iVOD / 166902

Field Value
IVOD_ID 166902
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166902
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T11:08:05+08:00
結束時間 2026-01-07T11:20:37+08:00
影片長度 00:12:32
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468fd150aa650761df3b5d44f5a94e3adf355aa3b5816bd951ef19161ef466b908c65ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 羅明才
委員發言時間 11:08:05 - 11:20:37
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 8.87346875
transcript.pyannote[0].end 13.49721875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 14.81346875
transcript.pyannote[1].end 19.79159375
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 20.02784375
transcript.pyannote[2].end 21.54659375
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 22.45784375
transcript.pyannote[3].end 23.94284375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 24.16221875
transcript.pyannote[4].end 25.37721875
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 26.06909375
transcript.pyannote[5].end 27.46971875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 27.79034375
transcript.pyannote[6].end 28.66784375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 28.73534375
transcript.pyannote[7].end 31.45221875
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 31.48596875
transcript.pyannote[8].end 33.25784375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 34.91159375
transcript.pyannote[9].end 35.73846875
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 36.26159375
transcript.pyannote[10].end 49.87971875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 50.82471875
transcript.pyannote[11].end 54.53721875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 55.81971875
transcript.pyannote[12].end 66.85596875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 66.92346875
transcript.pyannote[13].end 67.19346875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 67.19346875
transcript.pyannote[14].end 67.22721875
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 68.45909375
transcript.pyannote[15].end 68.96534375
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 68.96534375
transcript.pyannote[16].end 69.06659375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 69.28596875
transcript.pyannote[17].end 76.37346875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 76.82909375
transcript.pyannote[18].end 83.25846875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 84.27096875
transcript.pyannote[19].end 84.70971875
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 84.70971875
transcript.pyannote[20].end 84.91221875
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 84.91221875
transcript.pyannote[21].end 84.94596875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 84.94596875
transcript.pyannote[22].end 93.88971875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 96.08346875
transcript.pyannote[23].end 103.25534375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 103.50846875
transcript.pyannote[24].end 107.30534375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 107.79471875
transcript.pyannote[25].end 112.38471875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 112.62096875
transcript.pyannote[26].end 116.13096875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 116.50221875
transcript.pyannote[27].end 118.96596875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 118.96596875
transcript.pyannote[28].end 125.86784375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 126.22221875
transcript.pyannote[29].end 138.55784375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 138.94596875
transcript.pyannote[30].end 141.88221875
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 142.92846875
transcript.pyannote[31].end 147.60284375
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 148.39596875
transcript.pyannote[32].end 162.82409375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 163.68471875
transcript.pyannote[33].end 164.02221875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 164.57909375
