iVOD / 166788

Field Value
IVOD_ID 166788
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166788
日期 2026-01-05
會議資料.會議代碼 委員會-11-4-20-16
會議資料.會議代碼:str 第11屆第4會期財政委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第16次全體委員會議
影片種類 Clip
開始時間 2026-01-05T10:42:56+08:00
結束時間 2026-01-05T10:55:04+08:00
影片長度 00:12:08
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8c294bbfbc570b588f894731da6ce874eeb09d831e7021174a653833dddfd2f1e70ccf99090aa3605ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 賴惠員
委員發言時間 10:42:56 - 10:55:04
會議時間 2026-01-05T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第16次全體委員會議(事由:邀請行政院主計總處主計長陳淑姿、財政部部長莊翠雲、國防部副部長、海洋委員會副主任委員、海巡署副署長就「115年度中央政府總預算案至今尚未審查,對國家安全及地方建設的影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_03
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 6.76409375
transcript.pyannote[1].speaker SPEAKER_05
transcript.pyannote[1].start 7.03409375
transcript.pyannote[1].end 9.39659375
transcript.pyannote[2].speaker SPEAKER_03
transcript.pyannote[2].start 8.67096875
transcript.pyannote[2].end 9.29534375
transcript.pyannote[3].speaker SPEAKER_05
transcript.pyannote[3].start 9.59909375
transcript.pyannote[3].end 12.90659375
transcript.pyannote[4].speaker SPEAKER_03
transcript.pyannote[4].start 14.76284375
transcript.pyannote[4].end 28.98846875
transcript.pyannote[5].speaker SPEAKER_03
transcript.pyannote[5].start 29.47784375
transcript.pyannote[5].end 31.60409375
transcript.pyannote[6].speaker SPEAKER_03
transcript.pyannote[6].start 31.95846875
transcript.pyannote[6].end 32.05971875
transcript.pyannote[7].speaker SPEAKER_03
transcript.pyannote[7].start 32.58284375
transcript.pyannote[7].end 33.96659375
transcript.pyannote[8].speaker SPEAKER_03
transcript.pyannote[8].start 34.57409375
transcript.pyannote[8].end 41.76284375
transcript.pyannote[9].speaker SPEAKER_03
transcript.pyannote[9].start 42.13409375
transcript.pyannote[9].end 42.69096875
transcript.pyannote[10].speaker SPEAKER_03
transcript.pyannote[10].start 43.36596875
transcript.pyannote[10].end 46.70721875
transcript.pyannote[11].speaker SPEAKER_03
transcript.pyannote[11].start 46.99409375
transcript.pyannote[11].end 50.90909375
transcript.pyannote[12].speaker SPEAKER_03
transcript.pyannote[12].start 51.17909375
transcript.pyannote[12].end 57.15284375
transcript.pyannote[13].speaker SPEAKER_06
transcript.pyannote[13].start 53.33909375
transcript.pyannote[13].end 54.14909375
transcript.pyannote[14].speaker SPEAKER_06
transcript.pyannote[14].start 57.67596875
transcript.pyannote[14].end 58.38471875
transcript.pyannote[15].speaker SPEAKER_03
transcript.pyannote[15].start 58.57034375
transcript.pyannote[15].end 58.99221875
transcript.pyannote[16].speaker SPEAKER_03
transcript.pyannote[16].start 59.29596875
transcript.pyannote[16].end 74.98971875
transcript.pyannote[17].speaker SPEAKER_03
transcript.pyannote[17].start 75.51284375
transcript.pyannote[17].end 82.36409375
transcript.pyannote[18].speaker SPEAKER_03
transcript.pyannote[18].start 82.46534375
transcript.pyannote[18].end 97.85534375
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 88.03409375
transcript.pyannote[19].end 88.05096875
transcript.pyannote[20].speaker SPEAKER_03
transcript.pyannote[20].start 98.15909375
transcript.pyannote[20].end 98.91846875
