iVOD / 166908

Field Value
IVOD_ID 166908
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166908
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T11:20:48+08:00
結束時間 2026-01-07T11:35:09+08:00
影片長度 00:14:21
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468f15fd7b953e4986745d44f5a94e3adf355aa3b5816bd951ef3696169a3617e29d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 李坤城
委員發言時間 11:20:48 - 11:35:09
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.66784375
transcript.pyannote[1].speaker SPEAKER_03
transcript.pyannote[1].start 2.98409375
transcript.pyannote[1].end 6.08909375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 8.92409375
transcript.pyannote[2].end 9.59909375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 11.94471875
transcript.pyannote[3].end 82.68471875
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 83.32596875
transcript.pyannote[4].end 83.47784375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 83.95034375
transcript.pyannote[5].end 91.08846875
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 91.54409375
transcript.pyannote[6].end 95.27346875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 95.79659375
transcript.pyannote[7].end 100.18409375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 97.97346875
transcript.pyannote[8].end 98.26034375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 100.38659375
transcript.pyannote[9].end 105.44909375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 106.05659375
transcript.pyannote[10].end 106.66409375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 107.05221875
transcript.pyannote[11].end 117.26159375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 109.85346875
transcript.pyannote[12].end 109.87034375
transcript.pyannote[13].speaker SPEAKER_03
transcript.pyannote[13].start 109.87034375
transcript.pyannote[13].end 110.24159375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 110.24159375
transcript.pyannote[14].end 110.66346875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 114.12284375
transcript.pyannote[15].end 114.42659375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 117.26159375
transcript.pyannote[16].end 119.96159375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 120.01221875
transcript.pyannote[17].end 120.07971875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 120.07971875
transcript.pyannote[18].end 120.11346875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 120.11346875
transcript.pyannote[19].end 120.38346875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 120.38346875
transcript.pyannote[20].end 130.54221875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 120.51846875
transcript.pyannote[21].end 120.83909375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 130.87971875
transcript.pyannote[22].end 135.72284375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 135.72284375
transcript.pyannote[23].end 136.88721875
transcript.pyannote[24].speaker SPEAKER_03
transcript.pyannote[24].start 137.32596875
transcript.pyannote[24].end 141.49409375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 138.96284375
transcript.pyannote[25].end 139.03034375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 139.06409375
transcript.pyannote[26].end 139.65471875
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 141.62909375
transcript.pyannote[27].end 143.08034375
transcript.pyannote[28].speaker SPEAKER_03
transcript.pyannote[28].start 143.13096875
transcript.pyannote[28].end 152.14221875
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 152.64846875
transcript.pyannote[29].end 162.08159375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 161.81159375
transcript.pyannote[30].end 174.11346875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 174.21471875
transcript.pyannote[31].end 184.59284375
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 183.88409375
transcript.pyannote[32].end 202.37909375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 201.26534375
transcript.pyannote[33].end 208.11659375
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 204.85971875
