iVOD / 166857

Field Value
IVOD_ID 166857
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166857
日期 2026-01-07
會議資料.會議代碼 委員會-11-4-20-17
會議資料.會議代碼:str 第11屆第4會期財政委員會第17次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 17
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第17次全體委員會議
影片種類 Clip
開始時間 2026-01-07T09:31:46+08:00
結束時間 2026-01-07T09:43:24+08:00
影片長度 00:11:38
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8a4de0f3676b468fac45539fb02f7dde5d44f5a94e3adf3512e0cc7d569d168897002103209a870d5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:31:46 - 09:43:24
會議時間 2026-01-07T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第17次全體委員會議(事由:邀請金融監督管理委員會主任委員彭金隆、財政部部長莊翠雲、國家發展委員會副主任委員就「如何引導國內資金擴大參與公共建設及策略性產業」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 14.42534375
transcript.pyannote[0].end 16.26471875
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 16.51784375
transcript.pyannote[1].end 17.44596875
transcript.pyannote[2].speaker SPEAKER_02
transcript.pyannote[2].start 20.63534375
transcript.pyannote[2].end 20.97284375
transcript.pyannote[3].speaker SPEAKER_03
transcript.pyannote[3].start 20.97284375
transcript.pyannote[3].end 20.98971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 20.98971875
transcript.pyannote[4].end 21.00659375
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 21.00659375
transcript.pyannote[5].end 21.02346875
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 21.71534375
transcript.pyannote[6].end 22.50846875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 23.20034375
transcript.pyannote[7].end 24.48284375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 25.56284375
transcript.pyannote[8].end 31.23284375
transcript.pyannote[9].speaker SPEAKER_02
transcript.pyannote[9].start 32.36346875
transcript.pyannote[9].end 34.97909375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 35.51909375
transcript.pyannote[10].end 37.71284375
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 38.48909375
transcript.pyannote[11].end 38.91096875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 39.38346875
transcript.pyannote[12].end 44.81721875
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 44.93534375
transcript.pyannote[13].end 46.09971875
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 46.62284375
transcript.pyannote[14].end 49.57596875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 49.89659375
transcript.pyannote[15].end 53.99721875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 54.46971875
transcript.pyannote[16].end 56.14034375
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 56.59596875
transcript.pyannote[17].end 60.66284375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 61.18596875
transcript.pyannote[18].end 70.02846875
transcript.pyannote[19].speaker SPEAKER_03
transcript.pyannote[19].start 70.50096875
transcript.pyannote[19].end 71.14221875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 71.32784375
transcript.pyannote[20].end 73.90971875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 74.51721875
transcript.pyannote[21].end 78.83721875
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 79.47846875
transcript.pyannote[22].end 83.81534375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 84.13596875
transcript.pyannote[23].end 89.94096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 86.83596875
transcript.pyannote[24].end 87.02159375
transcript.pyannote[25].speaker SPEAKER_03
transcript.pyannote[25].start 89.97471875
transcript.pyannote[25].end 93.97409375
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 94.46346875
transcript.pyannote[26].end 109.95471875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 110.78159375
transcript.pyannote[27].end 112.78971875