transcript.pyannote[21].speaker SPEAKER_03
transcript.pyannote[21].start 99.47534375
transcript.pyannote[21].end 107.87909375
transcript.pyannote[22].speaker SPEAKER_03
transcript.pyannote[22].start 108.21659375
transcript.pyannote[22].end 114.69659375
transcript.pyannote[23].speaker SPEAKER_03
transcript.pyannote[23].start 114.89909375
transcript.pyannote[23].end 121.44659375
transcript.pyannote[24].speaker SPEAKER_06
transcript.pyannote[24].start 119.37096875
transcript.pyannote[24].end 120.28221875
transcript.pyannote[25].speaker SPEAKER_06
transcript.pyannote[25].start 121.51409375
transcript.pyannote[25].end 130.64346875
transcript.pyannote[26].speaker SPEAKER_03
transcript.pyannote[26].start 130.39034375
transcript.pyannote[26].end 130.59284375
transcript.pyannote[27].speaker SPEAKER_03
transcript.pyannote[27].start 130.64346875
transcript.pyannote[27].end 130.74471875
transcript.pyannote[28].speaker SPEAKER_06
transcript.pyannote[28].start 130.74471875
transcript.pyannote[28].end 138.42284375
transcript.pyannote[29].speaker SPEAKER_03
transcript.pyannote[29].start 138.67596875
transcript.pyannote[29].end 139.09784375
transcript.pyannote[30].speaker SPEAKER_03
transcript.pyannote[30].start 139.18221875
transcript.pyannote[30].end 139.23284375
transcript.pyannote[31].speaker SPEAKER_06
transcript.pyannote[31].start 139.23284375
transcript.pyannote[31].end 139.28346875
transcript.pyannote[32].speaker SPEAKER_03
transcript.pyannote[32].start 139.28346875
transcript.pyannote[32].end 139.30034375
transcript.pyannote[33].speaker SPEAKER_06
transcript.pyannote[33].start 139.30034375
transcript.pyannote[33].end 139.51971875
transcript.pyannote[34].speaker SPEAKER_03
transcript.pyannote[34].start 139.80659375
transcript.pyannote[34].end 146.26971875
transcript.pyannote[35].speaker SPEAKER_06
transcript.pyannote[35].start 146.30346875
transcript.pyannote[35].end 148.10909375
transcript.pyannote[36].speaker SPEAKER_03
transcript.pyannote[36].start 147.45096875
transcript.pyannote[36].end 148.56471875
transcript.pyannote[37].speaker SPEAKER_06
transcript.pyannote[37].start 148.56471875
transcript.pyannote[37].end 154.35284375
transcript.pyannote[38].speaker SPEAKER_03
transcript.pyannote[38].start 152.74971875
transcript.pyannote[38].end 154.09971875
transcript.pyannote[39].speaker SPEAKER_03
transcript.pyannote[39].start 154.43721875
transcript.pyannote[39].end 158.35221875
transcript.pyannote[40].speaker SPEAKER_06
transcript.pyannote[40].start 156.88409375
transcript.pyannote[40].end 157.55909375
transcript.pyannote[41].speaker SPEAKER_06
transcript.pyannote[41].start 158.35221875
transcript.pyannote[41].end 160.76534375
transcript.pyannote[42].speaker SPEAKER_03
transcript.pyannote[42].start 159.75284375
transcript.pyannote[42].end 161.13659375
transcript.pyannote[43].speaker SPEAKER_06
transcript.pyannote[43].start 162.03096875
transcript.pyannote[43].end 166.94159375
transcript.pyannote[44].speaker SPEAKER_03
transcript.pyannote[44].start 166.19909375
transcript.pyannote[44].end 185.30159375
transcript.pyannote[45].speaker SPEAKER_06
transcript.pyannote[45].start 166.95846875
transcript.pyannote[45].end 166.97534375
transcript.pyannote[46].speaker SPEAKER_06
transcript.pyannote[46].start 167.46471875
transcript.pyannote[46].end 168.37596875
