iVOD / 166793

Field Value
IVOD_ID 166793
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166793
日期 2026-01-05
會議資料.會議代碼 委員會-11-4-20-16
會議資料.會議代碼:str 第11屆第4會期財政委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第16次全體委員會議
影片種類 Clip
開始時間 2026-01-05T11:17:28+08:00
結束時間 2026-01-05T11:29:37+08:00
影片長度 00:12:09
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8c294bbfbc570b585e9e9b6845eee094eeb09d831e7021174a653833dddfd2f161f4198ff1cb05dc5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:17:28 - 11:29:37
會議時間 2026-01-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第16次全體委員會議(事由:邀請行政院主計總處主計長陳淑姿、財政部部長莊翠雲、國防部副部長、海洋委員會副主任委員、海巡署副署長就「115年度中央政府總預算案至今尚未審查,對國家安全及地方建設的影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 5.85284375
transcript.pyannote[0].end 6.37596875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.01284375
transcript.pyannote[1].end 8.29971875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 8.82284375
transcript.pyannote[2].end 12.26534375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 13.83471875
transcript.pyannote[3].end 14.94846875
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 17.29409375
transcript.pyannote[4].end 18.01971875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 18.57659375
transcript.pyannote[5].end 19.16721875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 21.34409375
transcript.pyannote[6].end 21.98534375
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 21.37784375
transcript.pyannote[7].end 21.74909375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 29.95034375
transcript.pyannote[8].end 30.62534375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 31.09784375
transcript.pyannote[9].end 31.57034375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 32.41409375
transcript.pyannote[10].end 33.20721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 34.40534375
transcript.pyannote[11].end 36.43034375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 36.73409375
transcript.pyannote[12].end 38.20221875
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 39.06284375
transcript.pyannote[13].end 40.02471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 41.12159375
transcript.pyannote[14].end 41.83034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 42.43784375
transcript.pyannote[15].end 52.76534375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 53.35596875
transcript.pyannote[16].end 62.06346875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 62.68784375
transcript.pyannote[17].end 65.35409375
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 65.97846875
transcript.pyannote[18].end 74.88846875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 74.82096875
transcript.pyannote[19].end 74.83784375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 74.85471875
transcript.pyannote[20].end 74.87159375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 74.88846875
transcript.pyannote[21].end 75.20909375
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 75.09096875
transcript.pyannote[22].end 79.22534375
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 79.79909375
transcript.pyannote[23].end 82.11096875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 82.97159375
transcript.pyannote[24].end 91.93221875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 92.59034375
transcript.pyannote[25].end 106.54596875
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 107.32221875
transcript.pyannote[26].end 110.44409375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 111.10221875
transcript.pyannote[27].end 122.00346875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 122.62784375
transcript.pyannote[28].end 131.45346875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 132.43221875
transcript.pyannote[29].end 137.73096875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 139.14846875
transcript.pyannote[30].end 147.16409375
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 147.77159375
transcript.pyannote[31].end 149.57721875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 150.62346875
transcript.pyannote[32].end 153.59346875
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 154.09971875
transcript.pyannote[33].end 162.57096875
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 163.68471875
transcript.pyannote[34].end 164.30909375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 165.00096875
transcript.pyannote[35].end 190.22909375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 190.49909375
