iVOD / 16675

Field Value
IVOD_ID 16675
IVOD_URL https://ivod.ly.gov.tw/Play/Full/1M/16675
日期 2025-05-15
會議資料.會議代碼 委員會-11-3-26-11
會議資料.會議代碼:str 第11屆第3會期社會福利及衛生環境委員會第11次全體委員會議
會議資料.屆 11
會議資料.會期 3
會議資料.會次 11
會議資料.種類 委員會
會議資料.委員會代碼[0] 26
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.標題 第11屆第3會期社會福利及衛生環境委員會第11次全體委員會議
影片種類 Full
開始時間 2025-05-15T08:30:45+08:00
結束時間 2025-05-15T13:36:00+08:00
影片長度 05:05:15
支援功能[0] ai-transcript
video_url https://h264media01.ly.gov.tw:443/vod_1/_definst_/mp4:1M/bfaf9b39ac01a68514eb38c982c93fb95e5a7d9476abbdb352bdb8234cc31cac56a0665efbad2d545ea18f28b6918d91.mp4/playlist.m3u8
會議時間 2025-05-15T09:00:00+08:00
會議名稱 立法院第11屆第3會期社會福利及衛生環境委員會第11次全體委員會議(事由:處理或審查114年度中央政府總預算決議有關勞動部主管預算凍結報告案76案(含報告事項59案及討論事項17案)。 【5月14日及15日二天一次會】)
委員名稱 完整會議
委員發言時間 08:30:45 - 13:36:00
transcript.pyannote[0].speaker SPEAKER_10
transcript.pyannote[0].start 1766.30346875
transcript.pyannote[0].end 1768.59846875
transcript.pyannote[1].speaker SPEAKER_10
transcript.pyannote[1].start 1770.48846875
transcript.pyannote[1].end 1771.87221875
transcript.pyannote[2].speaker SPEAKER_10
transcript.pyannote[2].start 1772.59784375
transcript.pyannote[2].end 1773.91409375
transcript.pyannote[3].speaker SPEAKER_10
transcript.pyannote[3].start 1774.35284375
transcript.pyannote[3].end 1775.38221875
transcript.pyannote[4].speaker SPEAKER_10
transcript.pyannote[4].start 1775.53409375
transcript.pyannote[4].end 1784.64659375
transcript.pyannote[5].speaker SPEAKER_10
transcript.pyannote[5].start 1784.78159375
transcript.pyannote[5].end 1791.43034375
transcript.pyannote[6].speaker SPEAKER_10
transcript.pyannote[6].start 1792.34159375
transcript.pyannote[6].end 1795.39596875
transcript.pyannote[7].speaker SPEAKER_10
transcript.pyannote[7].start 1797.35346875
transcript.pyannote[7].end 1797.58971875
transcript.pyannote[8].speaker SPEAKER_10
transcript.pyannote[8].start 1798.87221875
transcript.pyannote[8].end 1800.52596875
transcript.pyannote[9].speaker SPEAKER_10
transcript.pyannote[9].start 1802.12909375
transcript.pyannote[9].end 1803.91784375
transcript.pyannote[10].speaker SPEAKER_10
transcript.pyannote[10].start 1805.68971875
transcript.pyannote[10].end 1805.99346875
transcript.pyannote[11].speaker SPEAKER_10
transcript.pyannote[11].start 1806.33096875
transcript.pyannote[11].end 1808.33909375
transcript.pyannote[12].speaker SPEAKER_10
transcript.pyannote[12].start 1810.04346875
transcript.pyannote[12].end 1810.48221875
transcript.pyannote[13].speaker SPEAKER_10
transcript.pyannote[13].start 1810.49909375
transcript.pyannote[13].end 1812.81096875
transcript.pyannote[14].speaker SPEAKER_10
transcript.pyannote[14].start 1813.84034375
transcript.pyannote[14].end 1814.22846875
transcript.pyannote[15].speaker SPEAKER_10
transcript.pyannote[15].start 1814.78534375
transcript.pyannote[15].end 1816.64159375
transcript.pyannote[16].speaker SPEAKER_10
transcript.pyannote[16].start 1817.02971875
transcript.pyannote[16].end 1817.43471875
transcript.pyannote[17].speaker SPEAKER_10
transcript.pyannote[17].start 1817.75534375
transcript.pyannote[17].end 1821.09659375
transcript.pyannote[18].speaker SPEAKER_10
transcript.pyannote[18].start 1821.55221875
transcript.pyannote[18].end 1821.97409375
transcript.pyannote[19].speaker SPEAKER_10
transcript.pyannote[19].start 1822.68284375
transcript.pyannote[19].end 1825.01159375
transcript.pyannote[20].speaker SPEAKER_10
transcript.pyannote[20].start 1825.50096875
transcript.pyannote[20].end 1825.61909375
transcript.pyannote[21].speaker SPEAKER_10
transcript.pyannote[21].start 1826.59784375
transcript.pyannote[21].end 1830.52971875
transcript.pyannote[22].speaker SPEAKER_10
transcript.pyannote[22].start 1831.98096875
transcript.pyannote[22].end 1834.44471875
transcript.pyannote[23].speaker SPEAKER_10
transcript.pyannote[23].start 1835.82846875
transcript.pyannote[23].end 1837.97159375
transcript.pyannote[24].speaker SPEAKER_10
transcript.pyannote[24].start 1839.16971875
transcript.pyannote[24].end 1840.53659375
transcript.pyannote[25].speaker SPEAKER_10
transcript.pyannote[25].start 1841.07659375
transcript.pyannote[25].end 1841.80221875
transcript.pyannote[26].speaker SPEAKER_10
transcript.pyannote[26].start 1843.05096875
transcript.pyannote[26].end 1843.48971875
transcript.pyannote[27].speaker SPEAKER_10
transcript.pyannote[27].start 1844.24909375
transcript.pyannote[27].end 1845.76784375
transcript.pyannote[28].speaker SPEAKER_10
transcript.pyannote[28].start 1846.22346875
transcript.pyannote[28].end 1846.81409375
transcript.pyannote[29].speaker SPEAKER_10
transcript.pyannote[29].start 1848.41721875
transcript.pyannote[29].end 1850.49284375
transcript.pyannote[30].speaker SPEAKER_10
transcript.pyannote[30].start 1850.62784375
transcript.pyannote[30].end 1851.38721875
transcript.pyannote[31].speaker SPEAKER_10
transcript.pyannote[31].start 1853.81721875
transcript.pyannote[31].end 1854.98159375
transcript.pyannote[32].speaker SPEAKER_10
transcript.pyannote[32].start 1855.99409375
transcript.pyannote[32].end 1857.59721875
transcript.pyannote[33].speaker SPEAKER_10
transcript.pyannote[33].start 1858.00221875
transcript.pyannote[33].end 1858.30596875
transcript.pyannote[34].speaker SPEAKER_10
transcript.pyannote[34].start 1859.03159375
transcript.pyannote[34].end 1860.38159375
transcript.pyannote[35].speaker SPEAKER_10
transcript.pyannote[35].start 1861.51221875
transcript.pyannote[35].end 1863.62159375
transcript.pyannote[36].speaker SPEAKER_10
transcript.pyannote[36].start 1864.66784375
transcript.pyannote[36].end 1866.20346875
transcript.pyannote[37].speaker SPEAKER_10
transcript.pyannote[37].start 1867.46909375
transcript.pyannote[37].end 1868.85284375
transcript.pyannote[38].speaker SPEAKER_10
transcript.pyannote[38].start 1869.81471875
transcript.pyannote[38].end 1872.05909375
transcript.pyannote[39].speaker SPEAKER_10
transcript.pyannote[39].start 1872.14346875
transcript.pyannote[39].end 1873.71284375
transcript.pyannote[40].speaker SPEAKER_10
transcript.pyannote[40].start 1875.56909375
transcript.pyannote[40].end 1875.70409375
transcript.pyannote[41].speaker SPEAKER_10
transcript.pyannote[41].start 1875.94034375
transcript.pyannote[41].end 1876.34534375
transcript.pyannote[42].speaker SPEAKER_10
transcript.pyannote[42].start 1876.63221875
transcript.pyannote[42].end 1877.50971875
transcript.pyannote[43].speaker SPEAKER_10
transcript.pyannote[43].start 1878.37034375
transcript.pyannote[43].end 1878.85971875
transcript.pyannote[44].speaker SPEAKER_10
transcript.pyannote[44].start 1879.85534375
transcript.pyannote[44].end 1883.88846875
transcript.pyannote[45].speaker SPEAKER_10
transcript.pyannote[45].start 1886.52096875
transcript.pyannote[45].end 1886.53784375
transcript.pyannote[46].speaker SPEAKER_16
transcript.pyannote[46].start 1886.53784375
transcript.pyannote[46].end 1907.20971875
transcript.pyannote[47].speaker SPEAKER_16
transcript.pyannote[47].start 1908.10409375
transcript.pyannote[47].end 1917.65534375
transcript.pyannote[48].speaker SPEAKER_16
transcript.pyannote[48].start 1918.68471875
transcript.pyannote[48].end 1921.06409375
transcript.pyannote[49].speaker SPEAKER_16
transcript.pyannote[49].start 1921.63784375
transcript.pyannote[49].end 1978.89471875
transcript.pyannote[50].speaker SPEAKER_16
transcript.pyannote[50].start 1979.62034375
transcript.pyannote[50].end 1984.12596875
transcript.pyannote[51].speaker SPEAKER_16
transcript.pyannote[51].start 1984.41284375
transcript.pyannote[51].end 1994.21721875
transcript.pyannote[52].speaker SPEAKER_16
transcript.pyannote[52].start 1995.73596875
transcript.pyannote[52].end 1999.53284375
transcript.pyannote[53].speaker SPEAKER_16
transcript.pyannote[53].start 1999.97159375
transcript.pyannote[53].end 2002.01346875
transcript.pyannote[54].speaker SPEAKER_16
transcript.pyannote[54].start 2002.33409375
transcript.pyannote[54].end 2008.47659375
transcript.pyannote[55].speaker SPEAKER_16
transcript.pyannote[55].start 2009.38784375
transcript.pyannote[55].end 2013.15096875
transcript.pyannote[56].speaker SPEAKER_16
transcript.pyannote[56].start 2013.45471875
transcript.pyannote[56].end 2018.28096875
transcript.pyannote[57].speaker SPEAKER_16
transcript.pyannote[57].start 2019.09096875
transcript.pyannote[57].end 2022.71909375
transcript.pyannote[58].speaker SPEAKER_16
transcript.pyannote[58].start 2023.17471875
transcript.pyannote[58].end 2026.16159375
transcript.pyannote[59].speaker SPEAKER_16
transcript.pyannote[59].start 2027.12346875
transcript.pyannote[59].end 2033.56971875
transcript.pyannote[60].speaker SPEAKER_16
transcript.pyannote[60].start 2034.66659375
transcript.pyannote[60].end 2047.81221875
transcript.pyannote[61].speaker SPEAKER_16
transcript.pyannote[61].start 2047.99784375
transcript.pyannote[61].end 2054.32596875
transcript.pyannote[62].speaker SPEAKER_16
transcript.pyannote[62].start 2055.25409375
transcript.pyannote[62].end 2083.06409375
transcript.pyannote[63].speaker SPEAKER_16
transcript.pyannote[63].start 2083.40159375
transcript.pyannote[63].end 2090.62409375
transcript.pyannote[64].speaker SPEAKER_16
transcript.pyannote[64].start 2091.18096875
transcript.pyannote[64].end 2098.33596875
transcript.pyannote[65].speaker SPEAKER_16
transcript.pyannote[65].start 2099.34846875
transcript.pyannote[65].end 2108.84909375
transcript.pyannote[66].speaker SPEAKER_16
transcript.pyannote[66].start 2110.09784375
transcript.pyannote[66].end 2112.84846875
transcript.pyannote[67].speaker SPEAKER_16
transcript.pyannote[67].start 2113.18596875
transcript.pyannote[67].end 2139.51096875
transcript.pyannote[68].speaker SPEAKER_16
transcript.pyannote[68].start 2140.03409375
transcript.pyannote[68].end 2142.95346875
transcript.pyannote[69].speaker SPEAKER_16
transcript.pyannote[69].start 2143.99971875
transcript.pyannote[69].end 2152.65659375
transcript.pyannote[70].speaker SPEAKER_16
transcript.pyannote[70].start 2153.61846875
transcript.pyannote[70].end 2154.74909375
transcript.pyannote[71].speaker SPEAKER_16
transcript.pyannote[71].start 2155.82909375
transcript.pyannote[71].end 2168.24909375
transcript.pyannote[72].speaker SPEAKER_16
transcript.pyannote[72].start 2169.53159375
transcript.pyannote[72].end 2175.60659375
transcript.pyannote[73].speaker SPEAKER_16
transcript.pyannote[73].start 2176.72034375
transcript.pyannote[73].end 2188.19534375
transcript.pyannote[74].speaker SPEAKER_16
transcript.pyannote[74].start 2188.39784375
transcript.pyannote[74].end 2203.28159375
transcript.pyannote[75].speaker SPEAKER_16
transcript.pyannote[75].start 2205.28971875
transcript.pyannote[75].end 2208.24284375
transcript.pyannote[76].speaker SPEAKER_16
transcript.pyannote[76].start 2208.68159375
transcript.pyannote[76].end 2230.36596875
transcript.pyannote[77].speaker SPEAKER_16
transcript.pyannote[77].start 2230.90596875
transcript.pyannote[77].end 2238.46596875
transcript.pyannote[78].speaker SPEAKER_16
transcript.pyannote[78].start 2239.00596875
transcript.pyannote[78].end 2240.47409375
transcript.pyannote[79].speaker SPEAKER_16
transcript.pyannote[79].start 2241.11534375
transcript.pyannote[79].end 2243.19096875
transcript.pyannote[80].speaker SPEAKER_10
transcript.pyannote[80].start 2246.68409375
transcript.pyannote[80].end 2248.69221875
transcript.pyannote[81].speaker SPEAKER_10
transcript.pyannote[81].start 2248.96221875
transcript.pyannote[81].end 2250.53159375
transcript.pyannote[82].speaker SPEAKER_10
transcript.pyannote[82].start 2250.56534375
transcript.pyannote[82].end 2251.25721875
transcript.pyannote[83].speaker SPEAKER_10
transcript.pyannote[83].start 2253.61971875
transcript.pyannote[83].end 2253.97409375
transcript.pyannote[84].speaker SPEAKER_10
transcript.pyannote[84].start 2254.41284375
transcript.pyannote[84].end 2254.90221875
transcript.pyannote[85].speaker SPEAKER_10
transcript.pyannote[85].start 2258.19284375
transcript.pyannote[85].end 2259.55971875
transcript.pyannote[86].speaker SPEAKER_10
transcript.pyannote[86].start 2260.18409375
transcript.pyannote[86].end 2263.74471875
transcript.pyannote[87].speaker SPEAKER_05
transcript.pyannote[87].start 2269.02659375
transcript.pyannote[87].end 2273.14409375
transcript.pyannote[88].speaker SPEAKER_05
transcript.pyannote[88].start 2274.05534375
transcript.pyannote[88].end 2274.51096875
transcript.pyannote[89].speaker SPEAKER_05
transcript.pyannote[89].start 2275.59096875
transcript.pyannote[89].end 2276.35034375
transcript.pyannote[90].speaker SPEAKER_05
transcript.pyannote[90].start 2277.75096875
transcript.pyannote[90].end 2279.13471875
transcript.pyannote[91].speaker SPEAKER_05
transcript.pyannote[91].start 2280.90659375
transcript.pyannote[91].end 2281.64909375
transcript.pyannote[92].speaker SPEAKER_05
transcript.pyannote[92].start 2282.93159375
transcript.pyannote[92].end 2283.85971875
transcript.pyannote[93].speaker SPEAKER_05
transcript.pyannote[93].start 2285.14221875
transcript.pyannote[93].end 2286.10409375
transcript.pyannote[94].speaker SPEAKER_05
transcript.pyannote[94].start 2287.57221875
transcript.pyannote[94].end 2288.39909375
transcript.pyannote[95].speaker SPEAKER_05
transcript.pyannote[95].start 2289.64784375
transcript.pyannote[95].end 2291.45346875
transcript.pyannote[96].speaker SPEAKER_05
transcript.pyannote[96].start 2292.88784375
transcript.pyannote[96].end 2294.52471875
transcript.pyannote[97].speaker SPEAKER_18
transcript.pyannote[97].start 2296.66784375
transcript.pyannote[97].end 2297.22471875
transcript.pyannote[98].speaker SPEAKER_05
transcript.pyannote[98].start 2298.11909375
transcript.pyannote[98].end 2301.69659375
transcript.pyannote[99].speaker SPEAKER_05
transcript.pyannote[99].start 2302.48971875
transcript.pyannote[99].end 2303.33346875
transcript.pyannote[100].speaker SPEAKER_05
transcript.pyannote[100].start 2304.00846875
transcript.pyannote[100].end 2304.80159375
transcript.pyannote[101].speaker SPEAKER_05
transcript.pyannote[101].start 2305.59471875
transcript.pyannote[101].end 2310.06659375
transcript.pyannote[102].speaker SPEAKER_05
transcript.pyannote[102].start 2310.72471875
transcript.pyannote[102].end 2311.18034375
transcript.pyannote[103].speaker SPEAKER_05
transcript.pyannote[103].start 2311.83846875
transcript.pyannote[103].end 2312.53034375
transcript.pyannote[104].speaker SPEAKER_05
transcript.pyannote[104].start 2312.86784375
transcript.pyannote[104].end 2314.15034375
transcript.pyannote[105].speaker SPEAKER_05
transcript.pyannote[105].start 2314.99409375
transcript.pyannote[105].end 2315.75346875
transcript.pyannote[106].speaker SPEAKER_05
transcript.pyannote[106].start 2316.61409375
transcript.pyannote[106].end 2317.39034375
transcript.pyannote[107].speaker SPEAKER_05
transcript.pyannote[107].start 2317.89659375
transcript.pyannote[107].end 2318.72346875
transcript.pyannote[108].speaker SPEAKER_05
transcript.pyannote[108].start 2319.26346875
transcript.pyannote[108].end 2320.09034375
transcript.pyannote[109].speaker SPEAKER_05
transcript.pyannote[109].start 2320.71471875
transcript.pyannote[109].end 2322.23346875
transcript.pyannote[110].speaker SPEAKER_05
transcript.pyannote[110].start 2323.29659375
transcript.pyannote[110].end 2324.74784375
transcript.pyannote[111].speaker SPEAKER_05
transcript.pyannote[111].start 2325.79409375
transcript.pyannote[111].end 2326.55346875
transcript.pyannote[112].speaker SPEAKER_05
transcript.pyannote[112].start 2327.12721875
transcript.pyannote[112].end 2328.00471875
transcript.pyannote[113].speaker SPEAKER_05
transcript.pyannote[113].start 2328.81471875
transcript.pyannote[113].end 2329.87784375
transcript.pyannote[114].speaker SPEAKER_05
transcript.pyannote[114].start 2329.96221875
transcript.pyannote[114].end 2330.90721875
transcript.pyannote[115].speaker SPEAKER_05
transcript.pyannote[115].start 2331.46409375
transcript.pyannote[115].end 2333.13471875
transcript.pyannote[116].speaker SPEAKER_05
transcript.pyannote[116].start 2333.59034375
transcript.pyannote[116].end 2338.14659375
transcript.pyannote[117].speaker SPEAKER_10
transcript.pyannote[117].start 2342.92221875
transcript.pyannote[117].end 2344.01909375
transcript.pyannote[118].speaker SPEAKER_10
transcript.pyannote[118].start 2344.99784375
transcript.pyannote[118].end 2345.28471875
transcript.pyannote[119].speaker SPEAKER_10
transcript.pyannote[119].start 2346.17909375
transcript.pyannote[119].end 2346.61784375
transcript.pyannote[120].speaker SPEAKER_10
transcript.pyannote[120].start 2347.93409375
transcript.pyannote[120].end 2348.32221875
transcript.pyannote[121].speaker SPEAKER_10
transcript.pyannote[121].start 2349.03096875
transcript.pyannote[121].end 2349.50346875
transcript.pyannote[122].speaker SPEAKER_10
transcript.pyannote[122].start 2349.67221875
transcript.pyannote[122].end 2357.24909375
transcript.pyannote[123].speaker SPEAKER_10
transcript.pyannote[123].start 3000.82784375
transcript.pyannote[123].end 3039.55596875
transcript.pyannote[124].speaker SPEAKER_10
transcript.pyannote[124].start 3040.78784375
transcript.pyannote[124].end 3041.04096875
transcript.pyannote[125].speaker SPEAKER_10
transcript.pyannote[125].start 3042.39096875
transcript.pyannote[125].end 3042.44159375
transcript.pyannote[126].speaker SPEAKER_10
transcript.pyannote[126].start 3043.35284375
transcript.pyannote[126].end 3045.91784375
transcript.pyannote[127].speaker SPEAKER_19
transcript.pyannote[127].start 3055.24971875
transcript.pyannote[127].end 3055.77284375
transcript.pyannote[128].speaker SPEAKER_19
transcript.pyannote[128].start 3056.76846875
transcript.pyannote[128].end 3056.95409375
transcript.pyannote[129].speaker SPEAKER_19
transcript.pyannote[129].start 3056.97096875
transcript.pyannote[129].end 3057.34221875
transcript.pyannote[130].speaker SPEAKER_26
transcript.pyannote[130].start 3057.93284375
transcript.pyannote[130].end 3062.03346875
transcript.pyannote[131].speaker SPEAKER_10
transcript.pyannote[131].start 3063.87284375
transcript.pyannote[131].end 3064.61534375
transcript.pyannote[132].speaker SPEAKER_10
transcript.pyannote[132].start 3064.96971875
transcript.pyannote[132].end 3065.93159375
transcript.pyannote[133].speaker SPEAKER_10
transcript.pyannote[133].start 3066.70784375
transcript.pyannote[133].end 3068.53034375
transcript.pyannote[134].speaker SPEAKER_10
transcript.pyannote[134].start 3069.07034375
transcript.pyannote[134].end 3069.82971875
transcript.pyannote[135].speaker SPEAKER_05
transcript.pyannote[135].start 3071.33159375
transcript.pyannote[135].end 3072.19221875
transcript.pyannote[136].speaker SPEAKER_10
transcript.pyannote[136].start 3072.61409375
transcript.pyannote[136].end 3073.74471875
transcript.pyannote[137].speaker SPEAKER_05
transcript.pyannote[137].start 3072.85034375
transcript.pyannote[137].end 3077.89596875
transcript.pyannote[138].speaker SPEAKER_10
transcript.pyannote[138].start 3078.48659375
transcript.pyannote[138].end 3084.56159375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 3079.38096875
transcript.pyannote[139].end 3079.39784375
transcript.pyannote[140].speaker SPEAKER_05
transcript.pyannote[140].start 3079.39784375
transcript.pyannote[140].end 3080.00534375
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 3080.00534375
transcript.pyannote[141].end 3080.10659375
transcript.pyannote[142].speaker SPEAKER_05
transcript.pyannote[142].start 3080.10659375
transcript.pyannote[142].end 3080.27534375
transcript.pyannote[143].speaker SPEAKER_00
transcript.pyannote[143].start 3080.27534375
transcript.pyannote[143].end 3080.41034375
transcript.pyannote[144].speaker SPEAKER_10
transcript.pyannote[144].start 3084.91596875
transcript.pyannote[144].end 3087.81846875
transcript.pyannote[145].speaker SPEAKER_10
transcript.pyannote[145].start 3088.29096875
transcript.pyannote[145].end 3094.88909375
transcript.pyannote[146].speaker SPEAKER_10
transcript.pyannote[146].start 3095.26034375
transcript.pyannote[146].end 3108.10221875
transcript.pyannote[147].speaker SPEAKER_10
transcript.pyannote[147].start 3108.70971875
transcript.pyannote[147].end 3110.02596875
transcript.pyannote[148].speaker SPEAKER_10
transcript.pyannote[148].start 3110.04284375
transcript.pyannote[148].end 3111.96659375
transcript.pyannote[149].speaker SPEAKER_05
transcript.pyannote[149].start 3112.30409375
transcript.pyannote[149].end 3114.10971875
transcript.pyannote[150].speaker SPEAKER_05
transcript.pyannote[150].start 3114.58221875
transcript.pyannote[150].end 3115.27409375
transcript.pyannote[151].speaker SPEAKER_10
transcript.pyannote[151].start 3117.94034375
transcript.pyannote[151].end 3120.35346875
transcript.pyannote[152].speaker SPEAKER_10
transcript.pyannote[152].start 3121.23096875
transcript.pyannote[152].end 3122.66534375
transcript.pyannote[153].speaker SPEAKER_05
transcript.pyannote[153].start 3123.23909375
transcript.pyannote[153].end 3124.82534375
transcript.pyannote[154].speaker SPEAKER_07
transcript.pyannote[154].start 3126.32721875
transcript.pyannote[154].end 3127.03596875
transcript.pyannote[155].speaker SPEAKER_07
transcript.pyannote[155].start 3127.15409375
transcript.pyannote[155].end 3127.84596875
transcript.pyannote[156].speaker SPEAKER_07
transcript.pyannote[156].start 3129.26346875
transcript.pyannote[156].end 3130.03971875
transcript.pyannote[157].speaker SPEAKER_10
transcript.pyannote[157].start 3131.50784375
transcript.pyannote[157].end 3139.03409375
transcript.pyannote[158].speaker SPEAKER_10
transcript.pyannote[158].start 3139.40534375
transcript.pyannote[158].end 3142.96596875
transcript.pyannote[159].speaker SPEAKER_10
transcript.pyannote[159].start 3143.33721875
transcript.pyannote[159].end 3145.86846875
transcript.pyannote[160].speaker SPEAKER_10
transcript.pyannote[160].start 3146.12159375
transcript.pyannote[160].end 3157.19159375
transcript.pyannote[161].speaker SPEAKER_10
transcript.pyannote[161].start 3157.86659375
transcript.pyannote[161].end 3161.00534375
transcript.pyannote[162].speaker SPEAKER_10
transcript.pyannote[162].start 3161.02221875
transcript.pyannote[162].end 3161.34284375
transcript.pyannote[163].speaker SPEAKER_10
transcript.pyannote[163].start 3161.59596875
transcript.pyannote[163].end 3161.98409375
transcript.pyannote[164].speaker SPEAKER_10
transcript.pyannote[164].start 3165.10596875
transcript.pyannote[164].end 3168.48096875
transcript.pyannote[165].speaker SPEAKER_10
transcript.pyannote[165].start 3169.03784375
transcript.pyannote[165].end 3170.18534375
transcript.pyannote[166].speaker SPEAKER_10
transcript.pyannote[166].start 3170.57346875
transcript.pyannote[166].end 3171.56909375
transcript.pyannote[167].speaker SPEAKER_10
transcript.pyannote[167].start 3172.21034375
transcript.pyannote[167].end 3172.44659375
transcript.pyannote[168].speaker SPEAKER_10
transcript.pyannote[168].start 3174.40409375
transcript.pyannote[168].end 3176.02409375
transcript.pyannote[169].speaker SPEAKER_10
transcript.pyannote[169].start 3176.73284375
transcript.pyannote[169].end 3176.80034375
transcript.pyannote[170].speaker SPEAKER_10
transcript.pyannote[170].start 3177.99846875
transcript.pyannote[170].end 3179.80409375
transcript.pyannote[171].speaker SPEAKER_20
transcript.pyannote[171].start 3187.54971875
transcript.pyannote[171].end 3187.75221875
transcript.pyannote[172].speaker SPEAKER_18
transcript.pyannote[172].start 3190.77284375
transcript.pyannote[172].end 3237.98909375
transcript.pyannote[173].speaker SPEAKER_18
transcript.pyannote[173].start 3238.95096875
transcript.pyannote[173].end 3243.96284375
transcript.pyannote[174].speaker SPEAKER_18
transcript.pyannote[174].start 3244.72221875
transcript.pyannote[174].end 3249.68346875
transcript.pyannote[175].speaker SPEAKER_18
transcript.pyannote[175].start 3250.30784375
transcript.pyannote[175].end 3252.75471875
transcript.pyannote[176].speaker SPEAKER_18
transcript.pyannote[176].start 3253.10909375
transcript.pyannote[176].end 3289.60971875
transcript.pyannote[177].speaker SPEAKER_18
transcript.pyannote[177].start 3290.33534375
transcript.pyannote[177].end 3297.23721875
transcript.pyannote[178].speaker SPEAKER_18
transcript.pyannote[178].start 3297.99659375
transcript.pyannote[178].end 3300.35909375
transcript.pyannote[179].speaker SPEAKER_18
transcript.pyannote[179].start 3300.94971875
transcript.pyannote[179].end 3301.92846875
transcript.pyannote[180].speaker SPEAKER_18
transcript.pyannote[180].start 3302.53596875
transcript.pyannote[180].end 3308.67846875
transcript.pyannote[181].speaker SPEAKER_18
transcript.pyannote[181].start 3309.62346875
transcript.pyannote[181].end 3310.72034375
transcript.pyannote[182].speaker SPEAKER_18
transcript.pyannote[182].start 3310.87221875
transcript.pyannote[182].end 3317.50409375
transcript.pyannote[183].speaker SPEAKER_18
transcript.pyannote[183].start 3317.70659375
transcript.pyannote[183].end 3323.95034375
transcript.pyannote[184].speaker SPEAKER_18
transcript.pyannote[184].start 3324.38909375
transcript.pyannote[184].end 3325.65471875
transcript.pyannote[185].speaker SPEAKER_18
transcript.pyannote[185].start 3326.04284375
transcript.pyannote[185].end 3327.62909375
transcript.pyannote[186].speaker SPEAKER_18
transcript.pyannote[186].start 3328.00034375
transcript.pyannote[186].end 3337.87221875
transcript.pyannote[187].speaker SPEAKER_18
transcript.pyannote[187].start 3338.78346875
transcript.pyannote[187].end 3359.55659375
transcript.pyannote[188].speaker SPEAKER_18
transcript.pyannote[188].start 3360.33284375
transcript.pyannote[188].end 3375.58784375
transcript.pyannote[189].speaker SPEAKER_18
transcript.pyannote[189].start 3376.19534375
transcript.pyannote[189].end 3378.67596875
transcript.pyannote[190].speaker SPEAKER_18
transcript.pyannote[190].start 3378.99659375
transcript.pyannote[190].end 3385.99971875
transcript.pyannote[191].speaker SPEAKER_18
transcript.pyannote[191].start 3386.06721875
transcript.pyannote[191].end 3389.66159375
transcript.pyannote[192].speaker SPEAKER_18
transcript.pyannote[192].start 3390.28596875
transcript.pyannote[192].end 3412.45971875
transcript.pyannote[193].speaker SPEAKER_18
transcript.pyannote[193].start 3413.05034375
transcript.pyannote[193].end 3432.99659375
transcript.pyannote[194].speaker SPEAKER_18
transcript.pyannote[194].start 3433.53659375
transcript.pyannote[194].end 3456.18284375
transcript.pyannote[195].speaker SPEAKER_18
transcript.pyannote[195].start 3458.19096875
transcript.pyannote[195].end 3468.23159375
transcript.pyannote[196].speaker SPEAKER_18
transcript.pyannote[196].start 3468.38346875
transcript.pyannote[196].end 3476.60159375
transcript.pyannote[197].speaker SPEAKER_18
transcript.pyannote[197].start 3476.61846875
transcript.pyannote[197].end 3476.68596875
transcript.pyannote[198].speaker SPEAKER_18
transcript.pyannote[198].start 3476.73659375
transcript.pyannote[198].end 3482.89596875
transcript.pyannote[199].speaker SPEAKER_18
transcript.pyannote[199].start 3484.78596875
transcript.pyannote[199].end 3501.86346875
transcript.pyannote[200].speaker SPEAKER_18
transcript.pyannote[200].start 3502.40346875
transcript.pyannote[200].end 3513.47346875
transcript.pyannote[201].speaker SPEAKER_18
transcript.pyannote[201].start 3513.77721875
transcript.pyannote[201].end 3519.36284375
transcript.pyannote[202].speaker SPEAKER_18
transcript.pyannote[202].start 3520.12221875
transcript.pyannote[202].end 3524.02034375
transcript.pyannote[203].speaker SPEAKER_18
transcript.pyannote[203].start 3525.38721875
transcript.pyannote[203].end 3564.55409375
transcript.pyannote[204].speaker SPEAKER_10
transcript.pyannote[204].start 3570.35909375
transcript.pyannote[204].end 3573.97034375
transcript.pyannote[205].speaker SPEAKER_10
transcript.pyannote[205].start 3574.08846875
transcript.pyannote[205].end 3577.29471875
transcript.pyannote[206].speaker SPEAKER_10
transcript.pyannote[206].start 3577.73346875
transcript.pyannote[206].end 3594.81096875
transcript.pyannote[207].speaker SPEAKER_05
transcript.pyannote[207].start 3599.08034375
transcript.pyannote[207].end 3600.39659375
transcript.pyannote[208].speaker SPEAKER_10
transcript.pyannote[208].start 3600.58221875
transcript.pyannote[208].end 3601.29096875
transcript.pyannote[209].speaker SPEAKER_10
transcript.pyannote[209].start 3606.45471875
transcript.pyannote[209].end 3606.48846875
transcript.pyannote[210].speaker SPEAKER_18
transcript.pyannote[210].start 3606.48846875
transcript.pyannote[210].end 3606.96096875
transcript.pyannote[211].speaker SPEAKER_10
transcript.pyannote[211].start 3606.96096875
transcript.pyannote[211].end 3606.97784375
transcript.pyannote[212].speaker SPEAKER_05
transcript.pyannote[212].start 3606.97784375
transcript.pyannote[212].end 3621.28784375
transcript.pyannote[213].speaker SPEAKER_00
transcript.pyannote[213].start 3618.80721875
transcript.pyannote[213].end 3619.22909375
transcript.pyannote[214].speaker SPEAKER_05
transcript.pyannote[214].start 3621.84471875
transcript.pyannote[214].end 3627.02534375
transcript.pyannote[215].speaker SPEAKER_05
transcript.pyannote[215].start 3627.32909375
transcript.pyannote[215].end 3630.88971875
transcript.pyannote[216].speaker SPEAKER_05
transcript.pyannote[216].start 3632.00346875
transcript.pyannote[216].end 3645.58784375
transcript.pyannote[217].speaker SPEAKER_05
transcript.pyannote[217].start 3646.81971875
transcript.pyannote[217].end 3652.89471875
transcript.pyannote[218].speaker SPEAKER_05
transcript.pyannote[218].start 3653.48534375
transcript.pyannote[218].end 3667.37346875
transcript.pyannote[219].speaker SPEAKER_20
transcript.pyannote[219].start 3658.53096875
transcript.pyannote[219].end 3658.93596875
transcript.pyannote[220].speaker SPEAKER_18
transcript.pyannote[220].start 3665.56784375
transcript.pyannote[220].end 3666.00659375
transcript.pyannote[221].speaker SPEAKER_18
transcript.pyannote[221].start 3667.57596875
transcript.pyannote[221].end 3672.11534375
transcript.pyannote[222].speaker SPEAKER_18
transcript.pyannote[222].start 3672.35159375
transcript.pyannote[222].end 3674.62971875
transcript.pyannote[223].speaker SPEAKER_18
transcript.pyannote[223].start 3675.40596875
transcript.pyannote[223].end 3676.90784375
transcript.pyannote[224].speaker SPEAKER_05
transcript.pyannote[224].start 3676.51971875
transcript.pyannote[224].end 3679.94534375
transcript.pyannote[225].speaker SPEAKER_18
transcript.pyannote[225].start 3677.95409375
transcript.pyannote[225].end 3677.98784375
transcript.pyannote[226].speaker SPEAKER_18
transcript.pyannote[226].start 3678.03846875
transcript.pyannote[226].end 3679.16909375
transcript.pyannote[227].speaker SPEAKER_18
transcript.pyannote[227].start 3679.89471875
transcript.pyannote[227].end 3681.53159375
transcript.pyannote[228].speaker SPEAKER_05
transcript.pyannote[228].start 3680.78909375
transcript.pyannote[228].end 3681.90284375
transcript.pyannote[229].speaker SPEAKER_18
transcript.pyannote[229].start 3681.91971875
transcript.pyannote[229].end 3686.44221875
transcript.pyannote[230].speaker SPEAKER_18
transcript.pyannote[230].start 3686.57721875
transcript.pyannote[230].end 3700.38096875
transcript.pyannote[231].speaker SPEAKER_20
transcript.pyannote[231].start 3690.17159375
transcript.pyannote[231].end 3690.20534375
transcript.pyannote[232].speaker SPEAKER_05
transcript.pyannote[232].start 3690.20534375
transcript.pyannote[232].end 3690.30659375
transcript.pyannote[233].speaker SPEAKER_20
transcript.pyannote[233].start 3690.30659375
transcript.pyannote[233].end 3692.04471875
transcript.pyannote[234].speaker SPEAKER_05
transcript.pyannote[234].start 3695.63909375
transcript.pyannote[234].end 3697.34346875
transcript.pyannote[235].speaker SPEAKER_18
transcript.pyannote[235].start 3700.41471875
transcript.pyannote[235].end 3708.43034375
transcript.pyannote[236].speaker SPEAKER_05
transcript.pyannote[236].start 3707.18159375
transcript.pyannote[236].end 3709.84784375
transcript.pyannote[237].speaker SPEAKER_18
transcript.pyannote[237].start 3709.12221875
transcript.pyannote[237].end 3709.32471875
transcript.pyannote[238].speaker SPEAKER_18
transcript.pyannote[238].start 3709.79721875
transcript.pyannote[238].end 3711.14721875
transcript.pyannote[239].speaker SPEAKER_05
transcript.pyannote[239].start 3711.18096875
transcript.pyannote[239].end 3711.19784375
transcript.pyannote[240].speaker SPEAKER_05
transcript.pyannote[240].start 3711.31596875
transcript.pyannote[240].end 3711.36659375
transcript.pyannote[241].speaker SPEAKER_18
transcript.pyannote[241].start 3711.36659375
transcript.pyannote[241].end 3713.03721875
transcript.pyannote[242].speaker SPEAKER_05
transcript.pyannote[242].start 3712.75034375
transcript.pyannote[242].end 3714.64034375
transcript.pyannote[243].speaker SPEAKER_18
transcript.pyannote[243].start 3713.59409375
transcript.pyannote[243].end 3726.41909375
transcript.pyannote[244].speaker SPEAKER_18
transcript.pyannote[244].start 3727.68471875
transcript.pyannote[244].end 3733.05096875
transcript.pyannote[245].speaker SPEAKER_05
transcript.pyannote[245].start 3732.96659375
transcript.pyannote[245].end 3776.85846875
transcript.pyannote[246].speaker SPEAKER_18
transcript.pyannote[246].start 3733.94534375
transcript.pyannote[246].end 3736.17284375
transcript.pyannote[247].speaker SPEAKER_18
transcript.pyannote[247].start 3736.76346875
transcript.pyannote[247].end 3737.21909375
transcript.pyannote[248].speaker SPEAKER_18
transcript.pyannote[248].start 3741.60659375
transcript.pyannote[248].end 3742.23096875
transcript.pyannote[249].speaker SPEAKER_18
transcript.pyannote[249].start 3744.15471875
transcript.pyannote[249].end 3746.83784375
transcript.pyannote[250].speaker SPEAKER_18
transcript.pyannote[250].start 3748.03596875
transcript.pyannote[250].end 3748.05284375
transcript.pyannote[251].speaker SPEAKER_20
transcript.pyannote[251].start 3748.05284375
transcript.pyannote[251].end 3748.42409375
transcript.pyannote[252].speaker SPEAKER_18
transcript.pyannote[252].start 3748.42409375
transcript.pyannote[252].end 3748.45784375
transcript.pyannote[253].speaker SPEAKER_05
transcript.pyannote[253].start 3776.87534375
transcript.pyannote[253].end 3777.65159375
transcript.pyannote[254].speaker SPEAKER_05
transcript.pyannote[254].start 3777.98909375
transcript.pyannote[254].end 3782.78159375
transcript.pyannote[255].speaker SPEAKER_05
transcript.pyannote[255].start 3783.69284375
transcript.pyannote[255].end 3793.04159375
transcript.pyannote[256].speaker SPEAKER_05
transcript.pyannote[256].start 3793.29471875
transcript.pyannote[256].end 3796.99034375
transcript.pyannote[257].speaker SPEAKER_05
transcript.pyannote[257].start 3797.56409375
transcript.pyannote[257].end 3802.49159375
transcript.pyannote[258].speaker SPEAKER_05
transcript.pyannote[258].start 3803.18346875
transcript.pyannote[258].end 3804.07784375
transcript.pyannote[259].speaker SPEAKER_05
transcript.pyannote[259].start 3804.76971875
transcript.pyannote[259].end 3815.29971875
transcript.pyannote[260].speaker SPEAKER_05
transcript.pyannote[260].start 3815.56971875
transcript.pyannote[260].end 3819.34971875
transcript.pyannote[261].speaker SPEAKER_01
transcript.pyannote[261].start 3815.63721875
transcript.pyannote[261].end 3815.67096875
transcript.pyannote[262].speaker SPEAKER_21
transcript.pyannote[262].start 3815.67096875
transcript.pyannote[262].end 3816.04221875
transcript.pyannote[263].speaker SPEAKER_18
transcript.pyannote[263].start 3816.04221875
transcript.pyannote[263].end 3816.05909375
transcript.pyannote[264].speaker SPEAKER_05
transcript.pyannote[264].start 3819.88971875
transcript.pyannote[264].end 3821.99909375
transcript.pyannote[265].speaker SPEAKER_18
transcript.pyannote[265].start 3821.30721875
transcript.pyannote[265].end 3836.10659375
transcript.pyannote[266].speaker SPEAKER_05
transcript.pyannote[266].start 3823.73721875
transcript.pyannote[266].end 3824.36159375
transcript.pyannote[267].speaker SPEAKER_05
transcript.pyannote[267].start 3831.80346875
transcript.pyannote[267].end 3831.85409375
transcript.pyannote[268].speaker SPEAKER_20
transcript.pyannote[268].start 3831.85409375
transcript.pyannote[268].end 3831.87096875
transcript.pyannote[269].speaker SPEAKER_05
transcript.pyannote[269].start 3831.87096875
transcript.pyannote[269].end 3832.57971875
transcript.pyannote[270].speaker SPEAKER_05
transcript.pyannote[270].start 3836.46096875
transcript.pyannote[270].end 3838.85721875
transcript.pyannote[271].speaker SPEAKER_18
transcript.pyannote[271].start 3837.33846875
transcript.pyannote[271].end 3840.81471875
transcript.pyannote[272].speaker SPEAKER_05
transcript.pyannote[272].start 3841.50659375
transcript.pyannote[272].end 3844.18971875
transcript.pyannote[273].speaker SPEAKER_18
transcript.pyannote[273].start 3842.43471875
transcript.pyannote[273].end 3847.17659375
transcript.pyannote[274].speaker SPEAKER_05
transcript.pyannote[274].start 3845.69159375
transcript.pyannote[274].end 3849.58971875
transcript.pyannote[275].speaker SPEAKER_05
transcript.pyannote[275].start 3849.70784375
transcript.pyannote[275].end 3853.99409375
transcript.pyannote[276].speaker SPEAKER_18
transcript.pyannote[276].start 3853.15034375
transcript.pyannote[276].end 3855.95159375
transcript.pyannote[277].speaker SPEAKER_05
transcript.pyannote[277].start 3854.02784375
transcript.pyannote[277].end 3855.63096875
transcript.pyannote[278].speaker SPEAKER_05
transcript.pyannote[278].start 3856.22159375
transcript.pyannote[278].end 3856.33971875
transcript.pyannote[279].speaker SPEAKER_05
transcript.pyannote[279].start 3856.49159375
transcript.pyannote[279].end 3889.73534375
transcript.pyannote[280].speaker SPEAKER_05
transcript.pyannote[280].start 3890.19096875
transcript.pyannote[280].end 3895.72596875
transcript.pyannote[281].speaker SPEAKER_05
transcript.pyannote[281].start 3896.13096875
transcript.pyannote[281].end 3898.76346875
transcript.pyannote[282].speaker SPEAKER_18
transcript.pyannote[282].start 3896.95784375
transcript.pyannote[282].end 3898.18971875
transcript.pyannote[283].speaker SPEAKER_18
transcript.pyannote[283].start 3898.69596875
transcript.pyannote[283].end 3899.91096875
transcript.pyannote[284].speaker SPEAKER_05
transcript.pyannote[284].start 3899.77596875
transcript.pyannote[284].end 3902.07096875
transcript.pyannote[285].speaker SPEAKER_18
transcript.pyannote[285].start 3901.48034375
transcript.pyannote[285].end 3917.68034375
transcript.pyannote[286].speaker SPEAKER_05
transcript.pyannote[286].start 3917.42721875
transcript.pyannote[286].end 3919.67159375
transcript.pyannote[287].speaker SPEAKER_18
transcript.pyannote[287].start 3918.97971875
transcript.pyannote[287].end 3930.48846875
transcript.pyannote[288].speaker SPEAKER_05
transcript.pyannote[288].start 3926.32034375
transcript.pyannote[288].end 3927.14721875
transcript.pyannote[289].speaker SPEAKER_05
transcript.pyannote[289].start 3928.61534375
transcript.pyannote[289].end 3930.37034375
transcript.pyannote[290].speaker SPEAKER_05
transcript.pyannote[290].start 3930.45471875
transcript.pyannote[290].end 3936.46221875
transcript.pyannote[291].speaker SPEAKER_18
transcript.pyannote[291].start 3936.49596875
transcript.pyannote[291].end 3942.41909375
transcript.pyannote[292].speaker SPEAKER_05
transcript.pyannote[292].start 3942.18284375
transcript.pyannote[292].end 3946.78971875
transcript.pyannote[293].speaker SPEAKER_18
transcript.pyannote[293].start 3943.56659375
transcript.pyannote[293].end 3944.86596875
transcript.pyannote[294].speaker SPEAKER_18
transcript.pyannote[294].start 3946.48596875
transcript.pyannote[294].end 3959.19284375
transcript.pyannote[295].speaker SPEAKER_05
transcript.pyannote[295].start 3947.46471875
transcript.pyannote[295].end 3949.33784375
transcript.pyannote[296].speaker SPEAKER_05
transcript.pyannote[296].start 3953.30346875
transcript.pyannote[296].end 3953.50596875
transcript.pyannote[297].speaker SPEAKER_05
transcript.pyannote[297].start 3953.97846875
transcript.pyannote[297].end 3955.91909375
transcript.pyannote[298].speaker SPEAKER_05
transcript.pyannote[298].start 3958.18034375
transcript.pyannote[298].end 3986.17596875
transcript.pyannote[299].speaker SPEAKER_18
transcript.pyannote[299].start 3961.97721875
transcript.pyannote[299].end 3962.36534375
transcript.pyannote[300].speaker SPEAKER_00
transcript.pyannote[300].start 3967.86659375
transcript.pyannote[300].end 3967.90034375
transcript.pyannote[301].speaker SPEAKER_03
transcript.pyannote[301].start 3967.90034375
transcript.pyannote[301].end 3968.17034375
transcript.pyannote[302].speaker SPEAKER_00
transcript.pyannote[302].start 3968.17034375
transcript.pyannote[302].end 3968.18721875
transcript.pyannote[303].speaker SPEAKER_18
transcript.pyannote[303].start 3986.42909375
transcript.pyannote[303].end 3987.22221875
transcript.pyannote[304].speaker SPEAKER_05
transcript.pyannote[304].start 3986.80034375
transcript.pyannote[304].end 3988.75784375
transcript.pyannote[305].speaker SPEAKER_18
transcript.pyannote[305].start 3988.36971875
transcript.pyannote[305].end 3991.35659375
transcript.pyannote[306].speaker SPEAKER_05
transcript.pyannote[306].start 3991.13721875
transcript.pyannote[306].end 3992.28471875
transcript.pyannote[307].speaker SPEAKER_18
transcript.pyannote[307].start 3991.94721875
transcript.pyannote[307].end 4005.02534375
transcript.pyannote[308].speaker SPEAKER_05
transcript.pyannote[308].start 4004.18159375
transcript.pyannote[308].end 4009.80096875
transcript.pyannote[309].speaker SPEAKER_18
transcript.pyannote[309].start 4008.99096875
transcript.pyannote[309].end 4021.25909375
transcript.pyannote[310].speaker SPEAKER_05
transcript.pyannote[310].start 4011.91034375
transcript.pyannote[310].end 4013.26034375
transcript.pyannote[311].speaker SPEAKER_05
transcript.pyannote[311].start 4015.96034375
transcript.pyannote[311].end 4016.21346875
transcript.pyannote[312].speaker SPEAKER_05
transcript.pyannote[312].start 4018.76159375
transcript.pyannote[312].end 4019.70659375
transcript.pyannote[313].speaker SPEAKER_05
transcript.pyannote[313].start 4021.25909375
transcript.pyannote[313].end 4054.01346875
transcript.pyannote[314].speaker SPEAKER_05
transcript.pyannote[314].start 4054.51971875
transcript.pyannote[314].end 4058.55284375
transcript.pyannote[315].speaker SPEAKER_05
transcript.pyannote[315].start 4058.68784375
transcript.pyannote[315].end 4067.17596875
transcript.pyannote[316].speaker SPEAKER_05
transcript.pyannote[316].start 4067.61471875
transcript.pyannote[316].end 4068.08721875
transcript.pyannote[317].speaker SPEAKER_05
transcript.pyannote[317].start 4068.30659375
transcript.pyannote[317].end 4069.36971875
transcript.pyannote[318].speaker SPEAKER_18
transcript.pyannote[318].start 4070.50034375
transcript.pyannote[318].end 4084.23659375
transcript.pyannote[319].speaker SPEAKER_05
transcript.pyannote[319].start 4071.71534375
transcript.pyannote[319].end 4073.63909375
transcript.pyannote[320].speaker SPEAKER_05
transcript.pyannote[320].start 4079.98409375
transcript.pyannote[320].end 4081.11471875
transcript.pyannote[321].speaker SPEAKER_05
transcript.pyannote[321].start 4083.40971875
transcript.pyannote[321].end 4088.42159375
transcript.pyannote[322].speaker SPEAKER_18
transcript.pyannote[322].start 4085.19846875
transcript.pyannote[322].end 4112.99159375
transcript.pyannote[323].speaker SPEAKER_05
transcript.pyannote[323].start 4089.40034375
transcript.pyannote[323].end 4089.63659375
transcript.pyannote[324].speaker SPEAKER_05
transcript.pyannote[324].start 4111.23659375
transcript.pyannote[324].end 4154.82471875
transcript.pyannote[325].speaker SPEAKER_05
transcript.pyannote[325].start 4155.28034375
transcript.pyannote[325].end 4174.85534375
transcript.pyannote[326].speaker SPEAKER_05
transcript.pyannote[326].start 4175.29409375
transcript.pyannote[326].end 4183.36034375
transcript.pyannote[327].speaker SPEAKER_18
transcript.pyannote[327].start 4183.61346875
transcript.pyannote[327].end 4195.12221875
transcript.pyannote[328].speaker SPEAKER_18
transcript.pyannote[328].start 4195.66221875
transcript.pyannote[328].end 4198.36221875
transcript.pyannote[329].speaker SPEAKER_05
transcript.pyannote[329].start 4197.46784375
transcript.pyannote[329].end 4199.47596875
transcript.pyannote[330].speaker SPEAKER_18
transcript.pyannote[330].start 4199.02034375
transcript.pyannote[330].end 4213.54971875
transcript.pyannote[331].speaker SPEAKER_05
transcript.pyannote[331].start 4208.74034375
transcript.pyannote[331].end 4210.25909375
transcript.pyannote[332].speaker SPEAKER_05
transcript.pyannote[332].start 4213.21221875
transcript.pyannote[332].end 4218.02159375
transcript.pyannote[333].speaker SPEAKER_18
transcript.pyannote[333].start 4214.39346875
transcript.pyannote[333].end 4214.66346875
transcript.pyannote[334].speaker SPEAKER_18
transcript.pyannote[334].start 4215.05159375
transcript.pyannote[334].end 4215.65909375
transcript.pyannote[335].speaker SPEAKER_18
transcript.pyannote[335].start 4218.02159375
transcript.pyannote[335].end 4229.44596875
transcript.pyannote[336].speaker SPEAKER_05
transcript.pyannote[336].start 4222.86471875
transcript.pyannote[336].end 4223.87721875
transcript.pyannote[337].speaker SPEAKER_05
transcript.pyannote[337].start 4226.57721875
transcript.pyannote[337].end 4228.06221875
transcript.pyannote[338].speaker SPEAKER_05
transcript.pyannote[338].start 4228.97346875
transcript.pyannote[338].end 4230.94784375
transcript.pyannote[339].speaker SPEAKER_18
transcript.pyannote[339].start 4230.42471875
transcript.pyannote[339].end 4244.54909375
transcript.pyannote[340].speaker SPEAKER_05
transcript.pyannote[340].start 4236.01034375
transcript.pyannote[340].end 4238.50784375
transcript.pyannote[341].speaker SPEAKER_04
transcript.pyannote[341].start 4239.03096875
transcript.pyannote[341].end 4239.04784375
transcript.pyannote[342].speaker SPEAKER_05
transcript.pyannote[342].start 4239.04784375
transcript.pyannote[342].end 4239.94221875
transcript.pyannote[343].speaker SPEAKER_05
transcript.pyannote[343].start 4243.48596875
transcript.pyannote[343].end 4247.02971875
transcript.pyannote[344].speaker SPEAKER_18
transcript.pyannote[344].start 4246.50659375
transcript.pyannote[344].end 4250.13471875
transcript.pyannote[345].speaker SPEAKER_05
transcript.pyannote[345].start 4249.18971875
transcript.pyannote[345].end 4282.65284375
transcript.pyannote[346].speaker SPEAKER_00
transcript.pyannote[346].start 4264.57971875
transcript.pyannote[346].end 4264.76534375
transcript.pyannote[347].speaker SPEAKER_05
transcript.pyannote[347].start 4283.34471875
transcript.pyannote[347].end 4285.58909375
transcript.pyannote[348].speaker SPEAKER_12
transcript.pyannote[348].start 4286.11221875
transcript.pyannote[348].end 4302.43034375
transcript.pyannote[349].speaker SPEAKER_05
transcript.pyannote[349].start 4302.43034375
transcript.pyannote[349].end 4304.10096875
transcript.pyannote[350].speaker SPEAKER_05
transcript.pyannote[350].start 4304.32034375
transcript.pyannote[350].end 4319.47409375
transcript.pyannote[351].speaker SPEAKER_20
transcript.pyannote[351].start 4311.99846875
transcript.pyannote[351].end 4312.82534375
transcript.pyannote[352].speaker SPEAKER_05
transcript.pyannote[352].start 4319.96346875
transcript.pyannote[352].end 4323.69284375
transcript.pyannote[353].speaker SPEAKER_12
transcript.pyannote[353].start 4322.64659375
transcript.pyannote[353].end 4336.01159375
transcript.pyannote[354].speaker SPEAKER_05
transcript.pyannote[354].start 4332.36659375
transcript.pyannote[354].end 4340.75346875
transcript.pyannote[355].speaker SPEAKER_12
transcript.pyannote[355].start 4336.80471875
transcript.pyannote[355].end 4336.93971875
transcript.pyannote[356].speaker SPEAKER_05
transcript.pyannote[356].start 4341.05721875
transcript.pyannote[356].end 4346.08596875
transcript.pyannote[357].speaker SPEAKER_18
transcript.pyannote[357].start 4345.51221875
transcript.pyannote[357].end 4362.67409375
transcript.pyannote[358].speaker SPEAKER_20
transcript.pyannote[358].start 4353.61221875
transcript.pyannote[358].end 4354.91159375
transcript.pyannote[359].speaker SPEAKER_05
transcript.pyannote[359].start 4361.10471875
transcript.pyannote[359].end 4370.21721875
transcript.pyannote[360].speaker SPEAKER_18
transcript.pyannote[360].start 4366.92659375
transcript.pyannote[360].end 4367.33159375
transcript.pyannote[361].speaker SPEAKER_18
transcript.pyannote[361].start 4369.98096875
transcript.pyannote[361].end 4379.26221875
transcript.pyannote[362].speaker SPEAKER_05
transcript.pyannote[362].start 4373.20409375
transcript.pyannote[362].end 4373.72721875
transcript.pyannote[363].speaker SPEAKER_05
transcript.pyannote[363].start 4374.40221875
transcript.pyannote[363].end 4375.58346875
transcript.pyannote[364].speaker SPEAKER_05
transcript.pyannote[364].start 4375.98846875
transcript.pyannote[364].end 4384.61159375
transcript.pyannote[365].speaker SPEAKER_18
transcript.pyannote[365].start 4380.47721875
transcript.pyannote[365].end 4380.88221875
transcript.pyannote[366].speaker SPEAKER_18
transcript.pyannote[366].start 4384.15596875
transcript.pyannote[366].end 4386.92346875
transcript.pyannote[367].speaker SPEAKER_05
transcript.pyannote[367].start 4386.92346875
transcript.pyannote[367].end 4388.81346875
transcript.pyannote[368].speaker SPEAKER_18
transcript.pyannote[368].start 4388.94846875
transcript.pyannote[368].end 4389.37034375
transcript.pyannote[369].speaker SPEAKER_10
transcript.pyannote[369].start 4394.28096875
transcript.pyannote[369].end 4396.32284375
transcript.pyannote[370].speaker SPEAKER_24
transcript.pyannote[370].start 4409.13096875
transcript.pyannote[370].end 4411.64534375
transcript.pyannote[371].speaker SPEAKER_10
transcript.pyannote[371].start 4412.45534375
transcript.pyannote[371].end 4412.94471875
transcript.pyannote[372].speaker SPEAKER_18
transcript.pyannote[372].start 4419.28971875
transcript.pyannote[372].end 4419.94784375
transcript.pyannote[373].speaker SPEAKER_24
transcript.pyannote[373].start 4419.94784375
transcript.pyannote[373].end 4439.25284375
transcript.pyannote[374].speaker SPEAKER_24
transcript.pyannote[374].start 4439.28659375
transcript.pyannote[374].end 4454.69346875
transcript.pyannote[375].speaker SPEAKER_24
transcript.pyannote[375].start 4454.72721875
transcript.pyannote[375].end 4459.30034375
transcript.pyannote[376].speaker SPEAKER_24
transcript.pyannote[376].start 4459.80659375
transcript.pyannote[376].end 4479.41534375
transcript.pyannote[377].speaker SPEAKER_24
transcript.pyannote[377].start 4479.92159375
transcript.pyannote[377].end 4484.22471875
transcript.pyannote[378].speaker SPEAKER_24
transcript.pyannote[378].start 4484.86596875
transcript.pyannote[378].end 4494.73784375
transcript.pyannote[379].speaker SPEAKER_24
transcript.pyannote[379].start 4495.58159375
transcript.pyannote[379].end 4498.11284375
transcript.pyannote[380].speaker SPEAKER_18
transcript.pyannote[380].start 4498.95659375
transcript.pyannote[380].end 4499.96909375
transcript.pyannote[381].speaker SPEAKER_03
transcript.pyannote[381].start 4500.54284375
transcript.pyannote[381].end 4512.00096875
transcript.pyannote[382].speaker SPEAKER_24
transcript.pyannote[382].start 4506.21284375
transcript.pyannote[382].end 4506.22971875
transcript.pyannote[383].speaker SPEAKER_20
transcript.pyannote[383].start 4506.22971875
transcript.pyannote[383].end 4506.75284375
transcript.pyannote[384].speaker SPEAKER_03
transcript.pyannote[384].start 4512.37221875
transcript.pyannote[384].end 4521.36659375
transcript.pyannote[385].speaker SPEAKER_24
transcript.pyannote[385].start 4521.36659375
transcript.pyannote[385].end 4538.81534375
transcript.pyannote[386].speaker SPEAKER_01
transcript.pyannote[386].start 4530.73221875
transcript.pyannote[386].end 4531.22159375
transcript.pyannote[387].speaker SPEAKER_03
transcript.pyannote[387].start 4538.35971875
transcript.pyannote[387].end 4549.95284375
transcript.pyannote[388].speaker SPEAKER_24
transcript.pyannote[388].start 4549.95284375
transcript.pyannote[388].end 4581.98159375
transcript.pyannote[389].speaker SPEAKER_03
transcript.pyannote[389].start 4550.08784375
transcript.pyannote[389].end 4550.35784375
transcript.pyannote[390].speaker SPEAKER_00
transcript.pyannote[390].start 4569.86534375
transcript.pyannote[390].end 4572.16034375
transcript.pyannote[391].speaker SPEAKER_03
transcript.pyannote[391].start 4582.13346875
transcript.pyannote[391].end 4597.35471875
transcript.pyannote[392].speaker SPEAKER_24
transcript.pyannote[392].start 4597.35471875
transcript.pyannote[392].end 4597.87784375
transcript.pyannote[393].speaker SPEAKER_03
transcript.pyannote[393].start 4597.48971875
transcript.pyannote[393].end 4599.24471875
transcript.pyannote[394].speaker SPEAKER_24
transcript.pyannote[394].start 4598.78909375
transcript.pyannote[394].end 4605.04971875
transcript.pyannote[395].speaker SPEAKER_24
transcript.pyannote[395].start 4605.23534375
transcript.pyannote[395].end 4608.45846875
transcript.pyannote[396].speaker SPEAKER_03
transcript.pyannote[396].start 4609.18409375
transcript.pyannote[396].end 4609.20096875
transcript.pyannote[397].speaker SPEAKER_24
transcript.pyannote[397].start 4609.20096875
transcript.pyannote[397].end 4609.52159375
transcript.pyannote[398].speaker SPEAKER_24
transcript.pyannote[398].start 4609.82534375
transcript.pyannote[398].end 4611.91784375
transcript.pyannote[399].speaker SPEAKER_18
transcript.pyannote[399].start 4611.32721875
transcript.pyannote[399].end 4617.45284375
transcript.pyannote[400].speaker SPEAKER_24
transcript.pyannote[400].start 4617.38534375
transcript.pyannote[400].end 4640.04846875
transcript.pyannote[401].speaker SPEAKER_24
transcript.pyannote[401].start 4641.16221875
transcript.pyannote[401].end 4654.08846875
transcript.pyannote[402].speaker SPEAKER_24
transcript.pyannote[402].start 4654.18971875
transcript.pyannote[402].end 4662.18846875
transcript.pyannote[403].speaker SPEAKER_24
transcript.pyannote[403].start 4662.47534375
transcript.pyannote[403].end 4674.89534375
transcript.pyannote[404].speaker SPEAKER_24
transcript.pyannote[404].start 4676.26221875
transcript.pyannote[404].end 4678.00034375
transcript.pyannote[405].speaker SPEAKER_24
transcript.pyannote[405].start 4678.27034375
transcript.pyannote[405].end 4704.46034375
transcript.pyannote[406].speaker SPEAKER_09
transcript.pyannote[406].start 4704.46034375
transcript.pyannote[406].end 4721.08221875
transcript.pyannote[407].speaker SPEAKER_24
transcript.pyannote[407].start 4719.73221875
transcript.pyannote[407].end 4727.41034375
transcript.pyannote[408].speaker SPEAKER_09
transcript.pyannote[408].start 4727.64659375
transcript.pyannote[408].end 4727.98409375
transcript.pyannote[409].speaker SPEAKER_24
transcript.pyannote[409].start 4727.81534375
transcript.pyannote[409].end 4727.91659375
transcript.pyannote[410].speaker SPEAKER_09
transcript.pyannote[410].start 4728.13596875
transcript.pyannote[410].end 4729.58721875
transcript.pyannote[411].speaker SPEAKER_24
transcript.pyannote[411].start 4729.58721875
transcript.pyannote[411].end 4729.90784375
transcript.pyannote[412].speaker SPEAKER_18
transcript.pyannote[412].start 4730.36346875
transcript.pyannote[412].end 4731.91596875
transcript.pyannote[413].speaker SPEAKER_24
transcript.pyannote[413].start 4731.91596875
transcript.pyannote[413].end 4731.94971875
transcript.pyannote[414].speaker SPEAKER_18
transcript.pyannote[414].start 4731.94971875
transcript.pyannote[414].end 4732.01721875
transcript.pyannote[415].speaker SPEAKER_24
transcript.pyannote[415].start 4732.01721875
transcript.pyannote[415].end 4732.06784375
transcript.pyannote[416].speaker SPEAKER_24
transcript.pyannote[416].start 4732.38846875
transcript.pyannote[416].end 4749.68534375
transcript.pyannote[417].speaker SPEAKER_18
transcript.pyannote[417].start 4734.36284375
transcript.pyannote[417].end 4735.20659375
transcript.pyannote[418].speaker SPEAKER_20
transcript.pyannote[418].start 4735.20659375
transcript.pyannote[418].end 4735.24034375
transcript.pyannote[419].speaker SPEAKER_24
transcript.pyannote[419].start 4749.88784375
transcript.pyannote[419].end 4751.03534375
transcript.pyannote[420].speaker SPEAKER_24
transcript.pyannote[420].start 4751.05221875
transcript.pyannote[420].end 4751.40659375
transcript.pyannote[421].speaker SPEAKER_24
transcript.pyannote[421].start 4751.59221875
transcript.pyannote[421].end 4781.91659375
transcript.pyannote[422].speaker SPEAKER_24
transcript.pyannote[422].start 4782.87846875
transcript.pyannote[422].end 4787.82284375
transcript.pyannote[423].speaker SPEAKER_18
transcript.pyannote[423].start 4787.13096875
transcript.pyannote[423].end 4788.22784375
transcript.pyannote[424].speaker SPEAKER_24
transcript.pyannote[424].start 4788.34596875
transcript.pyannote[424].end 4825.87596875
transcript.pyannote[425].speaker SPEAKER_24
transcript.pyannote[425].start 4826.19659375
transcript.pyannote[425].end 4830.75284375
transcript.pyannote[426].speaker SPEAKER_24
transcript.pyannote[426].start 4831.20846875
transcript.pyannote[426].end 4836.74346875
transcript.pyannote[427].speaker SPEAKER_18
transcript.pyannote[427].start 4836.74346875
transcript.pyannote[427].end 4842.32909375
transcript.pyannote[428].speaker SPEAKER_18
transcript.pyannote[428].start 4842.75096875
transcript.pyannote[428].end 4843.84784375
transcript.pyannote[429].speaker SPEAKER_18
transcript.pyannote[429].start 4844.45534375
transcript.pyannote[429].end 4892.44784375
transcript.pyannote[430].speaker SPEAKER_00
transcript.pyannote[430].start 4847.44221875
transcript.pyannote[430].end 4847.89784375
transcript.pyannote[431].speaker SPEAKER_00
transcript.pyannote[431].start 4859.64284375
transcript.pyannote[431].end 4859.67659375
transcript.pyannote[432].speaker SPEAKER_20
transcript.pyannote[432].start 4859.67659375
transcript.pyannote[432].end 4859.96346875
transcript.pyannote[433].speaker SPEAKER_00
transcript.pyannote[433].start 4859.96346875