transcript.pyannote[47].speaker SPEAKER_06
transcript.pyannote[47].start 173.52284375
transcript.pyannote[47].end 173.86034375
transcript.pyannote[48].speaker SPEAKER_03
transcript.pyannote[48].start 185.58846875
transcript.pyannote[48].end 208.25159375
transcript.pyannote[49].speaker SPEAKER_06
transcript.pyannote[49].start 208.82534375
transcript.pyannote[49].end 211.39034375
transcript.pyannote[50].speaker SPEAKER_06
transcript.pyannote[50].start 214.30971875
transcript.pyannote[50].end 217.54971875
transcript.pyannote[51].speaker SPEAKER_03
transcript.pyannote[51].start 216.48659375
transcript.pyannote[51].end 217.41471875
transcript.pyannote[52].speaker SPEAKER_03
transcript.pyannote[52].start 217.78596875
transcript.pyannote[52].end 218.83221875
transcript.pyannote[53].speaker SPEAKER_04
transcript.pyannote[53].start 219.74346875
transcript.pyannote[53].end 219.96284375
transcript.pyannote[54].speaker SPEAKER_04
transcript.pyannote[54].start 220.28346875
transcript.pyannote[54].end 221.17784375
transcript.pyannote[55].speaker SPEAKER_04
transcript.pyannote[55].start 222.03846875
transcript.pyannote[55].end 224.89034375
transcript.pyannote[56].speaker SPEAKER_04
transcript.pyannote[56].start 226.61159375
transcript.pyannote[56].end 229.54784375
transcript.pyannote[57].speaker SPEAKER_04
transcript.pyannote[57].start 229.75034375
transcript.pyannote[57].end 230.52659375
transcript.pyannote[58].speaker SPEAKER_04
transcript.pyannote[58].start 231.11721875
transcript.pyannote[58].end 232.45034375
transcript.pyannote[59].speaker SPEAKER_04
transcript.pyannote[59].start 233.36159375
transcript.pyannote[59].end 235.80846875
transcript.pyannote[60].speaker SPEAKER_03
transcript.pyannote[60].start 236.77034375
transcript.pyannote[60].end 237.20909375
transcript.pyannote[61].speaker SPEAKER_03
transcript.pyannote[61].start 237.64784375
transcript.pyannote[61].end 242.72721875
transcript.pyannote[62].speaker SPEAKER_04
transcript.pyannote[62].start 241.71471875
transcript.pyannote[62].end 243.50346875
transcript.pyannote[63].speaker SPEAKER_03
transcript.pyannote[63].start 243.63846875
transcript.pyannote[63].end 246.20346875
transcript.pyannote[64].speaker SPEAKER_04
transcript.pyannote[64].start 246.20346875
transcript.pyannote[64].end 250.05096875
transcript.pyannote[65].speaker SPEAKER_04
transcript.pyannote[65].start 250.40534375
transcript.pyannote[65].end 253.44284375
transcript.pyannote[66].speaker SPEAKER_03
transcript.pyannote[66].start 250.45596875
transcript.pyannote[66].end 250.87784375
transcript.pyannote[67].speaker SPEAKER_04
transcript.pyannote[67].start 253.84784375
transcript.pyannote[67].end 255.26534375
transcript.pyannote[68].speaker SPEAKER_04
transcript.pyannote[68].start 255.46784375
transcript.pyannote[68].end 257.20596875
transcript.pyannote[69].speaker SPEAKER_03
transcript.pyannote[69].start 257.20596875
transcript.pyannote[69].end 272.93346875
transcript.pyannote[70].speaker SPEAKER_04
transcript.pyannote[70].start 260.64846875
transcript.pyannote[70].end 261.08721875
transcript.pyannote[71].speaker SPEAKER_04
transcript.pyannote[71].start 261.12096875
transcript.pyannote[71].end 261.17159375
transcript.pyannote[72].speaker SPEAKER_04
transcript.pyannote[72].start 264.25971875
