iVOD / 166915

Field Value
IVOD_ID 166915
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166915
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T11:55:02+08:00
結束時間 2026-01-07T12:06:51+08:00
影片長度 00:11:49
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468fab2f033c8bed7fba5d44f5a94e3adf35a2318d3e8cde50e9720e17fc406f2b395ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:55:02 - 12:06:51
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 9.29534375
transcript.pyannote[0].end 12.01221875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 13.46346875
transcript.pyannote[1].end 14.39159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 14.52659375
transcript.pyannote[2].end 15.38721875
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 20.48346875
transcript.pyannote[3].end 20.50034375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 21.85034375
transcript.pyannote[4].end 22.49159375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 23.03159375
transcript.pyannote[5].end 23.77409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 23.85846875
transcript.pyannote[6].end 23.89221875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 23.89221875
transcript.pyannote[7].end 24.26346875
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 24.26346875
transcript.pyannote[8].end 24.34784375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 24.83721875
transcript.pyannote[9].end 25.52909375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 27.46971875
transcript.pyannote[10].end 28.51596875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 29.00534375
transcript.pyannote[11].end 33.10596875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 33.62909375
transcript.pyannote[12].end 34.67534375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 35.09721875
transcript.pyannote[13].end 51.34784375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 51.53346875
transcript.pyannote[14].end 53.94659375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 54.36846875
transcript.pyannote[15].end 54.90846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 55.70159375
transcript.pyannote[16].end 58.87409375
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 60.10596875
transcript.pyannote[17].end 60.74721875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 61.47284375
transcript.pyannote[18].end 64.02096875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 64.54409375
transcript.pyannote[19].end 64.79721875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 65.52284375
transcript.pyannote[20].end 66.99096875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 67.44659375
transcript.pyannote[21].end 84.05159375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 84.49034375
transcript.pyannote[22].end 111.72659375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 112.11471875
transcript.pyannote[23].end 114.57846875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 115.11846875
transcript.pyannote[24].end 122.98221875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 123.84284375
transcript.pyannote[25].end 124.56846875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 125.64846875
transcript.pyannote[26].end 128.31471875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 129.07409375
transcript.pyannote[27].end 129.25971875
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 130.18784375
transcript.pyannote[28].end 143.97471875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 144.27846875
transcript.pyannote[29].end 151.41659375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 151.77096875
transcript.pyannote[30].end 154.97721875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 155.46659375
transcript.pyannote[31].end 164.44409375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 164.88284375
transcript.pyannote[32].end 167.32971875
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 167.49846875
transcript.pyannote[33].end 168.59534375
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 168.98346875
transcript.pyannote[34].end 170.02971875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 170.51909375
transcript.pyannote[35].end 170.97471875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 171.63284375
transcript.pyannote[36].end 172.18971875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 173.15159375