transcript.pyannote[36].end 205.26471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 205.80471875
transcript.pyannote[37].end 208.28534375
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 208.75784375
transcript.pyannote[38].end 209.98971875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 210.34409375
transcript.pyannote[39].end 210.85034375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 211.76159375
transcript.pyannote[40].end 219.89534375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 220.31721875
transcript.pyannote[41].end 239.04846875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 237.10784375
transcript.pyannote[42].end 238.18784375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 238.57596875
transcript.pyannote[43].end 239.08221875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 239.08221875
transcript.pyannote[44].end 239.09909375
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 239.09909375
transcript.pyannote[45].end 239.13284375
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 239.13284375
transcript.pyannote[46].end 239.52096875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 239.52096875
transcript.pyannote[47].end 239.60534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 239.60534375
transcript.pyannote[48].end 239.62221875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 239.62221875
transcript.pyannote[49].end 250.70909375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 239.63909375
transcript.pyannote[50].end 239.74034375
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 243.40221875
transcript.pyannote[51].end 243.79034375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 245.22471875
transcript.pyannote[52].end 246.22034375
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 251.31659375
transcript.pyannote[53].end 254.55659375
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 255.29909375
transcript.pyannote[54].end 256.44659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 256.46346875
transcript.pyannote[55].end 259.90596875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 260.27721875
transcript.pyannote[56].end 261.76221875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 262.25159375
transcript.pyannote[57].end 264.88409375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 262.36971875
transcript.pyannote[58].end 262.84221875
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 264.17534375
transcript.pyannote[59].end 266.94284375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 266.68971875
transcript.pyannote[60].end 266.89221875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 266.90909375
transcript.pyannote[61].end 266.92596875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 266.94284375
transcript.pyannote[62].end 280.25721875
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 268.59659375
transcript.pyannote[63].end 271.29659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 281.23596875
transcript.pyannote[64].end 304.52346875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 290.19659375
transcript.pyannote[65].end 291.07409375
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 304.05096875
transcript.pyannote[66].end 309.63659375
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 308.28659375
transcript.pyannote[67].end 321.22971875
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 309.95721875
transcript.pyannote[68].end 310.46346875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 321.97221875
transcript.pyannote[69].end 338.32409375
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 335.77596875
transcript.pyannote[70].end 337.24409375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 338.47596875
transcript.pyannote[71].end 340.23096875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 341.26034375
transcript.pyannote[72].end 342.00284375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 343.50471875
transcript.pyannote[73].end 345.32721875
transcript.pyannote[74].speaker SPEAKER_02
transcript.pyannote[74].start 345.78284375
transcript.pyannote[74].end 346.08659375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 346.08659375
transcript.pyannote[75].end 373.71096875
transcript.pyannote[76].speaker SPEAKER_02
transcript.pyannote[76].start 346.10346875
transcript.pyannote[76].end 346.37346875
transcript.pyannote[77].speaker SPEAKER_02
transcript.pyannote[77].start 373.71096875