transcript.pyannote[34].end 168.89909375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 168.00471875
transcript.pyannote[35].end 169.15221875
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 169.67534375
transcript.pyannote[36].end 172.84784375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 172.07159375
transcript.pyannote[37].end 173.43846875
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 174.58596875
transcript.pyannote[38].end 175.78409375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 176.40846875
transcript.pyannote[39].end 185.95971875
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 186.48284375
transcript.pyannote[40].end 187.29284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 188.05221875
transcript.pyannote[41].end 188.86221875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 188.96346875
transcript.pyannote[42].end 191.83221875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 192.87846875
transcript.pyannote[43].end 195.32534375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 195.96659375
transcript.pyannote[44].end 201.68721875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 201.68721875
transcript.pyannote[45].end 202.75034375
transcript.pyannote[46].speaker SPEAKER_03
transcript.pyannote[46].start 202.98659375
transcript.pyannote[46].end 221.83596875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 222.34221875
transcript.pyannote[47].end 233.22659375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 224.06346875
transcript.pyannote[48].end 224.97471875
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 226.79721875
transcript.pyannote[49].end 228.04596875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 232.01159375
transcript.pyannote[50].end 235.20096875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 235.53846875
transcript.pyannote[51].end 245.51159375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 242.67659375
transcript.pyannote[52].end 243.13221875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 243.89159375
transcript.pyannote[53].end 245.76471875
transcript.pyannote[54].speaker SPEAKER_03
transcript.pyannote[54].start 245.76471875
transcript.pyannote[54].end 246.18659375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 246.45659375
transcript.pyannote[55].end 267.01034375
transcript.pyannote[56].speaker SPEAKER_03
transcript.pyannote[56].start 250.11846875
transcript.pyannote[56].end 252.16034375
transcript.pyannote[57].speaker SPEAKER_03
transcript.pyannote[57].start 256.21034375
transcript.pyannote[57].end 256.81784375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 260.42909375
transcript.pyannote[58].end 262.03221875
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 265.30596875
transcript.pyannote[59].end 277.27034375
transcript.pyannote[60].speaker SPEAKER_02
transcript.pyannote[60].start 277.32096875
transcript.pyannote[60].end 296.45721875
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 278.28284375
transcript.pyannote[61].end 278.68784375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 279.90284375
transcript.pyannote[62].end 280.30784375
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 296.72721875
transcript.pyannote[63].end 300.57471875
transcript.pyannote[64].speaker SPEAKER_03
transcript.pyannote[64].start 300.77721875
transcript.pyannote[64].end 309.14721875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 305.87346875
transcript.pyannote[65].end 307.32471875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 309.19784375
transcript.pyannote[66].end 317.21346875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 317.38221875
transcript.pyannote[67].end 320.77409375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 318.10784375
transcript.pyannote[68].end 318.14159375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 321.24659375
transcript.pyannote[69].end 325.92096875
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 321.73596875
transcript.pyannote[70].end 321.76971875
transcript.pyannote[71].speaker SPEAKER_03
transcript.pyannote[71].start 321.95534375