transcript.pyannote[37].end 183.27659375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 183.64784375
transcript.pyannote[38].end 208.15034375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 208.45409375
transcript.pyannote[39].end 211.67721875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 212.52096875
transcript.pyannote[40].end 213.93846875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 215.17034375
transcript.pyannote[41].end 215.86221875
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 216.50346875
transcript.pyannote[42].end 217.06034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 217.33034375
transcript.pyannote[43].end 236.29784375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 236.87159375
transcript.pyannote[44].end 239.03159375
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 239.62221875
transcript.pyannote[45].end 240.92159375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 241.34346875
transcript.pyannote[46].end 245.68034375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 246.97971875
transcript.pyannote[47].end 247.55346875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 248.41409375
transcript.pyannote[48].end 249.59534375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 250.77659375
transcript.pyannote[49].end 252.58221875
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 253.30784375
transcript.pyannote[50].end 254.97846875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 254.97846875
transcript.pyannote[51].end 290.93909375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 284.86409375
transcript.pyannote[52].end 286.31534375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 286.50096875
transcript.pyannote[53].end 286.78784375
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 286.95659375
transcript.pyannote[54].end 288.00284375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 288.57659375
transcript.pyannote[55].end 296.96346875
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 292.86284375
transcript.pyannote[56].end 293.74034375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 296.96346875
transcript.pyannote[57].end 305.08034375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 297.65534375
transcript.pyannote[58].end 298.61721875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 304.33784375
transcript.pyannote[59].end 305.11409375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 305.11409375
transcript.pyannote[60].end 306.02534375
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 306.02534375
transcript.pyannote[61].end 307.96596875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 306.80159375
transcript.pyannote[62].end 307.18971875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 307.96596875
transcript.pyannote[63].end 310.41284375
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 308.33721875
transcript.pyannote[64].end 310.44659375
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 310.44659375
transcript.pyannote[65].end 310.49721875
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 310.49721875
transcript.pyannote[66].end 310.96971875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 310.96971875
transcript.pyannote[67].end 311.03721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 311.03721875
transcript.pyannote[68].end 311.20596875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 311.20596875
transcript.pyannote[69].end 311.25659375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 311.25659375
transcript.pyannote[70].end 311.86409375
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 311.86409375
transcript.pyannote[71].end 311.89784375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 311.89784375
transcript.pyannote[72].end 311.96534375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 311.96534375
transcript.pyannote[73].end 312.03284375
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 312.03284375
transcript.pyannote[74].end 313.97346875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 312.75846875
transcript.pyannote[75].end 313.29846875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 313.97346875
transcript.pyannote[76].end 354.30471875
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 314.80034375
transcript.pyannote[77].end 315.72846875
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 349.86659375
