iVOD / 166883

Field Value
IVOD_ID 166883
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166883
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T10:19:35+08:00
結束時間 2026-01-07T10:32:29+08:00
影片長度 00:12:54
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468f4fa4a6d1834d19025d44f5a94e3adf353ec197a1c72cb6c49817037465c880e15ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鍾佳濱
委員發言時間 10:19:35 - 10:32:29
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 13.17659375
transcript.pyannote[0].end 18.28971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 18.47534375
transcript.pyannote[1].end 23.31846875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 23.47034375
transcript.pyannote[2].end 25.69784375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 25.91721875
transcript.pyannote[3].end 34.79346875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 35.56971875
transcript.pyannote[4].end 35.58659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 35.82284375
transcript.pyannote[5].end 38.59034375
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 43.33221875
transcript.pyannote[6].end 44.04096875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 44.76659375
transcript.pyannote[7].end 49.28909375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 44.88471875
transcript.pyannote[8].end 45.12096875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 48.95159375
transcript.pyannote[9].end 50.03159375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 49.69409375
transcript.pyannote[10].end 62.09721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 62.43471875
transcript.pyannote[11].end 68.99909375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 69.35346875
transcript.pyannote[12].end 81.94221875
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 69.58971875
transcript.pyannote[13].end 69.82596875
transcript.pyannote[14].speaker SPEAKER_03
transcript.pyannote[14].start 83.69721875
transcript.pyannote[14].end 86.78534375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 86.78534375
transcript.pyannote[15].end 90.93659375
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 88.74284375
transcript.pyannote[16].end 90.14346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 91.39221875
transcript.pyannote[17].end 93.34971875
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 93.73784375
transcript.pyannote[18].end 94.02471875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 94.34534375
transcript.pyannote[19].end 94.71659375
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 95.05409375
transcript.pyannote[20].end 95.32409375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 95.32409375
transcript.pyannote[21].end 96.47159375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 96.72471875
transcript.pyannote[22].end 98.09159375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 98.42909375
transcript.pyannote[23].end 102.32721875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 102.93471875
transcript.pyannote[24].end 105.76971875
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 106.05659375
transcript.pyannote[25].end 110.71409375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 108.77346875
transcript.pyannote[26].end 109.16159375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 110.44409375
transcript.pyannote[27].end 121.86846875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 122.08784375
transcript.pyannote[28].end 125.58096875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 125.73284375
transcript.pyannote[29].end 129.17534375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 129.93471875
transcript.pyannote[30].end 130.32284375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 130.32284375
transcript.pyannote[31].end 133.76534375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 134.06909375
transcript.pyannote[32].end 134.62596875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 135.38534375
transcript.pyannote[33].end 145.08846875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 145.15596875