transcript.pyannote[72].end 264.52971875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 264.52971875
transcript.pyannote[73].end 264.58034375
transcript.pyannote[74].speaker SPEAKER_03
transcript.pyannote[74].start 273.38909375
transcript.pyannote[74].end 278.65409375
transcript.pyannote[75].speaker SPEAKER_06
transcript.pyannote[75].start 275.34659375
transcript.pyannote[75].end 275.76846875
transcript.pyannote[76].speaker SPEAKER_06
transcript.pyannote[76].start 278.97471875
transcript.pyannote[76].end 279.63284375
transcript.pyannote[77].speaker SPEAKER_03
transcript.pyannote[77].start 279.80159375
transcript.pyannote[77].end 283.98659375
transcript.pyannote[78].speaker SPEAKER_06
transcript.pyannote[78].start 284.57721875
transcript.pyannote[78].end 287.36159375
transcript.pyannote[79].speaker SPEAKER_06
transcript.pyannote[79].start 288.08721875
transcript.pyannote[79].end 288.98159375
transcript.pyannote[80].speaker SPEAKER_03
transcript.pyannote[80].start 288.32346875
transcript.pyannote[80].end 291.83346875
transcript.pyannote[81].speaker SPEAKER_06
transcript.pyannote[81].start 291.98534375
transcript.pyannote[81].end 297.06471875
transcript.pyannote[82].speaker SPEAKER_03
transcript.pyannote[82].start 292.52534375
transcript.pyannote[82].end 294.04409375
transcript.pyannote[83].speaker SPEAKER_03
transcript.pyannote[83].start 296.49096875
transcript.pyannote[83].end 298.38096875
transcript.pyannote[84].speaker SPEAKER_06
transcript.pyannote[84].start 298.53284375
transcript.pyannote[84].end 315.94784375
transcript.pyannote[85].speaker SPEAKER_03
transcript.pyannote[85].start 309.97409375
transcript.pyannote[85].end 310.66596875
transcript.pyannote[86].speaker SPEAKER_03
transcript.pyannote[86].start 311.34096875
transcript.pyannote[86].end 311.56034375
transcript.pyannote[87].speaker SPEAKER_06
transcript.pyannote[87].start 316.58909375
transcript.pyannote[87].end 318.36096875
transcript.pyannote[88].speaker SPEAKER_06
transcript.pyannote[88].start 318.73221875
transcript.pyannote[88].end 321.19596875
transcript.pyannote[89].speaker SPEAKER_06
transcript.pyannote[89].start 321.26346875
transcript.pyannote[89].end 322.78221875
transcript.pyannote[90].speaker SPEAKER_03
transcript.pyannote[90].start 321.83721875
transcript.pyannote[90].end 322.09034375
transcript.pyannote[91].speaker SPEAKER_03
transcript.pyannote[91].start 322.41096875
transcript.pyannote[91].end 338.99909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 336.48471875
transcript.pyannote[92].end 336.94034375
transcript.pyannote[93].speaker SPEAKER_03
transcript.pyannote[93].start 339.33659375
transcript.pyannote[93].end 351.09846875
transcript.pyannote[94].speaker SPEAKER_03
transcript.pyannote[94].start 351.35159375
transcript.pyannote[94].end 367.28159375
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 367.72034375
transcript.pyannote[95].end 415.56096875
transcript.pyannote[96].speaker SPEAKER_03
transcript.pyannote[96].start 374.41971875
transcript.pyannote[96].end 374.62221875
transcript.pyannote[97].speaker SPEAKER_03
transcript.pyannote[97].start 379.98846875
transcript.pyannote[97].end 380.41034375
transcript.pyannote[98].speaker SPEAKER_03
transcript.pyannote[98].start 383.22846875
transcript.pyannote[98].end 383.78534375
transcript.pyannote[99].speaker SPEAKER_03