transcript.pyannote[77].end 374.35221875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 373.94721875
transcript.pyannote[78].end 385.15221875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 375.82034375
transcript.pyannote[79].end 376.30971875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 377.79471875
transcript.pyannote[80].end 378.63846875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 385.50659375
transcript.pyannote[81].end 391.66596875
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 392.02034375
transcript.pyannote[82].end 405.53721875
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 406.85346875
transcript.pyannote[83].end 407.54534375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 408.82784375
transcript.pyannote[84].end 416.05034375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 416.21909375
transcript.pyannote[85].end 428.89221875
transcript.pyannote[86].speaker SPEAKER_01
transcript.pyannote[86].start 416.57346875
transcript.pyannote[86].end 416.80971875
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 429.39846875
transcript.pyannote[87].end 430.22534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 430.29284375
transcript.pyannote[88].end 432.87471875
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 433.43159375
transcript.pyannote[89].end 466.03409375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 462.74346875
transcript.pyannote[90].end 465.08909375
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 466.03409375
transcript.pyannote[91].end 466.92846875
transcript.pyannote[92].speaker SPEAKER_02
transcript.pyannote[92].start 466.92846875
transcript.pyannote[92].end 467.19846875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 467.19846875
transcript.pyannote[93].end 477.59346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 477.86346875
transcript.pyannote[94].end 482.68971875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 478.74096875
transcript.pyannote[95].end 478.75784375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 478.75784375
transcript.pyannote[96].end 480.47909375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 482.68971875
transcript.pyannote[97].end 483.04409375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 483.31409375
transcript.pyannote[98].end 486.35159375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 486.90846875
transcript.pyannote[99].end 488.32596875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 488.41034375
transcript.pyannote[100].end 489.81096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 490.33409375
transcript.pyannote[101].end 495.43034375
transcript.pyannote[102].speaker SPEAKER_02
transcript.pyannote[102].start 495.61596875
transcript.pyannote[102].end 495.98721875
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 496.25721875
transcript.pyannote[103].end 497.38784375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 496.71284375
transcript.pyannote[104].end 498.61971875
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 498.45096875
transcript.pyannote[105].end 499.26096875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 498.65346875
transcript.pyannote[106].end 500.64471875
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 501.25221875
transcript.pyannote[107].end 507.61409375
transcript.pyannote[108].speaker SPEAKER_02
transcript.pyannote[108].start 504.94784375
transcript.pyannote[108].end 505.26846875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 507.17534375
transcript.pyannote[109].end 510.48284375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 509.43659375
transcript.pyannote[110].end 528.58971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 511.14096875
transcript.pyannote[111].end 511.17471875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 529.14659375
transcript.pyannote[112].end 529.83846875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 530.56409375
transcript.pyannote[113].end 537.78659375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 538.66409375
transcript.pyannote[114].end 541.02659375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 541.85346875
transcript.pyannote[115].end 544.03034375
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 544.51971875
transcript.pyannote[116].end 548.14784375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 548.55284375
transcript.pyannote[117].end 582.43784375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 556.06221875