transcript.pyannote[34].end 147.56909375
transcript.pyannote[35].speaker SPEAKER_03
transcript.pyannote[35].start 148.37909375
transcript.pyannote[35].end 150.55596875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 148.91909375
transcript.pyannote[36].end 153.81284375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 154.21784375
transcript.pyannote[37].end 164.35971875
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 164.69721875
transcript.pyannote[38].end 166.46909375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 166.30034375
transcript.pyannote[39].end 176.71221875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 177.92721875
transcript.pyannote[40].end 184.20471875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 179.00721875
transcript.pyannote[41].end 180.00284375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 182.04471875
transcript.pyannote[42].end 182.48346875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 183.22596875
transcript.pyannote[43].end 191.02221875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 191.51159375
transcript.pyannote[44].end 191.86596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 192.13596875
transcript.pyannote[45].end 207.54284375
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 207.72846875
transcript.pyannote[46].end 211.89659375
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 213.19596875
transcript.pyannote[47].end 218.20784375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 216.45284375
transcript.pyannote[48].end 220.55346875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 221.19471875
transcript.pyannote[49].end 224.56971875
transcript.pyannote[50].speaker SPEAKER_03
transcript.pyannote[50].start 225.81846875
transcript.pyannote[50].end 227.18534375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 226.52721875
transcript.pyannote[51].end 226.83096875
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 227.18534375
transcript.pyannote[52].end 228.38346875
transcript.pyannote[53].speaker SPEAKER_03
transcript.pyannote[53].start 228.41721875
transcript.pyannote[53].end 228.53534375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 228.53534375
transcript.pyannote[54].end 239.52096875
transcript.pyannote[55].speaker SPEAKER_03
transcript.pyannote[55].start 228.56909375
transcript.pyannote[55].end 228.63659375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 239.82471875
transcript.pyannote[56].end 242.25471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 242.60909375
transcript.pyannote[57].end 248.07659375
transcript.pyannote[58].speaker SPEAKER_03
transcript.pyannote[58].start 249.86534375
transcript.pyannote[58].end 251.26596875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 251.26596875
transcript.pyannote[59].end 254.94471875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 251.28284375
transcript.pyannote[60].end 251.29971875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 255.34971875
transcript.pyannote[61].end 257.96534375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 258.35346875
transcript.pyannote[62].end 267.02721875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 267.43221875
transcript.pyannote[63].end 269.37284375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 269.40659375
transcript.pyannote[64].end 272.39346875
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 272.68034375
transcript.pyannote[65].end 274.97534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 275.27909375
transcript.pyannote[66].end 276.20721875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 276.40971875
transcript.pyannote[67].end 281.28659375
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 281.87721875
transcript.pyannote[68].end 283.32846875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 283.85159375
transcript.pyannote[69].end 286.14659375
transcript.pyannote[70].speaker SPEAKER_03
transcript.pyannote[70].start 286.85534375
transcript.pyannote[70].end 298.27971875
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 298.27971875
transcript.pyannote[71].end 303.39284375