transcript.pyannote[99].start 414.19409375
transcript.pyannote[99].end 438.37596875
transcript.pyannote[100].speaker SPEAKER_02
transcript.pyannote[100].start 417.95721875
transcript.pyannote[100].end 418.39596875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 438.49409375
transcript.pyannote[101].end 452.95596875
transcript.pyannote[102].speaker SPEAKER_03
transcript.pyannote[102].start 440.01284375
transcript.pyannote[102].end 441.48096875
transcript.pyannote[103].speaker SPEAKER_03
transcript.pyannote[103].start 442.13909375
transcript.pyannote[103].end 442.52721875
transcript.pyannote[104].speaker SPEAKER_03
transcript.pyannote[104].start 451.06596875
transcript.pyannote[104].end 451.48784375
transcript.pyannote[105].speaker SPEAKER_03
transcript.pyannote[105].start 453.05721875
transcript.pyannote[105].end 458.86221875
transcript.pyannote[106].speaker SPEAKER_02
transcript.pyannote[106].start 453.63096875
transcript.pyannote[106].end 454.13721875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 456.75284375
transcript.pyannote[107].end 459.28409375
transcript.pyannote[108].speaker SPEAKER_03
transcript.pyannote[108].start 459.57096875
transcript.pyannote[108].end 459.97596875
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 459.97596875
transcript.pyannote[109].end 460.95471875
transcript.pyannote[110].speaker SPEAKER_03
transcript.pyannote[110].start 460.38096875
transcript.pyannote[110].end 468.07596875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 461.89971875
transcript.pyannote[111].end 463.11471875
transcript.pyannote[112].speaker SPEAKER_02
transcript.pyannote[112].start 464.12721875
transcript.pyannote[112].end 464.86971875
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 469.54409375
transcript.pyannote[113].end 469.64534375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 470.03346875
transcript.pyannote[114].end 470.45534375
transcript.pyannote[115].speaker SPEAKER_03
transcript.pyannote[115].start 470.69159375
transcript.pyannote[115].end 483.06096875
transcript.pyannote[116].speaker SPEAKER_03
transcript.pyannote[116].start 483.51659375
transcript.pyannote[116].end 484.91721875
transcript.pyannote[117].speaker SPEAKER_03
transcript.pyannote[117].start 485.89596875
transcript.pyannote[117].end 518.34659375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 519.89909375
transcript.pyannote[118].end 525.94034375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 526.36221875
transcript.pyannote[119].end 535.23846875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 528.87659375
transcript.pyannote[120].end 528.89346875
transcript.pyannote[121].speaker SPEAKER_03
transcript.pyannote[121].start 528.89346875
transcript.pyannote[121].end 529.23096875
transcript.pyannote[122].speaker SPEAKER_03
transcript.pyannote[122].start 534.74909375
transcript.pyannote[122].end 541.83659375
transcript.pyannote[123].speaker SPEAKER_01
transcript.pyannote[123].start 537.33096875
transcript.pyannote[123].end 538.46159375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 541.98846875
transcript.pyannote[124].end 550.10534375
transcript.pyannote[125].speaker SPEAKER_03
transcript.pyannote[125].start 544.40159375
transcript.pyannote[125].end 544.82346875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 550.64534375