transcript.pyannote[78].end 352.11096875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 352.85346875
transcript.pyannote[79].end 359.02971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 357.64596875
transcript.pyannote[80].end 357.89909375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 358.05096875
transcript.pyannote[81].end 358.96221875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 359.02971875
transcript.pyannote[82].end 377.50784375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 359.04659375
transcript.pyannote[83].end 360.19409375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 376.90034375
transcript.pyannote[84].end 382.75596875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 383.34659375
transcript.pyannote[85].end 388.51034375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 388.07159375
transcript.pyannote[86].end 388.39221875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 388.51034375
transcript.pyannote[87].end 388.94909375
transcript.pyannote[88].speaker SPEAKER_01
transcript.pyannote[88].start 388.94909375
transcript.pyannote[88].end 388.96596875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 388.96596875
transcript.pyannote[89].end 389.03346875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 389.03346875
transcript.pyannote[90].end 391.98659375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 389.62409375
transcript.pyannote[91].end 392.44221875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 392.35784375
transcript.pyannote[92].end 398.71971875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 399.10784375
transcript.pyannote[93].end 403.17471875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 401.45346875
transcript.pyannote[94].end 401.84159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 402.16221875
transcript.pyannote[95].end 405.18284375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 406.04346875
transcript.pyannote[96].end 431.92971875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 429.43221875
transcript.pyannote[97].end 445.12596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 435.99659375
transcript.pyannote[98].end 438.59534375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 444.43409375
transcript.pyannote[99].end 452.73659375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 450.39096875
transcript.pyannote[100].end 452.88846875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 452.88846875
transcript.pyannote[101].end 453.02346875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 453.02346875
transcript.pyannote[102].end 487.97159375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 453.51284375
transcript.pyannote[103].end 455.11596875
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 456.16221875
transcript.pyannote[104].end 456.58409375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 459.48659375
transcript.pyannote[105].end 463.95846875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 467.09721875
transcript.pyannote[106].end 467.48534375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 470.70846875
transcript.pyannote[107].end 475.06221875
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 482.48721875
transcript.pyannote[108].end 482.68971875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 486.43596875
transcript.pyannote[109].end 487.33034375
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 487.97159375
transcript.pyannote[110].end 509.21721875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 488.15721875
transcript.pyannote[111].end 489.22034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 491.43096875
transcript.pyannote[112].end 491.63346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 493.89471875
transcript.pyannote[113].end 493.92846875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 493.92846875
transcript.pyannote[114].end 495.97034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 495.97034375
transcript.pyannote[115].end 496.12221875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 503.61471875
transcript.pyannote[116].end 505.31909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 506.88846875
transcript.pyannote[117].end 514.97159375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 509.57159375