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 303.61221875
transcript.pyannote[72].end 312.87659375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 314.02409375
transcript.pyannote[73].end 316.72409375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 317.02784375
transcript.pyannote[74].end 318.07409375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 318.49596875
transcript.pyannote[75].end 324.55409375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 324.90846875
transcript.pyannote[76].end 329.49846875
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 330.40971875
transcript.pyannote[77].end 331.48971875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 331.43909375
transcript.pyannote[78].end 332.36721875
transcript.pyannote[79].speaker SPEAKER_03
transcript.pyannote[79].start 331.87784375
transcript.pyannote[79].end 333.78471875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 333.78471875
transcript.pyannote[80].end 335.75909375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 336.29909375
transcript.pyannote[81].end 337.04159375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 337.41284375
transcript.pyannote[82].end 343.40346875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 344.33159375
transcript.pyannote[83].end 352.75221875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 353.17409375
transcript.pyannote[84].end 356.95409375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 357.35909375
transcript.pyannote[85].end 358.00034375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 358.72596875
transcript.pyannote[86].end 360.53159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 361.66221875
transcript.pyannote[87].end 363.55221875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 365.12159375
transcript.pyannote[88].end 365.49284375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 365.88096875
transcript.pyannote[89].end 367.02846875
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 367.75409375
transcript.pyannote[90].end 369.37409375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 369.66096875
transcript.pyannote[91].end 372.31034375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 372.56346875
transcript.pyannote[92].end 375.26346875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 375.88784375
transcript.pyannote[93].end 376.15784375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 376.66409375
transcript.pyannote[94].end 377.40659375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 377.65971875
transcript.pyannote[95].end 378.16596875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 377.72721875
transcript.pyannote[96].end 379.19534375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 379.19534375
transcript.pyannote[97].end 379.34721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 379.34721875
transcript.pyannote[98].end 379.36409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 379.97159375
transcript.pyannote[99].end 382.67159375
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 382.99221875
transcript.pyannote[100].end 383.66721875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 383.66721875
transcript.pyannote[101].end 384.46034375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 384.46034375
transcript.pyannote[102].end 385.69221875
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 384.71346875
transcript.pyannote[103].end 384.73034375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 386.11409375
transcript.pyannote[104].end 391.58159375
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 392.03721875
transcript.pyannote[105].end 403.47846875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 403.63034375
transcript.pyannote[106].end 409.73909375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 409.87409375
transcript.pyannote[107].end 415.37534375
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 415.98284375
transcript.pyannote[108].end 418.05846875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 418.66596875
transcript.pyannote[109].end 419.07096875