transcript.pyannote[433].end 4860.11534375
transcript.pyannote[434].speaker SPEAKER_00
transcript.pyannote[434].start 4861.51596875
transcript.pyannote[434].end 4862.07284375
transcript.pyannote[435].speaker SPEAKER_24
transcript.pyannote[435].start 4892.44784375
transcript.pyannote[435].end 4919.65034375
transcript.pyannote[436].speaker SPEAKER_18
transcript.pyannote[436].start 4894.30409375
transcript.pyannote[436].end 4894.52346875
transcript.pyannote[437].speaker SPEAKER_00
transcript.pyannote[437].start 4917.54096875
transcript.pyannote[437].end 4917.59159375
transcript.pyannote[438].speaker SPEAKER_20
transcript.pyannote[438].start 4917.59159375
transcript.pyannote[438].end 4917.69284375
transcript.pyannote[439].speaker SPEAKER_00
transcript.pyannote[439].start 4917.69284375
transcript.pyannote[439].end 4917.81096875
transcript.pyannote[440].speaker SPEAKER_24
transcript.pyannote[440].start 4920.19034375
transcript.pyannote[440].end 4927.56471875
transcript.pyannote[441].speaker SPEAKER_18
transcript.pyannote[441].start 4927.34534375
transcript.pyannote[441].end 4945.85721875
transcript.pyannote[442].speaker SPEAKER_24
transcript.pyannote[442].start 4932.40784375
transcript.pyannote[442].end 4932.98159375
transcript.pyannote[443].speaker SPEAKER_24
transcript.pyannote[443].start 4945.85721875
transcript.pyannote[443].end 4959.03659375
transcript.pyannote[444].speaker SPEAKER_02
transcript.pyannote[444].start 4959.96471875
transcript.pyannote[444].end 4971.03471875
transcript.pyannote[445].speaker SPEAKER_21
transcript.pyannote[445].start 4968.52034375
transcript.pyannote[445].end 4969.22909375
transcript.pyannote[446].speaker SPEAKER_24
transcript.pyannote[446].start 4969.22909375
transcript.pyannote[446].end 4969.34721875
transcript.pyannote[447].speaker SPEAKER_02
transcript.pyannote[447].start 4971.15284375
transcript.pyannote[447].end 4978.24034375
transcript.pyannote[448].speaker SPEAKER_24
transcript.pyannote[448].start 4978.96596875
transcript.pyannote[448].end 4979.32034375
transcript.pyannote[449].speaker SPEAKER_24
transcript.pyannote[449].start 4980.02909375
transcript.pyannote[449].end 4982.74596875
transcript.pyannote[450].speaker SPEAKER_24
transcript.pyannote[450].start 4982.99909375
transcript.pyannote[450].end 4983.35346875
transcript.pyannote[451].speaker SPEAKER_24
transcript.pyannote[451].start 4983.53909375
transcript.pyannote[451].end 4986.03659375
transcript.pyannote[452].speaker SPEAKER_24
transcript.pyannote[452].start 4986.55971875
transcript.pyannote[452].end 4987.99409375
transcript.pyannote[453].speaker SPEAKER_24
transcript.pyannote[453].start 4988.66909375
transcript.pyannote[453].end 4994.72721875
transcript.pyannote[454].speaker SPEAKER_24
transcript.pyannote[454].start 4995.08159375
transcript.pyannote[454].end 5010.55596875
transcript.pyannote[455].speaker SPEAKER_18
transcript.pyannote[455].start 5014.60596875
transcript.pyannote[455].end 5019.63471875
transcript.pyannote[456].speaker SPEAKER_18
transcript.pyannote[456].start 5019.82034375
transcript.pyannote[456].end 5024.46096875
transcript.pyannote[457].speaker SPEAKER_24
transcript.pyannote[457].start 5024.46096875
transcript.pyannote[457].end 5030.33346875
transcript.pyannote[458].speaker SPEAKER_18
transcript.pyannote[458].start 5031.98721875
transcript.pyannote[458].end 5032.29096875
transcript.pyannote[459].speaker SPEAKER_18
transcript.pyannote[459].start 5032.67909375
transcript.pyannote[459].end 5033.38784375
transcript.pyannote[460].speaker SPEAKER_18
transcript.pyannote[460].start 5033.80971875
transcript.pyannote[460].end 5040.15471875
transcript.pyannote[461].speaker SPEAKER_18
transcript.pyannote[461].start 5040.25596875
transcript.pyannote[461].end 5053.95846875
transcript.pyannote[462].speaker SPEAKER_24
transcript.pyannote[462].start 5053.03034375
transcript.pyannote[462].end 5064.01596875
transcript.pyannote[463].speaker SPEAKER_18
transcript.pyannote[463].start 5064.69096875
transcript.pyannote[463].end 5084.33346875
transcript.pyannote[464].speaker SPEAKER_24
transcript.pyannote[464].start 5084.67096875
transcript.pyannote[464].end 5097.05721875
transcript.pyannote[465].speaker SPEAKER_00
transcript.pyannote[465].start 5100.21284375
transcript.pyannote[465].end 5103.28409375
transcript.pyannote[466].speaker SPEAKER_00
transcript.pyannote[466].start 5103.82409375
transcript.pyannote[466].end 5108.71784375
transcript.pyannote[467].speaker SPEAKER_00
transcript.pyannote[467].start 5109.07221875
transcript.pyannote[467].end 5116.42971875
transcript.pyannote[468].speaker SPEAKER_00
transcript.pyannote[468].start 5116.83471875
transcript.pyannote[468].end 5120.41221875
transcript.pyannote[469].speaker SPEAKER_00
transcript.pyannote[469].start 5120.44596875
transcript.pyannote[469].end 5122.04909375
transcript.pyannote[470].speaker SPEAKER_00
transcript.pyannote[470].start 5122.31909375
transcript.pyannote[470].end 5129.87909375
transcript.pyannote[471].speaker SPEAKER_00
transcript.pyannote[471].start 5130.26721875
transcript.pyannote[471].end 5136.64596875
transcript.pyannote[472].speaker SPEAKER_24
transcript.pyannote[472].start 5136.05534375
transcript.pyannote[472].end 5149.47096875
transcript.pyannote[473].speaker SPEAKER_24
transcript.pyannote[473].start 5149.70721875
transcript.pyannote[473].end 5151.27659375
transcript.pyannote[474].speaker SPEAKER_10
transcript.pyannote[474].start 5151.96846875
transcript.pyannote[474].end 5151.98534375
transcript.pyannote[475].speaker SPEAKER_17
transcript.pyannote[475].start 5151.98534375
transcript.pyannote[475].end 5152.03596875
transcript.pyannote[476].speaker SPEAKER_10
transcript.pyannote[476].start 5152.03596875
transcript.pyannote[476].end 5152.77846875
transcript.pyannote[477].speaker SPEAKER_10
transcript.pyannote[477].start 5156.40659375
transcript.pyannote[477].end 5157.04784375
transcript.pyannote[478].speaker SPEAKER_10
transcript.pyannote[478].start 5160.18659375
transcript.pyannote[478].end 5162.92034375
transcript.pyannote[479].speaker SPEAKER_07
transcript.pyannote[479].start 5167.69596875
transcript.pyannote[479].end 5171.20596875
transcript.pyannote[480].speaker SPEAKER_10
transcript.pyannote[480].start 5171.56034375
transcript.pyannote[480].end 5172.47159375
transcript.pyannote[481].speaker SPEAKER_07
transcript.pyannote[481].start 5178.39471875
transcript.pyannote[481].end 5179.64346875
transcript.pyannote[482].speaker SPEAKER_10
transcript.pyannote[482].start 5179.03596875
transcript.pyannote[482].end 5179.06971875
transcript.pyannote[483].speaker SPEAKER_20
transcript.pyannote[483].start 5179.06971875
transcript.pyannote[483].end 5179.81221875
transcript.pyannote[484].speaker SPEAKER_07
transcript.pyannote[484].start 5180.35221875
transcript.pyannote[484].end 5184.94221875
transcript.pyannote[485].speaker SPEAKER_07
transcript.pyannote[485].start 5185.29659375
transcript.pyannote[485].end 5259.27659375
transcript.pyannote[486].speaker SPEAKER_07
transcript.pyannote[486].start 5259.37784375
transcript.pyannote[486].end 5265.99284375
transcript.pyannote[487].speaker SPEAKER_07
transcript.pyannote[487].start 5266.44846875
transcript.pyannote[487].end 5266.87034375
transcript.pyannote[488].speaker SPEAKER_07
transcript.pyannote[488].start 5267.44409375
transcript.pyannote[488].end 5273.94096875
transcript.pyannote[489].speaker SPEAKER_07
transcript.pyannote[489].start 5274.37971875
transcript.pyannote[489].end 5290.66409375
transcript.pyannote[490].speaker SPEAKER_07
transcript.pyannote[490].start 5290.86659375
transcript.pyannote[490].end 5303.48909375
transcript.pyannote[491].speaker SPEAKER_18
transcript.pyannote[491].start 5304.21471875
transcript.pyannote[491].end 5314.54221875
transcript.pyannote[492].speaker SPEAKER_07
transcript.pyannote[492].start 5314.74471875
transcript.pyannote[492].end 5315.06534375
transcript.pyannote[493].speaker SPEAKER_07
transcript.pyannote[493].start 5315.23409375
transcript.pyannote[493].end 5319.89159375
transcript.pyannote[494].speaker SPEAKER_18
transcript.pyannote[494].start 5317.52909375
transcript.pyannote[494].end 5318.54159375
transcript.pyannote[495].speaker SPEAKER_18
transcript.pyannote[495].start 5319.26721875
transcript.pyannote[495].end 5324.86971875
transcript.pyannote[496].speaker SPEAKER_07
transcript.pyannote[496].start 5323.40159375
transcript.pyannote[496].end 5323.73909375
transcript.pyannote[497].speaker SPEAKER_07
transcript.pyannote[497].start 5324.58284375
transcript.pyannote[497].end 5329.93221875
transcript.pyannote[498].speaker SPEAKER_18
transcript.pyannote[498].start 5330.23596875
transcript.pyannote[498].end 5334.03284375
transcript.pyannote[499].speaker SPEAKER_07
transcript.pyannote[499].start 5334.03284375
transcript.pyannote[499].end 5334.21846875
transcript.pyannote[500].speaker SPEAKER_18
transcript.pyannote[500].start 5334.21846875
transcript.pyannote[500].end 5334.79221875
transcript.pyannote[501].speaker SPEAKER_07
transcript.pyannote[501].start 5334.91034375
transcript.pyannote[501].end 5352.49409375
transcript.pyannote[502].speaker SPEAKER_06
transcript.pyannote[502].start 5342.57159375
transcript.pyannote[502].end 5342.97659375
transcript.pyannote[503].speaker SPEAKER_18
transcript.pyannote[503].start 5353.59096875
transcript.pyannote[503].end 5377.82346875
transcript.pyannote[504].speaker SPEAKER_07
transcript.pyannote[504].start 5377.90784375
transcript.pyannote[504].end 5386.64909375
transcript.pyannote[505].speaker SPEAKER_07
transcript.pyannote[505].start 5386.95284375
transcript.pyannote[505].end 5403.79409375
transcript.pyannote[506].speaker SPEAKER_20
transcript.pyannote[506].start 5403.79409375
transcript.pyannote[506].end 5404.01346875
transcript.pyannote[507].speaker SPEAKER_07
transcript.pyannote[507].start 5404.01346875
transcript.pyannote[507].end 5406.67971875
transcript.pyannote[508].speaker SPEAKER_20
transcript.pyannote[508].start 5406.57846875
transcript.pyannote[508].end 5406.91596875
transcript.pyannote[509].speaker SPEAKER_07
transcript.pyannote[509].start 5406.88221875
transcript.pyannote[509].end 5416.26471875
transcript.pyannote[510].speaker SPEAKER_07
transcript.pyannote[510].start 5416.50096875
transcript.pyannote[510].end 5434.59096875
transcript.pyannote[511].speaker SPEAKER_07
transcript.pyannote[511].start 5434.72596875
transcript.pyannote[511].end 5437.54409375
transcript.pyannote[512].speaker SPEAKER_07
transcript.pyannote[512].start 5437.93221875
transcript.pyannote[512].end 5443.23096875
transcript.pyannote[513].speaker SPEAKER_18
transcript.pyannote[513].start 5442.15096875
transcript.pyannote[513].end 5442.48846875
transcript.pyannote[514].speaker SPEAKER_07
transcript.pyannote[514].start 5443.50096875
transcript.pyannote[514].end 5446.94346875
transcript.pyannote[515].speaker SPEAKER_18
transcript.pyannote[515].start 5445.59346875
transcript.pyannote[515].end 5445.96471875
transcript.pyannote[516].speaker SPEAKER_18
transcript.pyannote[516].start 5446.82534375
transcript.pyannote[516].end 5460.46034375
transcript.pyannote[517].speaker SPEAKER_00
transcript.pyannote[517].start 5455.65096875
transcript.pyannote[517].end 5455.70159375
transcript.pyannote[518].speaker SPEAKER_25
transcript.pyannote[518].start 5455.70159375
transcript.pyannote[518].end 5455.75221875
transcript.pyannote[519].speaker SPEAKER_00
transcript.pyannote[519].start 5455.75221875
transcript.pyannote[519].end 5455.93784375
transcript.pyannote[520].speaker SPEAKER_18
transcript.pyannote[520].start 5460.73034375
transcript.pyannote[520].end 5480.11971875
transcript.pyannote[521].speaker SPEAKER_00
transcript.pyannote[521].start 5464.47659375
transcript.pyannote[521].end 5464.83096875
transcript.pyannote[522].speaker SPEAKER_20
transcript.pyannote[522].start 5472.12096875
transcript.pyannote[522].end 5472.49221875
transcript.pyannote[523].speaker SPEAKER_07
transcript.pyannote[523].start 5480.10284375
transcript.pyannote[523].end 5480.44034375
transcript.pyannote[524].speaker SPEAKER_18
transcript.pyannote[524].start 5480.20409375
transcript.pyannote[524].end 5483.22471875
transcript.pyannote[525].speaker SPEAKER_07
transcript.pyannote[525].start 5481.28409375
transcript.pyannote[525].end 5484.43971875
transcript.pyannote[526].speaker SPEAKER_18
transcript.pyannote[526].start 5483.69721875
transcript.pyannote[526].end 5504.75721875
transcript.pyannote[527].speaker SPEAKER_07
transcript.pyannote[527].start 5485.82346875
transcript.pyannote[527].end 5485.99221875
transcript.pyannote[528].speaker SPEAKER_07
transcript.pyannote[528].start 5501.12909375
transcript.pyannote[528].end 5501.46659375
transcript.pyannote[529].speaker SPEAKER_07
transcript.pyannote[529].start 5504.35221875
transcript.pyannote[529].end 5507.87909375
transcript.pyannote[530].speaker SPEAKER_18
transcript.pyannote[530].start 5507.87909375
transcript.pyannote[530].end 5527.04909375
transcript.pyannote[531].speaker SPEAKER_07
transcript.pyannote[531].start 5508.16596875
transcript.pyannote[531].end 5509.33034375
transcript.pyannote[532].speaker SPEAKER_07
transcript.pyannote[532].start 5521.73346875
transcript.pyannote[532].end 5521.85159375
transcript.pyannote[533].speaker SPEAKER_07
transcript.pyannote[533].start 5526.37409375
transcript.pyannote[533].end 5527.15034375
transcript.pyannote[534].speaker SPEAKER_07
transcript.pyannote[534].start 5527.28534375
transcript.pyannote[534].end 5531.84159375
transcript.pyannote[535].speaker SPEAKER_18
transcript.pyannote[535].start 5529.63096875
transcript.pyannote[535].end 5529.96846875
transcript.pyannote[536].speaker SPEAKER_18
transcript.pyannote[536].start 5531.43659375
transcript.pyannote[536].end 5535.57096875
transcript.pyannote[537].speaker SPEAKER_07
transcript.pyannote[537].start 5535.57096875
transcript.pyannote[537].end 5535.97596875
transcript.pyannote[538].speaker SPEAKER_07
transcript.pyannote[538].start 5536.36409375
transcript.pyannote[538].end 5541.56159375
transcript.pyannote[539].speaker SPEAKER_07
transcript.pyannote[539].start 5542.84409375
transcript.pyannote[539].end 5551.75409375
transcript.pyannote[540].speaker SPEAKER_18
transcript.pyannote[540].start 5553.49221875
transcript.pyannote[540].end 5562.77346875
transcript.pyannote[541].speaker SPEAKER_18
transcript.pyannote[541].start 5563.56659375
transcript.pyannote[541].end 5565.92909375
transcript.pyannote[542].speaker SPEAKER_07
transcript.pyannote[542].start 5565.35534375
transcript.pyannote[542].end 5567.49846875
transcript.pyannote[543].speaker SPEAKER_18
transcript.pyannote[543].start 5566.75596875
transcript.pyannote[543].end 5572.44284375
transcript.pyannote[544].speaker SPEAKER_07
transcript.pyannote[544].start 5567.85284375
transcript.pyannote[544].end 5568.42659375
transcript.pyannote[545].speaker SPEAKER_18
transcript.pyannote[545].start 5572.54409375
transcript.pyannote[545].end 5574.61971875
transcript.pyannote[546].speaker SPEAKER_18
transcript.pyannote[546].start 5575.32846875
transcript.pyannote[546].end 5580.37409375
transcript.pyannote[547].speaker SPEAKER_07
transcript.pyannote[547].start 5581.20096875
transcript.pyannote[547].end 5583.78284375
transcript.pyannote[548].speaker SPEAKER_18
transcript.pyannote[548].start 5584.76159375
transcript.pyannote[548].end 5587.74846875
transcript.pyannote[549].speaker SPEAKER_18
transcript.pyannote[549].start 5587.93409375
transcript.pyannote[549].end 5597.19846875
transcript.pyannote[550].speaker SPEAKER_18
transcript.pyannote[550].start 5597.23221875
transcript.pyannote[550].end 5604.06659375
transcript.pyannote[551].speaker SPEAKER_00
transcript.pyannote[551].start 5599.51034375
transcript.pyannote[551].end 5599.86471875
transcript.pyannote[552].speaker SPEAKER_18
transcript.pyannote[552].start 5604.65721875
transcript.pyannote[552].end 5615.91284375
transcript.pyannote[553].speaker SPEAKER_07
transcript.pyannote[553].start 5615.87909375
transcript.pyannote[553].end 5644.60034375
transcript.pyannote[554].speaker SPEAKER_07
transcript.pyannote[554].start 5645.19096875
transcript.pyannote[554].end 5648.07659375
transcript.pyannote[555].speaker SPEAKER_07
transcript.pyannote[555].start 5648.65034375
transcript.pyannote[555].end 5676.67971875
transcript.pyannote[556].speaker SPEAKER_07
transcript.pyannote[556].start 5677.37159375
transcript.pyannote[556].end 5714.85096875
transcript.pyannote[557].speaker SPEAKER_07
transcript.pyannote[557].start 5715.23909375
transcript.pyannote[557].end 5717.14596875
transcript.pyannote[558].speaker SPEAKER_07
transcript.pyannote[558].start 5717.83784375
transcript.pyannote[558].end 5728.70534375
transcript.pyannote[559].speaker SPEAKER_18
transcript.pyannote[559].start 5729.21159375
transcript.pyannote[559].end 5750.22096875
transcript.pyannote[560].speaker SPEAKER_19
transcript.pyannote[560].start 5750.94659375
transcript.pyannote[560].end 5757.08909375
transcript.pyannote[561].speaker SPEAKER_18
transcript.pyannote[561].start 5751.89159375
transcript.pyannote[561].end 5752.26284375
transcript.pyannote[562].speaker SPEAKER_07
transcript.pyannote[562].start 5754.84471875
transcript.pyannote[562].end 5755.82346875
transcript.pyannote[563].speaker SPEAKER_07
transcript.pyannote[563].start 5756.05971875
transcript.pyannote[563].end 5768.32784375
transcript.pyannote[564].speaker SPEAKER_07
transcript.pyannote[564].start 5768.39534375
transcript.pyannote[564].end 5777.65971875
transcript.pyannote[565].speaker SPEAKER_07
transcript.pyannote[565].start 5777.74409375
transcript.pyannote[565].end 5780.61284375
transcript.pyannote[566].speaker SPEAKER_07
transcript.pyannote[566].start 5780.91659375
transcript.pyannote[566].end 5782.92471875
transcript.pyannote[567].speaker SPEAKER_18
transcript.pyannote[567].start 5782.68846875
transcript.pyannote[567].end 5796.05346875
transcript.pyannote[568].speaker SPEAKER_07
transcript.pyannote[568].start 5795.91846875
transcript.pyannote[568].end 5798.01096875
transcript.pyannote[569].speaker SPEAKER_10
transcript.pyannote[569].start 5799.20909375
transcript.pyannote[569].end 5800.40721875
transcript.pyannote[570].speaker SPEAKER_10
transcript.pyannote[570].start 5801.47034375
transcript.pyannote[570].end 5804.38971875
transcript.pyannote[571].speaker SPEAKER_10
transcript.pyannote[571].start 5804.74409375
transcript.pyannote[571].end 5808.01784375
transcript.pyannote[572].speaker SPEAKER_10
transcript.pyannote[572].start 5808.30471875
transcript.pyannote[572].end 5810.36346875
transcript.pyannote[573].speaker SPEAKER_13
transcript.pyannote[573].start 5816.06721875
transcript.pyannote[573].end 5818.00784375
transcript.pyannote[574].speaker SPEAKER_10
transcript.pyannote[574].start 5818.19346875
transcript.pyannote[574].end 5818.85159375
transcript.pyannote[575].speaker SPEAKER_10
transcript.pyannote[575].start 5819.47596875
transcript.pyannote[575].end 5820.70784375
transcript.pyannote[576].speaker SPEAKER_13
transcript.pyannote[576].start 5824.04909375
transcript.pyannote[576].end 5831.72721875
transcript.pyannote[577].speaker SPEAKER_13
transcript.pyannote[577].start 5832.08159375
transcript.pyannote[577].end 5836.46909375
transcript.pyannote[578].speaker SPEAKER_18
transcript.pyannote[578].start 5837.46471875
transcript.pyannote[578].end 5839.37159375
transcript.pyannote[579].speaker SPEAKER_13
transcript.pyannote[579].start 5838.24096875
transcript.pyannote[579].end 5847.23534375
transcript.pyannote[580].speaker SPEAKER_13
transcript.pyannote[580].start 5848.29846875
transcript.pyannote[580].end 5850.05346875
transcript.pyannote[581].speaker SPEAKER_18
transcript.pyannote[581].start 5848.33221875
transcript.pyannote[581].end 5849.63159375
transcript.pyannote[582].speaker SPEAKER_13
transcript.pyannote[582].start 5850.39096875
transcript.pyannote[582].end 5855.18346875
transcript.pyannote[583].speaker SPEAKER_18
transcript.pyannote[583].start 5856.41534375
transcript.pyannote[583].end 5862.96284375
transcript.pyannote[584].speaker SPEAKER_13
transcript.pyannote[584].start 5859.63846875
transcript.pyannote[584].end 5859.99284375
transcript.pyannote[585].speaker SPEAKER_13
transcript.pyannote[585].start 5862.96284375
transcript.pyannote[585].end 5864.24534375
transcript.pyannote[586].speaker SPEAKER_18
transcript.pyannote[586].start 5864.97096875
transcript.pyannote[586].end 5869.20659375
transcript.pyannote[587].speaker SPEAKER_13
transcript.pyannote[587].start 5869.20659375
transcript.pyannote[587].end 5874.38721875
transcript.pyannote[588].speaker SPEAKER_18
transcript.pyannote[588].start 5874.38721875
transcript.pyannote[588].end 5875.38284375
transcript.pyannote[589].speaker SPEAKER_13
transcript.pyannote[589].start 5874.99471875
transcript.pyannote[589].end 5878.09971875
transcript.pyannote[590].speaker SPEAKER_18
transcript.pyannote[590].start 5877.13784375
transcript.pyannote[590].end 5877.64409375
transcript.pyannote[591].speaker SPEAKER_18
transcript.pyannote[591].start 5878.09971875
transcript.pyannote[591].end 5881.22159375
transcript.pyannote[592].speaker SPEAKER_13
transcript.pyannote[592].start 5878.16721875
transcript.pyannote[592].end 5878.25159375
transcript.pyannote[593].speaker SPEAKER_18
transcript.pyannote[593].start 5881.96409375
transcript.pyannote[593].end 5884.66409375
transcript.pyannote[594].speaker SPEAKER_18
transcript.pyannote[594].start 5885.17034375
transcript.pyannote[594].end 5886.28409375
transcript.pyannote[595].speaker SPEAKER_18
transcript.pyannote[595].start 5886.41909375
transcript.pyannote[595].end 5889.57471875
transcript.pyannote[596].speaker SPEAKER_13
transcript.pyannote[596].start 5887.85346875
transcript.pyannote[596].end 5897.18534375
transcript.pyannote[597].speaker SPEAKER_13
transcript.pyannote[597].start 5897.74221875
transcript.pyannote[597].end 5900.00346875
transcript.pyannote[598].speaker SPEAKER_18
transcript.pyannote[598].start 5897.77596875
transcript.pyannote[598].end 5899.54784375
transcript.pyannote[599].speaker SPEAKER_18
transcript.pyannote[599].start 5899.63221875
transcript.pyannote[599].end 5905.48784375
transcript.pyannote[600].speaker SPEAKER_18
transcript.pyannote[600].start 5905.50471875
transcript.pyannote[600].end 5917.31721875
transcript.pyannote[601].speaker SPEAKER_18
transcript.pyannote[601].start 5917.65471875
transcript.pyannote[601].end 5919.34221875
transcript.pyannote[602].speaker SPEAKER_13
transcript.pyannote[602].start 5919.34221875
transcript.pyannote[602].end 5937.12846875
transcript.pyannote[603].speaker SPEAKER_18
transcript.pyannote[603].start 5919.35909375
transcript.pyannote[603].end 5920.77659375
transcript.pyannote[604].speaker SPEAKER_13
transcript.pyannote[604].start 5937.39846875
transcript.pyannote[604].end 5937.68534375
transcript.pyannote[605].speaker SPEAKER_18
transcript.pyannote[605].start 5937.60096875
transcript.pyannote[605].end 5960.53409375
transcript.pyannote[606].speaker SPEAKER_13
transcript.pyannote[606].start 5955.08346875
transcript.pyannote[606].end 5956.70346875
transcript.pyannote[607].speaker SPEAKER_18
transcript.pyannote[607].start 5961.00659375
transcript.pyannote[607].end 5964.43221875
transcript.pyannote[608].speaker SPEAKER_13
transcript.pyannote[608].start 5964.43221875
transcript.pyannote[608].end 5972.43096875
transcript.pyannote[609].speaker SPEAKER_18
transcript.pyannote[609].start 5964.48284375
transcript.pyannote[609].end 5964.78659375
transcript.pyannote[610].speaker SPEAKER_13
transcript.pyannote[610].start 5972.92034375
transcript.pyannote[610].end 5978.30346875
transcript.pyannote[611].speaker SPEAKER_13
transcript.pyannote[611].start 5979.11346875
transcript.pyannote[611].end 5981.57721875
transcript.pyannote[612].speaker SPEAKER_18
transcript.pyannote[612].start 5982.52221875
transcript.pyannote[612].end 5986.69034375
transcript.pyannote[613].speaker SPEAKER_18
transcript.pyannote[613].start 5987.60159375
transcript.pyannote[613].end 5989.00221875
transcript.pyannote[614].speaker SPEAKER_18
transcript.pyannote[614].start 5989.59284375
transcript.pyannote[614].end 6004.96596875
transcript.pyannote[615].speaker SPEAKER_20
transcript.pyannote[615].start 5996.83221875
transcript.pyannote[615].end 5996.84909375
transcript.pyannote[616].speaker SPEAKER_13
transcript.pyannote[616].start 5996.84909375
transcript.pyannote[616].end 5997.96284375
transcript.pyannote[617].speaker SPEAKER_20
transcript.pyannote[617].start 5997.96284375
transcript.pyannote[617].end 5998.03034375
transcript.pyannote[618].speaker SPEAKER_13
transcript.pyannote[618].start 5998.03034375
transcript.pyannote[618].end 5998.94159375
transcript.pyannote[619].speaker SPEAKER_13
transcript.pyannote[619].start 5999.14409375
transcript.pyannote[619].end 5999.76846875
transcript.pyannote[620].speaker SPEAKER_13
transcript.pyannote[620].start 5999.85284375
transcript.pyannote[620].end 6002.38409375
transcript.pyannote[621].speaker SPEAKER_13
transcript.pyannote[621].start 6003.53159375
transcript.pyannote[621].end 6023.81534375
transcript.pyannote[622].speaker SPEAKER_13
transcript.pyannote[622].start 6023.88284375
transcript.pyannote[622].end 6026.00909375
transcript.pyannote[623].speaker SPEAKER_13
transcript.pyannote[623].start 6026.83596875
transcript.pyannote[623].end 6027.03846875
transcript.pyannote[624].speaker SPEAKER_18
transcript.pyannote[624].start 6027.03846875
transcript.pyannote[624].end 6036.30284375
transcript.pyannote[625].speaker SPEAKER_13
transcript.pyannote[625].start 6031.03784375
transcript.pyannote[625].end 6031.39221875
transcript.pyannote[626].speaker SPEAKER_13
transcript.pyannote[626].start 6031.91534375
transcript.pyannote[626].end 6031.99971875
transcript.pyannote[627].speaker SPEAKER_13
transcript.pyannote[627].start 6033.48471875
transcript.pyannote[627].end 6036.31971875
transcript.pyannote[628].speaker SPEAKER_18
transcript.pyannote[628].start 6036.31971875
transcript.pyannote[628].end 6037.41659375
transcript.pyannote[629].speaker SPEAKER_18
transcript.pyannote[629].start 6037.61909375
transcript.pyannote[629].end 6044.48721875
transcript.pyannote[630].speaker SPEAKER_13
transcript.pyannote[630].start 6042.41159375
transcript.pyannote[630].end 6044.23409375
transcript.pyannote[631].speaker SPEAKER_25
transcript.pyannote[631].start 6044.23409375
transcript.pyannote[631].end 6044.25096875
transcript.pyannote[632].speaker SPEAKER_18
transcript.pyannote[632].start 6044.67284375
transcript.pyannote[632].end 6044.89221875
transcript.pyannote[633].speaker SPEAKER_18
transcript.pyannote[633].start 6045.49971875
transcript.pyannote[633].end 6046.14096875
transcript.pyannote[634].speaker SPEAKER_18
transcript.pyannote[634].start 6046.76534375
transcript.pyannote[634].end 6048.75659375
transcript.pyannote[635].speaker SPEAKER_13
transcript.pyannote[635].start 6049.31346875
transcript.pyannote[635].end 6049.76909375
transcript.pyannote[636].speaker SPEAKER_18
transcript.pyannote[636].start 6049.76909375
transcript.pyannote[636].end 6049.80284375
transcript.pyannote[637].speaker SPEAKER_18
transcript.pyannote[637].start 6050.24159375
transcript.pyannote[637].end 6057.21096875
transcript.pyannote[638].speaker SPEAKER_13
transcript.pyannote[638].start 6053.48159375
transcript.pyannote[638].end 6074.13659375
transcript.pyannote[639].speaker SPEAKER_25
transcript.pyannote[639].start 6068.48346875
transcript.pyannote[639].end 6068.55096875
transcript.pyannote[640].speaker SPEAKER_20
transcript.pyannote[640].start 6068.55096875
transcript.pyannote[640].end 6069.52971875
transcript.pyannote[641].speaker SPEAKER_25
transcript.pyannote[641].start 6069.52971875
transcript.pyannote[641].end 6069.56346875
transcript.pyannote[642].speaker SPEAKER_13
transcript.pyannote[642].start 6074.47409375
transcript.pyannote[642].end 6076.56659375
transcript.pyannote[643].speaker SPEAKER_18
transcript.pyannote[643].start 6077.46096875
transcript.pyannote[643].end 6078.16971875
transcript.pyannote[644].speaker SPEAKER_18
transcript.pyannote[644].start 6078.64221875
transcript.pyannote[644].end 6079.90784375
transcript.pyannote[645].speaker SPEAKER_18
transcript.pyannote[645].start 6081.13971875
transcript.pyannote[645].end 6083.63721875
transcript.pyannote[646].speaker SPEAKER_18
transcript.pyannote[646].start 6084.64971875
transcript.pyannote[646].end 6092.71596875
transcript.pyannote[647].speaker SPEAKER_13
transcript.pyannote[647].start 6091.88909375
transcript.pyannote[647].end 6093.42471875
transcript.pyannote[648].speaker SPEAKER_18
transcript.pyannote[648].start 6093.32346875
transcript.pyannote[648].end 6104.05596875
transcript.pyannote[649].speaker SPEAKER_18
transcript.pyannote[649].start 6104.54534375
transcript.pyannote[649].end 6128.74409375
transcript.pyannote[650].speaker SPEAKER_13
transcript.pyannote[650].start 6127.61346875
transcript.pyannote[650].end 6153.60096875
transcript.pyannote[651].speaker SPEAKER_00
transcript.pyannote[651].start 6139.35846875
transcript.pyannote[651].end 6139.40909375
transcript.pyannote[652].speaker SPEAKER_18
transcript.pyannote[652].start 6139.40909375
transcript.pyannote[652].end 6139.49346875
transcript.pyannote[653].speaker SPEAKER_16
transcript.pyannote[653].start 6139.49346875
transcript.pyannote[653].end 6139.99971875
transcript.pyannote[654].speaker SPEAKER_18
transcript.pyannote[654].start 6139.99971875
transcript.pyannote[654].end 6140.06721875
transcript.pyannote[655].speaker SPEAKER_18
transcript.pyannote[655].start 6141.90659375
transcript.pyannote[655].end 6143.54346875
transcript.pyannote[656].speaker SPEAKER_00
transcript.pyannote[656].start 6143.54346875
transcript.pyannote[656].end 6145.23096875
transcript.pyannote[657].speaker SPEAKER_00
transcript.pyannote[657].start 6146.27721875
transcript.pyannote[657].end 6148.09971875
transcript.pyannote[658].speaker SPEAKER_13
transcript.pyannote[658].start 6154.00596875
transcript.pyannote[658].end 6158.52846875
transcript.pyannote[659].speaker SPEAKER_18
transcript.pyannote[659].start 6154.71471875
transcript.pyannote[659].end 6156.16596875
transcript.pyannote[660].speaker SPEAKER_18
transcript.pyannote[660].start 6157.06034375
transcript.pyannote[660].end 6158.14034375
transcript.pyannote[661].speaker SPEAKER_13
transcript.pyannote[661].start 6159.37221875
transcript.pyannote[661].end 6167.43846875
transcript.pyannote[662].speaker SPEAKER_13
transcript.pyannote[662].start 6169.02471875
transcript.pyannote[662].end 6169.32846875
transcript.pyannote[663].speaker SPEAKER_18
transcript.pyannote[663].start 6171.85971875
transcript.pyannote[663].end 6174.67784375
transcript.pyannote[664].speaker SPEAKER_13
transcript.pyannote[664].start 6171.91034375
transcript.pyannote[664].end 6173.53034375
transcript.pyannote[665].speaker SPEAKER_13
transcript.pyannote[665].start 6174.79596875
transcript.pyannote[665].end 6180.60096875
transcript.pyannote[666].speaker SPEAKER_18
transcript.pyannote[666].start 6179.58846875
transcript.pyannote[666].end 6181.32659375
transcript.pyannote[667].speaker SPEAKER_13
transcript.pyannote[667].start 6181.32659375
transcript.pyannote[667].end 6181.54596875
transcript.pyannote[668].speaker SPEAKER_18
transcript.pyannote[668].start 6181.54596875
transcript.pyannote[668].end 6181.61346875
transcript.pyannote[669].speaker SPEAKER_13
transcript.pyannote[669].start 6181.61346875
transcript.pyannote[669].end 6181.78221875
transcript.pyannote[670].speaker SPEAKER_13
transcript.pyannote[670].start 6182.96346875
transcript.pyannote[670].end 6195.83909375
transcript.pyannote[671].speaker SPEAKER_18
transcript.pyannote[671].start 6197.20596875
transcript.pyannote[671].end 6199.56846875
transcript.pyannote[672].speaker SPEAKER_18
transcript.pyannote[672].start 6199.90596875
transcript.pyannote[672].end 6222.61971875
transcript.pyannote[673].speaker SPEAKER_13
transcript.pyannote[673].start 6222.61971875
transcript.pyannote[673].end 6222.72096875
transcript.pyannote[674].speaker SPEAKER_13
transcript.pyannote[674].start 6222.97409375
transcript.pyannote[674].end 6223.00784375
transcript.pyannote[675].speaker SPEAKER_18
transcript.pyannote[675].start 6223.00784375
transcript.pyannote[675].end 6223.96971875
transcript.pyannote[676].speaker SPEAKER_13
transcript.pyannote[676].start 6223.96971875
transcript.pyannote[676].end 6226.53471875
transcript.pyannote[677].speaker SPEAKER_18
transcript.pyannote[677].start 6226.53471875
transcript.pyannote[677].end 6248.94471875
transcript.pyannote[678].speaker SPEAKER_13
transcript.pyannote[678].start 6227.29409375
transcript.pyannote[678].end 6227.96909375
transcript.pyannote[679].speaker SPEAKER_25
transcript.pyannote[679].start 6238.04346875
transcript.pyannote[679].end 6238.19534375
transcript.pyannote[680].speaker SPEAKER_00
transcript.pyannote[680].start 6238.19534375
transcript.pyannote[680].end 6238.41471875
transcript.pyannote[681].speaker SPEAKER_13
transcript.pyannote[681].start 6250.24409375
transcript.pyannote[681].end 6284.21346875
transcript.pyannote[682].speaker SPEAKER_18
transcript.pyannote[682].start 6284.82096875
transcript.pyannote[682].end 6294.55784375
transcript.pyannote[683].speaker SPEAKER_18
transcript.pyannote[683].start 6295.14846875
transcript.pyannote[683].end 6305.54346875
transcript.pyannote[684].speaker SPEAKER_13
transcript.pyannote[684].start 6305.54346875
transcript.pyannote[684].end 6305.76284375
transcript.pyannote[685].speaker SPEAKER_18
transcript.pyannote[685].start 6305.76284375
transcript.pyannote[685].end 6305.96534375
transcript.pyannote[686].speaker SPEAKER_13
transcript.pyannote[686].start 6305.96534375
transcript.pyannote[686].end 6308.31096875
transcript.pyannote[687].speaker SPEAKER_10
transcript.pyannote[687].start 6312.44534375
transcript.pyannote[687].end 6313.89659375
transcript.pyannote[688].speaker SPEAKER_10
transcript.pyannote[688].start 6314.45346875
transcript.pyannote[688].end 6327.21096875
transcript.pyannote[689].speaker SPEAKER_10
transcript.pyannote[689].start 6328.57784375
transcript.pyannote[689].end 6331.17659375
transcript.pyannote[690].speaker SPEAKER_10
transcript.pyannote[690].start 6331.71659375
transcript.pyannote[690].end 6332.77971875
transcript.pyannote[691].speaker SPEAKER_21
transcript.pyannote[691].start 6341.01471875
transcript.pyannote[691].end 6343.96784375
transcript.pyannote[692].speaker SPEAKER_21
transcript.pyannote[692].start 6348.33846875
transcript.pyannote[692].end 6348.35534375
transcript.pyannote[693].speaker SPEAKER_18
transcript.pyannote[693].start 6348.35534375
transcript.pyannote[693].end 6348.86159375
transcript.pyannote[694].speaker SPEAKER_21
transcript.pyannote[694].start 6349.33409375
transcript.pyannote[694].end 6351.20721875
transcript.pyannote[695].speaker SPEAKER_21
transcript.pyannote[695].start 6351.78096875
transcript.pyannote[695].end 6356.52284375
transcript.pyannote[696].speaker SPEAKER_21
transcript.pyannote[696].start 6356.79284375
transcript.pyannote[696].end 6365.78721875
transcript.pyannote[697].speaker SPEAKER_21
transcript.pyannote[697].start 6366.17534375
transcript.pyannote[697].end 6374.17409375
transcript.pyannote[698].speaker SPEAKER_18
transcript.pyannote[698].start 6374.52846875
transcript.pyannote[698].end 6378.03846875
transcript.pyannote[699].speaker SPEAKER_21
transcript.pyannote[699].start 6378.25784375
transcript.pyannote[699].end 6381.46409375
transcript.pyannote[700].speaker SPEAKER_18
transcript.pyannote[700].start 6381.56534375
transcript.pyannote[700].end 6385.86846875
transcript.pyannote[701].speaker SPEAKER_21
transcript.pyannote[701].start 6385.69971875
transcript.pyannote[701].end 6391.75784375
transcript.pyannote[702].speaker SPEAKER_18
transcript.pyannote[702].start 6388.46721875
transcript.pyannote[702].end 6388.97346875
transcript.pyannote[703].speaker SPEAKER_21
transcript.pyannote[703].start 6392.26409375
transcript.pyannote[703].end 6399.43596875
transcript.pyannote[704].speaker SPEAKER_18
transcript.pyannote[704].start 6397.36034375
transcript.pyannote[704].end 6398.13659375
transcript.pyannote[705].speaker SPEAKER_18
transcript.pyannote[705].start 6398.94659375
transcript.pyannote[705].end 6435.64971875
transcript.pyannote[706].speaker SPEAKER_21
transcript.pyannote[706].start 6434.28284375
transcript.pyannote[706].end 6444.35721875
transcript.pyannote[707].speaker SPEAKER_18
transcript.pyannote[707].start 6438.01221875
transcript.pyannote[707].end 6438.78846875
transcript.pyannote[708].speaker SPEAKER_18
transcript.pyannote[708].start 6441.03284375
transcript.pyannote[708].end 6441.77534375
transcript.pyannote[709].speaker SPEAKER_18
transcript.pyannote[709].start 6442.48409375
transcript.pyannote[709].end 6443.76659375
transcript.pyannote[710].speaker SPEAKER_18
transcript.pyannote[710].start 6443.80034375
transcript.pyannote[710].end 6447.14159375
transcript.pyannote[711].speaker SPEAKER_18
transcript.pyannote[711].start 6447.51284375
transcript.pyannote[711].end 6452.45721875
transcript.pyannote[712].speaker SPEAKER_21
transcript.pyannote[712].start 6449.58846875
transcript.pyannote[712].end 6450.98909375
transcript.pyannote[713].speaker SPEAKER_21
transcript.pyannote[713].start 6452.65971875
transcript.pyannote[713].end 6453.89159375
transcript.pyannote[714].speaker SPEAKER_18
transcript.pyannote[714].start 6453.84096875
transcript.pyannote[714].end 6460.91159375
transcript.pyannote[715].speaker SPEAKER_21
transcript.pyannote[715].start 6455.71409375
transcript.pyannote[715].end 6455.81534375
transcript.pyannote[716].speaker SPEAKER_21
transcript.pyannote[716].start 6456.20346875
transcript.pyannote[716].end 6457.24971875
transcript.pyannote[717].speaker SPEAKER_21
transcript.pyannote[717].start 6457.62096875
transcript.pyannote[717].end 6460.03409375
transcript.pyannote[718].speaker SPEAKER_21
transcript.pyannote[718].start 6460.62471875
transcript.pyannote[718].end 6462.64971875
transcript.pyannote[719].speaker SPEAKER_18
transcript.pyannote[719].start 6462.27846875
transcript.pyannote[719].end 6462.68346875
transcript.pyannote[720].speaker SPEAKER_21
transcript.pyannote[720].start 6462.78471875
transcript.pyannote[720].end 6463.27409375
transcript.pyannote[721].speaker SPEAKER_21
transcript.pyannote[721].start 6463.42596875
transcript.pyannote[721].end 6470.39534375
transcript.pyannote[722].speaker SPEAKER_21
transcript.pyannote[722].start 6471.07034375
transcript.pyannote[722].end 6482.02221875
transcript.pyannote[723].speaker SPEAKER_21
transcript.pyannote[723].start 6482.30909375
transcript.pyannote[723].end 6485.93721875
transcript.pyannote[724].speaker SPEAKER_21
transcript.pyannote[724].start 6485.98784375
transcript.pyannote[724].end 6487.43909375
transcript.pyannote[725].speaker SPEAKER_21
transcript.pyannote[725].start 6487.55721875
transcript.pyannote[725].end 6488.56971875
transcript.pyannote[726].speaker SPEAKER_21
transcript.pyannote[726].start 6488.97471875
transcript.pyannote[726].end 6499.09971875
transcript.pyannote[727].speaker SPEAKER_21
transcript.pyannote[727].start 6499.43721875
transcript.pyannote[727].end 6503.52096875
transcript.pyannote[728].speaker SPEAKER_21
transcript.pyannote[728].start 6503.82471875
transcript.pyannote[728].end 6508.26284375
transcript.pyannote[729].speaker SPEAKER_21
transcript.pyannote[729].start 6508.58346875
transcript.pyannote[729].end 6511.18221875
transcript.pyannote[730].speaker SPEAKER_21
transcript.pyannote[730].start 6511.45221875
transcript.pyannote[730].end 6516.24471875
transcript.pyannote[731].speaker SPEAKER_21
transcript.pyannote[731].start 6516.37971875
transcript.pyannote[731].end 6517.30784375
transcript.pyannote[732].speaker SPEAKER_21
transcript.pyannote[732].start 6517.84784375
transcript.pyannote[732].end 6522.06659375
transcript.pyannote[733].speaker SPEAKER_18
transcript.pyannote[733].start 6522.06659375
transcript.pyannote[733].end 6523.23096875
transcript.pyannote[734].speaker SPEAKER_21
transcript.pyannote[734].start 6523.23096875
transcript.pyannote[734].end 6523.72034375
transcript.pyannote[735].speaker SPEAKER_18
transcript.pyannote[735].start 6523.24784375
transcript.pyannote[735].end 6523.53471875
transcript.pyannote[736].speaker SPEAKER_18
transcript.pyannote[736].start 6523.56846875
transcript.pyannote[736].end 6524.81721875
transcript.pyannote[737].speaker SPEAKER_21
transcript.pyannote[737].start 6524.26034375
transcript.pyannote[737].end 6528.07409375
transcript.pyannote[738].speaker SPEAKER_18
transcript.pyannote[738].start 6528.96846875
transcript.pyannote[738].end 6529.45784375
transcript.pyannote[739].speaker SPEAKER_21
transcript.pyannote[739].start 6529.01909375
transcript.pyannote[739].end 6530.06534375
transcript.pyannote[740].speaker SPEAKER_18
transcript.pyannote[740].start 6530.11596875
transcript.pyannote[740].end 6531.26346875
transcript.pyannote[741].speaker SPEAKER_21
transcript.pyannote[741].start 6531.21284375
transcript.pyannote[741].end 6543.31221875
transcript.pyannote[742].speaker SPEAKER_18
transcript.pyannote[742].start 6544.39221875
transcript.pyannote[742].end 6577.09596875
transcript.pyannote[743].speaker SPEAKER_18
transcript.pyannote[743].start 6577.58534375
transcript.pyannote[743].end 6580.70721875
transcript.pyannote[744].speaker SPEAKER_21
transcript.pyannote[744].start 6581.44971875
transcript.pyannote[744].end 6588.48659375
transcript.pyannote[745].speaker SPEAKER_18
transcript.pyannote[745].start 6587.94659375
transcript.pyannote[745].end 6600.73784375
transcript.pyannote[746].speaker SPEAKER_21
transcript.pyannote[746].start 6601.49721875
transcript.pyannote[746].end 6619.36784375
transcript.pyannote[747].speaker SPEAKER_20
transcript.pyannote[747].start 6615.68909375
transcript.pyannote[747].end 6616.26284375
transcript.pyannote[748].speaker SPEAKER_20
transcript.pyannote[748].start 6619.36784375
transcript.pyannote[748].end 6619.92471875
transcript.pyannote[749].speaker SPEAKER_21
transcript.pyannote[749].start 6619.75596875
transcript.pyannote[749].end 6642.60471875
transcript.pyannote[750].speaker SPEAKER_20
transcript.pyannote[750].start 6620.41409375
transcript.pyannote[750].end 6621.22409375
transcript.pyannote[751].speaker SPEAKER_21
transcript.pyannote[751].start 6642.89159375
transcript.pyannote[751].end 6657.84284375
transcript.pyannote[752].speaker SPEAKER_21
transcript.pyannote[752].start 6658.39971875
transcript.pyannote[752].end 6668.59221875
transcript.pyannote[753].speaker SPEAKER_18
transcript.pyannote[753].start 6669.04784375
transcript.pyannote[753].end 6684.74159375
transcript.pyannote[754].speaker SPEAKER_00
transcript.pyannote[754].start 6683.03721875
transcript.pyannote[754].end 6683.35784375
transcript.pyannote[755].speaker SPEAKER_18
transcript.pyannote[755].start 6685.26471875
transcript.pyannote[755].end 6693.97221875
transcript.pyannote[756].speaker SPEAKER_21
transcript.pyannote[756].start 6693.97221875
transcript.pyannote[756].end 6697.38096875
transcript.pyannote[757].speaker SPEAKER_18
transcript.pyannote[757].start 6695.67659375
transcript.pyannote[757].end 6696.31784375
transcript.pyannote[758].speaker SPEAKER_18
transcript.pyannote[758].start 6697.22909375
transcript.pyannote[758].end 6698.17409375
transcript.pyannote[759].speaker SPEAKER_21
transcript.pyannote[759].start 6697.39784375
transcript.pyannote[759].end 6698.29221875
transcript.pyannote[760].speaker SPEAKER_18
transcript.pyannote[760].start 6698.25846875
transcript.pyannote[760].end 6699.27096875
transcript.pyannote[761].speaker SPEAKER_18
transcript.pyannote[761].start 6699.55784375
transcript.pyannote[761].end 6700.97534375
transcript.pyannote[762].speaker SPEAKER_21
transcript.pyannote[762].start 6701.12721875
transcript.pyannote[762].end 6704.87346875
transcript.pyannote[763].speaker SPEAKER_21
transcript.pyannote[763].start 6705.31221875
transcript.pyannote[763].end 6713.05784375
transcript.pyannote[764].speaker SPEAKER_21
transcript.pyannote[764].start 6713.49659375
transcript.pyannote[764].end 6723.04784375
transcript.pyannote[765].speaker SPEAKER_18
transcript.pyannote[765].start 6721.91721875
transcript.pyannote[765].end 6731.23221875
transcript.pyannote[766].speaker SPEAKER_21
transcript.pyannote[766].start 6723.94221875
transcript.pyannote[766].end 6725.69721875
transcript.pyannote[767].speaker SPEAKER_21
transcript.pyannote[767].start 6726.77721875
transcript.pyannote[767].end 6727.62096875
transcript.pyannote[768].speaker SPEAKER_21
transcript.pyannote[768].start 6729.34221875
transcript.pyannote[768].end 6767.31096875
transcript.pyannote[769].speaker SPEAKER_21
transcript.pyannote[769].start 6767.68221875
transcript.pyannote[769].end 6776.11971875
transcript.pyannote[770].speaker SPEAKER_21
transcript.pyannote[770].start 6776.44034375
transcript.pyannote[770].end 6783.08909375
transcript.pyannote[771].speaker SPEAKER_21
transcript.pyannote[771].start 6783.51096875
transcript.pyannote[771].end 6815.30346875
transcript.pyannote[772].speaker SPEAKER_00
transcript.pyannote[772].start 6791.05409375
transcript.pyannote[772].end 6791.50971875
transcript.pyannote[773].speaker SPEAKER_20
transcript.pyannote[773].start 6795.12096875
transcript.pyannote[773].end 6795.49221875
transcript.pyannote[774].speaker SPEAKER_21
transcript.pyannote[774].start 6815.55659375
transcript.pyannote[774].end 6818.96534375
transcript.pyannote[775].speaker SPEAKER_21
transcript.pyannote[775].start 6819.35346875
transcript.pyannote[775].end 6826.30596875
transcript.pyannote[776].speaker SPEAKER_18
transcript.pyannote[776].start 6826.44096875
transcript.pyannote[776].end 6828.71909375
transcript.pyannote[777].speaker SPEAKER_18
transcript.pyannote[777].start 6828.92159375
transcript.pyannote[777].end 6877.84221875
transcript.pyannote[778].speaker SPEAKER_21
transcript.pyannote[778].start 6833.59596875
transcript.pyannote[778].end 6834.05159375
transcript.pyannote[779].speaker SPEAKER_00
transcript.pyannote[779].start 6834.05159375
transcript.pyannote[779].end 6834.08534375
transcript.pyannote[780].speaker SPEAKER_21
transcript.pyannote[780].start 6878.01096875
transcript.pyannote[780].end 6885.09846875
transcript.pyannote[781].speaker SPEAKER_18
transcript.pyannote[781].start 6884.74409375
transcript.pyannote[781].end 6885.84096875
transcript.pyannote[782].speaker SPEAKER_21
transcript.pyannote[782].start 6885.94221875
transcript.pyannote[782].end 6921.53159375
transcript.pyannote[783].speaker SPEAKER_00
transcript.pyannote[783].start 6908.41971875
transcript.pyannote[783].end 6908.79096875
transcript.pyannote[784].speaker SPEAKER_18
transcript.pyannote[784].start 6921.73409375
transcript.pyannote[784].end 6922.08846875
transcript.pyannote[785].speaker SPEAKER_18
transcript.pyannote[785].start 6922.27409375
transcript.pyannote[785].end 6932.65221875
transcript.pyannote[786].speaker SPEAKER_21
transcript.pyannote[786].start 6932.88846875
transcript.pyannote[786].end 6933.93471875
transcript.pyannote[787].speaker SPEAKER_10
transcript.pyannote[787].start 6937.00596875
transcript.pyannote[787].end 6940.11096875
transcript.pyannote[788].speaker SPEAKER_10
transcript.pyannote[788].start 7743.54659375
transcript.pyannote[788].end 7744.69409375
transcript.pyannote[789].speaker SPEAKER_10
transcript.pyannote[789].start 7744.96409375
transcript.pyannote[789].end 7746.85409375
transcript.pyannote[790].speaker SPEAKER_01
transcript.pyannote[790].start 7752.59159375
transcript.pyannote[790].end 7753.97534375
transcript.pyannote[791].speaker SPEAKER_10
transcript.pyannote[791].start 7754.02596875
transcript.pyannote[791].end 7754.83596875
transcript.pyannote[792].speaker SPEAKER_25
transcript.pyannote[792].start 7763.83034375
transcript.pyannote[792].end 7763.84721875
transcript.pyannote[793].speaker SPEAKER_01
transcript.pyannote[793].start 7763.84721875
transcript.pyannote[793].end 7764.06659375
transcript.pyannote[794].speaker SPEAKER_25
transcript.pyannote[794].start 7764.06659375
transcript.pyannote[794].end 7764.16784375
transcript.pyannote[795].speaker SPEAKER_01
transcript.pyannote[795].start 7764.16784375
transcript.pyannote[795].end 7801.63034375
transcript.pyannote[796].speaker SPEAKER_14
transcript.pyannote[796].start 7795.45409375
transcript.pyannote[796].end 7795.48784375
transcript.pyannote[797].speaker SPEAKER_18
transcript.pyannote[797].start 7795.48784375
transcript.pyannote[797].end 7795.79159375
transcript.pyannote[798].speaker SPEAKER_18
transcript.pyannote[798].start 7802.54159375
transcript.pyannote[798].end 7823.02784375
transcript.pyannote[799].speaker SPEAKER_25
transcript.pyannote[799].start 7820.76659375
transcript.pyannote[799].end 7821.20534375
transcript.pyannote[800].speaker SPEAKER_25
transcript.pyannote[800].start 7822.82534375
transcript.pyannote[800].end 7823.23034375
transcript.pyannote[801].speaker SPEAKER_18
transcript.pyannote[801].start 7823.23034375
transcript.pyannote[801].end 7830.45284375
transcript.pyannote[802].speaker SPEAKER_25
transcript.pyannote[802].start 7826.45346875
transcript.pyannote[802].end 7826.82471875
transcript.pyannote[803].speaker SPEAKER_23
transcript.pyannote[803].start 7826.82471875
transcript.pyannote[803].end 7826.84159375
transcript.pyannote[804].speaker SPEAKER_25
transcript.pyannote[804].start 7828.76534375
transcript.pyannote[804].end 7828.81596875
transcript.pyannote[805].speaker SPEAKER_23
transcript.pyannote[805].start 7828.81596875
transcript.pyannote[805].end 7829.35596875
transcript.pyannote[806].speaker SPEAKER_23
transcript.pyannote[806].start 7830.40221875
transcript.pyannote[806].end 7830.41909375
transcript.pyannote[807].speaker SPEAKER_23
transcript.pyannote[807].start 7830.45284375
transcript.pyannote[807].end 7830.67221875
transcript.pyannote[808].speaker SPEAKER_18
transcript.pyannote[808].start 7830.97596875
transcript.pyannote[808].end 7877.31471875
transcript.pyannote[809].speaker SPEAKER_00
transcript.pyannote[809].start 7860.50721875
transcript.pyannote[809].end 7860.82784375
transcript.pyannote[810].speaker SPEAKER_00
transcript.pyannote[810].start 7861.53659375
transcript.pyannote[810].end 7861.99221875
transcript.pyannote[811].speaker SPEAKER_00
transcript.pyannote[811].start 7870.73346875
transcript.pyannote[811].end 7870.78409375
transcript.pyannote[812].speaker SPEAKER_01
transcript.pyannote[812].start 7870.78409375
transcript.pyannote[812].end 7871.17221875
transcript.pyannote[813].speaker SPEAKER_01
transcript.pyannote[813].start 7877.31471875
transcript.pyannote[813].end 7877.56784375
transcript.pyannote[814].speaker SPEAKER_18
transcript.pyannote[814].start 7877.56784375
transcript.pyannote[814].end 7877.66909375
transcript.pyannote[815].speaker SPEAKER_01
transcript.pyannote[815].start 7877.66909375
transcript.pyannote[815].end 7890.76409375
transcript.pyannote[816].speaker SPEAKER_18
transcript.pyannote[816].start 7886.14034375
transcript.pyannote[816].end 7886.56221875
transcript.pyannote[817].speaker SPEAKER_18
transcript.pyannote[817].start 7889.66721875
transcript.pyannote[817].end 7891.69221875
transcript.pyannote[818].speaker SPEAKER_01
transcript.pyannote[818].start 7891.43909375
transcript.pyannote[818].end 7894.49346875
transcript.pyannote[819].speaker SPEAKER_01
transcript.pyannote[819].start 7894.72971875
transcript.pyannote[819].end 7945.55721875
transcript.pyannote[820].speaker SPEAKER_18
transcript.pyannote[820].start 7946.19846875
transcript.pyannote[820].end 7959.73221875
transcript.pyannote[821].speaker SPEAKER_18
transcript.pyannote[821].start 7960.06971875
transcript.pyannote[821].end 7970.07659375
transcript.pyannote[822].speaker SPEAKER_00
transcript.pyannote[822].start 7964.37284375
transcript.pyannote[822].end 7964.69346875
transcript.pyannote[823].speaker SPEAKER_18
transcript.pyannote[823].start 7970.54909375
transcript.pyannote[823].end 7987.33971875
transcript.pyannote[824].speaker SPEAKER_18
transcript.pyannote[824].start 7987.52534375
transcript.pyannote[824].end 7989.26346875
transcript.pyannote[825].speaker SPEAKER_25
transcript.pyannote[825].start 7989.17909375
transcript.pyannote[825].end 7989.53346875
transcript.pyannote[826].speaker SPEAKER_18
transcript.pyannote[826].start 7989.44909375
transcript.pyannote[826].end 8002.22346875
transcript.pyannote[827].speaker SPEAKER_25
transcript.pyannote[827].start 7993.22909375
transcript.pyannote[827].end 7993.73534375
transcript.pyannote[828].speaker SPEAKER_18
transcript.pyannote[828].start 8002.96596875
transcript.pyannote[828].end 8003.48909375
transcript.pyannote[829].speaker SPEAKER_18
transcript.pyannote[829].start 8004.01221875
transcript.pyannote[829].end 8016.19596875
transcript.pyannote[830].speaker SPEAKER_01
transcript.pyannote[830].start 8014.55909375
transcript.pyannote[830].end 8014.99784375
transcript.pyannote[831].speaker SPEAKER_01
transcript.pyannote[831].start 8015.60534375
transcript.pyannote[831].end 8016.14534375
transcript.pyannote[832].speaker SPEAKER_01
transcript.pyannote[832].start 8016.19596875
transcript.pyannote[832].end 8016.26346875
transcript.pyannote[833].speaker SPEAKER_01
transcript.pyannote[833].start 8016.36471875
transcript.pyannote[833].end 8023.97534375
transcript.pyannote[834].speaker SPEAKER_01
transcript.pyannote[834].start 8024.34659375
transcript.pyannote[834].end 8040.07409375
transcript.pyannote[835].speaker SPEAKER_01
transcript.pyannote[835].start 8040.78284375
transcript.pyannote[835].end 8073.13221875
transcript.pyannote[836].speaker SPEAKER_18
transcript.pyannote[836].start 8072.49096875
transcript.pyannote[836].end 8074.80284375
transcript.pyannote[837].speaker SPEAKER_01
transcript.pyannote[837].start 8074.76909375
transcript.pyannote[837].end 8075.15721875
transcript.pyannote[838].speaker SPEAKER_01
transcript.pyannote[838].start 8075.46096875
transcript.pyannote[838].end 8085.75471875
transcript.pyannote[839].speaker SPEAKER_01
transcript.pyannote[839].start 8086.49721875
transcript.pyannote[839].end 8146.89284375
transcript.pyannote[840].speaker SPEAKER_18
transcript.pyannote[840].start 8147.39909375
transcript.pyannote[840].end 8147.51721875
transcript.pyannote[841].speaker SPEAKER_01
transcript.pyannote[841].start 8147.51721875
transcript.pyannote[841].end 8147.53409375
transcript.pyannote[842].speaker SPEAKER_18
transcript.pyannote[842].start 8147.97284375
transcript.pyannote[842].end 8181.09846875
transcript.pyannote[843].speaker SPEAKER_25
transcript.pyannote[843].start 8158.35096875
transcript.pyannote[843].end 8158.48596875
transcript.pyannote[844].speaker SPEAKER_25
transcript.pyannote[844].start 8174.73659375
transcript.pyannote[844].end 8174.95596875
transcript.pyannote[845].speaker SPEAKER_18
transcript.pyannote[845].start 8181.33471875
transcript.pyannote[845].end 8190.02534375
transcript.pyannote[846].speaker SPEAKER_00
transcript.pyannote[846].start 8183.29221875
transcript.pyannote[846].end 8183.54534375
transcript.pyannote[847].speaker SPEAKER_20
transcript.pyannote[847].start 8183.54534375
transcript.pyannote[847].end 8183.59596875
transcript.pyannote[848].speaker SPEAKER_00
transcript.pyannote[848].start 8183.59596875
transcript.pyannote[848].end 8183.79846875
transcript.pyannote[849].speaker SPEAKER_18
transcript.pyannote[849].start 8190.19409375
transcript.pyannote[849].end 8197.77096875
transcript.pyannote[850].speaker SPEAKER_20
transcript.pyannote[850].start 8192.06721875
transcript.pyannote[850].end 8192.15159375
transcript.pyannote[851].speaker SPEAKER_00
transcript.pyannote[851].start 8192.15159375
transcript.pyannote[851].end 8192.16846875
transcript.pyannote[852].speaker SPEAKER_00
transcript.pyannote[852].start 8195.84721875
transcript.pyannote[852].end 8196.40409375
transcript.pyannote[853].speaker SPEAKER_18
transcript.pyannote[853].start 8197.92284375
transcript.pyannote[853].end 8197.95659375
transcript.pyannote[854].speaker SPEAKER_18
transcript.pyannote[854].start 8198.00721875
transcript.pyannote[854].end 8210.34284375
transcript.pyannote[855].speaker SPEAKER_01
transcript.pyannote[855].start 8209.00971875
transcript.pyannote[855].end 8209.54971875
transcript.pyannote[856].speaker SPEAKER_01
transcript.pyannote[856].start 8210.08971875
transcript.pyannote[856].end 8232.29721875
transcript.pyannote[857].speaker SPEAKER_01
transcript.pyannote[857].start 8232.60096875
transcript.pyannote[857].end 8236.54971875
transcript.pyannote[858].speaker SPEAKER_18
transcript.pyannote[858].start 8236.19534375
transcript.pyannote[858].end 8236.76909375
transcript.pyannote[859].speaker SPEAKER_01
transcript.pyannote[859].start 8236.76909375
transcript.pyannote[859].end 8237.02221875
transcript.pyannote[860].speaker SPEAKER_18
transcript.pyannote[860].start 8237.02221875
transcript.pyannote[860].end 8261.55846875
transcript.pyannote[861].speaker SPEAKER_20
transcript.pyannote[861].start 8243.85659375
transcript.pyannote[861].end 8244.27846875
transcript.pyannote[862].speaker SPEAKER_01
transcript.pyannote[862].start 8256.71534375
transcript.pyannote[862].end 8257.18784375
transcript.pyannote[863].speaker SPEAKER_01
transcript.pyannote[863].start 8259.31409375
transcript.pyannote[863].end 8259.71909375
transcript.pyannote[864].speaker SPEAKER_01
transcript.pyannote[864].start 8261.67659375
transcript.pyannote[864].end 8262.03096875
transcript.pyannote[865].speaker SPEAKER_01
transcript.pyannote[865].start 8262.25034375
transcript.pyannote[865].end 8295.71346875
transcript.pyannote[866].speaker SPEAKER_01
transcript.pyannote[866].start 8296.37159375
transcript.pyannote[866].end 8309.98971875
transcript.pyannote[867].speaker SPEAKER_18
transcript.pyannote[867].start 8310.76596875
transcript.pyannote[867].end 8350.45596875
transcript.pyannote[868].speaker SPEAKER_25
transcript.pyannote[868].start 8316.94221875
transcript.pyannote[868].end 8316.99284375
transcript.pyannote[869].speaker SPEAKER_00
transcript.pyannote[869].start 8322.03846875
transcript.pyannote[869].end 8322.07221875
transcript.pyannote[870].speaker SPEAKER_25
