iVOD / 166870

Field Value
IVOD_ID 166870
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166870
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T09:55:45+08:00
結束時間 2026-01-07T10:07:34+08:00
影片長度 00:11:49
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468f1c9f6ca19377f4765d44f5a94e3adf353ec197a1c72cb6c4a7f691524d59037b5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 郭國文
委員發言時間 09:55:45 - 10:07:34
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 0.55409375
transcript.pyannote[0].end 1.17846875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 10.49346875
transcript.pyannote[1].end 14.39159375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 18.64409375
transcript.pyannote[2].end 65.32034375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 65.59034375
transcript.pyannote[3].end 73.82534375
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 71.58096875
transcript.pyannote[4].end 71.69909375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 71.80034375
transcript.pyannote[5].end 71.81721875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 74.23034375
transcript.pyannote[6].end 78.26346875
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 78.73596875
transcript.pyannote[7].end 80.13659375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 80.54159375
transcript.pyannote[8].end 89.97471875
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 89.97471875
transcript.pyannote[9].end 110.03909375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 103.33971875
transcript.pyannote[10].end 104.20034375
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 110.03909375
transcript.pyannote[11].end 110.89971875
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 111.20346875
transcript.pyannote[12].end 170.09721875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 117.56534375
transcript.pyannote[13].end 120.82221875
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 170.56971875
transcript.pyannote[14].end 171.93659375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 172.15596875
transcript.pyannote[15].end 173.20221875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 173.43846875
transcript.pyannote[16].end 173.60721875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 173.60721875
transcript.pyannote[17].end 174.51846875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 175.39596875
transcript.pyannote[18].end 176.54346875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 177.11721875
transcript.pyannote[19].end 177.89346875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 178.24784375
transcript.pyannote[20].end 179.09159375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 178.46721875
transcript.pyannote[21].end 179.39534375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 179.91846875
transcript.pyannote[22].end 180.27284375
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 180.44159375
transcript.pyannote[23].end 181.47096875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 181.47096875
transcript.pyannote[24].end 186.02721875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 183.76596875
transcript.pyannote[25].end 184.37346875
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 185.21721875
transcript.pyannote[26].end 185.94284375
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 186.02721875
transcript.pyannote[27].end 186.34784375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 186.98909375
transcript.pyannote[28].end 187.20846875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 187.39409375
transcript.pyannote[29].end 187.42784375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 187.42784375
transcript.pyannote[30].end 188.52471875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 187.59659375
transcript.pyannote[31].end 187.81596875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 189.23346875
transcript.pyannote[32].end 189.31784375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 189.57096875