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 419.32409375
transcript.pyannote[110].end 421.43346875
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 419.69534375
transcript.pyannote[111].end 420.53909375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 422.05784375
transcript.pyannote[112].end 426.69846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 426.69846875
transcript.pyannote[113].end 428.77409375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 426.81659375
transcript.pyannote[114].end 427.05284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 429.26346875
transcript.pyannote[115].end 443.84346875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 444.28221875
transcript.pyannote[116].end 456.09471875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 446.56034375
transcript.pyannote[117].end 447.20159375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 447.79221875
transcript.pyannote[118].end 448.36596875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 456.51659375
transcript.pyannote[119].end 457.98471875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 458.42346875
transcript.pyannote[120].end 467.13096875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 467.13096875
transcript.pyannote[121].end 476.49659375
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 467.14784375
transcript.pyannote[122].end 467.80596875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 476.88471875
transcript.pyannote[123].end 481.06971875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 481.33971875
transcript.pyannote[124].end 484.39409375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 484.73159375
transcript.pyannote[125].end 485.77784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 485.82846875
transcript.pyannote[126].end 485.86221875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 485.89596875
transcript.pyannote[127].end 489.97971875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 490.23284375
transcript.pyannote[128].end 492.27471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 492.94971875
transcript.pyannote[129].end 494.56971875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 494.58659375
transcript.pyannote[130].end 498.85596875
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 498.97409375
transcript.pyannote[131].end 501.64034375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 501.75846875
transcript.pyannote[132].end 503.85096875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 504.13784375
transcript.pyannote[133].end 504.89721875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 505.53846875
transcript.pyannote[134].end 506.70284375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 507.00659375
transcript.pyannote[135].end 509.21721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 509.92596875
transcript.pyannote[136].end 511.81596875
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 511.98471875
transcript.pyannote[137].end 513.21659375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 514.48221875
transcript.pyannote[138].end 517.68846875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 518.48159375
transcript.pyannote[139].end 521.72159375
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 521.99159375
transcript.pyannote[140].end 524.50596875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 524.65784375
transcript.pyannote[141].end 526.96971875
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 527.57721875
transcript.pyannote[142].end 529.83846875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 530.41221875
transcript.pyannote[143].end 532.63971875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 533.58471875
transcript.pyannote[144].end 534.68159375
transcript.pyannote[145].speaker SPEAKER_00
transcript.pyannote[145].start 535.01909375
transcript.pyannote[145].end 536.01471875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 536.92596875
transcript.pyannote[146].end 539.13659375
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 539.96346875
