].end 87.382
transcript.whisperx[4].text 非常感謝委員 長久以來對少子女化問題的關心 我要委員報告就是我們之前 其實這是在美國最早有一個資產累積叫Sheldon 他的理論就是說 強硬人 希望他們在最早 我們十八歲的時候有辦法第一桶金 讓他們的經濟市場可以繼續
transcript.whisperx[5].start 98.792
transcript.whisperx[5].end 118.103
transcript.whisperx[5].text 但委員報告我們現在推動的部分我們也是說就是要幫助我們這個港口的家庭讓他們脫貧那你現在這個錢是委託台灣銀行嗎我們現在就是存在 存在台銀那邊是跟存在的那些私房或是他們有投資
transcript.whisperx[6].start 120.008
transcript.whisperx[6].end 143.041
transcript.whisperx[6].text 我們都現在是儲蓄的功能 只有儲蓄而已所以可以定存的錢 那不是笑的這理想的幾乎是零啊所以你現在 你現在這個草案說是要讓勞保局操作嘛 勞保局你們在看什麼 勞保局你們看看錢 幾點要給你們 你看你們多厲害
transcript.whisperx[7].start 145.829
transcript.whisperx[7].end 170.006
transcript.whisperx[7].text 跟委員做報告現在國內這個兒少發展賬戶那是由主管機關衛福部這邊來指定台銀來辦理那目前的一個實務運作據我們了解其他模式相對是成熟對於中央還有地方主管機關還有金融機構之間的一個分工還有作業流程相對是清楚的那如果在勞動部這邊的話因為勞保局過去扮演的角色是在社會保險部分的一個
transcript.whisperx[8].start 170.826
transcript.whisperx[8].end 193.025
transcript.whisperx[8].text 保險人那如果在基金的投資運用上面是我們勞動部的勞動基金運用局這邊來做處理那如果說就這樣的一個制度當然今天大院其實也討論了非常多在制度的一個設計上我們也尊重主管機關這邊的一個考量不過在設計的過程中因為以勞保局我們現行的一個整個勞保局的一個定位角色跟
transcript.whisperx[9].start 193.505
transcript.whisperx[9].end 202.396
transcript.whisperx[9].text 人力上面我們是有提到剛剛還講的兒少的發展賬戶如果說在現行的模式上一定有一個相對成熟穩定的運作模式經驗可循
transcript.whisperx[10].start 203.41
transcript.whisperx[10].end 230.246
transcript.whisperx[10].text 那在這樣的一個基礎上跟如果把這個業務再委託到勞保局對我們而言是全新的業務衛福部這個架構我看是還不錯但是他就錢就你存在台銀他就是全放在那裡走並且設立一個帳戶這樣而已啊不去投資嘛不去投資就沒有它的效益出來那如果說將來還是放在台銀台銀能力會不會很差啊
transcript.whisperx[11].start 232.208
transcript.whisperx[11].end 257.947
transcript.whisperx[11].text 你們的操作幾兆幾兆在操作的你們的效益都有8% 10% 12%所以台會指定給你們對你們才比較有期待那如果是衛福部你把留在衛福部之前交給台銀台銀也是用這種投資的型態台銀自己本身就可以操作因為我給他算一算你沒有多少錢
transcript.whisperx[12].start 259.088
transcript.whisperx[12].end 287.633
transcript.whisperx[12].text 最多才三四千億而已比你們那幾兆幾兆再投資的差太多了如果是將來交給你們應該也是小case啦如果是給台銀的話台銀才有那個能力啦我現在比較大的質疑啦現在台銀沒有來不然的話就請他好好的來表示也跟委員這邊做一個補充在目前是不是勞動基金議員局今天副局長有來是不是如果委員同意的話可以請副局長這邊做一個補充那目前我們在
transcript.whisperx[13].start 289.874
transcript.whisperx[13].end 304.785
transcript.whisperx[13].text 勞工退休金的制度上面我們有新制跟舊制那在台銀部分的話舊制就是在我們勞基法56條有明確規定我們的收支保管運用是委託台灣銀行來做處理那我們的基金運用局主要是負責新制部分因為下次這個會繼續辦來 第二個問題請次長
transcript.whisperx[14].start 310.861
transcript.whisperx[14].end 332.568
transcript.whisperx[14].text 市長這第二個問題就是這一個今天提出的這個未來賬戶這個是很好的我們執政黨的立法委員也說這個很好但是只是說兇兇把他踢出來所以他為何沒有credit為何他的公債為何沒有去所以把他搶 搶到後還要開公廳還要做什麼
transcript.whisperx[15].start 334.429
transcript.whisperx[15].end 351.14
transcript.whisperx[15].text 那事實上這個在全世界像新加坡 英國 韓國 加拿大都有了嘛那邊的各式的方式都不一樣這都有精力出來了是 謝謝所以出生給他五萬 每一年給他一萬一萬一萬那家長要拿可以一年多拿十萬