transcript.pyannote[33].end 192.42284375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 192.42284375
transcript.pyannote[34].end 192.67596875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 192.67596875
transcript.pyannote[35].end 193.31721875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 194.85284375
transcript.pyannote[36].end 195.24096875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 196.27034375
transcript.pyannote[37].end 196.79346875
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 196.92846875
transcript.pyannote[38].end 197.80596875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 197.99159375
transcript.pyannote[39].end 214.96784375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 214.96784375
transcript.pyannote[40].end 220.63784375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 219.97971875
transcript.pyannote[41].end 241.76534375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 242.27159375
transcript.pyannote[42].end 242.87909375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 243.48659375
transcript.pyannote[43].end 244.02659375
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 244.61721875
transcript.pyannote[44].end 244.98846875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 245.39346875
transcript.pyannote[45].end 246.00096875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 246.72659375
transcript.pyannote[46].end 247.97534375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 247.97534375
transcript.pyannote[47].end 261.99846875
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 256.88534375
transcript.pyannote[48].end 257.25659375
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 261.99846875
transcript.pyannote[49].end 262.48784375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 262.35284375
transcript.pyannote[50].end 269.18721875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 264.22596875
transcript.pyannote[51].end 264.58034375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 269.18721875
transcript.pyannote[52].end 269.23784375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 269.23784375
transcript.pyannote[53].end 270.87471875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 269.45721875
transcript.pyannote[54].end 277.00034375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 277.08471875
transcript.pyannote[55].end 290.29784375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 292.18784375
transcript.pyannote[56].end 309.55221875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 309.21471875
transcript.pyannote[57].end 309.63659375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 309.63659375
transcript.pyannote[58].end 309.80534375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 309.80534375
transcript.pyannote[59].end 315.64409375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 315.64409375
transcript.pyannote[60].end 315.84659375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 315.84659375
transcript.pyannote[61].end 317.80409375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 316.52159375
transcript.pyannote[62].end 337.21034375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 318.27659375
transcript.pyannote[63].end 320.21721875
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 320.52096875
transcript.pyannote[64].end 320.65596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 320.85846875
transcript.pyannote[65].end 320.89221875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 337.21034375
transcript.pyannote[66].end 337.63221875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 337.63221875
transcript.pyannote[67].end 337.64909375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 337.64909375
transcript.pyannote[68].end 337.69971875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 337.69971875
transcript.pyannote[69].end 338.49284375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 337.93596875