transcript.pyannote[34].end 205.16346875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 208.35284375
transcript.pyannote[35].end 213.31409375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 213.58409375
transcript.pyannote[36].end 215.91284375
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 216.36846875
transcript.pyannote[37].end 218.42721875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 217.93784375
transcript.pyannote[38].end 224.41784375
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 224.18159375
transcript.pyannote[39].end 233.07471875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 227.30346875
transcript.pyannote[40].end 227.43846875
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 233.53034375
transcript.pyannote[41].end 240.38159375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 240.88784375
transcript.pyannote[42].end 245.93346875
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 245.15721875
transcript.pyannote[43].end 253.72971875
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 253.94909375
transcript.pyannote[44].end 254.30346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 254.30346875
transcript.pyannote[45].end 263.63534375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 263.63534375
transcript.pyannote[46].end 263.93909375
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 263.90534375
transcript.pyannote[47].end 265.55909375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 265.76159375
transcript.pyannote[48].end 270.77346875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 271.14471875
transcript.pyannote[49].end 276.30846875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 276.30846875
transcript.pyannote[50].end 279.21096875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 277.81034375
transcript.pyannote[51].end 278.99159375
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 279.36284375
transcript.pyannote[52].end 311.86409375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 311.86409375
transcript.pyannote[53].end 320.50409375
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 313.73721875
transcript.pyannote[54].end 313.95659375
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 319.84596875
transcript.pyannote[55].end 322.09034375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 321.80346875
transcript.pyannote[56].end 323.64284375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 323.47409375
transcript.pyannote[57].end 325.81971875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 325.78596875
transcript.pyannote[58].end 331.72596875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 331.48971875
transcript.pyannote[59].end 331.89471875
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 331.89471875
transcript.pyannote[60].end 342.52596875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 342.76221875
transcript.pyannote[61].end 346.50846875
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 346.79534375
transcript.pyannote[62].end 356.36346875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 356.36346875
transcript.pyannote[63].end 356.46471875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 356.46471875
transcript.pyannote[64].end 356.58284375
transcript.pyannote[65].speaker SPEAKER_03
transcript.pyannote[65].start 356.58284375
transcript.pyannote[65].end 359.63721875
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 359.89034375
transcript.pyannote[66].end 359.90721875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 359.90721875
transcript.pyannote[67].end 360.56534375
transcript.pyannote[68].speaker SPEAKER_03
transcript.pyannote[68].start 360.00846875
transcript.pyannote[68].end 362.70846875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 362.70846875
transcript.pyannote[69].end 370.23471875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 370.23471875
transcript.pyannote[70].end 370.63971875
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 370.84221875
transcript.pyannote[71].end 372.83346875
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 372.91784375
transcript.pyannote[72].end 377.69346875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 378.14909375