transcript.pyannote[118].end 556.16346875
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 556.97346875
transcript.pyannote[119].end 557.37846875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 582.69096875
transcript.pyannote[120].end 585.25596875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 585.86346875
transcript.pyannote[121].end 587.61846875
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 587.98971875
transcript.pyannote[122].end 597.06846875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 597.06846875
transcript.pyannote[123].end 598.11471875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 597.47346875
transcript.pyannote[124].end 604.32471875
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 600.40971875
transcript.pyannote[125].end 601.48971875
transcript.pyannote[126].speaker SPEAKER_00
transcript.pyannote[126].start 604.99971875
transcript.pyannote[126].end 618.61784375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 618.78659375
transcript.pyannote[127].end 620.84534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 622.11096875
transcript.pyannote[128].end 634.10909375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 634.27784375
transcript.pyannote[129].end 637.18034375
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 637.61909375
transcript.pyannote[130].end 661.17659375
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 651.30471875
transcript.pyannote[131].end 651.42284375
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 661.76721875
transcript.pyannote[132].end 672.63471875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 673.07346875
transcript.pyannote[133].end 678.96284375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 678.96284375
transcript.pyannote[134].end 679.14846875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 679.14846875
transcript.pyannote[135].end 679.45221875
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 679.45221875
transcript.pyannote[136].end 691.82159375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 692.00721875
transcript.pyannote[137].end 709.72596875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 707.80221875
transcript.pyannote[138].end 717.70784375
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 710.13096875
transcript.pyannote[139].end 710.29971875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 712.51034375
transcript.pyannote[140].end 713.67471875
transcript.pyannote[141].speaker SPEAKER_01
transcript.pyannote[141].start 713.67471875
transcript.pyannote[141].end 713.69159375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 713.69159375
transcript.pyannote[142].end 713.80971875
transcript.pyannote[143].speaker SPEAKER_01
transcript.pyannote[143].start 716.02034375
transcript.pyannote[143].end 716.08784375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 716.08784375
transcript.pyannote[144].end 717.15096875
transcript.pyannote[145].speaker SPEAKER_01
transcript.pyannote[145].start 717.15096875
transcript.pyannote[145].end 722.31471875
transcript.whisperx[0].start 9.336
transcript.whisperx[0].end 18.985
transcript.whisperx[0].text 謝謝主席 我請財政部次長好 蘭次長副稅署副稅署副署署長那個 次長副稅署
transcript.whisperx[1].start 34.451
transcript.whisperx[1].end 61.716
transcript.whisperx[1].text 我們台灣的生育率我相信你們很清楚那麼這一次去年啦在美國跟國際社會辦了一個大型的調查227個國家跟地區當中我們台灣是最低的生育率0.87啦也就是平均每位女性生0.87位小朋友那這當然比
transcript.whisperx[2].start 63.246
transcript.whisperx[2].end 81.744
transcript.whisperx[2].text 相對也低的日本新加坡新加坡還有0.97日本大概1.3其他國家都1.5以上啦我們大概大概是全世界平均各國的一半所以少子化
transcript.whisperx[3].start 83.055
transcript.whisperx[3].end 106.263
transcript.whisperx[3].text 已經是我們台灣的國安問題啦所以我希望在這一個部分財政部 負稅署你們應該與時俱進就是針對我們如何幫助婦女同胞們他們來增加生育這一個部分該做的措施我們應該給予適當的優惠比方說我現在舉例啦
transcript.whisperx[4].start 107.549
transcript.whisperx[4].end 131.178
transcript.whisperx[4].text 婦女同胞生小孩以後去坐月子中心那之前我就跟財政部跟你們跟負稅署要求說坐月子那麼這一個部分的支出應該可以免稅結果你們的答覆竟然是說坐月子是休養不是醫療所以你們拒絕天啊
transcript.whisperx[5].start 132.649
transcript.whisperx[5].end 148.257
transcript.whisperx[5].text 國安問題是要我們全體各部會全面的來面對你不能把它定義為說做月子只是調養 休養那不是醫療你們就不給不給減稅 不給免稅
transcript.whisperx[6].start 150.84
transcript.whisperx[6].end 161.859
transcript.whisperx[6].text 這是很可惡的事情婦女同胞生育以後坐月子不但調養好自己的身體以後工作才能重新回到職場
transcript.whisperx[7].start 163.752
transcript.whisperx[7].end 189.82
transcript.whisperx[7].text 而且調養好身體也可才可能再生第二胎第三胎可能再計畫再去生嘛不是這樣嗎所以這是此時此刻是我們國家面對最嚴重的少子化的國安問題的時候我希望在這一個部分你算一算嘛我也跟負稅署想啊那你要不要你們去算
transcript.whisperx[8].start 190.86
transcript.whisperx[8].end 219.074