transcript.pyannote[71].end 324.60471875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 326.37659375
transcript.pyannote[72].end 330.22409375
transcript.pyannote[73].speaker SPEAKER_03
transcript.pyannote[73].start 330.22409375
transcript.pyannote[73].end 330.84846875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 331.25346875
transcript.pyannote[74].end 332.08034375
transcript.pyannote[75].speaker SPEAKER_03
transcript.pyannote[75].start 332.08034375
transcript.pyannote[75].end 332.90721875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 333.24471875
transcript.pyannote[76].end 334.10534375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 333.26159375
transcript.pyannote[77].end 335.40471875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 334.99971875
transcript.pyannote[78].end 335.75909375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 336.21471875
transcript.pyannote[79].end 338.13846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 339.87659375
transcript.pyannote[80].end 345.09096875
transcript.pyannote[81].speaker SPEAKER_03
transcript.pyannote[81].start 339.92721875
transcript.pyannote[81].end 341.59784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 341.59784375
transcript.pyannote[82].end 342.20534375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 342.35721875
transcript.pyannote[83].end 342.77909375
transcript.pyannote[84].speaker SPEAKER_03
transcript.pyannote[84].start 342.77909375
transcript.pyannote[84].end 342.96471875
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 342.96471875
transcript.pyannote[85].end 344.98971875
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 345.69846875
transcript.pyannote[86].end 346.30596875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 346.64346875
transcript.pyannote[87].end 348.07784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 348.65159375
transcript.pyannote[88].end 353.12346875
transcript.pyannote[89].speaker SPEAKER_03
transcript.pyannote[89].start 352.11096875
transcript.pyannote[89].end 352.53284375
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 352.90409375
transcript.pyannote[90].end 358.06784375
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 357.66284375
transcript.pyannote[91].end 357.81471875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 357.86534375
transcript.pyannote[92].end 372.05721875
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 365.77971875
transcript.pyannote[93].end 366.97784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 366.97784375
transcript.pyannote[94].end 367.70346875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 372.10784375
transcript.pyannote[95].end 391.09221875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 372.15846875
transcript.pyannote[96].end 372.64784375
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 391.24409375
transcript.pyannote[97].end 395.02409375
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 395.02409375
transcript.pyannote[98].end 395.31096875
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 395.31096875
transcript.pyannote[99].end 404.54159375
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 395.53034375
transcript.pyannote[100].end 396.12096875
transcript.pyannote[101].speaker SPEAKER_03
transcript.pyannote[101].start 405.31784375
transcript.pyannote[101].end 408.64221875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 405.94221875
transcript.pyannote[102].end 407.68034375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 407.74784375
transcript.pyannote[103].end 412.27034375
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 412.40534375
transcript.pyannote[104].end 415.24034375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 415.18971875
transcript.pyannote[105].end 416.08409375
transcript.pyannote[106].speaker SPEAKER_03
transcript.pyannote[106].start 415.79721875
transcript.pyannote[106].end 416.45534375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 416.45534375
transcript.pyannote[107].end 418.54784375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 418.68284375