transcript.pyannote[73].end 383.12721875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 383.31284375
transcript.pyannote[74].end 384.32534375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 384.32534375
transcript.pyannote[75].end 384.40971875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 384.40971875
transcript.pyannote[76].end 391.21034375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 391.21034375
transcript.pyannote[77].end 393.03284375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 391.46346875
transcript.pyannote[78].end 391.48034375
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 391.51409375
transcript.pyannote[79].end 391.83471875
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 393.55596875
transcript.pyannote[80].end 397.84221875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 397.84221875
transcript.pyannote[81].end 408.32159375
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 400.20471875
transcript.pyannote[82].end 400.28909375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 403.91721875
transcript.pyannote[83].end 404.27159375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 408.38909375
transcript.pyannote[84].end 410.34659375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 410.88659375
transcript.pyannote[85].end 413.11409375
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 413.04659375
transcript.pyannote[86].end 413.36721875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 413.29971875
transcript.pyannote[87].end 415.52721875
transcript.pyannote[88].speaker SPEAKER_03
transcript.pyannote[88].start 415.84784375
transcript.pyannote[88].end 428.48721875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 428.48721875
transcript.pyannote[89].end 428.90909375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 429.07784375
transcript.pyannote[90].end 441.66659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 438.64596875
transcript.pyannote[91].end 438.98346875
transcript.pyannote[92].speaker SPEAKER_03
transcript.pyannote[92].start 442.72971875
transcript.pyannote[92].end 459.11534375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 460.14471875
transcript.pyannote[93].end 463.77284375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 463.77284375
transcript.pyannote[94].end 474.37034375
transcript.pyannote[95].speaker SPEAKER_03
transcript.pyannote[95].start 463.78971875
transcript.pyannote[95].end 464.12721875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 471.94034375
transcript.pyannote[96].end 476.04096875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 476.37846875
transcript.pyannote[97].end 479.36534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 479.58471875
transcript.pyannote[98].end 484.29284375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 484.52909375
transcript.pyannote[99].end 484.54596875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 484.54596875
transcript.pyannote[100].end 486.97596875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 484.63034375
transcript.pyannote[101].end 485.92971875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 486.97596875
transcript.pyannote[102].end 487.02659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 487.02659375
transcript.pyannote[103].end 487.97159375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 487.97159375
transcript.pyannote[104].end 488.03909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 488.03909375
transcript.pyannote[105].end 488.12346875
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 488.12346875
transcript.pyannote[106].end 488.14034375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 488.14034375
transcript.pyannote[107].end 507.46221875
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 488.15721875
transcript.pyannote[108].end 489.54096875
transcript.pyannote[109].speaker SPEAKER_03
transcript.pyannote[109].start 492.39284375
transcript.pyannote[109].end 492.64596875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 493.03409375
transcript.pyannote[110].end 493.28721875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 507.68159375
transcript.pyannote[111].end 511.96784375