transcript.pyannote[870].start 8322.07221875
transcript.pyannote[870].end 8322.32534375
transcript.pyannote[871].speaker SPEAKER_00
transcript.pyannote[871].start 8322.32534375
transcript.pyannote[871].end 8322.49409375
transcript.pyannote[872].speaker SPEAKER_00
transcript.pyannote[872].start 8325.02534375
transcript.pyannote[872].end 8325.09284375
transcript.pyannote[873].speaker SPEAKER_20
transcript.pyannote[873].start 8325.09284375
transcript.pyannote[873].end 8325.34596875
transcript.pyannote[874].speaker SPEAKER_00
transcript.pyannote[874].start 8325.34596875
transcript.pyannote[874].end 8325.39659375
transcript.pyannote[875].speaker SPEAKER_00
transcript.pyannote[875].start 8338.84596875
transcript.pyannote[875].end 8339.36909375
transcript.pyannote[876].speaker SPEAKER_01
transcript.pyannote[876].start 8342.33909375
transcript.pyannote[876].end 8342.77784375
transcript.pyannote[877].speaker SPEAKER_01
transcript.pyannote[877].start 8345.22471875
transcript.pyannote[877].end 8345.83221875
transcript.pyannote[878].speaker SPEAKER_01
transcript.pyannote[878].start 8349.52784375
transcript.pyannote[878].end 8349.96659375
transcript.pyannote[879].speaker SPEAKER_01
transcript.pyannote[879].start 8350.55721875
transcript.pyannote[879].end 8369.10284375
transcript.pyannote[880].speaker SPEAKER_01
transcript.pyannote[880].start 8369.32221875
transcript.pyannote[880].end 8375.41409375
transcript.pyannote[881].speaker SPEAKER_20
transcript.pyannote[881].start 8375.41409375
transcript.pyannote[881].end 8375.73471875
transcript.pyannote[882].speaker SPEAKER_01
transcript.pyannote[882].start 8375.65034375
transcript.pyannote[882].end 8387.64846875
transcript.pyannote[883].speaker SPEAKER_20
transcript.pyannote[883].start 8383.78409375
transcript.pyannote[883].end 8383.80096875
transcript.pyannote[884].speaker SPEAKER_18
transcript.pyannote[884].start 8383.80096875
transcript.pyannote[884].end 8384.22284375
transcript.pyannote[885].speaker SPEAKER_18
transcript.pyannote[885].start 8387.64846875
transcript.pyannote[885].end 8388.07034375
transcript.pyannote[886].speaker SPEAKER_01
transcript.pyannote[886].start 8387.96909375
transcript.pyannote[886].end 8389.42034375
transcript.pyannote[887].speaker SPEAKER_18
transcript.pyannote[887].start 8388.40784375
transcript.pyannote[887].end 8389.31909375
transcript.pyannote[888].speaker SPEAKER_01
transcript.pyannote[888].start 8405.53596875
transcript.pyannote[888].end 8407.76346875
transcript.pyannote[889].speaker SPEAKER_10
transcript.pyannote[889].start 8411.25659375
transcript.pyannote[889].end 8412.45471875
transcript.pyannote[890].speaker SPEAKER_10
transcript.pyannote[890].start 8412.74159375
transcript.pyannote[890].end 8413.19721875
transcript.pyannote[891].speaker SPEAKER_01
transcript.pyannote[891].start 8413.43346875
transcript.pyannote[891].end 8414.09159375
transcript.pyannote[892].speaker SPEAKER_10
transcript.pyannote[892].start 8419.42409375
transcript.pyannote[892].end 8425.26284375
transcript.pyannote[893].speaker SPEAKER_10
transcript.pyannote[893].start 8425.60034375
transcript.pyannote[893].end 8426.69721875
transcript.pyannote[894].speaker SPEAKER_18
transcript.pyannote[894].start 8429.21159375
transcript.pyannote[894].end 8432.67096875
transcript.pyannote[895].speaker SPEAKER_18
transcript.pyannote[895].start 8433.93659375
transcript.pyannote[895].end 8435.69159375
transcript.pyannote[896].speaker SPEAKER_18
transcript.pyannote[896].start 8435.92784375
transcript.pyannote[896].end 8436.19784375
transcript.pyannote[897].speaker SPEAKER_18
transcript.pyannote[897].start 8436.90659375
transcript.pyannote[897].end 8438.13846875
transcript.pyannote[898].speaker SPEAKER_10
transcript.pyannote[898].start 8438.13846875
transcript.pyannote[898].end 8438.15534375
transcript.pyannote[899].speaker SPEAKER_18
transcript.pyannote[899].start 8438.94846875
transcript.pyannote[899].end 8438.96534375
transcript.pyannote[900].speaker SPEAKER_10
transcript.pyannote[900].start 8438.96534375
transcript.pyannote[900].end 8439.87659375
transcript.pyannote[901].speaker SPEAKER_18
transcript.pyannote[901].start 8440.45034375
transcript.pyannote[901].end 8440.46721875
transcript.pyannote[902].speaker SPEAKER_10
transcript.pyannote[902].start 8440.46721875
transcript.pyannote[902].end 8458.67534375
transcript.pyannote[903].speaker SPEAKER_10
transcript.pyannote[903].start 8458.96221875
transcript.pyannote[903].end 8470.80846875
transcript.pyannote[904].speaker SPEAKER_10
transcript.pyannote[904].start 8470.96034375
transcript.pyannote[904].end 8472.24284375
transcript.pyannote[905].speaker SPEAKER_13
transcript.pyannote[905].start 8471.14596875
transcript.pyannote[905].end 8471.16284375
transcript.pyannote[906].speaker SPEAKER_18
transcript.pyannote[906].start 8471.16284375
transcript.pyannote[906].end 8471.80409375
transcript.pyannote[907].speaker SPEAKER_18
transcript.pyannote[907].start 8472.24284375
transcript.pyannote[907].end 8472.96846875
transcript.pyannote[908].speaker SPEAKER_10
transcript.pyannote[908].start 8472.96846875
transcript.pyannote[908].end 8487.85221875
transcript.pyannote[909].speaker SPEAKER_10
transcript.pyannote[909].start 8488.13909375
transcript.pyannote[909].end 8494.50096875
transcript.pyannote[910].speaker SPEAKER_10
transcript.pyannote[910].start 8494.78784375
transcript.pyannote[910].end 8495.96909375
transcript.pyannote[911].speaker SPEAKER_10
transcript.pyannote[911].start 8497.30221875
transcript.pyannote[911].end 8498.63534375
transcript.pyannote[912].speaker SPEAKER_18
transcript.pyannote[912].start 8499.46221875
transcript.pyannote[912].end 8501.68971875
transcript.pyannote[913].speaker SPEAKER_10
transcript.pyannote[913].start 8500.82909375
transcript.pyannote[913].end 8516.62409375
transcript.pyannote[914].speaker SPEAKER_10
transcript.pyannote[914].start 8518.59846875
transcript.pyannote[914].end 8529.06096875
transcript.pyannote[915].speaker SPEAKER_10
transcript.pyannote[915].start 8529.97221875
transcript.pyannote[915].end 8530.02284375
transcript.pyannote[916].speaker SPEAKER_18
transcript.pyannote[916].start 8530.02284375
transcript.pyannote[916].end 8556.36471875
transcript.pyannote[917].speaker SPEAKER_10
transcript.pyannote[917].start 8534.91659375
transcript.pyannote[917].end 8534.95034375
transcript.pyannote[918].speaker SPEAKER_18
transcript.pyannote[918].start 8556.68534375
transcript.pyannote[918].end 8557.81596875
transcript.pyannote[919].speaker SPEAKER_10
transcript.pyannote[919].start 8557.81596875
transcript.pyannote[919].end 8557.83284375
transcript.pyannote[920].speaker SPEAKER_18
transcript.pyannote[920].start 8557.83284375
transcript.pyannote[920].end 8557.84971875
transcript.pyannote[921].speaker SPEAKER_18
transcript.pyannote[921].start 8558.67659375
transcript.pyannote[921].end 8560.88721875
transcript.pyannote[922].speaker SPEAKER_10
transcript.pyannote[922].start 8561.07284375
transcript.pyannote[922].end 8562.99659375
transcript.pyannote[923].speaker SPEAKER_10
transcript.pyannote[923].start 8563.31721875
transcript.pyannote[923].end 8563.63784375
transcript.pyannote[924].speaker SPEAKER_10
transcript.pyannote[924].start 8563.87409375
transcript.pyannote[924].end 8564.46471875
transcript.pyannote[925].speaker SPEAKER_10
transcript.pyannote[925].start 8566.27034375
transcript.pyannote[925].end 8591.53221875
transcript.pyannote[926].speaker SPEAKER_18
transcript.pyannote[926].start 8592.29159375
transcript.pyannote[926].end 8592.30846875
transcript.pyannote[927].speaker SPEAKER_10
transcript.pyannote[927].start 8592.30846875
transcript.pyannote[927].end 8592.35909375
transcript.pyannote[928].speaker SPEAKER_18
transcript.pyannote[928].start 8592.35909375
transcript.pyannote[928].end 8592.91596875
transcript.pyannote[929].speaker SPEAKER_10
transcript.pyannote[929].start 8592.91596875
transcript.pyannote[929].end 8605.74096875
transcript.pyannote[930].speaker SPEAKER_18
transcript.pyannote[930].start 8605.74096875
transcript.pyannote[930].end 8612.23784375
transcript.pyannote[931].speaker SPEAKER_10
transcript.pyannote[931].start 8612.64284375
transcript.pyannote[931].end 8612.67659375
transcript.pyannote[932].speaker SPEAKER_18
transcript.pyannote[932].start 8612.67659375
transcript.pyannote[932].end 8612.71034375
transcript.pyannote[933].speaker SPEAKER_10
transcript.pyannote[933].start 8612.71034375
transcript.pyannote[933].end 8615.89971875
transcript.pyannote[934].speaker SPEAKER_18
transcript.pyannote[934].start 8615.24159375
transcript.pyannote[934].end 8624.67471875
transcript.pyannote[935].speaker SPEAKER_18
transcript.pyannote[935].start 8625.48471875
transcript.pyannote[935].end 8627.05409375
transcript.pyannote[936].speaker SPEAKER_18
transcript.pyannote[936].start 8627.77971875
transcript.pyannote[936].end 8631.79596875
transcript.pyannote[937].speaker SPEAKER_18
transcript.pyannote[937].start 8632.06596875
transcript.pyannote[937].end 8632.36971875
transcript.pyannote[938].speaker SPEAKER_18
transcript.pyannote[938].start 8633.98971875
transcript.pyannote[938].end 8634.02346875
transcript.pyannote[939].speaker SPEAKER_10
transcript.pyannote[939].start 8634.02346875
transcript.pyannote[939].end 8651.33721875
transcript.pyannote[940].speaker SPEAKER_10
transcript.pyannote[940].start 8652.13034375
transcript.pyannote[940].end 8656.66971875
transcript.pyannote[941].speaker SPEAKER_10
transcript.pyannote[941].start 8659.04909375
transcript.pyannote[941].end 8660.48346875
transcript.pyannote[942].speaker SPEAKER_10
transcript.pyannote[942].start 8661.63096875
transcript.pyannote[942].end 8665.44471875
transcript.pyannote[943].speaker SPEAKER_10
transcript.pyannote[943].start 8668.02659375
transcript.pyannote[943].end 8669.05596875
transcript.pyannote[944].speaker SPEAKER_18
transcript.pyannote[944].start 8669.86596875
transcript.pyannote[944].end 8674.32096875
transcript.pyannote[945].speaker SPEAKER_18
transcript.pyannote[945].start 8674.89471875
transcript.pyannote[945].end 8687.75346875
transcript.pyannote[946].speaker SPEAKER_18
transcript.pyannote[946].start 8688.00659375
transcript.pyannote[946].end 8699.19471875
transcript.pyannote[947].speaker SPEAKER_18
transcript.pyannote[947].start 8700.12284375
transcript.pyannote[947].end 8701.81034375
transcript.pyannote[948].speaker SPEAKER_10
transcript.pyannote[948].start 8700.71346875
transcript.pyannote[948].end 8704.62846875
transcript.pyannote[949].speaker SPEAKER_18
transcript.pyannote[949].start 8705.18534375
transcript.pyannote[949].end 8729.90721875
transcript.pyannote[950].speaker SPEAKER_10
transcript.pyannote[950].start 8729.73846875
transcript.pyannote[950].end 8742.47909375
transcript.pyannote[951].speaker SPEAKER_10
transcript.pyannote[951].start 8743.35659375
transcript.pyannote[951].end 8825.75721875
transcript.pyannote[952].speaker SPEAKER_10
transcript.pyannote[952].start 8826.11159375
transcript.pyannote[952].end 8831.32596875
transcript.pyannote[953].speaker SPEAKER_10
transcript.pyannote[953].start 8831.83221875
transcript.pyannote[953].end 8831.96721875
transcript.pyannote[954].speaker SPEAKER_18
transcript.pyannote[954].start 8831.96721875
transcript.pyannote[954].end 8840.77596875
transcript.pyannote[955].speaker SPEAKER_10
transcript.pyannote[955].start 8841.07971875
transcript.pyannote[955].end 8841.09659375
transcript.pyannote[956].speaker SPEAKER_18
transcript.pyannote[956].start 8841.09659375
transcript.pyannote[956].end 8842.96971875
transcript.pyannote[957].speaker SPEAKER_10
transcript.pyannote[957].start 8842.96971875
transcript.pyannote[957].end 8853.75284375
transcript.pyannote[958].speaker SPEAKER_10
transcript.pyannote[958].start 8853.97221875
transcript.pyannote[958].end 8867.32034375
transcript.pyannote[959].speaker SPEAKER_18
transcript.pyannote[959].start 8867.32034375
transcript.pyannote[959].end 8867.74221875
transcript.pyannote[960].speaker SPEAKER_10
transcript.pyannote[960].start 8867.79284375
transcript.pyannote[960].end 8868.14721875
transcript.pyannote[961].speaker SPEAKER_10
transcript.pyannote[961].start 8868.50159375
transcript.pyannote[961].end 8869.83471875
transcript.pyannote[962].speaker SPEAKER_10
transcript.pyannote[962].start 8870.22284375
transcript.pyannote[962].end 8872.29846875
transcript.pyannote[963].speaker SPEAKER_10
transcript.pyannote[963].start 8872.75409375
transcript.pyannote[963].end 8875.03221875
transcript.pyannote[964].speaker SPEAKER_18
transcript.pyannote[964].start 8875.03221875
transcript.pyannote[964].end 8882.87909375
transcript.pyannote[965].speaker SPEAKER_10
transcript.pyannote[965].start 8875.47096875
transcript.pyannote[965].end 8875.92659375
transcript.pyannote[966].speaker SPEAKER_10
transcript.pyannote[966].start 8882.87909375
transcript.pyannote[966].end 8889.35909375
transcript.pyannote[967].speaker SPEAKER_18
transcript.pyannote[967].start 8882.89596875
transcript.pyannote[967].end 8883.57096875
transcript.pyannote[968].speaker SPEAKER_20
transcript.pyannote[968].start 8883.57096875
transcript.pyannote[968].end 8883.58784375
transcript.pyannote[969].speaker SPEAKER_20
transcript.pyannote[969].start 8883.84096875
transcript.pyannote[969].end 8883.87471875
transcript.pyannote[970].speaker SPEAKER_18
transcript.pyannote[970].start 8883.87471875
transcript.pyannote[970].end 8884.66784375
transcript.pyannote[971].speaker SPEAKER_10
transcript.pyannote[971].start 8890.18596875
transcript.pyannote[971].end 8891.58659375
transcript.pyannote[972].speaker SPEAKER_18
transcript.pyannote[972].start 8891.58659375
transcript.pyannote[972].end 8891.97471875
transcript.pyannote[973].speaker SPEAKER_10
transcript.pyannote[973].start 8891.97471875
transcript.pyannote[973].end 8892.02534375
transcript.pyannote[974].speaker SPEAKER_18
transcript.pyannote[974].start 8892.02534375
transcript.pyannote[974].end 8893.96596875
transcript.pyannote[975].speaker SPEAKER_10
transcript.pyannote[975].start 8893.96596875
transcript.pyannote[975].end 8901.27284375
transcript.pyannote[976].speaker SPEAKER_10
transcript.pyannote[976].start 8901.93096875
transcript.pyannote[976].end 8905.87971875
transcript.pyannote[977].speaker SPEAKER_10
transcript.pyannote[977].start 8906.48721875
transcript.pyannote[977].end 8908.29284375
transcript.pyannote[978].speaker SPEAKER_10
transcript.pyannote[978].start 8908.49534375
transcript.pyannote[978].end 8909.98034375
transcript.pyannote[979].speaker SPEAKER_10
transcript.pyannote[979].start 8910.79034375
transcript.pyannote[979].end 8911.07721875
transcript.pyannote[980].speaker SPEAKER_18
transcript.pyannote[980].start 8912.00534375
transcript.pyannote[980].end 8912.05596875
transcript.pyannote[981].speaker SPEAKER_10
transcript.pyannote[981].start 8912.05596875
transcript.pyannote[981].end 8912.07284375
transcript.pyannote[982].speaker SPEAKER_18
transcript.pyannote[982].start 8912.07284375
transcript.pyannote[982].end 8912.30909375
transcript.pyannote[983].speaker SPEAKER_10
transcript.pyannote[983].start 8912.30909375
transcript.pyannote[983].end 8920.67909375
transcript.pyannote[984].speaker SPEAKER_18
transcript.pyannote[984].start 8912.35971875
transcript.pyannote[984].end 8913.40596875
transcript.pyannote[985].speaker SPEAKER_18
transcript.pyannote[985].start 8915.34659375
transcript.pyannote[985].end 8917.33784375
transcript.pyannote[986].speaker SPEAKER_18
transcript.pyannote[986].start 8918.65409375
transcript.pyannote[986].end 8928.30659375
transcript.pyannote[987].speaker SPEAKER_10
transcript.pyannote[987].start 8927.36159375
transcript.pyannote[987].end 8931.76596875
transcript.pyannote[988].speaker SPEAKER_10
transcript.pyannote[988].start 8932.50846875
transcript.pyannote[988].end 8966.35971875
transcript.pyannote[989].speaker SPEAKER_18
transcript.pyannote[989].start 8933.40284375
transcript.pyannote[989].end 8934.12846875
transcript.pyannote[990].speaker SPEAKER_18
transcript.pyannote[990].start 8935.91721875
transcript.pyannote[990].end 8937.11534375
transcript.pyannote[991].speaker SPEAKER_00
transcript.pyannote[991].start 8937.11534375
transcript.pyannote[991].end 8937.16596875
transcript.pyannote[992].speaker SPEAKER_10
transcript.pyannote[992].start 8967.00096875
transcript.pyannote[992].end 8968.24971875
transcript.pyannote[993].speaker SPEAKER_10
transcript.pyannote[993].start 8968.78971875
transcript.pyannote[993].end 8969.61659375
transcript.pyannote[994].speaker SPEAKER_10
transcript.pyannote[994].start 8971.32096875
transcript.pyannote[994].end 8987.70659375
transcript.pyannote[995].speaker SPEAKER_10
transcript.pyannote[995].start 8988.01034375
transcript.pyannote[995].end 8994.47346875
transcript.pyannote[996].speaker SPEAKER_10
transcript.pyannote[996].start 8994.97971875
transcript.pyannote[996].end 8995.57034375
transcript.pyannote[997].speaker SPEAKER_10
transcript.pyannote[997].start 8996.00909375
transcript.pyannote[997].end 8996.93721875
transcript.pyannote[998].speaker SPEAKER_10
transcript.pyannote[998].start 8997.47721875
transcript.pyannote[998].end 8997.71346875
transcript.pyannote[999].speaker SPEAKER_10
transcript.pyannote[999].start 8998.79346875
transcript.pyannote[999].end 8999.33346875
transcript.pyannote[1000].speaker SPEAKER_10
transcript.pyannote[1000].start 9000.93659375
transcript.pyannote[1000].end 9001.64534375
transcript.pyannote[1001].speaker SPEAKER_10
transcript.pyannote[1001].start 9003.13034375
transcript.pyannote[1001].end 9004.56471875
transcript.pyannote[1002].speaker SPEAKER_10
transcript.pyannote[1002].start 9005.67846875
transcript.pyannote[1002].end 9006.67409375
transcript.pyannote[1003].speaker SPEAKER_02
transcript.pyannote[1003].start 9007.65284375
transcript.pyannote[1003].end 9008.59784375
transcript.pyannote[1004].speaker SPEAKER_10
transcript.pyannote[1004].start 9009.61034375
transcript.pyannote[1004].end 9017.84534375
transcript.pyannote[1005].speaker SPEAKER_02
transcript.pyannote[1005].start 9018.82409375
transcript.pyannote[1005].end 9027.93659375
transcript.pyannote[1006].speaker SPEAKER_10
transcript.pyannote[1006].start 9028.25721875
transcript.pyannote[1006].end 9029.92784375
transcript.pyannote[1007].speaker SPEAKER_10
transcript.pyannote[1007].start 9030.80534375
transcript.pyannote[1007].end 9035.10846875
transcript.pyannote[1008].speaker SPEAKER_02
transcript.pyannote[1008].start 9030.88971875
transcript.pyannote[1008].end 9032.10471875
transcript.pyannote[1009].speaker SPEAKER_02
transcript.pyannote[1009].start 9036.00284375
transcript.pyannote[1009].end 9045.82409375
transcript.pyannote[1010].speaker SPEAKER_10
transcript.pyannote[1010].start 9045.50346875
transcript.pyannote[1010].end 9050.02596875
transcript.pyannote[1011].speaker SPEAKER_02
transcript.pyannote[1011].start 9050.43096875
transcript.pyannote[1011].end 9050.56596875
transcript.pyannote[1012].speaker SPEAKER_10
transcript.pyannote[1012].start 9050.56596875
transcript.pyannote[1012].end 9050.97096875
transcript.pyannote[1013].speaker SPEAKER_02
transcript.pyannote[1013].start 9050.66721875
transcript.pyannote[1013].end 9054.98721875
transcript.pyannote[1014].speaker SPEAKER_10
transcript.pyannote[1014].start 9054.56534375
transcript.pyannote[1014].end 9059.45909375
transcript.pyannote[1015].speaker SPEAKER_02
transcript.pyannote[1015].start 9059.72909375
transcript.pyannote[1015].end 9066.91784375
transcript.pyannote[1016].speaker SPEAKER_10
transcript.pyannote[1016].start 9067.87971875
transcript.pyannote[1016].end 9069.31409375
transcript.pyannote[1017].speaker SPEAKER_02
transcript.pyannote[1017].start 9070.86659375
transcript.pyannote[1017].end 9071.44034375
transcript.pyannote[1018].speaker SPEAKER_02
transcript.pyannote[1018].start 9072.38534375
transcript.pyannote[1018].end 9074.00534375
transcript.pyannote[1019].speaker SPEAKER_10
transcript.pyannote[1019].start 9074.00534375
transcript.pyannote[1019].end 9080.55284375
transcript.pyannote[1020].speaker SPEAKER_02
transcript.pyannote[1020].start 9075.03471875
transcript.pyannote[1020].end 9075.20346875
transcript.pyannote[1021].speaker SPEAKER_10
transcript.pyannote[1021].start 9081.97034375
transcript.pyannote[1021].end 9082.56096875
transcript.pyannote[1022].speaker SPEAKER_10
transcript.pyannote[1022].start 9082.71284375
transcript.pyannote[1022].end 9082.84784375
transcript.pyannote[1023].speaker SPEAKER_10
transcript.pyannote[1023].start 9083.53971875
transcript.pyannote[1023].end 9085.48034375
transcript.pyannote[1024].speaker SPEAKER_18
transcript.pyannote[1024].start 9086.02034375
transcript.pyannote[1024].end 9105.17346875
transcript.pyannote[1025].speaker SPEAKER_18
transcript.pyannote[1025].start 9105.24096875
transcript.pyannote[1025].end 9108.73409375
transcript.pyannote[1026].speaker SPEAKER_18
transcript.pyannote[1026].start 9108.80159375
transcript.pyannote[1026].end 9109.45971875
transcript.pyannote[1027].speaker SPEAKER_10
transcript.pyannote[1027].start 9108.86909375
transcript.pyannote[1027].end 9148.08659375
transcript.pyannote[1028].speaker SPEAKER_10
transcript.pyannote[1028].start 9149.11596875
transcript.pyannote[1028].end 9149.52096875
transcript.pyannote[1029].speaker SPEAKER_10
transcript.pyannote[1029].start 9149.80784375
transcript.pyannote[1029].end 9155.17409375
transcript.pyannote[1030].speaker SPEAKER_18
transcript.pyannote[1030].start 9155.93346875
transcript.pyannote[1030].end 9162.37971875
transcript.pyannote[1031].speaker SPEAKER_10
transcript.pyannote[1031].start 9163.12221875
transcript.pyannote[1031].end 9170.47971875
transcript.pyannote[1032].speaker SPEAKER_10
transcript.pyannote[1032].start 9171.13784375
transcript.pyannote[1032].end 9176.43659375
transcript.pyannote[1033].speaker SPEAKER_10
transcript.pyannote[1033].start 9176.60534375
transcript.pyannote[1033].end 9177.75284375
transcript.pyannote[1034].speaker SPEAKER_10
transcript.pyannote[1034].start 9178.15784375
transcript.pyannote[1034].end 9179.08596875
transcript.pyannote[1035].speaker SPEAKER_10
transcript.pyannote[1035].start 9179.62596875
transcript.pyannote[1035].end 9180.67221875
transcript.pyannote[1036].speaker SPEAKER_25
transcript.pyannote[1036].start 9180.67221875
transcript.pyannote[1036].end 9181.02659375
transcript.pyannote[1037].speaker SPEAKER_10
transcript.pyannote[1037].start 9181.27971875
transcript.pyannote[1037].end 9181.63409375
transcript.pyannote[1038].speaker SPEAKER_10
transcript.pyannote[1038].start 9182.44409375
transcript.pyannote[1038].end 9184.03034375
transcript.pyannote[1039].speaker SPEAKER_10
transcript.pyannote[1039].start 9184.33409375
transcript.pyannote[1039].end 9185.92034375
transcript.pyannote[1040].speaker SPEAKER_10
transcript.pyannote[1040].start 9185.97096875
transcript.pyannote[1040].end 9185.98784375
transcript.pyannote[1041].speaker SPEAKER_10
transcript.pyannote[1041].start 9186.24096875
transcript.pyannote[1041].end 9191.20221875
transcript.pyannote[1042].speaker SPEAKER_02
transcript.pyannote[1042].start 9191.97846875
transcript.pyannote[1042].end 9198.28971875
transcript.pyannote[1043].speaker SPEAKER_02
transcript.pyannote[1043].start 9198.59346875
transcript.pyannote[1043].end 9209.39346875
transcript.pyannote[1044].speaker SPEAKER_02
transcript.pyannote[1044].start 9210.30471875
transcript.pyannote[1044].end 9216.12659375
transcript.pyannote[1045].speaker SPEAKER_10
transcript.pyannote[1045].start 9216.83534375
transcript.pyannote[1045].end 9222.11721875
transcript.pyannote[1046].speaker SPEAKER_02
transcript.pyannote[1046].start 9217.08846875
transcript.pyannote[1046].end 9217.66221875
transcript.pyannote[1047].speaker SPEAKER_10
transcript.pyannote[1047].start 9222.84284375
transcript.pyannote[1047].end 9224.34471875
transcript.pyannote[1048].speaker SPEAKER_10
transcript.pyannote[1048].start 9224.78346875
transcript.pyannote[1048].end 9233.64284375
transcript.pyannote[1049].speaker SPEAKER_10
transcript.pyannote[1049].start 9234.01409375
transcript.pyannote[1049].end 9248.86409375
transcript.pyannote[1050].speaker SPEAKER_18
transcript.pyannote[1050].start 9250.29846875
transcript.pyannote[1050].end 9268.35471875
transcript.pyannote[1051].speaker SPEAKER_18
transcript.pyannote[1051].start 9268.99596875
transcript.pyannote[1051].end 9284.04846875
transcript.pyannote[1052].speaker SPEAKER_10
transcript.pyannote[1052].start 9284.11596875
transcript.pyannote[1052].end 9288.82409375
transcript.pyannote[1053].speaker SPEAKER_18
transcript.pyannote[1053].start 9286.30971875
transcript.pyannote[1053].end 9286.71471875
transcript.pyannote[1054].speaker SPEAKER_10
transcript.pyannote[1054].start 9289.31346875
transcript.pyannote[1054].end 9289.34721875
transcript.pyannote[1055].speaker SPEAKER_18
transcript.pyannote[1055].start 9289.34721875
transcript.pyannote[1055].end 9290.30909375
transcript.pyannote[1056].speaker SPEAKER_18
transcript.pyannote[1056].start 9290.84909375
transcript.pyannote[1056].end 9308.44971875
transcript.pyannote[1057].speaker SPEAKER_18
transcript.pyannote[1057].start 9309.51284375
transcript.pyannote[1057].end 9314.20409375
transcript.pyannote[1058].speaker SPEAKER_10
transcript.pyannote[1058].start 9314.25471875
transcript.pyannote[1058].end 9337.06971875
transcript.pyannote[1059].speaker SPEAKER_10
transcript.pyannote[1059].start 9337.25534375
transcript.pyannote[1059].end 9338.62221875
transcript.pyannote[1060].speaker SPEAKER_18
transcript.pyannote[1060].start 9338.33534375
transcript.pyannote[1060].end 9338.65596875
transcript.pyannote[1061].speaker SPEAKER_10
transcript.pyannote[1061].start 9338.65596875
transcript.pyannote[1061].end 9338.67284375
transcript.pyannote[1062].speaker SPEAKER_18
transcript.pyannote[1062].start 9338.67284375
transcript.pyannote[1062].end 9338.68971875
transcript.pyannote[1063].speaker SPEAKER_10
transcript.pyannote[1063].start 9338.68971875
transcript.pyannote[1063].end 9338.74034375
transcript.pyannote[1064].speaker SPEAKER_18
transcript.pyannote[1064].start 9338.74034375
transcript.pyannote[1064].end 9339.73596875
transcript.pyannote[1065].speaker SPEAKER_10
transcript.pyannote[1065].start 9339.73596875
transcript.pyannote[1065].end 9339.95534375
transcript.pyannote[1066].speaker SPEAKER_18
transcript.pyannote[1066].start 9339.95534375
transcript.pyannote[1066].end 9339.97221875
transcript.pyannote[1067].speaker SPEAKER_10
transcript.pyannote[1067].start 9339.97221875
transcript.pyannote[1067].end 9340.00596875
transcript.pyannote[1068].speaker SPEAKER_18
transcript.pyannote[1068].start 9340.00596875
transcript.pyannote[1068].end 9348.64596875
transcript.pyannote[1069].speaker SPEAKER_10
transcript.pyannote[1069].start 9340.03971875
transcript.pyannote[1069].end 9341.67659375
transcript.pyannote[1070].speaker SPEAKER_10
transcript.pyannote[1070].start 9348.64596875
transcript.pyannote[1070].end 9348.66284375
transcript.pyannote[1071].speaker SPEAKER_10
transcript.pyannote[1071].start 9348.83159375
transcript.pyannote[1071].end 9395.15346875
transcript.pyannote[1072].speaker SPEAKER_18
transcript.pyannote[1072].start 9395.15346875
transcript.pyannote[1072].end 9410.45909375
transcript.pyannote[1073].speaker SPEAKER_10
transcript.pyannote[1073].start 9399.49034375
transcript.pyannote[1073].end 9399.96284375
transcript.pyannote[1074].speaker SPEAKER_00
transcript.pyannote[1074].start 9399.96284375
transcript.pyannote[1074].end 9399.97971875
transcript.pyannote[1075].speaker SPEAKER_10
transcript.pyannote[1075].start 9401.71784375
transcript.pyannote[1075].end 9402.20721875
transcript.pyannote[1076].speaker SPEAKER_00
transcript.pyannote[1076].start 9409.00784375
transcript.pyannote[1076].end 9409.04159375
transcript.pyannote[1077].speaker SPEAKER_20
transcript.pyannote[1077].start 9409.04159375
transcript.pyannote[1077].end 9409.10909375
transcript.pyannote[1078].speaker SPEAKER_00
transcript.pyannote[1078].start 9409.10909375
transcript.pyannote[1078].end 9409.19346875
transcript.pyannote[1079].speaker SPEAKER_18
transcript.pyannote[1079].start 9411.10034375
transcript.pyannote[1079].end 9412.36596875
transcript.pyannote[1080].speaker SPEAKER_18
transcript.pyannote[1080].start 9413.42909375
transcript.pyannote[1080].end 9414.66096875
transcript.pyannote[1081].speaker SPEAKER_18
transcript.pyannote[1081].start 9414.94784375
transcript.pyannote[1081].end 9418.05284375
transcript.pyannote[1082].speaker SPEAKER_10
transcript.pyannote[1082].start 9415.03221875
transcript.pyannote[1082].end 9415.97721875
transcript.pyannote[1083].speaker SPEAKER_10
transcript.pyannote[1083].start 9418.05284375
transcript.pyannote[1083].end 9418.50846875
transcript.pyannote[1084].speaker SPEAKER_18
transcript.pyannote[1084].start 9418.50846875
transcript.pyannote[1084].end 9425.59596875
transcript.pyannote[1085].speaker SPEAKER_10
transcript.pyannote[1085].start 9425.59596875
transcript.pyannote[1085].end 9425.62971875
transcript.pyannote[1086].speaker SPEAKER_10
transcript.pyannote[1086].start 9425.76471875
transcript.pyannote[1086].end 9426.22034375
transcript.pyannote[1087].speaker SPEAKER_10
transcript.pyannote[1087].start 9426.45659375
transcript.pyannote[1087].end 9429.05534375
transcript.pyannote[1088].speaker SPEAKER_10
transcript.pyannote[1088].start 9429.51096875
transcript.pyannote[1088].end 9430.43909375
transcript.pyannote[1089].speaker SPEAKER_10
transcript.pyannote[1089].start 9430.96221875
transcript.pyannote[1089].end 9432.10971875
transcript.pyannote[1090].speaker SPEAKER_18
transcript.pyannote[1090].start 9431.99159375
transcript.pyannote[1090].end 9432.27846875
transcript.pyannote[1091].speaker SPEAKER_18
transcript.pyannote[1091].start 9432.46409375
transcript.pyannote[1091].end 9435.19784375
transcript.pyannote[1092].speaker SPEAKER_10
transcript.pyannote[1092].start 9435.19784375
transcript.pyannote[1092].end 9435.41721875
transcript.pyannote[1093].speaker SPEAKER_10
transcript.pyannote[1093].start 9435.94034375
transcript.pyannote[1093].end 9437.29034375
transcript.pyannote[1094].speaker SPEAKER_01
transcript.pyannote[1094].start 9442.16721875
transcript.pyannote[1094].end 9445.33971875
transcript.pyannote[1095].speaker SPEAKER_04
transcript.pyannote[1095].start 9454.41846875
transcript.pyannote[1095].end 9457.96221875
transcript.pyannote[1096].speaker SPEAKER_01
transcript.pyannote[1096].start 9457.96221875
transcript.pyannote[1096].end 9458.51909375
transcript.pyannote[1097].speaker SPEAKER_25
transcript.pyannote[1097].start 9463.81784375
transcript.pyannote[1097].end 9464.47596875
transcript.pyannote[1098].speaker SPEAKER_04
transcript.pyannote[1098].start 9465.23534375
transcript.pyannote[1098].end 9478.53284375
transcript.pyannote[1099].speaker SPEAKER_04
transcript.pyannote[1099].start 9478.68471875
transcript.pyannote[1099].end 9490.42971875
transcript.pyannote[1100].speaker SPEAKER_04
transcript.pyannote[1100].start 9490.80096875
transcript.pyannote[1100].end 9501.24659375
transcript.pyannote[1101].speaker SPEAKER_04
transcript.pyannote[1101].start 9501.36471875
transcript.pyannote[1101].end 9523.36971875
transcript.pyannote[1102].speaker SPEAKER_04
transcript.pyannote[1102].start 9523.69034375
transcript.pyannote[1102].end 9543.09659375
transcript.pyannote[1103].speaker SPEAKER_18
transcript.pyannote[1103].start 9544.44659375
transcript.pyannote[1103].end 9544.68284375
transcript.pyannote[1104].speaker SPEAKER_04
transcript.pyannote[1104].start 9544.68284375
transcript.pyannote[1104].end 9544.73346875
transcript.pyannote[1105].speaker SPEAKER_18
transcript.pyannote[1105].start 9544.73346875
transcript.pyannote[1105].end 9544.96971875
transcript.pyannote[1106].speaker SPEAKER_04
transcript.pyannote[1106].start 9544.81784375
transcript.pyannote[1106].end 9545.89784375
transcript.pyannote[1107].speaker SPEAKER_18
transcript.pyannote[1107].start 9547.75409375
transcript.pyannote[1107].end 9548.34471875
transcript.pyannote[1108].speaker SPEAKER_04
transcript.pyannote[1108].start 9549.66096875
transcript.pyannote[1108].end 9619.42221875
transcript.pyannote[1109].speaker SPEAKER_20
transcript.pyannote[1109].start 9620.56971875
transcript.pyannote[1109].end 9620.70471875
transcript.pyannote[1110].speaker SPEAKER_04
transcript.pyannote[1110].start 9620.70471875
transcript.pyannote[1110].end 9620.90721875
transcript.pyannote[1111].speaker SPEAKER_20
transcript.pyannote[1111].start 9620.90721875
transcript.pyannote[1111].end 9621.02534375
transcript.pyannote[1112].speaker SPEAKER_04
transcript.pyannote[1112].start 9621.02534375
transcript.pyannote[1112].end 9621.09284375
transcript.pyannote[1113].speaker SPEAKER_20
transcript.pyannote[1113].start 9621.09284375
transcript.pyannote[1113].end 9621.12659375
transcript.pyannote[1114].speaker SPEAKER_04
transcript.pyannote[1114].start 9621.12659375
transcript.pyannote[1114].end 9626.66159375
transcript.pyannote[1115].speaker SPEAKER_18
transcript.pyannote[1115].start 9626.96534375
transcript.pyannote[1115].end 9630.61034375
transcript.pyannote[1116].speaker SPEAKER_04
transcript.pyannote[1116].start 9629.54721875
transcript.pyannote[1116].end 9631.87596875
transcript.pyannote[1117].speaker SPEAKER_18
transcript.pyannote[1117].start 9633.05721875
transcript.pyannote[1117].end 9634.12034375
transcript.pyannote[1118].speaker SPEAKER_04
transcript.pyannote[1118].start 9635.43659375
transcript.pyannote[1118].end 9640.04346875
transcript.pyannote[1119].speaker SPEAKER_18
transcript.pyannote[1119].start 9642.05159375
transcript.pyannote[1119].end 9650.35409375
transcript.pyannote[1120].speaker SPEAKER_25
transcript.pyannote[1120].start 9650.69159375
transcript.pyannote[1120].end 9650.82659375
transcript.pyannote[1121].speaker SPEAKER_04
transcript.pyannote[1121].start 9651.48471875
transcript.pyannote[1121].end 9654.03284375
transcript.pyannote[1122].speaker SPEAKER_18
transcript.pyannote[1122].start 9654.03284375
transcript.pyannote[1122].end 9654.04971875
transcript.pyannote[1123].speaker SPEAKER_18
transcript.pyannote[1123].start 9654.06659375
transcript.pyannote[1123].end 9656.15909375
transcript.pyannote[1124].speaker SPEAKER_04
transcript.pyannote[1124].start 9656.07471875
transcript.pyannote[1124].end 9686.61846875
transcript.pyannote[1125].speaker SPEAKER_18
transcript.pyannote[1125].start 9686.61846875
transcript.pyannote[1125].end 9690.28034375
transcript.pyannote[1126].speaker SPEAKER_04
transcript.pyannote[1126].start 9690.28034375
transcript.pyannote[1126].end 9690.80346875
transcript.pyannote[1127].speaker SPEAKER_18
transcript.pyannote[1127].start 9690.80346875
transcript.pyannote[1127].end 9690.90471875
transcript.pyannote[1128].speaker SPEAKER_04
transcript.pyannote[1128].start 9691.17471875
transcript.pyannote[1128].end 9724.87409375
transcript.pyannote[1129].speaker SPEAKER_04
transcript.pyannote[1129].start 9725.36346875
transcript.pyannote[1129].end 9789.35346875
transcript.pyannote[1130].speaker SPEAKER_04
transcript.pyannote[1130].start 9789.45471875
transcript.pyannote[1130].end 9794.51721875
transcript.pyannote[1131].speaker SPEAKER_04
transcript.pyannote[1131].start 9794.88846875
transcript.pyannote[1131].end 9799.30971875
transcript.pyannote[1132].speaker SPEAKER_04
transcript.pyannote[1132].start 9799.56284375
transcript.pyannote[1132].end 9807.47721875
transcript.pyannote[1133].speaker SPEAKER_20
transcript.pyannote[1133].start 9799.68096875
transcript.pyannote[1133].end 9800.11971875
transcript.pyannote[1134].speaker SPEAKER_04
transcript.pyannote[1134].start 9807.91596875
transcript.pyannote[1134].end 9814.19346875
transcript.pyannote[1135].speaker SPEAKER_04
transcript.pyannote[1135].start 9817.43346875
transcript.pyannote[1135].end 9817.88909375
transcript.pyannote[1136].speaker SPEAKER_04
transcript.pyannote[1136].start 9817.97346875
transcript.pyannote[1136].end 9817.99034375
transcript.pyannote[1137].speaker SPEAKER_04
transcript.pyannote[1137].start 9818.39534375
transcript.pyannote[1137].end 9820.77471875
transcript.pyannote[1138].speaker SPEAKER_18
transcript.pyannote[1138].start 9819.52596875
transcript.pyannote[1138].end 9821.56784375
transcript.pyannote[1139].speaker SPEAKER_04
transcript.pyannote[1139].start 9821.56784375
transcript.pyannote[1139].end 9822.20909375
transcript.pyannote[1140].speaker SPEAKER_18
transcript.pyannote[1140].start 9822.20909375
transcript.pyannote[1140].end 9823.60971875
transcript.pyannote[1141].speaker SPEAKER_04
transcript.pyannote[1141].start 9822.47909375
transcript.pyannote[1141].end 9824.43659375
transcript.pyannote[1142].speaker SPEAKER_18
transcript.pyannote[1142].start 9823.99784375
transcript.pyannote[1142].end 9832.24971875
transcript.pyannote[1143].speaker SPEAKER_04
transcript.pyannote[1143].start 9827.44034375
transcript.pyannote[1143].end 9827.71034375
transcript.pyannote[1144].speaker SPEAKER_18
transcript.pyannote[1144].start 9832.48596875
transcript.pyannote[1144].end 9843.97784375
transcript.pyannote[1145].speaker SPEAKER_04
transcript.pyannote[1145].start 9842.07096875
transcript.pyannote[1145].end 9847.45409375
transcript.pyannote[1146].speaker SPEAKER_04
transcript.pyannote[1146].start 9849.00659375
transcript.pyannote[1146].end 9857.61284375
transcript.pyannote[1147].speaker SPEAKER_04
transcript.pyannote[1147].start 9858.35534375
transcript.pyannote[1147].end 9862.23659375
transcript.pyannote[1148].speaker SPEAKER_04
transcript.pyannote[1148].start 9863.04659375
transcript.pyannote[1148].end 9864.73409375
transcript.pyannote[1149].speaker SPEAKER_04
transcript.pyannote[1149].start 9866.11784375
transcript.pyannote[1149].end 9870.11721875
transcript.pyannote[1150].speaker SPEAKER_18
transcript.pyannote[1150].start 9870.11721875
transcript.pyannote[1150].end 9870.18471875
transcript.pyannote[1151].speaker SPEAKER_18
transcript.pyannote[1151].start 9870.28596875
transcript.pyannote[1151].end 9875.75346875
transcript.pyannote[1152].speaker SPEAKER_04
transcript.pyannote[1152].start 9876.56346875
transcript.pyannote[1152].end 9939.42284375
transcript.pyannote[1153].speaker SPEAKER_04
transcript.pyannote[1153].start 9940.03034375
transcript.pyannote[1153].end 9945.46409375
transcript.pyannote[1154].speaker SPEAKER_18
transcript.pyannote[1154].start 9946.51034375
transcript.pyannote[1154].end 9957.98534375
transcript.pyannote[1155].speaker SPEAKER_04
transcript.pyannote[1155].start 9955.33596875
transcript.pyannote[1155].end 9956.06159375
transcript.pyannote[1156].speaker SPEAKER_04
transcript.pyannote[1156].start 9956.16284375
transcript.pyannote[1156].end 9956.19659375
transcript.pyannote[1157].speaker SPEAKER_04
transcript.pyannote[1157].start 9956.66909375
transcript.pyannote[1157].end 9957.00659375
transcript.pyannote[1158].speaker SPEAKER_04
transcript.pyannote[1158].start 9957.83346875
transcript.pyannote[1158].end 9966.42284375
transcript.pyannote[1159].speaker SPEAKER_18
transcript.pyannote[1159].start 9966.42284375
transcript.pyannote[1159].end 9998.80596875
transcript.pyannote[1160].speaker SPEAKER_00
transcript.pyannote[1160].start 9982.30221875
transcript.pyannote[1160].end 9982.33596875
transcript.pyannote[1161].speaker SPEAKER_20
transcript.pyannote[1161].start 9982.33596875
transcript.pyannote[1161].end 9982.60596875
transcript.pyannote[1162].speaker SPEAKER_00
transcript.pyannote[1162].start 9982.60596875
transcript.pyannote[1162].end 9982.70721875
transcript.pyannote[1163].speaker SPEAKER_04
transcript.pyannote[1163].start 9998.43471875
transcript.pyannote[1163].end 9999.10971875
transcript.pyannote[1164].speaker SPEAKER_04
transcript.pyannote[1164].start 9999.12659375
transcript.pyannote[1164].end 10031.94846875
transcript.pyannote[1165].speaker SPEAKER_00
transcript.pyannote[1165].start 10026.09284375
transcript.pyannote[1165].end 10026.17721875
transcript.pyannote[1166].speaker SPEAKER_20
transcript.pyannote[1166].start 10026.17721875
transcript.pyannote[1166].end 10026.32909375
transcript.pyannote[1167].speaker SPEAKER_04
transcript.pyannote[1167].start 10032.16784375
transcript.pyannote[1167].end 10048.97534375
transcript.pyannote[1168].speaker SPEAKER_20
transcript.pyannote[1168].start 10048.97534375
transcript.pyannote[1168].end 10049.22846875
transcript.pyannote[1169].speaker SPEAKER_04
transcript.pyannote[1169].start 10049.21159375
transcript.pyannote[1169].end 10076.36346875
transcript.pyannote[1170].speaker SPEAKER_04
transcript.pyannote[1170].start 10076.76846875
transcript.pyannote[1170].end 10082.37096875
transcript.pyannote[1171].speaker SPEAKER_04
transcript.pyannote[1171].start 10082.67471875
transcript.pyannote[1171].end 10089.72846875
transcript.pyannote[1172].speaker SPEAKER_18
transcript.pyannote[1172].start 10090.35284375
transcript.pyannote[1172].end 10092.41159375
transcript.pyannote[1173].speaker SPEAKER_04
transcript.pyannote[1173].start 10092.56346875
transcript.pyannote[1173].end 10093.10346875
transcript.pyannote[1174].speaker SPEAKER_04
transcript.pyannote[1174].start 10093.39034375
transcript.pyannote[1174].end 10094.48721875
transcript.pyannote[1175].speaker SPEAKER_04
transcript.pyannote[1175].start 10094.97659375
transcript.pyannote[1175].end 10100.54534375
transcript.pyannote[1176].speaker SPEAKER_04
transcript.pyannote[1176].start 10101.59159375
transcript.pyannote[1176].end 10113.70784375
transcript.pyannote[1177].speaker SPEAKER_04
transcript.pyannote[1177].start 10114.38284375
transcript.pyannote[1177].end 10117.72409375
transcript.pyannote[1178].speaker SPEAKER_04
transcript.pyannote[1178].start 10118.33159375
transcript.pyannote[1178].end 10119.95159375
transcript.pyannote[1179].speaker SPEAKER_19
transcript.pyannote[1179].start 10119.63096875
transcript.pyannote[1179].end 10131.66284375
transcript.pyannote[1180].speaker SPEAKER_04
transcript.pyannote[1180].start 10125.52034375
transcript.pyannote[1180].end 10125.97596875
transcript.pyannote[1181].speaker SPEAKER_19
transcript.pyannote[1181].start 10132.74284375
transcript.pyannote[1181].end 10134.02534375
transcript.pyannote[1182].speaker SPEAKER_04
transcript.pyannote[1182].start 10134.02534375
transcript.pyannote[1182].end 10138.88534375
transcript.pyannote[1183].speaker SPEAKER_04
transcript.pyannote[1183].start 10139.22284375
transcript.pyannote[1183].end 10169.58096875
transcript.pyannote[1184].speaker SPEAKER_04
transcript.pyannote[1184].start 10169.68221875
transcript.pyannote[1184].end 10188.90284375
transcript.pyannote[1185].speaker SPEAKER_04
transcript.pyannote[1185].start 10189.84784375
transcript.pyannote[1185].end 10194.40409375
transcript.pyannote[1186].speaker SPEAKER_04
transcript.pyannote[1186].start 10195.18034375
transcript.pyannote[1186].end 10203.26346875
transcript.pyannote[1187].speaker SPEAKER_04
transcript.pyannote[1187].start 10203.38159375
transcript.pyannote[1187].end 10218.31596875
transcript.pyannote[1188].speaker SPEAKER_04
transcript.pyannote[1188].start 10218.75471875
transcript.pyannote[1188].end 10229.28471875
transcript.pyannote[1189].speaker SPEAKER_04
transcript.pyannote[1189].start 10229.67284375
transcript.pyannote[1189].end 10231.27596875
transcript.pyannote[1190].speaker SPEAKER_04
transcript.pyannote[1190].start 10232.77784375
transcript.pyannote[1190].end 10234.12784375
transcript.pyannote[1191].speaker SPEAKER_04
transcript.pyannote[1191].start 10234.78596875
transcript.pyannote[1191].end 10235.52846875
transcript.pyannote[1192].speaker SPEAKER_04
transcript.pyannote[1192].start 10236.10221875
transcript.pyannote[1192].end 10237.31721875
transcript.pyannote[1193].speaker SPEAKER_04
transcript.pyannote[1193].start 10237.85721875
transcript.pyannote[1193].end 10238.97096875
transcript.pyannote[1194].speaker SPEAKER_04
transcript.pyannote[1194].start 10239.74721875
transcript.pyannote[1194].end 10246.51409375
transcript.pyannote[1195].speaker SPEAKER_04
transcript.pyannote[1195].start 10246.69971875
transcript.pyannote[1195].end 10256.92596875
transcript.pyannote[1196].speaker SPEAKER_18
transcript.pyannote[1196].start 10258.00596875
transcript.pyannote[1196].end 10258.57971875
transcript.pyannote[1197].speaker SPEAKER_04
transcript.pyannote[1197].start 10258.15784375
transcript.pyannote[1197].end 10259.05221875
transcript.pyannote[1198].speaker SPEAKER_18
transcript.pyannote[1198].start 10259.05221875
transcript.pyannote[1198].end 10264.95846875
transcript.pyannote[1199].speaker SPEAKER_04
transcript.pyannote[1199].start 10259.10284375
transcript.pyannote[1199].end 10259.42346875
transcript.pyannote[1200].speaker SPEAKER_04
transcript.pyannote[1200].start 10264.89096875
transcript.pyannote[1200].end 10266.17346875
transcript.pyannote[1201].speaker SPEAKER_18
transcript.pyannote[1201].start 10265.19471875
transcript.pyannote[1201].end 10267.65846875
transcript.pyannote[1202].speaker SPEAKER_04
transcript.pyannote[1202].start 10267.28721875
transcript.pyannote[1202].end 10271.05034375
transcript.pyannote[1203].speaker SPEAKER_18
transcript.pyannote[1203].start 10267.96221875
transcript.pyannote[1203].end 10269.00846875
transcript.pyannote[1204].speaker SPEAKER_18
transcript.pyannote[1204].start 10270.45971875
transcript.pyannote[1204].end 10280.88846875
transcript.pyannote[1205].speaker SPEAKER_04
transcript.pyannote[1205].start 10280.88846875
transcript.pyannote[1205].end 10285.29284375
transcript.pyannote[1206].speaker SPEAKER_18
transcript.pyannote[1206].start 10285.29284375
transcript.pyannote[1206].end 10287.75659375
transcript.pyannote[1207].speaker SPEAKER_04
transcript.pyannote[1207].start 10287.75659375
transcript.pyannote[1207].end 10292.05971875
transcript.pyannote[1208].speaker SPEAKER_18
transcript.pyannote[1208].start 10292.05971875
transcript.pyannote[1208].end 10292.36346875
transcript.pyannote[1209].speaker SPEAKER_04
transcript.pyannote[1209].start 10292.36346875
transcript.pyannote[1209].end 10292.41409375
transcript.pyannote[1210].speaker SPEAKER_18
transcript.pyannote[1210].start 10292.41409375
transcript.pyannote[1210].end 10292.49846875
transcript.pyannote[1211].speaker SPEAKER_04
transcript.pyannote[1211].start 10292.49846875
transcript.pyannote[1211].end 10292.53221875
transcript.pyannote[1212].speaker SPEAKER_18
transcript.pyannote[1212].start 10292.53221875
transcript.pyannote[1212].end 10295.89034375
transcript.pyannote[1213].speaker SPEAKER_04
transcript.pyannote[1213].start 10293.42659375
transcript.pyannote[1213].end 10295.53596875
transcript.pyannote[1214].speaker SPEAKER_04
transcript.pyannote[1214].start 10295.65409375
transcript.pyannote[1214].end 10312.79909375
transcript.pyannote[1215].speaker SPEAKER_20
transcript.pyannote[1215].start 10295.89034375
transcript.pyannote[1215].end 10295.92409375
transcript.pyannote[1216].speaker SPEAKER_04
transcript.pyannote[1216].start 10312.96784375
transcript.pyannote[1216].end 10329.69096875
transcript.pyannote[1217].speaker SPEAKER_04
transcript.pyannote[1217].start 10331.09159375
transcript.pyannote[1217].end 10344.54096875
transcript.pyannote[1218].speaker SPEAKER_04
transcript.pyannote[1218].start 10344.97971875
transcript.pyannote[1218].end 10351.91534375
transcript.pyannote[1219].speaker SPEAKER_04
transcript.pyannote[1219].start 10352.64096875
transcript.pyannote[1219].end 10353.48471875
transcript.pyannote[1220].speaker SPEAKER_04
transcript.pyannote[1220].start 10354.00784375
transcript.pyannote[1220].end 10363.22159375
transcript.pyannote[1221].speaker SPEAKER_04
transcript.pyannote[1221].start 10363.84596875
transcript.pyannote[1221].end 10364.87534375
transcript.pyannote[1222].speaker SPEAKER_18
transcript.pyannote[1222].start 10367.01846875
transcript.pyannote[1222].end 10368.97596875
transcript.pyannote[1223].speaker SPEAKER_18
transcript.pyannote[1223].start 10369.58346875
transcript.pyannote[1223].end 10382.27346875
transcript.pyannote[1224].speaker SPEAKER_04
transcript.pyannote[1224].start 10382.22284375
transcript.pyannote[1224].end 10384.99034375
transcript.pyannote[1225].speaker SPEAKER_18
transcript.pyannote[1225].start 10384.66971875
transcript.pyannote[1225].end 10386.15471875
transcript.pyannote[1226].speaker SPEAKER_04
transcript.pyannote[1226].start 10385.80034375
transcript.pyannote[1226].end 10386.25596875
transcript.pyannote[1227].speaker SPEAKER_18
transcript.pyannote[1227].start 10386.25596875
transcript.pyannote[1227].end 10386.27284375
transcript.pyannote[1228].speaker SPEAKER_04
transcript.pyannote[1228].start 10386.27284375
transcript.pyannote[1228].end 10451.51159375
transcript.pyannote[1229].speaker SPEAKER_04
transcript.pyannote[1229].start 10452.08534375
transcript.pyannote[1229].end 10454.16096875
transcript.pyannote[1230].speaker SPEAKER_18
transcript.pyannote[1230].start 10456.21971875
transcript.pyannote[1230].end 10464.57284375
transcript.pyannote[1231].speaker SPEAKER_04
transcript.pyannote[1231].start 10462.80096875
transcript.pyannote[1231].end 10468.40346875
transcript.pyannote[1232].speaker SPEAKER_04
transcript.pyannote[1232].start 10468.63971875
transcript.pyannote[1232].end 10470.79971875
transcript.pyannote[1233].speaker SPEAKER_04
transcript.pyannote[1233].start 10471.13721875
transcript.pyannote[1233].end 10473.17909375
transcript.pyannote[1234].speaker SPEAKER_04
transcript.pyannote[1234].start 10473.39846875
transcript.pyannote[1234].end 10489.63221875
transcript.pyannote[1235].speaker SPEAKER_04
transcript.pyannote[1235].start 10490.50971875
transcript.pyannote[1235].end 10496.04471875
transcript.pyannote[1236].speaker SPEAKER_04
transcript.pyannote[1236].start 10496.38221875
transcript.pyannote[1236].end 10511.16471875
transcript.pyannote[1237].speaker SPEAKER_10
transcript.pyannote[1237].start 10511.26596875
transcript.pyannote[1237].end 10517.20596875
transcript.pyannote[1238].speaker SPEAKER_10
transcript.pyannote[1238].start 10517.61096875
transcript.pyannote[1238].end 10519.90596875
transcript.pyannote[1239].speaker SPEAKER_26
transcript.pyannote[1239].start 10529.82846875
transcript.pyannote[1239].end 10532.64659375
transcript.pyannote[1240].speaker SPEAKER_10
transcript.pyannote[1240].start 10532.86596875
transcript.pyannote[1240].end 10533.81096875
transcript.pyannote[1241].speaker SPEAKER_26
transcript.pyannote[1241].start 10538.26596875
transcript.pyannote[1241].end 10539.02534375
transcript.pyannote[1242].speaker SPEAKER_26
transcript.pyannote[1242].start 10539.29534375
transcript.pyannote[1242].end 10539.44721875
transcript.pyannote[1243].speaker SPEAKER_26
transcript.pyannote[1243].start 10539.63284375
transcript.pyannote[1243].end 10583.08596875
transcript.pyannote[1244].speaker SPEAKER_20
transcript.pyannote[1244].start 10557.57096875
transcript.pyannote[1244].end 10557.58784375
transcript.pyannote[1245].speaker SPEAKER_26
transcript.pyannote[1245].start 10583.32221875
transcript.pyannote[1245].end 10631.60159375
transcript.pyannote[1246].speaker SPEAKER_20
transcript.pyannote[1246].start 10622.57346875
transcript.pyannote[1246].end 10622.87721875
transcript.pyannote[1247].speaker SPEAKER_26
transcript.pyannote[1247].start 10631.93909375
transcript.pyannote[1247].end 10637.13659375
transcript.pyannote[1248].speaker SPEAKER_26
transcript.pyannote[1248].start 10637.30534375
transcript.pyannote[1248].end 10639.19534375
transcript.pyannote[1249].speaker SPEAKER_26
transcript.pyannote[1249].start 10640.00534375
transcript.pyannote[1249].end 10641.82784375
transcript.pyannote[1250].speaker SPEAKER_26
transcript.pyannote[1250].start 10641.96284375
transcript.pyannote[1250].end 10644.69659375
transcript.pyannote[1251].speaker SPEAKER_26
transcript.pyannote[1251].start 10645.43909375
transcript.pyannote[1251].end 10649.45534375
transcript.pyannote[1252].speaker SPEAKER_26
transcript.pyannote[1252].start 10649.97846875
transcript.pyannote[1252].end 10653.03284375
transcript.pyannote[1253].speaker SPEAKER_26
transcript.pyannote[1253].start 10653.77534375
transcript.pyannote[1253].end 10676.64096875
transcript.pyannote[1254].speaker SPEAKER_26
transcript.pyannote[1254].start 10677.34971875
transcript.pyannote[1254].end 10683.44159375
transcript.pyannote[1255].speaker SPEAKER_27
transcript.pyannote[1255].start 10685.68596875
transcript.pyannote[1255].end 10726.28721875
transcript.pyannote[1256].speaker SPEAKER_26
transcript.pyannote[1256].start 10726.15221875
transcript.pyannote[1256].end 10751.73471875
transcript.pyannote[1257].speaker SPEAKER_26
transcript.pyannote[1257].start 10752.07221875
transcript.pyannote[1257].end 10754.18159375
transcript.pyannote[1258].speaker SPEAKER_26
transcript.pyannote[1258].start 10754.51909375
transcript.pyannote[1258].end 10758.82221875
transcript.pyannote[1259].speaker SPEAKER_26
transcript.pyannote[1259].start 10759.07534375
transcript.pyannote[1259].end 10778.85284375
transcript.pyannote[1260].speaker SPEAKER_26
transcript.pyannote[1260].start 10779.39284375
transcript.pyannote[1260].end 10786.21034375
transcript.pyannote[1261].speaker SPEAKER_26
transcript.pyannote[1261].start 10786.44659375
transcript.pyannote[1261].end 10789.63596875
transcript.pyannote[1262].speaker SPEAKER_18
transcript.pyannote[1262].start 10789.77096875
transcript.pyannote[1262].end 10799.01846875
transcript.pyannote[1263].speaker SPEAKER_26
transcript.pyannote[1263].start 10789.82159375
transcript.pyannote[1263].end 10789.83846875
transcript.pyannote[1264].speaker SPEAKER_26
transcript.pyannote[1264].start 10789.93971875
transcript.pyannote[1264].end 10789.97346875
transcript.pyannote[1265].speaker SPEAKER_18
transcript.pyannote[1265].start 10799.45721875
transcript.pyannote[1265].end 10815.62346875
transcript.pyannote[1266].speaker SPEAKER_18
transcript.pyannote[1266].start 10816.14659375
transcript.pyannote[1266].end 10896.89346875
transcript.pyannote[1267].speaker SPEAKER_26
transcript.pyannote[1267].start 10896.89346875
transcript.pyannote[1267].end 10897.26471875
transcript.pyannote[1268].speaker SPEAKER_26
transcript.pyannote[1268].start 10897.65284375
transcript.pyannote[1268].end 10973.01659375
transcript.pyannote[1269].speaker SPEAKER_26
transcript.pyannote[1269].start 10973.43846875
transcript.pyannote[1269].end 10985.35221875
transcript.pyannote[1270].speaker SPEAKER_14
transcript.pyannote[1270].start 10987.44471875
transcript.pyannote[1270].end 11019.22034375
transcript.pyannote[1271].speaker SPEAKER_26
transcript.pyannote[1271].start 11020.18221875
transcript.pyannote[1271].end 11024.46846875
transcript.pyannote[1272].speaker SPEAKER_26
transcript.pyannote[1272].start 11025.49784375
transcript.pyannote[1272].end 11056.54784375
transcript.pyannote[1273].speaker SPEAKER_26
transcript.pyannote[1273].start 11056.95284375
transcript.pyannote[1273].end 11078.40096875
transcript.pyannote[1274].speaker SPEAKER_26
transcript.pyannote[1274].start 11078.90721875
transcript.pyannote[1274].end 11140.21409375
transcript.pyannote[1275].speaker SPEAKER_26
transcript.pyannote[1275].start 11140.53471875
transcript.pyannote[1275].end 11155.16534375
transcript.pyannote[1276].speaker SPEAKER_18
transcript.pyannote[1276].start 11155.24971875
transcript.pyannote[1276].end 11165.98221875
transcript.pyannote[1277].speaker SPEAKER_18
transcript.pyannote[1277].start 11166.20159375
transcript.pyannote[1277].end 11168.78346875
transcript.pyannote[1278].speaker SPEAKER_18
transcript.pyannote[1278].start 11169.03659375
transcript.pyannote[1278].end 11212.15221875
transcript.pyannote[1279].speaker SPEAKER_26
transcript.pyannote[1279].start 11209.46909375
transcript.pyannote[1279].end 11209.68846875
transcript.pyannote[1280].speaker SPEAKER_26
transcript.pyannote[1280].start 11212.15221875
transcript.pyannote[1280].end 11227.79534375
transcript.pyannote[1281].speaker SPEAKER_10
transcript.pyannote[1281].start 11230.20846875
transcript.pyannote[1281].end 11231.03534375
transcript.pyannote[1282].speaker SPEAKER_10
transcript.pyannote[1282].start 11231.05221875
transcript.pyannote[1282].end 11231.94659375
transcript.pyannote[1283].speaker SPEAKER_10
transcript.pyannote[1283].start 11232.43596875
transcript.pyannote[1283].end 11233.21221875
transcript.pyannote[1284].speaker SPEAKER_10
transcript.pyannote[1284].start 11233.83659375
transcript.pyannote[1284].end 11235.33846875
transcript.pyannote[1285].speaker SPEAKER_15
transcript.pyannote[1285].start 11244.23159375
transcript.pyannote[1285].end 11248.83846875
transcript.pyannote[1286].speaker SPEAKER_15
transcript.pyannote[1286].start 11249.63159375
transcript.pyannote[1286].end 11249.64846875
transcript.pyannote[1287].speaker SPEAKER_10
transcript.pyannote[1287].start 11249.64846875
transcript.pyannote[1287].end 11251.30221875
transcript.pyannote[1288].speaker SPEAKER_15
transcript.pyannote[1288].start 11251.30221875
transcript.pyannote[1288].end 11251.35284375
transcript.pyannote[1289].speaker SPEAKER_15
transcript.pyannote[1289].start 11256.82034375
transcript.pyannote[1289].end 11257.47846875
transcript.pyannote[1290].speaker SPEAKER_15
transcript.pyannote[1290].start 11257.78221875
transcript.pyannote[1290].end 11258.86221875
transcript.pyannote[1291].speaker SPEAKER_15
transcript.pyannote[1291].start 11258.94659375
transcript.pyannote[1291].end 11264.11034375
transcript.pyannote[1292].speaker SPEAKER_15
transcript.pyannote[1292].start 11267.73846875
transcript.pyannote[1292].end 11267.78909375
transcript.pyannote[1293].speaker SPEAKER_27
transcript.pyannote[1293].start 11267.78909375
transcript.pyannote[1293].end 11268.41346875
transcript.pyannote[1294].speaker SPEAKER_15
transcript.pyannote[1294].start 11267.90721875
transcript.pyannote[1294].end 11268.81846875
transcript.pyannote[1295].speaker SPEAKER_27
transcript.pyannote[1295].start 11268.81846875
transcript.pyannote[1295].end 11271.60284375
transcript.pyannote[1296].speaker SPEAKER_15
transcript.pyannote[1296].start 11269.44284375
transcript.pyannote[1296].end 11270.37096875
transcript.pyannote[1297].speaker SPEAKER_15
transcript.pyannote[1297].start 11271.88971875
transcript.pyannote[1297].end 11272.63221875