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 113.11034375
transcript.pyannote[28].end 115.01721875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 115.48971875
transcript.pyannote[29].end 119.21909375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 119.84346875
transcript.pyannote[30].end 124.14659375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 124.50096875
transcript.pyannote[31].end 125.37846875
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 125.80034375
transcript.pyannote[32].end 127.85909375
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 128.07846875
transcript.pyannote[33].end 129.07409375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 129.59721875
transcript.pyannote[34].end 130.93034375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 131.50409375
transcript.pyannote[35].end 132.04409375
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 132.76971875
transcript.pyannote[36].end 133.84971875
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 134.44034375
transcript.pyannote[37].end 137.00534375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 137.49471875
transcript.pyannote[38].end 139.95846875
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 140.61659375
transcript.pyannote[39].end 143.43471875
transcript.pyannote[40].speaker SPEAKER_03
transcript.pyannote[40].start 143.89034375
transcript.pyannote[40].end 144.75096875
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 144.16034375
transcript.pyannote[41].end 150.20159375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 150.20159375
transcript.pyannote[42].end 155.39909375
transcript.pyannote[43].speaker SPEAKER_03
transcript.pyannote[43].start 155.68596875
transcript.pyannote[43].end 166.16534375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 166.77284375
transcript.pyannote[44].end 171.75096875
transcript.pyannote[45].speaker SPEAKER_02
transcript.pyannote[45].start 171.31221875
transcript.pyannote[45].end 173.53971875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 173.70846875
transcript.pyannote[46].end 179.37846875
transcript.pyannote[47].speaker SPEAKER_03
transcript.pyannote[47].start 179.51346875
transcript.pyannote[47].end 184.84596875
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 185.03159375
transcript.pyannote[48].end 190.53284375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 190.17846875
transcript.pyannote[49].end 195.88221875
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 196.35471875
transcript.pyannote[50].end 197.18159375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 197.80596875
transcript.pyannote[51].end 198.29534375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 198.51471875
transcript.pyannote[52].end 200.30346875
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 200.53971875
transcript.pyannote[53].end 214.81596875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 209.83784375
transcript.pyannote[54].end 209.90534375
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 215.49096875
transcript.pyannote[55].end 221.54909375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 222.07221875
transcript.pyannote[56].end 245.78159375
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 246.28784375
transcript.pyannote[57].end 249.96659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 250.74284375
transcript.pyannote[58].end 258.03284375
transcript.pyannote[59].speaker SPEAKER_03
transcript.pyannote[59].start 258.40409375
transcript.pyannote[59].end 264.14159375
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 264.47909375
transcript.pyannote[60].end 267.82034375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 268.19159375
transcript.pyannote[61].end 274.19909375
transcript.pyannote[62].speaker SPEAKER_03