transcript.pyannote[112].speaker SPEAKER_03
transcript.pyannote[112].start 511.96784375
transcript.pyannote[112].end 515.07284375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 514.78596875
transcript.pyannote[113].end 516.57471875
transcript.pyannote[114].speaker SPEAKER_03
transcript.pyannote[114].start 516.22034375
transcript.pyannote[114].end 522.76784375
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 518.61659375
transcript.pyannote[115].end 519.19034375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 519.89909375
transcript.pyannote[116].end 520.65846875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 523.13909375
transcript.pyannote[117].end 527.39159375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 527.54346875
transcript.pyannote[118].end 534.15846875
transcript.pyannote[119].speaker SPEAKER_03
transcript.pyannote[119].start 529.26471875
transcript.pyannote[119].end 529.51784375
transcript.pyannote[120].speaker SPEAKER_03
transcript.pyannote[120].start 533.11221875
transcript.pyannote[120].end 545.11034375
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 538.22534375
transcript.pyannote[121].end 538.93409375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 543.67596875
transcript.pyannote[122].end 561.51284375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 561.71534375
transcript.pyannote[123].end 563.23409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 563.23409375
transcript.pyannote[124].end 563.36909375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 563.36909375
transcript.pyannote[125].end 569.98409375
transcript.pyannote[126].speaker SPEAKER_03
transcript.pyannote[126].start 569.52846875
transcript.pyannote[126].end 573.47721875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 573.40971875
transcript.pyannote[127].end 573.88221875
transcript.pyannote[128].speaker SPEAKER_03
transcript.pyannote[128].start 573.56159375
transcript.pyannote[128].end 574.59096875
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 574.59096875
transcript.pyannote[129].end 584.63159375
transcript.pyannote[130].speaker SPEAKER_03
transcript.pyannote[130].start 585.03659375
transcript.pyannote[130].end 585.49221875
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 585.94784375
transcript.pyannote[131].end 624.86159375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 625.41846875
transcript.pyannote[132].end 643.05284375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 642.83346875
transcript.pyannote[133].end 647.03534375
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 646.61346875
transcript.pyannote[134].end 646.98471875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 647.03534375
transcript.pyannote[135].end 647.13659375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 647.18721875
transcript.pyannote[136].end 647.62596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 647.91284375
transcript.pyannote[137].end 653.43096875
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 648.53721875
transcript.pyannote[138].end 649.92096875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 653.54909375
transcript.pyannote[139].end 655.48971875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 655.38846875
transcript.pyannote[140].end 658.81409375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 658.98284375
transcript.pyannote[141].end 665.09159375
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 664.73721875
transcript.pyannote[142].end 666.82971875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 667.43721875
transcript.pyannote[143].end 668.78721875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 669.58034375
transcript.pyannote[144].end 671.50409375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 672.02721875
transcript.pyannote[145].end 673.14096875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 674.27159375
transcript.pyannote[146].end 674.96346875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 674.96346875
transcript.pyannote[147].end 675.67221875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 675.84096875