transcript.pyannote[70].end 353.03909375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 341.15909375
transcript.pyannote[71].end 341.69909375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 353.03909375
transcript.pyannote[72].end 362.13471875
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 361.69596875
transcript.pyannote[73].end 362.50596875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 362.50596875
transcript.pyannote[74].end 384.83159375
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 362.96159375
transcript.pyannote[75].end 364.58159375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 367.72034375
transcript.pyannote[76].end 367.97346875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 375.36471875
transcript.pyannote[77].end 375.43221875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 375.43221875
transcript.pyannote[78].end 375.65159375
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 384.83159375
transcript.pyannote[79].end 385.74284375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 385.18596875
transcript.pyannote[80].end 386.60346875
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 386.80596875
transcript.pyannote[81].end 393.08346875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 390.65346875
transcript.pyannote[82].end 391.07534375
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 393.26909375
transcript.pyannote[83].end 398.28096875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 395.12534375
transcript.pyannote[84].end 395.26034375
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 395.26034375
transcript.pyannote[85].end 395.36159375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 395.36159375
transcript.pyannote[86].end 395.39534375
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 397.72409375
transcript.pyannote[87].end 397.97721875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 398.36534375
transcript.pyannote[88].end 405.03096875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 405.03096875
transcript.pyannote[89].end 414.37971875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 414.66659375
transcript.pyannote[90].end 417.58596875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 418.02471875
transcript.pyannote[91].end 423.39096875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 422.71596875
transcript.pyannote[92].end 450.84659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 425.12909375
transcript.pyannote[93].end 425.46659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 426.88409375
transcript.pyannote[94].end 427.22159375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 431.47409375
transcript.pyannote[95].end 431.69346875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 451.60596875
transcript.pyannote[96].end 455.77409375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 456.38159375
transcript.pyannote[97].end 462.99659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 463.63784375
transcript.pyannote[98].end 466.96221875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 466.03409375
transcript.pyannote[99].end 478.13346875
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 469.15596875
transcript.pyannote[100].end 469.67909375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 471.02909375
transcript.pyannote[101].end 471.58596875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 472.51409375
transcript.pyannote[102].end 472.68284375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 472.68284375
transcript.pyannote[103].end 472.71659375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 473.05409375
transcript.pyannote[104].end 473.30721875
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 477.20534375
transcript.pyannote[105].end 495.98721875
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 496.22346875
transcript.pyannote[106].end 496.93221875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 497.21909375