transcript.pyannote[126].end 554.17221875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 554.86409375
transcript.pyannote[127].end 557.47971875
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 557.95221875
transcript.pyannote[128].end 560.09534375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 560.78721875
transcript.pyannote[129].end 561.85034375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 562.37346875
transcript.pyannote[130].end 564.49971875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 564.88784375
transcript.pyannote[131].end 566.03534375
transcript.pyannote[132].speaker SPEAKER_01
transcript.pyannote[132].start 566.10284375
transcript.pyannote[132].end 571.90784375
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 572.54909375
transcript.pyannote[133].end 572.83596875
transcript.pyannote[134].speaker SPEAKER_03
transcript.pyannote[134].start 572.83596875
transcript.pyannote[134].end 572.85284375
transcript.pyannote[135].speaker SPEAKER_03
transcript.pyannote[135].start 573.37596875
transcript.pyannote[135].end 582.47159375
transcript.pyannote[136].speaker SPEAKER_03
transcript.pyannote[136].start 583.02846875
transcript.pyannote[136].end 628.40534375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 628.52346875
transcript.pyannote[137].end 630.09284375
transcript.pyannote[138].speaker SPEAKER_03
transcript.pyannote[138].start 630.36284375
transcript.pyannote[138].end 630.64971875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 631.69596875
transcript.pyannote[139].end 649.41471875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 649.56659375
transcript.pyannote[140].end 652.53659375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 653.34659375
transcript.pyannote[141].end 657.44721875
transcript.pyannote[142].speaker SPEAKER_03
transcript.pyannote[142].start 657.00846875
transcript.pyannote[142].end 667.87596875
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 659.75909375
transcript.pyannote[143].end 661.90221875
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 668.14596875
transcript.pyannote[144].end 681.61221875
transcript.pyannote[145].speaker SPEAKER_03
transcript.pyannote[145].start 680.92034375
transcript.pyannote[145].end 682.21971875
transcript.pyannote[146].speaker SPEAKER_00
transcript.pyannote[146].start 682.48971875
transcript.pyannote[146].end 706.65471875
transcript.pyannote[147].speaker SPEAKER_03
transcript.pyannote[147].start 686.01659375
transcript.pyannote[147].end 686.33721875
transcript.pyannote[148].speaker SPEAKER_03
transcript.pyannote[148].start 688.02471875
transcript.pyannote[148].end 688.46346875
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 707.05971875
transcript.pyannote[149].end 710.31659375
transcript.pyannote[150].speaker SPEAKER_01
transcript.pyannote[150].start 707.11034375
transcript.pyannote[150].end 707.56596875
transcript.pyannote[151].speaker SPEAKER_01
transcript.pyannote[151].start 710.19846875
transcript.pyannote[151].end 715.37909375
transcript.pyannote[152].speaker SPEAKER_00
transcript.pyannote[152].start 710.95784375
transcript.pyannote[152].end 711.22784375
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 715.54784375
transcript.pyannote[153].end 715.93596875