transcript.pyannote[1298].speaker SPEAKER_15
transcript.pyannote[1298].start 11272.93596875
transcript.pyannote[1298].end 11286.41909375
transcript.pyannote[1299].speaker SPEAKER_27
transcript.pyannote[1299].start 11274.33659375
transcript.pyannote[1299].end 11274.84284375
transcript.pyannote[1300].speaker SPEAKER_15
transcript.pyannote[1300].start 11287.06034375
transcript.pyannote[1300].end 11299.53096875
transcript.pyannote[1301].speaker SPEAKER_15
transcript.pyannote[1301].start 11299.69971875
transcript.pyannote[1301].end 11312.99721875
transcript.pyannote[1302].speaker SPEAKER_15
transcript.pyannote[1302].start 11313.30096875
transcript.pyannote[1302].end 11325.36659375
transcript.pyannote[1303].speaker SPEAKER_15
transcript.pyannote[1303].start 11325.67034375
transcript.pyannote[1303].end 11338.25909375
transcript.pyannote[1304].speaker SPEAKER_15
transcript.pyannote[1304].start 11338.37721875
transcript.pyannote[1304].end 11338.83284375
transcript.pyannote[1305].speaker SPEAKER_15
transcript.pyannote[1305].start 11338.96784375
transcript.pyannote[1305].end 11338.98471875
transcript.pyannote[1306].speaker SPEAKER_15
transcript.pyannote[1306].start 11339.03534375
transcript.pyannote[1306].end 11351.86034375
transcript.pyannote[1307].speaker SPEAKER_18
transcript.pyannote[1307].start 11353.88534375
transcript.pyannote[1307].end 11371.33409375
transcript.pyannote[1308].speaker SPEAKER_26
transcript.pyannote[1308].start 11364.82034375
transcript.pyannote[1308].end 11364.83721875
transcript.pyannote[1309].speaker SPEAKER_15
transcript.pyannote[1309].start 11364.83721875
transcript.pyannote[1309].end 11365.19159375
transcript.pyannote[1310].speaker SPEAKER_15
transcript.pyannote[1310].start 11366.52471875
transcript.pyannote[1310].end 11367.30096875
transcript.pyannote[1311].speaker SPEAKER_15
transcript.pyannote[1311].start 11368.12784375
transcript.pyannote[1311].end 11369.25846875
transcript.pyannote[1312].speaker SPEAKER_15
transcript.pyannote[1312].start 11370.70971875
transcript.pyannote[1312].end 11373.83159375
transcript.pyannote[1313].speaker SPEAKER_18
transcript.pyannote[1313].start 11373.37596875
transcript.pyannote[1313].end 11373.74721875
transcript.pyannote[1314].speaker SPEAKER_15
transcript.pyannote[1314].start 11374.11846875
transcript.pyannote[1314].end 11378.92784375
transcript.pyannote[1315].speaker SPEAKER_18
transcript.pyannote[1315].start 11377.18971875
transcript.pyannote[1315].end 11386.60596875
transcript.pyannote[1316].speaker SPEAKER_15
transcript.pyannote[1316].start 11379.38346875
transcript.pyannote[1316].end 11380.17659375
transcript.pyannote[1317].speaker SPEAKER_15
transcript.pyannote[1317].start 11385.64409375
transcript.pyannote[1317].end 11436.03284375
transcript.pyannote[1318].speaker SPEAKER_18
transcript.pyannote[1318].start 11388.00659375
transcript.pyannote[1318].end 11388.29346875
transcript.pyannote[1319].speaker SPEAKER_18
transcript.pyannote[1319].start 11393.94659375
transcript.pyannote[1319].end 11394.04784375
transcript.pyannote[1320].speaker SPEAKER_00
transcript.pyannote[1320].start 11394.04784375
transcript.pyannote[1320].end 11394.21659375
transcript.pyannote[1321].speaker SPEAKER_18
transcript.pyannote[1321].start 11436.03284375
transcript.pyannote[1321].end 11454.20721875
transcript.pyannote[1322].speaker SPEAKER_25
transcript.pyannote[1322].start 11453.65034375
transcript.pyannote[1322].end 11454.12284375
transcript.pyannote[1323].speaker SPEAKER_25
transcript.pyannote[1323].start 11454.20721875
transcript.pyannote[1323].end 11454.57846875
transcript.pyannote[1324].speaker SPEAKER_18
transcript.pyannote[1324].start 11454.57846875
transcript.pyannote[1324].end 11461.69971875
transcript.pyannote[1325].speaker SPEAKER_25
transcript.pyannote[1325].start 11458.81409375
transcript.pyannote[1325].end 11461.21034375
transcript.pyannote[1326].speaker SPEAKER_13
transcript.pyannote[1326].start 11461.21034375
transcript.pyannote[1326].end 11461.24409375
transcript.pyannote[1327].speaker SPEAKER_10
transcript.pyannote[1327].start 11461.24409375
transcript.pyannote[1327].end 11461.26096875
transcript.pyannote[1328].speaker SPEAKER_15
transcript.pyannote[1328].start 11461.26096875
transcript.pyannote[1328].end 11461.27784375
transcript.pyannote[1329].speaker SPEAKER_18
transcript.pyannote[1329].start 11462.02034375
transcript.pyannote[1329].end 11472.36471875
transcript.pyannote[1330].speaker SPEAKER_00
transcript.pyannote[1330].start 11464.19721875
transcript.pyannote[1330].end 11464.21409375
transcript.pyannote[1331].speaker SPEAKER_10
transcript.pyannote[1331].start 11464.21409375
transcript.pyannote[1331].end 11464.23096875
transcript.pyannote[1332].speaker SPEAKER_20
transcript.pyannote[1332].start 11464.23096875
transcript.pyannote[1332].end 11465.29409375
transcript.pyannote[1333].speaker SPEAKER_20
transcript.pyannote[1333].start 11466.13784375
transcript.pyannote[1333].end 11466.59346875
transcript.pyannote[1334].speaker SPEAKER_20
transcript.pyannote[1334].start 11466.62721875
transcript.pyannote[1334].end 11467.31909375
transcript.pyannote[1335].speaker SPEAKER_15
transcript.pyannote[1335].start 11467.31909375
transcript.pyannote[1335].end 11467.33596875
transcript.pyannote[1336].speaker SPEAKER_18
transcript.pyannote[1336].start 11472.75284375
transcript.pyannote[1336].end 11481.12284375
transcript.pyannote[1337].speaker SPEAKER_15
transcript.pyannote[1337].start 11476.49909375
transcript.pyannote[1337].end 11476.63409375
transcript.pyannote[1338].speaker SPEAKER_15
transcript.pyannote[1338].start 11481.12284375
transcript.pyannote[1338].end 11490.55596875
transcript.pyannote[1339].speaker SPEAKER_15
transcript.pyannote[1339].start 11490.82596875
transcript.pyannote[1339].end 11491.68659375
transcript.pyannote[1340].speaker SPEAKER_15
transcript.pyannote[1340].start 11492.34471875
transcript.pyannote[1340].end 11492.63159375
transcript.pyannote[1341].speaker SPEAKER_15
transcript.pyannote[1341].start 11493.01971875
transcript.pyannote[1341].end 11498.08221875
transcript.pyannote[1342].speaker SPEAKER_17
transcript.pyannote[1342].start 11493.71159375
transcript.pyannote[1342].end 11493.88034375
transcript.pyannote[1343].speaker SPEAKER_17
transcript.pyannote[1343].start 11494.82534375
transcript.pyannote[1343].end 11495.97284375
transcript.pyannote[1344].speaker SPEAKER_20
transcript.pyannote[1344].start 11495.97284375
transcript.pyannote[1344].end 11496.00659375
transcript.pyannote[1345].speaker SPEAKER_20
transcript.pyannote[1345].start 11497.27221875
transcript.pyannote[1345].end 11497.42409375
transcript.pyannote[1346].speaker SPEAKER_25
transcript.pyannote[1346].start 11497.42409375
transcript.pyannote[1346].end 11498.01471875
transcript.pyannote[1347].speaker SPEAKER_20
transcript.pyannote[1347].start 11498.01471875
transcript.pyannote[1347].end 11498.03159375
transcript.pyannote[1348].speaker SPEAKER_15
transcript.pyannote[1348].start 11498.53784375
transcript.pyannote[1348].end 11505.67596875
transcript.pyannote[1349].speaker SPEAKER_15
transcript.pyannote[1349].start 11505.89534375
transcript.pyannote[1349].end 11506.43534375
transcript.pyannote[1350].speaker SPEAKER_15
transcript.pyannote[1350].start 11507.21159375
transcript.pyannote[1350].end 11517.65721875
transcript.pyannote[1351].speaker SPEAKER_06
transcript.pyannote[1351].start 11519.05784375
transcript.pyannote[1351].end 11522.93909375
transcript.pyannote[1352].speaker SPEAKER_20
transcript.pyannote[1352].start 11522.88846875
transcript.pyannote[1352].end 11523.20909375
transcript.pyannote[1353].speaker SPEAKER_06
transcript.pyannote[1353].start 11523.15846875
transcript.pyannote[1353].end 11532.32159375
transcript.pyannote[1354].speaker SPEAKER_15
transcript.pyannote[1354].start 11532.11909375
transcript.pyannote[1354].end 11535.39284375
transcript.pyannote[1355].speaker SPEAKER_06
transcript.pyannote[1355].start 11533.24971875
transcript.pyannote[1355].end 11534.05971875
transcript.pyannote[1356].speaker SPEAKER_06
transcript.pyannote[1356].start 11535.34221875
transcript.pyannote[1356].end 11535.37596875
transcript.pyannote[1357].speaker SPEAKER_06
transcript.pyannote[1357].start 11535.39284375
transcript.pyannote[1357].end 11535.74721875
transcript.pyannote[1358].speaker SPEAKER_15
transcript.pyannote[1358].start 11535.74721875
transcript.pyannote[1358].end 11558.56221875
transcript.pyannote[1359].speaker SPEAKER_15
transcript.pyannote[1359].start 11559.08534375
transcript.pyannote[1359].end 11582.76096875
transcript.pyannote[1360].speaker SPEAKER_06
transcript.pyannote[1360].start 11583.06471875
transcript.pyannote[1360].end 11591.09721875
transcript.pyannote[1361].speaker SPEAKER_15
transcript.pyannote[1361].start 11587.87409375
transcript.pyannote[1361].end 11588.14409375
transcript.pyannote[1362].speaker SPEAKER_06
transcript.pyannote[1362].start 11591.16471875
transcript.pyannote[1362].end 11605.08659375
transcript.pyannote[1363].speaker SPEAKER_00
transcript.pyannote[1363].start 11594.97846875
transcript.pyannote[1363].end 11594.99534375
transcript.pyannote[1364].speaker SPEAKER_15
transcript.pyannote[1364].start 11594.99534375
transcript.pyannote[1364].end 11595.38346875
transcript.pyannote[1365].speaker SPEAKER_00
transcript.pyannote[1365].start 11598.33659375
transcript.pyannote[1365].end 11598.35346875
transcript.pyannote[1366].speaker SPEAKER_15
transcript.pyannote[1366].start 11598.35346875
transcript.pyannote[1366].end 11598.72471875
transcript.pyannote[1367].speaker SPEAKER_15
transcript.pyannote[1367].start 11600.91846875
transcript.pyannote[1367].end 11601.82971875
transcript.pyannote[1368].speaker SPEAKER_15
transcript.pyannote[1368].start 11602.38659375
transcript.pyannote[1368].end 11604.64784375
transcript.pyannote[1369].speaker SPEAKER_15
transcript.pyannote[1369].start 11604.73221875
transcript.pyannote[1369].end 11610.14909375
transcript.pyannote[1370].speaker SPEAKER_15
transcript.pyannote[1370].start 11610.80721875
transcript.pyannote[1370].end 11612.02221875
transcript.pyannote[1371].speaker SPEAKER_10
transcript.pyannote[1371].start 11615.81909375
transcript.pyannote[1371].end 11616.40971875
transcript.pyannote[1372].speaker SPEAKER_10
transcript.pyannote[1372].start 11619.00846875
transcript.pyannote[1372].end 11625.47159375
transcript.pyannote[1373].speaker SPEAKER_10
transcript.pyannote[1373].start 11625.84284375
transcript.pyannote[1373].end 11627.63159375
transcript.pyannote[1374].speaker SPEAKER_17
transcript.pyannote[1374].start 11635.69784375
transcript.pyannote[1374].end 11638.07721875
transcript.pyannote[1375].speaker SPEAKER_10
transcript.pyannote[1375].start 11638.24596875
transcript.pyannote[1375].end 11638.93784375
transcript.pyannote[1376].speaker SPEAKER_17
transcript.pyannote[1376].start 11645.70471875
transcript.pyannote[1376].end 11648.10096875
transcript.pyannote[1377].speaker SPEAKER_17
transcript.pyannote[1377].start 11648.43846875
transcript.pyannote[1377].end 11658.46221875
transcript.pyannote[1378].speaker SPEAKER_17
transcript.pyannote[1378].start 11658.76596875
transcript.pyannote[1378].end 11659.79534375
transcript.pyannote[1379].speaker SPEAKER_18
transcript.pyannote[1379].start 11660.50409375
transcript.pyannote[1379].end 11667.92909375
transcript.pyannote[1380].speaker SPEAKER_17
transcript.pyannote[1380].start 11666.51159375
transcript.pyannote[1380].end 11669.07659375
transcript.pyannote[1381].speaker SPEAKER_18
transcript.pyannote[1381].start 11669.26221875
transcript.pyannote[1381].end 11672.50221875
transcript.pyannote[1382].speaker SPEAKER_17
transcript.pyannote[1382].start 11672.50221875
transcript.pyannote[1382].end 11674.07159375
transcript.pyannote[1383].speaker SPEAKER_17
transcript.pyannote[1383].start 11674.20659375
transcript.pyannote[1383].end 11676.83909375
transcript.pyannote[1384].speaker SPEAKER_18
transcript.pyannote[1384].start 11678.45909375
transcript.pyannote[1384].end 11693.29221875
transcript.pyannote[1385].speaker SPEAKER_17
transcript.pyannote[1385].start 11686.67721875
transcript.pyannote[1385].end 11688.21284375
transcript.pyannote[1386].speaker SPEAKER_17
transcript.pyannote[1386].start 11692.31346875
transcript.pyannote[1386].end 11695.89096875
transcript.pyannote[1387].speaker SPEAKER_18
transcript.pyannote[1387].start 11697.07221875
transcript.pyannote[1387].end 11703.77159375
transcript.pyannote[1388].speaker SPEAKER_17
transcript.pyannote[1388].start 11701.98284375
transcript.pyannote[1388].end 11705.54346875
transcript.pyannote[1389].speaker SPEAKER_17
transcript.pyannote[1389].start 11705.72909375
transcript.pyannote[1389].end 11713.23846875
transcript.pyannote[1390].speaker SPEAKER_17
transcript.pyannote[1390].start 11713.49159375
transcript.pyannote[1390].end 11728.94909375
transcript.pyannote[1391].speaker SPEAKER_17
transcript.pyannote[1391].start 11729.97846875
transcript.pyannote[1391].end 11731.63221875
transcript.pyannote[1392].speaker SPEAKER_17
transcript.pyannote[1392].start 11732.47596875
transcript.pyannote[1392].end 11744.01846875
transcript.pyannote[1393].speaker SPEAKER_17
transcript.pyannote[1393].start 11746.14471875
transcript.pyannote[1393].end 11746.16159375
transcript.pyannote[1394].speaker SPEAKER_18
transcript.pyannote[1394].start 11746.16159375
transcript.pyannote[1394].end 11753.06346875
transcript.pyannote[1395].speaker SPEAKER_18
transcript.pyannote[1395].start 11753.46846875
transcript.pyannote[1395].end 11762.34471875
transcript.pyannote[1396].speaker SPEAKER_17
transcript.pyannote[1396].start 11761.58534375
transcript.pyannote[1396].end 11774.79846875
transcript.pyannote[1397].speaker SPEAKER_18
transcript.pyannote[1397].start 11774.96721875
transcript.pyannote[1397].end 11781.24471875
transcript.pyannote[1398].speaker SPEAKER_17
transcript.pyannote[1398].start 11779.57409375
transcript.pyannote[1398].end 11782.00409375
transcript.pyannote[1399].speaker SPEAKER_18
transcript.pyannote[1399].start 11781.46409375
transcript.pyannote[1399].end 11783.64096875
transcript.pyannote[1400].speaker SPEAKER_17
transcript.pyannote[1400].start 11783.05034375
transcript.pyannote[1400].end 11790.49221875
transcript.pyannote[1401].speaker SPEAKER_17
transcript.pyannote[1401].start 11791.31909375
transcript.pyannote[1401].end 11806.84409375
transcript.pyannote[1402].speaker SPEAKER_17
transcript.pyannote[1402].start 11807.38409375
transcript.pyannote[1402].end 11815.93971875
transcript.pyannote[1403].speaker SPEAKER_18
transcript.pyannote[1403].start 11815.99034375
transcript.pyannote[1403].end 11841.48846875
transcript.pyannote[1404].speaker SPEAKER_17
transcript.pyannote[1404].start 11840.03721875
transcript.pyannote[1404].end 11846.21346875
transcript.pyannote[1405].speaker SPEAKER_17
transcript.pyannote[1405].start 11846.56784375
transcript.pyannote[1405].end 11881.16159375
transcript.pyannote[1406].speaker SPEAKER_17
transcript.pyannote[1406].start 11881.61721875
transcript.pyannote[1406].end 11886.30846875
transcript.pyannote[1407].speaker SPEAKER_17
transcript.pyannote[1407].start 11887.42221875
transcript.pyannote[1407].end 11918.59034375
transcript.pyannote[1408].speaker SPEAKER_17
transcript.pyannote[1408].start 11918.94471875
transcript.pyannote[1408].end 11920.58159375
transcript.pyannote[1409].speaker SPEAKER_17
transcript.pyannote[1409].start 11920.91909375
transcript.pyannote[1409].end 11922.26909375
transcript.pyannote[1410].speaker SPEAKER_17
transcript.pyannote[1410].start 11922.67409375
transcript.pyannote[1410].end 11942.48534375
transcript.pyannote[1411].speaker SPEAKER_18
transcript.pyannote[1411].start 11942.31659375
transcript.pyannote[1411].end 11948.40846875
transcript.pyannote[1412].speaker SPEAKER_25
transcript.pyannote[1412].start 11946.73784375
transcript.pyannote[1412].end 11948.39159375
transcript.pyannote[1413].speaker SPEAKER_25
transcript.pyannote[1413].start 11948.40846875
transcript.pyannote[1413].end 11948.66159375
transcript.pyannote[1414].speaker SPEAKER_25
transcript.pyannote[1414].start 11948.81346875
transcript.pyannote[1414].end 11948.96534375
transcript.pyannote[1415].speaker SPEAKER_18
transcript.pyannote[1415].start 11948.96534375
transcript.pyannote[1415].end 11952.93096875
transcript.pyannote[1416].speaker SPEAKER_18
transcript.pyannote[1416].start 11953.33596875
transcript.pyannote[1416].end 11954.50034375
transcript.pyannote[1417].speaker SPEAKER_18
transcript.pyannote[1417].start 11954.93909375
transcript.pyannote[1417].end 11962.34721875
transcript.pyannote[1418].speaker SPEAKER_17
transcript.pyannote[1418].start 11961.73971875
transcript.pyannote[1418].end 11989.48221875
transcript.pyannote[1419].speaker SPEAKER_18
transcript.pyannote[1419].start 11963.32596875
transcript.pyannote[1419].end 11963.49471875
transcript.pyannote[1420].speaker SPEAKER_18
transcript.pyannote[1420].start 11988.35159375
transcript.pyannote[1420].end 12005.86784375
transcript.pyannote[1421].speaker SPEAKER_17
transcript.pyannote[1421].start 12002.05409375
transcript.pyannote[1421].end 12014.91284375
transcript.pyannote[1422].speaker SPEAKER_18
transcript.pyannote[1422].start 12006.49221875
transcript.pyannote[1422].end 12006.72846875
transcript.pyannote[1423].speaker SPEAKER_18
transcript.pyannote[1423].start 12014.91284375
transcript.pyannote[1423].end 12021.64596875
transcript.pyannote[1424].speaker SPEAKER_18
transcript.pyannote[1424].start 12022.16909375
transcript.pyannote[1424].end 12027.80534375
transcript.pyannote[1425].speaker SPEAKER_18
transcript.pyannote[1425].start 12028.49721875
transcript.pyannote[1425].end 12036.81659375
transcript.pyannote[1426].speaker SPEAKER_17
transcript.pyannote[1426].start 12035.51721875
transcript.pyannote[1426].end 12054.97409375
transcript.pyannote[1427].speaker SPEAKER_18
transcript.pyannote[1427].start 12037.62659375
transcript.pyannote[1427].end 12040.49534375
transcript.pyannote[1428].speaker SPEAKER_18
transcript.pyannote[1428].start 12051.10971875
transcript.pyannote[1428].end 12051.51471875
transcript.pyannote[1429].speaker SPEAKER_18
transcript.pyannote[1429].start 12054.97409375
transcript.pyannote[1429].end 12057.18471875
transcript.pyannote[1430].speaker SPEAKER_18
transcript.pyannote[1430].start 12057.50534375
transcript.pyannote[1430].end 12058.90596875
transcript.pyannote[1431].speaker SPEAKER_18
transcript.pyannote[1431].start 12059.73284375
transcript.pyannote[1431].end 12063.68159375
transcript.pyannote[1432].speaker SPEAKER_18
transcript.pyannote[1432].start 12064.67721875
transcript.pyannote[1432].end 12088.67346875
transcript.pyannote[1433].speaker SPEAKER_00
transcript.pyannote[1433].start 12080.59034375
transcript.pyannote[1433].end 12080.60721875
transcript.pyannote[1434].speaker SPEAKER_17
transcript.pyannote[1434].start 12080.60721875
transcript.pyannote[1434].end 12081.45096875
transcript.pyannote[1435].speaker SPEAKER_00
transcript.pyannote[1435].start 12081.45096875
transcript.pyannote[1435].end 12081.50159375
transcript.pyannote[1436].speaker SPEAKER_17
transcript.pyannote[1436].start 12087.00284375
transcript.pyannote[1436].end 12093.95534375
transcript.pyannote[1437].speaker SPEAKER_18
transcript.pyannote[1437].start 12090.10784375
transcript.pyannote[1437].end 12090.83346875
transcript.pyannote[1438].speaker SPEAKER_18
transcript.pyannote[1438].start 12092.92596875
transcript.pyannote[1438].end 12098.47784375
transcript.pyannote[1439].speaker SPEAKER_17
transcript.pyannote[1439].start 12097.76909375
transcript.pyannote[1439].end 12112.14659375
transcript.pyannote[1440].speaker SPEAKER_18
transcript.pyannote[1440].start 12112.14659375
transcript.pyannote[1440].end 12112.16346875
transcript.pyannote[1441].speaker SPEAKER_17
transcript.pyannote[1441].start 12112.39971875
transcript.pyannote[1441].end 12112.97346875
transcript.pyannote[1442].speaker SPEAKER_18
transcript.pyannote[1442].start 12112.97346875
transcript.pyannote[1442].end 12118.44096875
transcript.pyannote[1443].speaker SPEAKER_18
transcript.pyannote[1443].start 12119.41971875
transcript.pyannote[1443].end 12120.02721875
transcript.pyannote[1444].speaker SPEAKER_17
transcript.pyannote[1444].start 12120.02721875
transcript.pyannote[1444].end 12123.41909375
transcript.pyannote[1445].speaker SPEAKER_18
transcript.pyannote[1445].start 12123.41909375
transcript.pyannote[1445].end 12123.57096875
transcript.pyannote[1446].speaker SPEAKER_17
transcript.pyannote[1446].start 12123.57096875
transcript.pyannote[1446].end 12123.58784375
transcript.pyannote[1447].speaker SPEAKER_18
transcript.pyannote[1447].start 12124.66784375
transcript.pyannote[1447].end 12132.51471875
transcript.pyannote[1448].speaker SPEAKER_25
transcript.pyannote[1448].start 12127.14846875
transcript.pyannote[1448].end 12127.58721875
transcript.pyannote[1449].speaker SPEAKER_25
transcript.pyannote[1449].start 12132.51471875
transcript.pyannote[1449].end 12132.63284375
transcript.pyannote[1450].speaker SPEAKER_18
transcript.pyannote[1450].start 12132.63284375
transcript.pyannote[1450].end 12134.03346875
transcript.pyannote[1451].speaker SPEAKER_17
transcript.pyannote[1451].start 12134.03346875
transcript.pyannote[1451].end 12134.06721875
transcript.pyannote[1452].speaker SPEAKER_25
transcript.pyannote[1452].start 12134.06721875
transcript.pyannote[1452].end 12135.97409375
transcript.pyannote[1453].speaker SPEAKER_18
transcript.pyannote[1453].start 12134.33721875
transcript.pyannote[1453].end 12136.36221875
transcript.pyannote[1454].speaker SPEAKER_17
transcript.pyannote[1454].start 12135.97409375
transcript.pyannote[1454].end 12136.80096875
transcript.pyannote[1455].speaker SPEAKER_18
transcript.pyannote[1455].start 12136.58159375
transcript.pyannote[1455].end 12136.69971875
transcript.pyannote[1456].speaker SPEAKER_18
transcript.pyannote[1456].start 12136.80096875
transcript.pyannote[1456].end 12136.86846875
transcript.pyannote[1457].speaker SPEAKER_17
transcript.pyannote[1457].start 12136.86846875
transcript.pyannote[1457].end 12136.88534375
transcript.pyannote[1458].speaker SPEAKER_18
transcript.pyannote[1458].start 12136.88534375
transcript.pyannote[1458].end 12150.35159375
transcript.pyannote[1459].speaker SPEAKER_17
transcript.pyannote[1459].start 12137.67846875
transcript.pyannote[1459].end 12138.79221875
transcript.pyannote[1460].speaker SPEAKER_17
transcript.pyannote[1460].start 12150.13221875
transcript.pyannote[1460].end 12170.39909375
transcript.pyannote[1461].speaker SPEAKER_17
transcript.pyannote[1461].start 12171.20909375
transcript.pyannote[1461].end 12176.84534375
transcript.pyannote[1462].speaker SPEAKER_17
transcript.pyannote[1462].start 12177.35159375
transcript.pyannote[1462].end 12194.58096875
transcript.pyannote[1463].speaker SPEAKER_17
transcript.pyannote[1463].start 12195.00284375
transcript.pyannote[1463].end 12197.23034375
transcript.pyannote[1464].speaker SPEAKER_18
transcript.pyannote[1464].start 12197.23034375
transcript.pyannote[1464].end 12197.26409375
transcript.pyannote[1465].speaker SPEAKER_17
transcript.pyannote[1465].start 12197.66909375
transcript.pyannote[1465].end 12197.97284375
transcript.pyannote[1466].speaker SPEAKER_18
transcript.pyannote[1466].start 12197.97284375
transcript.pyannote[1466].end 12217.27784375
transcript.pyannote[1467].speaker SPEAKER_17
transcript.pyannote[1467].start 12216.51846875
transcript.pyannote[1467].end 12234.27096875
transcript.pyannote[1468].speaker SPEAKER_18
transcript.pyannote[1468].start 12225.64784375
transcript.pyannote[1468].end 12225.85034375
transcript.pyannote[1469].speaker SPEAKER_18
transcript.pyannote[1469].start 12231.11534375
transcript.pyannote[1469].end 12242.97846875
transcript.pyannote[1470].speaker SPEAKER_17
transcript.pyannote[1470].start 12240.93659375
transcript.pyannote[1470].end 12243.01221875
transcript.pyannote[1471].speaker SPEAKER_18
transcript.pyannote[1471].start 12243.01221875
transcript.pyannote[1471].end 12243.02909375
transcript.pyannote[1472].speaker SPEAKER_17
transcript.pyannote[1472].start 12243.02909375
transcript.pyannote[1472].end 12243.06284375
transcript.pyannote[1473].speaker SPEAKER_18
transcript.pyannote[1473].start 12243.06284375
transcript.pyannote[1473].end 12243.11346875
transcript.pyannote[1474].speaker SPEAKER_17
transcript.pyannote[1474].start 12243.11346875
transcript.pyannote[1474].end 12252.02346875
transcript.pyannote[1475].speaker SPEAKER_18
transcript.pyannote[1475].start 12243.60284375
transcript.pyannote[1475].end 12247.68659375
transcript.pyannote[1476].speaker SPEAKER_18
transcript.pyannote[1476].start 12250.01534375
transcript.pyannote[1476].end 12250.53846875
transcript.pyannote[1477].speaker SPEAKER_18
transcript.pyannote[1477].start 12252.02346875
transcript.pyannote[1477].end 12252.29346875
transcript.pyannote[1478].speaker SPEAKER_17
transcript.pyannote[1478].start 12252.29346875
transcript.pyannote[1478].end 12263.02596875
transcript.pyannote[1479].speaker SPEAKER_18
transcript.pyannote[1479].start 12252.34409375
transcript.pyannote[1479].end 12253.28909375
transcript.pyannote[1480].speaker SPEAKER_18
transcript.pyannote[1480].start 12262.57034375
transcript.pyannote[1480].end 12264.22409375
transcript.pyannote[1481].speaker SPEAKER_17
transcript.pyannote[1481].start 12263.53221875
transcript.pyannote[1481].end 12278.41596875
transcript.pyannote[1482].speaker SPEAKER_06
transcript.pyannote[1482].start 12279.36096875
transcript.pyannote[1482].end 12279.42846875
transcript.pyannote[1483].speaker SPEAKER_06
transcript.pyannote[1483].start 12280.82909375
transcript.pyannote[1483].end 12288.92909375
transcript.pyannote[1484].speaker SPEAKER_17
transcript.pyannote[1484].start 12288.50721875
transcript.pyannote[1484].end 12289.68846875
transcript.pyannote[1485].speaker SPEAKER_06
transcript.pyannote[1485].start 12290.17784375
transcript.pyannote[1485].end 12290.97096875
transcript.pyannote[1486].speaker SPEAKER_17
transcript.pyannote[1486].start 12290.63346875
transcript.pyannote[1486].end 12291.61221875
transcript.pyannote[1487].speaker SPEAKER_06
transcript.pyannote[1487].start 12292.43909375
transcript.pyannote[1487].end 12298.46346875
transcript.pyannote[1488].speaker SPEAKER_17
transcript.pyannote[1488].start 12298.07534375
transcript.pyannote[1488].end 12303.23909375
transcript.pyannote[1489].speaker SPEAKER_06
transcript.pyannote[1489].start 12300.20159375
transcript.pyannote[1489].end 12300.21846875
transcript.pyannote[1490].speaker SPEAKER_06
transcript.pyannote[1490].start 12301.12971875
transcript.pyannote[1490].end 12302.36159375
transcript.pyannote[1491].speaker SPEAKER_06
transcript.pyannote[1491].start 12303.23909375
transcript.pyannote[1491].end 12316.18221875
transcript.pyannote[1492].speaker SPEAKER_17
transcript.pyannote[1492].start 12314.96721875
transcript.pyannote[1492].end 12327.04971875
transcript.pyannote[1493].speaker SPEAKER_06
transcript.pyannote[1493].start 12316.77284375
transcript.pyannote[1493].end 12317.63346875
transcript.pyannote[1494].speaker SPEAKER_17
transcript.pyannote[1494].start 12327.47159375
transcript.pyannote[1494].end 12334.99784375
transcript.pyannote[1495].speaker SPEAKER_06
transcript.pyannote[1495].start 12335.40284375
transcript.pyannote[1495].end 12354.57284375
transcript.pyannote[1496].speaker SPEAKER_17
transcript.pyannote[1496].start 12353.42534375
transcript.pyannote[1496].end 12366.79034375
transcript.pyannote[1497].speaker SPEAKER_17
transcript.pyannote[1497].start 12367.11096875
transcript.pyannote[1497].end 12369.01784375
transcript.pyannote[1498].speaker SPEAKER_17
transcript.pyannote[1498].start 12369.60846875
transcript.pyannote[1498].end 12374.09721875
transcript.pyannote[1499].speaker SPEAKER_17
transcript.pyannote[1499].start 12374.41784375
transcript.pyannote[1499].end 12379.51409375
transcript.pyannote[1500].speaker SPEAKER_17
transcript.pyannote[1500].start 12380.02034375
transcript.pyannote[1500].end 12380.57721875
transcript.pyannote[1501].speaker SPEAKER_06
transcript.pyannote[1501].start 12381.84284375
transcript.pyannote[1501].end 12382.87221875
transcript.pyannote[1502].speaker SPEAKER_17
transcript.pyannote[1502].start 12382.38284375
transcript.pyannote[1502].end 12388.13721875
transcript.pyannote[1503].speaker SPEAKER_20
transcript.pyannote[1503].start 12388.77846875
transcript.pyannote[1503].end 12388.87971875
transcript.pyannote[1504].speaker SPEAKER_17
transcript.pyannote[1504].start 12388.99784375
transcript.pyannote[1504].end 12390.51659375
transcript.pyannote[1505].speaker SPEAKER_20
transcript.pyannote[1505].start 12390.51659375
transcript.pyannote[1505].end 12390.70221875
transcript.pyannote[1506].speaker SPEAKER_17
transcript.pyannote[1506].start 12390.70221875
transcript.pyannote[1506].end 12393.43596875
transcript.pyannote[1507].speaker SPEAKER_17
transcript.pyannote[1507].start 12394.06034375
transcript.pyannote[1507].end 12394.29659375
transcript.pyannote[1508].speaker SPEAKER_18
transcript.pyannote[1508].start 12397.06409375
transcript.pyannote[1508].end 12397.09784375
transcript.pyannote[1509].speaker SPEAKER_10
transcript.pyannote[1509].start 12397.09784375
transcript.pyannote[1509].end 12397.30034375
transcript.pyannote[1510].speaker SPEAKER_10
transcript.pyannote[1510].start 12402.91971875
transcript.pyannote[1510].end 12405.55221875
transcript.pyannote[1511].speaker SPEAKER_08
transcript.pyannote[1511].start 12421.65096875
transcript.pyannote[1511].end 12425.54909375
transcript.pyannote[1512].speaker SPEAKER_10
transcript.pyannote[1512].start 12425.27909375
transcript.pyannote[1512].end 12426.67971875
transcript.pyannote[1513].speaker SPEAKER_10
transcript.pyannote[1513].start 12429.48096875
transcript.pyannote[1513].end 12430.34159375
transcript.pyannote[1514].speaker SPEAKER_14
transcript.pyannote[1514].start 12432.13034375
transcript.pyannote[1514].end 12432.26534375
transcript.pyannote[1515].speaker SPEAKER_10
transcript.pyannote[1515].start 12432.26534375
transcript.pyannote[1515].end 12432.34971875
transcript.pyannote[1516].speaker SPEAKER_14
transcript.pyannote[1516].start 12432.34971875
transcript.pyannote[1516].end 12432.40034375
transcript.pyannote[1517].speaker SPEAKER_10
transcript.pyannote[1517].start 12432.40034375
transcript.pyannote[1517].end 12432.43409375
transcript.pyannote[1518].speaker SPEAKER_14
transcript.pyannote[1518].start 12432.43409375
transcript.pyannote[1518].end 12432.45096875
transcript.pyannote[1519].speaker SPEAKER_08
transcript.pyannote[1519].start 12432.63659375
transcript.pyannote[1519].end 12433.78409375
transcript.pyannote[1520].speaker SPEAKER_08
transcript.pyannote[1520].start 12433.93596875
transcript.pyannote[1520].end 12443.04846875
transcript.pyannote[1521].speaker SPEAKER_09
transcript.pyannote[1521].start 12443.04846875
transcript.pyannote[1521].end 12443.36909375
transcript.pyannote[1522].speaker SPEAKER_08
transcript.pyannote[1522].start 12443.82471875
transcript.pyannote[1522].end 12452.83596875
transcript.pyannote[1523].speaker SPEAKER_14
transcript.pyannote[1523].start 12454.57409375
transcript.pyannote[1523].end 12454.89471875
transcript.pyannote[1524].speaker SPEAKER_08
transcript.pyannote[1524].start 12456.04221875
transcript.pyannote[1524].end 12457.22346875
transcript.pyannote[1525].speaker SPEAKER_14
transcript.pyannote[1525].start 12456.44721875
transcript.pyannote[1525].end 12463.11284375
transcript.pyannote[1526].speaker SPEAKER_14
transcript.pyannote[1526].start 12463.53471875
transcript.pyannote[1526].end 12464.05784375
transcript.pyannote[1527].speaker SPEAKER_14
transcript.pyannote[1527].start 12464.73284375
transcript.pyannote[1527].end 12473.59221875
transcript.pyannote[1528].speaker SPEAKER_08
transcript.pyannote[1528].start 12473.54159375
transcript.pyannote[1528].end 12474.60471875
transcript.pyannote[1529].speaker SPEAKER_14
transcript.pyannote[1529].start 12474.60471875
transcript.pyannote[1529].end 12479.36346875
transcript.pyannote[1530].speaker SPEAKER_08
transcript.pyannote[1530].start 12481.32096875
transcript.pyannote[1530].end 12482.97471875
transcript.pyannote[1531].speaker SPEAKER_14
transcript.pyannote[1531].start 12483.05909375
transcript.pyannote[1531].end 12483.76784375
transcript.pyannote[1532].speaker SPEAKER_08
transcript.pyannote[1532].start 12484.10534375
transcript.pyannote[1532].end 12485.87721875
transcript.pyannote[1533].speaker SPEAKER_14
transcript.pyannote[1533].start 12484.89846875
transcript.pyannote[1533].end 12485.11784375
transcript.pyannote[1534].speaker SPEAKER_08
transcript.pyannote[1534].start 12489.23534375
transcript.pyannote[1534].end 12491.36159375
transcript.pyannote[1535].speaker SPEAKER_08
transcript.pyannote[1535].start 12491.51346875
transcript.pyannote[1535].end 12491.88471875
transcript.pyannote[1536].speaker SPEAKER_12
transcript.pyannote[1536].start 12491.88471875
transcript.pyannote[1536].end 12491.91846875
transcript.pyannote[1537].speaker SPEAKER_14
transcript.pyannote[1537].start 12494.17971875
transcript.pyannote[1537].end 12501.73971875
transcript.pyannote[1538].speaker SPEAKER_08
transcript.pyannote[1538].start 12502.98846875
transcript.pyannote[1538].end 12505.21596875
transcript.pyannote[1539].speaker SPEAKER_14
transcript.pyannote[1539].start 12506.68409375
transcript.pyannote[1539].end 12507.27471875
transcript.pyannote[1540].speaker SPEAKER_08
transcript.pyannote[1540].start 12507.61221875
transcript.pyannote[1540].end 12510.64971875
transcript.pyannote[1541].speaker SPEAKER_14
transcript.pyannote[1541].start 12508.67534375
transcript.pyannote[1541].end 12515.00346875
transcript.pyannote[1542].speaker SPEAKER_08
transcript.pyannote[1542].start 12511.05471875
transcript.pyannote[1542].end 12511.91534375
transcript.pyannote[1543].speaker SPEAKER_14
transcript.pyannote[1543].start 12515.40846875
transcript.pyannote[1543].end 12517.09596875
transcript.pyannote[1544].speaker SPEAKER_08
transcript.pyannote[1544].start 12516.62346875
transcript.pyannote[1544].end 12522.66471875
transcript.pyannote[1545].speaker SPEAKER_14
transcript.pyannote[1545].start 12517.70346875
transcript.pyannote[1545].end 12518.07471875
transcript.pyannote[1546].speaker SPEAKER_20
transcript.pyannote[1546].start 12525.02721875
transcript.pyannote[1546].end 12525.36471875
transcript.pyannote[1547].speaker SPEAKER_08
transcript.pyannote[1547].start 12525.60096875
transcript.pyannote[1547].end 12528.68909375
transcript.pyannote[1548].speaker SPEAKER_08
transcript.pyannote[1548].start 12529.36409375
transcript.pyannote[1548].end 12531.32159375
transcript.pyannote[1549].speaker SPEAKER_20
transcript.pyannote[1549].start 12529.71846875
transcript.pyannote[1549].end 12529.97159375
transcript.pyannote[1550].speaker SPEAKER_08
transcript.pyannote[1550].start 12531.76034375
transcript.pyannote[1550].end 12534.39284375
transcript.pyannote[1551].speaker SPEAKER_08
transcript.pyannote[1551].start 12534.88221875
transcript.pyannote[1551].end 12538.91534375
transcript.pyannote[1552].speaker SPEAKER_08
transcript.pyannote[1552].start 12540.40034375
transcript.pyannote[1552].end 12544.33221875
transcript.pyannote[1553].speaker SPEAKER_14
transcript.pyannote[1553].start 12545.24346875
transcript.pyannote[1553].end 12558.57471875
transcript.pyannote[1554].speaker SPEAKER_08
transcript.pyannote[1554].start 12558.81096875
transcript.pyannote[1554].end 12560.56596875
transcript.pyannote[1555].speaker SPEAKER_14
transcript.pyannote[1555].start 12562.42221875
transcript.pyannote[1555].end 12584.44409375
transcript.pyannote[1556].speaker SPEAKER_08
transcript.pyannote[1556].start 12585.28784375
transcript.pyannote[1556].end 12591.24471875
transcript.pyannote[1557].speaker SPEAKER_08
transcript.pyannote[1557].start 12591.48096875
transcript.pyannote[1557].end 12599.63159375
transcript.pyannote[1558].speaker SPEAKER_08
transcript.pyannote[1558].start 12600.10409375
transcript.pyannote[1558].end 12605.97659375
transcript.pyannote[1559].speaker SPEAKER_14
transcript.pyannote[1559].start 12606.88784375
transcript.pyannote[1559].end 12626.15909375
transcript.pyannote[1560].speaker SPEAKER_08
transcript.pyannote[1560].start 12626.22659375
transcript.pyannote[1560].end 12648.87284375
transcript.pyannote[1561].speaker SPEAKER_08
transcript.pyannote[1561].start 12649.91909375
transcript.pyannote[1561].end 12651.06659375
transcript.pyannote[1562].speaker SPEAKER_14
transcript.pyannote[1562].start 12651.37034375
transcript.pyannote[1562].end 12670.20284375
transcript.pyannote[1563].speaker SPEAKER_08
transcript.pyannote[1563].start 12669.67971875
transcript.pyannote[1563].end 12674.43846875
transcript.pyannote[1564].speaker SPEAKER_14
transcript.pyannote[1564].start 12674.97846875
transcript.pyannote[1564].end 12675.36659375
transcript.pyannote[1565].speaker SPEAKER_14
transcript.pyannote[1565].start 12675.63659375
transcript.pyannote[1565].end 12691.17846875
transcript.pyannote[1566].speaker SPEAKER_08
transcript.pyannote[1566].start 12691.54971875
transcript.pyannote[1566].end 12722.75159375
transcript.pyannote[1567].speaker SPEAKER_14
transcript.pyannote[1567].start 12724.60784375
transcript.pyannote[1567].end 12755.15159375
transcript.pyannote[1568].speaker SPEAKER_08
transcript.pyannote[1568].start 12755.13471875
transcript.pyannote[1568].end 12776.44784375
transcript.pyannote[1569].speaker SPEAKER_14
transcript.pyannote[1569].start 12758.86409375
transcript.pyannote[1569].end 12759.18471875
transcript.pyannote[1570].speaker SPEAKER_20
transcript.pyannote[1570].start 12776.44784375
transcript.pyannote[1570].end 12776.81909375
transcript.pyannote[1571].speaker SPEAKER_14
transcript.pyannote[1571].start 12776.81909375
transcript.pyannote[1571].end 12776.85284375
transcript.pyannote[1572].speaker SPEAKER_08
transcript.pyannote[1572].start 12776.85284375
transcript.pyannote[1572].end 12781.07159375
transcript.pyannote[1573].speaker SPEAKER_14
transcript.pyannote[1573].start 12781.72971875
transcript.pyannote[1573].end 12794.58846875
transcript.pyannote[1574].speaker SPEAKER_14
transcript.pyannote[1574].start 12794.90909375
transcript.pyannote[1574].end 12802.73909375
transcript.pyannote[1575].speaker SPEAKER_08
transcript.pyannote[1575].start 12803.14409375
transcript.pyannote[1575].end 12816.42471875
transcript.pyannote[1576].speaker SPEAKER_08
transcript.pyannote[1576].start 12816.49221875
transcript.pyannote[1576].end 12827.08971875
transcript.pyannote[1577].speaker SPEAKER_14
transcript.pyannote[1577].start 12828.87846875
transcript.pyannote[1577].end 12849.11159375
transcript.pyannote[1578].speaker SPEAKER_14
transcript.pyannote[1578].start 12849.41534375
transcript.pyannote[1578].end 12852.50346875
transcript.pyannote[1579].speaker SPEAKER_08
transcript.pyannote[1579].start 12851.18721875
transcript.pyannote[1579].end 12851.65971875
transcript.pyannote[1580].speaker SPEAKER_08
transcript.pyannote[1580].start 12853.11096875
transcript.pyannote[1580].end 12860.89034375
transcript.pyannote[1581].speaker SPEAKER_14
transcript.pyannote[1581].start 12861.91971875
transcript.pyannote[1581].end 12862.22346875
transcript.pyannote[1582].speaker SPEAKER_14
transcript.pyannote[1582].start 12862.88159375
transcript.pyannote[1582].end 12867.65721875
transcript.pyannote[1583].speaker SPEAKER_08
transcript.pyannote[1583].start 12868.19721875
transcript.pyannote[1583].end 12869.83409375
transcript.pyannote[1584].speaker SPEAKER_14
transcript.pyannote[1584].start 12869.15909375
transcript.pyannote[1584].end 12871.77471875
transcript.pyannote[1585].speaker SPEAKER_08
transcript.pyannote[1585].start 12871.58909375
transcript.pyannote[1585].end 12872.55096875
transcript.pyannote[1586].speaker SPEAKER_08
transcript.pyannote[1586].start 12872.80409375
transcript.pyannote[1586].end 12877.46159375
transcript.pyannote[1587].speaker SPEAKER_14
transcript.pyannote[1587].start 12878.30534375
transcript.pyannote[1587].end 12880.31346875
transcript.pyannote[1588].speaker SPEAKER_08
transcript.pyannote[1588].start 12880.88721875
transcript.pyannote[1588].end 12883.18221875
transcript.pyannote[1589].speaker SPEAKER_14
transcript.pyannote[1589].start 12883.11471875
transcript.pyannote[1589].end 12883.53659375
transcript.pyannote[1590].speaker SPEAKER_20
transcript.pyannote[1590].start 12883.53659375
transcript.pyannote[1590].end 12883.55346875
transcript.pyannote[1591].speaker SPEAKER_20
transcript.pyannote[1591].start 12883.57034375
transcript.pyannote[1591].end 12883.58721875
transcript.pyannote[1592].speaker SPEAKER_08
transcript.pyannote[1592].start 12883.62096875
transcript.pyannote[1592].end 12885.78096875
transcript.pyannote[1593].speaker SPEAKER_14
transcript.pyannote[1593].start 12884.27909375
transcript.pyannote[1593].end 12884.73471875
transcript.pyannote[1594].speaker SPEAKER_20
transcript.pyannote[1594].start 12884.73471875
transcript.pyannote[1594].end 12885.00471875
transcript.pyannote[1595].speaker SPEAKER_14
transcript.pyannote[1595].start 12885.00471875
transcript.pyannote[1595].end 12885.84846875
transcript.pyannote[1596].speaker SPEAKER_20
transcript.pyannote[1596].start 12885.78096875
transcript.pyannote[1596].end 12886.11846875
transcript.pyannote[1597].speaker SPEAKER_08
transcript.pyannote[1597].start 12886.01721875
transcript.pyannote[1597].end 12918.16409375
transcript.pyannote[1598].speaker SPEAKER_14
transcript.pyannote[1598].start 12920.29034375
transcript.pyannote[1598].end 12920.71221875
transcript.pyannote[1599].speaker SPEAKER_14
transcript.pyannote[1599].start 12921.79221875
transcript.pyannote[1599].end 12926.71971875
transcript.pyannote[1600].speaker SPEAKER_08
transcript.pyannote[1600].start 12926.56784375
transcript.pyannote[1600].end 12931.22534375
transcript.pyannote[1601].speaker SPEAKER_14
transcript.pyannote[1601].start 12932.84534375
transcript.pyannote[1601].end 12946.32846875
transcript.pyannote[1602].speaker SPEAKER_08
transcript.pyannote[1602].start 12946.58159375
transcript.pyannote[1602].end 12949.46721875
transcript.pyannote[1603].speaker SPEAKER_14
transcript.pyannote[1603].start 12948.99471875
transcript.pyannote[1603].end 12949.77096875
transcript.pyannote[1604].speaker SPEAKER_08
transcript.pyannote[1604].start 12949.85534375
transcript.pyannote[1604].end 12951.28971875
transcript.pyannote[1605].speaker SPEAKER_08
transcript.pyannote[1605].start 12951.52596875
transcript.pyannote[1605].end 12957.65159375
transcript.pyannote[1606].speaker SPEAKER_08
transcript.pyannote[1606].start 12958.44471875
transcript.pyannote[1606].end 12962.34284375
transcript.pyannote[1607].speaker SPEAKER_14
transcript.pyannote[1607].start 12960.77346875
transcript.pyannote[1607].end 12962.37659375
transcript.pyannote[1608].speaker SPEAKER_20
transcript.pyannote[1608].start 12962.34284375
transcript.pyannote[1608].end 12962.51159375
transcript.pyannote[1609].speaker SPEAKER_14
transcript.pyannote[1609].start 12962.51159375
transcript.pyannote[1609].end 12962.66346875
transcript.pyannote[1610].speaker SPEAKER_08
transcript.pyannote[1610].start 12962.52846875
transcript.pyannote[1610].end 12965.75159375
transcript.pyannote[1611].speaker SPEAKER_14
transcript.pyannote[1611].start 12965.66721875
transcript.pyannote[1611].end 12966.03846875
transcript.pyannote[1612].speaker SPEAKER_08
transcript.pyannote[1612].start 12966.34221875
transcript.pyannote[1612].end 12990.28784375
transcript.pyannote[1613].speaker SPEAKER_14
transcript.pyannote[1613].start 12967.11846875
transcript.pyannote[1613].end 12967.32096875
transcript.pyannote[1614].speaker SPEAKER_00
transcript.pyannote[1614].start 12987.72284375
transcript.pyannote[1614].end 12987.73971875
transcript.pyannote[1615].speaker SPEAKER_20
transcript.pyannote[1615].start 12987.73971875
transcript.pyannote[1615].end 12988.56659375
transcript.pyannote[1616].speaker SPEAKER_08
transcript.pyannote[1616].start 12990.74346875
transcript.pyannote[1616].end 13000.44659375
transcript.pyannote[1617].speaker SPEAKER_14
transcript.pyannote[1617].start 12999.95721875
transcript.pyannote[1617].end 13000.32846875
transcript.pyannote[1618].speaker SPEAKER_14
transcript.pyannote[1618].start 13000.44659375
transcript.pyannote[1618].end 13000.91909375
transcript.pyannote[1619].speaker SPEAKER_08
transcript.pyannote[1619].start 13001.07096875
transcript.pyannote[1619].end 13005.35721875
transcript.pyannote[1620].speaker SPEAKER_14
transcript.pyannote[1620].start 13007.12909375
transcript.pyannote[1620].end 13014.21659375
transcript.pyannote[1621].speaker SPEAKER_08
transcript.pyannote[1621].start 13014.46971875
transcript.pyannote[1621].end 13019.46471875
transcript.pyannote[1622].speaker SPEAKER_14
transcript.pyannote[1622].start 13019.46471875
transcript.pyannote[1622].end 13019.80221875
transcript.pyannote[1623].speaker SPEAKER_14
transcript.pyannote[1623].start 13020.69659375
transcript.pyannote[1623].end 13020.89909375
transcript.pyannote[1624].speaker SPEAKER_14
transcript.pyannote[1624].start 13022.78909375
transcript.pyannote[1624].end 13024.59471875
transcript.pyannote[1625].speaker SPEAKER_08
transcript.pyannote[1625].start 13025.21909375
transcript.pyannote[1625].end 13026.29909375
transcript.pyannote[1626].speaker SPEAKER_14
transcript.pyannote[1626].start 13026.83909375
transcript.pyannote[1626].end 13027.66596875
transcript.pyannote[1627].speaker SPEAKER_08
transcript.pyannote[1627].start 13027.66596875
transcript.pyannote[1627].end 13028.56034375
transcript.pyannote[1628].speaker SPEAKER_08
transcript.pyannote[1628].start 13029.28596875
transcript.pyannote[1628].end 13041.79034375
transcript.pyannote[1629].speaker SPEAKER_08
transcript.pyannote[1629].start 13042.00971875
transcript.pyannote[1629].end 13045.23284375
transcript.pyannote[1630].speaker SPEAKER_08
transcript.pyannote[1630].start 13045.55346875
transcript.pyannote[1630].end 13072.21596875
transcript.pyannote[1631].speaker SPEAKER_00
transcript.pyannote[1631].start 13059.28971875
transcript.pyannote[1631].end 13059.30659375
transcript.pyannote[1632].speaker SPEAKER_20
transcript.pyannote[1632].start 13059.30659375
transcript.pyannote[1632].end 13059.64409375
transcript.pyannote[1633].speaker SPEAKER_08
transcript.pyannote[1633].start 13072.24971875
transcript.pyannote[1633].end 13074.27471875
transcript.pyannote[1634].speaker SPEAKER_08
transcript.pyannote[1634].start 13074.73034375
transcript.pyannote[1634].end 13087.77471875
transcript.pyannote[1635].speaker SPEAKER_14
transcript.pyannote[1635].start 13088.83784375
transcript.pyannote[1635].end 13104.97034375
transcript.pyannote[1636].speaker SPEAKER_08
transcript.pyannote[1636].start 13104.26159375
transcript.pyannote[1636].end 13112.54721875
transcript.pyannote[1637].speaker SPEAKER_08
transcript.pyannote[1637].start 13112.91846875
transcript.pyannote[1637].end 13124.15721875
transcript.pyannote[1638].speaker SPEAKER_00
transcript.pyannote[1638].start 13118.26784375
transcript.pyannote[1638].end 13119.22971875
transcript.pyannote[1639].speaker SPEAKER_08
transcript.pyannote[1639].start 13124.98409375
transcript.pyannote[1639].end 13131.36284375
transcript.pyannote[1640].speaker SPEAKER_08
transcript.pyannote[1640].start 13132.30784375
transcript.pyannote[1640].end 13134.99096875
transcript.pyannote[1641].speaker SPEAKER_14
transcript.pyannote[1641].start 13136.81346875
transcript.pyannote[1641].end 13140.66096875
transcript.pyannote[1642].speaker SPEAKER_08
transcript.pyannote[1642].start 13140.66096875
transcript.pyannote[1642].end 13145.14971875
transcript.pyannote[1643].speaker SPEAKER_14
transcript.pyannote[1643].start 13142.50034375
transcript.pyannote[1643].end 13143.42846875
transcript.pyannote[1644].speaker SPEAKER_20
transcript.pyannote[1644].start 13143.42846875
transcript.pyannote[1644].end 13143.47909375
transcript.pyannote[1645].speaker SPEAKER_14
transcript.pyannote[1645].start 13145.04846875
transcript.pyannote[1645].end 13145.09909375
transcript.pyannote[1646].speaker SPEAKER_20
transcript.pyannote[1646].start 13145.09909375
transcript.pyannote[1646].end 13145.43659375
transcript.pyannote[1647].speaker SPEAKER_14
transcript.pyannote[1647].start 13145.43659375
transcript.pyannote[1647].end 13145.48721875
transcript.pyannote[1648].speaker SPEAKER_08
transcript.pyannote[1648].start 13145.58846875
transcript.pyannote[1648].end 13163.84721875
transcript.pyannote[1649].speaker SPEAKER_20
transcript.pyannote[1649].start 13147.37721875
transcript.pyannote[1649].end 13148.11971875
transcript.pyannote[1650].speaker SPEAKER_20
transcript.pyannote[1650].start 13148.87909375
transcript.pyannote[1650].end 13149.19971875
transcript.pyannote[1651].speaker SPEAKER_14
transcript.pyannote[1651].start 13165.97346875
transcript.pyannote[1651].end 13175.86221875
transcript.pyannote[1652].speaker SPEAKER_08
transcript.pyannote[1652].start 13175.28846875
transcript.pyannote[1652].end 13183.28721875
transcript.pyannote[1653].speaker SPEAKER_08
transcript.pyannote[1653].start 13184.08034375
transcript.pyannote[1653].end 13184.87346875
transcript.pyannote[1654].speaker SPEAKER_14
transcript.pyannote[1654].start 13187.64096875
transcript.pyannote[1654].end 13188.13034375
transcript.pyannote[1655].speaker SPEAKER_14
transcript.pyannote[1655].start 13188.23159375
transcript.pyannote[1655].end 13195.30221875
transcript.pyannote[1656].speaker SPEAKER_08
transcript.pyannote[1656].start 13195.45409375
transcript.pyannote[1656].end 13202.69346875
transcript.pyannote[1657].speaker SPEAKER_08
transcript.pyannote[1657].start 13203.90846875
transcript.pyannote[1657].end 13204.97159375
transcript.pyannote[1658].speaker SPEAKER_08
transcript.pyannote[1658].start 13205.98409375
transcript.pyannote[1658].end 13207.40159375
transcript.pyannote[1659].speaker SPEAKER_14
transcript.pyannote[1659].start 13207.58721875
transcript.pyannote[1659].end 13211.21534375
transcript.pyannote[1660].speaker SPEAKER_08
transcript.pyannote[1660].start 13211.70471875
transcript.pyannote[1660].end 13214.10096875
transcript.pyannote[1661].speaker SPEAKER_08
transcript.pyannote[1661].start 13214.35409375
transcript.pyannote[1661].end 13226.08221875
transcript.pyannote[1662].speaker SPEAKER_20
transcript.pyannote[1662].start 13224.98534375
transcript.pyannote[1662].end 13225.39034375
transcript.pyannote[1663].speaker SPEAKER_10
transcript.pyannote[1663].start 13235.46471875
transcript.pyannote[1663].end 13237.52346875
transcript.pyannote[1664].speaker SPEAKER_10
transcript.pyannote[1664].start 13237.92846875
transcript.pyannote[1664].end 13238.63721875
transcript.pyannote[1665].speaker SPEAKER_11
transcript.pyannote[1665].start 13240.74659375
transcript.pyannote[1665].end 13242.43409375
transcript.pyannote[1666].speaker SPEAKER_11
transcript.pyannote[1666].start 13243.58159375
transcript.pyannote[1666].end 13245.11721875
transcript.pyannote[1667].speaker SPEAKER_10
transcript.pyannote[1667].start 13246.97346875
transcript.pyannote[1667].end 13247.96909375
transcript.pyannote[1668].speaker SPEAKER_11
transcript.pyannote[1668].start 13247.96909375
transcript.pyannote[1668].end 13249.15034375
transcript.pyannote[1669].speaker SPEAKER_10
transcript.pyannote[1669].start 13249.15034375
transcript.pyannote[1669].end 13250.19659375
transcript.pyannote[1670].speaker SPEAKER_11
transcript.pyannote[1670].start 13256.28846875
transcript.pyannote[1670].end 13263.46034375
transcript.pyannote[1671].speaker SPEAKER_11
transcript.pyannote[1671].start 13264.30409375
transcript.pyannote[1671].end 13266.76784375
transcript.pyannote[1672].speaker SPEAKER_11
transcript.pyannote[1672].start 13266.90284375
transcript.pyannote[1672].end 13275.61034375
transcript.pyannote[1673].speaker SPEAKER_11
transcript.pyannote[1673].start 13276.57221875
transcript.pyannote[1673].end 13296.01221875
transcript.pyannote[1674].speaker SPEAKER_11
transcript.pyannote[1674].start 13296.63659375
transcript.pyannote[1674].end 13298.93159375
transcript.pyannote[1675].speaker SPEAKER_11
transcript.pyannote[1675].start 13299.16784375
transcript.pyannote[1675].end 13313.29221875
transcript.pyannote[1676].speaker SPEAKER_11
transcript.pyannote[1676].start 13313.69721875
transcript.pyannote[1676].end 13315.67159375
transcript.pyannote[1677].speaker SPEAKER_11
transcript.pyannote[1677].start 13316.48159375
transcript.pyannote[1677].end 13317.32534375
transcript.pyannote[1678].speaker SPEAKER_11
transcript.pyannote[1678].start 13317.76409375
transcript.pyannote[1678].end 13319.58659375
transcript.pyannote[1679].speaker SPEAKER_11
transcript.pyannote[1679].start 13320.53159375
transcript.pyannote[1679].end 13321.89846875
transcript.pyannote[1680].speaker SPEAKER_11
transcript.pyannote[1680].start 13322.25284375
transcript.pyannote[1680].end 13323.48471875
transcript.pyannote[1681].speaker SPEAKER_11
transcript.pyannote[1681].start 13324.05846875
transcript.pyannote[1681].end 13326.42096875
transcript.pyannote[1682].speaker SPEAKER_11
transcript.pyannote[1682].start 13327.11284375
transcript.pyannote[1682].end 13328.14221875
transcript.pyannote[1683].speaker SPEAKER_11
transcript.pyannote[1683].start 13328.56409375
transcript.pyannote[1683].end 13329.47534375
transcript.pyannote[1684].speaker SPEAKER_11
transcript.pyannote[1684].start 13330.03221875
transcript.pyannote[1684].end 13332.37784375
transcript.pyannote[1685].speaker SPEAKER_11
transcript.pyannote[1685].start 13332.58034375
transcript.pyannote[1685].end 13333.30596875
transcript.pyannote[1686].speaker SPEAKER_11
transcript.pyannote[1686].start 13335.85409375
transcript.pyannote[1686].end 13338.95909375
transcript.pyannote[1687].speaker SPEAKER_11
transcript.pyannote[1687].start 13339.46534375
transcript.pyannote[1687].end 13348.72971875
transcript.pyannote[1688].speaker SPEAKER_11
transcript.pyannote[1688].start 13349.28659375
transcript.pyannote[1688].end 13349.86034375
transcript.pyannote[1689].speaker SPEAKER_11
transcript.pyannote[1689].start 13350.28221875
transcript.pyannote[1689].end 13356.81284375
transcript.pyannote[1690].speaker SPEAKER_00
transcript.pyannote[1690].start 13358.80409375
transcript.pyannote[1690].end 13362.55034375
transcript.pyannote[1691].speaker SPEAKER_00
transcript.pyannote[1691].start 13363.20846875
transcript.pyannote[1691].end 13366.04346875
transcript.pyannote[1692].speaker SPEAKER_00
transcript.pyannote[1692].start 13366.33034375
transcript.pyannote[1692].end 13370.00909375
transcript.pyannote[1693].speaker SPEAKER_00
transcript.pyannote[1693].start 13370.44784375
transcript.pyannote[1693].end 13373.87346875
transcript.pyannote[1694].speaker SPEAKER_00
transcript.pyannote[1694].start 13374.17721875
transcript.pyannote[1694].end 13374.66659375
transcript.pyannote[1695].speaker SPEAKER_00
transcript.pyannote[1695].start 13375.08846875
transcript.pyannote[1695].end 13376.72534375
transcript.pyannote[1696].speaker SPEAKER_00
transcript.pyannote[1696].start 13377.06284375
transcript.pyannote[1696].end 13379.91471875
transcript.pyannote[1697].speaker SPEAKER_00
transcript.pyannote[1697].start 13380.21846875
transcript.pyannote[1697].end 13381.43346875
transcript.pyannote[1698].speaker SPEAKER_00
transcript.pyannote[1698].start 13381.66971875
transcript.pyannote[1698].end 13385.04471875
transcript.pyannote[1699].speaker SPEAKER_11
transcript.pyannote[1699].start 13383.96471875
transcript.pyannote[1699].end 13392.11534375
transcript.pyannote[1700].speaker SPEAKER_00
transcript.pyannote[1700].start 13385.98971875
transcript.pyannote[1700].end 13387.50846875
transcript.pyannote[1701].speaker SPEAKER_00
transcript.pyannote[1701].start 13389.95534375
transcript.pyannote[1701].end 13390.17471875
transcript.pyannote[1702].speaker SPEAKER_00
transcript.pyannote[1702].start 13390.51221875
transcript.pyannote[1702].end 13391.60909375
transcript.pyannote[1703].speaker SPEAKER_00
transcript.pyannote[1703].start 13392.48659375
transcript.pyannote[1703].end 13393.56659375
transcript.pyannote[1704].speaker SPEAKER_00
transcript.pyannote[1704].start 13393.95471875
transcript.pyannote[1704].end 13396.21596875
transcript.pyannote[1705].speaker SPEAKER_11
transcript.pyannote[1705].start 13394.61284375
transcript.pyannote[1705].end 13395.91221875
transcript.pyannote[1706].speaker SPEAKER_00
transcript.pyannote[1706].start 13396.51971875
transcript.pyannote[1706].end 13400.18159375
transcript.pyannote[1707].speaker SPEAKER_00
transcript.pyannote[1707].start 13400.50221875
transcript.pyannote[1707].end 13405.44659375
transcript.pyannote[1708].speaker SPEAKER_00
transcript.pyannote[1708].start 13405.78409375
transcript.pyannote[1708].end 13410.76221875
transcript.pyannote[1709].speaker SPEAKER_00
transcript.pyannote[1709].start 13410.98159375
transcript.pyannote[1709].end 13412.06159375
transcript.pyannote[1710].speaker SPEAKER_00
transcript.pyannote[1710].start 13412.44971875
transcript.pyannote[1710].end 13416.48284375
transcript.pyannote[1711].speaker SPEAKER_00
transcript.pyannote[1711].start 13416.76971875
transcript.pyannote[1711].end 13420.53284375
transcript.pyannote[1712].speaker SPEAKER_00
transcript.pyannote[1712].start 13420.81971875
transcript.pyannote[1712].end 13421.93346875
transcript.pyannote[1713].speaker SPEAKER_00
transcript.pyannote[1713].start 13422.20346875
transcript.pyannote[1713].end 13427.16471875
transcript.pyannote[1714].speaker SPEAKER_00
transcript.pyannote[1714].start 13427.40096875
transcript.pyannote[1714].end 13429.81409375
transcript.pyannote[1715].speaker SPEAKER_00
transcript.pyannote[1715].start 13430.20221875
transcript.pyannote[1715].end 13436.59784375
transcript.pyannote[1716].speaker SPEAKER_11
transcript.pyannote[1716].start 13434.06659375
transcript.pyannote[1716].end 13434.40409375
transcript.pyannote[1717].speaker SPEAKER_11
transcript.pyannote[1717].start 13436.80034375
transcript.pyannote[1717].end 13442.16659375
transcript.pyannote[1718].speaker SPEAKER_00
transcript.pyannote[1718].start 13442.06534375
transcript.pyannote[1718].end 13443.01034375