transcript.pyannote[62].start 274.68846875
transcript.pyannote[62].end 284.47596875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 285.23534375
transcript.pyannote[63].end 285.70784375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 285.70784375
transcript.pyannote[64].end 288.28971875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 288.76221875
transcript.pyannote[65].end 289.25159375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 289.67346875
transcript.pyannote[66].end 292.15409375
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 292.66034375
transcript.pyannote[67].end 294.38159375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 294.58409375
transcript.pyannote[68].end 295.69784375
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 295.90034375
transcript.pyannote[69].end 299.74784375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 300.01784375
transcript.pyannote[70].end 307.12221875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 307.42596875
transcript.pyannote[71].end 308.40471875
transcript.pyannote[72].speaker SPEAKER_02
transcript.pyannote[72].start 308.65784375
transcript.pyannote[72].end 311.72909375
transcript.pyannote[73].speaker SPEAKER_02
transcript.pyannote[73].start 312.40409375
transcript.pyannote[73].end 313.36596875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 313.88909375
transcript.pyannote[74].end 315.69471875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 315.89721875
transcript.pyannote[75].end 321.75284375
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 322.07346875
transcript.pyannote[76].end 323.57534375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 324.52034375
transcript.pyannote[77].end 327.50721875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 326.57909375
transcript.pyannote[78].end 327.87846875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 328.16534375
transcript.pyannote[79].end 329.51534375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 330.67971875
transcript.pyannote[80].end 330.69659375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 330.69659375
transcript.pyannote[81].end 331.54034375
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 331.99596875
transcript.pyannote[82].end 334.45971875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 335.57346875
transcript.pyannote[83].end 338.96534375
transcript.pyannote[84].speaker SPEAKER_02
transcript.pyannote[84].start 339.58971875
transcript.pyannote[84].end 342.03659375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 342.25596875
transcript.pyannote[85].end 343.74096875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 344.06159375
transcript.pyannote[86].end 349.79909375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 349.95096875
transcript.pyannote[87].end 358.60784375
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 357.81471875
transcript.pyannote[88].end 358.11846875
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 358.87784375
transcript.pyannote[89].end 363.61971875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 363.68721875
transcript.pyannote[90].end 366.06659375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 365.64471875
transcript.pyannote[91].end 366.11721875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 366.11721875
transcript.pyannote[92].end 369.03659375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 366.13409375
transcript.pyannote[93].end 366.15096875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 369.03659375
transcript.pyannote[94].end 369.66096875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 369.22221875
transcript.pyannote[95].end 377.37284375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 377.94659375