transcript.pyannote[108].end 422.22659375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 422.00721875
transcript.pyannote[109].end 431.59221875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 432.31784375
transcript.pyannote[110].end 443.53971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 439.91159375
transcript.pyannote[111].end 440.28284375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 441.90284375
transcript.pyannote[112].end 442.67909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 443.03346875
transcript.pyannote[113].end 448.65284375
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 449.61471875
transcript.pyannote[114].end 453.34409375
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 453.83346875
transcript.pyannote[115].end 454.47471875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 454.69409375
transcript.pyannote[116].end 455.80784375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 456.65159375
transcript.pyannote[117].end 457.68096875
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 458.08596875
transcript.pyannote[118].end 458.96346875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 459.33471875
transcript.pyannote[119].end 459.95909375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 460.16159375
transcript.pyannote[120].end 461.07284375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 461.59596875
transcript.pyannote[121].end 479.87159375
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 480.51284375
transcript.pyannote[122].end 486.82409375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 487.38096875
transcript.pyannote[123].end 490.70534375
transcript.pyannote[124].speaker SPEAKER_04
transcript.pyannote[124].start 491.65034375
transcript.pyannote[124].end 493.05096875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 493.05096875
transcript.pyannote[125].end 494.06346875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 495.86909375
transcript.pyannote[126].end 496.99971875
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 497.20221875
transcript.pyannote[127].end 500.39159375
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 497.47221875
transcript.pyannote[128].end 499.31159375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 499.88534375
transcript.pyannote[129].end 500.89784375
transcript.pyannote[130].speaker SPEAKER_04
transcript.pyannote[130].start 501.84284375
transcript.pyannote[130].end 502.07909375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 502.55159375
transcript.pyannote[131].end 502.97346875
transcript.pyannote[132].speaker SPEAKER_04
transcript.pyannote[132].start 502.88909375
transcript.pyannote[132].end 504.28971875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 504.28971875
transcript.pyannote[133].end 510.44909375
transcript.pyannote[134].speaker SPEAKER_04
transcript.pyannote[134].start 505.30221875
transcript.pyannote[134].end 506.19659375
transcript.pyannote[135].speaker SPEAKER_04
transcript.pyannote[135].start 510.19596875
transcript.pyannote[135].end 514.31346875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 512.87909375
transcript.pyannote[136].end 515.83221875
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 515.86596875
transcript.pyannote[137].end 529.24784375
transcript.pyannote[138].speaker SPEAKER_04
transcript.pyannote[138].start 523.32471875
transcript.pyannote[138].end 524.97846875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 529.41659375
transcript.pyannote[139].end 530.56409375
transcript.pyannote[140].speaker SPEAKER_04
transcript.pyannote[140].start 531.03659375
transcript.pyannote[140].end 533.98971875
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 533.98971875
transcript.pyannote[141].end 537.33096875
transcript.pyannote[142].speaker SPEAKER_04
transcript.pyannote[142].start 534.83346875
transcript.pyannote[142].end 536.89221875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 537.53346875
transcript.pyannote[143].end 540.80721875
transcript.pyannote[144].speaker SPEAKER_04
transcript.pyannote[144].start 541.90409375