transcript.pyannote[1719].speaker SPEAKER_11
transcript.pyannote[1719].start 13442.67284375
transcript.pyannote[1719].end 13466.21346875
transcript.pyannote[1720].speaker SPEAKER_00
transcript.pyannote[1720].start 13446.26721875
transcript.pyannote[1720].end 13447.19534375
transcript.pyannote[1721].speaker SPEAKER_00
transcript.pyannote[1721].start 13458.63659375
transcript.pyannote[1721].end 13459.17659375
transcript.pyannote[1722].speaker SPEAKER_11
transcript.pyannote[1722].start 13466.93909375
transcript.pyannote[1722].end 13473.65534375
transcript.pyannote[1723].speaker SPEAKER_11
transcript.pyannote[1723].start 13473.70596875
transcript.pyannote[1723].end 13475.37659375
transcript.pyannote[1724].speaker SPEAKER_11
transcript.pyannote[1724].start 13476.08534375
transcript.pyannote[1724].end 13477.75596875
transcript.pyannote[1725].speaker SPEAKER_11
transcript.pyannote[1725].start 13480.48971875
transcript.pyannote[1725].end 13481.94096875
transcript.pyannote[1726].speaker SPEAKER_11
transcript.pyannote[1726].start 13482.10971875
transcript.pyannote[1726].end 13483.18971875
transcript.pyannote[1727].speaker SPEAKER_11
transcript.pyannote[1727].start 13483.93221875
transcript.pyannote[1727].end 13484.55659375
transcript.pyannote[1728].speaker SPEAKER_11
transcript.pyannote[1728].start 13484.62409375
transcript.pyannote[1728].end 13486.24409375
transcript.pyannote[1729].speaker SPEAKER_00
transcript.pyannote[1729].start 13486.85159375
transcript.pyannote[1729].end 13487.57721875
transcript.pyannote[1730].speaker SPEAKER_11
transcript.pyannote[1730].start 13487.17221875
transcript.pyannote[1730].end 13488.74159375
transcript.pyannote[1731].speaker SPEAKER_00
transcript.pyannote[1731].start 13488.74159375
transcript.pyannote[1731].end 13491.20534375
transcript.pyannote[1732].speaker SPEAKER_00
transcript.pyannote[1732].start 13491.62721875
transcript.pyannote[1732].end 13494.36096875
transcript.pyannote[1733].speaker SPEAKER_00
transcript.pyannote[1733].start 13494.78284375
transcript.pyannote[1733].end 13497.22971875
transcript.pyannote[1734].speaker SPEAKER_00
transcript.pyannote[1734].start 13497.55034375
transcript.pyannote[1734].end 13500.53721875
transcript.pyannote[1735].speaker SPEAKER_00
transcript.pyannote[1735].start 13500.77346875
transcript.pyannote[1735].end 13503.81096875
transcript.pyannote[1736].speaker SPEAKER_00
transcript.pyannote[1736].start 13504.14846875
transcript.pyannote[1736].end 13508.19846875
transcript.pyannote[1737].speaker SPEAKER_00
transcript.pyannote[1737].start 13508.41784375
transcript.pyannote[1737].end 13509.36284375
transcript.pyannote[1738].speaker SPEAKER_00
transcript.pyannote[1738].start 13509.61596875
transcript.pyannote[1738].end 13510.29096875
transcript.pyannote[1739].speaker SPEAKER_00
transcript.pyannote[1739].start 13510.45971875
transcript.pyannote[1739].end 13511.64096875
transcript.pyannote[1740].speaker SPEAKER_00
transcript.pyannote[1740].start 13511.94471875
transcript.pyannote[1740].end 13518.39096875
transcript.pyannote[1741].speaker SPEAKER_11
transcript.pyannote[1741].start 13518.39096875
transcript.pyannote[1741].end 13518.42471875
transcript.pyannote[1742].speaker SPEAKER_00
transcript.pyannote[1742].start 13518.42471875
transcript.pyannote[1742].end 13518.44159375
transcript.pyannote[1743].speaker SPEAKER_11
transcript.pyannote[1743].start 13518.44159375
transcript.pyannote[1743].end 13520.01096875
transcript.pyannote[1744].speaker SPEAKER_11
transcript.pyannote[1744].start 13520.58471875
transcript.pyannote[1744].end 13523.25096875
transcript.pyannote[1745].speaker SPEAKER_11
transcript.pyannote[1745].start 13523.74034375
transcript.pyannote[1745].end 13526.94659375
transcript.pyannote[1746].speaker SPEAKER_11
transcript.pyannote[1746].start 13527.28409375
transcript.pyannote[1746].end 13532.00909375
transcript.pyannote[1747].speaker SPEAKER_12
transcript.pyannote[1747].start 13532.56596875
transcript.pyannote[1747].end 13532.59971875
transcript.pyannote[1748].speaker SPEAKER_00
transcript.pyannote[1748].start 13532.59971875
transcript.pyannote[1748].end 13533.27471875
transcript.pyannote[1749].speaker SPEAKER_12
transcript.pyannote[1749].start 13533.49409375
transcript.pyannote[1749].end 13533.52784375
transcript.pyannote[1750].speaker SPEAKER_00
transcript.pyannote[1750].start 13533.52784375
transcript.pyannote[1750].end 13533.59534375
transcript.pyannote[1751].speaker SPEAKER_11
transcript.pyannote[1751].start 13534.30409375
transcript.pyannote[1751].end 13537.20659375
transcript.pyannote[1752].speaker SPEAKER_00
transcript.pyannote[1752].start 13535.92409375
transcript.pyannote[1752].end 13536.37971875
transcript.pyannote[1753].speaker SPEAKER_00
transcript.pyannote[1753].start 13536.41346875
transcript.pyannote[1753].end 13542.58971875
transcript.pyannote[1754].speaker SPEAKER_11
transcript.pyannote[1754].start 13541.23971875
transcript.pyannote[1754].end 13544.76659375
transcript.pyannote[1755].speaker SPEAKER_00
transcript.pyannote[1755].start 13544.96909375
transcript.pyannote[1755].end 13558.51971875
transcript.pyannote[1756].speaker SPEAKER_11
transcript.pyannote[1756].start 13548.17534375
transcript.pyannote[1756].end 13549.44096875
transcript.pyannote[1757].speaker SPEAKER_21
transcript.pyannote[1757].start 13549.44096875
transcript.pyannote[1757].end 13549.49159375
transcript.pyannote[1758].speaker SPEAKER_00
transcript.pyannote[1758].start 13558.67159375
transcript.pyannote[1758].end 13561.52346875
transcript.pyannote[1759].speaker SPEAKER_00
transcript.pyannote[1759].start 13561.72596875
transcript.pyannote[1759].end 13569.35346875
transcript.pyannote[1760].speaker SPEAKER_11
transcript.pyannote[1760].start 13568.34096875
transcript.pyannote[1760].end 13579.86659375
transcript.pyannote[1761].speaker SPEAKER_00
transcript.pyannote[1761].start 13579.86659375
transcript.pyannote[1761].end 13580.23784375
transcript.pyannote[1762].speaker SPEAKER_11
transcript.pyannote[1762].start 13580.23784375
transcript.pyannote[1762].end 13582.88721875
transcript.pyannote[1763].speaker SPEAKER_11
transcript.pyannote[1763].start 13583.81534375
transcript.pyannote[1763].end 13587.96659375
transcript.pyannote[1764].speaker SPEAKER_11
transcript.pyannote[1764].start 13588.50659375
transcript.pyannote[1764].end 13589.11409375
transcript.pyannote[1765].speaker SPEAKER_11
transcript.pyannote[1765].start 13589.55284375
transcript.pyannote[1765].end 13595.17221875
transcript.pyannote[1766].speaker SPEAKER_11
transcript.pyannote[1766].start 13595.77971875
transcript.pyannote[1766].end 13597.58534375
transcript.pyannote[1767].speaker SPEAKER_11
transcript.pyannote[1767].start 13597.61909375
transcript.pyannote[1767].end 13599.01971875
transcript.pyannote[1768].speaker SPEAKER_18
transcript.pyannote[1768].start 13599.07034375
transcript.pyannote[1768].end 13601.60159375
transcript.pyannote[1769].speaker SPEAKER_11
transcript.pyannote[1769].start 13600.89284375
transcript.pyannote[1769].end 13601.44971875
transcript.pyannote[1770].speaker SPEAKER_25
transcript.pyannote[1770].start 13601.44971875
transcript.pyannote[1770].end 13601.50034375
transcript.pyannote[1771].speaker SPEAKER_11
transcript.pyannote[1771].start 13601.50034375
transcript.pyannote[1771].end 13601.56784375
transcript.pyannote[1772].speaker SPEAKER_11
transcript.pyannote[1772].start 13601.60159375
transcript.pyannote[1772].end 13601.75346875
transcript.pyannote[1773].speaker SPEAKER_18
transcript.pyannote[1773].start 13601.75346875
transcript.pyannote[1773].end 13617.07596875
transcript.pyannote[1774].speaker SPEAKER_18
transcript.pyannote[1774].start 13617.27846875
transcript.pyannote[1774].end 13635.38534375
transcript.pyannote[1775].speaker SPEAKER_13
transcript.pyannote[1775].start 13629.59721875
transcript.pyannote[1775].end 13629.61409375
transcript.pyannote[1776].speaker SPEAKER_11
transcript.pyannote[1776].start 13629.61409375
transcript.pyannote[1776].end 13629.95159375
transcript.pyannote[1777].speaker SPEAKER_11
transcript.pyannote[1777].start 13633.74846875
transcript.pyannote[1777].end 13635.36846875
transcript.pyannote[1778].speaker SPEAKER_11
transcript.pyannote[1778].start 13635.38534375
transcript.pyannote[1778].end 13639.95846875
transcript.pyannote[1779].speaker SPEAKER_18
transcript.pyannote[1779].start 13639.95846875
transcript.pyannote[1779].end 13652.66534375
transcript.pyannote[1780].speaker SPEAKER_11
transcript.pyannote[1780].start 13640.19471875
transcript.pyannote[1780].end 13642.43909375
transcript.pyannote[1781].speaker SPEAKER_11
transcript.pyannote[1781].start 13651.43346875
transcript.pyannote[1781].end 13656.41159375
transcript.pyannote[1782].speaker SPEAKER_11
transcript.pyannote[1782].start 13656.83346875
transcript.pyannote[1782].end 13666.51971875
transcript.pyannote[1783].speaker SPEAKER_18
transcript.pyannote[1783].start 13666.51971875
transcript.pyannote[1783].end 13672.03784375
transcript.pyannote[1784].speaker SPEAKER_11
transcript.pyannote[1784].start 13671.53159375
transcript.pyannote[1784].end 13681.60596875
transcript.pyannote[1785].speaker SPEAKER_18
transcript.pyannote[1785].start 13676.89784375
transcript.pyannote[1785].end 13677.25221875
transcript.pyannote[1786].speaker SPEAKER_11
transcript.pyannote[1786].start 13682.41596875
transcript.pyannote[1786].end 13688.84534375
transcript.pyannote[1787].speaker SPEAKER_11
transcript.pyannote[1787].start 13689.97596875
transcript.pyannote[1787].end 13691.12346875
transcript.pyannote[1788].speaker SPEAKER_11
transcript.pyannote[1788].start 13691.81534375
transcript.pyannote[1788].end 13692.18659375
transcript.pyannote[1789].speaker SPEAKER_11
transcript.pyannote[1789].start 13692.49034375
transcript.pyannote[1789].end 13693.87409375
transcript.pyannote[1790].speaker SPEAKER_11
transcript.pyannote[1790].start 13693.99221875
transcript.pyannote[1790].end 13695.35909375
transcript.pyannote[1791].speaker SPEAKER_11
transcript.pyannote[1791].start 13696.10159375
transcript.pyannote[1791].end 13699.32471875
transcript.pyannote[1792].speaker SPEAKER_25
transcript.pyannote[1792].start 13699.32471875
transcript.pyannote[1792].end 13699.57784375
transcript.pyannote[1793].speaker SPEAKER_11
transcript.pyannote[1793].start 13699.57784375
transcript.pyannote[1793].end 13703.37471875
transcript.pyannote[1794].speaker SPEAKER_11
transcript.pyannote[1794].start 13704.35346875
transcript.pyannote[1794].end 13712.63909375
transcript.pyannote[1795].speaker SPEAKER_11
transcript.pyannote[1795].start 13713.31409375
transcript.pyannote[1795].end 13717.80284375
transcript.pyannote[1796].speaker SPEAKER_11
transcript.pyannote[1796].start 13718.10659375
transcript.pyannote[1796].end 13720.50284375
transcript.pyannote[1797].speaker SPEAKER_11
transcript.pyannote[1797].start 13720.92471875
transcript.pyannote[1797].end 13733.56409375
transcript.pyannote[1798].speaker SPEAKER_11
transcript.pyannote[1798].start 13734.17159375
transcript.pyannote[1798].end 13736.17971875
transcript.pyannote[1799].speaker SPEAKER_11
transcript.pyannote[1799].start 13736.75346875
transcript.pyannote[1799].end 13737.31034375
transcript.pyannote[1800].speaker SPEAKER_18
transcript.pyannote[1800].start 13737.69846875
transcript.pyannote[1800].end 13739.23409375
transcript.pyannote[1801].speaker SPEAKER_18
transcript.pyannote[1801].start 13739.99346875
transcript.pyannote[1801].end 13750.99596875
transcript.pyannote[1802].speaker SPEAKER_18
transcript.pyannote[1802].start 13751.51909375
transcript.pyannote[1802].end 13756.73346875
transcript.pyannote[1803].speaker SPEAKER_18
transcript.pyannote[1803].start 13757.45909375
transcript.pyannote[1803].end 13759.29846875
transcript.pyannote[1804].speaker SPEAKER_18
transcript.pyannote[1804].start 13759.41659375
transcript.pyannote[1804].end 13760.46284375
transcript.pyannote[1805].speaker SPEAKER_18
transcript.pyannote[1805].start 13760.78346875
transcript.pyannote[1805].end 13766.97659375
transcript.pyannote[1806].speaker SPEAKER_11
transcript.pyannote[1806].start 13766.97659375
transcript.pyannote[1806].end 13767.01034375
transcript.pyannote[1807].speaker SPEAKER_18
transcript.pyannote[1807].start 13767.01034375
transcript.pyannote[1807].end 13767.28034375
transcript.pyannote[1808].speaker SPEAKER_11
transcript.pyannote[1808].start 13767.28034375
transcript.pyannote[1808].end 13777.65846875
transcript.pyannote[1809].speaker SPEAKER_18
transcript.pyannote[1809].start 13767.41534375
transcript.pyannote[1809].end 13767.70221875
transcript.pyannote[1810].speaker SPEAKER_11
transcript.pyannote[1810].start 13777.67534375
transcript.pyannote[1810].end 13781.08409375
transcript.pyannote[1811].speaker SPEAKER_25
transcript.pyannote[1811].start 13781.08409375
transcript.pyannote[1811].end 13781.35409375
transcript.pyannote[1812].speaker SPEAKER_11
transcript.pyannote[1812].start 13781.35409375
transcript.pyannote[1812].end 13783.29471875
transcript.pyannote[1813].speaker SPEAKER_11
transcript.pyannote[1813].start 13783.90221875
transcript.pyannote[1813].end 13784.62784375
transcript.pyannote[1814].speaker SPEAKER_11
transcript.pyannote[1814].start 13785.16784375
transcript.pyannote[1814].end 13785.58971875
transcript.pyannote[1815].speaker SPEAKER_11
transcript.pyannote[1815].start 13786.11284375
transcript.pyannote[1815].end 13788.28971875
transcript.pyannote[1816].speaker SPEAKER_11
transcript.pyannote[1816].start 13788.61034375
transcript.pyannote[1816].end 13791.05721875
transcript.pyannote[1817].speaker SPEAKER_11
transcript.pyannote[1817].start 13791.42846875
transcript.pyannote[1817].end 13791.95159375
transcript.pyannote[1818].speaker SPEAKER_11
transcript.pyannote[1818].start 13792.27221875
transcript.pyannote[1818].end 13800.59159375
transcript.pyannote[1819].speaker SPEAKER_18
transcript.pyannote[1819].start 13797.38534375
transcript.pyannote[1819].end 13797.94221875
transcript.pyannote[1820].speaker SPEAKER_18
transcript.pyannote[1820].start 13798.66784375
transcript.pyannote[1820].end 13799.14034375
transcript.pyannote[1821].speaker SPEAKER_18
transcript.pyannote[1821].start 13799.54534375
transcript.pyannote[1821].end 13800.43971875
transcript.pyannote[1822].speaker SPEAKER_18
transcript.pyannote[1822].start 13800.59159375
transcript.pyannote[1822].end 13826.27534375
transcript.pyannote[1823].speaker SPEAKER_11
transcript.pyannote[1823].start 13803.91596875
transcript.pyannote[1823].end 13804.42221875
transcript.pyannote[1824].speaker SPEAKER_00
transcript.pyannote[1824].start 13811.50971875
transcript.pyannote[1824].end 13812.55596875
transcript.pyannote[1825].speaker SPEAKER_11
transcript.pyannote[1825].start 13824.97596875
transcript.pyannote[1825].end 13828.90784375
transcript.pyannote[1826].speaker SPEAKER_11
transcript.pyannote[1826].start 13829.31284375
transcript.pyannote[1826].end 13856.41409375
transcript.pyannote[1827].speaker SPEAKER_18
transcript.pyannote[1827].start 13829.53221875
transcript.pyannote[1827].end 13830.29159375
transcript.pyannote[1828].speaker SPEAKER_17
transcript.pyannote[1828].start 13830.29159375
transcript.pyannote[1828].end 13830.30846875
transcript.pyannote[1829].speaker SPEAKER_15
transcript.pyannote[1829].start 13830.30846875
transcript.pyannote[1829].end 13830.32534375
transcript.pyannote[1830].speaker SPEAKER_11
transcript.pyannote[1830].start 13856.73471875
transcript.pyannote[1830].end 13861.13909375
transcript.pyannote[1831].speaker SPEAKER_26
transcript.pyannote[1831].start 13856.98784375
transcript.pyannote[1831].end 13857.08909375
transcript.pyannote[1832].speaker SPEAKER_11
transcript.pyannote[1832].start 13861.45971875
transcript.pyannote[1832].end 13868.74971875
transcript.pyannote[1833].speaker SPEAKER_18
transcript.pyannote[1833].start 13868.39534375
transcript.pyannote[1833].end 13889.79284375
transcript.pyannote[1834].speaker SPEAKER_11
transcript.pyannote[1834].start 13869.45846875
transcript.pyannote[1834].end 13869.93096875
transcript.pyannote[1835].speaker SPEAKER_11
transcript.pyannote[1835].start 13876.71471875
transcript.pyannote[1835].end 13877.18721875
transcript.pyannote[1836].speaker SPEAKER_00
transcript.pyannote[1836].start 13877.18721875
transcript.pyannote[1836].end 13877.22096875
transcript.pyannote[1837].speaker SPEAKER_11
transcript.pyannote[1837].start 13889.32034375
transcript.pyannote[1837].end 13907.37659375
transcript.pyannote[1838].speaker SPEAKER_18
transcript.pyannote[1838].start 13891.90221875
transcript.pyannote[1838].end 13891.96971875
transcript.pyannote[1839].speaker SPEAKER_00
transcript.pyannote[1839].start 13901.35221875
transcript.pyannote[1839].end 13901.40284375
transcript.pyannote[1840].speaker SPEAKER_10
transcript.pyannote[1840].start 13901.40284375
transcript.pyannote[1840].end 13901.41971875
transcript.pyannote[1841].speaker SPEAKER_00
transcript.pyannote[1841].start 13901.41971875
transcript.pyannote[1841].end 13901.63909375
transcript.pyannote[1842].speaker SPEAKER_10
transcript.pyannote[1842].start 13904.71034375
transcript.pyannote[1842].end 13904.99721875
transcript.pyannote[1843].speaker SPEAKER_10
transcript.pyannote[1843].start 13905.11534375
transcript.pyannote[1843].end 13907.17409375
transcript.pyannote[1844].speaker SPEAKER_10
transcript.pyannote[1844].start 13911.13971875
transcript.pyannote[1844].end 13912.03409375
transcript.pyannote[1845].speaker SPEAKER_10
transcript.pyannote[1845].start 13912.86096875
transcript.pyannote[1845].end 13918.46346875
transcript.pyannote[1846].speaker SPEAKER_10
transcript.pyannote[1846].start 13918.85159375
transcript.pyannote[1846].end 13924.50471875
transcript.pyannote[1847].speaker SPEAKER_10
transcript.pyannote[1847].start 13924.92659375
transcript.pyannote[1847].end 13927.06971875
transcript.pyannote[1848].speaker SPEAKER_10
transcript.pyannote[1848].start 13927.50846875
transcript.pyannote[1848].end 13930.79909375
transcript.pyannote[1849].speaker SPEAKER_10
transcript.pyannote[1849].start 13930.96784375
transcript.pyannote[1849].end 13931.03534375
transcript.pyannote[1850].speaker SPEAKER_20
transcript.pyannote[1850].start 13931.03534375
transcript.pyannote[1850].end 13931.67659375
transcript.pyannote[1851].speaker SPEAKER_10
transcript.pyannote[1851].start 13931.96346875
transcript.pyannote[1851].end 13932.70596875
transcript.pyannote[1852].speaker SPEAKER_20
transcript.pyannote[1852].start 13932.23346875
transcript.pyannote[1852].end 13933.00971875
transcript.pyannote[1853].speaker SPEAKER_10
transcript.pyannote[1853].start 13933.88721875
transcript.pyannote[1853].end 13934.29221875
transcript.pyannote[1854].speaker SPEAKER_10
transcript.pyannote[1854].start 13934.47784375
transcript.pyannote[1854].end 13942.99971875
transcript.pyannote[1855].speaker SPEAKER_10
transcript.pyannote[1855].start 13943.01659375
transcript.pyannote[1855].end 13947.48846875
transcript.pyannote[1856].speaker SPEAKER_10
transcript.pyannote[1856].start 13948.90596875
transcript.pyannote[1856].end 13949.69909375
transcript.pyannote[1857].speaker SPEAKER_16
transcript.pyannote[1857].start 13950.67784375
transcript.pyannote[1857].end 14022.10971875
transcript.pyannote[1858].speaker SPEAKER_16
transcript.pyannote[1858].start 14022.16034375
transcript.pyannote[1858].end 14035.15409375
transcript.pyannote[1859].speaker SPEAKER_16
transcript.pyannote[1859].start 14036.58846875
transcript.pyannote[1859].end 14038.05659375
transcript.pyannote[1860].speaker SPEAKER_16
transcript.pyannote[1860].start 14039.72721875
transcript.pyannote[1860].end 14041.12784375
transcript.pyannote[1861].speaker SPEAKER_16
transcript.pyannote[1861].start 14041.88721875
transcript.pyannote[1861].end 14070.22034375
transcript.pyannote[1862].speaker SPEAKER_16
transcript.pyannote[1862].start 14070.55784375
transcript.pyannote[1862].end 14086.13346875
transcript.pyannote[1863].speaker SPEAKER_16
transcript.pyannote[1863].start 14086.67346875
transcript.pyannote[1863].end 14092.86659375
transcript.pyannote[1864].speaker SPEAKER_16
transcript.pyannote[1864].start 14095.81971875
transcript.pyannote[1864].end 14096.47784375
transcript.pyannote[1865].speaker SPEAKER_16
transcript.pyannote[1865].start 14097.00096875
transcript.pyannote[1865].end 14097.03471875
transcript.pyannote[1866].speaker SPEAKER_16
transcript.pyannote[1866].start 14097.05159375
transcript.pyannote[1866].end 14097.32159375
transcript.pyannote[1867].speaker SPEAKER_10
transcript.pyannote[1867].start 14099.04284375
transcript.pyannote[1867].end 14107.02471875
transcript.pyannote[1868].speaker SPEAKER_17
transcript.pyannote[1868].start 14111.46284375
transcript.pyannote[1868].end 14113.58909375
transcript.pyannote[1869].speaker SPEAKER_17
transcript.pyannote[1869].start 14114.28096875
transcript.pyannote[1869].end 14121.68909375
transcript.pyannote[1870].speaker SPEAKER_17
transcript.pyannote[1870].start 14123.37659375
transcript.pyannote[1870].end 14124.25409375
transcript.pyannote[1871].speaker SPEAKER_17
transcript.pyannote[1871].start 14125.85721875
transcript.pyannote[1871].end 14126.07659375
transcript.pyannote[1872].speaker SPEAKER_17
transcript.pyannote[1872].start 14128.20284375
transcript.pyannote[1872].end 14130.32909375
transcript.pyannote[1873].speaker SPEAKER_10
transcript.pyannote[1873].start 14136.62346875
transcript.pyannote[1873].end 14139.45846875
transcript.pyannote[1874].speaker SPEAKER_10
transcript.pyannote[1874].start 14140.25159375
transcript.pyannote[1874].end 14146.74846875
transcript.pyannote[1875].speaker SPEAKER_10
transcript.pyannote[1875].start 14146.81596875
transcript.pyannote[1875].end 14150.22471875
transcript.pyannote[1876].speaker SPEAKER_17
transcript.pyannote[1876].start 14149.43159375
transcript.pyannote[1876].end 14149.68471875
transcript.pyannote[1877].speaker SPEAKER_17
transcript.pyannote[1877].start 14150.44409375
transcript.pyannote[1877].end 14151.43971875
transcript.pyannote[1878].speaker SPEAKER_17
transcript.pyannote[1878].start 14151.79409375
transcript.pyannote[1878].end 14152.63784375
transcript.pyannote[1879].speaker SPEAKER_10
transcript.pyannote[1879].start 14152.70534375
transcript.pyannote[1879].end 14153.02596875
transcript.pyannote[1880].speaker SPEAKER_17
transcript.pyannote[1880].start 14161.83471875
transcript.pyannote[1880].end 14166.44159375
transcript.pyannote[1881].speaker SPEAKER_20
transcript.pyannote[1881].start 14161.95284375
transcript.pyannote[1881].end 14162.02034375
transcript.pyannote[1882].speaker SPEAKER_17
transcript.pyannote[1882].start 14166.59346875
transcript.pyannote[1882].end 14172.65159375
transcript.pyannote[1883].speaker SPEAKER_17
transcript.pyannote[1883].start 14173.76534375
transcript.pyannote[1883].end 14174.96346875
transcript.pyannote[1884].speaker SPEAKER_10
transcript.pyannote[1884].start 14174.57534375
transcript.pyannote[1884].end 14174.94659375
transcript.pyannote[1885].speaker SPEAKER_10
transcript.pyannote[1885].start 14174.96346875
transcript.pyannote[1885].end 14175.35159375
transcript.pyannote[1886].speaker SPEAKER_17
transcript.pyannote[1886].start 14175.04784375
transcript.pyannote[1886].end 14181.88221875
transcript.pyannote[1887].speaker SPEAKER_17
transcript.pyannote[1887].start 14182.42221875
transcript.pyannote[1887].end 14193.10409375
transcript.pyannote[1888].speaker SPEAKER_06
transcript.pyannote[1888].start 14193.52596875
transcript.pyannote[1888].end 14195.38221875
transcript.pyannote[1889].speaker SPEAKER_17
transcript.pyannote[1889].start 14194.85909375
transcript.pyannote[1889].end 14196.29346875
transcript.pyannote[1890].speaker SPEAKER_06
transcript.pyannote[1890].start 14196.05721875
transcript.pyannote[1890].end 14206.21596875
transcript.pyannote[1891].speaker SPEAKER_02
transcript.pyannote[1891].start 14205.65909375
transcript.pyannote[1891].end 14205.67596875
transcript.pyannote[1892].speaker SPEAKER_07
transcript.pyannote[1892].start 14205.67596875
transcript.pyannote[1892].end 14206.41846875
transcript.pyannote[1893].speaker SPEAKER_06
transcript.pyannote[1893].start 14206.41846875
transcript.pyannote[1893].end 14206.43534375
transcript.pyannote[1894].speaker SPEAKER_06
transcript.pyannote[1894].start 14206.62096875
transcript.pyannote[1894].end 14209.37159375
transcript.pyannote[1895].speaker SPEAKER_07
transcript.pyannote[1895].start 14207.11034375
transcript.pyannote[1895].end 14207.21159375
transcript.pyannote[1896].speaker SPEAKER_07
transcript.pyannote[1896].start 14207.32971875
transcript.pyannote[1896].end 14207.41409375
transcript.pyannote[1897].speaker SPEAKER_06
transcript.pyannote[1897].start 14209.65846875
transcript.pyannote[1897].end 14213.47221875
transcript.pyannote[1898].speaker SPEAKER_17
transcript.pyannote[1898].start 14216.00346875
transcript.pyannote[1898].end 14221.69034375
transcript.pyannote[1899].speaker SPEAKER_17
transcript.pyannote[1899].start 14222.34846875
transcript.pyannote[1899].end 14229.14909375
transcript.pyannote[1900].speaker SPEAKER_17
transcript.pyannote[1900].start 14230.58346875
transcript.pyannote[1900].end 14234.71784375
transcript.pyannote[1901].speaker SPEAKER_17
transcript.pyannote[1901].start 14234.86971875
transcript.pyannote[1901].end 14247.64409375
transcript.pyannote[1902].speaker SPEAKER_17
transcript.pyannote[1902].start 14247.79596875
transcript.pyannote[1902].end 14253.80346875
transcript.pyannote[1903].speaker SPEAKER_06
transcript.pyannote[1903].start 14256.01409375
transcript.pyannote[1903].end 14257.12784375
transcript.pyannote[1904].speaker SPEAKER_06
transcript.pyannote[1904].start 14257.83659375
transcript.pyannote[1904].end 14273.44596875
transcript.pyannote[1905].speaker SPEAKER_17
transcript.pyannote[1905].start 14273.54721875
transcript.pyannote[1905].end 14276.44971875
transcript.pyannote[1906].speaker SPEAKER_06
transcript.pyannote[1906].start 14275.48784375
transcript.pyannote[1906].end 14278.40721875
transcript.pyannote[1907].speaker SPEAKER_06
transcript.pyannote[1907].start 14278.60971875
transcript.pyannote[1907].end 14278.66034375
transcript.pyannote[1908].speaker SPEAKER_17
transcript.pyannote[1908].start 14278.66034375
transcript.pyannote[1908].end 14283.08159375
transcript.pyannote[1909].speaker SPEAKER_06
transcript.pyannote[1909].start 14278.67721875
transcript.pyannote[1909].end 14278.74471875
transcript.pyannote[1910].speaker SPEAKER_06
transcript.pyannote[1910].start 14280.83721875
transcript.pyannote[1910].end 14281.39409375
transcript.pyannote[1911].speaker SPEAKER_06
transcript.pyannote[1911].start 14283.30096875
transcript.pyannote[1911].end 14286.10221875
transcript.pyannote[1912].speaker SPEAKER_17
transcript.pyannote[1912].start 14284.56659375
transcript.pyannote[1912].end 14291.21534375
transcript.pyannote[1913].speaker SPEAKER_06
transcript.pyannote[1913].start 14289.64596875
transcript.pyannote[1913].end 14289.74721875
transcript.pyannote[1914].speaker SPEAKER_17
transcript.pyannote[1914].start 14292.22784375
transcript.pyannote[1914].end 14335.88346875
transcript.pyannote[1915].speaker SPEAKER_06
transcript.pyannote[1915].start 14334.31409375
transcript.pyannote[1915].end 14335.17471875
transcript.pyannote[1916].speaker SPEAKER_06
transcript.pyannote[1916].start 14335.52909375
transcript.pyannote[1916].end 14350.56471875
transcript.pyannote[1917].speaker SPEAKER_17
transcript.pyannote[1917].start 14349.97409375
transcript.pyannote[1917].end 14351.72909375
transcript.pyannote[1918].speaker SPEAKER_06
transcript.pyannote[1918].start 14351.98221875
transcript.pyannote[1918].end 14360.33534375
transcript.pyannote[1919].speaker SPEAKER_17
transcript.pyannote[1919].start 14352.18471875
transcript.pyannote[1919].end 14353.14659375
transcript.pyannote[1920].speaker SPEAKER_17
transcript.pyannote[1920].start 14359.79534375
transcript.pyannote[1920].end 14364.53721875
transcript.pyannote[1921].speaker SPEAKER_06
transcript.pyannote[1921].start 14363.10284375
transcript.pyannote[1921].end 14363.79471875
transcript.pyannote[1922].speaker SPEAKER_06
transcript.pyannote[1922].start 14364.60471875
transcript.pyannote[1922].end 14368.30034375
transcript.pyannote[1923].speaker SPEAKER_17
transcript.pyannote[1923].start 14368.50284375
transcript.pyannote[1923].end 14372.62034375
transcript.pyannote[1924].speaker SPEAKER_06
transcript.pyannote[1924].start 14373.36284375
transcript.pyannote[1924].end 14395.36784375
transcript.pyannote[1925].speaker SPEAKER_17
transcript.pyannote[1925].start 14376.41721875
transcript.pyannote[1925].end 14376.87284375
transcript.pyannote[1926].speaker SPEAKER_17
transcript.pyannote[1926].start 14394.92909375
transcript.pyannote[1926].end 14398.01721875
transcript.pyannote[1927].speaker SPEAKER_06
transcript.pyannote[1927].start 14395.97534375
transcript.pyannote[1927].end 14396.93721875
transcript.pyannote[1928].speaker SPEAKER_06
transcript.pyannote[1928].start 14397.79784375
transcript.pyannote[1928].end 14397.84846875
transcript.pyannote[1929].speaker SPEAKER_06
transcript.pyannote[1929].start 14397.86534375
transcript.pyannote[1929].end 14399.50221875
transcript.pyannote[1930].speaker SPEAKER_17
transcript.pyannote[1930].start 14398.89471875
transcript.pyannote[1930].end 14402.35409375
transcript.pyannote[1931].speaker SPEAKER_06
transcript.pyannote[1931].start 14400.21096875
transcript.pyannote[1931].end 14400.27846875
transcript.pyannote[1932].speaker SPEAKER_06
transcript.pyannote[1932].start 14402.35409375
transcript.pyannote[1932].end 14403.31596875
transcript.pyannote[1933].speaker SPEAKER_17
transcript.pyannote[1933].start 14403.13034375
transcript.pyannote[1933].end 14413.30596875
transcript.pyannote[1934].speaker SPEAKER_06
transcript.pyannote[1934].start 14409.00284375
transcript.pyannote[1934].end 14409.64409375
transcript.pyannote[1935].speaker SPEAKER_06
transcript.pyannote[1935].start 14413.52534375
transcript.pyannote[1935].end 14417.60909375
transcript.pyannote[1936].speaker SPEAKER_17
transcript.pyannote[1936].start 14418.21659375
transcript.pyannote[1936].end 14423.07659375
transcript.pyannote[1937].speaker SPEAKER_06
transcript.pyannote[1937].start 14420.47784375
transcript.pyannote[1937].end 14421.06846875
transcript.pyannote[1938].speaker SPEAKER_06
transcript.pyannote[1938].start 14423.11034375
transcript.pyannote[1938].end 14424.25784375
transcript.pyannote[1939].speaker SPEAKER_06
transcript.pyannote[1939].start 14424.52784375
transcript.pyannote[1939].end 14429.03346875
transcript.pyannote[1940].speaker SPEAKER_17
transcript.pyannote[1940].start 14428.72971875
transcript.pyannote[1940].end 14467.01909375
transcript.pyannote[1941].speaker SPEAKER_17
transcript.pyannote[1941].start 14467.40721875
transcript.pyannote[1941].end 14470.03971875
transcript.pyannote[1942].speaker SPEAKER_20
transcript.pyannote[1942].start 14469.39846875
transcript.pyannote[1942].end 14470.17471875
transcript.pyannote[1943].speaker SPEAKER_17
transcript.pyannote[1943].start 14472.65534375
transcript.pyannote[1943].end 14484.11346875
transcript.pyannote[1944].speaker SPEAKER_20
transcript.pyannote[1944].start 14472.80721875
transcript.pyannote[1944].end 14473.16159375
transcript.pyannote[1945].speaker SPEAKER_10
transcript.pyannote[1945].start 14484.11346875
transcript.pyannote[1945].end 14484.16409375
transcript.pyannote[1946].speaker SPEAKER_17
transcript.pyannote[1946].start 14484.72096875
transcript.pyannote[1946].end 14485.05846875
transcript.pyannote[1947].speaker SPEAKER_11
transcript.pyannote[1947].start 14485.05846875
transcript.pyannote[1947].end 14492.26409375
transcript.pyannote[1948].speaker SPEAKER_10
transcript.pyannote[1948].start 14485.07534375
transcript.pyannote[1948].end 14486.62784375
transcript.pyannote[1949].speaker SPEAKER_17
transcript.pyannote[1949].start 14486.62784375
transcript.pyannote[1949].end 14486.64471875
transcript.pyannote[1950].speaker SPEAKER_10
transcript.pyannote[1950].start 14486.64471875
transcript.pyannote[1950].end 14486.72909375
transcript.pyannote[1951].speaker SPEAKER_11
transcript.pyannote[1951].start 14492.82096875
transcript.pyannote[1951].end 14497.05659375
transcript.pyannote[1952].speaker SPEAKER_11
transcript.pyannote[1952].start 14497.32659375
transcript.pyannote[1952].end 14507.60346875
transcript.pyannote[1953].speaker SPEAKER_11
transcript.pyannote[1953].start 14508.07596875
transcript.pyannote[1953].end 14510.70846875
transcript.pyannote[1954].speaker SPEAKER_11
transcript.pyannote[1954].start 14511.85596875
transcript.pyannote[1954].end 14511.87284375
transcript.pyannote[1955].speaker SPEAKER_10
transcript.pyannote[1955].start 14511.87284375
transcript.pyannote[1955].end 14512.07534375
transcript.pyannote[1956].speaker SPEAKER_11
transcript.pyannote[1956].start 14512.66596875
transcript.pyannote[1956].end 14512.68284375
transcript.pyannote[1957].speaker SPEAKER_10
transcript.pyannote[1957].start 14512.68284375
transcript.pyannote[1957].end 14514.84284375
transcript.pyannote[1958].speaker SPEAKER_10
transcript.pyannote[1958].start 14516.53034375
transcript.pyannote[1958].end 14518.60596875
transcript.pyannote[1959].speaker SPEAKER_10
transcript.pyannote[1959].start 14519.61846875
transcript.pyannote[1959].end 14522.68971875
transcript.pyannote[1960].speaker SPEAKER_05
transcript.pyannote[1960].start 14523.48284375
transcript.pyannote[1960].end 14535.04221875
transcript.pyannote[1961].speaker SPEAKER_05
transcript.pyannote[1961].start 14535.49784375
transcript.pyannote[1961].end 14562.32909375
transcript.pyannote[1962].speaker SPEAKER_05
transcript.pyannote[1962].start 14562.41346875
transcript.pyannote[1962].end 14612.44784375
transcript.pyannote[1963].speaker SPEAKER_05
transcript.pyannote[1963].start 14612.88659375
transcript.pyannote[1963].end 14647.63221875
transcript.pyannote[1964].speaker SPEAKER_05
transcript.pyannote[1964].start 14648.18909375
transcript.pyannote[1964].end 14649.47159375
transcript.pyannote[1965].speaker SPEAKER_05
transcript.pyannote[1965].start 14649.85971875
transcript.pyannote[1965].end 14654.29784375
transcript.pyannote[1966].speaker SPEAKER_05
transcript.pyannote[1966].start 14654.66909375
transcript.pyannote[1966].end 14655.24284375
transcript.pyannote[1967].speaker SPEAKER_10
transcript.pyannote[1967].start 14656.71096875
transcript.pyannote[1967].end 14657.63909375
transcript.pyannote[1968].speaker SPEAKER_18
transcript.pyannote[1968].start 14658.29721875
transcript.pyannote[1968].end 14660.11971875
transcript.pyannote[1969].speaker SPEAKER_18
transcript.pyannote[1969].start 14660.44034375
transcript.pyannote[1969].end 14661.68909375
transcript.pyannote[1970].speaker SPEAKER_18
transcript.pyannote[1970].start 14661.97596875
transcript.pyannote[1970].end 14690.39346875
transcript.pyannote[1971].speaker SPEAKER_18
transcript.pyannote[1971].start 14691.52409375
transcript.pyannote[1971].end 14709.54659375
transcript.pyannote[1972].speaker SPEAKER_18
transcript.pyannote[1972].start 14709.90096875
transcript.pyannote[1972].end 14710.96409375
transcript.pyannote[1973].speaker SPEAKER_18
transcript.pyannote[1973].start 14711.08221875
transcript.pyannote[1973].end 14722.11846875
transcript.pyannote[1974].speaker SPEAKER_18
transcript.pyannote[1974].start 14722.65846875
transcript.pyannote[1974].end 14724.36284375
transcript.pyannote[1975].speaker SPEAKER_18
transcript.pyannote[1975].start 14725.24034375
transcript.pyannote[1975].end 14727.02909375
transcript.pyannote[1976].speaker SPEAKER_18
transcript.pyannote[1976].start 14727.29909375
transcript.pyannote[1976].end 14728.12596875
transcript.pyannote[1977].speaker SPEAKER_18
transcript.pyannote[1977].start 14728.34534375
transcript.pyannote[1977].end 14733.34034375
transcript.pyannote[1978].speaker SPEAKER_18
transcript.pyannote[1978].start 14734.23471875
transcript.pyannote[1978].end 14744.56221875
transcript.pyannote[1979].speaker SPEAKER_18
transcript.pyannote[1979].start 14745.08534375
transcript.pyannote[1979].end 14747.07659375
transcript.pyannote[1980].speaker SPEAKER_18
transcript.pyannote[1980].start 14747.68409375
transcript.pyannote[1980].end 14758.99034375
transcript.pyannote[1981].speaker SPEAKER_18
transcript.pyannote[1981].start 14759.47971875
transcript.pyannote[1981].end 14761.04909375
transcript.pyannote[1982].speaker SPEAKER_05
transcript.pyannote[1982].start 14761.97721875
transcript.pyannote[1982].end 14762.19659375
transcript.pyannote[1983].speaker SPEAKER_05
transcript.pyannote[1983].start 14762.73659375
transcript.pyannote[1983].end 14780.79284375
transcript.pyannote[1984].speaker SPEAKER_05
transcript.pyannote[1984].start 14781.04596875
transcript.pyannote[1984].end 14786.96909375
transcript.pyannote[1985].speaker SPEAKER_20
transcript.pyannote[1985].start 14784.82596875
transcript.pyannote[1985].end 14785.58534375
transcript.pyannote[1986].speaker SPEAKER_00
transcript.pyannote[1986].start 14785.58534375
transcript.pyannote[1986].end 14785.63596875
transcript.pyannote[1987].speaker SPEAKER_05
transcript.pyannote[1987].start 14787.23909375
transcript.pyannote[1987].end 14794.46159375
transcript.pyannote[1988].speaker SPEAKER_18
transcript.pyannote[1988].start 14793.11159375
transcript.pyannote[1988].end 14793.38159375
transcript.pyannote[1989].speaker SPEAKER_18
transcript.pyannote[1989].start 14794.46159375
transcript.pyannote[1989].end 14825.76471875
transcript.pyannote[1990].speaker SPEAKER_05
transcript.pyannote[1990].start 14824.70159375
transcript.pyannote[1990].end 14832.88596875
transcript.pyannote[1991].speaker SPEAKER_18
transcript.pyannote[1991].start 14830.82721875
transcript.pyannote[1991].end 14835.21471875
transcript.pyannote[1992].speaker SPEAKER_05
transcript.pyannote[1992].start 14833.94909375
transcript.pyannote[1992].end 14834.28659375
transcript.pyannote[1993].speaker SPEAKER_05
transcript.pyannote[1993].start 14834.72534375
transcript.pyannote[1993].end 14835.94034375
transcript.pyannote[1994].speaker SPEAKER_18
transcript.pyannote[1994].start 14835.51846875
transcript.pyannote[1994].end 14846.87534375
transcript.pyannote[1995].speaker SPEAKER_05
transcript.pyannote[1995].start 14845.10346875
transcript.pyannote[1995].end 14853.22034375
transcript.pyannote[1996].speaker SPEAKER_18
transcript.pyannote[1996].start 14848.54596875
transcript.pyannote[1996].end 14848.96784375
transcript.pyannote[1997].speaker SPEAKER_05
transcript.pyannote[1997].start 14853.74346875
transcript.pyannote[1997].end 14860.32471875
transcript.pyannote[1998].speaker SPEAKER_18
transcript.pyannote[1998].start 14858.09721875
transcript.pyannote[1998].end 14858.83971875
transcript.pyannote[1999].speaker SPEAKER_18
transcript.pyannote[1999].start 14860.03784375
transcript.pyannote[1999].end 14866.65284375
transcript.pyannote[2000].speaker SPEAKER_18
transcript.pyannote[2000].start 14868.08721875
transcript.pyannote[2000].end 14886.53159375
transcript.pyannote[2001].speaker SPEAKER_18
transcript.pyannote[2001].start 14886.91971875
transcript.pyannote[2001].end 14887.18971875
transcript.pyannote[2002].speaker SPEAKER_05
transcript.pyannote[2002].start 14887.44284375
transcript.pyannote[2002].end 14896.26846875
transcript.pyannote[2003].speaker SPEAKER_18
transcript.pyannote[2003].start 14896.09971875
transcript.pyannote[2003].end 14897.06159375
transcript.pyannote[2004].speaker SPEAKER_05
transcript.pyannote[2004].start 14896.60596875
transcript.pyannote[2004].end 14896.80846875
transcript.pyannote[2005].speaker SPEAKER_05
transcript.pyannote[2005].start 14897.23034375
transcript.pyannote[2005].end 14898.68159375
transcript.pyannote[2006].speaker SPEAKER_05
transcript.pyannote[2006].start 14899.06971875
transcript.pyannote[2006].end 14906.52846875
transcript.pyannote[2007].speaker SPEAKER_00
transcript.pyannote[2007].start 14905.31346875
transcript.pyannote[2007].end 14905.33034375
transcript.pyannote[2008].speaker SPEAKER_06
transcript.pyannote[2008].start 14905.33034375
transcript.pyannote[2008].end 14905.95471875
transcript.pyannote[2009].speaker SPEAKER_00
transcript.pyannote[2009].start 14905.95471875
transcript.pyannote[2009].end 14906.12346875
transcript.pyannote[2010].speaker SPEAKER_05
transcript.pyannote[2010].start 14906.69721875
transcript.pyannote[2010].end 14912.11409375
transcript.pyannote[2011].speaker SPEAKER_00
transcript.pyannote[2011].start 14907.99659375
transcript.pyannote[2011].end 14908.58721875
transcript.pyannote[2012].speaker SPEAKER_04
transcript.pyannote[2012].start 14908.58721875
transcript.pyannote[2012].end 14909.04284375
transcript.pyannote[2013].speaker SPEAKER_00
transcript.pyannote[2013].start 14909.04284375
transcript.pyannote[2013].end 14909.11034375
transcript.pyannote[2014].speaker SPEAKER_04
transcript.pyannote[2014].start 14913.19409375
transcript.pyannote[2014].end 14914.12221875
transcript.pyannote[2015].speaker SPEAKER_04
transcript.pyannote[2015].start 14914.20659375
transcript.pyannote[2015].end 14914.40909375
transcript.pyannote[2016].speaker SPEAKER_05
transcript.pyannote[2016].start 14915.91096875
transcript.pyannote[2016].end 14915.94471875
transcript.pyannote[2017].speaker SPEAKER_04
transcript.pyannote[2017].start 14915.94471875
transcript.pyannote[2017].end 14919.16784375
transcript.pyannote[2018].speaker SPEAKER_05
transcript.pyannote[2018].start 14916.16409375
transcript.pyannote[2018].end 14916.90659375
transcript.pyannote[2019].speaker SPEAKER_18
transcript.pyannote[2019].start 14919.91034375
transcript.pyannote[2019].end 14924.92221875
transcript.pyannote[2020].speaker SPEAKER_18
transcript.pyannote[2020].start 14925.05721875
transcript.pyannote[2020].end 14927.65596875
transcript.pyannote[2021].speaker SPEAKER_05
transcript.pyannote[2021].start 14926.39034375
transcript.pyannote[2021].end 14932.73534375
transcript.pyannote[2022].speaker SPEAKER_04
transcript.pyannote[2022].start 14928.95534375
transcript.pyannote[2022].end 14929.79909375
transcript.pyannote[2023].speaker SPEAKER_04
transcript.pyannote[2023].start 14930.23784375
transcript.pyannote[2023].end 14930.76096875
transcript.pyannote[2024].speaker SPEAKER_04
transcript.pyannote[2024].start 14930.77784375
transcript.pyannote[2024].end 14930.86221875
transcript.pyannote[2025].speaker SPEAKER_05
transcript.pyannote[2025].start 14932.75221875
transcript.pyannote[2025].end 14937.62909375
transcript.pyannote[2026].speaker SPEAKER_04
transcript.pyannote[2026].start 14937.62909375
transcript.pyannote[2026].end 14937.64596875
transcript.pyannote[2027].speaker SPEAKER_10
transcript.pyannote[2027].start 14938.08471875
transcript.pyannote[2027].end 14942.97846875
transcript.pyannote[2028].speaker SPEAKER_11
transcript.pyannote[2028].start 14939.02971875
transcript.pyannote[2028].end 14942.03346875
transcript.pyannote[2029].speaker SPEAKER_20
transcript.pyannote[2029].start 14942.03346875
transcript.pyannote[2029].end 14942.25284375
transcript.pyannote[2030].speaker SPEAKER_11
transcript.pyannote[2030].start 14942.25284375
transcript.pyannote[2030].end 14942.53971875
transcript.pyannote[2031].speaker SPEAKER_20
transcript.pyannote[2031].start 14942.53971875
transcript.pyannote[2031].end 14943.01221875
transcript.pyannote[2032].speaker SPEAKER_11
transcript.pyannote[2032].start 14942.97846875
transcript.pyannote[2032].end 14943.06284375
transcript.pyannote[2033].speaker SPEAKER_10
transcript.pyannote[2033].start 14943.01221875
transcript.pyannote[2033].end 14943.07971875
transcript.pyannote[2034].speaker SPEAKER_11
transcript.pyannote[2034].start 14943.07971875
transcript.pyannote[2034].end 14943.11346875
transcript.pyannote[2035].speaker SPEAKER_10
transcript.pyannote[2035].start 14943.11346875
transcript.pyannote[2035].end 14943.13034375
transcript.pyannote[2036].speaker SPEAKER_11
transcript.pyannote[2036].start 14943.13034375
transcript.pyannote[2036].end 14943.14721875
transcript.pyannote[2037].speaker SPEAKER_10
transcript.pyannote[2037].start 14943.14721875
transcript.pyannote[2037].end 14943.18096875
transcript.pyannote[2038].speaker SPEAKER_20
transcript.pyannote[2038].start 14943.18096875
transcript.pyannote[2038].end 14943.28221875
transcript.pyannote[2039].speaker SPEAKER_11
transcript.pyannote[2039].start 14943.60284375
transcript.pyannote[2039].end 14944.49721875
transcript.pyannote[2040].speaker SPEAKER_11
transcript.pyannote[2040].start 14944.73346875
transcript.pyannote[2040].end 14947.38284375
transcript.pyannote[2041].speaker SPEAKER_11
transcript.pyannote[2041].start 14947.90596875
transcript.pyannote[2041].end 14952.12471875
transcript.pyannote[2042].speaker SPEAKER_11
transcript.pyannote[2042].start 14952.78284375
transcript.pyannote[2042].end 14957.06909375
transcript.pyannote[2043].speaker SPEAKER_11
transcript.pyannote[2043].start 14957.55846875
transcript.pyannote[2043].end 14961.00096875
transcript.pyannote[2044].speaker SPEAKER_11
transcript.pyannote[2044].start 14961.64221875
transcript.pyannote[2044].end 14965.01721875
transcript.pyannote[2045].speaker SPEAKER_11
transcript.pyannote[2045].start 14965.47284375
transcript.pyannote[2045].end 14966.55284375
transcript.pyannote[2046].speaker SPEAKER_11
transcript.pyannote[2046].start 14967.37971875
transcript.pyannote[2046].end 14969.37096875
transcript.pyannote[2047].speaker SPEAKER_11
transcript.pyannote[2047].start 14969.77596875
transcript.pyannote[2047].end 14973.55596875
transcript.pyannote[2048].speaker SPEAKER_04
transcript.pyannote[2048].start 14973.42096875
transcript.pyannote[2048].end 14974.83846875
transcript.pyannote[2049].speaker SPEAKER_11
transcript.pyannote[2049].start 14974.16346875
transcript.pyannote[2049].end 14985.70596875
transcript.pyannote[2050].speaker SPEAKER_04
transcript.pyannote[2050].start 14975.88471875
transcript.pyannote[2050].end 14977.40346875
transcript.pyannote[2051].speaker SPEAKER_11
transcript.pyannote[2051].start 14985.99284375
transcript.pyannote[2051].end 14987.88284375
transcript.pyannote[2052].speaker SPEAKER_11
transcript.pyannote[2052].start 14988.11909375
transcript.pyannote[2052].end 14989.16534375
transcript.pyannote[2053].speaker SPEAKER_11
transcript.pyannote[2053].start 14989.57034375
transcript.pyannote[2053].end 14995.20659375
transcript.pyannote[2054].speaker SPEAKER_11
transcript.pyannote[2054].start 14995.91534375
transcript.pyannote[2054].end 14999.03721875
transcript.pyannote[2055].speaker SPEAKER_11
transcript.pyannote[2055].start 14999.56034375
transcript.pyannote[2055].end 15000.13409375
transcript.pyannote[2056].speaker SPEAKER_11
transcript.pyannote[2056].start 15000.48846875
transcript.pyannote[2056].end 15001.23096875
transcript.pyannote[2057].speaker SPEAKER_11
transcript.pyannote[2057].start 15002.09159375
transcript.pyannote[2057].end 15004.08284375
transcript.pyannote[2058].speaker SPEAKER_11
transcript.pyannote[2058].start 15004.52159375
transcript.pyannote[2058].end 15006.02346875
transcript.pyannote[2059].speaker SPEAKER_11
transcript.pyannote[2059].start 15006.07409375
transcript.pyannote[2059].end 15007.10346875
transcript.pyannote[2060].speaker SPEAKER_11
transcript.pyannote[2060].start 15007.40721875
transcript.pyannote[2060].end 15008.79096875
transcript.pyannote[2061].speaker SPEAKER_11
transcript.pyannote[2061].start 15010.00596875
transcript.pyannote[2061].end 15014.49471875
transcript.pyannote[2062].speaker SPEAKER_11
transcript.pyannote[2062].start 15016.03034375
transcript.pyannote[2062].end 15018.32534375
transcript.pyannote[2063].speaker SPEAKER_10
transcript.pyannote[2063].start 15017.17784375
transcript.pyannote[2063].end 15017.19471875
transcript.pyannote[2064].speaker SPEAKER_04
transcript.pyannote[2064].start 15017.19471875
transcript.pyannote[2064].end 15017.38034375
transcript.pyannote[2065].speaker SPEAKER_10
transcript.pyannote[2065].start 15018.32534375
transcript.pyannote[2065].end 15018.37596875
transcript.pyannote[2066].speaker SPEAKER_04
transcript.pyannote[2066].start 15019.11846875
transcript.pyannote[2066].end 15045.89909375
transcript.pyannote[2067].speaker SPEAKER_04
transcript.pyannote[2067].start 15046.21971875
transcript.pyannote[2067].end 15062.79096875
transcript.pyannote[2068].speaker SPEAKER_04
transcript.pyannote[2068].start 15063.12846875
transcript.pyannote[2068].end 15066.28409375
transcript.pyannote[2069].speaker SPEAKER_04
transcript.pyannote[2069].start 15066.43596875
transcript.pyannote[2069].end 15083.32784375
transcript.pyannote[2070].speaker SPEAKER_04
transcript.pyannote[2070].start 15083.96909375
transcript.pyannote[2070].end 15085.31909375
transcript.pyannote[2071].speaker SPEAKER_04
transcript.pyannote[2071].start 15085.72409375
transcript.pyannote[2071].end 15093.89159375
transcript.pyannote[2072].speaker SPEAKER_04
transcript.pyannote[2072].start 15094.51596875
transcript.pyannote[2072].end 15104.35409375
transcript.pyannote[2073].speaker SPEAKER_04
transcript.pyannote[2073].start 15104.72534375
transcript.pyannote[2073].end 15108.53909375
transcript.pyannote[2074].speaker SPEAKER_04
transcript.pyannote[2074].start 15108.89346875
transcript.pyannote[2074].end 15110.09159375
transcript.pyannote[2075].speaker SPEAKER_04
transcript.pyannote[2075].start 15110.46284375
transcript.pyannote[2075].end 15114.73221875
transcript.pyannote[2076].speaker SPEAKER_04
transcript.pyannote[2076].start 15115.15409375
transcript.pyannote[2076].end 15132.77159375
transcript.pyannote[2077].speaker SPEAKER_04
transcript.pyannote[2077].start 15133.02471875
transcript.pyannote[2077].end 15137.96909375
transcript.pyannote[2078].speaker SPEAKER_04
transcript.pyannote[2078].start 15138.72846875
transcript.pyannote[2078].end 15145.24221875
transcript.pyannote[2079].speaker SPEAKER_04
transcript.pyannote[2079].start 15145.81596875
transcript.pyannote[2079].end 15152.21159375
transcript.pyannote[2080].speaker SPEAKER_04
transcript.pyannote[2080].start 15152.56596875
transcript.pyannote[2080].end 15159.45096875
transcript.pyannote[2081].speaker SPEAKER_04
transcript.pyannote[2081].start 15159.97409375
transcript.pyannote[2081].end 15164.91846875
transcript.pyannote[2082].speaker SPEAKER_04
transcript.pyannote[2082].start 15165.82971875
transcript.pyannote[2082].end 15167.92221875
transcript.pyannote[2083].speaker SPEAKER_04
transcript.pyannote[2083].start 15168.73221875
transcript.pyannote[2083].end 15170.28471875
transcript.pyannote[2084].speaker SPEAKER_04
transcript.pyannote[2084].start 15171.56721875
transcript.pyannote[2084].end 15172.81596875
transcript.pyannote[2085].speaker SPEAKER_04
transcript.pyannote[2085].start 15173.37284375
transcript.pyannote[2085].end 15174.65534375
transcript.pyannote[2086].speaker SPEAKER_04
transcript.pyannote[2086].start 15174.89159375
transcript.pyannote[2086].end 15179.02596875
transcript.pyannote[2087].speaker SPEAKER_00
transcript.pyannote[2087].start 15178.45221875
transcript.pyannote[2087].end 15178.50284375
transcript.pyannote[2088].speaker SPEAKER_04
transcript.pyannote[2088].start 15179.97096875
transcript.pyannote[2088].end 15185.55659375
transcript.pyannote[2089].speaker SPEAKER_04
transcript.pyannote[2089].start 15185.92784375
transcript.pyannote[2089].end 15195.66471875
transcript.pyannote[2090].speaker SPEAKER_04
transcript.pyannote[2090].start 15196.49159375
transcript.pyannote[2090].end 15199.79909375
transcript.pyannote[2091].speaker SPEAKER_04
transcript.pyannote[2091].start 15200.20409375
transcript.pyannote[2091].end 15207.52784375
transcript.pyannote[2092].speaker SPEAKER_04
transcript.pyannote[2092].start 15208.15221875
transcript.pyannote[2092].end 15211.08846875
transcript.pyannote[2093].speaker SPEAKER_04
transcript.pyannote[2093].start 15211.66221875
transcript.pyannote[2093].end 15213.53534375
transcript.pyannote[2094].speaker SPEAKER_04
transcript.pyannote[2094].start 15213.78846875
transcript.pyannote[2094].end 15217.23096875
transcript.pyannote[2095].speaker SPEAKER_04
transcript.pyannote[2095].start 15217.90596875
transcript.pyannote[2095].end 15219.05346875
transcript.pyannote[2096].speaker SPEAKER_04
transcript.pyannote[2096].start 15219.74534375
transcript.pyannote[2096].end 15224.06534375
transcript.pyannote[2097].speaker SPEAKER_10
transcript.pyannote[2097].start 15225.06096875
transcript.pyannote[2097].end 15227.18721875
transcript.pyannote[2098].speaker SPEAKER_18
transcript.pyannote[2098].start 15227.77784375
transcript.pyannote[2098].end 15268.05846875
transcript.pyannote[2099].speaker SPEAKER_18
transcript.pyannote[2099].start 15268.44659375
transcript.pyannote[2099].end 15279.83721875
transcript.pyannote[2100].speaker SPEAKER_18
transcript.pyannote[2100].start 15280.42784375
transcript.pyannote[2100].end 15285.52409375
transcript.pyannote[2101].speaker SPEAKER_18
transcript.pyannote[2101].start 15286.94159375
transcript.pyannote[2101].end 15287.00909375
transcript.pyannote[2102].speaker SPEAKER_04
transcript.pyannote[2102].start 15287.53221875
transcript.pyannote[2102].end 15297.80909375
transcript.pyannote[2103].speaker SPEAKER_05
transcript.pyannote[2103].start 15290.31659375
transcript.pyannote[2103].end 15290.72159375
transcript.pyannote[2104].speaker SPEAKER_05
transcript.pyannote[2104].start 15290.85659375
transcript.pyannote[2104].end 15301.36971875
transcript.pyannote[2105].speaker SPEAKER_05
transcript.pyannote[2105].start 15301.48784375
transcript.pyannote[2105].end 15303.04034375
transcript.pyannote[2106].speaker SPEAKER_18
transcript.pyannote[2106].start 15303.07409375
transcript.pyannote[2106].end 15307.15784375
transcript.pyannote[2107].speaker SPEAKER_18
transcript.pyannote[2107].start 15307.54596875
transcript.pyannote[2107].end 15311.76471875
transcript.pyannote[2108].speaker SPEAKER_18
transcript.pyannote[2108].start 15311.88284375
transcript.pyannote[2108].end 15329.92221875
transcript.pyannote[2109].speaker SPEAKER_05
transcript.pyannote[2109].start 15321.45096875
transcript.pyannote[2109].end 15322.53096875
transcript.pyannote[2110].speaker SPEAKER_05
transcript.pyannote[2110].start 15327.81284375
transcript.pyannote[2110].end 15331.13721875
transcript.pyannote[2111].speaker SPEAKER_05
transcript.pyannote[2111].start 15331.40721875
transcript.pyannote[2111].end 15335.67659375
transcript.pyannote[2112].speaker SPEAKER_05
transcript.pyannote[2112].start 15336.26721875
transcript.pyannote[2112].end 15336.45284375
transcript.pyannote[2113].speaker SPEAKER_18
transcript.pyannote[2113].start 15338.27534375
transcript.pyannote[2113].end 15352.77096875
transcript.pyannote[2114].speaker SPEAKER_05
transcript.pyannote[2114].start 15350.86409375
transcript.pyannote[2114].end 15369.13971875
transcript.pyannote[2115].speaker SPEAKER_18
transcript.pyannote[2115].start 15357.02346875
transcript.pyannote[2115].end 15357.24284375
transcript.pyannote[2116].speaker SPEAKER_20
transcript.pyannote[2116].start 15357.24284375
transcript.pyannote[2116].end 15357.37784375
transcript.pyannote[2117].speaker SPEAKER_00
transcript.pyannote[2117].start 15357.37784375
transcript.pyannote[2117].end 15357.41159375
transcript.pyannote[2118].speaker SPEAKER_06
transcript.pyannote[2118].start 15362.15346875
transcript.pyannote[2118].end 15362.54159375
transcript.pyannote[2119].speaker SPEAKER_05
transcript.pyannote[2119].start 15369.25784375
transcript.pyannote[2119].end 15370.82721875
transcript.pyannote[2120].speaker SPEAKER_18
transcript.pyannote[2120].start 15369.64596875
transcript.pyannote[2120].end 15374.72534375
transcript.pyannote[2121].speaker SPEAKER_05
transcript.pyannote[2121].start 15374.43846875
transcript.pyannote[2121].end 15374.86034375
transcript.pyannote[2122].speaker SPEAKER_18
transcript.pyannote[2122].start 15374.75909375
transcript.pyannote[2122].end 15376.07534375
transcript.pyannote[2123].speaker SPEAKER_18
transcript.pyannote[2123].start 15376.26096875
transcript.pyannote[2123].end 15376.69971875
transcript.pyannote[2124].speaker SPEAKER_05
transcript.pyannote[2124].start 15376.39596875
transcript.pyannote[2124].end 15383.82096875
transcript.pyannote[2125].speaker SPEAKER_18
transcript.pyannote[2125].start 15380.74971875
transcript.pyannote[2125].end 15383.12909375
transcript.pyannote[2126].speaker SPEAKER_18
transcript.pyannote[2126].start 15383.46659375
transcript.pyannote[2126].end 15402.83909375
transcript.pyannote[2127].speaker SPEAKER_05
transcript.pyannote[2127].start 15402.83909375
transcript.pyannote[2127].end 15414.28034375
transcript.pyannote[2128].speaker SPEAKER_05
transcript.pyannote[2128].start 15414.38159375
transcript.pyannote[2128].end 15416.52471875
transcript.pyannote[2129].speaker SPEAKER_25
transcript.pyannote[2129].start 15416.27159375
transcript.pyannote[2129].end 15416.28846875
transcript.pyannote[2130].speaker SPEAKER_18
transcript.pyannote[2130].start 15416.28846875
transcript.pyannote[2130].end 15417.46971875
transcript.pyannote[2131].speaker SPEAKER_05
transcript.pyannote[2131].start 15417.09846875
transcript.pyannote[2131].end 15420.42284375
transcript.pyannote[2132].speaker SPEAKER_18
transcript.pyannote[2132].start 15418.93784375
transcript.pyannote[2132].end 15423.07221875
transcript.pyannote[2133].speaker SPEAKER_04
transcript.pyannote[2133].start 15420.42284375
transcript.pyannote[2133].end 15420.43971875
transcript.pyannote[2134].speaker SPEAKER_05
transcript.pyannote[2134].start 15421.72221875
transcript.pyannote[2134].end 15421.75596875
transcript.pyannote[2135].speaker SPEAKER_04
transcript.pyannote[2135].start 15421.75596875
transcript.pyannote[2135].end 15422.16096875
transcript.pyannote[2136].speaker SPEAKER_04
transcript.pyannote[2136].start 15423.07221875
transcript.pyannote[2136].end 15424.60784375
transcript.pyannote[2137].speaker SPEAKER_18
transcript.pyannote[2137].start 15424.30409375
transcript.pyannote[2137].end 15424.50659375
transcript.pyannote[2138].speaker SPEAKER_18
transcript.pyannote[2138].start 15425.85659375
transcript.pyannote[2138].end 15425.89034375
transcript.pyannote[2139].speaker SPEAKER_10
transcript.pyannote[2139].start 15425.89034375