transcript.whisperx[8].text 說如果照這個生育率那我們每一位生育的婦女都我們幫她做月子部分不是幫她出錢喔只是說這部分錢可以抵稅減稅免稅那你去算一算這樣我們國家必須負擔多少可不可以跟委員報告剛才委員提的的確是我們的一個很重要的面臨了一個很重要的問題
transcript.whisperx[9].start 221.496
transcript.whisperx[9].end 237.683
transcript.whisperx[9].text 所以我們要提高生育率其實真的不是靠財政部這是跨部會統籌來辦理財政部這部分其實也是做了一些努力比如說我們提供幼兒的扣除額我們已經拉到非常高 照我知道
transcript.whisperx[10].start 239.704
transcript.whisperx[10].end 254.296
transcript.whisperx[10].text 你們先前你們在人工生育的部分在不孕症的部分人家那麼多我還舉過例子啊高等法院你問女法官她就是這一個部分去花費的部分
transcript.whisperx[11].start 255.373
transcript.whisperx[11].end 279.991
transcript.whisperx[11].text 他來報所得稅扣抵的時候你們竟然一毛不拔一塊錢也不給他抵後來我們那一部分已經放寬相關的規定了你們那個規定規定得莫名其妙當時你們的意思是說他去的那家診所他報稅不完整莫名其妙
transcript.whisperx[12].start 281.917
transcript.whisperx[12].end 301.29
transcript.whisperx[12].text 報稅哪一家醫院診所報稅是不是齊備那是財政部是負稅署你們另外再去立案再去查的事情怎麼會怪罪到我們一般民眾要來要求抵稅的時候你拿的必須他有完整的
transcript.whisperx[13].start 301.73
transcript.whisperx[13].end 320.52
transcript.whisperx[13].text 完碎紀錄的哪有這種事情所以跟委員報告我想委員也很清楚後來我們也放寬解釋對你們有放寬我是要跟財政部提醒不要再用那種奇奇怪怪的理由好不好上次那個理由就是很奇怪這一次的理由也是很莫名其妙你把它定義成說
transcript.whisperx[14].start 322.045
transcript.whisperx[14].end 336.968
transcript.whisperx[14].text 坐月子 說這個是調養 無視醫療我坦白講 這我完全不能接受絕大多數的民眾也不能接受你這點回去研究啦 好不好那另外喔 針對這個在查核齁 這個你們有提了 稀產地
transcript.whisperx[15].start 346.331
transcript.whisperx[15].end 371.05
transcript.whisperx[15].text 預防稀產地那部分你們有四大經濟措施啦你們也成立了強化違規轉運查核小組等等等等齁那我覺得為什麼查核率那麼多我覺得有一樣因為你這四項方案裡面就是要第四項就是說全民協力鼓勵大家去檢舉但是檢舉啊到現在我看你去年一整年的資料檢舉零欸 為什麼
transcript.whisperx[16].start 374.052
transcript.whisperx[16].end 391.232
transcript.whisperx[16].text 因為我不知道你有沒有看過你這個辦法裡面檢舉人啊除了他列舉他自己的資料我是誰我要檢舉我光明磊落這個沒有話講但是你們竟然要他檢舉就被舉發人的資料
transcript.whisperx[17].start 392.173
transcript.whisperx[17].end 405.239
transcript.whisperx[17].text 被舉發人這個公司你要鉅細明疑啦就是不但他們要身份證 字號 護照號碼公司名稱 公司的統一編號公司的地址天啊
transcript.whisperx[18].start 409.448
transcript.whisperx[18].end 432.556
transcript.whisperx[18].text 檢舉人他又不是狗仔隊又不是情報員他哪有辦法知道這麼多他只要具體的告訴你哪家公司或者哪個個人不是這樣嗎這些公司這些被檢舉的人你們要查的時候你們自然而然的有辦法有他的其他的資料不是嗎
transcript.whisperx[19].start 433.796
transcript.whisperx[19].end 451.913
transcript.whisperx[19].text 跟委員報告這個就是關於檢舉的這一部分那目前可以領取這個檢舉獎金的就只有自由貿易港區的這一部分可以來領取但是目前我們查獲的這些案子我們移到貿易署去裁罰的這些268案裡面
transcript.whisperx[20].start 454.215
transcript.whisperx[20].end 481.17
transcript.whisperx[20].text 都不是來自自由貿易港區啦都是來自課稅區跟這個保稅區那課稅區跟保稅區目前的貿易署呢目前沒有提供相關的檢舉獎金我就是跟你講為什麼檢舉案是零你把被檢舉你說檢舉人要講自己的身份這個應當 他要具名嘛他要勇敢承擔啊不是但是被檢舉者啦
transcript.whisperx[21].start 483.41
transcript.whisperx[21].end 494.983
transcript.whisperx[21].text 他只要檢舉人能講出哪個公司哪個個人哪個集團其他被檢舉人的資料你們再去查啦 是不是這樣
transcript.whisperx[22].start 497.198
transcript.whisperx[22].end 511.25
transcript.whisperx[22].text 簡化啦 你懂嗎只要要求檢舉人你不能隨隨便便檢舉你不能匿名檢舉因為這是多重大的檢舉啊不是嗎我原來的意思我們懂 我們了解好了 那另外我跟你講齁這個我們人均GDP齁
transcript.whisperx[23].start 514.452
transcript.whisperx[23].end 540.823
transcript.whisperx[23].text 比方說去年我們說我們有7.37的經濟成長率那人均GDP也因為這樣子調高人均GDP變成我們來到4萬美元但是我們全民的感受就是說看得到 知不到不是這樣嗎就是說我們的經濟成長率有7.37那麼高但是我們全體人民並沒有說因為這樣就有感
transcript.whisperx[24].start 541.926
transcript.whisperx[24].end 558.616
transcript.whisperx[24].text 然後GDP來到四萬美元看得到吃不到所以我是認為這些亮眼的GDPP背後有不可以忽視的產業的變化我們要注意那為什麼要你財政部注意
transcript.whisperx[25].start 559.496
transcript.whisperx[25].end 584.107
transcript.whisperx[25].text 除了政策上以外因為你管這些公營行庫也就是說你如果看這些表格就是說ICT產業那麼我們以去年我們就以去年三個月來講它的成長是非常好我們台灣最驕傲的電子零組件直通產品這些我們的成長率大概都有兩位數這非常好但是相對的我們產產業
transcript.whisperx[26].start 588.149
transcript.whisperx[26].end 603.819
transcript.whisperx[26].text 傳統產業從基本金屬 機械等等到化學品 橡膠品 礦產品等等還有這個食品類大概都下滑大概是下滑了兩位數字所以我意思就是說我們
transcript.whisperx[27].start 605.301
transcript.whisperx[27].end 616.377
transcript.whisperx[27].text 國家我們政府要注意這些資源不要讓他偏掉那麼財政部你們要交代複稅署交代他們說第一點不要對產產業過度的苛責動不動
transcript.whisperx[28].start 622.182
transcript.whisperx[28].end 636.844
transcript.whisperx[28].text 表現很老的公司你沒事也是去把他查查稅這個部分要減少不要去騷擾人家第二點銀行的貸款的部分我們是不是不能只重在資通產業在高科技業
transcript.whisperx[29].start 637.685
transcript.whisperx[29].end 659.814
transcript.whisperx[29].text 因為他們已經很成熟很進步啦他們的資金不會太大的問題但是產產業尤其在這一次美國關稅這種打擊之下他們現在遇到很多困難那麼公營行庫民營的我們沒辦法只能用勸說但是公營行庫這八大公營行庫部長
transcript.whisperx[30].start 661.835
transcript.whisperx[30].end 679.88
transcript.whisperx[30].text 那個次長這些八大供應銀行部董事長總經理都是你們派的他們都是關股所以你交代他們應該對產產業在這個資金的融通方面給予優惠給予補助至少不要雨天收傘
transcript.whisperx[31].start 680.94
transcript.whisperx[31].end 703.294
transcript.whisperx[31].text 跟委員報告這一部分我們很早就已經通令下去特別是對那些比較受到台美關稅衝擊的這些傳統產業絕對不要雨天收傘這個我們已經強調很多次而且他們也是朝這個方向來走我們希望就是說在最困難的時候能夠協助這些傳產能夠走過這個最困難的時刻
transcript.whisperx[32].start 707.396
transcript.whisperx[32].end 717.321
transcript.whisperx[32].text 好很好你們有這麼做就好那坐月子中心我希望你另外我們再來研議看看會後你另外給我一些答覆好不好是是是謝謝委員好謝謝謝謝王委員接下來我們請黃珊珊委員