transcript.pyannote[144].end 555.31971875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 542.03909375
transcript.pyannote[145].end 542.59596875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 547.67534375
transcript.pyannote[146].end 548.16471875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 553.59846875
transcript.pyannote[147].end 554.52659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 555.50534375
transcript.pyannote[148].end 557.41221875
transcript.pyannote[149].speaker SPEAKER_04
transcript.pyannote[149].start 557.34471875
transcript.pyannote[149].end 561.14159375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 558.32346875
transcript.pyannote[150].end 558.76221875
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 561.19221875
transcript.pyannote[151].end 564.14534375
transcript.pyannote[152].speaker SPEAKER_04
transcript.pyannote[152].start 564.14534375
transcript.pyannote[152].end 564.19596875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 564.19596875
transcript.pyannote[153].end 564.34784375
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 564.68534375
transcript.pyannote[154].end 567.18284375
transcript.pyannote[155].speaker SPEAKER_04
transcript.pyannote[155].start 568.44846875
transcript.pyannote[155].end 569.61284375
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 569.61284375
transcript.pyannote[156].end 571.75596875
transcript.pyannote[157].speaker SPEAKER_04
transcript.pyannote[157].start 570.52409375
transcript.pyannote[157].end 576.93659375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 575.13096875
transcript.pyannote[158].end 577.30784375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 577.34159375
transcript.pyannote[159].end 577.35846875
transcript.pyannote[160].speaker SPEAKER_04
transcript.pyannote[160].start 577.42596875
transcript.pyannote[160].end 582.23534375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 582.26909375
transcript.pyannote[161].end 583.65284375
transcript.pyannote[162].speaker SPEAKER_04
transcript.pyannote[162].start 583.65284375
transcript.pyannote[162].end 584.78346875
transcript.pyannote[163].speaker SPEAKER_02
transcript.pyannote[163].start 584.04096875
transcript.pyannote[163].end 589.66034375
transcript.pyannote[164].speaker SPEAKER_04
transcript.pyannote[164].start 589.66034375
transcript.pyannote[164].end 612.57659375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 610.51784375
transcript.pyannote[165].end 612.39096875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 612.52596875
transcript.pyannote[166].end 619.07346875
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 619.76534375
transcript.pyannote[167].end 624.42284375
transcript.pyannote[168].speaker SPEAKER_04
transcript.pyannote[168].start 626.19471875
transcript.pyannote[168].end 637.23096875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 636.57284375
transcript.pyannote[169].end 637.34909375
transcript.pyannote[170].speaker SPEAKER_04
transcript.pyannote[170].start 637.34909375
transcript.pyannote[170].end 638.71596875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 638.20971875
transcript.pyannote[171].end 643.30596875
transcript.pyannote[172].speaker SPEAKER_04
transcript.pyannote[172].start 643.37346875
transcript.pyannote[172].end 648.82409375
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 648.82409375
transcript.pyannote[173].end 653.65034375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 654.08909375
transcript.pyannote[174].end 673.09034375
transcript.pyannote[175].speaker SPEAKER_04
transcript.pyannote[175].start 658.20659375
transcript.pyannote[175].end 658.93221875
transcript.pyannote[176].speaker SPEAKER_04
transcript.pyannote[176].start 673.09034375
transcript.pyannote[176].end 673.15784375
transcript.pyannote[177].speaker SPEAKER_04
transcript.pyannote[177].start 673.47846875
transcript.pyannote[177].end 682.59096875
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 682.55721875
transcript.pyannote[178].end 686.15159375
transcript.pyannote[179].speaker SPEAKER_04
transcript.pyannote[179].start 686.55659375