transcript.pyannote[107].end 497.33721875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 497.33721875
transcript.pyannote[108].end 498.77159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 498.87284375
transcript.pyannote[109].end 506.58471875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 506.75346875
transcript.pyannote[110].end 507.14159375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 507.95159375
transcript.pyannote[111].end 507.96846875
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 507.96846875
transcript.pyannote[112].end 521.78909375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 522.16034375
transcript.pyannote[113].end 536.09909375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 537.07784375
transcript.pyannote[114].end 537.34784375
transcript.pyannote[115].speaker SPEAKER_04
transcript.pyannote[115].start 538.10721875
transcript.pyannote[115].end 563.48721875
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 560.21346875
transcript.pyannote[116].end 576.22784375
transcript.pyannote[117].speaker SPEAKER_04
transcript.pyannote[117].start 568.85346875
transcript.pyannote[117].end 570.42284375
transcript.pyannote[118].speaker SPEAKER_04
transcript.pyannote[118].start 572.24534375
transcript.pyannote[118].end 572.61659375
transcript.pyannote[119].speaker SPEAKER_04
transcript.pyannote[119].start 575.53596875
transcript.pyannote[119].end 578.08409375
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 576.63284375
transcript.pyannote[120].end 602.09721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 602.41784375
transcript.pyannote[121].end 604.62846875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 604.62846875
transcript.pyannote[122].end 610.51784375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 607.85159375
transcript.pyannote[123].end 657.68346875
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 612.17159375
transcript.pyannote[124].end 612.30659375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 625.31721875
transcript.pyannote[125].end 625.36784375
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 626.49846875
transcript.pyannote[126].end 628.11846875
transcript.pyannote[127].speaker SPEAKER_04
transcript.pyannote[127].start 658.62846875
transcript.pyannote[127].end 661.61534375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 661.09221875
transcript.pyannote[128].end 661.71659375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 661.73346875
transcript.pyannote[129].end 661.76721875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 661.78409375
transcript.pyannote[130].end 663.47159375
transcript.pyannote[131].speaker SPEAKER_03
transcript.pyannote[131].start 664.01159375
transcript.pyannote[131].end 665.17596875
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 665.17596875
transcript.pyannote[132].end 668.50034375
transcript.pyannote[133].speaker SPEAKER_03
transcript.pyannote[133].start 665.96909375
transcript.pyannote[133].end 673.52909375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 673.05659375
transcript.pyannote[134].end 674.06909375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 674.72721875
transcript.pyannote[135].end 676.70159375
transcript.pyannote[136].speaker SPEAKER_01
transcript.pyannote[136].start 675.75659375
transcript.pyannote[136].end 678.35534375
transcript.pyannote[137].speaker SPEAKER_03
transcript.pyannote[137].start 677.14034375
transcript.pyannote[137].end 677.91659375
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 679.13159375
transcript.pyannote[138].end 681.51096875
transcript.pyannote[139].speaker SPEAKER_03
transcript.pyannote[139].start 682.01721875
transcript.pyannote[139].end 690.77534375
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 683.16471875
transcript.pyannote[140].end 683.51909375
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 687.04596875
transcript.pyannote[141].end 687.92346875
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 689.83034375