transcript.pyannote[147].end 540.52034375
transcript.pyannote[148].speaker SPEAKER_01
transcript.pyannote[148].start 540.70596875
transcript.pyannote[148].end 540.89159375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 540.89159375
transcript.pyannote[149].end 541.73534375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 542.15721875
transcript.pyannote[150].end 543.72659375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 543.74346875
transcript.pyannote[151].end 544.77284375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 545.97096875
transcript.pyannote[152].end 547.13534375
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 547.35471875
transcript.pyannote[153].end 548.14784375
transcript.pyannote[154].speaker SPEAKER_00
transcript.pyannote[154].start 549.02534375
transcript.pyannote[154].end 549.80159375
transcript.pyannote[155].speaker SPEAKER_00
transcript.pyannote[155].start 550.35846875
transcript.pyannote[155].end 551.25284375
transcript.pyannote[156].speaker SPEAKER_00
transcript.pyannote[156].start 551.96159375
transcript.pyannote[156].end 552.68721875
transcript.pyannote[157].speaker SPEAKER_00
transcript.pyannote[157].start 553.05846875
transcript.pyannote[157].end 554.30721875
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 554.77971875
transcript.pyannote[158].end 557.27721875
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 557.74971875
transcript.pyannote[159].end 564.98909375
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 565.42784375
transcript.pyannote[160].end 572.31284375
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 572.83596875
transcript.pyannote[161].end 573.98346875
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 574.18596875
transcript.pyannote[162].end 576.49784375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 577.17284375
transcript.pyannote[163].end 578.87721875
transcript.pyannote[164].speaker SPEAKER_00
transcript.pyannote[164].start 579.55221875
transcript.pyannote[164].end 583.46721875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 584.56409375
transcript.pyannote[165].end 585.32346875
transcript.pyannote[166].speaker SPEAKER_00
transcript.pyannote[166].start 585.52596875
transcript.pyannote[166].end 589.27221875
transcript.pyannote[167].speaker SPEAKER_00
transcript.pyannote[167].start 589.44096875
transcript.pyannote[167].end 591.49971875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 592.17471875
transcript.pyannote[168].end 592.78221875
transcript.pyannote[169].speaker SPEAKER_00
transcript.pyannote[169].start 593.11971875
transcript.pyannote[169].end 595.46534375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 595.85346875
transcript.pyannote[170].end 599.76846875
transcript.pyannote[171].speaker SPEAKER_00
transcript.pyannote[171].start 600.13971875
transcript.pyannote[171].end 602.48534375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 603.00846875
transcript.pyannote[172].end 614.31471875
transcript.pyannote[173].speaker SPEAKER_01
transcript.pyannote[173].start 614.46659375
transcript.pyannote[173].end 617.28471875
transcript.pyannote[174].speaker SPEAKER_00
transcript.pyannote[174].start 616.57596875
transcript.pyannote[174].end 618.95534375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 619.73159375
transcript.pyannote[175].end 621.04784375
transcript.pyannote[176].speaker SPEAKER_00
transcript.pyannote[176].start 621.60471875
transcript.pyannote[176].end 630.91971875
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 631.40909375
transcript.pyannote[177].end 634.96971875
transcript.pyannote[178].speaker SPEAKER_00
transcript.pyannote[178].start 635.39159375
transcript.pyannote[178].end 639.55971875
transcript.pyannote[179].speaker SPEAKER_00
transcript.pyannote[179].start 639.67784375
transcript.pyannote[179].end 640.69034375
transcript.pyannote[180].speaker SPEAKER_00
transcript.pyannote[180].start 641.06159375
transcript.pyannote[180].end 642.02346875
transcript.pyannote[181].speaker SPEAKER_00
transcript.pyannote[181].start 642.31034375
transcript.pyannote[181].end 644.53784375