transcript.pyannote[148].end 675.85784375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 675.85784375
transcript.pyannote[149].end 676.16159375
transcript.pyannote[150].speaker SPEAKER_03
transcript.pyannote[150].start 676.16159375
transcript.pyannote[150].end 679.19909375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 678.22034375
transcript.pyannote[151].end 678.57471875
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 678.87846875
transcript.pyannote[152].end 689.08784375
transcript.pyannote[153].speaker SPEAKER_03
transcript.pyannote[153].start 681.59534375
transcript.pyannote[153].end 681.98346875
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 690.13409375
transcript.pyannote[154].end 691.24784375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 691.53471875
transcript.pyannote[155].end 693.52596875
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 693.91409375
transcript.pyannote[156].end 708.51096875
transcript.pyannote[157].speaker SPEAKER_01
transcript.pyannote[157].start 698.45346875
transcript.pyannote[157].end 698.47034375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 698.47034375
transcript.pyannote[158].end 698.48721875
transcript.pyannote[159].speaker SPEAKER_01
transcript.pyannote[159].start 698.48721875
transcript.pyannote[159].end 698.52096875
transcript.pyannote[160].speaker SPEAKER_01
transcript.pyannote[160].start 698.57159375
transcript.pyannote[160].end 698.62221875
transcript.pyannote[161].speaker SPEAKER_03
transcript.pyannote[161].start 707.97096875
transcript.pyannote[161].end 713.35409375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 712.67909375
transcript.pyannote[162].end 726.83721875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 718.46721875
transcript.pyannote[163].end 718.92284375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 718.92284375
transcript.pyannote[164].end 718.93971875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 726.73596875
transcript.pyannote[165].end 728.65971875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 728.65971875
transcript.pyannote[166].end 728.81159375
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 728.81159375
transcript.pyannote[167].end 728.87909375
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 728.87909375
transcript.pyannote[168].end 728.89596875
transcript.pyannote[169].speaker SPEAKER_03
transcript.pyannote[169].start 728.89596875
transcript.pyannote[169].end 728.96346875
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 728.96346875
transcript.pyannote[170].end 729.28409375
transcript.pyannote[171].speaker SPEAKER_03
transcript.pyannote[171].start 729.28409375
transcript.pyannote[171].end 734.68409375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 729.40221875
transcript.pyannote[172].end 729.73971875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 730.49909375
transcript.pyannote[173].end 731.46096875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 733.08096875
transcript.pyannote[174].end 733.36784375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 734.59971875
transcript.pyannote[175].end 737.14784375
transcript.pyannote[176].speaker SPEAKER_03
transcript.pyannote[176].start 734.95409375
transcript.pyannote[176].end 737.63721875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 738.07596875
transcript.pyannote[177].end 742.56471875
transcript.pyannote[178].speaker SPEAKER_03
transcript.pyannote[178].start 742.48034375
transcript.pyannote[178].end 742.80096875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 742.73346875
transcript.pyannote[179].end 743.98221875
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 744.16784375
transcript.pyannote[180].end 746.93534375
transcript.pyannote[181].speaker SPEAKER_03
transcript.pyannote[181].start 745.93971875
transcript.pyannote[181].end 746.19284375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 747.30659375
transcript.pyannote[182].end 750.90096875
transcript.pyannote[183].speaker SPEAKER_03
transcript.pyannote[183].start 750.69846875
transcript.pyannote[183].end 753.33096875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 753.33096875
transcript.pyannote[184].end 757.53284375
transcript.pyannote[185].speaker SPEAKER_03