transcript.pyannote[142].end 690.89346875
transcript.pyannote[143].speaker SPEAKER_03
transcript.pyannote[143].start 690.85971875
transcript.pyannote[143].end 693.79596875
transcript.pyannote[144].speaker SPEAKER_03
transcript.pyannote[144].start 695.80409375
transcript.pyannote[144].end 696.32721875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 696.58034375
transcript.pyannote[145].end 697.05284375
transcript.pyannote[146].speaker SPEAKER_03
transcript.pyannote[146].start 697.05284375
transcript.pyannote[146].end 697.74471875
transcript.pyannote[147].speaker SPEAKER_01
transcript.pyannote[147].start 697.74471875
transcript.pyannote[147].end 698.30159375
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 697.77846875
transcript.pyannote[148].end 697.82909375
transcript.pyannote[149].speaker SPEAKER_03
transcript.pyannote[149].start 697.93034375
transcript.pyannote[149].end 700.32659375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 699.43221875
transcript.pyannote[150].end 701.49096875
transcript.pyannote[151].speaker SPEAKER_03
transcript.pyannote[151].start 702.06471875
transcript.pyannote[151].end 704.52846875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 704.27534375
transcript.pyannote[152].end 708.54471875
transcript.pyannote[153].speaker SPEAKER_00
transcript.pyannote[153].start 708.54471875
transcript.pyannote[153].end 709.37159375
transcript.whisperx[0].start 10.988
transcript.whisperx[0].end 14.239
transcript.whisperx[0].text 謝主席有請彭主委請彭主委
transcript.whisperx[1].start 18.686
transcript.whisperx[1].end 41.92
transcript.whisperx[1].text 委員長主委長 討論到今天的主題其實受險之所以不願意回流投資的原因一來 國內投資標的非常有限二來 他為了投資預定利率比較高的地方卻是有高風險的情況底下由於形成了過去過度高利的債券然後過度的吸金 過度的曝險才會有過度的避險這是惡性循環的問題
transcript.whisperx[2].start 43.101
transcript.whisperx[2].end 69.835
transcript.whisperx[2].text 即便如果你現在修正了這個會計原則的一個定義那會計界也配合你的情況底下但我們如果沒有解決這個過度曝險的問題其實可能會讓問題更加的惡化所以本席先提醒一下這個彭主委彭主委就像最近討論到委內瑞拉的問題當中本席就要就教於您了委內瑞拉這個部分金融業部分就銀行業的部分總共在委內瑞拉曝險總共145億
transcript.whisperx[3].start 71.816
transcript.whisperx[3].end 86.223
transcript.whisperx[3].text 其中單一業者金額就超過135億投資什麼什麼項目都不清楚這種曝險的情況底下讓整個存款戶會憂心忡忡到底我這一家有沒有中標
transcript.whisperx[4].start 88.365
transcript.whisperx[4].end 106.457
transcript.whisperx[4].text 這個問題主委你有沒有特別去注意它當然這個事情一發生以後我們第一時間就開始去了解因為這已經不是第一次前一陣子南非比如說俄羅斯其實我們都很關注我們充分的掌握這些那到底投資的是什麼它是主要投資國際開發銀行的債券國際開發銀行債券那債券的等級又怎麼樣
transcript.whisperx[5].start 111.5
transcript.whisperx[5].end 119.423
transcript.whisperx[5].text 這個等級應該是AA吧AA 那就我們比較放心就是要披露啊可是呢主要是牽涉到委內瑞拉有AA的還好你如果WB的你就慘了你去看一下哥倫比亞的哥倫比亞目前曝險的金額高達是1385億1385億單一的業者你知道嗎就高達629億
transcript.whisperx[6].start 138.49
transcript.whisperx[6].end 158.401
transcript.whisperx[6].text 那依照目前的金控法的第46條三大金控對哥倫比亞的曝險都應該要分別揭露富邦187億國貸184億中信163億可是呢這三個看起來都是小咖了最大咖是629億不曉得是哪一個保險公司
transcript.whisperx[7].start 159.201
transcript.whisperx[7].end 186.33
transcript.whisperx[7].text 依照現在監控法當中只有監控接入保險公司不一定要接入可是我個人的評估單一鋪險業者規模可以投入投到這麼高的金額算一算 主委我們來猜一米是不是南山我請問你我們想說是不是南山對不對 對嘛我沒有說好這要跟他們確認一下對不對你就講一下就好你連這個都沒掌握629億呢
transcript.whisperx[8].start 189.678
transcript.whisperx[8].end 209.711
transcript.whisperx[8].text 對是三大金控加起來還不夠他的多呢是哪一家是南山是南山嘛這629億是南山為什麼還需要這麼拆來拆去呢有三大金融業在海外的曝險只有金控的部分要揭露里當銀行要揭露保險要揭露
transcript.whisperx[9].start 210.071
transcript.whisperx[9].end 228.829
transcript.whisperx[9].text 都應該要揭露才對啊不是嗎主委我們應該去修法對不對應該比照監控法第46條對不對我想我們會來研究那個資訊充分揭露這件事情本來就是為什麼要揭露就是說目前投資的這些高利的這個垃圾債已經降到BP級本來是BP加上BBA
transcript.whisperx[10].start 229.83
transcript.whisperx[10].end 236.597
transcript.whisperx[10].text 就是哥倫比亞的主權債還有包括國家石油債都被惠譽這個調降到雙方調到BBA統計上這個高達1385的這個垃圾債這麼高 主委你要怎麼辦
transcript.whisperx[11].start 246.952
transcript.whisperx[11].end 276.012
transcript.whisperx[11].text 三大金控再加上南山要怎麼處理我想這部分因為其實他們在整個可以投資這裡都是我們法規規定他一定有配比一定有一定的條件這本來就是一定是他們現在合規只是說配比一定的條件就高達七成了啦譬如說他投資的時候跟現在的狀況比如說會計上該認列預期損失他們就該認列但是剛剛講說主委你要如何把他特別輔導讓他負險減少把他引回來這是一個很重要的關鍵
transcript.whisperx[12].start 277.473
transcript.whisperx[12].end 289.944
transcript.whisperx[12].text 為什麼這些受險公司願意把這個錢拿去川普口中的這些毒梟集團啊而不願意回流投資這些公共的這個建設啊只因為利率高就一直投
transcript.whisperx[13].start 292.29
transcript.whisperx[13].end 309.549