transcript.pyannote[182].speaker SPEAKER_00
transcript.pyannote[182].start 644.97659375
transcript.pyannote[182].end 646.29284375
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 646.73159375
transcript.pyannote[183].end 650.61284375
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 651.05159375
transcript.pyannote[184].end 657.24471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 658.37534375
transcript.pyannote[185].end 660.14721875
transcript.pyannote[186].speaker SPEAKER_00
transcript.pyannote[186].start 660.16409375
transcript.pyannote[186].end 660.99096875
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 661.32846875
transcript.pyannote[187].end 662.69534375
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 663.11721875
transcript.pyannote[188].end 667.35284375
transcript.pyannote[189].speaker SPEAKER_00
transcript.pyannote[189].start 667.38659375
transcript.pyannote[189].end 671.40284375
transcript.pyannote[190].speaker SPEAKER_00
transcript.pyannote[190].start 671.65596875
transcript.pyannote[190].end 672.93846875
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 673.15784375
transcript.pyannote[191].end 677.20784375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 677.59596875
transcript.pyannote[192].end 678.27096875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 678.99659375
transcript.pyannote[193].end 679.92471875
transcript.pyannote[194].speaker SPEAKER_00
transcript.pyannote[194].start 681.03846875
transcript.pyannote[194].end 684.12659375
transcript.pyannote[195].speaker SPEAKER_00
transcript.pyannote[195].start 684.81846875
transcript.pyannote[195].end 686.08409375
transcript.pyannote[196].speaker SPEAKER_00
transcript.pyannote[196].start 686.47221875
transcript.pyannote[196].end 688.85159375
transcript.pyannote[197].speaker SPEAKER_00
transcript.pyannote[197].start 689.18909375
transcript.pyannote[197].end 691.11284375
transcript.pyannote[198].speaker SPEAKER_00
transcript.pyannote[198].start 691.77096875
transcript.pyannote[198].end 693.74534375
transcript.pyannote[199].speaker SPEAKER_00
transcript.pyannote[199].start 693.96471875
transcript.pyannote[199].end 702.87471875
transcript.pyannote[200].speaker SPEAKER_00
transcript.pyannote[200].start 703.56659375
transcript.pyannote[200].end 710.87346875
transcript.pyannote[201].speaker SPEAKER_00
transcript.pyannote[201].start 711.76784375
transcript.pyannote[201].end 713.15159375
transcript.pyannote[202].speaker SPEAKER_00
transcript.pyannote[202].start 713.30346875
transcript.pyannote[202].end 716.00346875
transcript.pyannote[203].speaker SPEAKER_02
transcript.pyannote[203].start 713.65784375
transcript.pyannote[203].end 713.69159375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 713.70846875
transcript.pyannote[204].end 714.06284375
transcript.pyannote[205].speaker SPEAKER_02
transcript.pyannote[205].start 716.17221875
transcript.pyannote[205].end 728.98034375
transcript.pyannote[206].speaker SPEAKER_00
transcript.pyannote[206].start 724.50846875
transcript.pyannote[206].end 727.34346875
transcript.pyannote[207].speaker SPEAKER_00
transcript.pyannote[207].start 728.59221875
transcript.pyannote[207].end 730.87034375
transcript.pyannote[208].speaker SPEAKER_00
transcript.pyannote[208].start 731.37659375
transcript.pyannote[208].end 731.83221875
transcript.pyannote[209].speaker SPEAKER_00
transcript.pyannote[209].start 733.01346875
transcript.pyannote[209].end 737.63721875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 737.82284375
transcript.pyannote[210].end 741.45096875
transcript.pyannote[211].speaker SPEAKER_00
transcript.pyannote[211].start 741.48471875
transcript.pyannote[211].end 744.25221875
transcript.pyannote[212].speaker SPEAKER_00
transcript.pyannote[212].start 744.80909375
transcript.pyannote[212].end 746.81721875
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 747.47534375
transcript.pyannote[213].end 747.93096875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 748.26846875
transcript.pyannote[214].end 749.24721875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 749.33159375
transcript.pyannote[215].end 751.00221875