transcript.pyannote[2139].end 15426.48096875
transcript.pyannote[2140].speaker SPEAKER_18
transcript.pyannote[2140].start 15426.48096875
transcript.pyannote[2140].end 15426.49784375
transcript.pyannote[2141].speaker SPEAKER_04
transcript.pyannote[2141].start 15427.62846875
transcript.pyannote[2141].end 15428.64096875
transcript.pyannote[2142].speaker SPEAKER_10
transcript.pyannote[2142].start 15428.69159375
transcript.pyannote[2142].end 15430.63221875
transcript.pyannote[2143].speaker SPEAKER_04
transcript.pyannote[2143].start 15432.72471875
transcript.pyannote[2143].end 15434.20971875
transcript.pyannote[2144].speaker SPEAKER_04
transcript.pyannote[2144].start 15434.85096875
transcript.pyannote[2144].end 15435.15471875
transcript.pyannote[2145].speaker SPEAKER_04
transcript.pyannote[2145].start 15435.69471875
transcript.pyannote[2145].end 15437.06159375
transcript.pyannote[2146].speaker SPEAKER_04
transcript.pyannote[2146].start 15437.63534375
transcript.pyannote[2146].end 15446.24159375
transcript.pyannote[2147].speaker SPEAKER_04
transcript.pyannote[2147].start 15446.64659375
transcript.pyannote[2147].end 15450.56159375
transcript.pyannote[2148].speaker SPEAKER_04
transcript.pyannote[2148].start 15450.73034375
transcript.pyannote[2148].end 15454.66221875
transcript.pyannote[2149].speaker SPEAKER_04
transcript.pyannote[2149].start 15454.93221875
transcript.pyannote[2149].end 15458.00346875
transcript.pyannote[2150].speaker SPEAKER_04
transcript.pyannote[2150].start 15459.38721875
transcript.pyannote[2150].end 15466.01909375
transcript.pyannote[2151].speaker SPEAKER_04
transcript.pyannote[2151].start 15467.01471875
transcript.pyannote[2151].end 15469.09034375
transcript.pyannote[2152].speaker SPEAKER_04
transcript.pyannote[2152].start 15469.46159375
transcript.pyannote[2152].end 15477.96659375
transcript.pyannote[2153].speaker SPEAKER_04
transcript.pyannote[2153].start 15478.13534375
transcript.pyannote[2153].end 15486.57284375
transcript.pyannote[2154].speaker SPEAKER_04
transcript.pyannote[2154].start 15487.19721875
transcript.pyannote[2154].end 15495.19596875
transcript.pyannote[2155].speaker SPEAKER_04
transcript.pyannote[2155].start 15495.73596875
transcript.pyannote[2155].end 15499.29659375
transcript.pyannote[2156].speaker SPEAKER_05
transcript.pyannote[2156].start 15499.29659375
transcript.pyannote[2156].end 15499.33034375
transcript.pyannote[2157].speaker SPEAKER_04
transcript.pyannote[2157].start 15500.27534375
transcript.pyannote[2157].end 15500.29221875
transcript.pyannote[2158].speaker SPEAKER_05
transcript.pyannote[2158].start 15500.29221875
transcript.pyannote[2158].end 15516.18846875
transcript.pyannote[2159].speaker SPEAKER_05
transcript.pyannote[2159].start 15516.81284375
transcript.pyannote[2159].end 15518.68596875
transcript.pyannote[2160].speaker SPEAKER_18
transcript.pyannote[2160].start 15518.68596875
transcript.pyannote[2160].end 15525.38534375
transcript.pyannote[2161].speaker SPEAKER_18
transcript.pyannote[2161].start 15525.92534375
transcript.pyannote[2161].end 15536.70846875
transcript.pyannote[2162].speaker SPEAKER_05
transcript.pyannote[2162].start 15525.94221875
transcript.pyannote[2162].end 15526.81971875
transcript.pyannote[2163].speaker SPEAKER_05
transcript.pyannote[2163].start 15532.47284375
transcript.pyannote[2163].end 15539.07096875
transcript.pyannote[2164].speaker SPEAKER_20
transcript.pyannote[2164].start 15536.70846875
transcript.pyannote[2164].end 15536.84346875
transcript.pyannote[2165].speaker SPEAKER_18
transcript.pyannote[2165].start 15536.84346875
transcript.pyannote[2165].end 15538.81784375
transcript.pyannote[2166].speaker SPEAKER_20
transcript.pyannote[2166].start 15538.81784375
transcript.pyannote[2166].end 15538.93596875
transcript.pyannote[2167].speaker SPEAKER_05
transcript.pyannote[2167].start 15539.30721875
transcript.pyannote[2167].end 15545.16284375
transcript.pyannote[2168].speaker SPEAKER_20
transcript.pyannote[2168].start 15539.35784375
transcript.pyannote[2168].end 15539.83034375
transcript.pyannote[2169].speaker SPEAKER_20
transcript.pyannote[2169].start 15540.96096875
transcript.pyannote[2169].end 15541.36596875
transcript.pyannote[2170].speaker SPEAKER_10
transcript.pyannote[2170].start 15541.36596875
transcript.pyannote[2170].end 15541.41659375
transcript.pyannote[2171].speaker SPEAKER_20
transcript.pyannote[2171].start 15541.41659375
transcript.pyannote[2171].end 15541.46721875
transcript.pyannote[2172].speaker SPEAKER_20
transcript.pyannote[2172].start 15542.58096875
transcript.pyannote[2172].end 15542.59784375
transcript.pyannote[2173].speaker SPEAKER_10
transcript.pyannote[2173].start 15542.59784375
transcript.pyannote[2173].end 15543.05346875
transcript.pyannote[2174].speaker SPEAKER_20
transcript.pyannote[2174].start 15543.05346875
transcript.pyannote[2174].end 15543.07034375
transcript.pyannote[2175].speaker SPEAKER_20
transcript.pyannote[2175].start 15543.57659375
transcript.pyannote[2175].end 15543.62721875
transcript.pyannote[2176].speaker SPEAKER_10
transcript.pyannote[2176].start 15543.62721875
transcript.pyannote[2176].end 15543.96471875
transcript.pyannote[2177].speaker SPEAKER_20
transcript.pyannote[2177].start 15544.53846875
transcript.pyannote[2177].end 15544.55534375
transcript.pyannote[2178].speaker SPEAKER_10
transcript.pyannote[2178].start 15544.55534375
transcript.pyannote[2178].end 15545.50034375
transcript.pyannote[2179].speaker SPEAKER_05
transcript.pyannote[2179].start 15545.19659375
transcript.pyannote[2179].end 15547.98096875
transcript.pyannote[2180].speaker SPEAKER_10
transcript.pyannote[2180].start 15548.84159375
transcript.pyannote[2180].end 15554.22471875
transcript.pyannote[2181].speaker SPEAKER_10
transcript.pyannote[2181].start 15555.03471875
transcript.pyannote[2181].end 15556.65471875
transcript.pyannote[2182].speaker SPEAKER_08
transcript.pyannote[2182].start 15558.81471875
transcript.pyannote[2182].end 15559.77659375
transcript.pyannote[2183].speaker SPEAKER_08
transcript.pyannote[2183].start 15559.96221875
transcript.pyannote[2183].end 15560.02971875
transcript.pyannote[2184].speaker SPEAKER_10
transcript.pyannote[2184].start 15560.45159375
transcript.pyannote[2184].end 15561.43034375
transcript.pyannote[2185].speaker SPEAKER_10
transcript.pyannote[2185].start 15566.12159375
transcript.pyannote[2185].end 15568.09596875
transcript.pyannote[2186].speaker SPEAKER_18
transcript.pyannote[2186].start 15566.37471875
transcript.pyannote[2186].end 15566.57721875
transcript.pyannote[2187].speaker SPEAKER_18
transcript.pyannote[2187].start 15567.85971875
transcript.pyannote[2187].end 15572.88846875
transcript.pyannote[2188].speaker SPEAKER_18
transcript.pyannote[2188].start 15573.47909375
transcript.pyannote[2188].end 15583.85721875
transcript.pyannote[2189].speaker SPEAKER_18
transcript.pyannote[2189].start 15583.97534375
transcript.pyannote[2189].end 15591.28221875
transcript.pyannote[2190].speaker SPEAKER_10
transcript.pyannote[2190].start 15591.92346875
transcript.pyannote[2190].end 15592.10909375
transcript.pyannote[2191].speaker SPEAKER_10
transcript.pyannote[2191].start 15592.69971875
transcript.pyannote[2191].end 15597.03659375
transcript.pyannote[2192].speaker SPEAKER_10
transcript.pyannote[2192].start 15598.57221875
transcript.pyannote[2192].end 15600.02346875
transcript.pyannote[2193].speaker SPEAKER_10
transcript.pyannote[2193].start 15600.46221875
transcript.pyannote[2193].end 15600.74909375
transcript.pyannote[2194].speaker SPEAKER_10
transcript.pyannote[2194].start 15605.84534375
transcript.pyannote[2194].end 15606.52034375
transcript.pyannote[2195].speaker SPEAKER_10
transcript.pyannote[2195].start 15608.05596875
transcript.pyannote[2195].end 15608.37659375
transcript.pyannote[2196].speaker SPEAKER_10
transcript.pyannote[2196].start 15608.83221875
transcript.pyannote[2196].end 15610.14846875
transcript.pyannote[2197].speaker SPEAKER_10
transcript.pyannote[2197].start 15611.48159375
transcript.pyannote[2197].end 15612.27471875
transcript.pyannote[2198].speaker SPEAKER_10
transcript.pyannote[2198].start 15613.40534375
transcript.pyannote[2198].end 15614.18159375
transcript.pyannote[2199].speaker SPEAKER_10
transcript.pyannote[2199].start 15615.93659375
transcript.pyannote[2199].end 15616.93221875
transcript.pyannote[2200].speaker SPEAKER_17
transcript.pyannote[2200].start 15618.65346875
transcript.pyannote[2200].end 15664.72221875
transcript.pyannote[2201].speaker SPEAKER_17
transcript.pyannote[2201].start 15665.07659375
transcript.pyannote[2201].end 15683.89221875
transcript.pyannote[2202].speaker SPEAKER_17
transcript.pyannote[2202].start 15686.30534375
transcript.pyannote[2202].end 15686.32221875
transcript.pyannote[2203].speaker SPEAKER_10
transcript.pyannote[2203].start 15686.32221875
transcript.pyannote[2203].end 15686.65971875
transcript.pyannote[2204].speaker SPEAKER_10
transcript.pyannote[2204].start 15687.99284375
transcript.pyannote[2204].end 15690.05159375
transcript.pyannote[2205].speaker SPEAKER_03
transcript.pyannote[2205].start 15690.65909375
transcript.pyannote[2205].end 15698.80971875
transcript.pyannote[2206].speaker SPEAKER_03
transcript.pyannote[2206].start 15699.04596875
transcript.pyannote[2206].end 15701.61096875
transcript.pyannote[2207].speaker SPEAKER_03
transcript.pyannote[2207].start 15701.81346875
transcript.pyannote[2207].end 15709.06971875
transcript.pyannote[2208].speaker SPEAKER_03
transcript.pyannote[2208].start 15709.13721875
transcript.pyannote[2208].end 15712.47846875
transcript.pyannote[2209].speaker SPEAKER_17
transcript.pyannote[2209].start 15712.12409375
transcript.pyannote[2209].end 15713.91284375
transcript.pyannote[2210].speaker SPEAKER_03
transcript.pyannote[2210].start 15714.14909375
transcript.pyannote[2210].end 15716.59596875
transcript.pyannote[2211].speaker SPEAKER_03
transcript.pyannote[2211].start 15717.05159375
transcript.pyannote[2211].end 15720.05534375
transcript.pyannote[2212].speaker SPEAKER_17
transcript.pyannote[2212].start 15717.15284375
transcript.pyannote[2212].end 15717.42284375
transcript.pyannote[2213].speaker SPEAKER_03
transcript.pyannote[2213].start 15720.07221875
transcript.pyannote[2213].end 15720.08909375
transcript.pyannote[2214].speaker SPEAKER_03
transcript.pyannote[2214].start 15720.19034375
transcript.pyannote[2214].end 15722.08034375
transcript.pyannote[2215].speaker SPEAKER_17
transcript.pyannote[2215].start 15720.24096875
transcript.pyannote[2215].end 15720.59534375
transcript.pyannote[2216].speaker SPEAKER_17
transcript.pyannote[2216].start 15722.08034375
transcript.pyannote[2216].end 15726.73784375
transcript.pyannote[2217].speaker SPEAKER_03
transcript.pyannote[2217].start 15722.51909375
transcript.pyannote[2217].end 15724.34159375
transcript.pyannote[2218].speaker SPEAKER_03
transcript.pyannote[2218].start 15725.55659375
transcript.pyannote[2218].end 15726.02909375
transcript.pyannote[2219].speaker SPEAKER_20
transcript.pyannote[2219].start 15726.02909375
transcript.pyannote[2219].end 15726.09659375
transcript.pyannote[2220].speaker SPEAKER_03
transcript.pyannote[2220].start 15726.09659375
transcript.pyannote[2220].end 15726.38346875
transcript.pyannote[2221].speaker SPEAKER_03
transcript.pyannote[2221].start 15726.73784375
transcript.pyannote[2221].end 15726.87284375
transcript.pyannote[2222].speaker SPEAKER_17
transcript.pyannote[2222].start 15727.19346875
transcript.pyannote[2222].end 15741.41909375
transcript.pyannote[2223].speaker SPEAKER_17
transcript.pyannote[2223].start 15741.77346875
transcript.pyannote[2223].end 15753.92346875
transcript.pyannote[2224].speaker SPEAKER_10
transcript.pyannote[2224].start 15751.96596875
transcript.pyannote[2224].end 15755.40846875
transcript.pyannote[2225].speaker SPEAKER_17
transcript.pyannote[2225].start 15755.15534375
transcript.pyannote[2225].end 15755.23971875
transcript.pyannote[2226].speaker SPEAKER_10
transcript.pyannote[2226].start 15755.84721875
transcript.pyannote[2226].end 15756.21846875
transcript.pyannote[2227].speaker SPEAKER_10
transcript.pyannote[2227].start 15757.01159375
transcript.pyannote[2227].end 15760.47096875
transcript.pyannote[2228].speaker SPEAKER_10
transcript.pyannote[2228].start 15761.24721875
transcript.pyannote[2228].end 15762.98534375
transcript.pyannote[2229].speaker SPEAKER_10
transcript.pyannote[2229].start 15763.27221875
transcript.pyannote[2229].end 15779.89409375
transcript.pyannote[2230].speaker SPEAKER_17
transcript.pyannote[2230].start 15770.98409375
transcript.pyannote[2230].end 15772.26659375
transcript.pyannote[2231].speaker SPEAKER_10
transcript.pyannote[2231].start 15780.13034375
transcript.pyannote[2231].end 15788.87159375
transcript.pyannote[2232].speaker SPEAKER_10
transcript.pyannote[2232].start 15789.34409375
transcript.pyannote[2232].end 15792.75284375
transcript.pyannote[2233].speaker SPEAKER_10
transcript.pyannote[2233].start 15793.64721875
transcript.pyannote[2233].end 15793.93409375
transcript.pyannote[2234].speaker SPEAKER_10
transcript.pyannote[2234].start 15794.32221875
transcript.pyannote[2234].end 15794.84534375
transcript.pyannote[2235].speaker SPEAKER_10
transcript.pyannote[2235].start 15795.40221875
transcript.pyannote[2235].end 15803.16471875
transcript.pyannote[2236].speaker SPEAKER_10
transcript.pyannote[2236].start 15803.73846875
transcript.pyannote[2236].end 15807.68721875
transcript.pyannote[2237].speaker SPEAKER_10
transcript.pyannote[2237].start 15807.88971875
transcript.pyannote[2237].end 15808.69971875
transcript.pyannote[2238].speaker SPEAKER_10
transcript.pyannote[2238].start 15809.02034375
transcript.pyannote[2238].end 15811.90596875
transcript.pyannote[2239].speaker SPEAKER_10
transcript.pyannote[2239].start 15812.19284375
transcript.pyannote[2239].end 15812.98596875
transcript.pyannote[2240].speaker SPEAKER_10
transcript.pyannote[2240].start 15813.62721875
transcript.pyannote[2240].end 15816.14159375
transcript.pyannote[2241].speaker SPEAKER_10
transcript.pyannote[2241].start 15816.93471875
transcript.pyannote[2241].end 15817.17096875
transcript.pyannote[2242].speaker SPEAKER_10
transcript.pyannote[2242].start 15817.74471875
transcript.pyannote[2242].end 15826.57034375
transcript.pyannote[2243].speaker SPEAKER_17
transcript.pyannote[2243].start 15821.64284375
transcript.pyannote[2243].end 15824.03909375
transcript.pyannote[2244].speaker SPEAKER_17
transcript.pyannote[2244].start 15825.74346875
transcript.pyannote[2244].end 15838.92284375
transcript.pyannote[2245].speaker SPEAKER_10
transcript.pyannote[2245].start 15828.84846875
transcript.pyannote[2245].end 15829.30409375
transcript.pyannote[2246].speaker SPEAKER_10
transcript.pyannote[2246].start 15830.01284375
transcript.pyannote[2246].end 15830.63721875
transcript.pyannote[2247].speaker SPEAKER_04
transcript.pyannote[2247].start 15838.92284375
transcript.pyannote[2247].end 15843.95159375
transcript.pyannote[2248].speaker SPEAKER_04
transcript.pyannote[2248].start 15844.18784375
transcript.pyannote[2248].end 15847.74846875
transcript.pyannote[2249].speaker SPEAKER_04
transcript.pyannote[2249].start 15848.05221875
transcript.pyannote[2249].end 15861.41721875
transcript.pyannote[2250].speaker SPEAKER_04
transcript.pyannote[2250].start 15861.56909375
transcript.pyannote[2250].end 15869.71971875
transcript.pyannote[2251].speaker SPEAKER_04
transcript.pyannote[2251].start 15870.24284375
transcript.pyannote[2251].end 15880.33409375
transcript.pyannote[2252].speaker SPEAKER_04
transcript.pyannote[2252].start 15880.73909375
transcript.pyannote[2252].end 15884.45159375
transcript.pyannote[2253].speaker SPEAKER_04
transcript.pyannote[2253].start 15884.72159375
transcript.pyannote[2253].end 15890.42534375
transcript.pyannote[2254].speaker SPEAKER_04
transcript.pyannote[2254].start 15890.50971875
transcript.pyannote[2254].end 15897.69846875
transcript.pyannote[2255].speaker SPEAKER_04
transcript.pyannote[2255].start 15898.28909375
transcript.pyannote[2255].end 15902.69346875
transcript.pyannote[2256].speaker SPEAKER_04
transcript.pyannote[2256].start 15902.77784375
transcript.pyannote[2256].end 15905.98409375
transcript.pyannote[2257].speaker SPEAKER_04
transcript.pyannote[2257].start 15906.43971875
transcript.pyannote[2257].end 15913.27409375
transcript.pyannote[2258].speaker SPEAKER_04
transcript.pyannote[2258].start 15913.67909375
transcript.pyannote[2258].end 15914.40471875
transcript.pyannote[2259].speaker SPEAKER_04
transcript.pyannote[2259].start 15914.92784375
transcript.pyannote[2259].end 15919.90596875
transcript.pyannote[2260].speaker SPEAKER_04
transcript.pyannote[2260].start 15920.37846875
transcript.pyannote[2260].end 15927.95534375
transcript.pyannote[2261].speaker SPEAKER_04
transcript.pyannote[2261].start 15928.59659375
transcript.pyannote[2261].end 15934.30034375
transcript.pyannote[2262].speaker SPEAKER_10
transcript.pyannote[2262].start 15935.97096875
transcript.pyannote[2262].end 15993.05909375
transcript.pyannote[2263].speaker SPEAKER_10
transcript.pyannote[2263].start 15994.22346875
transcript.pyannote[2263].end 15994.56096875
transcript.pyannote[2264].speaker SPEAKER_10
transcript.pyannote[2264].start 15994.76346875
transcript.pyannote[2264].end 15996.90659375
transcript.pyannote[2265].speaker SPEAKER_10
transcript.pyannote[2265].start 15997.05846875
transcript.pyannote[2265].end 15998.20596875
transcript.pyannote[2266].speaker SPEAKER_10
transcript.pyannote[2266].start 16000.78784375
transcript.pyannote[2266].end 16001.90159375
transcript.pyannote[2267].speaker SPEAKER_10
transcript.pyannote[2267].start 16002.34034375
transcript.pyannote[2267].end 16004.58471875
transcript.pyannote[2268].speaker SPEAKER_10
transcript.pyannote[2268].start 16005.63096875
transcript.pyannote[2268].end 16008.66846875
transcript.pyannote[2269].speaker SPEAKER_10
transcript.pyannote[2269].start 16010.35596875
transcript.pyannote[2269].end 16010.64284375
transcript.pyannote[2270].speaker SPEAKER_10
transcript.pyannote[2270].start 16010.98034375
transcript.pyannote[2270].end 16012.78596875
transcript.pyannote[2271].speaker SPEAKER_10
transcript.pyannote[2271].start 16012.85346875
transcript.pyannote[2271].end 16014.05159375
transcript.pyannote[2272].speaker SPEAKER_10
transcript.pyannote[2272].start 16015.99221875
transcript.pyannote[2272].end 16017.64596875
transcript.pyannote[2273].speaker SPEAKER_10
transcript.pyannote[2273].start 16017.81471875
transcript.pyannote[2273].end 16018.47284375
transcript.pyannote[2274].speaker SPEAKER_10
transcript.pyannote[2274].start 16022.74221875
transcript.pyannote[2274].end 16024.66596875
transcript.pyannote[2275].speaker SPEAKER_10
transcript.pyannote[2275].start 16024.75034375
transcript.pyannote[2275].end 16026.01596875
transcript.pyannote[2276].speaker SPEAKER_10
transcript.pyannote[2276].start 16026.80909375
transcript.pyannote[2276].end 16030.26846875
transcript.pyannote[2277].speaker SPEAKER_10
transcript.pyannote[2277].start 16031.07846875
transcript.pyannote[2277].end 16032.58034375
transcript.pyannote[2278].speaker SPEAKER_04
transcript.pyannote[2278].start 16032.68159375
transcript.pyannote[2278].end 16038.45284375
transcript.pyannote[2279].speaker SPEAKER_04
transcript.pyannote[2279].start 16038.85784375
transcript.pyannote[2279].end 16044.56159375
transcript.pyannote[2280].speaker SPEAKER_04
transcript.pyannote[2280].start 16045.03409375
transcript.pyannote[2280].end 16045.97909375
transcript.pyannote[2281].speaker SPEAKER_04
transcript.pyannote[2281].start 16046.31659375
transcript.pyannote[2281].end 16050.65346875
transcript.pyannote[2282].speaker SPEAKER_04
transcript.pyannote[2282].start 16050.83909375
transcript.pyannote[2282].end 16051.83471875
transcript.pyannote[2283].speaker SPEAKER_04
transcript.pyannote[2283].start 16052.18909375
transcript.pyannote[2283].end 16053.43784375
transcript.pyannote[2284].speaker SPEAKER_04
transcript.pyannote[2284].start 16053.91034375
transcript.pyannote[2284].end 16055.04096875
transcript.pyannote[2285].speaker SPEAKER_10
transcript.pyannote[2285].start 16055.93534375
transcript.pyannote[2285].end 16056.61034375
transcript.pyannote[2286].speaker SPEAKER_10
transcript.pyannote[2286].start 16056.98159375
transcript.pyannote[2286].end 16057.85909375
transcript.pyannote[2287].speaker SPEAKER_10
transcript.pyannote[2287].start 16058.77034375
transcript.pyannote[2287].end 16060.99784375
transcript.pyannote[2288].speaker SPEAKER_10
transcript.pyannote[2288].start 16061.94284375
transcript.pyannote[2288].end 16064.05221875
transcript.pyannote[2289].speaker SPEAKER_22
transcript.pyannote[2289].start 16064.50784375
transcript.pyannote[2289].end 16065.77346875
transcript.pyannote[2290].speaker SPEAKER_10
transcript.pyannote[2290].start 16065.77346875
transcript.pyannote[2290].end 16066.48221875
transcript.pyannote[2291].speaker SPEAKER_22
transcript.pyannote[2291].start 16066.48221875
transcript.pyannote[2291].end 16066.49909375
transcript.pyannote[2292].speaker SPEAKER_22
transcript.pyannote[2292].start 16066.51596875
transcript.pyannote[2292].end 16066.83659375
transcript.pyannote[2293].speaker SPEAKER_22
transcript.pyannote[2293].start 16066.98846875
transcript.pyannote[2293].end 16116.43221875
transcript.pyannote[2294].speaker SPEAKER_18
transcript.pyannote[2294].start 16115.35221875
transcript.pyannote[2294].end 16126.27034375
transcript.pyannote[2295].speaker SPEAKER_18
transcript.pyannote[2295].start 16127.01284375
transcript.pyannote[2295].end 16135.82159375
transcript.pyannote[2296].speaker SPEAKER_18
transcript.pyannote[2296].start 16136.29409375
transcript.pyannote[2296].end 16140.25971875
transcript.pyannote[2297].speaker SPEAKER_18
transcript.pyannote[2297].start 16140.95159375
transcript.pyannote[2297].end 16150.70534375
transcript.pyannote[2298].speaker SPEAKER_22
transcript.pyannote[2298].start 16150.97534375
transcript.pyannote[2298].end 16157.91096875
transcript.pyannote[2299].speaker SPEAKER_18
transcript.pyannote[2299].start 16151.02596875
transcript.pyannote[2299].end 16151.39721875
transcript.pyannote[2300].speaker SPEAKER_18
transcript.pyannote[2300].start 16157.52284375
transcript.pyannote[2300].end 16164.69471875
transcript.pyannote[2301].speaker SPEAKER_18
transcript.pyannote[2301].start 16164.96471875
transcript.pyannote[2301].end 16168.40721875
transcript.pyannote[2302].speaker SPEAKER_22
transcript.pyannote[2302].start 16168.57596875
transcript.pyannote[2302].end 16169.95971875
transcript.pyannote[2303].speaker SPEAKER_10
transcript.pyannote[2303].start 16170.11159375
transcript.pyannote[2303].end 16175.37659375
transcript.pyannote[2304].speaker SPEAKER_10
transcript.pyannote[2304].start 16175.68034375
transcript.pyannote[2304].end 16177.19909375
transcript.pyannote[2305].speaker SPEAKER_17
transcript.pyannote[2305].start 16175.83221875
transcript.pyannote[2305].end 16175.91659375
transcript.pyannote[2306].speaker SPEAKER_17
transcript.pyannote[2306].start 16175.96721875
transcript.pyannote[2306].end 16176.11909375
transcript.pyannote[2307].speaker SPEAKER_17
transcript.pyannote[2307].start 16176.70971875
transcript.pyannote[2307].end 16219.53846875
transcript.pyannote[2308].speaker SPEAKER_10
transcript.pyannote[2308].start 16180.37159375
transcript.pyannote[2308].end 16180.40534375
transcript.pyannote[2309].speaker SPEAKER_20
transcript.pyannote[2309].start 16180.40534375
transcript.pyannote[2309].end 16180.86096875
transcript.pyannote[2310].speaker SPEAKER_20
transcript.pyannote[2310].start 16180.89471875
transcript.pyannote[2310].end 16180.92846875
transcript.pyannote[2311].speaker SPEAKER_10
transcript.pyannote[2311].start 16180.92846875
transcript.pyannote[2311].end 16180.96221875
transcript.pyannote[2312].speaker SPEAKER_17
transcript.pyannote[2312].start 16220.24721875
transcript.pyannote[2312].end 16238.99534375
transcript.pyannote[2313].speaker SPEAKER_25
transcript.pyannote[2313].start 16239.94034375
transcript.pyannote[2313].end 16240.19346875
transcript.pyannote[2314].speaker SPEAKER_25
transcript.pyannote[2314].start 16240.41284375
transcript.pyannote[2314].end 16246.85909375
transcript.pyannote[2315].speaker SPEAKER_25
transcript.pyannote[2315].start 16247.28096875
transcript.pyannote[2315].end 16257.49034375
transcript.pyannote[2316].speaker SPEAKER_23
transcript.pyannote[2316].start 16247.51721875
transcript.pyannote[2316].end 16248.79971875
transcript.pyannote[2317].speaker SPEAKER_25
transcript.pyannote[2317].start 16258.35096875
transcript.pyannote[2317].end 16262.31659375
transcript.pyannote[2318].speaker SPEAKER_25
transcript.pyannote[2318].start 16262.73846875
transcript.pyannote[2318].end 16266.33284375
transcript.pyannote[2319].speaker SPEAKER_25
transcript.pyannote[2319].start 16266.58596875
transcript.pyannote[2319].end 16278.34784375
transcript.pyannote[2320].speaker SPEAKER_25
transcript.pyannote[2320].start 16279.88346875
transcript.pyannote[2320].end 16280.92971875
transcript.pyannote[2321].speaker SPEAKER_10
transcript.pyannote[2321].start 16281.16596875
transcript.pyannote[2321].end 16284.40596875
transcript.pyannote[2322].speaker SPEAKER_10
transcript.pyannote[2322].start 16284.55784375
transcript.pyannote[2322].end 16285.50284375
transcript.pyannote[2323].speaker SPEAKER_10
transcript.pyannote[2323].start 16287.86534375
transcript.pyannote[2323].end 16289.99159375
transcript.pyannote[2324].speaker SPEAKER_10
transcript.pyannote[2324].start 16291.27409375
transcript.pyannote[2324].end 16293.07971875
transcript.pyannote[2325].speaker SPEAKER_10
transcript.pyannote[2325].start 16294.36221875
transcript.pyannote[2325].end 16295.05409375
transcript.pyannote[2326].speaker SPEAKER_10
transcript.pyannote[2326].start 16295.29034375
transcript.pyannote[2326].end 16296.01596875
transcript.pyannote[2327].speaker SPEAKER_22
transcript.pyannote[2327].start 16302.68159375
transcript.pyannote[2327].end 16302.69846875
transcript.pyannote[2328].speaker SPEAKER_07
transcript.pyannote[2328].start 16302.69846875
transcript.pyannote[2328].end 16303.86284375
transcript.pyannote[2329].speaker SPEAKER_22
transcript.pyannote[2329].start 16303.86284375
transcript.pyannote[2329].end 16383.41159375
transcript.pyannote[2330].speaker SPEAKER_22
transcript.pyannote[2330].start 16383.42846875
transcript.pyannote[2330].end 16400.84346875
transcript.pyannote[2331].speaker SPEAKER_10
transcript.pyannote[2331].start 16401.02909375
transcript.pyannote[2331].end 16402.49721875
transcript.pyannote[2332].speaker SPEAKER_22
transcript.pyannote[2332].start 16403.20596875
transcript.pyannote[2332].end 16403.54346875
transcript.pyannote[2333].speaker SPEAKER_22
transcript.pyannote[2333].start 16403.79659375
transcript.pyannote[2333].end 16404.97784375
transcript.pyannote[2334].speaker SPEAKER_07
transcript.pyannote[2334].start 16404.97784375
transcript.pyannote[2334].end 16412.45346875
transcript.pyannote[2335].speaker SPEAKER_07
transcript.pyannote[2335].start 16412.99346875
transcript.pyannote[2335].end 16417.76909375
transcript.pyannote[2336].speaker SPEAKER_07
transcript.pyannote[2336].start 16417.87034375
transcript.pyannote[2336].end 16418.71409375
transcript.pyannote[2337].speaker SPEAKER_07
transcript.pyannote[2337].start 16419.23721875
transcript.pyannote[2337].end 16428.51846875
transcript.pyannote[2338].speaker SPEAKER_07
transcript.pyannote[2338].start 16429.09221875
transcript.pyannote[2338].end 16440.49971875
transcript.pyannote[2339].speaker SPEAKER_07
transcript.pyannote[2339].start 16440.80346875
transcript.pyannote[2339].end 16443.35159375
transcript.pyannote[2340].speaker SPEAKER_07
transcript.pyannote[2340].start 16443.57096875
transcript.pyannote[2340].end 16451.89034375
transcript.pyannote[2341].speaker SPEAKER_07
transcript.pyannote[2341].start 16452.90284375
transcript.pyannote[2341].end 16477.27034375
transcript.pyannote[2342].speaker SPEAKER_18
transcript.pyannote[2342].start 16477.92846875
transcript.pyannote[2342].end 16483.24409375
transcript.pyannote[2343].speaker SPEAKER_18
transcript.pyannote[2343].start 16483.95284375
transcript.pyannote[2343].end 16497.60471875
transcript.pyannote[2344].speaker SPEAKER_18
transcript.pyannote[2344].start 16497.62159375
transcript.pyannote[2344].end 16502.04284375
transcript.pyannote[2345].speaker SPEAKER_18
transcript.pyannote[2345].start 16502.24534375
transcript.pyannote[2345].end 16524.60471875
transcript.pyannote[2346].speaker SPEAKER_18
transcript.pyannote[2346].start 16525.12784375
transcript.pyannote[2346].end 16527.15284375
transcript.pyannote[2347].speaker SPEAKER_07
transcript.pyannote[2347].start 16527.15284375
transcript.pyannote[2347].end 16535.38784375
transcript.pyannote[2348].speaker SPEAKER_18
transcript.pyannote[2348].start 16534.29096875
transcript.pyannote[2348].end 16534.32471875
transcript.pyannote[2349].speaker SPEAKER_10
transcript.pyannote[2349].start 16534.32471875
transcript.pyannote[2349].end 16534.88159375
transcript.pyannote[2350].speaker SPEAKER_10
transcript.pyannote[2350].start 16535.80971875
transcript.pyannote[2350].end 16546.71096875
transcript.pyannote[2351].speaker SPEAKER_18
transcript.pyannote[2351].start 16543.58909375
transcript.pyannote[2351].end 16543.92659375
transcript.pyannote[2352].speaker SPEAKER_10
transcript.pyannote[2352].start 16546.91346875
transcript.pyannote[2352].end 16548.31409375
transcript.pyannote[2353].speaker SPEAKER_10
transcript.pyannote[2353].start 16550.99721875
transcript.pyannote[2353].end 16552.21221875
transcript.pyannote[2354].speaker SPEAKER_10
transcript.pyannote[2354].start 16552.83659375
transcript.pyannote[2354].end 16553.19096875
transcript.pyannote[2355].speaker SPEAKER_10
transcript.pyannote[2355].start 16553.88284375
transcript.pyannote[2355].end 16555.18221875
transcript.pyannote[2356].speaker SPEAKER_10
transcript.pyannote[2356].start 16555.35096875
transcript.pyannote[2356].end 16556.07659375
transcript.pyannote[2357].speaker SPEAKER_07
transcript.pyannote[2357].start 16556.97096875
transcript.pyannote[2357].end 16557.76409375
transcript.pyannote[2358].speaker SPEAKER_10
transcript.pyannote[2358].start 16557.76409375
transcript.pyannote[2358].end 16558.67534375
transcript.pyannote[2359].speaker SPEAKER_07
transcript.pyannote[2359].start 16559.38409375
transcript.pyannote[2359].end 16570.52159375
transcript.pyannote[2360].speaker SPEAKER_10
transcript.pyannote[2360].start 16559.41784375
transcript.pyannote[2360].end 16560.05909375
transcript.pyannote[2361].speaker SPEAKER_07
transcript.pyannote[2361].start 16570.80846875
transcript.pyannote[2361].end 16589.05034375
transcript.pyannote[2362].speaker SPEAKER_07
transcript.pyannote[2362].start 16589.59034375
transcript.pyannote[2362].end 16597.25159375
transcript.pyannote[2363].speaker SPEAKER_07
transcript.pyannote[2363].start 16597.52159375
transcript.pyannote[2363].end 16609.11471875
transcript.pyannote[2364].speaker SPEAKER_07
transcript.pyannote[2364].start 16609.30034375
transcript.pyannote[2364].end 16623.39096875
transcript.pyannote[2365].speaker SPEAKER_07
transcript.pyannote[2365].start 16624.03221875
transcript.pyannote[2365].end 16631.91284375
transcript.pyannote[2366].speaker SPEAKER_07
transcript.pyannote[2366].start 16632.25034375
transcript.pyannote[2366].end 16635.27096875
transcript.pyannote[2367].speaker SPEAKER_07
transcript.pyannote[2367].start 16635.59159375
transcript.pyannote[2367].end 16638.10596875
transcript.pyannote[2368].speaker SPEAKER_17
transcript.pyannote[2368].start 16641.71721875
transcript.pyannote[2368].end 16681.35659375
transcript.pyannote[2369].speaker SPEAKER_17
transcript.pyannote[2369].start 16681.74471875
transcript.pyannote[2369].end 16702.38284375
transcript.pyannote[2370].speaker SPEAKER_17
transcript.pyannote[2370].start 16703.56409375
transcript.pyannote[2370].end 16703.81721875
transcript.pyannote[2371].speaker SPEAKER_10
transcript.pyannote[2371].start 16704.07034375
transcript.pyannote[2371].end 16704.12096875
transcript.pyannote[2372].speaker SPEAKER_17
transcript.pyannote[2372].start 16704.12096875
transcript.pyannote[2372].end 16704.44159375
transcript.pyannote[2373].speaker SPEAKER_10
transcript.pyannote[2373].start 16704.44159375
transcript.pyannote[2373].end 16704.50909375
transcript.pyannote[2374].speaker SPEAKER_10
transcript.pyannote[2374].start 16704.79596875
transcript.pyannote[2374].end 16704.84659375
transcript.pyannote[2375].speaker SPEAKER_17
transcript.pyannote[2375].start 16704.84659375
transcript.pyannote[2375].end 16705.50471875
transcript.pyannote[2376].speaker SPEAKER_10
transcript.pyannote[2376].start 16705.50471875
transcript.pyannote[2376].end 16705.53846875
transcript.pyannote[2377].speaker SPEAKER_00
transcript.pyannote[2377].start 16706.26409375
transcript.pyannote[2377].end 16718.31284375
transcript.pyannote[2378].speaker SPEAKER_00
transcript.pyannote[2378].start 16718.38034375
transcript.pyannote[2378].end 16721.14784375
transcript.pyannote[2379].speaker SPEAKER_00
transcript.pyannote[2379].start 16721.67096875
transcript.pyannote[2379].end 16726.04159375
transcript.pyannote[2380].speaker SPEAKER_00
transcript.pyannote[2380].start 16726.29471875
transcript.pyannote[2380].end 16727.93159375
transcript.pyannote[2381].speaker SPEAKER_00
transcript.pyannote[2381].start 16728.08346875
transcript.pyannote[2381].end 16729.75409375
transcript.pyannote[2382].speaker SPEAKER_00
transcript.pyannote[2382].start 16729.95659375
transcript.pyannote[2382].end 16734.10784375
transcript.pyannote[2383].speaker SPEAKER_00
transcript.pyannote[2383].start 16734.15846875
transcript.pyannote[2383].end 16744.28346875
transcript.pyannote[2384].speaker SPEAKER_00
transcript.pyannote[2384].start 16745.21159375
transcript.pyannote[2384].end 16749.93659375
transcript.pyannote[2385].speaker SPEAKER_06
transcript.pyannote[2385].start 16749.93659375
transcript.pyannote[2385].end 16750.02096875
transcript.pyannote[2386].speaker SPEAKER_20
transcript.pyannote[2386].start 16750.02096875
transcript.pyannote[2386].end 16750.03784375
transcript.pyannote[2387].speaker SPEAKER_06
transcript.pyannote[2387].start 16750.03784375
transcript.pyannote[2387].end 16750.39221875
transcript.pyannote[2388].speaker SPEAKER_20
transcript.pyannote[2388].start 16751.15159375
transcript.pyannote[2388].end 16751.16846875
transcript.pyannote[2389].speaker SPEAKER_06
transcript.pyannote[2389].start 16751.16846875
transcript.pyannote[2389].end 16752.23159375
transcript.pyannote[2390].speaker SPEAKER_10
transcript.pyannote[2390].start 16753.51409375
transcript.pyannote[2390].end 16756.23096875
transcript.pyannote[2391].speaker SPEAKER_00
transcript.pyannote[2391].start 16754.71221875
transcript.pyannote[2391].end 16755.10034375
transcript.pyannote[2392].speaker SPEAKER_00
transcript.pyannote[2392].start 16756.23096875
transcript.pyannote[2392].end 16764.33096875
transcript.pyannote[2393].speaker SPEAKER_00
transcript.pyannote[2393].start 16764.51659375
transcript.pyannote[2393].end 16770.62534375
transcript.pyannote[2394].speaker SPEAKER_00
transcript.pyannote[2394].start 16770.96284375
transcript.pyannote[2394].end 16772.86971875
transcript.pyannote[2395].speaker SPEAKER_00
transcript.pyannote[2395].start 16773.13971875
transcript.pyannote[2395].end 16779.58596875
transcript.pyannote[2396].speaker SPEAKER_00
transcript.pyannote[2396].start 16779.68721875
transcript.pyannote[2396].end 16786.36971875
transcript.pyannote[2397].speaker SPEAKER_00
transcript.pyannote[2397].start 16786.55534375
transcript.pyannote[2397].end 16788.25971875
transcript.pyannote[2398].speaker SPEAKER_00
transcript.pyannote[2398].start 16788.49596875
transcript.pyannote[2398].end 16793.11971875
transcript.pyannote[2399].speaker SPEAKER_00
transcript.pyannote[2399].start 16793.33909375
transcript.pyannote[2399].end 16800.81471875
transcript.pyannote[2400].speaker SPEAKER_00
transcript.pyannote[2400].start 16800.91596875
transcript.pyannote[2400].end 16817.21721875
transcript.pyannote[2401].speaker SPEAKER_00
transcript.pyannote[2401].start 16817.48721875
transcript.pyannote[2401].end 16819.02284375
transcript.pyannote[2402].speaker SPEAKER_00
transcript.pyannote[2402].start 16819.32659375
transcript.pyannote[2402].end 16821.94221875
transcript.pyannote[2403].speaker SPEAKER_00
transcript.pyannote[2403].start 16822.09409375
transcript.pyannote[2403].end 16823.17409375
transcript.pyannote[2404].speaker SPEAKER_00
transcript.pyannote[2404].start 16823.59596875
transcript.pyannote[2404].end 16825.99221875
transcript.pyannote[2405].speaker SPEAKER_00
transcript.pyannote[2405].start 16826.34659375
transcript.pyannote[2405].end 16827.88221875
transcript.pyannote[2406].speaker SPEAKER_10
transcript.pyannote[2406].start 16829.06346875
transcript.pyannote[2406].end 16830.05909375
transcript.pyannote[2407].speaker SPEAKER_00
transcript.pyannote[2407].start 16830.66659375
transcript.pyannote[2407].end 16830.70034375
transcript.pyannote[2408].speaker SPEAKER_04
transcript.pyannote[2408].start 16830.70034375
transcript.pyannote[2408].end 16833.53534375
transcript.pyannote[2409].speaker SPEAKER_04
transcript.pyannote[2409].start 16833.82221875
transcript.pyannote[2409].end 16835.99909375
transcript.pyannote[2410].speaker SPEAKER_04
transcript.pyannote[2410].start 16836.35346875
transcript.pyannote[2410].end 16838.59784375
transcript.pyannote[2411].speaker SPEAKER_04
transcript.pyannote[2411].start 16838.98596875
transcript.pyannote[2411].end 16841.33159375
transcript.pyannote[2412].speaker SPEAKER_04
transcript.pyannote[2412].start 16841.83784375
transcript.pyannote[2412].end 16854.57846875
transcript.pyannote[2413].speaker SPEAKER_04
transcript.pyannote[2413].start 16855.43909375
transcript.pyannote[2413].end 16857.86909375
transcript.pyannote[2414].speaker SPEAKER_04
transcript.pyannote[2414].start 16858.35846875
transcript.pyannote[2414].end 16870.91346875
transcript.pyannote[2415].speaker SPEAKER_04
transcript.pyannote[2415].start 16871.58846875
transcript.pyannote[2415].end 16880.17784375
transcript.pyannote[2416].speaker SPEAKER_04
transcript.pyannote[2416].start 16880.80221875
transcript.pyannote[2416].end 16890.38721875
transcript.pyannote[2417].speaker SPEAKER_04
transcript.pyannote[2417].start 16891.09596875
transcript.pyannote[2417].end 16895.29784375
transcript.pyannote[2418].speaker SPEAKER_04
transcript.pyannote[2418].start 16895.90534375
transcript.pyannote[2418].end 16900.05659375
transcript.pyannote[2419].speaker SPEAKER_04
transcript.pyannote[2419].start 16900.98471875
transcript.pyannote[2419].end 16902.46971875
transcript.pyannote[2420].speaker SPEAKER_04
transcript.pyannote[2420].start 16902.58784375
transcript.pyannote[2420].end 16908.10596875
transcript.pyannote[2421].speaker SPEAKER_04
transcript.pyannote[2421].start 16908.57846875
transcript.pyannote[2421].end 16913.84346875
transcript.pyannote[2422].speaker SPEAKER_04
transcript.pyannote[2422].start 16914.75471875
transcript.pyannote[2422].end 16920.86346875
transcript.pyannote[2423].speaker SPEAKER_04
transcript.pyannote[2423].start 16921.25159375
transcript.pyannote[2423].end 16929.84096875
transcript.pyannote[2424].speaker SPEAKER_04
transcript.pyannote[2424].start 16930.53284375
transcript.pyannote[2424].end 16936.15221875
transcript.pyannote[2425].speaker SPEAKER_04
transcript.pyannote[2425].start 16936.94534375
transcript.pyannote[2425].end 16939.30784375
transcript.pyannote[2426].speaker SPEAKER_10
transcript.pyannote[2426].start 16940.25284375
transcript.pyannote[2426].end 16941.28221875
transcript.pyannote[2427].speaker SPEAKER_07
transcript.pyannote[2427].start 16941.51846875
transcript.pyannote[2427].end 16941.75471875
transcript.pyannote[2428].speaker SPEAKER_07
transcript.pyannote[2428].start 16941.99096875
transcript.pyannote[2428].end 16947.01971875
transcript.pyannote[2429].speaker SPEAKER_09
transcript.pyannote[2429].start 16946.88471875
transcript.pyannote[2429].end 16947.28971875
transcript.pyannote[2430].speaker SPEAKER_07
transcript.pyannote[2430].start 16947.13784375
transcript.pyannote[2430].end 16955.18721875
transcript.pyannote[2431].speaker SPEAKER_07
transcript.pyannote[2431].start 16955.60909375
transcript.pyannote[2431].end 16957.39784375
transcript.pyannote[2432].speaker SPEAKER_10
transcript.pyannote[2432].start 16957.46534375
transcript.pyannote[2432].end 16959.92909375
transcript.pyannote[2433].speaker SPEAKER_07
transcript.pyannote[2433].start 16958.68034375
transcript.pyannote[2433].end 16960.08096875
transcript.pyannote[2434].speaker SPEAKER_07
transcript.pyannote[2434].start 16960.24971875
transcript.pyannote[2434].end 16961.58284375
transcript.pyannote[2435].speaker SPEAKER_10
transcript.pyannote[2435].start 16960.65471875
transcript.pyannote[2435].end 16960.99221875
transcript.pyannote[2436].speaker SPEAKER_07
transcript.pyannote[2436].start 16962.08909375
transcript.pyannote[2436].end 16962.67971875
transcript.pyannote[2437].speaker SPEAKER_07
transcript.pyannote[2437].start 16962.89909375
transcript.pyannote[2437].end 16964.35034375
transcript.pyannote[2438].speaker SPEAKER_07
transcript.pyannote[2438].start 16964.90721875
transcript.pyannote[2438].end 16966.99971875
transcript.pyannote[2439].speaker SPEAKER_07
transcript.pyannote[2439].start 16967.20221875
transcript.pyannote[2439].end 16968.43409375
transcript.pyannote[2440].speaker SPEAKER_10
transcript.pyannote[2440].start 16968.94034375
transcript.pyannote[2440].end 16970.89784375
transcript.pyannote[2441].speaker SPEAKER_18
transcript.pyannote[2441].start 16970.98221875
transcript.pyannote[2441].end 16976.06159375
transcript.pyannote[2442].speaker SPEAKER_18
transcript.pyannote[2442].start 16976.29784375
transcript.pyannote[2442].end 16980.49971875
transcript.pyannote[2443].speaker SPEAKER_18
transcript.pyannote[2443].start 16981.66409375
transcript.pyannote[2443].end 16987.97534375
transcript.pyannote[2444].speaker SPEAKER_18
transcript.pyannote[2444].start 16989.15659375
transcript.pyannote[2444].end 16992.86909375
transcript.pyannote[2445].speaker SPEAKER_18
transcript.pyannote[2445].start 16993.35846875
transcript.pyannote[2445].end 17018.24909375
transcript.pyannote[2446].speaker SPEAKER_18
transcript.pyannote[2446].start 17018.77221875
transcript.pyannote[2446].end 17043.49409375
transcript.pyannote[2447].speaker SPEAKER_18
transcript.pyannote[2447].start 17044.16909375
transcript.pyannote[2447].end 17046.54846875
transcript.pyannote[2448].speaker SPEAKER_18
transcript.pyannote[2448].start 17047.67909375
transcript.pyannote[2448].end 17050.26096875
transcript.pyannote[2449].speaker SPEAKER_18
transcript.pyannote[2449].start 17050.39596875
transcript.pyannote[2449].end 17050.95284375
transcript.pyannote[2450].speaker SPEAKER_18
transcript.pyannote[2450].start 17051.30721875
transcript.pyannote[2450].end 17069.11034375
transcript.pyannote[2451].speaker SPEAKER_18
transcript.pyannote[2451].start 17069.38034375
transcript.pyannote[2451].end 17089.17471875
transcript.pyannote[2452].speaker SPEAKER_10
transcript.pyannote[2452].start 17089.96784375
transcript.pyannote[2452].end 17089.98471875
transcript.pyannote[2453].speaker SPEAKER_26
transcript.pyannote[2453].start 17089.98471875
transcript.pyannote[2453].end 17090.77784375
transcript.pyannote[2454].speaker SPEAKER_10
transcript.pyannote[2454].start 17090.62596875
transcript.pyannote[2454].end 17090.69346875
transcript.pyannote[2455].speaker SPEAKER_10
transcript.pyannote[2455].start 17090.77784375
transcript.pyannote[2455].end 17094.87846875
transcript.pyannote[2456].speaker SPEAKER_26
transcript.pyannote[2456].start 17092.60034375
transcript.pyannote[2456].end 17125.97909375
transcript.pyannote[2457].speaker SPEAKER_10
transcript.pyannote[2457].start 17126.90721875
transcript.pyannote[2457].end 17129.52284375
transcript.pyannote[2458].speaker SPEAKER_07
transcript.pyannote[2458].start 17131.27784375
transcript.pyannote[2458].end 17136.93096875
transcript.pyannote[2459].speaker SPEAKER_10
transcript.pyannote[2459].start 17137.03221875
transcript.pyannote[2459].end 17149.41846875
transcript.pyannote[2460].speaker SPEAKER_07
transcript.pyannote[2460].start 17139.41159375
transcript.pyannote[2460].end 17142.02721875
transcript.pyannote[2461].speaker SPEAKER_00
transcript.pyannote[2461].start 17142.02721875
transcript.pyannote[2461].end 17142.06096875
transcript.pyannote[2462].speaker SPEAKER_10
transcript.pyannote[2462].start 17149.72221875
transcript.pyannote[2462].end 17150.66721875
transcript.pyannote[2463].speaker SPEAKER_18
transcript.pyannote[2463].start 17158.29471875
transcript.pyannote[2463].end 17158.37909375
transcript.pyannote[2464].speaker SPEAKER_18
transcript.pyannote[2464].start 17158.96971875
transcript.pyannote[2464].end 17159.03721875
transcript.pyannote[2465].speaker SPEAKER_18
transcript.pyannote[2465].start 17159.05409375
transcript.pyannote[2465].end 17159.22284375
transcript.pyannote[2466].speaker SPEAKER_18
transcript.pyannote[2466].start 17160.06659375
transcript.pyannote[2466].end 17160.18471875
transcript.pyannote[2467].speaker SPEAKER_18
transcript.pyannote[2467].start 17160.20159375
transcript.pyannote[2467].end 17160.23534375
transcript.pyannote[2468].speaker SPEAKER_18
transcript.pyannote[2468].start 17160.97784375
transcript.pyannote[2468].end 17161.02846875
transcript.pyannote[2469].speaker SPEAKER_18
transcript.pyannote[2469].start 17161.90596875
transcript.pyannote[2469].end 17165.29784375
transcript.pyannote[2470].speaker SPEAKER_18
transcript.pyannote[2470].start 17169.24659375
transcript.pyannote[2470].end 17169.55034375
transcript.pyannote[2471].speaker SPEAKER_18
transcript.pyannote[2471].start 17169.97221875
transcript.pyannote[2471].end 17170.20846875
transcript.pyannote[2472].speaker SPEAKER_18
transcript.pyannote[2472].start 17170.59659375
transcript.pyannote[2472].end 17175.13596875
transcript.pyannote[2473].speaker SPEAKER_18
transcript.pyannote[2473].start 17175.76034375
transcript.pyannote[2473].end 17176.80659375
transcript.pyannote[2474].speaker SPEAKER_18
transcript.pyannote[2474].start 17176.97534375
transcript.pyannote[2474].end 17177.02596875
transcript.pyannote[2475].speaker SPEAKER_10
transcript.pyannote[2475].start 17456.62784375
transcript.pyannote[2475].end 17457.77534375
transcript.pyannote[2476].speaker SPEAKER_10
transcript.pyannote[2476].start 17460.05346875
transcript.pyannote[2476].end 17461.99409375
transcript.pyannote[2477].speaker SPEAKER_10
transcript.pyannote[2477].start 17463.25971875
transcript.pyannote[2477].end 17465.79096875
transcript.pyannote[2478].speaker SPEAKER_07
transcript.pyannote[2478].start 17463.49596875
transcript.pyannote[2478].end 17463.64784375
transcript.pyannote[2479].speaker SPEAKER_07
transcript.pyannote[2479].start 17464.50846875
transcript.pyannote[2479].end 17465.77409375
transcript.pyannote[2480].speaker SPEAKER_10
transcript.pyannote[2480].start 17466.71909375
transcript.pyannote[2480].end 17467.09034375
transcript.pyannote[2481].speaker SPEAKER_07
transcript.pyannote[2481].start 17467.07346875
transcript.pyannote[2481].end 17468.15346875
transcript.pyannote[2482].speaker SPEAKER_10
transcript.pyannote[2482].start 17468.76096875
transcript.pyannote[2482].end 17469.13221875
transcript.pyannote[2483].speaker SPEAKER_07
transcript.pyannote[2483].start 17469.31784375
transcript.pyannote[2483].end 17470.51596875
transcript.pyannote[2484].speaker SPEAKER_10
transcript.pyannote[2484].start 17470.71846875
transcript.pyannote[2484].end 17471.00534375
transcript.pyannote[2485].speaker SPEAKER_07
transcript.pyannote[2485].start 17471.00534375
transcript.pyannote[2485].end 17471.49471875
transcript.pyannote[2486].speaker SPEAKER_10
transcript.pyannote[2486].start 17471.02221875
transcript.pyannote[2486].end 17471.07284375
transcript.pyannote[2487].speaker SPEAKER_07
transcript.pyannote[2487].start 17471.79846875
transcript.pyannote[2487].end 17475.39284375
transcript.pyannote[2488].speaker SPEAKER_07
transcript.pyannote[2488].start 17476.62471875
transcript.pyannote[2488].end 17479.61159375
transcript.pyannote[2489].speaker SPEAKER_07
transcript.pyannote[2489].start 17479.88159375
transcript.pyannote[2489].end 17480.94471875
transcript.pyannote[2490].speaker SPEAKER_20
transcript.pyannote[2490].start 17480.79284375
transcript.pyannote[2490].end 17481.23159375
transcript.pyannote[2491].speaker SPEAKER_07
transcript.pyannote[2491].start 17481.48471875
transcript.pyannote[2491].end 17487.30659375
transcript.pyannote[2492].speaker SPEAKER_20
transcript.pyannote[2492].start 17483.84721875
transcript.pyannote[2492].end 17484.16784375
transcript.pyannote[2493].speaker SPEAKER_07
transcript.pyannote[2493].start 17489.19659375
transcript.pyannote[2493].end 17490.68159375
transcript.pyannote[2494].speaker SPEAKER_18
transcript.pyannote[2494].start 17490.05721875
transcript.pyannote[2494].end 17498.98409375
transcript.pyannote[2495].speaker SPEAKER_18
transcript.pyannote[2495].start 17499.47346875
transcript.pyannote[2495].end 17536.81784375
transcript.pyannote[2496].speaker SPEAKER_07
transcript.pyannote[2496].start 17536.81784375
transcript.pyannote[2496].end 17539.41659375
transcript.pyannote[2497].speaker SPEAKER_18
transcript.pyannote[2497].start 17538.69096875
transcript.pyannote[2497].end 17539.83846875
transcript.pyannote[2498].speaker SPEAKER_10
transcript.pyannote[2498].start 17539.83846875
transcript.pyannote[2498].end 17550.08159375
transcript.pyannote[2499].speaker SPEAKER_07
transcript.pyannote[2499].start 17542.97721875
transcript.pyannote[2499].end 17543.55096875
transcript.pyannote[2500].speaker SPEAKER_07
transcript.pyannote[2500].start 17545.76159375
transcript.pyannote[2500].end 17546.43659375
transcript.pyannote[2501].speaker SPEAKER_10
transcript.pyannote[2501].start 17552.98409375
transcript.pyannote[2501].end 17553.01784375
transcript.pyannote[2502].speaker SPEAKER_17
transcript.pyannote[2502].start 17553.01784375
transcript.pyannote[2502].end 17561.40471875
transcript.pyannote[2503].speaker SPEAKER_17
transcript.pyannote[2503].start 17561.57346875
transcript.pyannote[2503].end 17563.69971875
transcript.pyannote[2504].speaker SPEAKER_17
transcript.pyannote[2504].start 17566.36596875
transcript.pyannote[2504].end 17567.44596875
transcript.pyannote[2505].speaker SPEAKER_17
transcript.pyannote[2505].start 17570.98971875
transcript.pyannote[2505].end 17571.71534375
transcript.pyannote[2506].speaker SPEAKER_17
transcript.pyannote[2506].start 17571.78284375
transcript.pyannote[2506].end 17572.60971875
transcript.pyannote[2507].speaker SPEAKER_17
transcript.pyannote[2507].start 17583.66284375
transcript.pyannote[2507].end 17584.43909375
transcript.pyannote[2508].speaker SPEAKER_10
transcript.pyannote[2508].start 17598.19221875
transcript.pyannote[2508].end 17599.27221875
transcript.pyannote[2509].speaker SPEAKER_00
transcript.pyannote[2509].start 17624.66909375
transcript.pyannote[2509].end 17626.79534375
transcript.pyannote[2510].speaker SPEAKER_20
transcript.pyannote[2510].start 17624.73659375
transcript.pyannote[2510].end 17625.00659375
transcript.pyannote[2511].speaker SPEAKER_23
transcript.pyannote[2511].start 17625.00659375
transcript.pyannote[2511].end 17625.05721875
transcript.pyannote[2512].speaker SPEAKER_23
transcript.pyannote[2512].start 17631.01409375
transcript.pyannote[2512].end 17654.36909375
transcript.pyannote[2513].speaker SPEAKER_23
transcript.pyannote[2513].start 17654.72346875
transcript.pyannote[2513].end 17655.95534375
transcript.pyannote[2514].speaker SPEAKER_23
transcript.pyannote[2514].start 17656.00596875
transcript.pyannote[2514].end 17656.27596875
transcript.pyannote[2515].speaker SPEAKER_17
transcript.pyannote[2515].start 17656.27596875
transcript.pyannote[2515].end 17684.27159375
transcript.pyannote[2516].speaker SPEAKER_17
transcript.pyannote[2516].start 17684.82846875
transcript.pyannote[2516].end 17685.03096875
transcript.pyannote[2517].speaker SPEAKER_23
transcript.pyannote[2517].start 17685.03096875
transcript.pyannote[2517].end 17696.13471875
transcript.pyannote[2518].speaker SPEAKER_23
transcript.pyannote[2518].start 17696.40471875
transcript.pyannote[2518].end 17699.94846875
transcript.pyannote[2519].speaker SPEAKER_17
transcript.pyannote[2519].start 17699.94846875
transcript.pyannote[2519].end 17703.44159375
transcript.pyannote[2520].speaker SPEAKER_23
transcript.pyannote[2520].start 17703.45846875
transcript.pyannote[2520].end 17703.74534375
transcript.pyannote[2521].speaker SPEAKER_23
transcript.pyannote[2521].start 17704.18409375
transcript.pyannote[2521].end 17704.97721875
transcript.pyannote[2522].speaker SPEAKER_17
transcript.pyannote[2522].start 17704.97721875
transcript.pyannote[2522].end 17705.85471875
transcript.pyannote[2523].speaker SPEAKER_23
transcript.pyannote[2523].start 17705.85471875
transcript.pyannote[2523].end 17705.87159375
transcript.pyannote[2524].speaker SPEAKER_17
transcript.pyannote[2524].start 17705.90534375
transcript.pyannote[2524].end 17705.92221875
transcript.pyannote[2525].speaker SPEAKER_17
transcript.pyannote[2525].start 17705.93909375
transcript.pyannote[2525].end 17710.32659375
transcript.pyannote[2526].speaker SPEAKER_23
transcript.pyannote[2526].start 17706.31034375
transcript.pyannote[2526].end 17706.34409375
transcript.pyannote[2527].speaker SPEAKER_23
transcript.pyannote[2527].start 17710.91721875
transcript.pyannote[2527].end 17712.75659375
transcript.pyannote[2528].speaker SPEAKER_23
transcript.pyannote[2528].start 17712.97596875
transcript.pyannote[2528].end 17713.00971875
transcript.pyannote[2529].speaker SPEAKER_17
transcript.pyannote[2529].start 17715.81096875
transcript.pyannote[2529].end 17726.02034375
transcript.pyannote[2530].speaker SPEAKER_24
transcript.pyannote[2530].start 17726.39159375
transcript.pyannote[2530].end 17726.72909375
transcript.pyannote[2531].speaker SPEAKER_10
transcript.pyannote[2531].start 17728.06221875
transcript.pyannote[2531].end 17734.50846875
transcript.pyannote[2532].speaker SPEAKER_10
transcript.pyannote[2532].start 17734.72784375
transcript.pyannote[2532].end 17734.98096875
transcript.pyannote[2533].speaker SPEAKER_10
transcript.pyannote[2533].start 17736.68534375
transcript.pyannote[2533].end 17738.17034375
transcript.pyannote[2534].speaker SPEAKER_17
transcript.pyannote[2534].start 17741.57909375
transcript.pyannote[2534].end 17764.90034375
transcript.pyannote[2535].speaker SPEAKER_00
transcript.pyannote[2535].start 17765.50784375
transcript.pyannote[2535].end 17772.73034375
transcript.pyannote[2536].speaker SPEAKER_00
transcript.pyannote[2536].start 17773.18596875
transcript.pyannote[2536].end 17781.01596875
transcript.pyannote[2537].speaker SPEAKER_17
transcript.pyannote[2537].start 17780.61096875
transcript.pyannote[2537].end 17785.82534375
transcript.pyannote[2538].speaker SPEAKER_00
transcript.pyannote[2538].start 17781.62346875
transcript.pyannote[2538].end 17782.36596875
transcript.pyannote[2539].speaker SPEAKER_00
transcript.pyannote[2539].start 17783.31096875
transcript.pyannote[2539].end 17783.69909375
transcript.pyannote[2540].speaker SPEAKER_00
transcript.pyannote[2540].start 17785.55534375
transcript.pyannote[2540].end 17789.36909375
transcript.pyannote[2541].speaker SPEAKER_17
transcript.pyannote[2541].start 17785.96034375
transcript.pyannote[2541].end 17787.05721875
transcript.pyannote[2542].speaker SPEAKER_17
transcript.pyannote[2542].start 17789.23409375
transcript.pyannote[2542].end 17801.89034375
transcript.pyannote[2543].speaker SPEAKER_12
transcript.pyannote[2543].start 17801.87346875
transcript.pyannote[2543].end 17802.24471875
transcript.pyannote[2544].speaker SPEAKER_17
transcript.pyannote[2544].start 17802.24471875
transcript.pyannote[2544].end 17826.07221875
transcript.pyannote[2545].speaker SPEAKER_17
transcript.pyannote[2545].start 17826.59534375
transcript.pyannote[2545].end 17828.06346875
transcript.pyannote[2546].speaker SPEAKER_10
transcript.pyannote[2546].start 17826.62909375
transcript.pyannote[2546].end 17827.52346875
transcript.pyannote[2547].speaker SPEAKER_15
transcript.pyannote[2547].start 17828.06346875
transcript.pyannote[2547].end 17828.08034375
transcript.pyannote[2548].speaker SPEAKER_10
transcript.pyannote[2548].start 17828.08034375
transcript.pyannote[2548].end 17828.24909375
transcript.pyannote[2549].speaker SPEAKER_20
transcript.pyannote[2549].start 17828.24909375
transcript.pyannote[2549].end 17828.35034375
transcript.pyannote[2550].speaker SPEAKER_10
transcript.pyannote[2550].start 17828.35034375
transcript.pyannote[2550].end 17828.45159375
transcript.pyannote[2551].speaker SPEAKER_10
transcript.pyannote[2551].start 17828.56971875
transcript.pyannote[2551].end 17836.39971875
transcript.pyannote[2552].speaker SPEAKER_17
transcript.pyannote[2552].start 17828.99159375
transcript.pyannote[2552].end 17829.37971875
transcript.pyannote[2553].speaker SPEAKER_10
transcript.pyannote[2553].start 17836.70346875
transcript.pyannote[2553].end 17837.39534375
transcript.pyannote[2554].speaker SPEAKER_10
transcript.pyannote[2554].start 17842.20471875
transcript.pyannote[2554].end 17843.50409375
transcript.pyannote[2555].speaker SPEAKER_10
transcript.pyannote[2555].start 17844.19596875
transcript.pyannote[2555].end 17847.33471875
transcript.pyannote[2556].speaker SPEAKER_10
transcript.pyannote[2556].start 17848.26284375
transcript.pyannote[2556].end 17850.40596875
transcript.pyannote[2557].speaker SPEAKER_10
transcript.pyannote[2557].start 17850.67596875
transcript.pyannote[2557].end 17851.23284375
transcript.pyannote[2558].speaker SPEAKER_10
transcript.pyannote[2558].start 17853.71346875
transcript.pyannote[2558].end 17854.01721875
transcript.pyannote[2559].speaker SPEAKER_10
transcript.pyannote[2559].start 17854.42221875
transcript.pyannote[2559].end 17855.51909375
transcript.pyannote[2560].speaker SPEAKER_10
transcript.pyannote[2560].start 17855.82284375