transcript.pyannote[154].speaker SPEAKER_03
transcript.pyannote[154].start 716.15534375
transcript.pyannote[154].end 720.12096875
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 717.55596875
transcript.pyannote[155].end 718.02846875
transcript.pyannote[156].speaker SPEAKER_05
transcript.pyannote[156].start 719.05784375
transcript.pyannote[156].end 724.52534375
transcript.whisperx[0].start 0.189
transcript.whisperx[0].end 12.726
transcript.whisperx[0].text 市長 那也邀請國防部副部長跟海委會那個副主委好 請陳族記長然後本市長 徐副部長還有張副主委
transcript.whisperx[1].start 15.05
transcript.whisperx[1].end 41.438
transcript.whisperx[1].text 主席長今天1月5號2025剛結束是那去年一整年我們看到了全球經濟的一個動盪那加上國內房產房地產跟國內內需的一個起伏那我想在這裡請教主席長就是說其實如果從2025年我們整體的一個稅收的一個情況稅收的一個情況那
transcript.whisperx[2].start 43.539
transcript.whisperx[2].end 56.068
transcript.whisperx[2].text 還有就是說整體的整體的一些這就是稅收跟稅入的相比這一個那沒關係主席長我先讓次長來回答我讓次長來回答對委員好
transcript.whisperx[3].start 58.65
transcript.whisperx[3].end 74.662
transcript.whisperx[3].text 是 處長這個剛才我就是說我們來盤點一下就是說在整個2025年的稅收那是稅收是超收還是稅入是切口我們可以看到了就是說部長他其實在
transcript.whisperx[4].start 76.104
transcript.whisperx[4].end 97.383
transcript.whisperx[4].text 上個月底他受訪的時候他有特別講到了今年的稅收可能短缺那可是不代表財政是轉壞是財政是轉壞那我們從一些數據上來看的話我們從就是說整體的一個數字上來看的話我們看到我們的貨物稅還有我們的特種
transcript.whisperx[5].start 99.545
transcript.whisperx[5].end 121.31
transcript.whisperx[5].text 特種貨物稅跟勞務稅還有地價稅 土地稅這裡頭其實是短缺的那你怎麼樣來講說這個短缺的情形會不會影響到中央的統籌分配稅款還是要等到年底的一個精算才會知道我相信現在應該是已經知道了
transcript.whisperx[6].start 122.091
transcript.whisperx[6].end 137.965
transcript.whisperx[6].text 對 現在因為我們那個統計稅款是說年初的時候就會通報給地方政府去編列預算那到最後看是我們時增數超過預算數或者是少於預算數我們到時候在年初的時候再做調整
transcript.whisperx[7].start 139.906
transcript.whisperx[7].end 160.193
transcript.whisperx[7].text 所以所以到底應該基本上來講的話我們很明確的我們看到的數字是短缺的應該是短缺幾百億有可能但是我們還要因為到現在還在決算當中我跟你講不是有可能確實就是短缺目前我們預估是有沒有超過500億
transcript.whisperx[8].start 163.06
transcript.whisperx[8].end 184.932
transcript.whisperx[8].text 我們預估是大概400到600之間400到600之間好 次長那我想請教一下就是說土地增值稅跟營業稅光是我不問所有的我就是問光是中央的你的那個土增稅土增稅跟那個房屋合一稅少了多少
transcript.whisperx[9].start 185.752
transcript.whisperx[9].end 208.218
transcript.whisperx[9].text 還有貨物稅因為貨物稅其實也關係到就是說在去年一整年因為這個車價的一個問題造成消費者就是遲遲一直到了年底才開始買一些就是他們一起上一起上的希望買的車子那我要知道就是說貨物稅少了多少然後土增稅少了多少我這邊的資料
transcript.whisperx[10].start 214.386
transcript.whisperx[10].end 234.655
transcript.whisperx[10].text 我是不是請副書長來講比較好好誰可以回答我跟委員報告我們的這個貨物稅的部分大概就是截至11月的時候大概就一點這1300多億大概達成率大概是77%
transcript.whisperx[11].start 237.961
transcript.whisperx[11].end 256.61
transcript.whisperx[11].text 對 達成率77%可是還是短收嘛 對不對事實上是不是內需不如預期主要是我們因為受到美國關稅的影響再來就是我們的一些車輛類的部分大概有受到影響
transcript.whisperx[12].start 257.29
transcript.whisperx[12].end 283.821
transcript.whisperx[12].text 我們受到美國關稅的影響還有內需不如預期謝謝 次長那我再請教一下就是說關於所有這三項營業稅 土地增值稅黃地合一稅你到了最終其實這個數字你已經掌握在手上了那如果跟預算數相差比差了多少
transcript.whisperx[13].start 285.469
transcript.whisperx[13].end 286.76
transcript.whisperx[13].text 相差比的數字
transcript.whisperx[14].start 288.371
transcript.whisperx[14].end 315.376
transcript.whisperx[14].text 市長你這個簡單的數字你怎麼沒有把它記在心裡咧有有你應該馬上回答我啊因為我這個是比較細項還是我沒有像陳一貞那麼兇那個房地合一稅房地合一稅是目前是大概是大概是少了百分之大概會少了大概十幾億啦對大概十幾億啦那剛才還有剛才提到就是那個
transcript.whisperx[15].start 316.65
transcript.whisperx[15].end 338.548
transcript.whisperx[15].text 土生稅的問題土生稅的話大概少了165億我想在這裡跟財政部所有同仁鼓勵也跟你們喊話加油因為總預算卡在程序委員會裡頭其實對每一個行政部門都是一個很大的困難那我們也要發揮我們自己的一個
transcript.whisperx[16].start 339.409
transcript.whisperx[16].end 365.918