transcript.pyannote[96].end 387.16034375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 387.80159375
transcript.pyannote[97].end 389.50596875
transcript.pyannote[98].speaker SPEAKER_02
transcript.pyannote[98].start 389.99534375
transcript.pyannote[98].end 391.09221875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 391.71659375
transcript.pyannote[99].end 394.87221875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 395.19284375
transcript.pyannote[100].end 396.94784375
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 397.77471875
transcript.pyannote[101].end 405.57096875
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 406.16159375
transcript.pyannote[102].end 406.60034375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 407.14034375
transcript.pyannote[103].end 411.56159375
transcript.pyannote[104].speaker SPEAKER_02
transcript.pyannote[104].start 411.83159375
transcript.pyannote[104].end 412.69221875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 413.01284375
transcript.pyannote[105].end 421.21409375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 422.22659375
transcript.pyannote[106].end 422.26034375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 422.54721875
transcript.pyannote[107].end 429.21284375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 429.21284375
transcript.pyannote[108].end 439.08471875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 439.62471875
transcript.pyannote[109].end 447.04971875
transcript.pyannote[110].speaker SPEAKER_02
transcript.pyannote[110].start 444.87284375
transcript.pyannote[110].end 446.59409375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 447.25221875
transcript.pyannote[111].end 449.59784375
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 450.00284375
transcript.pyannote[112].end 451.84221875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 451.90971875
transcript.pyannote[113].end 456.04409375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 452.19659375
transcript.pyannote[114].end 452.28096875
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 453.31034375
transcript.pyannote[115].end 453.52971875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 456.87096875
transcript.pyannote[116].end 462.59159375
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 462.76034375
transcript.pyannote[117].end 464.38034375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 464.66721875
transcript.pyannote[118].end 467.01284375
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 465.52784375
transcript.pyannote[119].end 472.44659375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 472.44659375
transcript.pyannote[120].end 476.07471875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 475.31534375
transcript.pyannote[121].end 480.10784375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 476.66534375
transcript.pyannote[122].end 476.73284375
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 480.05721875
transcript.pyannote[123].end 487.36409375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 487.51596875
transcript.pyannote[124].end 493.42221875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 488.02221875
transcript.pyannote[125].end 488.32596875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 491.66721875
transcript.pyannote[126].end 491.90346875
transcript.pyannote[127].speaker SPEAKER_02
transcript.pyannote[127].start 494.31659375
transcript.pyannote[127].end 497.72534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 497.05034375
transcript.pyannote[128].end 503.24346875
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 503.85096875
transcript.pyannote[129].end 505.23471875
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 506.80409375
transcript.pyannote[130].end 507.71534375
transcript.pyannote[131].speaker SPEAKER_02