transcript.pyannote[2560].end 17856.54846875
transcript.pyannote[2561].speaker SPEAKER_10
transcript.pyannote[2561].start 17856.90284375
transcript.pyannote[2561].end 17858.57346875
transcript.pyannote[2562].speaker SPEAKER_10
transcript.pyannote[2562].start 17859.18096875
transcript.pyannote[2562].end 17859.73784375
transcript.pyannote[2563].speaker SPEAKER_10
transcript.pyannote[2563].start 17862.84284375
transcript.pyannote[2563].end 17863.90596875
transcript.pyannote[2564].speaker SPEAKER_10
transcript.pyannote[2564].start 17865.25596875
transcript.pyannote[2564].end 17865.98159375
transcript.pyannote[2565].speaker SPEAKER_10
transcript.pyannote[2565].start 17866.45409375
transcript.pyannote[2565].end 17867.78721875
transcript.pyannote[2566].speaker SPEAKER_10
transcript.pyannote[2566].start 17868.14159375
transcript.pyannote[2566].end 17868.74909375
transcript.pyannote[2567].speaker SPEAKER_10
transcript.pyannote[2567].start 17871.75284375
transcript.pyannote[2567].end 17872.41096875
transcript.pyannote[2568].speaker SPEAKER_10
transcript.pyannote[2568].start 17872.69784375
transcript.pyannote[2568].end 17875.63409375
transcript.pyannote[2569].speaker SPEAKER_10
transcript.pyannote[2569].start 17876.41034375
transcript.pyannote[2569].end 17877.22034375
transcript.pyannote[2570].speaker SPEAKER_10
transcript.pyannote[2570].start 17879.02596875
transcript.pyannote[2570].end 17880.69659375
transcript.pyannote[2571].speaker SPEAKER_10
transcript.pyannote[2571].start 17881.30409375
transcript.pyannote[2571].end 17881.72596875
transcript.pyannote[2572].speaker SPEAKER_10
transcript.pyannote[2572].start 17882.01284375
transcript.pyannote[2572].end 17882.82284375
transcript.pyannote[2573].speaker SPEAKER_10
transcript.pyannote[2573].start 17883.07596875
transcript.pyannote[2573].end 17883.76784375
transcript.pyannote[2574].speaker SPEAKER_10
transcript.pyannote[2574].start 17886.09659375
transcript.pyannote[2574].end 17886.38346875
transcript.pyannote[2575].speaker SPEAKER_10
transcript.pyannote[2575].start 17886.78846875
transcript.pyannote[2575].end 17887.41284375
transcript.pyannote[2576].speaker SPEAKER_10
transcript.pyannote[2576].start 17887.76721875
transcript.pyannote[2576].end 17889.50534375
transcript.pyannote[2577].speaker SPEAKER_10
transcript.pyannote[2577].start 17891.14221875
transcript.pyannote[2577].end 17891.53034375
transcript.pyannote[2578].speaker SPEAKER_10
transcript.pyannote[2578].start 17891.59784375
transcript.pyannote[2578].end 17892.40784375
transcript.pyannote[2579].speaker SPEAKER_10
transcript.pyannote[2579].start 17892.82971875
transcript.pyannote[2579].end 17893.35284375
transcript.pyannote[2580].speaker SPEAKER_10
transcript.pyannote[2580].start 17895.02346875
transcript.pyannote[2580].end 17895.25971875
transcript.pyannote[2581].speaker SPEAKER_10
transcript.pyannote[2581].start 17896.05284375
transcript.pyannote[2581].end 17896.87971875
transcript.pyannote[2582].speaker SPEAKER_10
transcript.pyannote[2582].start 17897.28471875
transcript.pyannote[2582].end 17897.65596875
transcript.pyannote[2583].speaker SPEAKER_10
transcript.pyannote[2583].start 17898.55034375
transcript.pyannote[2583].end 17899.10721875
transcript.pyannote[2584].speaker SPEAKER_10
transcript.pyannote[2584].start 17901.06471875
transcript.pyannote[2584].end 17901.38534375
transcript.pyannote[2585].speaker SPEAKER_10
transcript.pyannote[2585].start 17901.85784375
transcript.pyannote[2585].end 17902.81971875
transcript.pyannote[2586].speaker SPEAKER_10
transcript.pyannote[2586].start 17903.02221875
transcript.pyannote[2586].end 17903.64659375
transcript.pyannote[2587].speaker SPEAKER_10
transcript.pyannote[2587].start 17907.91596875
transcript.pyannote[2587].end 17909.99159375
transcript.pyannote[2588].speaker SPEAKER_10
transcript.pyannote[2588].start 17910.22784375
transcript.pyannote[2588].end 17910.78471875
transcript.pyannote[2589].speaker SPEAKER_08
transcript.pyannote[2589].start 17911.32471875
transcript.pyannote[2589].end 17911.93221875
transcript.pyannote[2590].speaker SPEAKER_10
transcript.pyannote[2590].start 17912.84346875
transcript.pyannote[2590].end 17913.97409375
transcript.pyannote[2591].speaker SPEAKER_10
transcript.pyannote[2591].start 17914.15971875
transcript.pyannote[2591].end 17914.66596875
transcript.pyannote[2592].speaker SPEAKER_08
transcript.pyannote[2592].start 17914.83471875
transcript.pyannote[2592].end 17916.92721875
transcript.pyannote[2593].speaker SPEAKER_08
transcript.pyannote[2593].start 17917.24784375
transcript.pyannote[2593].end 17917.72034375
transcript.pyannote[2594].speaker SPEAKER_08
transcript.pyannote[2594].start 17918.19284375
transcript.pyannote[2594].end 17921.19659375
transcript.pyannote[2595].speaker SPEAKER_14
transcript.pyannote[2595].start 17923.23846875
transcript.pyannote[2595].end 17924.30159375
transcript.pyannote[2596].speaker SPEAKER_08
transcript.pyannote[2596].start 17923.89659375
transcript.pyannote[2596].end 17924.70659375
transcript.pyannote[2597].speaker SPEAKER_14
transcript.pyannote[2597].start 17925.04409375
transcript.pyannote[2597].end 17930.96721875
transcript.pyannote[2598].speaker SPEAKER_08
transcript.pyannote[2598].start 17927.06909375
transcript.pyannote[2598].end 17928.55409375
transcript.pyannote[2599].speaker SPEAKER_14
transcript.pyannote[2599].start 17931.35534375
transcript.pyannote[2599].end 17934.13971875
transcript.pyannote[2600].speaker SPEAKER_08
transcript.pyannote[2600].start 17931.47346875
transcript.pyannote[2600].end 17931.55784375
transcript.pyannote[2601].speaker SPEAKER_08
transcript.pyannote[2601].start 17933.07659375
transcript.pyannote[2601].end 17934.69659375
transcript.pyannote[2602].speaker SPEAKER_14
transcript.pyannote[2602].start 17934.66284375
transcript.pyannote[2602].end 17936.16471875
transcript.pyannote[2603].speaker SPEAKER_08
transcript.pyannote[2603].start 17935.06784375
transcript.pyannote[2603].end 17936.24909375
transcript.pyannote[2604].speaker SPEAKER_08
transcript.pyannote[2604].start 17936.29971875
transcript.pyannote[2604].end 17938.25721875
transcript.pyannote[2605].speaker SPEAKER_14
transcript.pyannote[2605].start 17937.32909375
transcript.pyannote[2605].end 17940.50159375
transcript.pyannote[2606].speaker SPEAKER_08
transcript.pyannote[2606].start 17940.73784375
transcript.pyannote[2606].end 17944.87221875
transcript.pyannote[2607].speaker SPEAKER_08
transcript.pyannote[2607].start 17945.31096875
transcript.pyannote[2607].end 17947.48784375
transcript.pyannote[2608].speaker SPEAKER_08
transcript.pyannote[2608].start 17948.70284375
transcript.pyannote[2608].end 17949.91784375
transcript.pyannote[2609].speaker SPEAKER_12
transcript.pyannote[2609].start 17951.97659375
transcript.pyannote[2609].end 17952.02721875
transcript.pyannote[2610].speaker SPEAKER_12
transcript.pyannote[2610].start 17952.09471875
transcript.pyannote[2610].end 17955.70596875
transcript.pyannote[2611].speaker SPEAKER_14
transcript.pyannote[2611].start 17956.21221875
transcript.pyannote[2611].end 17957.05596875
transcript.pyannote[2612].speaker SPEAKER_12
transcript.pyannote[2612].start 17957.05596875
transcript.pyannote[2612].end 17959.35096875
transcript.pyannote[2613].speaker SPEAKER_14
transcript.pyannote[2613].start 17962.01721875
transcript.pyannote[2613].end 17972.61471875
transcript.pyannote[2614].speaker SPEAKER_08
transcript.pyannote[2614].start 17972.61471875
transcript.pyannote[2614].end 17975.48346875
transcript.pyannote[2615].speaker SPEAKER_08
transcript.pyannote[2615].start 17976.39471875
transcript.pyannote[2615].end 17979.36471875
transcript.pyannote[2616].speaker SPEAKER_20
transcript.pyannote[2616].start 17980.95096875
transcript.pyannote[2616].end 17980.96784375
transcript.pyannote[2617].speaker SPEAKER_20
transcript.pyannote[2617].start 17980.98471875
transcript.pyannote[2617].end 17981.00159375
transcript.pyannote[2618].speaker SPEAKER_08
transcript.pyannote[2618].start 17981.40659375
transcript.pyannote[2618].end 17983.38096875
transcript.pyannote[2619].speaker SPEAKER_04
transcript.pyannote[2619].start 17983.22909375
transcript.pyannote[2619].end 17983.24596875
transcript.pyannote[2620].speaker SPEAKER_02
transcript.pyannote[2620].start 17983.24596875
transcript.pyannote[2620].end 17983.36409375
transcript.pyannote[2621].speaker SPEAKER_02
transcript.pyannote[2621].start 17983.38096875
transcript.pyannote[2621].end 17983.41471875
transcript.pyannote[2622].speaker SPEAKER_08
transcript.pyannote[2622].start 17983.41471875
transcript.pyannote[2622].end 17994.19784375
transcript.pyannote[2623].speaker SPEAKER_02
transcript.pyannote[2623].start 17983.43159375
transcript.pyannote[2623].end 17983.46534375
transcript.pyannote[2624].speaker SPEAKER_08
transcript.pyannote[2624].start 17994.73784375
transcript.pyannote[2624].end 17999.81721875
transcript.pyannote[2625].speaker SPEAKER_14
transcript.pyannote[2625].start 18000.25596875
transcript.pyannote[2625].end 18013.31721875
transcript.pyannote[2626].speaker SPEAKER_08
transcript.pyannote[2626].start 18013.73909375
transcript.pyannote[2626].end 18028.25159375
transcript.pyannote[2627].speaker SPEAKER_08
transcript.pyannote[2627].start 18028.62284375
transcript.pyannote[2627].end 18037.51596875
transcript.pyannote[2628].speaker SPEAKER_20
transcript.pyannote[2628].start 18032.82471875
transcript.pyannote[2628].end 18032.97659375
transcript.pyannote[2629].speaker SPEAKER_14
transcript.pyannote[2629].start 18032.97659375
transcript.pyannote[2629].end 18033.17909375
transcript.pyannote[2630].speaker SPEAKER_20
transcript.pyannote[2630].start 18033.17909375
transcript.pyannote[2630].end 18033.19596875
transcript.pyannote[2631].speaker SPEAKER_14
transcript.pyannote[2631].start 18038.69721875
transcript.pyannote[2631].end 18049.49721875
transcript.pyannote[2632].speaker SPEAKER_08
transcript.pyannote[2632].start 18039.35534375
transcript.pyannote[2632].end 18040.01346875
transcript.pyannote[2633].speaker SPEAKER_08
transcript.pyannote[2633].start 18049.49721875
transcript.pyannote[2633].end 18051.85971875
transcript.pyannote[2634].speaker SPEAKER_08
transcript.pyannote[2634].start 18052.34909375
transcript.pyannote[2634].end 18054.91409375
transcript.pyannote[2635].speaker SPEAKER_08
transcript.pyannote[2635].start 18056.53409375
transcript.pyannote[2635].end 18062.99721875
transcript.pyannote[2636].speaker SPEAKER_10
transcript.pyannote[2636].start 18058.32284375
transcript.pyannote[2636].end 18058.76159375
transcript.pyannote[2637].speaker SPEAKER_10
transcript.pyannote[2637].start 18059.25096875
transcript.pyannote[2637].end 18062.17034375
transcript.pyannote[2638].speaker SPEAKER_08
transcript.pyannote[2638].start 18063.80721875
transcript.pyannote[2638].end 18064.66784375
transcript.pyannote[2639].speaker SPEAKER_10
transcript.pyannote[2639].start 18065.05596875
transcript.pyannote[2639].end 18068.83596875
transcript.pyannote[2640].speaker SPEAKER_20
transcript.pyannote[2640].start 18068.39721875
transcript.pyannote[2640].end 18068.46471875
transcript.pyannote[2641].speaker SPEAKER_14
transcript.pyannote[2641].start 18068.46471875
transcript.pyannote[2641].end 18068.61659375
transcript.pyannote[2642].speaker SPEAKER_14
transcript.pyannote[2642].start 18068.83596875
transcript.pyannote[2642].end 18068.85284375
transcript.pyannote[2643].speaker SPEAKER_14
transcript.pyannote[2643].start 18070.96221875
transcript.pyannote[2643].end 18078.50534375
transcript.pyannote[2644].speaker SPEAKER_14
transcript.pyannote[2644].start 18079.58534375
transcript.pyannote[2644].end 18080.86784375
transcript.pyannote[2645].speaker SPEAKER_08
transcript.pyannote[2645].start 18080.64846875
transcript.pyannote[2645].end 18082.84221875
transcript.pyannote[2646].speaker SPEAKER_08
transcript.pyannote[2646].start 18084.07409375
transcript.pyannote[2646].end 18084.78284375
transcript.pyannote[2647].speaker SPEAKER_08
transcript.pyannote[2647].start 18084.96846875
transcript.pyannote[2647].end 18085.03596875
transcript.pyannote[2648].speaker SPEAKER_08
transcript.pyannote[2648].start 18085.10346875
transcript.pyannote[2648].end 18087.22971875
transcript.pyannote[2649].speaker SPEAKER_08
transcript.pyannote[2649].start 18087.44909375
transcript.pyannote[2649].end 18091.70159375
transcript.pyannote[2650].speaker SPEAKER_14
transcript.pyannote[2650].start 18093.08534375
transcript.pyannote[2650].end 18094.26659375
transcript.pyannote[2651].speaker SPEAKER_14
transcript.pyannote[2651].start 18094.40159375
transcript.pyannote[2651].end 18095.88659375
transcript.pyannote[2652].speaker SPEAKER_14
transcript.pyannote[2652].start 18096.46034375
transcript.pyannote[2652].end 18098.73846875
transcript.pyannote[2653].speaker SPEAKER_14
transcript.pyannote[2653].start 18099.44721875
transcript.pyannote[2653].end 18100.47659375
transcript.pyannote[2654].speaker SPEAKER_08
transcript.pyannote[2654].start 18101.21909375
transcript.pyannote[2654].end 18106.46721875
transcript.pyannote[2655].speaker SPEAKER_20
transcript.pyannote[2655].start 18104.08784375
transcript.pyannote[2655].end 18104.13846875
transcript.pyannote[2656].speaker SPEAKER_14
transcript.pyannote[2656].start 18104.13846875
transcript.pyannote[2656].end 18105.50534375
transcript.pyannote[2657].speaker SPEAKER_20
transcript.pyannote[2657].start 18105.50534375
transcript.pyannote[2657].end 18105.52221875
transcript.pyannote[2658].speaker SPEAKER_20
transcript.pyannote[2658].start 18106.24784375
transcript.pyannote[2658].end 18106.92284375
transcript.pyannote[2659].speaker SPEAKER_08
transcript.pyannote[2659].start 18106.78784375
transcript.pyannote[2659].end 18109.36971875
transcript.pyannote[2660].speaker SPEAKER_20
transcript.pyannote[2660].start 18108.15471875
transcript.pyannote[2660].end 18108.61034375
transcript.pyannote[2661].speaker SPEAKER_20
transcript.pyannote[2661].start 18108.82971875
transcript.pyannote[2661].end 18109.25159375
transcript.pyannote[2662].speaker SPEAKER_08
transcript.pyannote[2662].start 18109.65659375
transcript.pyannote[2662].end 18110.39909375
transcript.pyannote[2663].speaker SPEAKER_08
transcript.pyannote[2663].start 18111.07409375
transcript.pyannote[2663].end 18117.28409375
transcript.pyannote[2664].speaker SPEAKER_20
transcript.pyannote[2664].start 18116.94659375
transcript.pyannote[2664].end 18116.96346875
transcript.pyannote[2665].speaker SPEAKER_06
transcript.pyannote[2665].start 18116.96346875
transcript.pyannote[2665].end 18117.33471875
transcript.pyannote[2666].speaker SPEAKER_08
transcript.pyannote[2666].start 18117.33471875
transcript.pyannote[2666].end 18118.70159375
transcript.pyannote[2667].speaker SPEAKER_08
transcript.pyannote[2667].start 18119.35971875
transcript.pyannote[2667].end 18120.47346875
transcript.pyannote[2668].speaker SPEAKER_08
transcript.pyannote[2668].start 18120.72659375
transcript.pyannote[2668].end 18123.39284375
transcript.pyannote[2669].speaker SPEAKER_08
transcript.pyannote[2669].start 18123.52784375
transcript.pyannote[2669].end 18128.64096875
transcript.pyannote[2670].speaker SPEAKER_20
transcript.pyannote[2670].start 18127.47659375
transcript.pyannote[2670].end 18128.62409375
transcript.pyannote[2671].speaker SPEAKER_20
transcript.pyannote[2671].start 18128.64096875
transcript.pyannote[2671].end 18128.97846875
transcript.pyannote[2672].speaker SPEAKER_08
transcript.pyannote[2672].start 18128.97846875
transcript.pyannote[2672].end 18135.40784375
transcript.pyannote[2673].speaker SPEAKER_09
transcript.pyannote[2673].start 18131.44221875
transcript.pyannote[2673].end 18131.45909375
transcript.pyannote[2674].speaker SPEAKER_20
transcript.pyannote[2674].start 18131.45909375
transcript.pyannote[2674].end 18131.71221875
transcript.pyannote[2675].speaker SPEAKER_08
transcript.pyannote[2675].start 18136.03221875
transcript.pyannote[2675].end 18136.96034375
transcript.pyannote[2676].speaker SPEAKER_08
transcript.pyannote[2676].start 18137.88846875
transcript.pyannote[2676].end 18138.39471875
transcript.pyannote[2677].speaker SPEAKER_08
transcript.pyannote[2677].start 18138.85034375
transcript.pyannote[2677].end 18139.49159375
transcript.pyannote[2678].speaker SPEAKER_08
transcript.pyannote[2678].start 18139.72784375
transcript.pyannote[2678].end 18148.65471875
transcript.pyannote[2679].speaker SPEAKER_07
transcript.pyannote[2679].start 18145.98846875
transcript.pyannote[2679].end 18146.03909375
transcript.pyannote[2680].speaker SPEAKER_20
transcript.pyannote[2680].start 18146.03909375
transcript.pyannote[2680].end 18146.07284375
transcript.pyannote[2681].speaker SPEAKER_07
transcript.pyannote[2681].start 18146.07284375
transcript.pyannote[2681].end 18146.20784375
transcript.pyannote[2682].speaker SPEAKER_20
transcript.pyannote[2682].start 18146.20784375
transcript.pyannote[2682].end 18146.30909375
transcript.pyannote[2683].speaker SPEAKER_08
transcript.pyannote[2683].start 18149.07659375
transcript.pyannote[2683].end 18150.98346875
transcript.pyannote[2684].speaker SPEAKER_08
transcript.pyannote[2684].start 18151.25346875
transcript.pyannote[2684].end 18163.36971875
transcript.pyannote[2685].speaker SPEAKER_00
transcript.pyannote[2685].start 18155.89409375
transcript.pyannote[2685].end 18155.92784375
transcript.pyannote[2686].speaker SPEAKER_14
transcript.pyannote[2686].start 18155.92784375
transcript.pyannote[2686].end 18156.31596875
transcript.pyannote[2687].speaker SPEAKER_14
transcript.pyannote[2687].start 18162.89721875
transcript.pyannote[2687].end 18169.19159375
transcript.pyannote[2688].speaker SPEAKER_08
transcript.pyannote[2688].start 18169.51221875
transcript.pyannote[2688].end 18172.75221875
transcript.pyannote[2689].speaker SPEAKER_10
transcript.pyannote[2689].start 18173.00534375
transcript.pyannote[2689].end 18177.44346875
transcript.pyannote[2690].speaker SPEAKER_10
transcript.pyannote[2690].start 18177.74721875
transcript.pyannote[2690].end 18179.65409375
transcript.pyannote[2691].speaker SPEAKER_10
transcript.pyannote[2691].start 18181.66221875
transcript.pyannote[2691].end 18183.01221875
transcript.pyannote[2692].speaker SPEAKER_10
transcript.pyannote[2692].start 18183.65346875
transcript.pyannote[2692].end 18188.05784375
transcript.pyannote[2693].speaker SPEAKER_10
transcript.pyannote[2693].start 18188.58096875
transcript.pyannote[2693].end 18189.93096875
transcript.pyannote[2694].speaker SPEAKER_10
transcript.pyannote[2694].start 18192.52971875
transcript.pyannote[2694].end 18193.82909375
transcript.pyannote[2695].speaker SPEAKER_10
transcript.pyannote[2695].start 18194.65596875
transcript.pyannote[2695].end 18195.76971875
transcript.pyannote[2696].speaker SPEAKER_10
transcript.pyannote[2696].start 18196.44471875
transcript.pyannote[2696].end 18197.01846875
transcript.pyannote[2697].speaker SPEAKER_10
transcript.pyannote[2697].start 18199.09409375
transcript.pyannote[2697].end 18201.13596875
transcript.pyannote[2698].speaker SPEAKER_10
transcript.pyannote[2698].start 18201.97971875
transcript.pyannote[2698].end 18203.21159375
transcript.pyannote[2699].speaker SPEAKER_10
transcript.pyannote[2699].start 18205.18596875
transcript.pyannote[2699].end 18205.54034375
transcript.pyannote[2700].speaker SPEAKER_10
transcript.pyannote[2700].start 18205.79346875
transcript.pyannote[2700].end 18206.46846875
transcript.pyannote[2701].speaker SPEAKER_10
transcript.pyannote[2701].start 18207.46409375
transcript.pyannote[2701].end 18208.05471875
transcript.pyannote[2702].speaker SPEAKER_10
transcript.pyannote[2702].start 18209.99534375
transcript.pyannote[2702].end 18210.60284375
transcript.pyannote[2703].speaker SPEAKER_10
transcript.pyannote[2703].start 18211.54784375
transcript.pyannote[2703].end 18212.72909375
transcript.pyannote[2704].speaker SPEAKER_10
transcript.pyannote[2704].start 18214.51784375
transcript.pyannote[2704].end 18215.02409375
transcript.pyannote[2705].speaker SPEAKER_10
transcript.pyannote[2705].start 18216.49221875
transcript.pyannote[2705].end 18217.01534375
transcript.pyannote[2706].speaker SPEAKER_10
transcript.pyannote[2706].start 18217.90971875
transcript.pyannote[2706].end 18218.87159375
transcript.pyannote[2707].speaker SPEAKER_10
transcript.pyannote[2707].start 18220.28909375
transcript.pyannote[2707].end 18221.43659375
transcript.pyannote[2708].speaker SPEAKER_10
transcript.pyannote[2708].start 18222.31409375
transcript.pyannote[2708].end 18223.42784375
transcript.pyannote[2709].speaker SPEAKER_10
transcript.pyannote[2709].start 18224.05221875
transcript.pyannote[2709].end 18225.25034375
transcript.pyannote[2710].speaker SPEAKER_10
transcript.pyannote[2710].start 18226.66784375
transcript.pyannote[2710].end 18228.69284375
transcript.pyannote[2711].speaker SPEAKER_10
transcript.pyannote[2711].start 18229.92471875
transcript.pyannote[2711].end 18231.84846875
transcript.pyannote[2712].speaker SPEAKER_10
transcript.pyannote[2712].start 18233.41784375
transcript.pyannote[2712].end 18234.54846875
transcript.pyannote[2713].speaker SPEAKER_10
transcript.pyannote[2713].start 18235.32471875
transcript.pyannote[2713].end 18236.40471875
transcript.pyannote[2714].speaker SPEAKER_10
transcript.pyannote[2714].start 18238.09221875
transcript.pyannote[2714].end 18240.28596875
transcript.pyannote[2715].speaker SPEAKER_10
transcript.pyannote[2715].start 18241.99034375
transcript.pyannote[2715].end 18244.04909375
transcript.pyannote[2716].speaker SPEAKER_10
transcript.pyannote[2716].start 18244.97721875
transcript.pyannote[2716].end 18247.32284375
transcript.pyannote[2717].speaker SPEAKER_10
transcript.pyannote[2717].start 18248.48721875
transcript.pyannote[2717].end 18249.19596875
transcript.pyannote[2718].speaker SPEAKER_10
transcript.pyannote[2718].start 18249.22971875
transcript.pyannote[2718].end 18250.37721875
transcript.pyannote[2719].speaker SPEAKER_10
transcript.pyannote[2719].start 18251.10284375
transcript.pyannote[2719].end 18252.11534375
transcript.pyannote[2720].speaker SPEAKER_10
transcript.pyannote[2720].start 18252.36846875
transcript.pyannote[2720].end 18253.34721875
transcript.pyannote[2721].speaker SPEAKER_10
transcript.pyannote[2721].start 18254.30909375
transcript.pyannote[2721].end 18256.45221875
transcript.pyannote[2722].speaker SPEAKER_10
transcript.pyannote[2722].start 18257.21159375
transcript.pyannote[2722].end 18258.62909375
transcript.pyannote[2723].speaker SPEAKER_10
transcript.pyannote[2723].start 18259.11846875
transcript.pyannote[2723].end 18259.42221875
transcript.pyannote[2724].speaker SPEAKER_10
transcript.pyannote[2724].start 18259.65846875
transcript.pyannote[2724].end 18260.09721875
transcript.pyannote[2725].speaker SPEAKER_10
transcript.pyannote[2725].start 18261.02534375
transcript.pyannote[2725].end 18262.07159375
transcript.pyannote[2726].speaker SPEAKER_10
transcript.pyannote[2726].start 18263.21909375
transcript.pyannote[2726].end 18263.59034375
transcript.pyannote[2727].speaker SPEAKER_10
transcript.pyannote[2727].start 18264.11346875
transcript.pyannote[2727].end 18265.09221875
transcript.pyannote[2728].speaker SPEAKER_10
transcript.pyannote[2728].start 18265.71659375
transcript.pyannote[2728].end 18267.37034375
transcript.pyannote[2729].speaker SPEAKER_10
transcript.pyannote[2729].start 18267.87659375
transcript.pyannote[2729].end 18268.18034375
transcript.pyannote[2730].speaker SPEAKER_10
transcript.pyannote[2730].start 18269.17596875
transcript.pyannote[2730].end 18271.87596875
transcript.pyannote[2731].speaker SPEAKER_10
transcript.pyannote[2731].start 18272.12909375
transcript.pyannote[2731].end 18283.85721875
transcript.pyannote[2732].speaker SPEAKER_10
transcript.pyannote[2732].start 18285.20721875
transcript.pyannote[2732].end 18286.57409375
transcript.pyannote[2733].speaker SPEAKER_10
transcript.pyannote[2733].start 18286.89471875
transcript.pyannote[2733].end 18288.07596875
transcript.pyannote[2734].speaker SPEAKER_10
transcript.pyannote[2734].start 18288.34596875
transcript.pyannote[2734].end 18288.66659375
transcript.pyannote[2735].speaker SPEAKER_10
transcript.pyannote[2735].start 18289.22346875
transcript.pyannote[2735].end 18294.03284375
transcript.pyannote[2736].speaker SPEAKER_10
transcript.pyannote[2736].start 18294.25221875
transcript.pyannote[2736].end 18296.49659375
transcript.pyannote[2737].speaker SPEAKER_10
transcript.pyannote[2737].start 18296.61471875
transcript.pyannote[2737].end 18297.47534375
transcript.pyannote[2738].speaker SPEAKER_06
transcript.pyannote[2738].start 18316.34159375
transcript.pyannote[2738].end 18316.42596875
transcript.pyannote[2739].speaker SPEAKER_06
transcript.pyannote[2739].start 18317.38784375
transcript.pyannote[2739].end 18317.42159375
transcript.pyannote[2740].speaker SPEAKER_20
transcript.pyannote[2740].start 18317.42159375
transcript.pyannote[2740].end 18318.41721875
transcript.pyannote[2741].speaker SPEAKER_20
transcript.pyannote[2741].start 18318.85596875
transcript.pyannote[2741].end 18319.22721875
transcript.pyannote[2742].speaker SPEAKER_20
transcript.pyannote[2742].start 18320.03721875
transcript.pyannote[2742].end 18322.50096875
transcript.pyannote[2743].speaker SPEAKER_12
transcript.pyannote[2743].start 18321.43784375
transcript.pyannote[2743].end 18321.47159375
transcript.pyannote[2744].speaker SPEAKER_12
transcript.pyannote[2744].start 18321.52221875
transcript.pyannote[2744].end 18321.99471875
transcript.pyannote[2745].speaker SPEAKER_06
transcript.pyannote[2745].start 18321.99471875
transcript.pyannote[2745].end 18322.12971875
transcript.whisperx[0].start 1766.328
transcript.whisperx[0].end 1795.009
transcript.whisperx[0].text 我們暗員解救部長好現在繼續開會那本會議成為處理或審查114年度中央政府總預算決議有關於勞動部主管預算凍結報告案76案這個含報告事項59案及討論事項17案那現在來介紹在場的委員及列席官員第一位是王振旭王委員
transcript.whisperx[1].start 1798.927
transcript.whisperx[1].end 1824.659
transcript.whisperx[1].text 第二位是陳昭芝 陳委員第三位是林業錦 林委員介紹官員 勞動部部長 洪森翰謝謝勞動力發展署署長 黃寧玉謝謝勞工保險局局長 白立珍謝謝還有勞動基金應用局局長 蘇玉清謝謝職業安全衛生署署長 林立堂
transcript.whisperx[2].start 1827.173
transcript.whisperx[2].end 1834.016
transcript.whisperx[2].text 勞動及職業安全衛生研究所代理所長陳育維綜合歸要師師長王厚誠勞動關係師師長王厚維勞動保險師師長陳美女勞動福祉退休師師長謝謙倩勞動條件及就業評理師師長黃維生勞動房屋師
transcript.whisperx[3].start 1856.078
transcript.whisperx[3].end 1881.877
transcript.whisperx[3].text 施長傅費芝謝謝藝術處處長丁玉珍人事處處長姜碧玲鄭榮市處長周志信謝謝會計處處長林美信還有行政院主計總處公務預算處檢任視察陳淑萍好謝謝然後現在處理報告事項計59案請一併宣讀
transcript.whisperx[4].start 1886.656
transcript.whisperx[4].end 1904.007
transcript.whisperx[4].text 處理一四年度中央政府總預算決議有關勞動部主管預算凍結報告案五十九案一勞動部勞動基金運用局決議一第二幕向下基金業務支援考及控管預算凍結一萬元書面報告二勞動部新增決議五第一幕向下研議勞工保險財務及就業保險業務預算凍結十億元報告三
transcript.whisperx[5].start 1908.45
transcript.whisperx[5].end 1917.349
transcript.whisperx[5].text 勞動部新增決議九第二目一般行政預算凍結五千萬書面報告四勞動部新增決議十一第二目向下基本行政工作維持預算凍結百分之
transcript.whisperx[6].start 1919.367
transcript.whisperx[6].end 1931.435
transcript.whisperx[6].text 30 書面報告5 勞動部新增決議23 第三目向下策劃政策推廣預算凍結10% 書面報告6勞動部新增決議25 第四目向下促進工會組織自由化預算凍結10% 書面報告7 勞動部職業安全衛生署新增決議86 第三目職業安全衛生業務預算凍結3000萬 書面報告8 勞動部勞動力發展署及所署新增決議98 一般行政預算凍結20% 書面報告
transcript.whisperx[7].start 1949.087
transcript.whisperx[7].end 1972.926
transcript.whisperx[7].text 9.勞動部決議1.勞動部預算凍結90萬書面報告10.勞動部決議2.第一幕勞動保險業務預算凍結60萬書面報告11.勞動部決議3.第二幕向下辦公大樓水電管理費預算凍結十分之一書面報告12.勞動部決議5.第二幕向下一般公務所使用郵資電話至通訊費租用影音機購置消耗品非消耗品及處理國會聯繫業務
transcript.whisperx[8].start 1974.827
transcript.whisperx[8].end 1993.777
transcript.whisperx[8].text 事務等預算凍結十萬元書面報告十三至十八勞動部決議六七十十一十二十三第三目向下策劃政策推廣預算凍結百分之五書面報告策劃政策推廣預算凍結百分之五書面報告強化計劃管考預算凍結百分之五書面報告
transcript.whisperx[9].start 1995.959
transcript.whisperx[9].end 1998.442
transcript.whisperx[9].text 強化人力資源規劃預算凍結5%書面報告業務費預算凍結20萬書面報告因應貿易自由化之政策規劃協調與勞工支持服務預算凍結5%書面報告19
transcript.whisperx[10].start 2009.714
transcript.whisperx[10].end 2033.136
transcript.whisperx[10].text 決議十四 第四幕 勞動關係業務預算凍結一百萬書面報告二十至二十三 勞動部決議十五 十六 十七 十八 第五幕向下推動職工福利改善勞工生活預算凍結五萬元書面報告策劃勞工服務預算凍結二十萬書面報告勞動基金監理預算凍結五萬元書面報告因貿易自由化提升勞工福祉預算凍結五萬元書面報告
transcript.whisperx[11].start 2034.724
transcript.whisperx[11].end 2051.238
transcript.whisperx[11].text 二十四勞動部決議十九第六目勞動條件及就業平等業務預算凍結二百萬書面報告二十五勞動部決議二十第六目勞動條件及就業平等業務預算凍結五十萬書面報告二十六勞動部決議二十一第七目勞動法務業務預算凍結十萬元書面報告二十七勞動部勞工保險
transcript.whisperx[12].start 2055.305
transcript.whisperx[12].end 2081.97
transcript.whisperx[12].text 局決議一第一幕一般行政預算凍結一千萬書面報告二十八勞動部勞工保險局決議三第二幕保險業務預算凍結一百萬書面報告二十九勞動部勞工保險局決議四第二幕向下業務費預算凍結百分之五書面報告三十勞動部勞工保險局決議五第二幕向下勞工保險業務預算凍結百分之十書面報告三十一勞動部勞動力發展暑期所屬決議一勞動力發展暑期所屬預算凍結一百萬書面報告
transcript.whisperx[13].start 2083.49
transcript.whisperx[13].end 2097.582
transcript.whisperx[13].text 三十二 勞動部勞動力發展署及所屬決議二第一幕一般行政預算凍結三百萬書面報告三十三 勞動部勞動力發展署及所屬決議三第一幕一般行政預算凍結三百萬書面報告三十四至三十七 勞動部
transcript.whisperx[14].start 2099.4
transcript.whisperx[14].end 2121.418
transcript.whisperx[14].text 劳动力发展署及所属决议4568第二幕劳动力发展业务预算冻结20万书面报告劳动力发展业务预算冻结200万书面报告向下综合规划预算冻结50万书面报告向下推展职业训练发展业务预算冻结10%书面报告38-43劳动部劳动力发展署及所属决议10 11 12 13 14 15
transcript.whisperx[15].start 2124.16
transcript.whisperx[15].end 2137.05
transcript.whisperx[15].text 第三目分署管理預算凍結100萬書面報告預算凍結10萬元書面報告向下北基宜花金馬分署管理預算凍結100萬書面報告向下水電費預算凍結10%書面報告向下業務費預算凍結100萬書面報告向下水電費預算凍結10%書面報告44勞動部職業安全衛生署決議1職業安全衛生署預算凍結100萬書面報告45職業安全衛生署決議2第三目
transcript.whisperx[16].start 2153.643
transcript.whisperx[16].end 2160.388
transcript.whisperx[16].text 職業安全業務衛生安全業務預算凍結50萬書面報告46-48勞動部職業安全衛生署決議345第二幕一般行政預算凍結200萬書面報告向下水電費預算凍結10%書面報告向下特別費預算凍結10%書面報告49-56勞動部職業安全衛生署
transcript.whisperx[17].start 2177.192
transcript.whisperx[17].end 2202.035
transcript.whisperx[17].text 決議六八九十十一十二十三十四第三幕向下一單數費預算凍結百分之十書面報告向下健全職業安全衛生管理及制度預算凍結一百萬書面報告向下建構職場安全及推動防災措施預算凍結百萬書面報告向下強化職業安全衛生與推動勞工健康服務預算凍結五十萬書面報告向下測定職災勞工保險制度預算凍結十萬元書面報告
transcript.whisperx[18].start 2205.599
transcript.whisperx[18].end 2214.541
transcript.whisperx[18].text 職業安全衛生業務預算凍結50萬書面報告向下獎補助費預算凍結50萬書面報告職業安全衛生業務預算凍結50萬書面報告57勞動部勞動及職業安全衛生研究所決議1勞動及職業安全衛生研究所預算凍結100萬書面報告58勞動部勞動及職業安全衛生研究所決議3第二目向下業務費預算凍結50萬書面報告59
transcript.whisperx[19].start 2231.245
transcript.whisperx[19].end 2247.039
transcript.whisperx[19].text 勞動部勞動及職業安全衛生研究所決議是第二幕上下結合科技掌握職業衛生危害開發控制技術以降低暴露風險預算凍結100萬書面報告宣讀完畢好有關勞動部主管預算凍結報告案第59案有異議有異議
transcript.whisperx[20].start 2258.74
transcript.whisperx[20].end 2263.064
transcript.whisperx[20].text 針對哪幾案有異請向主席來提出以進行討論事項時我們再並處理從報告案移到這個討論案麻煩主席謝謝121013到22243134
transcript.whisperx[21].start 2287.908
transcript.whisperx[21].end 2293.611
transcript.whisperx[21].text 35 37到3840到43我先把它念完 45 47 51 52 54到56我重來一遍 謝謝主席1 2 13到22
transcript.whisperx[22].start 2315.009
transcript.whisperx[22].end 2321.735
transcript.whisperx[22].text 2431343537到3840到434547515254到56麻煩主席同意我們將這個報告事項轉移到討論事項 謝謝你們要不要先溝通
transcript.whisperx[23].start 2349.848
transcript.whisperx[23].end 2356.13
transcript.whisperx[23].text 是不是休息個十分鐘夠吧先跟陳昭志委員這邊做一個溝通我們等一下再繼續處理,謝謝
transcript.whisperx[24].start 3000.848
transcript.whisperx[24].end 3022.921
transcript.whisperx[24].text 好 休息時間到委員會在這邊做一個說明跟報告剛剛陳昭志委員是有提出有幾案要原本這個是在報告事項裡面因為院會交賽是在報告事項所以我們沒有辦法直接就移到這個討論事項但是我們先來做這樣處理就是說剛剛陳昭志委員有提出的第一案 第二案 第十案13到22 24 31 34 35 37至3840至43 45 47 51 52
transcript.whisperx[25].start 3031.128
transcript.whisperx[25].end 3045.217
transcript.whisperx[25].text 54至56這些案我們就先暫時保留好不好其他我們就均同意動之並提報院會好那我們接下來就請洪部長來做報告
transcript.whisperx[26].start 3063.944
transcript.whisperx[26].end 3074.551
transcript.whisperx[26].text 先保留,等一下讓部長有時間再跟他們溝通一下主席不好意思,您可以明確講保留的意思嗎?
transcript.whisperx[27].start 3078.773
transcript.whisperx[27].end 3107.206
transcript.whisperx[27].text 我剛剛有特別說明因為定規交下來是把它列在報告事項裡面那基本上我們要把它挪到討論事項基本上是也要徵詢大家的意見會變成這樣那我先把它暫停保留讓部長把報告結束完之後是不是大家還有討論私底下協商的空間就請陳委員這邊來做一個審慎的定奪那就不需要不需要下面
transcript.whisperx[28].start 3108.909
transcript.whisperx[28].end 3124.256
transcript.whisperx[28].text 你懂我意思吧我這樣處理應該是比較和緩啦我們希望能有發言的機會就是留下會議紀錄的機會發言一定會在報告事項裡面原本就可以啊也是可以留下發言的紀錄啊現在就開始了嗎
transcript.whisperx[29].start 3133.611
transcript.whisperx[29].end 3156.882
transcript.whisperx[29].text 應該這麼說 再強調一次運會交下來把這些要解凍案就是列在報告事項裡面那現在各位對有幾案有意見嘛 對不對那有意見我們就暫行保留暫行保留然後讓整個巡打結束完之後部長報告巡打完結束之後我們再來針對你剛剛要保留這幾個案子來做
transcript.whisperx[30].start 3158.058
transcript.whisperx[30].end 3179.036
transcript.whisperx[30].text 討論啦,處理,但是不是把他列在討論事項啦我一定會讓你們發言啦,你不用擔心這樣可以吧,徵詢大家意見都沒有意見,好,OK好,那我就請部長來做報告
transcript.whisperx[31].start 3191.617
transcript.whisperx[31].end 3209.779
transcript.whisperx[31].text 主席各位首先先感謝各位對於本部及所屬機關業務的支持那大院在第11屆第二會期審議本部主管114年度預算所決議的預算凍結本部前已將書面資料76案函送大院在案
transcript.whisperx[32].start 3210.58
transcript.whisperx[32].end 3237.366
transcript.whisperx[32].text 那請就院會交付委員會審查的17案辦理情形來做報告那敬請各位委員指教首先有關本部及所屬機關業務費之編列與執行方面本部各項業務工作均與服務民眾極為相關業務費的執行除了影響本部基本工作維持以外也會影響與勞工團體民間團體及地方政府協力合作之業務
transcript.whisperx[33].start 3239.008
transcript.whisperx[33].end 3261.806
transcript.whisperx[33].text 勞工保險局是第一線為民服務機關本項業務費是為辦理勞保等社會保險及退休金業務攸關於1950萬人的權益那如未解凍為民服務行政工作將會受限恐會損及勞工加保給付及退休金請領的權益
transcript.whisperx[34].start 3263.627
transcript.whisperx[34].end 3289.294
transcript.whisperx[34].text 那勞動力發展署及所屬業務費是辦理民眾參與職業訓練課程及就業輔導以及各地就業服務據點之承攬人力之服務及服務費用如果沒有解凍恐造成為民服務基本維運無以為繼包括多元勞動力的開發也會產生影響服務能量會與場館的運維都會有所受限
transcript.whisperx[35].start 3290.373
transcript.whisperx[35].end 3308.225
transcript.whisperx[35].text 那職業安全衛生署業務費是為辦理健全職業安全衛生管理制度建構職場安全防災措施等多項重要目標如果未能解凍恐會影響全國勞工之工作安全之成效預防及重建等重要業務之推動
transcript.whisperx[36].start 3310.171
transcript.whisperx[36].end 3321.763
transcript.whisperx[36].text 勞動基金運用局業務費主要是維持辦公室基本行政營運及金融分析軟體與資訊源服務等投資資訊支出必要經費該局經
transcript.whisperx[37].start 3324.722
transcript.whisperx[37].end 3348.038
transcript.whisperx[37].text 儘管基金規模日益增長維持營運及確保基金投資系統正常營運對於廣大勞工權益及退休生活保險至關重要勞動及職業安全衛生研究所業務費主要是用在研擬各項勞動標準草案改進安全衛生制度建構減災技術和方法等
transcript.whisperx[38].start 3351.36
transcript.whisperx[38].end 3374.847
transcript.whisperx[38].text 经费冻结恐会影响其研究成果及推广其次对于落实劳工权益及职场平权推动方面本部每年积极办理劳动条件检查落实劳动基准法另外改善低薪问题从105年以来已经连续9年调让最低工资至于我国全时就业者每周经常性工资为1.5%
transcript.whisperx[39].start 3377.828
transcript.whisperx[39].end 3388.695
transcript.whisperx[39].text 41.5小時那我們將持續研議更友善的友善勞工的公私彈性政策另因應性別平等工作法性騷擾
transcript.whisperx[40].start 3390.362
transcript.whisperx[40].end 3412.112
transcript.whisperx[40].text 防治修正規定以編制相關宣導手冊及範本並積極與相關單位合作進行教育宣導及提供性騷擺害人各項資源與服務有關勞動力發展及跨國勞動力管理方面消除年齡歧視及促進中高齡參與的部分本部積極推動中高齡者及高
transcript.whisperx[41].start 3413.132
transcript.whisperx[41].end 3432.566
transcript.whisperx[41].text 高齡者就业促进法与各项措施老参率将专访实行前分别增加3.26%及0.81%又为强化专访已发布中高龄及高龄者就业促进计划采分离分策略方式提升中高龄及高龄者老参率
transcript.whisperx[42].start 3433.807
transcript.whisperx[42].end 3452.48
transcript.whisperx[42].text 補助辦理就業保險業務所需行政事務費主要是支應辦理就業服務支257位一線就業服務人員及相關服務人員的人事費用111年至113年度辦理求職推介就業人數中投保就業人數有55873人到40,000
transcript.whisperx[43].start 3459.64
transcript.whisperx[43].end 3482.646
transcript.whisperx[43].text 8164人不等為周全私立救福機構異常事件之通報義務規劃將移工因故死亡案件通報流程納入現行規定並請各單位地方政府勞工主管機關並同協助處理相關事務令修正評鑑要點確認仲介機構如實提供服務有關強化節能措施提升用電效率方面
transcript.whisperx[44].start 3485.968
transcript.whisperx[44].end 3501.62
transcript.whisperx[44].text 為確實強化各項潛能措施本部已擬定勞動部及所屬機關用電效率提升計劃本部勞工保險局勞動力發展署高屏東分署技能檢定中心與勞動及職業安全衛生研究院
transcript.whisperx[45].start 3502.501
transcript.whisperx[45].end 3523.826
transcript.whisperx[45].text 研究所均以依據本部用電提升計畫定定其成並搭配短期及長期策略按部就班提升用電效率能源節約能源及節省經費支出最後機關自行維運社群粉絲團與媒體政策及業務宣導方面
transcript.whisperx[46].start 3525.438
transcript.whisperx[46].end 3544.14
transcript.whisperx[46].text 本部脸书粉丝团自外提供服务以来各单位皆由指派同仁一起参与微运工作后续将透过工作群组分享逐步提升本部同仁经营社群媒体的能力令职业安全卫生署为提升强化全民公安意识透过内政部
transcript.whisperx[47].start 3544.801
transcript.whisperx[47].end 3564.035
transcript.whisperx[47].text 警政署警察廣播電台及各種多元管道以更貼近人民的方式廣泛觸及不同族群的勞工朋友宣導職業安全衛生相關職能本部僅遵照決議事項積極辦理以上各項運算均是業務所需敬請各位委員多多支持並會事指教謝謝
transcript.whisperx[48].start 3570.353
transcript.whisperx[48].end 3594.11
transcript.whisperx[48].text 好 謝謝部長的報告那接下來有關本次的會議各項說明資料均列入紀錄 刊登公報現在來做詢問 做一下宣告第一 本會委員詢問時間6加5分鐘列行委員時間1分鐘 失聯辦截止發言登記委員如果有順便質詢 請於3月前提出一舉不受理暫定失聯辦休息10分鐘本次會議不處理臨時提案現在請登記第一位委員陳昭志委員來做詢問
transcript.whisperx[49].start 3599.395
transcript.whisperx[49].end 3599.858
transcript.whisperx[49].text 謝謝主席 麻煩部長
transcript.whisperx[50].start 3607.215
transcript.whisperx[50].end 3630.208
transcript.whisperx[50].text 部長辛苦部長我想跟您討論這個外移工權益的問題我相信部長知道這個報告吧這個報告是美國的非營利勞團團體叫透明組織Transparent他們今年發布的報告那他們調查了台灣有90幾位這個紡織業的移工然後寫出這個報告你看他的標題看了很難過耶
transcript.whisperx[51].start 3632.062
transcript.whisperx[51].end 3635.383
transcript.whisperx[51].text 他的報紙是台灣紡織業的勞工剝削我直接翻譯他們訪問這九十幾位紡織業的移工發現了很多像侵害勞工權益的證據包括收取買工費
transcript.whisperx[52].start 3646.892
transcript.whisperx[52].end 3674.246
transcript.whisperx[52].text 服務費防止逃跑的押金扣留身分證件執行宵禁恐嚇跟威脅欺騙等等部長我知道你你看過這個報告所以你有講過這個嚴查嚴辦那我想知道不好意思你到現在為止你做了什麼嚴查嚴辦做了什麼跟陳仁說明確實台灣我們相關的制度過去在國際上面一直有
transcript.whisperx[53].start 3675.738
transcript.whisperx[53].end 3703.66
transcript.whisperx[53].text 這樣子的有很多等一下我會舉例被批評的就這個部分被批評的地方因為你回答了嘛那剛剛陳委員講到包括像收取買工費那也包括一些不合理的包括一些債務透過債務的方式透過債務的方式來控制移工我想其實我們這段時間其實也一直在我們一直在檢討我們一直在檢討接下來的移工的相關的政策也包括像剛才講到買工費
transcript.whisperx[54].start 3704.981
transcript.whisperx[54].end 3725.597
transcript.whisperx[54].text 其實過去常常會把相關的重要的文件不是現在不是現在開始開會其實比方說很多的買工費的收取他是透過比方說可能會扣住你重要的身份文件所以我們其實這段時間也把這些重要的身份文件把它給網路化線上
transcript.whisperx[55].start 3727.728
transcript.whisperx[55].end 3747.982
transcript.whisperx[55].text 移工也可以去做申請希望能夠降低被收取買工費的機會就是整體啦這件事情我們都在進行你整體的進度那我就是跟你要一下那個會後我要一下說你們現在進度到什麼程度沒問題因為我還有很多相關的一樣的問題因為這個事情我們也非常非常關鍵很重要因為國際都知道這件事
transcript.whisperx[56].start 3748.562
transcript.whisperx[56].end 3777.14
transcript.whisperx[56].text 那根據訪談資料許工移工表示他們當然你提到了他的護照被工廠保管了我要提醒部長根據國際勞工組織他的認定保留身份證件他是強迫勞動指標之一這個就是最壞的指標就是保留人家的身份證工人如果沒有身份證的話可能會覺得沒辦法離職也沒辦法使用一些服務甚至害怕他根本不敢去跟政府做任何的這個要求協助那
transcript.whisperx[57].start 3778.221
transcript.whisperx[57].end 3803.823
transcript.whisperx[57].text 報告裡有提到這個報告還提到說台灣的法律只要獲得工人同意僱主可以保管護照這是合法的但是美國國務院在2024年的人口販運報告中指出台灣這個僱主往往能夠輕易的脅迫移工自願交出身份證件他這個自願你看他還打了引號voluntary
transcript.whisperx[58].start 3804.844
transcript.whisperx[58].end 3819.117
transcript.whisperx[58].text 就是說他這個自願很有問題就是說他們的自願是真的自願嗎還是被迫這個是美國國務院的報告勞動部是不是要修法要全面禁止這個雇主擁有或拿走押注
transcript.whisperx[59].start 3820.158
transcript.whisperx[59].end 3840.655
transcript.whisperx[59].text 這個移工的這個證件跟我們說明吼現在在人口放育防治法裡面其實已經有把相關規定給納入那接下來我們也願意在救福法裡面在修訂救福法的時候來檢討跟修訂跟著人口放育防治法來修訂我們願意願意改就是把它入法因為這件事情是不應該被允許的
transcript.whisperx[60].start 3842.709
transcript.whisperx[60].end 3855.305
transcript.whisperx[60].text 護照被扣除這其實就是會有強迫勞動那目前是合法的所以你這個部分你同意要修法提出修法沒關係部長你說了算我們願意在這次來做法規檢討
transcript.whisperx[61].start 3856.567
transcript.whisperx[61].end 3882.002
transcript.whisperx[61].text 那調查報告也提到一個長久來被詬病而且讓台灣老實說在國際上惡名昭彰的一件事就是仲介服務費這件事我從徐部長開始我就一直質詢到現在雖然勞動部都說服務費不是強制的就是有服務才會有收費但是理想很豐滿現實上很骨感就是要有服務才能收費這個說法很多移工說我沒有看到因為這個調查報告寫的
transcript.whisperx[62].start 3883.283
transcript.whisperx[62].end 3895.101
transcript.whisperx[62].text 我沒有看到我沒有得到好處啊我只是每個月都交錢啊那仲介沒有提供我任何幫助啊請問部長您知道因為雖然他不是強制的請問你知道有多少移工他拒絕繳這個仲介費嗎你有統計嗎
transcript.whisperx[63].start 3898.766
transcript.whisperx[63].end 3919.434
transcript.whisperx[63].text 跟成員說明 其實這件事情的關鍵是在於我們自己也期望政府未來在聘僱方面的角色必須更加的強化跟功能必須更加的強化讓政府的公共服務其實在移工聘僱的過程裡面是扮演更多的角色我知道你的理想這段時間我們一直在檢討包括職聘的做法
transcript.whisperx[64].start 3923.456
transcript.whisperx[64].end 3943.287
transcript.whisperx[64].text 那我們其實確實沒有錯我們也針對因為國際上面對於我們的服務費確實有很多的指教勞工有拒絕的權利請問你認為有多少勞工敢拒絕雇主的要求呢你認為有嗎第一個是這個服務費其實不是雇主的要求這個服務費其實是跟著仲介主要是跟著仲介抱歉我講的就是
transcript.whisperx[65].start 3943.627
transcript.whisperx[65].end 3955.733
transcript.whisperx[65].text 那你進來就被剝削了一些費用我們現在希望能夠更強化職聘就是希望未來在這個聘僱移工的過程可以減少對仲介的依賴
transcript.whisperx[66].start 3959.435
transcript.whisperx[66].end 3983.82
transcript.whisperx[66].text 發飾量比較鬆綁的時候您到我辦公室來我們溝通你也說有困難因為進來的移工遠遠不及需求又要排擠等等那我也理解但是我們都很清楚很告訴您之前的部長也是我們就是沒有競爭力那沒有競爭力其中一個很重要的理由就是我們就是不學其他國家的政府對政府的職聘你一直都保留這部分所以等下移工一進來他就背負了債務超過10萬甚至20萬的債務
transcript.whisperx[67].start 3986.48
transcript.whisperx[67].end 4015.468
transcript.whisperx[67].text 所以你就是一句話而已啊陳偉仁其實我這幾天在你沒有競爭力在APEC其實我們也跟其他的國家正在討論是不是來參考其他國家包括是在職聘或者是更多的政府角色的做法其實這件事情我們確實目前是在規劃中希望你以勞運出身的這個部長能夠真的把這件事放在心裡這件事情我們在強化職聘制度規劃中所以我們就是希望接下來可以再減少對仲介的依賴
transcript.whisperx[68].start 4016.448
transcript.whisperx[68].end 4021.35
transcript.whisperx[68].text 讓政府的角色可以承擔更多的責任這是這裡面最大的關鍵是在這個地方那紡織業你再回到剛剛因為他是勞力密集的一個出口產業那高度仰賴移工所以國際上會非常關注2016年美國白宮論壇就把台灣紡織業的勞權問題視為焦點尤其是仲介服務費這一塊那當時有警告他警告我們
transcript.whisperx[69].start 4038.138
transcript.whisperx[69].end 4048.053
transcript.whisperx[69].text 就是說如果你不改善影響這個就會影響出口但是快要九年十年過去問題還沒有改變那現在的問題說你現在碰到川普的關稅戰那對台灣的這個紡織產業很多產業但尤其這紡織產業來說是雙重打擊啦
transcript.whisperx[70].start 4054.582
transcript.whisperx[70].end 4068.955
transcript.whisperx[70].text 所以勞動部你真的要好好思考如何解決國際上對台灣移工的這些與這是雙重的嘛你本來就有這個問題嘛勞權的問題你現在又不要要去談判了那紡織業又是這個出口最重要的一個部分啊部長才對你也承諾
transcript.whisperx[71].start 4071.227
transcript.whisperx[71].end 4081.7
transcript.whisperx[71].text 確實我們現在有沒有看到現在在很多國際上面是有在討論像公平聘僱像這樣子一個很重要的主題就是之前委員剛剛指教的這些議題就是公平聘僱的議題我們其實有留意到這件事情
transcript.whisperx[72].start 4090.37
transcript.whisperx[72].end 4112.631
transcript.whisperx[72].text 其實從勞動部的角度當然現在產業的談判這部分是我們的談判團隊在跟美方在進行談判可是我想我們從勞動部的角度我們很重要的角度是我們是要顧住勞工權益的部分不管是本勞或者是移工我想這是我們勞動部最重要的出發點或是在這裡
transcript.whisperx[73].start 4113.211
transcript.whisperx[73].end 4119.675
transcript.whisperx[73].text 另外有一群很需要你幫忙的是身障及早療兒童家庭這個團體的陳情因為目前身障兒童的申請外籍看護的條件跟成人一樣要非常嚴重我想右邊這個圖你非常熟悉但是這個爸爸媽媽們認為中輕度的一個兒童或
transcript.whisperx[74].start 4129.301
transcript.whisperx[74].end 4144.005
transcript.whisperx[74].text 他們在這個如果他的黃金療癒時間是前六個月那如果在18歲以前能夠繼續持續做復健的話其實未來有很高的比喻他們有回到這個跟社會是接軌的啦所以這樣他們需要有一些鬆綁的一些標準讓他們第一個讓家長能夠繼續工作嘛
transcript.whisperx[75].start 4147.366
transcript.whisperx[75].end 4174.504
transcript.whisperx[75].text 繼續工作照顧他的家庭能夠專注於幫助這些孩子進行這個早療的這個復健所以他們不是只有喘息的服務需要或短期服務他們需要是一個比較長期的協助不然我覺得期間有限我告訴你先進障礙目前有5萬多人但其中這個屬於這一群的人因為很重重重度可以嘛大概有84%4萬多那早療通報目前有3萬多那加起來有8萬個家庭在期待
transcript.whisperx[76].start 4175.345
transcript.whisperx[76].end 4194.625
transcript.whisperx[76].text 柏俊你可不可以去研議一下這8萬個家庭他們需要特別照顧的這些孩子的家庭有沒有辦法幫幫他們我跟陳委員報告因為這個議題它比較大的程度會是關於我們很多身心障礙包括我們這些可能比較需要幫助的小孩他們整體的照顧政策
transcript.whisperx[77].start 4195.986
transcript.whisperx[77].end 4211.746
transcript.whisperx[77].text 這個整體的照顧政策我們當然願意我們當然願意在這個部分跟衛福部來合作或者是來討論我們願意可是因為這個事情這個議題本身它是我們包括是早療包括生長兒童整體的照顧政府的照顧政策的部分
transcript.whisperx[78].start 4212.327
transcript.whisperx[78].end 4217.77
transcript.whisperx[78].text 那尤其這裡面 我想問一下你的態度你的態度 你要不要照顧這群人有沒有準備想辦法照顧這群人陳委員我要說明一個政策可能不是只是簡單我說我們願意跟衛福部來討論這件事情因為尤其是早療跟身障兒童其實他在照顧方面的
transcript.whisperx[79].start 4228.816
transcript.whisperx[79].end 4237.481
transcript.whisperx[79].text 門檻比較高很多事都是跨部會的對 它會涉及到所以我說就跨部會的角度來說我們願意跟衛福部來做這個事情的討論我們願意跟衛福部來討論這個議題怎麼樣更多的來協助早療跟生長兒童可是這個可能不是一個單一片面很寶貝嘛 照顧他們最後一個問題對 但是它是一個整體的照顧政策的問題身心障礙照顧政策的問題
transcript.whisperx[80].start 4250.327
transcript.whisperx[80].end 4266.096
transcript.whisperx[80].text 真的很辛苦你好好照顧口罩國家對這個宏偉報出經營不善有員工出來控訴說突然沒了工作沒了收入然後去跟勞工局申請失業補助的時候才知道說宏偉根本沒有幫他們繳勞健保費那個過去我們三不五時就會聽到經營不善然後勞工整個失業了然後沒有勞健保費換句話說這些公司沒有繳勞健保費這件事本身勞動部地方勞工局都沒有辦法預防嗎
transcript.whisperx[81].start 4277.702
transcript.whisperx[81].end 4301.848
transcript.whisperx[81].text 你看到勞健保費繳不出來你就知道經營有問題啦為什麼要讓到最後爆炸了呢讓勞工直接去面對呢跟委員這邊做說明就站在確保勞工的一個權益上面如果公司今天有從勞工的薪資裡面扣繳保費那沒有繳交給勞保局在勞保條例17條規定裡面只要勞工提出相關的證明文件一樣是可以保險給付不受權益的影響
transcript.whisperx[82].start 4302.688
transcript.whisperx[82].end 4319.042
transcript.whisperx[82].text 沒有交勞健保費啊那你說讓業者你應該在防範那你的問題還是說等他出問題了才處理就是說他們勞健保費欠繳你就讓他欠繳囉那電廠基金欠繳你就讓他欠繳喔然後等勞動部等出事了勞工失業了然後勞工自己來救濟
transcript.whisperx[83].start 4320.163
transcript.whisperx[83].end 4343.24
transcript.whisperx[83].text 這不是方法嗎 你不是在最後的時候委員這邊再做一個補充喔就是說勞保局這邊平常在做保費的一個吹角如果遇到投保單位這邊欠費達一定程度我們會依相關法令的規定來通知地方主管機關某個程度你就要去關注跟處理這個問題 不然受害就是勞工嘛而且勞工根本不知道他的老闆沒有幫他繳勞健保費嘛
transcript.whisperx[84].start 4344.781
transcript.whisperx[84].end 4369.543
transcript.whisperx[84].text 我的重點在這個地方因為你現在談的是保費的部分那保費的部分當然我們有一定程度來去要求他趕快來補繳但是受害的是勞工經營不善的部分但其實坦白說這個欠繳的企業也不見得都是經營不善的我們也看到有一些經營很不錯的有欠繳稍微看看有些就是沒有繳的開始有出問題的機會很高因為這是你要照顧勞工基本權益
transcript.whisperx[85].start 4370.043
transcript.whisperx[85].end 4388.19
transcript.whisperx[85].text 所以我們是可以來看,如果有欠繳狀況時間比較長的話,我們重點來關注你可以做吧,勞動部要保護勞動部嘛,勞動部要保護勞工嘛就知道我們路會走到那裡來,那我們現在就讓這條路不要走下去我們可以重點來關注,如果欠繳時間比較長的好,謝謝部長,謝謝主席好,謝謝接下來請林月琴委員來做選擇
transcript.whisperx[86].start 4409.543
transcript.whisperx[86].end 4410.428
transcript.whisperx[86].text 主席 麻煩我們的勞動部部長部長
transcript.whisperx[87].start 4420.656
transcript.whisperx[87].end 4445.156
transcript.whisperx[87].text 部長早有些東西針對於解凍的來想跟你做一個討論根據大法官釋字第549號的解釋那個勞工保險的依屬年輕的青年人資格包括配偶小孩跟受到被保險人生前撫養並有共同生活適時的兄弟姊妹那在勞工保險條例的規定裡邊在限制
transcript.whisperx[88].start 4447.618
transcript.whisperx[88].end 4468.91
transcript.whisperx[88].text 被保險人的投保期間內死亡這些對象是可領取那如果在退保後的死亡的話可領一半那這些法條都有不斷的有民眾去反映說生前撫養被保險人的兄弟姊妹或者沒受到被保險人的撫養的兄弟姊妹在被保險人死亡後兄弟姊妹事實上是沒有請領資格等同於
transcript.whisperx[89].start 4470.211
transcript.whisperx[89].end 4497.368
transcript.whisperx[89].text 處罰單身的條款所以本席認為儘管無法滿足民眾的需求至少應該要有充分的資料去支持政府的立場好像民眾說明而不是一句說大法官解釋就糊弄過去因為所以本席認為這個解凍的條件是希望能夠評估這項修正預估涉及的人數跟增加的費用這部分你們都沒有給我回覆所以是不是可以請部長這邊答
transcript.whisperx[90].start 4500.594
transcript.whisperx[90].end 4519.902
transcript.whisperx[90].text 跟委員報告就是當然這個議題主要是勞保的單身條款那主要是依照我們91年大法官會議解釋的49號解釋認為說移屬今天是所得的替代那目的是在避免移屬生活無依那所以要受被保險生前撫養為條件
transcript.whisperx[91].start 4521.543
transcript.whisperx[91].end 4550.724
transcript.whisperx[91].text 這個我都知道是不是我當初希望你們如果假設去做修正的話那涉及的人數跟增加費用是多少我主要是先請你們預估那才會為下一步的如果要去修正的話那個鋪陳有沒有可能性可是我覺得到至今都還是沒有收到這些資料有關柴菇的部分其實我們也處理了但是其實在前提的部分主要是涉及到大法官會議解釋那這個案子我們在104年的時候也曾經提過修法的查案送到現在我現在就是
transcript.whisperx[92].start 4551.665
transcript.whisperx[92].end 4570.003
transcript.whisperx[92].text 我想知道資料我並沒有說你們要不要修正我現在想知道說如果一旦修正的話那個財庫的狀況到底是什麼我只是要資料可是也一直都沒有拿到你就一直在跟我們解釋說大法官解釋怎樣也就是我們現在民眾的感覺你們每次解釋的是說我只要是你們
transcript.whisperx[93].start 4574.808
transcript.whisperx[93].end 4603.115
transcript.whisperx[93].text 現在如果估算出來過往的經驗裡面先估算出這樣子的金額大概在多少這種資料不能給嗎這個問題其實是說前提是這個議題能不能放寬那能放寬的時候我們才來去處理財估那主要是因為大法官會解釋以及各個社會保險的聯動關係那當然這個部分我覺得反過來講就是因為想知道這種估算才知道說未來
transcript.whisperx[94].start 4603.857
transcript.whisperx[94].end 4629.466
transcript.whisperx[94].text 可能會應對的狀況是什麼所以我不知道為什麼資料不能給是來部長是不是可以麻煩一下第一個是就是我們我們就來一個禮拜內提供給委員初步的估算好不好好謝謝部長因為這一直存在一個爭議不是一張紙說沒有通過申請公文就可以平息而且我覺得真的要如果真的有真的後面有自然難行也要有個精準的數據之後來做說明那
transcript.whisperx[95].start 4633.007
transcript.whisperx[95].end 4633.387
transcript.whisperx[95].text 接下去想問的是針對本席我相信部長也聽過我講好幾次
transcript.whisperx[96].start 4641.532
transcript.whisperx[96].end 4667.32
transcript.whisperx[96].text 介林退休年齡還一段時間的像55歲以上他就遭受到雇主逼退或是優退的這個社會問題是存在的從我進來我們收到蠻多案子然後就每次諮詢的時候都會問那這次在預算省的時候我們也再度的提出來就是說你等於是55歲就離開了這樣職場那這些我們又缺工可是因為雇主的心態是說因為他已經到主管級的話那當然他的
transcript.whisperx[97].start 4667.822
transcript.whisperx[97].end 4680.454
transcript.whisperx[97].text 薪水偏高那我把它優退之後我可以聘比較稍微薪水可以偏低的來做主管所以我覺得希望能夠提出一些解方來所以
transcript.whisperx[98].start 4681.076
transcript.whisperx[98].end 4704.028
transcript.whisperx[98].text 我本來提出來解凍條件是請勞動部針對未滿65歲遭受到僱主提出提前退休獲得離開原有職位去做一些調查那可是始終質詢也沒辦法拿到然後在講說東野預算是希望你們還是可以提出來這個可是現在也都還是沒有任何我們希望做一個調查計畫可是到現在還是沒有辦法
transcript.whisperx[99].start 4704.628
transcript.whisperx[99].end 4731.335
transcript.whisperx[99].text 為什麼 公務員報告對我們也很關心這個部分上次在預算處理的時候那因為事實上他被勸休退他就是說不管是勸休退的話自己提醒退休的話我們會請縣市政府來協助我現在要的 不好意思我要的不是我是說一直希望你們去做調查去了解這種狀況那我在跟統計處我想說我們可以來調查 對
transcript.whisperx[100].start 4732.555
transcript.whisperx[100].end 4743.975
transcript.whisperx[100].text 好好好謝謝部長那第三個就是針對於我們身心障礙現代120萬的人那113年身心障礙者的勞動人口跟非勞動人口的比例是22比78
transcript.whisperx[101].start 4746.083
transcript.whisperx[101].end 4772.547
transcript.whisperx[101].text 15歲以上的大概參與率是21.9失業率是7.1那身心障礙者勞動力需要政府提供就業服務者大概32.5%那身心障礙非勞動力有工作能力的大概占14.4%有工作意願的占7.7面對這樣的數字我有兩個關注的問題就是身心障礙勞動力是不是能夠充分就業跟非勞動力有工作能力者
transcript.whisperx[102].start 4772.967
transcript.whisperx[102].end 4797.126
transcript.whisperx[102].text 是不是可以被發掘出來獲得工作的機會所以在台灣的現在狀況底下我們期待勞動部是不是可以提出身心障礙者一般性的工作還有提出的意思是提出就是針對於身心障礙一般性工作推介的促進方法跟推動的時程規劃避免用庇護工
transcript.whisperx[103].start 4797.987
transcript.whisperx[103].end 4814.279
transcript.whisperx[103].text 做庇護性的工作現在幾乎都聲音上來都是說他去庇護工廠工作來混充這些數據啦所以想問喔因為我當初勞動部的解診報告裡面我是不是可以提出一個你們回應我的我這個要求事實上是希望提出有更多
transcript.whisperx[104].start 4815.14
transcript.whisperx[104].end 4840.41
transcript.whisperx[104].text 就是你們給我的是你們現行的就業的促進措施這些措施不需要你們告訴我我大概就是以為查閱我想問的是精進的有沒有針對於身心障礙的這個勞動力到底有沒有充分就業還有就是非勞動力的整個工作者到底能不能被發掘來讓他們有工作機會好 跟陳委員說明跟你委員說明第一個是其實這幾年在這個這個
transcript.whisperx[105].start 4844.551
transcript.whisperx[105].end 4868.732
transcript.whisperx[105].text 申請法通過後包括我們定額禁用的這個組合的單位比率其實一直有在創新高我覺得這邊的努力是有效果的那第二個是我們其實接下來我們其實也是在研擬關於身份障礙者在職場的合理調整的行政指導那我們這部分也會有幫助如果更多的職場他可以在這個合理調整上面能夠做得更好的話也會有助於
transcript.whisperx[106].start 4869.292
transcript.whisperx[106].end 4897.435
transcript.whisperx[106].text 那再來是我們其實現在也在擬定要規劃這個職業重建服務的對象也包括我們整體職業重建服務的量能那這裡面也包括植物災設計的部分我們也希望能夠做得更仔細我想這些做法其實當然都是希望能夠讓身心障礙者在就業上面一些更精進的做法它可能不是只是既有的而已是 博士長我相信你也了解我覺得四人四業單位跟公務體系一樣
transcript.whisperx[107].start 4898.191
transcript.whisperx[107].end 4917.841
transcript.whisperx[107].text 都有一個定額的禁用的制度可是台灣產業大概就是我們的是中小企業比較多所以所開出來的職缺相對的少為什麼因為我們中小企業比較多你要買一百人才要拼用身心障礙所以有些甚至雇主大家就直接我給你我繳錢給你我不要拼身心障礙者
transcript.whisperx[108].start 4918.314
transcript.whisperx[108].end 4938.92
transcript.whisperx[108].text 所以我覺得勞動部我覺得應該要去思考到有沒有真的讓實際上而不是用庇護工廠來讓他們作為一個就業機會而已所以我剛才講的裡面我剛才跟你報告這裡面我們並沒有特別提到庇護工廠庇護工廠當然是另外一個區塊可是我剛才在講到包括定額禁用包括職場的合理調整
transcript.whisperx[109].start 4939.52
transcript.whisperx[109].end 4958.53
transcript.whisperx[109].text 那也包括很直接的職業重建這當然都是一個高度的專業我們希望把這些專業的能量可以做得更好那部長也在提醒就是尤其是經脹者有時候他們對人際溝通是有一些困難的所以勞動部這邊未來有沒有什麼樣的對策因為他們到職場當中有時候會碰到這樣子的一個障礙
transcript.whisperx[110].start 4960.336
transcript.whisperx[110].end 4971.523
transcript.whisperx[110].text 我們有辦理金帳者的社區支持計畫然後透過金帳者的支持性就業服務員協助他們順利進到一般社區有辦理金帳者的社區支持計畫透過金帳者的支持性就業服務協助他們順利轉錢到一般的職場
transcript.whisperx[111].start 4980.083
transcript.whisperx[111].end 5007.307
transcript.whisperx[111].text 那最後就是針對於外籍那個家庭的安護的看護工裡面照顧訓練的精進做法所以想問的是就是移工的照顧服務訓練不是在比誰上課時數多是要看授課後的結果所以想問移工的海外訓練的結果具備本國照護
transcript.whisperx[112].start 5008.147
transcript.whisperx[112].end 5030.129
transcript.whisperx[112].text 服務員的功能嗎 功力嗎其實就訓練的時數來說當然我認為跟本國的照顧服務員在技能上面我認為可能還是會有差距的是 那怎麼去補足因為國外訓練然後現在我們進來之後又馬上希望能夠立即上工
transcript.whisperx[113].start 5032.795
transcript.whisperx[113].end 5060.818
transcript.whisperx[113].text 對那當然在訓練上面我們是是可以來做這些課程的強化我們這是當然這是要跟母國的單位去做合作可是可是確實沒有錯就是跟本國的訓練包括他的受訓的強度甚至薪資都還是會有落差這是目前確實目前的現況是部長所以想問喔勞動部到底對於海外的訓練中心有沒有查驗的制度知道他們整個的
transcript.whisperx[114].start 5061.539
transcript.whisperx[114].end 5083.575
transcript.whisperx[114].text 上課的怎麼去確保這些品質跟我們說明確實我們現在在整體一共的政策裡面我們在做整體的檢討這個檢討也包括我們是不是有多一點其實可以在海外瞭解招募包括簡訊相關簡或訊相關的能量這部分我們的確現在是在檢討中
transcript.whisperx[115].start 5084.716
transcript.whisperx[115].end 5108.469
transcript.whisperx[115].text 那另外一個這樣子的時數跟收費狀況尤其是海外訓練勞動部到底有沒有確實確保就是那個時數有沒有灌水有時候是為了多收錢這種狀況跟委員說明一下有關海外訓練的部分原則上呢是由海外的仲介公司所提供
transcript.whisperx[116].start 5109.127
transcript.whisperx[116].end 5136.963
transcript.whisperx[116].text 那入台之後呢我們也發現普遍僱主反映他們的語言方面還有技能方面不夠純熟所以本署也在針對這個部分呢提供入境後的一些學科以及語言方面的訓練時數那這個部分呢也有實體的也有數位課程都可以供這個僱主來提供選擇所以目前我們是有在開辦那也有一定的訓練那這個資料我們可以提供給委員再麻煩
transcript.whisperx[117].start 5138.164
transcript.whisperx[117].end 5161.72
transcript.whisperx[117].text 那最後還是期待就是這事項是我一直很關注的所以今天可能後面資料再麻煩提供給我們有的我們針對於像就業促進的話再麻煩我覺得部長多費心 以上謝謝好 謝謝林委員好 謝謝那接下來請陳勤恩委員來做選答
transcript.whisperx[118].start 5167.705
transcript.whisperx[118].end 5171.848
transcript.whisperx[118].text 謝謝主席 謝謝各位委員 那我也想請洪部長來請部長謝謝部長 這個應該也是您非常關心的啦 很多人都知道你也是棒球迷嘛新一屆的這個職棒球員工會理事長已經出爐了那上一任呢 陳傑憲他在當理事長的時候 他作為一件
transcript.whisperx[119].start 5194.546
transcript.whisperx[119].end 5208.999
transcript.whisperx[119].text 首例就是運動產業首次的團體的協約那當然明訂了工作條件福利保障以及選手代表的制度性地位等等當時勞動部從旁有扮演非常多輔導的角色建立這個互動
transcript.whisperx[120].start 5210.18
transcript.whisperx[120].end 5231.428
transcript.whisperx[120].text 好那我們新的工會理事長他上任之後他說他就有一個新的目標他希望可以催生團體協約2.0那這邊列出一些他很在意的內容給部長參考第一個他希望可以制定像是大聯盟有的這樣子溝通平台也就是說他希望有例行性的制度性的讓大家一起坐下來談的勞資關係小組
transcript.whisperx[121].start 5234.249
transcript.whisperx[121].end 5256.216
transcript.whisperx[121].text 那第二個呢他是希望可以更促進選手的權益這些權益就當然包括說比如說高溫白天正中午希望可以演賽啊等等這一類那第三點就是也是國外的一個趨勢希望說贊助選手的廠商要用選手的肖像結果需要自己的球團等同意等等
transcript.whisperx[122].start 5258.257
transcript.whisperx[122].end 5273.218
transcript.whisperx[122].text 希望可以改變這樣子肖像權的問題那以上這個三大目標是他在當選那天提出來的這些他未來希望做成的目標但是現在他們很擔心的事情就是說
transcript.whisperx[123].start 5275.32
transcript.whisperx[123].end 5301.871
transcript.whisperx[123].text 這個林萌的蔡其昌會長他可能2027是會卸任那吉利吉勞鞏冠他是2028才會再換人所以他們很害怕說在談這個一兩年的進度可能談到一半會長就換人所以在這邊會希望說藉由這個機會可以跟勞動部部長說是不是可以請勞動關係師來幫忙因為你們有一些團體契約很不錯的案例可以從旁去輔導分享給他們然後協助他們這樣子
transcript.whisperx[124].start 5304.229
transcript.whisperx[124].end 5328.416
transcript.whisperx[124].text 其實這幾年團體協約的進展其實是蠻好的就是各工會那我想針對這個職棒全員工會提的這個我們會全力全力來協助好所以你們可以主動來跟工會還有主動跟聯盟都做接洽嗎而且我們其實也參與他那天的會長的交接所以我們會全力協助所以您對於這三點他在意的內容您覺得是審慎樂觀的
transcript.whisperx[125].start 5331.257
transcript.whisperx[125].end 5352.171
transcript.whisperx[125].text 我不是說審慎樂觀但是我們會全力協助好那下一個呢關於這個4100億的特別預算我們有看到說勞動部也佔了其中的一部分嘛其中就包含所謂的受衝擊再就業簡單來說就是協助這些可能會面臨失業的勞工為主是嗎
transcript.whisperx[126].start 5354.21
transcript.whisperx[126].end 5377.492
transcript.whisperx[126].text 這個部分確實是比較是針對如果已經受到關稅如果衝擊那或者是產生的失業那我們要怎麼樣協助他們重返職場那甚至是這個可能會希望能夠做到比過去的這個失業勞工的協助再更進一步所以我們會整合進更多其他的就業服務
transcript.whisperx[127].start 5377.932
transcript.whisperx[127].end 5394.594
transcript.whisperx[127].text 好所以我呢在5月2號其實有跟您所資但是其實過了快半個月今天早上才拿到再就業計畫相關的說明資料因為您有好幾個再就業計畫我想知道說之前的成效是如何啦那
transcript.whisperx[128].start 5395.114
transcript.whisperx[128].end 5412.912
transcript.whisperx[128].text 之前我看您當立委的時候其實常常質詢這個議題您說到說台灣婦女的再就業跟日韓比是偏低的那您在APEC也有講到這一類的議題那這個是我們跟你們所知13天之後才終於早上拿到的數據
transcript.whisperx[129].start 5414.193
transcript.whisperx[129].end 5441.628
transcript.whisperx[129].text 在113年你們協助了針對這個婦女部分協助婦女在就業計畫38000人重返職場那你們認為是有達到原本你們訂的3.5萬人可是我覺得本席覺得非常可惜的是這個預算的執行率是25.5%也就是說大部分這38000人很可惜是沒有辦法請領到你們的補助的
transcript.whisperx[130].start 5442.108
transcript.whisperx[130].end 5459.63
transcript.whisperx[130].text 那針對這一點您有什麼想法是不是可以提升我們其實對於目前的這個預算的執行率我自己也不滿意所以我們新任的黃署長上任後他在4月的時候上任後我其實也交付給他一個重要的任務是要把我們這些就業的計畫
transcript.whisperx[131].start 5461.051
transcript.whisperx[131].end 5477.992
transcript.whisperx[131].text 因為就業計畫裡面它不是只是一支它其實是很多支相關的計畫那有些計畫之間有一點彼此的重疊都有那所以有時候也會影響彼此之間執行的效能所以我會請在4月的時候我就請黃署長接下來我們會一個關於這些就業計畫的總體檢
transcript.whisperx[132].start 5480.454
transcript.whisperx[132].end 5507.464
transcript.whisperx[132].text 會有一個總體檢的計畫就是希望能夠把這些相關的諮詢率可以做到更到位或幫助的人可以更多當然我們看到是有一些我們這個一些KPI是有達到可是我自己是希望能夠做到能夠協助到的尤其是拿到我們的獎勵包括拿到我們獎助的人其實可以更多那這部分我們可能包括我們什麼時候可以看到您的方案
transcript.whisperx[133].start 5508.384
transcript.whisperx[133].end 5535.227
transcript.whisperx[133].text 新的方案因為黃處長其實也剛上任他四月的時候上任那因為計畫很多那因為這個檢討他不是單一計畫的檢討他其實可能是幾十支計畫同時要檢討所以這部分我想我是給黃處長大概三個月以上三個月的時間那我們三個月三個月跟您追一下你們想要怎麼改善這些再去因為我也很關心這個部分我覺得確實我們可以做得更好的空間好
transcript.whisperx[134].start 5536.448
transcript.whisperx[134].end 5562.197
transcript.whisperx[134].text 再來這也是這幾天很多網友他們可能在討論的下一張執政黨委員他們有提到說多放假很擔心勞工會被AI取代我們想知道勞動部長對這一件事情的看法如何我想AI的普及其實確實本來就會有相關的勞動的議題這是一個很多學者相關的問題
transcript.whisperx[135].start 5563.615
transcript.whisperx[135].end 5583.278
transcript.whisperx[135].text 那但是我講因為現在但是這跟放假有關係對所以我說現在國定假日的這個條例通過以後我想從勞動部的角度我們其實就是應該要依法來協助這個條例的執行我想我們態度就是這樣子對但是AI跟放假有關嗎
transcript.whisperx[136].start 5584.79
transcript.whisperx[136].end 5603.796
transcript.whisperx[136].text 我想AI本身是一個議題那針對國定假日的議題我們我想我們勞動部的態度就是我們該依法通過的法律來協助這個條例的執行尤其是兼顧到這個勞工的相關的權益比方說如果
transcript.whisperx[137].start 5604.736
transcript.whisperx[137].end 5627.796
transcript.whisperx[137].text 雇主真的勞工同意要在國定假日要出勤的話你是要給雙倍工資的像這樣子的提醒跟這樣協助的執行我想這是我們勞工部在修法通過以後我們會來做的是 理解好 那在這邊簡單的跟部長報告為什麼AI跟放假並沒有特別的相關因為AI它取代的是簡單或者是重複性高的
transcript.whisperx[138].start 5628.516
transcript.whisperx[138].end 5647.711
transcript.whisperx[138].text 事情但是這件事情放假他是保障勞工的權益所以部分技術被取代跟保障勞工的權益其實這兩個議題是不能混為一談的啦那在這邊比較希望部長重視的地方是說因為根據勞動部自己的一個大調查
transcript.whisperx[139].start 5649.493
transcript.whisperx[139].end 5676.489
transcript.whisperx[139].text 3%的企業已經開始使用AI作為面試協助的工具那34%正在考慮使用可是最近我們國際上有發現說像Amazon他們之前用他們內部的數據去做他們從2014年開始研發結果他們2015年就發現說哇 他們用之前的數據會反映出可能履歷表出現女性會被扣分因為他們過去的聘用紀錄大部分
transcript.whisperx[140].start 5677.689
transcript.whisperx[140].end 5706.048
transcript.whisperx[140].text 評估的是男性所以他們2014年開始研發結果他們2018年就決定放棄這個實驗性的系統了那另外其他的這個華盛頓大學他也去做了大規模的分析他發現說如果你用AI在做評估履歷的時候有可能比如說男性的姓氏會被評比較高分或是黑人的姓氏就比較容易被評低分所以無意中他會加劇原本存在的職場歧視的問題
transcript.whisperx[141].start 5707.729
transcript.whisperx[141].end 5728.511
transcript.whisperx[141].text 所以部長也知道說我們這個AI基本法其實這個禮拜在立法院有密切的被討論的聯席的會議所以我們會想追一下您的進度因為之前勞動部有針對就業市場使用AI的相關規範以及指引希望可以提出一個指引這個進度如何呢
transcript.whisperx[142].start 5729.244
transcript.whisperx[142].end 5750.079
transcript.whisperx[142].text 我想剛剛陳委員提到其實就是其實也很多人都提醒了在AI的使用裡面它可能會強化某些主流觀點的偏誤跟主流觀點的產生的歧視所以這也是在這裡面尤其在運用在職場上面大家需要注意的問題所以我想其實我們確實現在也在擬定相關的指引的部分
transcript.whisperx[143].start 5750.987
transcript.whisperx[143].end 5780.359
transcript.whisperx[143].text 各位報告總共有三個指引會在今年年底會完成今年年底對就業歧視的部分好那在這邊其實只是稍微提醒這個是歐洲的2024年通過的人工智慧法案他是在規定說在招聘的時候要注意這以下比如說透明度或是資料的品質有沒有偏誤人為的監督和干預還有AI的素養培訓希望在這邊給部長建議把這些國際上把求職列入的
transcript.whisperx[144].start 5781.019
transcript.whisperx[144].end 5810.061
transcript.whisperx[144].text 也可以放到您的指引當中我想這些問題其實是在使用AI裡面大家共同會面對到的問題所以我們其實也會跟一些相關AI應用的專業者來討論我們怎麼來克服這些問題因為這是大家共同的問題這也不是只有台灣會面對這件事情是 好 謝謝部長謝謝 謝謝主席好 謝謝陳委員 謝謝部長委員會在這邊做宣告我們到文藝民委員宣達結束後會休息十分鐘接下來請邱政經委員來做宣達
transcript.whisperx[145].start 5816.247
transcript.whisperx[145].end 5835.123
transcript.whisperx[145].text 主席好,我請洪部長我剛剛聽了一下,今天我們在談解凍案,解凍案現在送進來之後,我們未來應該要加快執行的進程
transcript.whisperx[146].start 5837.843
transcript.whisperx[146].end 5860.131
transcript.whisperx[146].text 當然就是我們希望別人的預算都可以如期的來執行我現在比較好奇就是說現在我們地方的補助款現在是50%嗎地方的補助款哪方面的補助款就是我們勞動部補助地方的有限制嗎其實我想不同的項目不同的計畫會有不一樣我講會影響就給地方的
transcript.whisperx[147].start 5865.918
transcript.whisperx[147].end 5880.777
transcript.whisperx[147].text 你說預算凍結或刪除會不會造成影響行政院這邊不是說先減少給50%嗎對這部分但是指的是明年度的預算因為我想行政院比較主要在
transcript.whisperx[148].start 5882.308
transcript.whisperx[148].end 5896.561
transcript.whisperx[148].text 敘述跟規劃的是針對財化法通過後那跟這個地方政府補助的部分但是可是他有些地方我看其他單位其他部會好像就已經開始實施了實施什麼50%的部分減少50%
transcript.whisperx[149].start 5897.802
transcript.whisperx[149].end 5917.034
transcript.whisperx[149].text 我想我們現在因為我們現在在討論的是114年的預算跟114年的預算的解凍所以我知道我現在是問別的目前114年的預算目前是還沒有用財化法在做相關的規劃跟分配所以勞動部還沒有就對了
transcript.whisperx[150].start 5917.754
transcript.whisperx[150].end 5936.241
transcript.whisperx[150].text 對我們現在就是按照114年的預算變略來去處理勞動及就業平等業務這項預算我問了好幾次你一直在反駁嘛那我就再問一次在這筆預算裡面除了產檢價賠產檢價補助是不是還有其他被質疑過去執行成效不彰的經費
transcript.whisperx[151].start 5938.321
transcript.whisperx[151].end 5959.969
transcript.whisperx[151].text 主要這個項目還有其他比方說落實勞基法包括是我們在協助勞政機關的培訓也包括最低工資審議那也包括減班休息相關的統計通報那也包括職場性騷擾的防治這其實是在大概花在大概一百一千
transcript.whisperx[152].start 5963.612
transcript.whisperx[152].end 5980.289
transcript.whisperx[152].text 1170幾萬相關的這個業務都在裡面嘛你上次說你覺得你很困惑嘛對那個凍結的原因我們看一下那個我們上次講的你說為什麼要其他的牢記法的問題去影響到新手爸媽的權益當時你的表當時你是這樣認為的嗎
transcript.whisperx[153].start 5982.977
transcript.whisperx[153].end 5999.595
transcript.whisperx[153].text 跟委員說明其實我想表達的事情是如果覺得我們在這邊有做的不足可是你卻把這方面相關的經費給刪掉那不是會對於包括勞基法的落實包括性騷擾防治反而會更不利嗎
transcript.whisperx[154].start 6003.599
transcript.whisperx[154].end 6025.105
transcript.whisperx[154].text 你先不用,就我的問題問就好了就是說你認為決議19、20就評思這一項目王振旭委員、楊耀委員、我們林業勤委員、林淑芬委員、范雲委員、陳培宇委員還有我們劉昭偉這幾位民進黨委員都針對這部分提凍結提案所以他們也是亂凍結嗎?