transcript.pyannote[185].start 757.36409375
transcript.pyannote[185].end 757.68471875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 757.56659375
transcript.pyannote[186].end 785.66346875
transcript.pyannote[187].speaker SPEAKER_03
transcript.pyannote[187].start 762.84846875
transcript.pyannote[187].end 763.30409375
transcript.pyannote[188].speaker SPEAKER_01
transcript.pyannote[188].start 763.30409375
transcript.pyannote[188].end 763.32096875
transcript.pyannote[189].speaker SPEAKER_01
transcript.pyannote[189].start 766.29096875
transcript.pyannote[189].end 766.35846875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 766.35846875
transcript.pyannote[190].end 766.40909375
transcript.pyannote[191].speaker SPEAKER_01
transcript.pyannote[191].start 766.40909375
transcript.pyannote[191].end 766.42596875
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 786.15284375
transcript.pyannote[192].end 794.79284375
transcript.pyannote[193].speaker SPEAKER_03
transcript.pyannote[193].start 791.65409375
transcript.pyannote[193].end 791.73846875
transcript.pyannote[194].speaker SPEAKER_03
transcript.pyannote[194].start 794.10096875
transcript.pyannote[194].end 799.02846875
transcript.pyannote[195].speaker SPEAKER_03
transcript.pyannote[195].start 799.53471875
transcript.pyannote[195].end 802.11659375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 802.11659375
transcript.pyannote[196].end 803.95596875
transcript.pyannote[197].speaker SPEAKER_03
transcript.pyannote[197].start 803.43284375
transcript.pyannote[197].end 803.85471875
transcript.pyannote[198].speaker SPEAKER_03
transcript.pyannote[198].start 803.95596875
transcript.pyannote[198].end 806.63909375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 806.89221875
transcript.pyannote[199].end 808.54596875
transcript.pyannote[200].speaker SPEAKER_03
transcript.pyannote[200].start 808.44471875
transcript.pyannote[200].end 808.76534375
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 808.64721875
transcript.pyannote[201].end 819.80159375
transcript.pyannote[202].speaker SPEAKER_03
transcript.pyannote[202].start 810.21659375
transcript.pyannote[202].end 810.57096875
transcript.pyannote[203].speaker SPEAKER_03
transcript.pyannote[203].start 815.65034375
transcript.pyannote[203].end 815.83596875
transcript.pyannote[204].speaker SPEAKER_03
transcript.pyannote[204].start 819.34596875
transcript.pyannote[204].end 822.56909375
transcript.pyannote[205].speaker SPEAKER_00
transcript.pyannote[205].start 822.19784375
transcript.pyannote[205].end 823.48034375
transcript.pyannote[206].speaker SPEAKER_03
transcript.pyannote[206].start 822.90659375
transcript.pyannote[206].end 825.62346875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 824.57721875
transcript.pyannote[207].end 826.60221875
transcript.pyannote[208].speaker SPEAKER_03
transcript.pyannote[208].start 826.21409375
transcript.pyannote[208].end 828.59346875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 828.52596875
transcript.pyannote[209].end 838.43159375
transcript.pyannote[210].speaker SPEAKER_03
transcript.pyannote[210].start 831.25971875
transcript.pyannote[210].end 831.73221875
transcript.pyannote[211].speaker SPEAKER_03
transcript.pyannote[211].start 834.85409375
transcript.pyannote[211].end 834.97221875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 834.97221875
transcript.pyannote[212].end 835.76534375
transcript.pyannote[213].speaker SPEAKER_02
transcript.pyannote[213].start 838.16159375
transcript.pyannote[213].end 838.17846875
transcript.pyannote[214].speaker SPEAKER_02
transcript.pyannote[214].start 838.43159375
transcript.pyannote[214].end 838.61721875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 838.61721875
transcript.pyannote[215].end 842.83596875
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 838.65096875
transcript.pyannote[216].end 838.71846875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 843.15659375
transcript.pyannote[217].end 845.09721875
transcript.pyannote[218].speaker SPEAKER_03
transcript.pyannote[218].start 844.97909375
transcript.pyannote[218].end 856.16721875
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 855.74534375