transcript.pyannote[131].start 511.37721875
transcript.pyannote[131].end 520.15221875
transcript.pyannote[132].speaker SPEAKER_02
transcript.pyannote[132].start 520.96221875
transcript.pyannote[132].end 523.15596875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 523.44284375
transcript.pyannote[133].end 525.85596875
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 526.15971875
transcript.pyannote[134].end 528.40409375
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 528.96096875
transcript.pyannote[135].end 531.69471875
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 531.81284375
transcript.pyannote[136].end 535.25534375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 534.12471875
transcript.pyannote[137].end 539.81159375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 540.45284375
transcript.pyannote[138].end 544.19909375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 544.60409375
transcript.pyannote[139].end 546.24096875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 546.47721875
transcript.pyannote[140].end 551.42159375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 546.64596875
transcript.pyannote[141].end 546.83159375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 551.65784375
transcript.pyannote[142].end 553.78409375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 554.15534375
transcript.pyannote[143].end 556.65284375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 556.99034375
transcript.pyannote[144].end 557.61471875
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 557.69909375
transcript.pyannote[145].end 559.72409375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 559.82534375
transcript.pyannote[146].end 561.25971875
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 561.66471875
transcript.pyannote[147].end 562.08659375
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 562.59284375
transcript.pyannote[148].end 564.29721875
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 565.20846875
transcript.pyannote[149].end 576.73409375
transcript.pyannote[150].speaker SPEAKER_00
transcript.pyannote[150].start 570.49034375
transcript.pyannote[150].end 570.79409375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 576.97034375
transcript.pyannote[151].end 582.50534375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 583.11284375
transcript.pyannote[152].end 585.88034375
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 586.96034375
transcript.pyannote[153].end 588.79971875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 588.98534375
transcript.pyannote[154].end 594.87471875
transcript.pyannote[155].speaker SPEAKER_03
transcript.pyannote[155].start 595.58346875
transcript.pyannote[155].end 602.65409375
transcript.pyannote[156].speaker SPEAKER_03
transcript.pyannote[156].start 603.10971875
transcript.pyannote[156].end 621.03096875
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 607.81784375
transcript.pyannote[157].end 608.69534375
transcript.pyannote[158].speaker SPEAKER_02
transcript.pyannote[158].start 621.90846875
transcript.pyannote[158].end 624.03471875
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 624.38909375
transcript.pyannote[159].end 632.50596875
transcript.pyannote[160].speaker SPEAKER_03
transcript.pyannote[160].start 632.50596875
transcript.pyannote[160].end 633.82221875
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 633.50159375
transcript.pyannote[161].end 641.93909375
transcript.pyannote[162].speaker SPEAKER_02
transcript.pyannote[162].start 642.46221875
transcript.pyannote[162].end 646.57971875
transcript.pyannote[163].speaker SPEAKER_03
transcript.pyannote[163].start 646.14096875
transcript.pyannote[163].end 655.13534375
transcript.pyannote[164].speaker SPEAKER_03