transcript.pyannote[216].speaker SPEAKER_01
transcript.pyannote[216].start 751.40721875
transcript.pyannote[216].end 752.62221875
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 752.04846875
transcript.pyannote[217].end 754.84971875
transcript.pyannote[218].speaker SPEAKER_01
transcript.pyannote[218].start 755.05221875
transcript.pyannote[218].end 759.79409375
transcript.pyannote[219].speaker SPEAKER_00
transcript.pyannote[219].start 756.11534375
transcript.pyannote[219].end 758.42721875
transcript.pyannote[220].speaker SPEAKER_00
transcript.pyannote[220].start 759.79409375
transcript.pyannote[220].end 762.02159375
transcript.pyannote[221].speaker SPEAKER_01
transcript.pyannote[221].start 761.73471875
transcript.pyannote[221].end 761.75159375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 761.75159375
transcript.pyannote[222].end 764.02971875
transcript.pyannote[223].speaker SPEAKER_00
transcript.pyannote[223].start 764.08034375
transcript.pyannote[223].end 772.39971875
transcript.pyannote[224].speaker SPEAKER_00
transcript.pyannote[224].start 773.19284375
transcript.pyannote[224].end 774.32346875
transcript.whisperx[0].start 13.403
transcript.whisperx[0].end 38.44
transcript.whisperx[0].text 主席 在黨委員先進列席政務機關首長 官員會長 工作夥伴 媒體記者 女士先生有請財政部莊部長那國庫署 負稅署可以在同旁協助然後呢 彭金榮 彭主委也請政企局跟保險局同旁協助最後呢 要請我們高仙貴 高副主委至於陪同人不用了剛好是我小學同學 就不麻煩他了那請莊部長 彭主委 高副主委
transcript.whisperx[1].start 43.36
transcript.whisperx[1].end 43.38
transcript.whisperx[1].text 來莊牧長
transcript.whisperx[2].start 44.889
transcript.whisperx[2].end 69.853
transcript.whisperx[2].text 你看我有注意到你的領巾跟圍巾都很漂亮今天效法你我帶了圍巾來謝謝好 我們今天的題目是什麼我們今天題目是如何引導國內資金擴大參與公共建設及策略性產業目的是不是就是因為如果說國內的資金可以來參與公共建設政府的稅收就負擔不會那麼重所以這是一種對政府來講是支出的節流對不對讓別人來負擔那財政部也要開源要增加稅收
transcript.whisperx[3].start 74.894
transcript.whisperx[3].end 101.549
transcript.whisperx[3].text 那怎麼樣增加稅收呢我請教一下宋署長目前台積電一年貢獻台灣的稅收差不多有沒有一千億啊這幾個別納稅的資料我們是不能公開不過我看到網路上有超過一千億那有沒有比台積電更大的店貢獻更多的你知道是誰嗎有我跟你講是中央銀行一年貢獻我們國家稅入將近兩千億來部長莊部長
transcript.whisperx[4].start 103.304
transcript.whisperx[4].end 128.567
transcript.whisperx[4].text 來 你需不需要有更多的台積電來貢獻我們的稅收當然 我們希望民間企業發展得更好 是培養我們的稅源所以你可以用租稅優惠來培養下一個台積電這是我們政府手中的工具而且不只一個台積電 還有眾多的小積電你以為是什麼是小積電 狗狗雞嗎 不是您最近通過了一個財政部今年實施 我很肯定就是你們這樣小規模營業人導入了行動支付的租稅優惠 對不對
transcript.whisperx[5].start 130.397
transcript.whisperx[5].end 146.456
transcript.whisperx[5].text 本來營業人月均營業額20萬以上就要繳5%營業稅是不是好那現在呢你們讓這個小店家如果他使用行動支付加上多媒體的服務機就是可以自助找零自助收銀的那你在80萬的月均營業額給他租稅優惠1%是不是這樣
transcript.whisperx[6].start 149.144
transcript.whisperx[6].end 176.5
transcript.whisperx[6].text 那這樣不是有些稅損嗎人家80萬的營業額要繳5%啦你給他1%目的是怎樣希望這些眾多的小小的年輕人他開的店未來可以長成很多的小雞店未來他營業額超過百萬繳5%是不是我們收得更多當然我們希望發展得更好是的 所以我覺得財政部用租稅手段讓民間長富於民讓未來的納稅人有更強的繳稅能力這就是我們財政部的租稅的思考嘛
transcript.whisperx[7].start 178.207
transcript.whisperx[7].end 193.202
transcript.whisperx[7].text 我們其實投資的思考嘛對 像產算條例裡面都有很多相關的一些這就是對投資未來的納稅人有助於擴大我國未來的稅源好不好 OK 往下看來 有人提出了欸 民進黨提出了新生和帳戶
transcript.whisperx[8].start 194.323
transcript.whisperx[8].end 211.648
transcript.whisperx[8].text 藍白也領先對白說包括我們的這個他們說蕭瑩有希望帳戶郭國榮有登大郎ETF然後呢藍白提出未來帳戶這些都是由政府來投資到未來的國民這些國民長大後有工作能力有收入後會不會貢獻稅收長大後他們就是就可以去那是義務人嘛所以投資未來的國民新生代很重要嘛
transcript.whisperx[9].start 221.483
transcript.whisperx[9].end 247.757
transcript.whisperx[9].text 對他們的投資就是培養未來的稅金你同意嗎國民都可以是那我們往下看其實呢川普也是這樣說在美國他認為呢在這個年期當中美國政府給他一千美金然後呢他未成年子女呢就可以去投入這個指數型基金不過美國的做法父母每年要再存五千未來成年會運用教育手工跟創業你覺得川普這個做法也是在投資美國的未來
transcript.whisperx[10].start 250.078
transcript.whisperx[10].end 266.386
transcript.whisperx[10].text 他有川普的做法 是 那台灣的川普呢川普的帳戶我們看一下喔台灣的川普帳戶呢 是白吃的午餐 我們看一下今天問了問卷 這是自由時報的問了他說 戰不贊成成立一個類似的川普帳戶政府提供的金額讓孩子呢 為下存他未來 有人贊成
transcript.whisperx[11].start 267.506
transcript.whisperx[11].end 284.566
transcript.whisperx[11].text 可以提高生育率將近15%有人說金額要小才不能亂花納稅錢但是有人說有條件贊成只能對經濟弱勢但是有很多人是反對相信四分之一的人說這是變相花錢這種資源有限去造成財政負擔請問財政部你看了一下你會是贊成還是反對還是有條件贊成
transcript.whisperx[12].start 286.886
transcript.whisperx[12].end 291.468
transcript.whisperx[12].text 我們報告目前來說有一個兒童及少年未來教育局發展帳戶那未來要怎麼樣去做要調整是不是要擴大那目前來說已經在跨部會的討論當中了好 但是我們看起來一般的民眾不是很了解情況之下多數是持保留態度啦那我個人呢是有一個想法待會要請我們這個彭主委跟我們的副主委跟高副主委一起來思考來我們往下看
transcript.whisperx[13].start 314.093
transcript.whisperx[13].end 342.894