transcript.pyannote[118].end 510.01034375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 514.97159375
transcript.pyannote[119].end 515.98409375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 516.22034375
transcript.pyannote[120].end 528.52221875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 528.52221875
transcript.pyannote[121].end 548.77221875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 532.04909375
transcript.pyannote[122].end 532.26846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 539.87909375
transcript.pyannote[123].end 542.17409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 549.73409375
transcript.pyannote[124].end 551.30346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 556.50096875
transcript.pyannote[125].end 578.89409375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 556.72034375
transcript.pyannote[126].end 556.78784375
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 556.78784375
transcript.pyannote[127].end 556.83846875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 556.83846875
transcript.pyannote[128].end 556.92284375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 556.92284375
transcript.pyannote[129].end 557.19284375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 557.19284375
transcript.pyannote[130].end 557.32784375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 580.07534375
transcript.pyannote[131].end 585.13784375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 585.54284375
transcript.pyannote[132].end 607.32846875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 607.69971875
transcript.pyannote[133].end 651.52409375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 652.33409375
transcript.pyannote[134].end 674.06909375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 670.89659375
transcript.pyannote[135].end 671.23409375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 673.39409375
transcript.pyannote[136].end 700.00596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 675.33471875
transcript.pyannote[137].end 676.49909375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 681.79784375
transcript.pyannote[138].end 682.89471875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 683.50221875
transcript.pyannote[139].end 684.00846875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 697.17096875
transcript.pyannote[140].end 697.22159375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 698.25096875
transcript.pyannote[141].end 698.48721875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 699.04409375
transcript.pyannote[142].end 709.74284375
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 703.14471875
transcript.pyannote[143].end 704.25846875
transcript.pyannote[144].speaker SPEAKER_01
transcript.pyannote[144].start 706.01346875
transcript.pyannote[144].end 710.13096875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 709.74284375
transcript.pyannote[145].end 711.17721875
transcript.whisperx[0].start 10.076
transcript.whisperx[0].end 24.029
transcript.whisperx[0].text 謝謝主席我請國發會高副主委請高副主委高副主委是這
transcript.whisperx[1].start 27.689
transcript.whisperx[1].end 42.374
transcript.whisperx[1].text 將近兩年來我在不管是財政諮詢總諮詢一再的提醒我們國內我們民間資金最大宗就是受險業他可運用資金35兆那麼裡面有7成25兆
transcript.whisperx[2].start 43.482
transcript.whisperx[2].end 63.924
transcript.whisperx[2].text 被他們拿到海外去購買國外的債券基金等等這兩大風險一個戰爭一個匯率現在都碰到了那麼我們政府在賴總統的財師之下也有交代左院長政府院長他們都有積極處理所以
transcript.whisperx[3].start 65.56
transcript.whisperx[3].end 81.158
transcript.whisperx[3].text 我覺得這個部分人家金管會跟財政部都處理得很積極我簡單跟你講說金管會的處理立刻放寬保險業資金投入公共建設的規定把這個比例由10%提高到15%
transcript.whisperx[4].start 84.582
transcript.whisperx[4].end 111.021
transcript.whisperx[4].text 那財政部因為有很多受險業者也來反應說有啊他們願意回來他們願意回來只是對公共建設的案件定義這個是不是能擴大他們也講了我立刻跟莊部長要求莊部長他也成立了專案辦公室會整全國的促參案件那麼每個月在一個平台網路去公告而且還主動
transcript.whisperx[5].start 112.202
transcript.whisperx[5].end 128.114
transcript.whisperx[5].text 告知受險公會跟各家受險公司主動跟他們接洽遇到什麼困難可以找財政部警管會幫助他們都做得很積極只有啊這個我們國發會我一次不懂
transcript.whisperx[6].start 130.659
transcript.whisperx[6].end 150.774
transcript.whisperx[6].text 國發會你們在去年就講了 你們去年就講了 說目前你們掌握的受險業有興趣在公共建設 你說我包括離岸風電 再生水廠 海水淡化廠 地下水 下水道等等等等 您認了一大堆 你說第一波就有這麼多
transcript.whisperx[7].start 151.877
transcript.whisperx[7].end 165.58
transcript.whisperx[7].text 第一波就有這麼多這還是你講的然後去前年前年你講的前年的11月你們針對這個造園投資專案造園投資專案這個也是國發會提的造園投資專案這個發想
transcript.whisperx[8].start 174.228
transcript.whisperx[8].end 189.935