transcript.pyannote[164].start 655.47284375
transcript.pyannote[164].end 663.79221875
transcript.pyannote[165].speaker SPEAKER_03
transcript.pyannote[165].start 664.28159375
transcript.pyannote[165].end 667.28534375
transcript.pyannote[166].speaker SPEAKER_03
transcript.pyannote[166].start 667.53846875
transcript.pyannote[166].end 669.19221875
transcript.pyannote[167].speaker SPEAKER_03
transcript.pyannote[167].start 669.41159375
transcript.pyannote[167].end 673.24221875
transcript.pyannote[168].speaker SPEAKER_02
transcript.pyannote[168].start 673.59659375
transcript.pyannote[168].end 674.08596875
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 674.23784375
transcript.pyannote[169].end 679.63784375
transcript.pyannote[170].speaker SPEAKER_02
transcript.pyannote[170].start 680.16096875
transcript.pyannote[170].end 698.23409375
transcript.pyannote[171].speaker SPEAKER_01
transcript.pyannote[171].start 693.99846875
transcript.pyannote[171].end 694.26846875
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 697.28909375
transcript.pyannote[172].end 699.97221875
transcript.pyannote[173].speaker SPEAKER_00
transcript.pyannote[173].start 698.26784375
transcript.pyannote[173].end 698.28471875
transcript.whisperx[0].start 14.417
transcript.whisperx[0].end 33.754
transcript.whisperx[0].text 主席 麻煩請進委會 彭主委請彭主委委員好主委好這開2026年之後這幾天的股市的成交金額都放得蠻大的前兩年都超過8000億就是這個證交所跟OTC這邊加起來
transcript.whisperx[1].start 38.547
transcript.whisperx[1].end 49.206
transcript.whisperx[1].text 那這個資金突然之間增加這麼多就一天大概至少增加了兩三千億的成交額有沒有了解這個金額資金是從哪裡來
transcript.whisperx[2].start 50.066
transcript.whisperx[2].end 78.584
transcript.whisperx[2].text 當然我們也看到今年跟去年來應該講114年跟113年我們看出比如說外資的參與比率是提高了就是我們2013年大概45%左右然後去年大概48%左右我想這部分大概外資參與程度是比較高當然這個比重假設我們看去年跟前年來比的話其實去年的平均成交量跟
transcript.whisperx[3].start 79.545
transcript.whisperx[3].end 91.357
transcript.whisperx[3].text 跟前年幾乎是差不多只差了大概一點點大概平均的日成交量大概4100億左右那只是後面這幾天比較多一點那這個狀況大概還是在一個比較正常當然
transcript.whisperx[4].start 95.101
transcript.whisperx[4].end 117.701
transcript.whisperx[4].text 開年後這幾個交易日確實是成交量比較大一點我想大概是因為可以看到不過從平均來看的話大概應該還是在一個狀態剛才委員提到了外資其實參與台股的交易的持股比例是提高中因素很多有人說這跟ETF發行很多ETF所以他們要建倉
transcript.whisperx[5].start 119.915
transcript.whisperx[5].end 142.867
transcript.whisperx[5].text 另外就是說外資因為過去元旦期間跟聖誕節期間是放假現在回來發現台灣股市大好所以就趕快來把他的股份建立基本的架構不過據統計前兩年外資對台灣的股市都賣超級千億
transcript.whisperx[6].start 144.316
transcript.whisperx[6].end 163.873
transcript.whisperx[6].text 所以增加投資跟到最後的結果是賺了不少錢走是不是這樣是的 因為其實所謂的外資它都是大概一個長線的投資去年的話我們剛剛同仁應該揭露一個數字大概4000多億就是他賣超但是前年是6000多億但是他淨匯入還是淨增加
transcript.whisperx[7].start 166.835
transcript.whisperx[7].end 192.122
transcript.whisperx[7].text 等於說其實台股的因為外資持股比例已經將近剛才跟委員報告將近五成他賣超前沒有離開台灣匯入還增加他parking在台灣是幹嘛是認為台灣他還有匯差可以賺是不是台灣的股市確實剛才委員提到也不是說台灣股市獨強各位可以看到跟國際上這些比如說現在的趨勢是密切相關的這代表外資看好台灣因為台灣去年的GDP成長是7.37如果照主計
transcript.whisperx[8].start 196.563
transcript.whisperx[8].end 214.395
transcript.whisperx[8].text 總之現在發表的估計值今年還有3.7多這個都是全世界算是在發達國家裡面是非常好的成績所以人家來這邊投資很合理那剛剛我跟我的同仁看法不一樣就是說台灣的傳統產業遇到一些瓶頸
transcript.whisperx[9].start 215.543
transcript.whisperx[9].end 236.535
transcript.whisperx[9].text 很多原因啦關稅只是其中一項我認為最重要的原因是因為中國的大量傾銷中國現在他就製造業過剩啊把全世界以零為貨歐盟哪裡一帶一路都大量在傾銷這些東西這個使得我們在傳統產業領域加上現在因為這個電商包裹這方面的發達讓
transcript.whisperx[10].start 238.536
transcript.whisperx[10].end 257.854
transcript.whisperx[10].text 台灣這邊的這個製造業者反而他的稅金還比這些電商還要重本來成本就比人家重了 稅又比人家重然後他的 他所要經營這些成本就更高所以我們的傳產要深入去了解他的複雜藝術很多我認為中國的傾銷如何能夠克服這是政府的責任
transcript.whisperx[11].start 258.464
transcript.whisperx[11].end 284.35
transcript.whisperx[11].text 其实像委员讲的没错我们也关注我们其他过去我们传统比较类似的竞争的国家像比如韩国日本其实上我们也看到股市里面确实它的传产的部分确实也跟我们面临到相同的竞争力比较差的问题我想传产在面对到整个科技趋势的时候它本来相对的在不管资本市场或者在被未来预期的关注度上都是比较不一样这不是台湾所独有的
transcript.whisperx[12].start 285.325
transcript.whisperx[12].end 311.041
transcript.whisperx[12].text 是啦 那所以政府當然在科技高科技領域發展的很好那原來的傳統產業他因為被大量傾銷被用低價這樣子來進攻然後等等問題所以我們台灣的政府應該是要想辦法讓我們的產業我們的業者可以在這個經營上面獲得一定的保障跟優勢