transcript.whisperx[13].text 我剛剛說了 比台積電還貢獻國庫貴多的是什麼是中央銀行中央銀行持有超過六千億的美金的外匯存底是全世界第四 僅次於中國 日本跟瑞士這六千億的外匯存底一年可以貢獻多少給我們國庫的稅務部長你知道嗎中央銀行對 中央銀行的美金繳酷大概差不多兩千億兩千億 兩個台積電可是我們問一下中央銀行它是目的是要來增加我們稅務它的貢獻啊 占我們國家一成的稅務啊
transcript.whisperx[14].start 344.38
transcript.whisperx[14].end 360.464
transcript.whisperx[14].text 很可觀啊但是我們想想看我們問過央行總裁啊他說你這個東西可不可以拿來外匯存體拿來做啊他說可以啦不宜由外匯存體直接無償撥用但是相對的有償借用可以考慮吧這是央行的說法你知道嗎好來彭主委我們現在請教你了來我們常常說
transcript.whisperx[15].start 367.813
transcript.whisperx[15].end 390.244
transcript.whisperx[15].text 人生第一桶金啊 有沒有聽過指南宮這個指寫錯了 手指頭有指有沒有聽過指南宮的發財經 有你有沒有投資 沒有 我不是說投資指南宮啦有沒有聽過你去指南宮借發財經有有 也是新聞上看到過 對 為什麼因為他跟神明借了一筆錢 跟廟借了一筆錢他回去投資賺錢 他拿來貢獻嘛
transcript.whisperx[16].start 392.125
transcript.whisperx[16].end 421.212
transcript.whisperx[16].text 其實剛剛講的川普的一個賬戶希望的賬戶 外來賬戶它是人生的周轉金是我們國家先把未來的還沒收的稅收先預借出來投資給下一代我們來看一看我舉個做法如果是全民的外匯存底由政府把它借出來然後呢撥給我們的民眾1到18歲讓他繼續進行投資投資什麼TESA投資TESA你這樣不贊成當然當然贊成嘛只是TESA現在規模多少
transcript.whisperx[17].start 422.119
transcript.whisperx[17].end 443.664
transcript.whisperx[17].text 現在TESA我們第一階段剛剛有報告過差不多接近百億一百億啊央行一年就一千億啊所以我們看看如果他央行不要拿多拿一些來讓我們的年輕人下一代他長大之後他拿到這個TESA的收益他可以做這些事情而當他投資了自己之後三十歲之後他可以創造稅收你覺得有沒有可能
transcript.whisperx[18].start 444.344
transcript.whisperx[18].end 470.427
transcript.whisperx[18].text 其實我們的想法比這還多一點因為除了是對個人以外因為主要像比如日本它在發展NISA很重要是它是要壯大他們的資本市場然後進入產業投資我想這個大概有很多從業除了增加個人的第一桶金的儲值以外很重要讓它進入到資本市場支持經濟發展主委我知道你有一個很大的架構我簡單講
transcript.whisperx[19].start 471.548
transcript.whisperx[19].end 491.569
transcript.whisperx[19].text 如果說今天央行貢獻從兩千億的稅路他少五百億就好了這五百的稅路他減少他減少他美債的持有他買我們國庫券跟他用國庫券跟他借 低利跟他借他每年可能少貢獻國庫一點點的稅路但是這個借出來的錢
transcript.whisperx[20].start 492.984
transcript.whisperx[20].end 517.032
transcript.whisperx[20].text 我們發行長年期國債然後這個國債我們用來進行TESA的複利投資為我們的每一個國民 新生國民投資只要未來他成年後 獲利給他本金歸還央行你覺得國庫有增加支出嗎央行有沒有錢借給你 本金我收回來啊那利息呢 利息照算 我算給你看
transcript.whisperx[21].start 518.547
transcript.whisperx[21].end 544.589
transcript.whisperx[21].text 今天假如這種TESA的每個月定期定額1000年化報酬率6%持續20年它可以累積到46萬2000我們的本金24萬還給央行負利的獲利就22萬2如果不是1000是1萬的話這個就變成222萬以上是不是這樣子所以有沒有給國民第一桶金人身周轉金
transcript.whisperx[22].start 546.239
transcript.whisperx[22].end 549.529
transcript.whisperx[22].text 國家有沒有支出 有還啊什麼時候還 20年後還
transcript.whisperx[23].start 552.008
transcript.whisperx[23].end 574.86
transcript.whisperx[23].text 那國庫怎麼跟央行借外匯用國庫券來往下看我算給你看齁去年11萬的新生兒我們如果這樣的做法一年要1萬2持續20年每年要花264億如果說我們拿現在央行外匯存體美債的短年期的4%跟我長年期的國債券2%它的利差它會損失多少央行會少腳庫1億5而已啊2000億少個1億5
transcript.whisperx[24].start 579.602
transcript.whisperx[24].end 591.348
transcript.whisperx[24].text 我們國庫要付多少利息給他要付五億二二十年我們國庫幫這樣的人身周轉金的第一桶金我們每年幫他付五億二的
transcript.whisperx[25].start 592.216
transcript.whisperx[25].end 618.765
transcript.whisperx[25].text 利息 央行少繳庫每年少繳庫1億5結果我們可以跟央行拿出264億來投資TISA主委有沒有比你現在100億的規模還大那當然我們現在只是在初始階段剛剛委員提到一個很好的構想就是我們用資本市場利得去支付一個固定收益的成本那個差額就是它的增值來 告訴主委接下來是有你的事情了
transcript.whisperx[26].start 619.793
transcript.whisperx[26].end 634.439
transcript.whisperx[26].text 我們現在往下一頁其實目前國發會思考的都是用總體經濟的角度來看但是總體經濟是建立在個體經濟的成長上面如果說我們每一個國民我們要一年才十萬個新生兒
transcript.whisperx[27].start 635.461
transcript.whisperx[27].end 657.058
transcript.whisperx[27].text 每年20年每年每10萬個新的國家都要投資用什麼方式用財政部國庫券跟央行借外匯存底20年要還他本金收益就是這個20歲成年人他的第一桶金讓他有10年的時間投資自己讓他30歲之後創造更多的稅收給我們的財政部
transcript.whisperx[28].start 658.41
transcript.whisperx[28].end 683.478
transcript.whisperx[28].text 主委副主委部長你們覺得這個構想可不可以去思考一下因為其他任何的做法都會涉及到家庭經營的能力如果比照川普的做法優勢家庭可以幫助你存更多如果用台灣的做法家長不存人家說是白吃的午餐但是我們這個做法國庫暫借錢跟國庫跟央行的外匯存你借了一筆錢
transcript.whisperx[29].start 685.104
transcript.whisperx[29].end 710.355
transcript.whisperx[29].text 每個月負利息用了20年產生的負利收益給20歲成年的年輕人然後本金歸還這樣的一個預借下一代的稅收創造下一代的稅收每年腳庫的國庫的稅收收益才少那麼一點點有沒有看到央行把外匯存底借給國庫來做這個事情他每年的腳庫盈餘啊 只少一點點
transcript.whisperx[30].start 711.803
transcript.whisperx[30].end 729.788
transcript.whisperx[30].text 副主委有沒有聽懂了不好意思我這樣有點不太禮貌有沒有理解了我想我大概知道可是因為我想委員的想法非常有創意可是這個涉及到央行還有財政部我知道因為央行不是在今天才問不然他就第一個反對了副主委最後要你承諾了來 下一頁
transcript.whisperx[31].start 733.089
transcript.whisperx[31].end 750.783
transcript.whisperx[31].text 所以請評估外匯存體有償撥用每月挹注新的帳戶至成年該帳戶的資金投入TESA累積福利財富並用於其成年後歸還本金的可行性國發會可不可以做一下我先問一下彭主委如果這個做了來壯大TESA你知不支持
transcript.whisperx[32].start 752.123
transcript.whisperx[32].end 771.594
transcript.whisperx[32].text 每年多二百六十四億來壯大TESA值不值得那當然這個主要是當然支持謝謝來我們現在高副主委是朝這個方向走高副主委可以嗎可以做得到嗎一個月內我們一個月提出書面報告好謝謝那部長您今天可以回去安心可以好好的微笑著入眠幫你的未來三十年國家投資未來的納稅人謝謝