transcript.whisperx[8].text 設計這些都很好但是推動有很大的問題啊你到前年11月你就說已經受理兩件保險業者來申請那我就問啊我就問我們國發會說那是哪兩件啊
transcript.whisperx[9].start 190.755
transcript.whisperx[9].end 211.481
transcript.whisperx[9].text 結果你們答覆我說一件事某一個私募基金就倉儲物流中心提出申請第二個你說某個建設公司就觀光養殖產業比方說漁業附加價值作業設施等等你說這個已經受理這兩件結果這兩件
transcript.whisperx[10].start 215.253
transcript.whisperx[10].end 235.755
transcript.whisperx[10].text 那個副主委這兩件通通跟壽險業無關耶這兩件主導者的一個是虱目基金一個是那個建設公司他們兩家是不是另外會再去找壽險公司幫忙引進壽險回流的資金這不曉得
transcript.whisperx[11].start 236.926
transcript.whisperx[11].end 245.43
transcript.whisperx[11].text 而且這兩屆加起來也不過兩百億也不過兩百億所以我結論我是要告訴你是說你們國發會
transcript.whisperx[12].start 251.162
transcript.whisperx[12].end 265.472
transcript.whisperx[12].text 畫大餅很會啦做大餅一點都不會那個委員請你給我一點時間說明我們國發會在兆元投資方案裡面的角色第一個這個案件的確是我們國發會提出來的
transcript.whisperx[13].start 268.394
transcript.whisperx[13].end 286.265
transcript.whisperx[13].text 那最重要的我們有三個策略主軸第一個是促參的這個案這個部分事實上他的主管機關是財政部所以包括促參障礙辦公室還有促參的創新機制跟促參的提高的用意我知道你念的那個部隊
transcript.whisperx[14].start 288.166
transcript.whisperx[14].end 291.05
transcript.whisperx[14].text 都是我們那時候規劃基礎來的你們要上拜訓台又在那邊誇誇而談我是告訴你是說那你左邊推給財政部右邊推給金融會那你今天來幹什麼我們國發會是一個策略規劃的單位
transcript.whisperx[15].start 304.028
transcript.whisperx[15].end 316.235
transcript.whisperx[15].text 如果涉及到 特定個案單位 至少你不要說謊啊我問你 我問你 受險業資金申請那你為什麼要欺騙立法院 欺騙立法委員我跟委員報告 你剛剛講的那個叫做基礎建設那個只是我們引導基礎建設不是國家建設嗎 是
transcript.whisperx[16].start 326.201
transcript.whisperx[16].end 348.601
transcript.whisperx[16].text 可是之前它不是在受險業可以投資的範疇所以我們那時候就隨同的金管會修管理辦法把它納入到受險業可以投資的範疇所以您說的那兩岸是屬於基礎建設的範疇不是屬於公共建設的範疇那基礎建設是我們重新
transcript.whisperx[17].start 353.025
transcript.whisperx[17].end 380.804
transcript.whisperx[17].text 你認為說基礎建設那個不在國家建設的範圍就對不是不是你說那個不在產業升級條例沒有包括在內原來受險資金是不可以投資基礎建設所謂的基礎建設跟公共建設的不一樣就是說公共建設它他們都有所謂的公共建設的性質可是它不是否你扯這個齁我只能告訴你說四個字
transcript.whisperx[18].start 383.846
transcript.whisperx[18].end 391.409
transcript.whisperx[18].text 這早在財政部裡面這個早就已經修改好了啦如果 你告訴我說你的講法就是說國發會只負責畫餅不負責做餅你這樣給我答覆我們國發會負責規劃
transcript.whisperx[19].start 405.936
transcript.whisperx[19].end 406.777
transcript.whisperx[19].text 所以沒有你下去規劃推動財政部他們就不知道該怎麼做就對了
transcript.whisperx[20].start 436.116
transcript.whisperx[20].end 452.572
transcript.whisperx[20].text 所以你今天是上級指導單位所以國發會今天主委不用來就派你一個副主委來應付就對了因為我們是依照委員會的指派我們是副主委出席沒有指派我們主委出席你回去把這些法規什麼時候人家財政部金管會已經怎麼樣通例
transcript.whisperx[21].start 460.7
transcript.whisperx[21].end 471.57
transcript.whisperx[21].text 我們可以跟委員詳細的說明他們也很積極的跟這些受險公司都已經鼓勵他們回來有具體的計畫給他們受險業資金35兆裡面有7成25兆
transcript.whisperx[22].start 479.437
transcript.whisperx[22].end 491.685
transcript.whisperx[22].text 已經在海外曝險了我們一定要趕快讓他們回來回來就好來增加我們公共建設的資金來壯大我們國家好啦 謝謝委員我們會跟委員詳細說明那不要說謊喔不要又扯一些不會不會 我們覺得經得起考驗你那兩個案子就是說謊啊沒有說謊因為他以前是不准投資的
transcript.whisperx[23].start 509.577
transcript.whisperx[23].end 533.851
transcript.whisperx[23].text 我現在請問你 那兩個案子是不是受險資金不是嘛 你明知道嘛他 我跟你說我們對 我們會允許就是受險業可以投資這些可是他是一個PC跟VE也是屬於受險業可以投資跟PE VC的他們投資的標的那兩個不是就對你在給我們的回答裡面你正式就打了這兩份
transcript.whisperx[24].start 534.831
transcript.whisperx[24].end 548.485
transcript.whisperx[24].text 對我而言不是被你說成是那就是兩個字我們會再跟委員解釋請問請問你記得啦你就只會畫大餅啦那個時間暫停我請那個莊部長我們請莊部長
transcript.whisperx[25].start 557.513
transcript.whisperx[25].end 578.658
transcript.whisperx[25].text 先前我們這個也講了大概一年促參的案件爭議頻傳那麼這些紛爭的解決我覺得因為如果我們沒有一個快速的處置方式的話這個訴訟程序曠日廢時而且耗費大量的行政成本這個影響整個促參法公益最大化
transcript.whisperx[26].start 580.114
transcript.whisperx[26].end 584.578
transcript.whisperx[26].text 的這個目的所以當時我就要求我要求就是說是不是我們在促參案件裡面加入強制仲裁這個條款那時候你有答覆我你說法務部說不行說這個可能違憲結果我也真的就排隊就去問了法務部
transcript.whisperx[27].start 601.275
transcript.whisperx[27].end 628.066
transcript.whisperx[27].text 法務部答覆說沒有啦他不是這個意思因為我跟法務部講啊我說如果出參法加入這個是違憲的話那我們現在公共工程我們政府發包的公共工程都有強制仲裁的條例耶那難道說所有公共工程都是違憲嗎所以我今天就是要正式告訴你說如果這個樣子法務部都同意了
transcript.whisperx[28].start 628.866
transcript.whisperx[28].end 651.33
transcript.whisperx[28].text 同意以后 我有问过我们财政部财政部还是跟我说 我说法务部说同意 他没有说违宪你们财政部给我的答复竟然是说好 那你们研议所以我今天我要问你你们研议的结果怎么样当法务部都同意都放行了那你认为这应该怎么办
transcript.whisperx[29].start 652.383
transcript.whisperx[29].end 656.345
transcript.whisperx[29].text 謝謝委員這個關注所以法務部在12月17號去年12月17號函附給我們了他就告訴我們說如果促參經過審酌公益性跟必要性的話那事實上可以審慎的納入強制仲裁所以對於這個部分我們會根據這樣的一個情況我們會把它研議然後會跟委員做報告我們的研議情況會跟委員做報告
transcript.whisperx[30].start 673.752
transcript.whisperx[30].end 698.926
transcript.whisperx[30].text 因為畜産這些案件太可怕你知道嗎一年等於增加了18件128億元的損失就是說這些拖延的那觀光休憩設施最重要那個部分高達將近500億464億元是在觀光休憩設施而那些延至目前有的一拖拖十幾年那會影響我們國內以及我們對外招募國際觀光客
transcript.whisperx[31].start 699.326
transcript.whisperx[31].end 708.5
transcript.whisperx[31].text 生意快速解決可以公共服務不中斷我想這是最主要的目的既然兩邊不和了那我們就快速解決強制重產好不好好 謝謝王委員