transcript.pyannote[219].end 855.94784375
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 856.16721875
transcript.pyannote[220].end 856.36971875
transcript.pyannote[221].speaker SPEAKER_03
transcript.pyannote[221].start 856.36971875
transcript.pyannote[221].end 857.51721875
transcript.pyannote[222].speaker SPEAKER_00
transcript.pyannote[222].start 856.97721875
transcript.pyannote[222].end 860.36909375
transcript.whisperx[0].start 0.069
transcript.whisperx[0].end 9.53
transcript.whisperx[0].text 李昆成 李昭緯好 謝謝主席我們請彭主委請彭主委
transcript.whisperx[1].start 11.96
transcript.whisperx[1].end 32.664
transcript.whisperx[1].text 主委好主委好美國川普總統他打擊毒品恐怖主義為由逮捕了委內瑞拉總統馬杜洛其實剛剛也有委員提到就是說我們現在有三大受險監控公司在哥倫比亞的曝險總共高達533億包含465億的政府公債還有68億的食原公司債
transcript.whisperx[2].start 40.606
transcript.whisperx[2].end 64.268
transcript.whisperx[2].text 那現在匯率它已經對於個人比亞的主權性平從BB Plus下降到BB然後對於石油公司債的信用平等也下調至BB所以基本上不論是主權或是說屬於石油公司債都是屬於垃圾的債券那請問一下我剛剛看了一下資料
transcript.whisperx[3].start 65.229
transcript.whisperx[3].end 80.473
transcript.whisperx[3].text 這個三大金控公司包含國泰 富邦 中國信託他們分別擁有哥倫比亞政府的公債其中國泰跟中信他們還有擁有石油公司債所以加起來是500
transcript.whisperx[4].start 84.837
transcript.whisperx[4].end 104.047
transcript.whisperx[4].text 530幾億啦那剛剛還有提到說南山人壽還有嘛是不是那還有其他的這一個不管是壽險公司或是這一個金控公司都還有嗎我們剛才也有統計過啦就是我們金融三業裡面銀行業呢跟那個正期保險所有加起來大概1538億這麼多喔
transcript.whisperx[5].start 107.276
transcript.whisperx[5].end 136.656
transcript.whisperx[5].text 就剛才差不多保險業1385億加上銀行業140幾億總共是1538億所以總共是1538億當然也有提到說各種的投資債券屬性不一樣而且這次的情況比如說這次是委內瑞拉哥倫比亞還是一個大家預期中並沒有發生什麼事跟俄羅斯是因為戰爭被國際制裁也很大的不同接下來有可能
transcript.whisperx[6].start 137.656
transcript.whisperx[6].end 151.763
transcript.whisperx[6].text 也有可能是哥倫比亞但我的意思是說啦這些這個受險金控他們去投資這一些我們所認為的這個非民主的國家這個有沒有違反到ESG的原則
transcript.whisperx[7].start 152.997
transcript.whisperx[7].end 172.583
transcript.whisperx[7].text 其實這個部分因為它都根據我們現行的一些的投資規範比如說按照投資等級跟性平還有就是他們的上限比例來去做投資我想所以主委認為說投資這一些所謂的第三星星的非民主的國家然後他們或許他們的這個利率比較高然後收益比較高所以去投資是OK的嗎
transcript.whisperx[8].start 174.724
transcript.whisperx[8].end 201.053
transcript.whisperx[8].text 現行的規定我們這樣我們剛剛委員也有提出假設說整個環境或者我們隨時也都可以來做制度上的檢討就是比如說我覺得要去檢討一下因為你說從之前南非到俄羅斯到現在委內瑞拉可能比較可能是下一個我們不知道是下一個的這種國家是誰但是為什麼我們這些授權公司都寧願去投資這一些第三進行國家不願意來投資台灣的這一個
transcript.whisperx[9].start 201.873
transcript.whisperx[9].end 223.958
transcript.whisperx[9].text 國內的建設你剛才講這個投資它已經是全球佈局所以各位看到金額很大但佔著我們總體資金的比例還是不到百分之一甚至更連百分之對 那個業別連百分之0.1都沒到我是說這個它全球佈局裡面就像說如果它整體來講的話對 全球佈局它的這一個佈局的這個機會也很多那為什麼就是要投資在這些國家裡面
transcript.whisperx[10].start 224.258
transcript.whisperx[10].end 253.373
transcript.whisperx[10].text 就像我們買全球的共榮基金一樣它在各個地方會根據他們自己的投資策略去配置還要符合規定我想我們每個個案都是一個很好的教材我們就才會知道說原來有這個問題因為可能他們當初幾年前購買這時候也沒有這個問題但是後來慢慢金管會議要不要去檢視一下說這些公司他們對於新興市場的分散度
transcript.whisperx[11].start 255.094
transcript.whisperx[11].end 278.01
transcript.whisperx[11].text 其實我們以前大概都有做這個區分不管這個都有只是說每次的狀況就不一樣我剛才講我們的制度是動態的會隨著環境而改變風險是動態的我們當然剛剛也有人提到我們也會回去好好檢視這個部分比如一些投資等級投資比例或是甚至風險係數我們都可以做一個全面式的來檢視我覺得再去做個檢討了好不好
transcript.whisperx[12].start 279.511
transcript.whisperx[12].end 297.88
transcript.whisperx[12].text 然後你們從今年開始對於受險業的匯率會計制度做調整其實去年底有辦了公聽會然後現在就是說對於AC向下的債券投資部位可採攤銷法來做處理我今天有看到一個報導中華信品他們講說這個新制對於受險業來講
transcript.whisperx[13].start 301.181
transcript.whisperx[13].end 325.691
transcript.whisperx[13].text 有機會有挑戰他可以大幅降低避險成本他說每年可省下約900億這個數字主委來講是正確的嗎900億是受選工會預估因為這個東西是會取決於各家公司他們對他資產的一些的認定跟會計準確但是避險成本一定會下降應該是會有預期的下降大概下降你預期大概下降會有多少
transcript.whisperx[14].start 325.831
transcript.whisperx[14].end 355.451
transcript.whisperx[14].text 每家的投資配置不一樣剛才就我們初步他們的預估是說大概是900到1000左右但是剛才那個比如說中華信品講的就是說他用一個很粗略的概念就是說他預期未來會達到一個避險比率他就把你曝險把它減除就會增加這個但其實上假設如果真的很熟悉整個保險業的他所謂的被避險標的屬性的話在財務上面他在所謂的合理的避險比率其實上有一個比較嚴謹的算法不是用這個方式來算的
transcript.whisperx[15].start 356.872
transcript.whisperx[15].end 368.183
transcript.whisperx[15].text 就是主委也同意說避解成本有下降然後在下降這些成本現在怎麼去做處理呢現在的話我們也對外說明就是我們會有一個強化它未來體質因應結構性匯率風險的方案
transcript.whisperx[16].start 370.965
transcript.whisperx[16].end 389.369
transcript.whisperx[16].text 那這部分當然就是我們會我們對外說明就是說我們會每年按照一個方法要求他們擬製的避險節省要提列相關的負債準備或是權益準備用這種方式再積累在資產面上去作為未來因應結構性風險的資用那我是說這些錢
transcript.whisperx[17].start 393.63
transcript.whisperx[17].end 409.999
transcript.whisperx[17].text 避險成本下降的這些錢可以要求他們回來台灣再做投資嗎這個就等於是限制資產的止波這是另外一回事那我們講說強化資本跟資產止波是兩回事當然我們要求就是我們未來會要求保險業去扭轉他的
transcript.whisperx[18].start 411.699
transcript.whisperx[18].end 427.949