transcript.whisperx[13].text 是風險於無物目前還是這樣為止你現在給他蘿蔔說修改這一個公允的原則的定義還是會計公允原則的定義可是你沒有減少他曝險的可能性這要相對來進行主委你不覺得嗎
transcript.whisperx[14].start 310.109
transcript.whisperx[14].end 336.77
transcript.whisperx[14].text 當然是 剛剛委員提到有兩個風險一個是匯率 一個是信用風險這兩個是完全不一樣的做法因為剛剛提到一個是匯率風險對 這裡是信用風險那又是信用風險對但是有沒有可能我們現在接軌IFRS 17還有包括ICS的過渡期有15年的過渡期你應該設定一個KPI或者是一個操作模式讓它要求每年逐年降低這個曝險的金額有沒有可能
transcript.whisperx[15].start 337.49
transcript.whisperx[15].end 363.075
transcript.whisperx[15].text 這機制把它融入進去這要從制度解決不是從個案解決我們來檢討一下比如說我們現在對這些比如說非投資等級的投資的比重跟投資的金額以及投資的限制這些我們從制度上來解決麻煩就從制度上來解決以減少曝險不要七成目標那麼高一直要降下來降多少好不好麻煩你研究一下就是風險跟報酬上面
transcript.whisperx[16].start 363.795
transcript.whisperx[16].end 384.117
transcript.whisperx[16].text 然後麻煩你這個方法一個月後給本席一個這內容你要如何讓他回來這是第一個第二個呢最近本席有提到這個轉大人ETF的部分我知道國發會的副主委來國發會副主委來一下你們跟衛福部還有那個金管會的主委也看我先問一下金管會主委這個彭主委你怎麼看這個案子
transcript.whisperx[17].start 385.318
transcript.whisperx[17].end 411.926
transcript.whisperx[17].text 有沒有可能跟TESA結合過去我們的TESA是著重在成年以後的第三支柱的建構那這次的重點是在於出生新生兒到他成年之前的所謂的第一桶金的建構我覺得觀念上是一致的但是我們原來做的目標是等於說不一樣不過這個東西其實上可以結合對象別不同嘛那個高富我想這個部分應該有一個確定的方向以前的衛福部這個兒少專戶應該只是存款
transcript.whisperx[18].start 414.907
transcript.whisperx[18].end 435.544
transcript.whisperx[18].text 現在要變成流量變成投資嘛這個方向定了嘛我想現在行政院正在有交由相關部會研議當中那個國會我覺得建議你在高度衛福部有他的局限性的限制應該讓金管會扮演比較大的角色啦好 現在請回我請金管會主委主委你如果說比照TESA就會出現一個問題台灣TESA我請財政部長上來一下
transcript.whisperx[19].start 438.166
transcript.whisperx[19].end 448.492
transcript.whisperx[19].text TESA過去以NISA半年的實施我們比照NISANISA半年的實施就有727萬戶日本我們弄了半年我們才7萬戶人家的零頭差了720萬戶人家的金額是多少1.5兆的日幣總共新台幣大概是3000億我們多少搞了半年才90億
transcript.whisperx[20].start 463.697
transcript.whisperx[20].end 486.609
transcript.whisperx[20].text 主委你沒有挫折感我看的都很有挫折感其實跟我們報告我完全沒有挫折感你沒有挫折感差那麼多你沒有挫折感你這麼有信心我們對制度的建立我們在培養國人長期投資的關係原因就是誘因太低主委講白點早期我就跟你講你TESA只有手續費的經理費的部分誘因太低關鍵還是在稅人家的稅額在TESA 1.0的部分有100萬的免稅額
transcript.whisperx[21].start 491.411
transcript.whisperx[21].end 495.358
transcript.whisperx[21].text 到现在终身2.0是有1800万了终身
transcript.whisperx[22].start 497.401
transcript.whisperx[22].end 521.481
transcript.whisperx[22].text 足足是超过五百多万三百多万那个来来来那个主委你休息一下我知道不是您问题是部长的问题部长这个问题呢就是要如何股市全民受分享大家愿意投入一个很重要的东西就是在这个部分可是过去财政部过度以待所得税的部分我们整个税源的结构过度以待所得税税顺便你频频不敢放嘛
transcript.whisperx[23].start 522.242
transcript.whisperx[23].end 535.979
transcript.whisperx[23].text 你們應該稍微釋放一下這個所得稅的部分讓這個金額擴大一下才能真的讓整個TESA能夠增加之前剛剛提到了這個部分當大人ETF是小孩子你要讓全民共享的話真的要靠TESA部長
transcript.whisperx[24].start 538.411
transcript.whisperx[24].end 541.153
transcript.whisperx[24].text 跟委員報告有關TISA跟NISA的比較其實我們也做過比較那目前台灣所推現行有關各方面的稅負的優惠其實並不輸給NISA但是為了這個所謂的ETF他所謂的TISA這個部分
transcript.whisperx[25].start 554.02
transcript.whisperx[25].end 564.148
transcript.whisperx[25].text 要不要再擴大釋出有關的租稅的一些優惠的部分那才任務也和金管會一直在持續的討論所以主委要求是所得啦部長你所得的部分只要你比照勞保自體勞退自體6%的設計你用一個設計上有一個總和的設計基本上就可以吸引到很多人來加入我們的TISA部長你稍微旁邊稍微休息一下我問一下主委
transcript.whisperx[26].start 579.941
transcript.whisperx[26].end 601.689
transcript.whisperx[26].text 再拉回來說不斷是整個這個整個稅制的優惠的一個關鍵之外還有你有沒有可能泛寬標的你目前為止只有35黨的基金有18家投信業者的加入但是只侷限於基金沒有開放到台股或ETF的情況底下我覺得那個
transcript.whisperx[27].start 602.529
transcript.whisperx[27].end 626.402
transcript.whisperx[27].text 你要稍微要放寬一點這個是我們我們是一個逐步漸進的策略逐步漸進 來因為主要是我們的TESA你要怎麼逐步 我很好奇一個月的時間麻煩報告一下來 那我再請一下部長部長我剛剛讓你漏掉你TESA的這個鼓勵的部分要限額免稅的部分你說你有在評估麻煩一下 麻煩一下一個月給我報告一下給我一份報告一下 好不好好 謝謝
transcript.whisperx[28].start 627.563
transcript.whisperx[28].end 645.509
transcript.whisperx[28].text 最後一個部分也是跟部長有關係財政部長 部長慢點走主席給我一分鐘一下最後一個這很關鍵我們現在有91.4萬的空屋還沒有釋出當社宅所以說以至於讓我們社會住宅現在停擺目前多屋持有者的部分在2021 10戶以上有總共1734件1007件補稅補了1億5戶以上17603件3053戶補稅1.4億2024年18000件
transcript.whisperx[29].start 656.593
transcript.whisperx[29].end 673.621
transcript.whisperx[29].text 目前的進度怎麼樣目前進度是我請負稅署署長來幫我說明一下要划幾件 補多少稅您是說那個主任第三波 多無自由者高風險查核計畫我們才還沒 最後一季的還沒回報那上次已經是我記得那稅額是 第二次有回報
transcript.whisperx[30].start 674.793
transcript.whisperx[30].end 693.761
transcript.whisperx[30].text 因為我們是按計以回報的第二次你已經披露了可是第三次你什麼時候會披露您說是八千戶那第三波第三次的專案查核因為是兩年為期所以是到去年為止對 去年為止目前還沒回報最後的結果那大概什麼時候我們設定的日期是什麼時候回報可能要到二月二月因為他們要結案再回報那個跡象農曆過年前可以出來嗎
transcript.whisperx[31].start 702.15
transcript.whisperx[31].end 707.976
transcript.whisperx[31].text 農曆過年期 我們趕趕看好不好好 就麻煩了 那個署長謝謝部長 謝謝主委 謝謝主席