transcript.pyannote[179].end 687.28221875
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 688.12596875
transcript.pyannote[180].end 690.28596875
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 690.64034375
transcript.pyannote[181].end 707.02596875
transcript.pyannote[182].speaker SPEAKER_02
transcript.pyannote[182].start 707.36346875
transcript.pyannote[182].end 709.45596875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 713.79284375
transcript.pyannote[183].end 714.51846875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 715.46346875
transcript.pyannote[184].end 716.59409375
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 717.01596875
transcript.pyannote[185].end 719.27721875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 719.42909375
transcript.pyannote[186].end 723.39471875
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 724.20471875
transcript.pyannote[187].end 726.65159375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 726.71909375
transcript.pyannote[188].end 727.07346875
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 727.24221875
transcript.pyannote[189].end 727.30971875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 727.30971875
transcript.pyannote[190].end 728.52471875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 729.57096875
transcript.pyannote[191].end 729.58784375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 729.58784375
transcript.pyannote[192].end 741.01221875
transcript.pyannote[193].speaker SPEAKER_02
transcript.pyannote[193].start 741.28221875
transcript.pyannote[193].end 749.11221875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 743.29034375
transcript.pyannote[194].end 745.16346875
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 747.30659375
transcript.pyannote[195].end 748.03221875
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 751.13721875
transcript.pyannote[196].end 752.62221875
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 751.59284375
transcript.pyannote[197].end 751.96409375
transcript.whisperx[0].start 8.891
transcript.whisperx[0].end 32.569
transcript.whisperx[0].text 主席 各位出列習慣人員大家早安主席可否請讓股市上兩萬點接著也上三萬點的彭金榮 彭主委還有陳正波莊部長還有國發國發會會 高副主委好 那請彭主委 莊部長還有高副主委好 委員好那個
transcript.whisperx[1].start 34.946
transcript.whisperx[1].end 54.333
transcript.whisperx[1].text 洪主委你好台灣就有兩隻龍一個是楊青龍一個是彭青龍雙龍飛舞股市上萬點看到兩萬點現在已經到了三萬點主委這個三萬點到底站得住站不站不住
transcript.whisperx[2].start 55.885
transcript.whisperx[2].end 82.856
transcript.whisperx[2].text 我想我也很清楚金管會不會對未來的股市做這樣的預測當然我們還是一樣就是我們的資本市場遲早都要反映我們的基本面那你看一下今年的經濟成長率你對台灣未來經濟的發展有沒有信心其實我一直對台灣經濟發展很有信心但是充滿了挑戰跟我們非常困難的問題要解決
transcript.whisperx[3].start 84.335
transcript.whisperx[3].end 93.347
transcript.whisperx[3].text 所以你看現在的台股已經破三萬點了這個是常態還是偶發性的出現
transcript.whisperx[4].start 96.524
transcript.whisperx[4].end 125.122
transcript.whisperx[4].text 這個既然是創新高那當然就是現在看到的狀態我們資本市場永遠無法做一個所謂的你能夠做一個準確的預期它本質上就是反映所有全球包括國內所有資訊的總和那這個部分我們對未來這只能戒慎恐懼我們要做好所有因應的措施我們看到現在整個大盤大概是80%集中在半導體以及AI的周邊
transcript.whisperx[5].start 126.365
transcript.whisperx[5].end 147.079
transcript.whisperx[5].text 政府也在這個裡面國發基金也推出了AI的十大建設那不是代表政府全面在做多AI相關周邊以及半導體嗎我想我也非常清楚像這個因為台灣不能夠
transcript.whisperx[6].start 148.587
transcript.whisperx[6].end 172.377
transcript.whisperx[6].text 獨外於全球整個的趨勢跟影響剛才講這個東西是全球在主要經濟體大概都一樣面臨到這樣一個趨勢的選擇跟市場上的判斷所以主委你還是看好AI囉我剛才講說我個人來看的話因為我不是這個專業那專業是誰這個AI的專業很多啦但至少多數國發會不會
transcript.whisperx[7].start 174.739
transcript.whisperx[7].end 194.922
transcript.whisperx[7].text 國家發展委員會這個算是專業啦我請一下高副主委那你們在整個未來的發展我看到你們持續還是重壓半導體以及AI周邊的相關公司啊這是世界的一個趨勢潮流嗎
transcript.whisperx[8].start 196.291
transcript.whisperx[8].end 221.581
transcript.whisperx[8].text 我跟委員報告AI絕對是各個國家國力競爭的要素之一很重要我們AI新十大建設裡面其實我們除了要確保台灣的核心的AI的競爭的技術面以外其實很重要一個是創新運用這一塊所以我們創新運用這一塊其實我們是希望透過創新運用帶動百工百業的
transcript.whisperx[9].start 222.421
transcript.whisperx[9].end 224.725
transcript.whisperx[9].text 產業轉型跟升級尤其是傳產跟中小企業所以並不是獨厚所有的AI或者是半導體產業這個有沒有包括算力中心
transcript.whisperx[10].start 235.595
transcript.whisperx[10].end 258.439
transcript.whisperx[10].text 我想算力中心是AI的基礎建設是每個國家一定就是說算力會變成每個國家的一個基礎的建設部長妳也不要怕因為台灣就是重壓半導體所以現在台灣的人均GDP已經超越南韓了大概明年也要超越今年
transcript.whisperx[11].start 259.439