transcript.whisperx[13].start 312.472
transcript.whisperx[13].end 327.678
transcript.whisperx[13].text 你看現在那個電商的這些包裹歐洲 美國 澳洲都在對中國來的這些大量的電商包裹都在出招啊那台灣政府有什麼招呢這跟委員抱歉 這可能不是經過委員會的沒關係 那請那個莊部長來回答一下請莊部長落地了沒啊 我跟總諮詢的時候
transcript.whisperx[14].start 335.692
transcript.whisperx[14].end 341.936
transcript.whisperx[14].text 問院長院長答應了就到底這些電商到底全部落地了沒啊什麼時候可以完成我的要求院長的答應跟委員報告有關境外電商落地的部分那他要在能夠這邊落地要經過經濟部的一個審核那目前來說有部分電商已經落地譬如譬如說像蝦皮還有coupon那有部分因為在審核的法規的部分所以沒有完成落地登記
transcript.whisperx[15].start 363.717
transcript.whisperx[15].end 386.924
transcript.whisperx[15].text 但是我在總執行的時候你也在旁邊嘛是卓院長有答應我要要求他們趕快落地如果這樣子既然已經承諾了除非他要改變承諾了不然你法令上面該修改修改我跟你說用一個理由說好像鴕鳥這樣的心態說因為我不贊成中國的電商來台灣所以我就不讓他落地那消費者問題是消費者要消費除非你能夠把他的網路給禁掉不可能嘛所以
transcript.whisperx[16].start 390.066
transcript.whisperx[16].end 396.435
transcript.whisperx[16].text 你這樣子讓這一些不落地的電商他的成本減輕然後他要負的責任減少
transcript.whisperx[17].start 397.81
transcript.whisperx[17].end 419.817
transcript.whisperx[17].text 那其實對台灣的消費者傷害另外一方面對台灣者這個他的成本減少就是對台灣的業者不公平啊對人家要落地人家要增加這些成本的就變成不公平的競爭啊這一部分是不是應該要趕快去進行而不是總諮詢每半年問一次然後難道要下一次的總諮詢我再問他說不好意思做不出來
transcript.whisperx[18].start 423.145
transcript.whisperx[18].end 437.931
transcript.whisperx[18].text 那我想委員這個關注我們都了解我們也在檢討相關的一些作業部分那你有沒有注意到美國我剛剛問的問題美國澳洲跟歐盟都在對這個大量的包裹對中國的大量包裹那個彭主委你先稍微請回座
transcript.whisperx[19].start 441.108
transcript.whisperx[19].end 455.542
transcript.whisperx[19].text 對於這個小兒包裹低價免稅這個部分目前不是只有低價免稅人家這些地方都在對這個中國大量的這個包裹在出招稅只是其中的一項而已並不是全部
transcript.whisperx[20].start 457.603
transcript.whisperx[20].end 479.837
transcript.whisperx[20].text 你剛剛講的這個小額包裹的免稅因為我知道現在你們的規定限制很多一年是不是半年六次然後金額是多少問題是你也沒辦法查驗他的金額他申報多少你就當作他是多少也有在課稅的那你除非有辦法追蹤到他的金流不然你怎麼知道他這個包裹來是賣多少錢
transcript.whisperx[21].start 480.297
transcript.whisperx[21].end 498.104
transcript.whisperx[21].text 我想這個部分 有關電商平台的管理數位部也一直在尋求一個精進的一個方式是啦 那我剛剛問的問題你還沒回答你有什麼準備要對他們出什麼招呢人家美國 歐盟 澳洲這些大的經濟體都在對他出招 人家台灣好像半點點委員 這我們會跨部會的來做討論 是好 那你先請回座謝謝委員來繼續請彭主委好 再請彭主委
transcript.whisperx[22].start 511.451
transcript.whisperx[22].end 539.185
transcript.whisperx[22].text 其實主委你的專業是在那個保險資金的這個運用方面因為你是保險方面的這個學者嘛所以對這方面了解比較多剛剛我看你那個報告這不忍阻堵台灣可以投資的是五點多兆結果你的金額裡面現在才一千多億一千五百多億給你算起來是三趴啊對確實這一直都是因為國內的標的那你有沒有了解原因是什麼我覺得原因就是其實人家將本求利人家是要賺錢
transcript.whisperx[23].start 540.532
transcript.whisperx[23].end 563.913
transcript.whisperx[23].text 如果你給人家的案子人家賺不了錢或是有別的地方比較好賺他來投資你這個東西幹嘛因為保險業他是要賺到穩定的資金讓他來保險人將來可以獲得這個保險金額公司也永續經營當然公司另外一個目的是要賺錢可以分配給股東所以公司是盈利事業
transcript.whisperx[24].start 565.25
transcript.whisperx[24].end 585.424
transcript.whisperx[24].text 你要想到這一點所以你的東西如果不能讓人家賺錢人家是沒有興趣的所以你說你把它開放到社會福利方面台灣的社會福利就不是要賺錢的目的你去給他看衛福部的社會福利方面社會福利它的開宗明義不是要賺錢所以你把社會福利的部分打開讓他能夠投資
transcript.whisperx[25].start 587.168
transcript.whisperx[25].end 608.869
transcript.whisperx[25].text 賺不了什麼錢人家就不會來這跟委員報告一下其實這個中間問題確實蠻複雜的我只是說其實整個保險業他整個資產的配置組合裡面他有各式各樣的組合其實我們就像比如他買公債公債的報酬這麼低他還是要買這是他整個組合裡面會有一個基礎的那個是穩定的部分
transcript.whisperx[26].start 609.229
transcript.whisperx[26].end 620.499
transcript.whisperx[26].text 它會有基礎 會有攻擊型的這些不一樣的配置但是我們希望把導演回來不是只有這個長照因為長照有很多是比如說它要提高服務的倒不是真的要涉入到長照的經營
transcript.whisperx[27].start 622.117
transcript.whisperx[27].end 639.973
transcript.whisperx[27].text 還是一句老話 因為時間到了啦在台灣多想一些投資管道給人家我們免得一直要投資到外國 尤其是美國那避險的成本真的很高每一年匯率 為了規避匯率風險所以要買避險那個花的成本都是 我覺得說在台灣多幾百萬在台灣投資
transcript.whisperx[28].start 642.535
transcript.whisperx[28].end 666.243
transcript.whisperx[28].text 多一些在台灣投資那個避險的這些成本就可以降低跟我們報告其實我們經過這一段努力我們的其實我們的去年到現在國外投資比例從62降到59其實已經有一些開始在改進而且其實我們也跟保險業講說其實未來你必須要把這個東西的不匹配要把它轉回來其實他們已經開始在做努力我覺得像我們看到最新的數字大概是來到59
transcript.whisperx[29].start 667.865
transcript.whisperx[29].end 672.965
transcript.whisperx[29].text 比去年前期大概少了2點多%其實也是一個好的現象
transcript.whisperx[30].start 673.689
transcript.whisperx[30].end 697.728
transcript.whisperx[30].text 是啦那台灣我剛剛一開始講經濟成長率這麼高台灣是一個很好投資的地方啊是你現在是捧著豬頭找不到廟門啦大家錢那麼多不知道要投資哪裡啊我說這個保險公司每個錢那麼多他不知道哪裡可以有好的這個標的可以投資那主席今天排這個這個是有道理的啊是讓大家研討希望我們大家要一起加油好不好是是好謝謝謝謝好呃謝謝伍偉