transcript.whisperx[18].text 這個資產負債不匹配的狀況這自然就會產生剛才委員提到這個效果因為我們今天的題目就是在於說你看壽險業有這麼多的資金那都在這個海外嘛剛才也提到說總施展是37兆其中有22兆是在海外投資對
transcript.whisperx[19].start 429.53
transcript.whisperx[19].end 458.33
transcript.whisperx[19].text 我看了一下这个央行的统计我们在去年的5月这个受险的海外的资产跌到20.46但是从5月之后不断的攀升奇怪了那为什么一直对海外投资会一直增加到了11月来到21.92兆快突破22兆了我们不是一直希望说我们这些受险公司本来在海外投资希望他们能够回到台湾
transcript.whisperx[20].start 460.45
transcript.whisperx[20].end 478.797
transcript.whisperx[20].text 這對台灣的這個投資沒有增加對海外投資反而增加了沒有 它資產是這樣就是你可以看得到其實像保險業最大的收益除了它過去的已經收到的保費它每年都會收到續期的保費不是 我的意思是說就是我們對於受險業要求他們回來台灣的投資的績效不明顯
transcript.whisperx[21].start 480.038
transcript.whisperx[21].end 494.879
transcript.whisperx[21].text 當然我們剛才已經講過很多就是我們政策都非常明確大家政策很明確那為什麼回來的不多是台灣沒有什麼好投資的嗎這個我覺得是其中的一個關鍵就是說買方這邊的障礙應該是台灣沒有什麼好投資的是誰的問題
transcript.whisperx[22].start 495.72
transcript.whisperx[22].end 514.919
transcript.whisperx[22].text 沒有 我想是我們整個整個比如說我們的案源 公件這個除了剛剛講投資公件是一個案源以外比如包括像很多保險在國內自己尋找他自己國內的投資標的因為我們除了投公件以外我們要投資把那個投資標的那是我們的公件的目的還不夠多標的物還不夠多因為
transcript.whisperx[23].start 515.439
transcript.whisperx[23].end 543.431
transcript.whisperx[23].text 其實我們過去來看或是說能夠投資的這個比例還不夠多還是誘因不夠多因為總是這兩年來受險業他們就是不回來他寧願去投資這個海外這些垃圾債券他是個比較利益的概念假設我今天來講我錢進來馬上就有成本我成本之後還等到一個但是我們作為主管機關我們當然希望說他是回來台灣投資所以我們要給他這一個比較誘因上面認為說回來台灣投資對他們是有利的
transcript.whisperx[24].start 543.931
transcript.whisperx[24].end 573.062
transcript.whisperx[24].text 應該是這樣做的大家都積極在做這部分我想我們也不斷的去跟保險業講說你的風險在於你資產負債不匹配所以我剛才也跟委員報告過就是我們也看到其實我們的保險業的那個國外投資特別受險業國外投資的比率現在已經跌破六成了就是比前一年少了2點多%我想這是好現象我想這部分代表說我們但是海外投資的比例還是持續增加
transcript.whisperx[25].start 573.822
transcript.whisperx[25].end 588.812
transcript.whisperx[25].text 沒有下降沒有 他在海外像比如說他們的投資是固定收益配置他現在去出售的話基本上他有他一定的期間跟他比如說他當時投資的目的好 沒關係這個最後一點時間我問一下這交所林董事長
transcript.whisperx[26].start 589.733
transcript.whisperx[26].end 609.891
transcript.whisperx[26].text 因為這個也有看到這一個新聞就是說你有所謂的這一個價值提升計畫那其實你也看到了就是說其實現在台灣的股市在漲大部分是台積電的貢獻所以我說它是一個人的武林就是它一個人去年大盤漲了大概快六千點它大概就占了一半以上
transcript.whisperx[27].start 610.912
transcript.whisperx[27].end 623.785
transcript.whisperx[27].text 那你這個所謂的價值提升計畫是說除了高科技AI產業之外你要對哪一些產業你認為說它本來有這個價值但是我們在市場上沒有彰顯出來這個價值那你要用什麼方法去彰顯它的價值出來
transcript.whisperx[28].start 625.852
transcript.whisperx[28].end 653.424
transcript.whisperx[28].text 這個部分來講的話我們是希望我們的這些上市公司能夠自願的那營造就是說讓這些他們著重在中長期的這些計畫能夠讓投資人包括投資機構都能夠看得見甚至於被投資我想這個是跟對 到底是就是非AI高科技的產業對 包括AI也都全部就是全部的上市公司都適用的
transcript.whisperx[29].start 653.604
transcript.whisperx[29].end 670.29
transcript.whisperx[29].text 那AI現在已經發展得很好啦他們當然當然 這個就是一種選擇但是我們最重要的是創造這個氛圍讓大家針對於中長期的這些營運計畫能夠讓投資者去購買那你總是也有標的物嘛也不可能沒有標的物啊基本上來講的話我們還是
transcript.whisperx[30].start 674.555
transcript.whisperx[30].end 693.245
transcript.whisperx[30].text 比如說它是傳產那還是受關稅影響的那還是說什麼樣的基本上來講我們不會有特定的標的物我們是鼓勵一個混為就是說我們的全體的上市公司在這個資本市場平台裡面能夠讓他們有一些對於中長期的一些計畫然後這些計畫能夠對它的價值能夠提升
transcript.whisperx[31].start 698.291
transcript.whisperx[31].end 703.056
transcript.whisperx[31].text 那這些投資者也因為了解這些計畫以後包括投資機構跟投資者能夠參與他們的一些投資的企圖那你要用什麼方式來讓他凸顯出來你是用ETF還是用什麼樣的方式我們基本上來講的話就是我們會有一個專區會拿他公告然後我們也會安排更多的活動
transcript.whisperx[32].start 721.494
transcript.whisperx[32].end 743.548
transcript.whisperx[32].text 去让一些投资机构能够去了解这些他们的未来的一些所以就是去推销这一些对对对推销这一些具有市场价值但是没有被发现的对而且是自发性的这个是报名牌吗没有没有这自发性的这个基本上来讲的话就是自发性的对于产数
transcript.whisperx[33].start 744.728
transcript.whisperx[33].end 765.457
transcript.whisperx[33].text 我們的公司的經營我們加強的是上市公司跟投資者的溝通我想這是很重要的那這個計畫大概哪時候會提出來基本上來講我們在去年就已經開始進行了我們現在也大概有400多家在已經有提出來但是我們現在這是1.0我們現在已經在著重在2.0那2.0的部分來講的話我們事實上也拜訪了很多外資機構跟投資機構他們對於上市公司的
transcript.whisperx[34].start 774.06
transcript.whisperx[34].end 792.345
transcript.whisperx[34].text 希望看到的這些計畫的 criteria一些我們會提供一些範例給這些公司讓他們能夠更能夠對準這些投資機構他們希望看到這些公司怎麼去present他自己我想這個是類似IR的一種溝通然後來提升
transcript.whisperx[35].start 795.663
transcript.whisperx[35].end 801.746
transcript.whisperx[35].text 你意思是說我們有一個專區會凸顯出來說這些是這個價值沒有被看見的股票嗎是這樣子嗎事實上是所以這個專區哪時候會出來
transcript.whisperx[36].start 807.063
transcript.whisperx[36].end 823.155
transcript.whisperx[36].text 基本上我們現在已經有了我們現在是2.0就內容的部分我們還會再去鼓勵更多的上市公司能夠在針對內容的部分更合乎這些國際型那你這樣看起來1.0已經實施了是不是對 我們是1.0實施了那看起來效果不是很出現跟委員報告因為我們都還是集中在高科技沒有 跟委員報告這個是一個長期文化的塑造
transcript.whisperx[37].start 832.661
transcript.whisperx[37].end 855.215
transcript.whisperx[37].text 像日本的它的價值金它也推了三四年我覺得這個部分來講我覺得是一個革新的一個制度上的一個革新我是希望說就是說我們產業的發展要均衡因為現在有點像是都是往高科技那邊去發展那其實我們都很多純能產業是受到很大的影響好不好好 謝謝好 謝謝委員好 謝謝 請回