transcript.whisperx[16].text 那個智慧那謝謝那接著主計長我再請教一下快過年了接下來各個地方政府都要花年終獎金還有考級獎金如果財政部統籌分配款無法無法足爾的撥補的話那地方政府怎麼過年那主計總處你的一般性一般性補助款會不會先撥呢還是先借給地方政府來過年
transcript.whisperx[17].start 367.999
transcript.whisperx[17].end 394.801
transcript.whisperx[17].text 對 我們這個因為地方號過年的時候它初步報出來需求大概需要一千多億那一千多億這個部分我們有一些的譬如說社會福利方面的補助款我們就提前全部先撥來協助他們在一個財務的調度那另外在那個少子女化我們也一次撥到六月了所以整個整個調整下來目前大概有
transcript.whisperx[18].start 395.461
transcript.whisperx[18].end 413.529
transcript.whisperx[18].text 五個縣市他缺口是20億那20億這個部分我們也足以打電話足以打電話去問他這個部分有沒有他們調度不調得過來他們都說OK所以目前是所有都已經協調完畢所以這個部分我們供應也發出去大概整個一個年關調度的時候
transcript.whisperx[19].start 414.69
transcript.whisperx[19].end 437.816
transcript.whisperx[19].text 主席那我再請教你以台南市為例的話原本他是那個申請125億後來你們就是說大概是給了80億那其實這個會不會影響到台南市政府甚至就是全國的這個所有的公務人員他的考積獎金還有就是說他的年終獎金我只要你回答我會不會
transcript.whisperx[20].start 438.536
transcript.whisperx[20].end 467.396
transcript.whisperx[20].text 不會啦 這個部分不會齁 你保證不會齁我們這是針對年關調度的一個特別的措施然後我們也很多的計畫事先提前撥款那是這樣 是提前撥款是 所以主計總署非常有信心就是不會讓地方政府斷糧因為我們逐一縣市都聯絡過對 你逐一都聯絡過是是是好 謝謝 那也跟主計長加油接著我們請國安部部長
transcript.whisperx[21].start 470.801
transcript.whisperx[21].end 484.233
transcript.whisperx[21].text 是部長部長早安我想我們的國防預算是不是可以應付這樣的一個經驗經驗的規模一直都在擴大可是國防的預算卻被卡關到底就是說
transcript.whisperx[22].start 485.936
transcript.whisperx[22].end 514.941
transcript.whisperx[22].text 我們知道就是說在今年的過年我們有很多軍人臨時被召回軍營甚至有不少人是在軍隊中過了一個跨年那在這裡也跟你們致意那就是軍演的規模變大了國防預算被卡住了到底你們要面對這麼大的一個花費這些錢每一次共軍的一個演練的一次我們應對的花費要增加很多
transcript.whisperx[23].start 515.741
transcript.whisperx[23].end 541.637
transcript.whisperx[23].text 增加很多 那有沒有準備好報告委員 這個分兩個部分回答您第一個 這一次演習過程並不叫統一的召回它是各部隊戰備需求由各指揮官自行決定的召回是 不是臨時的召回不是一個普遍性的本來就是在議期中 就是要召回了
transcript.whisperx[24].start 542.037
transcript.whisperx[24].end 559.142
transcript.whisperx[24].text 因為應付這個緊急的情況各指揮官自己下命令這是第一個部分那第二部分關於這次預算的影響剛才我也報告我再簡單講有四個部分嚇阻的戰力包括各種各樣的飛彈不對稱的戰力包括標槍
transcript.whisperx[25].start 560.902
transcript.whisperx[25].end 571.617
transcript.whisperx[25].text 事爭等等還有戰鬥人員的保護譬如說各裝醫療等等最後是對官兵的照顧在這四個方面我們受到影響
transcript.whisperx[26].start 572.574
transcript.whisperx[26].end 590.692
transcript.whisperx[26].text 好 那再請教你就是說整個軍演它其實是擴大了它的油錢的切口年年的漲那你這個預算卡關揮機可以不可以揮你看 你的油瓶採購逐年在增加連續4年已經不敷使用了
transcript.whisperx[27].start 591.332
transcript.whisperx[27].end 606.224
transcript.whisperx[27].text 那如果你在沿用去年的預算當然我們知道就是說你可以用預算法54條你照樣可以就是沿用114年的預算照常的來使用可是這個軍演這個頻率增加了這麼大那你看
transcript.whisperx[28].start 608.246
transcript.whisperx[28].end 630.411
transcript.whisperx[28].text 就是所有就是我這個跟你整理出來的從109年到113年甚至你114年你還增列了11億當然115年你才多增加了4000萬你是夠不夠啊你不能有飛機結果你沒有油錢啊會不會這樣子一個困境我們請主席回答您好
transcript.whisperx[29].start 631.738
transcript.whisperx[29].end 651.777
transcript.whisperx[29].text 委員好 我是主席局局長有關油料的部分陳儒剛剛委員講我們是逐年都在調整調整的原因當然就是因為敵情威脅日趨嚴重就像上禮拜突然他又宣布要一個演習所以我們的油料可能我之前可以先用以前的經驗去推估 去調整但是因應突發的狀況
transcript.whisperx[30].start 653.55
transcript.whisperx[30].end 681.952
transcript.whisperx[30].text 这笔钱我势必是没有编在原来的年度预算内那如果突发的状况你也一样有钱那你也准备好了你从哪边去挪用因为钱一定是灵活的这个预算是灵活的各位报告因为以油料预算为例115年我们编了116亿比114年我们大概增加了4亿多那这部分当然如果说现在这个时间你有增加4亿多
transcript.whisperx[31].start 683.693
transcript.whisperx[31].end 709.673
transcript.whisperx[31].text 我們原本編是112億然後115年編了116億就油料的部分如果說現在我們去運用的話因為我比較增加數是4億所以在油料的額度上面可能我們會被管制的目前的額度大概4億如果上半年這部分如果是臨時的一些狀況我們可能要移緩計級增加的部分就是沒辦法去動資
transcript.whisperx[32].start 710.994
transcript.whisperx[32].end 719.941
transcript.whisperx[32].text 好 謝謝賴委員到了下半年可能就有一點會捉襟見肘好 我們再來想辦法好不好是好 謝謝主席好 謝謝賴委員接下來我們請顏寬恒委員