transcript.whisperx[16].start 355.563
transcript.whisperx[16].end 379.23
transcript.whisperx[16].text 這樣到你如果說拿10萬到12歲、18歲那就不太錢了對 這個是好事啦又去投資 又有賺一點利息又有賺一點投資的效益那這個是好事 倒是我們健保局我們衛福部本身是比較保守嘛好像一種站在旁邊的人站固定立立 你不笑的
transcript.whisperx[17].start 380.291
transcript.whisperx[17].end 384.595
transcript.whisperx[17].text 你現在說的這幾個我估計就是剛才委員所說的英國英國是兩千五年開辦的但是兩千十一年它都停了是怎樣
transcript.whisperx[18].start 395.285
transcript.whisperx[18].end 401.651
transcript.whisperx[18].text 不像我剛才說的2008所以委員我們為什麼因為我們這些都是港口人的錢我們要更謹慎的啦你說要用投資 投資比有風險嘛這個部分可能還是要慎思啦 我剛才說英國那個案例可能
transcript.whisperx[19].start 415.155
transcript.whisperx[19].end 433.234
transcript.whisperx[19].text 嚴公義是2011年他還有一個是由Junior ISA這三萬台那個保安就是後來就沒辦法你去到一半變成兩位了所以他們就很好就很好就接下去了所以我們知道大家都希望說做好但是這個因為像保安今天也有說這個這樣下去四千多億
transcript.whisperx[20].start 436.357
transcript.whisperx[20].end 445.846
transcript.whisperx[20].text 我們現在高齡化我們有很多社會救助長照3.0都要退縮所以是不是會產生排擠效果可能也是要謹慎來來來變更舒服好
transcript.whisperx[21].start 450.04
transcript.whisperx[21].end 462.483
transcript.whisperx[21].text 所以這個還要等民進黨有沒有提版本行政大臣要不要提版本那部長有指示說我們現在就是廣聽我們國務委員還有我們社會各自的意見我們來做一個對民間我們這些父母最好的一個方案我們是那個開放態度
transcript.whisperx[22].start 476.342
transcript.whisperx[22].end 483.888
transcript.whisperx[22].text 好 所以臨近目前要做的就是這樣要做 不用這樣做議長有提及我們現在目前現有剛才委員也有說這個我們會來研擬看是不是可以再擴大好過不錯 我們要怎麼擴大我最後問你 台灣有八百萬戶左右八百萬
transcript.whisperx[23].start 495.916
transcript.whisperx[23].end 506.866
transcript.whisperx[23].text 裡面沒有納稅或是納5%以下的所得稅差不多要到5%幾萬塊所以差不多六成我都沒有納稅所以你用4萬塊太少了
transcript.whisperx[24].start 513.452
transcript.whisperx[24].end 536.726
transcript.whisperx[24].text 一定要享受這個沒落水或是說落5%以下的水這個孩子你要幫他補償如果說收入很高的這個他們自己就有嫁給他嘛有的孩子像你說的孩子在股市有開戶的像我們部長那麼有錢對不對小孩在股市就要有開戶啊對不對我只是說笑但是我要跟你說的就是祭祀這個
transcript.whisperx[25].start 538.206
transcript.whisperx[25].end 563.167
transcript.whisperx[25].text 五六百萬給伊哈一定要給他們一個投資型這樣對小孩子將來要保障因為我們現在錢這樣好的時候就很多錢不好的時候有可能就不好我們台灣現在1100多萬個勞工裡面在做晶片業的才100多萬人
transcript.whisperx[26].start 563.687
transcript.whisperx[26].end 580.47
transcript.whisperx[26].text 其他的1000萬都苦哈哈傳統產業現在都苦哈哈那這個晶片業如果往下掉一點馬上出問題你看整個股市70%的資金都在消高科技晶片這個是很可怕的事情
transcript.whisperx[27].start 581.448
transcript.whisperx[27].end 607.926
transcript.whisperx[27].text 你們看好我是看得很擔心這個農產業你看這個整個股市這邊都國票都六個大米嗎這要多少這個好嗎我不知道這個是我們行政院也要小心的所以你們是開放的態度讓大家來討論原則上你們暫時不提版本
transcript.whisperx[28].start 612.372
transcript.whisperx[28].end 613.755
transcript.whisperx[28].text 我們廣聽各方意見