transcript.whisperx[11].end 267.042
transcript.whisperx[11].text 馬上要超越日本其實應該是原因沒有其他這個就是一個時代的潮流跟未來的一個趨勢我覺得與其說我們重壓還不如說我們在AI的創新運用的這個國際的競賽的賽道上我們站到一個很關鍵性不可或缺的地位
transcript.whisperx[12].start 277.606
transcript.whisperx[12].end 296.227
transcript.whisperx[12].text 你不要怕啦 你就是支持他就對因為 娟生晃 黃仁勛也是來自台灣阿台灣幫助台灣人 這有什麼害怕的對的事情就堅持那既然往這個方向發展請問今年的經濟成長率大概你們預估是多少
transcript.whisperx[13].start 296.767
transcript.whisperx[13].end 319.518
transcript.whisperx[13].text 今年根據主計數預估大概是3.5次那ADB有到4%左右那這個成績其實還蠻不錯因為去年我們是7.37去年年初的時候就是換到前年年底左右你們預估只有3點多而已結果去年出來的成績是7.35
transcript.whisperx[14].start 321.348
transcript.whisperx[14].end 347.526
transcript.whisperx[14].text 那個報告委員你的數據有點低估另外再請教一下國發基金裡面現在有沒有持股台積電當然有比率多少6點多6點多對6%多6點那就是有36兆多囉是不是按照他市值來算的話3兆多啦3、4兆的股票的市值啦對那面對現在的情況
transcript.whisperx[15].start 348.703
transcript.whisperx[15].end 375.561
transcript.whisperx[15].text 那你们会不会卖因为股价已经很高了会不会卖股票我们最近我们很多年都没有出脱台积电的股票很多年是因为那时候五百块开始起涨你那时候当然不会卖因为那个投信工会理事长张喜从五百块一直喊喊到一千多块还在喊就证明他是对的所以你们当初我一直逼迫你们就说你们到底要不要卖
transcript.whisperx[16].start 376.321
transcript.whisperx[16].end 402.834
transcript.whisperx[16].text 還好你們那時候聽了本席的建議一張都沒賣現在本席還是繼續要請問你因為台積電之於台灣未來經濟的發展還是相當的重要所以你們手上台積電的股票會不會賣我們國發基金持股不以獲利為目的所以會不會賣所以我們會秉持我們覺得我們需不需要持有這個台灣的策略性產業的思考的範疇來決定我們
transcript.whisperx[17].start 405.376
transcript.whisperx[17].end 431.318
transcript.whisperx[17].text 我們會不會有相關的事故的行為需不需要繼續掌控這樣的一個核心的價值跟技術那個委員你覺得呢很需要啊對很需要所以你就不會賣就對了我剛才說過我剛才我們的處理的原則是小心啊不要台積電最後淪落變成是美國的附庸因為持股最多還是外資啊是不是這樣
transcript.whisperx[18].start 433.19
transcript.whisperx[18].end 444.738
transcript.whisperx[18].text 目前是 可是他不是單一的大概都是Pension Fund那些等等的他不是 如果是單一投資人的話我想國發基金還是最大的因為我們有這樣的基礎我最要恭喜的就是財政部莊部長每天笑嘻嘻今天都開心部長 你知道現在日均量大概
transcript.whisperx[19].start 459.42
transcript.whisperx[19].end 478.189
transcript.whisperx[19].text 已經破紀錄一天成交八千億我們在場的證券交易所林董事長等一下一起上來一下你也是福星福將上去我看你也都是運籌帷幄笑裡談兵隨便都是破紀錄來 部長
transcript.whisperx[20].start 480.58
transcript.whisperx[20].end 500.309
transcript.whisperx[20].text 如果每天日均量都是八千億那請問你們八千億你們一天大概政府的證交稅抽了多少錢可能要算一下來旁邊算一下三分之三嘛八千億嘛三八二四二十幾億吧
transcript.whisperx[21].start 503.108
transcript.whisperx[21].end 530.336
transcript.whisperx[21].text 還有當沖降稅我的當沖降稅減半現在當沖的部分大概市場裡面佔了百分之多少的比例上次我們算到40%那你扣掉你就政府只要這個股市一開張你就輕輕鬆鬆落袋21是吧那預估今年的增交稅大概會預算會有多少
transcript.whisperx[22].start 531.87
transcript.whisperx[22].end 540.323
transcript.whisperx[22].text 你说1145年还是11今年是115年因为去年已经过了而且去年我们全部的税收又超增
transcript.whisperx[23].start 542.612
transcript.whisperx[23].end 567.006
transcript.whisperx[23].text 14年的目前來說我們要等到12月整個結算以後才知道那目前來說到11月底為止因為只有達成預算數的94.6%那我們會等到12月底可是12月表現也不錯啊12月底當然是證交稅那部長你看面對現在證交稅這個今年度你大概變多少
transcript.whisperx[24].start 568.584
transcript.whisperx[24].end 589.467
transcript.whisperx[24].text 什麼 對不起政交稅 今年的預算因為還沒有經過大院的審議沒有 你現在送來的資料是要多少我們的預算案數的政交稅是2501億你又低估了如果以日均量8000億來算的話那你一年的預估是多少
transcript.whisperx[25].start 590.047
transcript.whisperx[25].end 617.385
transcript.whisperx[25].text 我們基本上我們會用整年的一個平均數來計算這個證交稅那當然我們在編的時候事實上是在今年譬如說14年再編15年的時候大概在四五月就開始做籌編事實上很難去預估說15年整體的證交稅日均量的平均量是會是多少那大概都好了我們把這個市場把餅做大我們也歡迎很多海外的資金可以進來投資那
transcript.whisperx[26].start 619.827
transcript.whisperx[26].end 623.849
transcript.whisperx[26].text 最後再問一個問題普發現金現在進度怎麼樣全部都領到了嗎普發現金目前已經領取的人數超過2170萬人了大概是92.22%的人都已經領取了面對這次的普發現金整個作業流程部長您滿不滿意
transcript.whisperx[27].start 643.727
transcript.whisperx[27].end 672.156
transcript.whisperx[27].text 普發現金因為我們採取多元的管道方式目前來說都算順暢其實這一次普發現金的民調大家普遍都是按讚這個對財政部是一種嘉獎跟激勵謝謝委員我們也希望說今年如果稅收超增的話有這樣的一個經驗立刻再補辦一次再來辦一次普發現金也許不到一萬六千塊也可以部長你說好不好
transcript.whisperx[28].start 673.781
transcript.whisperx[28].end 684.667
transcript.whisperx[28].text 委員今年的整個稅收跟預算數之間的差距我們會等到12月底的數字出來以後大概會有一個明確的一個數字好 謝謝因為證交所董事長來講幾句話好了
transcript.whisperx[29].start 688.151
transcript.whisperx[29].end 709.403
transcript.whisperx[29].text 股市三萬點台灣經濟有亮點那請問一下林董事長你對現在整個台灣的這個股市這樣會不會過熱或者這只是新年的第一個起步而已因為馬年又到了啊馬年到萬馬奔騰有沒有信心這主要我們的
transcript.whisperx[30].start 717.322
transcript.whisperx[30].end 740.152
transcript.whisperx[30].text 這個上市公司的基本面都非常好啦所以我們基本上我們還是還蠻審慎熱觀的現在已經有32個千斤股啦這個正不正常啊這個都是市場的機制的反應這個我想這個跟全世界的脈動我想台灣證券交易所現在跟全世界脈動真的都非常的緊密相關
transcript.whisperx[31].start 741.557
transcript.whisperx[31].end 748.72
transcript.whisperx[31].text 好 謝謝繼續努力啦好 謝謝我看你是福星福將兩萬 三萬點一直破謝謝有沒有機會到四萬點好 謝謝盧委員