transcript.whisperx[155].start 6026.892
transcript.whisperx[155].end 6036.118
transcript.whisperx[155].text 跟委員說明,其實我在討論的是,因為我們其中有一個提案,這個提案裡面是3減800萬,再加上凍結20%跟委員說明,我指的是,我們這個提案裡面是3減800萬,再加上凍結20%可是這些委員並沒有提3減啊凍結啊
transcript.whisperx[156].start 6050.285
transcript.whisperx[156].end 6079.503
transcript.whisperx[156].text 但是所以我跟委員說明的時候我其實指的是我們有一個提案這個提案是三減八百萬你那天講的就是兩千你不要你那天講的是兩千你不要現在又變了那你現在我現在要講就是說你們現在的說法就是拿新手爸媽當盾牌不是委員不是其他委員講的你是挑這個在野黨的來做這個指控那其他委員都不算委員我可以委員我可以來說明
transcript.whisperx[157].start 6081.369
transcript.whisperx[157].end 6103.394
transcript.whisperx[157].text 這一整項裡面是九千七百萬新手爸媽的產檢陪產檢的補助是八千五百萬所以還有大概一千兩百萬左右可是這一千兩百萬是用在什麼地方我剛才說一千兩百萬是用在落實勞基法最低工資審議包括落實職場性騷擾包括我們很多性別平權相關的培訓
transcript.whisperx[158].start 6104.654
transcript.whisperx[158].end 6123.824
transcript.whisperx[158].text 我並不是要把這個刪減或者凍結全部是用在這個產檢陪產檢的獎補助並不是可是他一定會影響產檢跟陪產檢的獎補助因為我這一整項裡面就是給新手爸媽跟勞工剛剛落實勞基法或者是性騷擾防治相關的業務
transcript.whisperx[159].start 6124.904
transcript.whisperx[159].end 6153.224
transcript.whisperx[159].text 我怎麼刪我都一定會影響到這個大水庫裡面你可以選擇不認錯但你也改變不了你誤導民眾刻意抹黑把正常的監督預算打成說成打壓新手爸媽這個其實就是造謠邱委員我沒有造謠你把我們大家的信任邱委員這個案子被刪減然後撿在自己身上這個刪減是事實這個民眾對你的信任爆炸那我想你既然不承認所以我想
transcript.whisperx[160].start 6155.126
transcript.whisperx[160].end 6181.583
transcript.whisperx[160].text 所以我在講的是事實我再問那勞動部的粉專有些貼文可以直接留言為什麼有一些設定要追滿24小時才能留言為什麼因為要追蹤24小時會有一些假帳號會有一些假帳號所以不是碰到爭議的議題你才去做所以我們還是讓大家都有沒有
transcript.whisperx[161].start 6183.018
transcript.whisperx[161].end 6195.454
transcript.whisperx[161].text 那我們同意政策就需要宣導啦尤其這個來動權益的部分不能讓人民不知道自己的權益該怎麼主張但我想請問一下我們現在社群經營的宣傳方式真的有效嗎
transcript.whisperx[162].start 6200.685
transcript.whisperx[162].end 6222.421
transcript.whisperx[162].text 其實在去年底就是我們也檢討我們開口契約的時候我們其實就把我們勞動部開口契約的標案給停下來了所以現在勞動部是處在一個沒有開口契約宣傳沒有開口契約宣傳標案的狀態現在有很多我們社群媒體的宣傳都是靠很辛苦的靠我們的公務同仁在協助的
transcript.whisperx[163].start 6223.101
transcript.whisperx[163].end 6248.236
transcript.whisperx[163].text 所以都是自己弄就對了 沒有再做那以後咧 以後怎麼做當然以後我們還是希望能夠有專業的人專業的人士來協助可是至少我可以跟委員說現在從12月到現在就是從今年1月到現在目前都是沒有開口契約的這個宣傳沒宣標案的狀況下面我們很辛苦的努力在經營但這部分也是在檢討去年大家購併的一些問題
transcript.whisperx[164].start 6250.487
transcript.whisperx[164].end 6263.176
transcript.whisperx[164].text 對 那所以現在是 那未來如果再發包開口合約的時候我們的一些規定我當然是希望說你們對這個整個成效要做追蹤就是說比如說我們對勞工這個勞保部
transcript.whisperx[165].start 6267.239
transcript.whisperx[165].end 6283.359
transcript.whisperx[165].text 了解的部分勞工對工時加班權益理解不清楚的部分或者是勞工對勞動契約的誤解等等我想這些在線上都可以說明我希望說互動性要好一點你為了要變民你必須要把這個東西放在開口合約的規定裡面
transcript.whisperx[166].start 6285.722
transcript.whisperx[166].end 6307.461
transcript.whisperx[166].text 你現在講的是兩個層次第一個層次是我們會對於開口契約的適用範圍做出檢討做出適當的限定因為大家現在都不希望開口契約就是被擴大的使用這部分會檢討那第二個是在宣傳內容上面的成效也希望能夠提升我覺得這兩個部分我想我們都會一起加油啦我今天時間我看大家都比較忙謝謝
transcript.whisperx[167].start 6312.452
transcript.whisperx[167].end 6332.358
transcript.whisperx[167].text 好 謝謝邱委員 謝謝部長邱委員因為你剛剛有提到我要回應一下我是有動一個五十萬但提出報告後就可以使得動之好 謝謝 謝謝誰跟你差不多好來 接下來請王玉民委員來做懸打
transcript.whisperx[168].start 6341.493
transcript.whisperx[168].end 6343.916
transcript.whisperx[168].text 謝謝主席 我們有請洪部長我先請教一個80歲以上有老人的家庭他們關心的問題
transcript.whisperx[169].start 6356.894
transcript.whisperx[169].end 6377.863
transcript.whisperx[169].text 在113年去年12月31號通過80歲以上老人免評80亮掉那你們要訂立相關執法現在已經快要半年了這個我去地方走動很多有老人家的家人都要問說委員那個不是立法通過了嗎什麼時候會實施我想我們現在目標還是在7月底8月的時候希望讓他上路
transcript.whisperx[170].start 6378.305
transcript.whisperx[170].end 6404.539
transcript.whisperx[170].text 怎麼又變七月底八月 我記得第一時間你們是說半年嗎因為公告是一月啊怎麼作業時間這麼慢 你們又有什麼問題嗎就能快則快啊 立法已經通過的東西按照這個立法的原則就是半年內執法你們如果是一個有效率的部會的話 半年應該要提出來跟我們說明 其實我們在今年因為這裡面涉及到 包括我們要讓重症能夠分流
transcript.whisperx[171].start 6405.379
transcript.whisperx[171].end 6434.467
transcript.whisperx[171].text 然後還涉及到其實有很多人力需要補食人力的裁員我們其實在上個禮拜通過救安基金委員會其實有相關的現在有相關的裁員跟人力的規劃也包括這些人力要在訓練那這裡面也還有包括我們要跟來源國來商協商要要有更多的這個這個移工的進入這裡面涉及到的層面非常非常多所以我們才會訂說這半所以才訂半年的時間
transcript.whisperx[172].start 6435.307
transcript.whisperx[172].end 6452.282
transcript.whisperx[172].text 半年六月底就到現在已經是五月中了不是希望你們可以原來講的是半年大家現在就是六月底你現在又變成是八月不是不是這是一月二十號一月二十號公告的那你會到八月那到七月我剛剛說七月底啊
transcript.whisperx[173].start 6452.722
transcript.whisperx[173].end 6478.87
transcript.whisperx[173].text 你剛剛說七、八月我剛剛說七月底我們現在的目標就是七月底希望能夠上路現在都還在程序內七月底可以正式上路好那這個是很多家裡有老人的家庭很關心的那接下來我就要問你有關這個勞保要不要破產的問題因為事實上今天有很多的解答案當時本席在提這個預算監督也非常關切勞保會不會破產的問題那你們
transcript.whisperx[174].start 6482.386
transcript.whisperx[174].end 6493.091
transcript.whisperx[174].text 在那個解凍報告的時候呢你們就提出來說會再延後三年就是從原來的2028年再延後三年就是2031年這個勞保會有破產的問題不過我們如果看到潛藏負債大家還是要很嚴肅看待這個問題潛藏負債呢他也是
transcript.whisperx[175].start 6503.962
transcript.whisperx[175].end 6527.424
transcript.whisperx[175].text 增加為13.23兆這是一個天文數字那這件事情我們看到民進黨執政之後這個上任的部長發明了一個就是說撥補即是改革那這個洪部長也是follow這樣的基調只要有撥補就是改革我沒有說這句話你沒有我沒有說這句話因為我記得我當時問你的時候你說撥補是改革
transcript.whisperx[176].start 6529.048
transcript.whisperx[176].end 6542.863
transcript.whisperx[176].text 所以你現在委員可能記錯了我記錯了是不是好那所以你對於勞保會破產這一題上一任的部長說撥補就是改革他覺得他已經改革完畢了那請問洪部長在這件事情上你要怎麼做
transcript.whisperx[177].start 6544.417
transcript.whisperx[177].end 6572.807
transcript.whisperx[177].text 我想其實對於勞保的問題我們一直很嚴肅的在面對其實包括怎麼樣子讓勞保基金維持水位的做法我們其實一直主張是用多元的方式在維持水位波普是其中之一可是我們包括我們其實也在看怎麼樣把投資的效益給提高那甚至我們在整體的勞保包括去克服勞保在收取上面或者是給付上面的一些問題我們其實也很積極在做
transcript.whisperx[178].start 6573.487
transcript.whisperx[178].end 6598.895
transcript.whisperx[178].text 所以這當然還是是一個很艱難的問題可是我們並沒有覺得這只是一個純粹撥補的問題所以你有打算要去更動這一個我剛剛聽到了撥補跟給付就是給付的不是我說在給付的在操作面我們怎麼樣去做確認可以如實的收到該收到的保費然後這上面其實我們也做了一些精進的檢討
transcript.whisperx[179].start 6601.593
transcript.whisperx[179].end 6628.074
transcript.whisperx[179].text 所以呢你的那個檢討你可以提供給委員會嗎因為過去很少聽到部長在這件事情上有所琢磨你剛說我我可能是記錯了因為我當時的印象就是你認為政府會負起最終責任所以不需要進行相關的勞保的改革對不對好那你說政府要負起最終的責任本席就要問你的態度了因為本席還有其他委員其實都有提出來
transcript.whisperx[180].start 6629.11
transcript.whisperx[180].end 6657.424
transcript.whisperx[180].text 把政府最終支付責任入法這個已經是都送到委員會裡面來了那這件事情你會不會支持這樣的修法既然這個民進黨執政他完全沒有要去做任何的勞保的制度的改革以前還會說來研議現在是完全不研議了那在這樣的情況底下如果我們看數字當然最終這個勞保是要破產的只有政府擔起最終支付責任
transcript.whisperx[181].start 6658.462
transcript.whisperx[181].end 6684.064
transcript.whisperx[181].text 那可能有政府在他不會倒因為之前你們是這樣講的那如果是這樣子的話那是不是就讓他明文入法這個法修法部長你贊成嗎跟王媛說明我其實我並沒有說不研議但只是這個研議確實是必須要非常審慎那因為這確實涉及到很多勞工他們的這個退休或者是老年生活的相關的權益所以我覺得我是說這個事情要非常審慎
transcript.whisperx[182].start 6685.322
transcript.whisperx[182].end 6703.917
transcript.whisperx[182].text 那對於現在我想不管這個政府最終支付責任有沒有入法現在的政策就是政府負最後責任所以你不會反對這樣的修法嗎到時候進委員會討論這樣的版本我是持開放的態度開放態度好那這一個就拜託召委這個
transcript.whisperx[183].start 6705.893
transcript.whisperx[183].end 6734.632
transcript.whisperx[183].text 這個我們有經過招人關心勞工的議題這個很多委員其實有提相關的版本我覺得是要讓勞工安心嘛我覺得如果政府願意扛起最終支付責任至少勞工會覺得說即使破產沒有關係只要有政府在我就領得到錢現在的政策現在的政策就是政府那你就會安心就是政府在負最終責任所以我們有裁員我們就也在思考那我們就讓他入法政府負最終的責任希望這個到時候
transcript.whisperx[184].start 6735.332
transcript.whisperx[184].end 6746.159
transcript.whisperx[184].text 討論的時候大家來支持這樣的修法那另外一個我要問的是極端氣候底下的這個熱危害的部分因為這個部分的確是你可以看到具體的數字2023跟2024年比較起來6、7、8月份這個熱傷害就診人數其實都是呈現一個上升的趨勢
transcript.whisperx[185].start 6755.425
transcript.whisperx[185].end 6766.962
transcript.whisperx[185].text 因為大家都可以看到現在極端氣候到了夏天可能外面是38度 36度在那樣的一個工作場域工作真的對於勞工的健康會產生很大的危害
transcript.whisperx[186].start 6767.748
transcript.whisperx[186].end 6779.88
transcript.whisperx[186].text 那你們自己專屬呢做的勞檢喔其實在那個戶外作業比較高風險的事業單位去勞檢那就會發現說這個一年比一年高2021年22年這個違規比例是三成然後2023年呢
transcript.whisperx[187].start 6785.871
transcript.whisperx[187].end 6807.426
transcript.whisperx[187].text 其實已經來到了73%就是那個比例真的是蠻高的也代表說我們的雇主在這個部分他其實是忽略的你該有一些降溫的措施可能沒有做或者是說真的這個勞工很不舒服的時候應該其實要立刻就是有一些健康的這個風險要立刻讓他休息他可能也沒有那麼的關注那這一塊這個勞動部你們有沒有更積極的改善措施
transcript.whisperx[188].start 6812.065
transcript.whisperx[188].end 6834.073
transcript.whisperx[188].text 因為如果我們看到這個去年是這麼高高達73%的違規那幾乎是很多這個高風險單位都沒有做到位啊七成三是蠻高的比例你們打算怎麼做這件事情你們有一個專案在檢討嗎是跟跟網友說明其實就目前整體的氣候邊界趨勢來看未來的溫度恐怕還會持續的在升高
transcript.whisperx[189].start 6835.013
transcript.whisperx[189].end 6856.766
transcript.whisperx[189].text 所以當企務不斷升高的時候我想針對這個高風險熱而害的這個問題我們一定是需要花更多的資源跟力氣再去防這個去預防這件事情那我們當然現在是用職業安全的相關的措施那需要求雇主要實施可是的確沒有錯現在雇主對這方面尤其是戶外工作的雇主對這事情的意識不足
transcript.whisperx[190].start 6857.586
transcript.whisperx[190].end 6877.632
transcript.whisperx[190].text 所以我想我們會第一個我們還是會加強宣導但是第二個不會只靠宣導包括我們的勞動檢查我想我們會有更多的能量放在這個地方對那是希望因為真的是如果他不去好好的面對這個問題的話我覺得未來確實在氣溫更高以後可能會有更多勞工的責任風險會是在這個地方發生這是我們很不樂見的事情
transcript.whisperx[191].start 6878.049
transcript.whisperx[191].end 6904.255
transcript.whisperx[191].text 好我希望這個部分這個勞動部要把他視為是一個重要的因為他危急的就是勞工的就會越來越危急對他的健康因為有些中暑是很嚴重的他可能會因為這樣子喪命所以這個部分我希望你們一個部分是加強你們的勞檢一方面就是也很具體的請專家去研議一些他具體應該有效在這樣的一個作業環境裡面如何有效去降溫
transcript.whisperx[192].start 6905.035
transcript.whisperx[192].end 6930.723
transcript.whisperx[192].text 或是更好的防護措施去協助勞工的一些方案另外一個就是允許勞工他在一旦他一反應有不舒服他應該就可以有立刻去停工的這樣一個權利我覺得這幾項你們應該都要做一個更好的落實好不好好 剛剛我也說就是說包括可能現場的座位包括要設計休息的場所能夠讓勞工有地方可以去休息那這個休息的場所的設計跟規劃我想這會是在我們整體檢查的範圍內OK 好 謝謝
transcript.whisperx[193].start 6937.062
transcript.whisperx[193].end 6937.526
transcript.whisperx[193].text 好 謝謝 先休息
transcript.whisperx[194].start 7743.615
transcript.whisperx[194].end 7744.536
transcript.whisperx[194].text 好 我們繼續開會 請黃修昂委員來做詢問謝謝主席 我們請部長來 有請部長
transcript.whisperx[195].start 7764.374
transcript.whisperx[195].end 7791.223
transcript.whisperx[195].text 部長好 部長這個我首先先問一下就是說我們在去年通過就是80歲以上免巴釋量表那通過之後一般的民眾以為就是說這個法通過之後就可以這個80歲申請這個免巴釋量表要申請這個外籍看護工那我想請教就是說這個法通過之後那相關的配套應該在勞動部這邊應該
transcript.whisperx[196].start 7793.945
transcript.whisperx[196].end 7801.037
transcript.whisperx[196].text 有一些相關的配套嗎那預計這樣子的80歲免巴士量表預計是什麼時候可以開始
transcript.whisperx[197].start 7803.211
transcript.whisperx[197].end 7830.064
transcript.whisperx[197].text 其實當時舊武法的46條修法三讀通過後其實有很配套其實是蠻龐雜的工作那包括其實因為案件量會大幅增加所以我們也要協助地方政府包括人力的增加包括要有所訓練那也包括我們要跟海外的來源國來討論增加引進這個移工的來源的量
transcript.whisperx[198].start 7831.064
transcript.whisperx[198].end 7851.381
transcript.whisperx[198].text 那也包括我們相關的法規系統的修訂甚至有些地方甚至還需要空間上面都需要做出改變所以我們原本是預計我們是預計大概六個月的時間所以我們預計到七月底比較能夠上路但是因為如果你不把這些相關的配套給做好的話這個很可能會對於這個移工的
transcript.whisperx[199].start 7852.042
transcript.whisperx[199].end 7876.67
transcript.whisperx[199].text 聘僱的市場造成很大的衝擊跟混亂甚至會有很多其實我們現在陸續聽到其實有一些重症的家庭現在已經在擔心其實未來要聘僱到移工會更困難這也是為什麼我們在這裡面一定要希望能夠去設計一個重症跟一般分流的機制讓重症的家庭能希望能夠減少這個聘僱相關的時間成本跟阻礙
transcript.whisperx[200].start 7877.91
transcript.whisperx[200].end 7891.638
transcript.whisperx[200].text 那這個是一般的民眾他們以為說這個法通過之後那其實還有一些相關的配套措施那就是預計在7月就可以預計7月底接下來我想請教就是說在這個禮拜就5月20那應該是算下禮拜就是台北國際電腦展那大家在
transcript.whisperx[201].start 7905.445
transcript.whisperx[201].end 7920.771
transcript.whisperx[201].text 看到就是說這一次的主題有很多就譬如說聚焦在智慧運算機器人 次世代科技未來移動等主題我想請教就是說勞動部在AI浪潮下勞動部的角色是什麼
transcript.whisperx[202].start 7921.431
transcript.whisperx[202].end 7945.282
transcript.whisperx[202].text 那其實很多人擔心不論是藍領或白領會擔心就是說這樣子AI的浪潮那會不會變成說這個有一些工作可能會被這個機器人所取代不論是白領或藍領都有可能被這個機器人所取代那我不知道說勞動部針對這一部分你們有什麼樣的因應措施
transcript.whisperx[203].start 7946.403
transcript.whisperx[203].end 7969.117
transcript.whisperx[203].text 因為現在對於AI的應用的普及度越來越高那也在很多的層面都有應用那可是確實AI對於勞工的工作的影響可能會有好幾個不同的向度那有些人會認為AI其實也好像可以來協助克服一些缺工的問題或者是讓這個很多目前是可以讓這個
transcript.whisperx[204].start 7970.958
transcript.whisperx[204].end 7986.607
transcript.whisperx[204].text 很多的職場或很多企業的運作更有效率可是他可能也會取代一些低技術的勞工目前看到的這種可能性所以他的影響的層面是很多的我想這些議題勞工部我們其實都跟相關的專業者在
transcript.whisperx[205].start 7987.668
transcript.whisperx[205].end 8001.927
transcript.whisperx[205].text 研擬在研討中那但是我們也在一直在觀察接下來AI的整體的發展那因為具體的發展的情境可能還是要跟著這個發展的狀況那我們可以當然可以做一些預判但是
transcript.whisperx[206].start 8004.874
transcript.whisperx[206].end 8022.53
transcript.whisperx[206].text 這個會是國際上面我想很多的不管是很多國家的勞動部會或者是勞動部門其實都非常嚴肅跟審慎在應對的一個新的浪潮其實我之前我到我們彰化這個一個公司去參觀
transcript.whisperx[207].start 8024.412
transcript.whisperx[207].end 8039.904
transcript.whisperx[207].text 他原本他的公司可能這樣子一個廠房裡面也許有三四十個人那現在因為他導入一些機器人機器手臂所以他這個廠房這個空間裡面只需要兩個人去操作就好了
transcript.whisperx[208].start 8041.275
transcript.whisperx[208].end 8059.896
transcript.whisperx[208].text 這個你真的會嚇一跳耶這個就全部都是用這個自動化全部都自動化然後用AI用機器人連搬運的話也是用機器人這樣去搬運所以就是說可能第一個我們這當然就是說少子化然後一般的這個企業他要找
transcript.whisperx[209].start 8060.777
transcript.whisperx[209].end 8084.964
transcript.whisperx[209].text 缺工的議題也是蠻大的那如果說全部就是都用這個AI來取代的話其實我覺得勞動部針對這部分應該也要有一些因應措施而且這是很大的挑戰對那未來就是說可能也許不是只有勞動部可能還有其他部會也許從這個教育方面你要進入職場
transcript.whisperx[210].start 8086.567
transcript.whisperx[210].end 8101.105
transcript.whisperx[210].text 你可能就要先做一些訓練不論是事先的訓練或者是在職訓練我覺得這個都是一個挑戰那不知道說勞動部針對這一部分你們未來會怎麼去做因為我
transcript.whisperx[211].start 8102.426
transcript.whisperx[211].end 8128.893
transcript.whisperx[211].text 很多學生再來就是畢業季再來就是畢業季學生進入職場也許他看到的可能需要有一些操作可能電腦操作或者是機器人的操作或者是原本這家公司他如果要轉型的話也是需要在職訓練那我希望就是說勞動部你們的在職訓練應該是要
transcript.whisperx[212].start 8130.854
transcript.whisperx[212].end 8146.506
transcript.whisperx[212].text 跟企業應該要有所配合而不是你們做你們的然後企業做企業的培訓出來的人是沒辦法在第一線去直接上工的所以我是不是可以再請這個部長針對這部分你再做一個回應
transcript.whisperx[213].start 8147.327
transcript.whisperx[213].end 8174.401
transcript.whisperx[213].text 好 跟委員說我們其實現在也在訂定因應這個AI應用在職場上面應用的職業相關的指引那下半年我們應該會把這些指引給做好希望提供很多企業參考但第二個也是大家最關心的事情就是在職業訓練或技能訓練上面我們確實是需要更擴大的來協助其實我們有很多勞工朋友能夠掌握相關跟AI一起協作的技能
transcript.whisperx[214].start 8175.222
transcript.whisperx[214].end 8189.621
transcript.whisperx[214].text 才有辦法去提高很多勞工他在職場裡面在工作上面的價值或者是他的適應能力所以比較能夠讓這個原本可能會變成是讓AI去取代的反而你
transcript.whisperx[215].start 8190.322
transcript.whisperx[215].end 8209.74
transcript.whisperx[215].text 反過來是能夠去駕馭AI或駕馭這些相對應資訊化自動化的狀況那這比較能夠因應接下來這個世代在這個AI浪潮裡面的需求我想我們在一些相關的訓練裡面也必須朝向這個方向更大步的邁進我想這其實我們心裡是有準備開始要做
transcript.whisperx[216].start 8210.24
transcript.whisperx[216].end 8228.309
transcript.whisperx[216].text 所以部長我想請教就是說那你們也會跟企業有一些聯繫溝通就是說你們未來的執訊的項目是什麼樣的類型或者是說他們可能缺工是缺什麼樣的這個職缺那未來你們開的這個執訊這個可以銜接
transcript.whisperx[217].start 8233.151
transcript.whisperx[217].end 8261.304
transcript.whisperx[217].text 而不是說你們訓練出來的可能跟他們會有一些落差我們其實現在包括跟企業合作也包括跟其他的產業主管部會合作比方說像經濟部我們應該跟經濟部來合作跟企業合作甚至跟學校我想這多方面的合作才有辦法把這個新的這個新的勞動課題跟挑戰我覺得才能夠做比較好的因應勢必是這是一個多方的協作
transcript.whisperx[218].start 8263.065
transcript.whisperx[218].end 8289.723
transcript.whisperx[218].text 對 其實我覺得只要到地方去看一下真的衝擊還蠻大的就是以前可能需要很多的人力類似拋光 水滸金拋光那以前可能就是要用人工去做那現在直接用機器就可以直接用機器手臂就可以直接做了所以你看到就是說人力真的減少非常的多那未來我們這樣子的這個就業市場
transcript.whisperx[219].start 8291.004
transcript.whisperx[219].end 8309.739
transcript.whisperx[219].text 或者是會不會因為這樣子然後被這個機器人取代或被取代那當然剛剛部長有講的就是說我們希望就是說這個AI是來輔助我們讓我們的工作能夠更有效率而不是說我們的這個工作會被這個機器人所取代
transcript.whisperx[220].start 8310.816
transcript.whisperx[220].end 8338.293
transcript.whisperx[220].text 我從勞工部角度來說我們認為這個AI應用的浪潮跟影響是不是一定會發生那現在的我們能夠做的是我們要強化我們去因應跟適應他的能力甚至能夠駕馭他的能力我想我們態度我們很難去去清純僥倖說這個對於就業的衝擊不會發生我們大概不能這樣去思考了所以我們其實現在在強化我們其實對勞工AI能力的訓練那
transcript.whisperx[221].start 8339.594
transcript.whisperx[221].end 8355.007
transcript.whisperx[221].text 目前這一兩年下來其實也蠻有成效的我們其實每年訓練的人數也超過一萬人以上可是我們希望未來還有機會可以更多甚至更多方來合作是我剛才說的好 我們希望因為台灣一直覺得說台灣是一個AI的國家這個說不論是我們從台積電半導體什麼就是大家會覺得說應該是要從我們自己本身怎麼樣讓我們的這個台灣成為一個科技島
transcript.whisperx[222].start 8369.418
transcript.whisperx[222].end 8388.873
transcript.whisperx[222].text 那當然也不能因為這樣子然後造成這個不論是白領或藍領的這個失業率增加嘛是所以我們希望勞動部這邊應該也是要有一個跨部會的合作而不是只有勞動部勞動部其實也沒那麼偉大啦還有做的工作很多所以應該也是要跨部會的去合作是好不好好 謝謝王美
transcript.whisperx[223].start 8405.575
transcript.whisperx[223].end 8432.179
transcript.whisperx[223].text 好 接下來請劉建國委員發言好 謝謝主席 有請黃部長請部長劉仁浩 部長好 部長可不可以說明大聲解釋一下什麼叫自愛然行跟執行自愛這應該是同樣的意思吧 應該是同樣的意思
transcript.whisperx[224].start 8434.194
transcript.whisperx[224].end 8439.335
transcript.whisperx[224].text 摯愛男性跟執行摯愛我覺得差不多的意思沒有牽扯順序
transcript.whisperx[225].start 8440.492
transcript.whisperx[225].end 8467.159
transcript.whisperx[225].text 沒有一個是尚未啟動感覺上整個計畫就是就像我們在審查預算的過程裡面跟櫃部櫃單位綁了任何的條件那這個條件基本上就會讓你們感覺是自愛然行所以我們就會做這樣的一個回應那另外一個是應該是整個預算通過之後可能在執行上出了一些問題叫做執行的自愛所以這兩個應該
transcript.whisperx[226].start 8468.999
transcript.whisperx[226].end 8495.863
transcript.whisperx[226].text 應該是不太一樣的意思嘛對不對就可能放在不同的語境裡面比較能夠去看出他意思的差別就不叫做放在不同的語境嘛應該是在整個執行的面向裡面一個是知道這個計畫這樣做出來可能會很難去執行那另外一個是可能執行到10%、5%就覺得在執行不下去才會叫執行之愛嘛
transcript.whisperx[227].start 8497.352
transcript.whisperx[227].end 8516.189
transcript.whisperx[227].text 我這樣解釋你能不能接受我可以接受可以來理解委員的意思因為我怕你以前當委員的時候大家的這個理解都一致但是你當了部長之後跟我們的理解上就有顯著落差我很擔心這樣那這樣的溝通上顯然會有溝通上的摯愛
transcript.whisperx[228].start 8518.852
transcript.whisperx[228].end 8528.881
transcript.whisperx[228].text 為什麼這麼講 因為剛剛黃修昂委員有特別提到80歲以上免巴士量表這件事情你說7月就可以如期來實施你確定
transcript.whisperx[229].start 8530.5
transcript.whisperx[229].end 8555.387
transcript.whisperx[229].text 7月下旬7月下旬我們會還是會讓他上路是可是上路的過程裡面其實還是會我剛有補充上路的過程裡面還是會造成一些衝擊但當然我們現在的配套是希望減少這些為減少衝擊做一些努力可是確實這個法的修法通過就是對於這些重症的家庭我們就目前來預判的話還是會產生衝擊的是衝擊還是自愛
transcript.whisperx[230].start 8559.142
transcript.whisperx[230].end 8564.221
transcript.whisperx[230].text 我們認為會先有衝擊最後就變成自然燃刑是不是這樣
transcript.whisperx[231].start 8566.328
transcript.whisperx[231].end 8590.858
transcript.whisperx[231].text 我要提醒啦好不好部長因為剛剛特別提到很多面向你都必須要去做應變了嘛對不對人力的培訓行政上的一些措施然後還有這個外籍康復的來源國的供給然後還有這個需求者提出了相關的這些這個輕症的重症的正常的亞健康的這樣的需求你們有評估過嗎
transcript.whisperx[232].start 8592.532
transcript.whisperx[232].end 8610.618
transcript.whisperx[232].text 比如說在7月下旬你開始實施的時候你可能會面對到提出申請的這個量對照過去的平均的量可能會增加多少的這樣的一個差異我們目前推估是可能會在很快的速度裡面可能會增加也許10萬這樣的量
transcript.whisperx[233].start 8613.159
transcript.whisperx[233].end 8631.549
transcript.whisperx[233].text 對照以前的差異是差了幾倍這個增加當然很這個增加的幅度當然很大但是我是說這個所謂的很快不一定是那個當下馬上就會來可是我們認為它增加的速度會很快你們足以因應現在就是在為因應或者減少衝擊做整備對我希望是這樣我們不要執行到不到一個月時間就產生了很多的不可
transcript.whisperx[234].start 8642.833
transcript.whisperx[234].end 8656.417
transcript.whisperx[234].text 不可逆的傷害啦還是讓人民百姓對這個政策產生很大的這樣的一個挑戰跟疑慮啦所以已經80歲以上就可以免巴士量表了那為什麼這麼難申請那這個政策的使然那執行的單位要如何去應應要如何去說明這個你們有沒有想過
transcript.whisperx[235].start 8670.409
transcript.whisperx[235].end 8697.248
transcript.whisperx[235].text 現在是當然現在是在就是在規劃可是確實就是他一開始出來的量我們預計到會很大那這個很大在原本的比方說大概21萬的這個看護工的比例裡面他其實他的幅度真的是很大的所以這是我們說的那個衝擊衝擊可能會衝擊到重症確實也會有可能會有一些這個來想要來申請的民眾他在申請的到他時間上面會會
transcript.whisperx[236].start 8700.17
transcript.whisperx[236].end 8719.683
transcript.whisperx[236].text 可能一開始的時候那我就簡單請教部長衝擊到重症你如何因應現在當然我們現在在因應的就是說把重症跟這個部分給分流可是我一樣還是說其實我們現在陸陸續續都聽到很多在重症的家庭看護工現在已經表達他們是不是未來有機會可以到
transcript.whisperx[237].start 8720.143
transcript.whisperx[237].end 8741.772
transcript.whisperx[237].text 比較輕症的或者是80歲以上免巴氏量表的這些健康的家庭裡面去工作其實這樣的聲音已經陸陸續續出來這是我們很擔心的地方因為7月中旬的下旬你們就要實施了嘛對不對所以我是現在已經五月中旬了不到兩個月時間我希望你們可能要做完事的具備
transcript.whisperx[238].start 8743.413
transcript.whisperx[238].end 8763.597
transcript.whisperx[238].text 那第二件事情我再請教部長我也在這個委員會昨天請教彭部長然後彭部長這邊有提出了相關的一些計畫跟報告他就說環境部發布綠領人才就業的趨勢報告2024平均每月徵求的2.2萬名的綠領人才8年的他的標速成長會達到3.29倍
transcript.whisperx[239].start 8766.77
transcript.whisperx[239].end 8784.524
transcript.whisperx[239].text 這個AI人才的缺口甚至還會超越喔甚至還會超越那個博文部長也這樣認為說未來隨著法規屈原國際這個減碳壓力升高預估未來五年內綠林子缺將有一到三倍的成長空間市場對於具備這個碳管理的
transcript.whisperx[240].start 8786.205
transcript.whisperx[240].end 8814.134
transcript.whisperx[240].text 與減排知識的人才需求持續增加所以環境部在今年3月成立的這個敬禮綠領人才的培育聯盟在北中南東四個區域成立的這個區域培育中心藉由這個國內的大專院校讓民眾可以就近的來接受敬禮綠領人才培訓的課程4月26號就已經啟動了第一班了在台師大然後第一班的學員平均的年齡37歲社會人士有八成以上據說是學位以上的有達7、38
transcript.whisperx[241].start 8815.454
transcript.whisperx[241].end 8840.467
transcript.whisperx[241].text 所以只有工程師業務人員行政助理會計總務等等顯示這個勞工群組對這樣的課程有高度的興趣而且願意進修但是這個勞動部好像跟環境部目前相關的課程都還沒有進行對接應該是環境部有相關的課程勞動部有相關的課程那我們接下來預計我們其實在這些課程或者是合作班訓上面要來進行合作
transcript.whisperx[242].start 8841.647
transcript.whisperx[242].end 8866.938
transcript.whisperx[242].text 對我時間有限齁我昨天問彭部長的時候他是這麼打呼我啦齁我請教他部長這個對失業的勞工有沒有很大的幫助啦彭部長回答我是非常大的幫助是這樣是對那你們勞動部又有一個像產業人才的投資計畫的資源可以補助勞工參訓80%到100%的訓練費用每人喔每年三年內最高可以補助到10萬塊是好
transcript.whisperx[243].start 8868.584
transcript.whisperx[243].end 8895.502
transcript.whisperx[243].text 那你們櫃部跟這個環境部也有對談喔也談了4次了之前有談過可是 談了4次了其實在近期會跟捧場我們會針對就是變成是不是近期啦 你們明天就見面了嘛 是是是你們底下幕僚可以談了4次然後你們的那個勞洛署主秘要跟我講說錢不是問題是相關細節還沒有談妥是 我們在討論因為這包括要跟民間團體進行一些合作
transcript.whisperx[244].start 8896.613
transcript.whisperx[244].end 8909.708
transcript.whisperx[244].text 我是覺得這速度有點慢了啦這樣的因應作為是有點不太及格啦當然是前面有問題細節還談不出來然後你的近期是明天就要見面的那是不是明天就可以談出來
transcript.whisperx[245].start 8912.485
transcript.whisperx[245].end 8931.401
transcript.whisperx[245].text 因為你們兩個都在部會也算是中心位的應該行動力還有智慧都非常高的我們會希望能夠擴大合作現在我們是希望能夠擴大合作而且其實會有一些資源我們不希望重複浪費所以其實這個合作會互相的支援黃部長答應我一個星期內應該就可以跟你談出來的那你能不能一併答應
transcript.whisperx[246].start 8932.537
transcript.whisperx[246].end 8961.875
transcript.whisperx[246].text 可以啊可以好 謝謝他說一個星期是不是對 沒有錯在這邊講話都不能有絲毫的這個虛假跟作為是好 那就大家都一個星期好 謝謝然後勞動部在5月4號又一篇報導一篇新聞是這麼講台灣雙子化趨勢越來越明顯為了補足勞動力的缺口勞動部所訂的中高齡的群組那未來四年就是今年開始為期四年目標每年要增加12萬的中高齡及高齡者續留或從晚職長
transcript.whisperx[247].start 8962.776
transcript.whisperx[247].end 8965.44
transcript.whisperx[247].text 換言之是你要增加48萬的中高齡勞動大軍你這48萬怎麼來怎麼推估的
transcript.whisperx[248].start 8971.363
transcript.whisperx[248].end 8991.233
transcript.whisperx[248].text 我給你一個非常開的計畫 勞動部目前的計畫是如果僱主繼續僱用借齡的退休勞工勞動部會提供僱主前六個月每月補助1.3萬第七到十八個月補助到每月1.5萬那僱主每小時花給七十代八十元最高25.8萬要繼續來僱用這個高齡者促進整個經驗傳承與世代合作對不對沒有錯嗎這期一嘛好多少人
transcript.whisperx[249].start 9001.153
transcript.whisperx[249].end 9017.351
transcript.whisperx[249].text 這個多少人這個目前補助多少人已經在執行了目前你們四年要增加到48萬嘛一年就要12萬嘛那你這個項目裡面你現在目前為止執行了多少人數
transcript.whisperx[250].start 9018.922
transcript.whisperx[250].end 9033.029
transcript.whisperx[250].text 目前要增加每年要重返職場的中高齡十二萬的目標那去年度一百一十三年有達到十二萬五千人十二萬五千人就超標了對不對那我又跟你肯定嘛
transcript.whisperx[251].start 9036.058
transcript.whisperx[251].end 9057.292
transcript.whisperx[251].text 但是在執行相關的就業促進津貼的措施因為相關的就業促進津貼措施有相關的一些條件還有補助的一些內容我知道你們有很多項目很多計畫對不對好那去年有達標對不對但是就業津貼的部分仍在持續加強因為就業津貼補助有多少人是人數
transcript.whisperx[252].start 9059.793
transcript.whisperx[252].end 9078.612
transcript.whisperx[252].text 以55歲以上的就業租促進津貼的獎勵措施 去年度是執行1050人1050人去年度但是他是55歲以上對嘛 55歲嘛我現在是你們自己講的48萬的中高齡勞動大軍
transcript.whisperx[253].start 9083.591
transcript.whisperx[253].end 9107.537
transcript.whisperx[253].text 然後你這個計畫裡面才一千多人我跟各位說明其實就是說其實我們希望能夠讓中高齡能夠重新進入到職場的這個數字是有可是我們其實在發出我們相關的這個補助獎補助的人數確實是比較少那這部分我也請署長那新任的署長來針對這部分必須做出檢討
transcript.whisperx[254].start 9110.098
transcript.whisperx[254].end 9127.491
transcript.whisperx[254].text 部長你先聽我再講一個計畫補助僱主繼續僱用高齡者預計預計補助這是在114年度的救援基金裡面要動用一個辦理特定對象就會促進津貼及相關僱用講述津貼的6.85億是這麼寫嗎預計補助一樣是1000多人啦1498我們估計算1500嘛然後補助僱主僱用退休高齡者傳承這個專業技術及經驗38家
transcript.whisperx[255].start 9135.437
transcript.whisperx[255].end 9162.245
transcript.whisperx[255].text 補助僱主辦理勞工退休後再就業準備的協助措施有30加編的2.74億嘛沒有錯嘛對不對好那如果要以這一項來加總坦白講其實他一年1500四年才6000也佔你這個48萬人的1.6%而已對所以就是我們其實相關的編列的經費的資源其實我們的執行率確實是有需要檢討的地方
transcript.whisperx[256].start 9163.931
transcript.whisperx[256].end 9191.077
transcript.whisperx[256].text 45歲到65歲的中高齡除了失業還有失衡外本來還在職場如果依照內政部的資料是應該每年約有幾十萬65歲屆齡的退休高齡人口尤其今年跟明年是退休的退休潮的高峰怎麼讓他們屆齡完之後還留在職場然後從你的預算面向去顯示基本上是很衝突的落差值是非常大的
transcript.whisperx[257].start 9192.949
transcript.whisperx[257].end 9207.908
transcript.whisperx[257].text 我們的部署繼續僱用高齡者的這個獎勵措施目的就是希望借齡的勞工朋友能夠職場續航然後延緩退休所以這支計畫主要就是希望能夠補助繼續僱用的高齡者
transcript.whisperx[258].start 9210.371
transcript.whisperx[258].end 9218.162
transcript.whisperx[258].text 鼓勵雇主禁用那我們會持續今年度會持續加強來推動我現在不敢你聽我這跟他對話應該你應該知道我要點出什麼問題
transcript.whisperx[259].start 9222.878
transcript.whisperx[259].end 9247.872
transcript.whisperx[259].text 好 那第三個齁時間超過很多對不起齁一樣在救安基金裡面有編列一個辦理繼續僱用高齡者及重高齡者的相關補助業務但當時只編列了兩千多萬同時又辦理了五十五的這個這個壯士代這個壯士代的名稱你們要繼續用嗎就因為促進獎勵措施預計補助三千人然後框了編列了1.35億
transcript.whisperx[260].start 9250.319
transcript.whisperx[260].end 9267.657
transcript.whisperx[260].text 那個跟跟留言說明吼關於壯世代三個字因為這個名詞是去年在預算編列的時候但是我們其實有說未來接下來在勞動部的計劃裡面我們會把壯世代這三個字因為他這三個會這個這個名詞的使用比較爭議可是事情我們會繼續做
transcript.whisperx[261].start 9269.062
transcript.whisperx[261].end 9288.529
transcript.whisperx[261].text 但是這三個字使用我們會來做修正那剛剛在講到確實我們其實在這幾在這幾支計劃裡面我們我們相關的預算的執行其實我都認為是有很大必須改進的空間很大必須改進的空間嘛對不對是就是這個執行上是不是
transcript.whisperx[262].start 9289.549
transcript.whisperx[262].end 9308.195
transcript.whisperx[262].text 執行障礙包括我們可能一些條件的設定包括對象的對象的設定包括條件的設定包括我們要怎麼樣子來協助這些需要幫助的中高齡的朋友可以走完然後最後能夠達到政策的目標然後這部分我們其實都是請我請發案署
transcript.whisperx[263].start 9309.671
transcript.whisperx[263].end 9328.286
transcript.whisperx[263].text 也不只這個計畫啦 其實我們做整體的我剛才說我們會做一個整體的總體檢部長就很清楚問題的所在了嘛 對不對這一個有一點 算是非常破碎嘛三個連連組 軍組支援上基本上是非常的分散啦而且不集中 然後整個的補助好像看起來
transcript.whisperx[264].start 9329.267
transcript.whisperx[264].end 9346.391
transcript.whisperx[264].text 很零很零碎啦很零碎那如果要去做整個統計的這些資料其實是會會被挑戰的啦或者互相其實會有競合然後會互相影響效應其實這些事情我們都發現所以這個檢討不是檢討單一支計畫是要做整體的檢討甚至要不要做計畫的整併
transcript.whisperx[265].start 9349.152
transcript.whisperx[265].end 9368.429
transcript.whisperx[265].text 那最正確的 我就是希望部長回答這句話所以這樣 我就要求勞動部一周內針對這個進營的利益人才的培訓課程同時可以嚴厲勞工的進修及失業勞工的補助計畫是其一那其二是針對這個促進高齡者續留或從晚滋長的計畫勞動部應該提出更具體的這個流竄的數據及方案
transcript.whisperx[266].start 9369.95
transcript.whisperx[266].end 9386.204
transcript.whisperx[266].text 也希望一周內可以提出監討方案齁最後是協助45歲到65歲的資源應該是要其中共用啦希望65歲以上的退休勞工成長資源也必須要再擴大增加但是這個必須就是要重新盤點嘛齁 重新瞭解到
transcript.whisperx[267].start 9386.724
transcript.whisperx[267].end 9411.686
transcript.whisperx[267].text 各個計畫執行的狀態才有辦法從部長剛剛講的把問題點出來之後再去做修正再去做調整劉仁針對你這三點第一點沒有問題我們會來規劃但是第二點確實需要多一點時間因為剛剛說他不是單一支計畫的檢討他可能是一整個計畫相關的計畫都需要一併檢討所以真的需要多一點時間時間由部長講三個月好不好
transcript.whisperx[268].start 9413.664
transcript.whisperx[268].end 9432.859
transcript.whisperx[268].text 買吧三個月因為我是請他們做總體檢是因為新的署長上來後我是請他針對這些就業計畫做總體檢所以確實需要整體的時間會比較多也希望比較周全好三個月就三個月應部長所講那最後一點應該也沒有多大問題吧是我們就是針對這個方向來做檢討好謝謝好謝謝
transcript.whisperx[269].start 9442.23
transcript.whisperx[269].end 9444.872
transcript.whisperx[269].text 好 接下來請林淑芬委員發言好 現在主席 是不是請我們洪部長 請洪部長林委員好部長 AI政夯 這個黃仁勳來台灣
transcript.whisperx[270].start 9470.273
transcript.whisperx[270].end 9485.254
transcript.whisperx[270].text AI相關的股票也很夯但是跟就業有關的AI的議題也很夯現在很多大學生大家都覺得大學生就是產業後備軍的養成所雖然我不贊成是這樣子
transcript.whisperx[271].start 9486.28
transcript.whisperx[271].end 9503.508
transcript.whisperx[271].text 但是現在說大學的確就變成是產業後備軍的培訓所那大學生很多都用ChatGPD或是Notion或是Gemini這種網站作為學習的輔助的工具那我現在要討論的議題就是我報導過的就是AI廣泛應用在人資管理系統還有數位轉型連企業的組織都將AI應用在營運管理和決策當中
transcript.whisperx[272].start 9514.813
transcript.whisperx[272].end 9542.851
transcript.whisperx[272].text 那這種狀況裡面整個典範可能會創造一出這個企業經營上的典範的轉移那根據2024年人資FBI的報告2023年你知道嗎企業在招募人才的過程當中從通知面試到成為新進員工到職整體平均的人才招募天數花了幾天你要不要猜猜看
transcript.whisperx[273].start 9544.874
transcript.whisperx[273].end 9567.991
transcript.whisperx[273].text 你猜猜看嘛兩天2023年你招募一個人選並一個人面試他到他來上班就職是花了54.4天平均招募一個一般的員工花48.2天主管人員主管職的人員花更長的時間要66.4天
transcript.whisperx[274].start 9570.713
transcript.whisperx[274].end 9587.773
transcript.whisperx[274].text 那這幾年都要講缺工缺工那所以大家投地的履歷數量變多那人資在徵才方面的工作量也變多那況且現在幾乎都是線上徵才作業作為企業攬才的主要管道不只是要求這個
transcript.whisperx[275].start 9589.475
transcript.whisperx[275].end 9612.052
transcript.whisperx[275].text 求職的人會用AI寫履歷現在連人資都使用AI對履歷做篩選篩選履歷所以這個是幾乎我說人資管理上的典範的轉移這個是一個很需要思考的問題那你知道在人資管理上有什麼樣比較主流的這個系統
transcript.whisperx[276].start 9614.574
transcript.whisperx[276].end 9619.098
transcript.whisperx[276].text 來應徵追蹤AI篩選這些人才嗎你有聽過任何任何任何的系統或應用程式嗎有但是我說這個問題確實沒有你講一個來聽聽看你說有你都說有了我就聽你講講看因為事實上我不太知道
transcript.whisperx[277].start 9642.096
transcript.whisperx[277].end 9670.543
transcript.whisperx[277].text 就是我們都知道我們我們知道其實因為這段時間跟一些人質但他們讓我們知道說他們現在確實現在都用AI做一些面試跟履歷表篩選的工具對對啦我說那你們用什麼系統我沒有特別問他們個別是用什麼系統所以你沒聽過我也沒聽過我是為了質詢然後才去助理才去找的你知道現在一個ATS是人力資源的應用程式那其實是協助企業用數位的方式來管理招募還有雇用工作的軟體
transcript.whisperx[278].start 9671.463
transcript.whisperx[278].end 9678.026
transcript.whisperx[278].text 那許多企業為了精簡人事成本提升招募的效率剛剛講了平均54.4天多沒有效率啊不可思議我們聽到都覺得不可思議部長用AI以後會大幅縮短到OK那現在導入ATS然後AI技術進行履歷的掃描和分析可以在初步的階段就出塞符合調節的應徵者
transcript.whisperx[279].start 9701.617
transcript.whisperx[279].end 9724.458
transcript.whisperx[279].text 節省很多時間 節省很多人資而且確保篩選標準的一致性而只有分數超過門檻的履歷才會送到人資的手上進行第二階段或是下一階段這個就是ATS 但是ATS主要是要做英文履歷為主但是我是要舉這個 我不是要講ATS 我是要講
transcript.whisperx[280].start 9725.419
transcript.whisperx[280].end 9753.129
transcript.whisperx[280].text AI的技術正在改變招募和人才管理的生態所以我一直在講整個典範要轉移可是這麼大的一個問題大家思考的很廣企業人資作業導入異化的比例在逐年的成長AI的技術取代了過去的人事行政管理可能薪酬管理數位化的線上學習平台
transcript.whisperx[281].start 9753.809
transcript.whisperx[281].end 9781.795
transcript.whisperx[281].text 那人資的管理系統會導入自動化的處理員工的數據像是員工的入職離職休假申請等程序那同時呢人事行政管理的數位化也提供了管理階層即時的數據分析然後會讓管理階層好的運用管理階層可以更了解員工的需求和行為那AI會收集大量的員工的數據
transcript.whisperx[282].start 9783.176
transcript.whisperx[282].end 9798.916
transcript.whisperx[282].text 會進行分析預測然後讓企業去發現他們管理面的潛在的問題所以他可以很精準的可能可以相對於沒有AI的時代精準的去訂出他的培訓計畫他的薪酬政策
transcript.whisperx[283].start 9799.617
transcript.whisperx[283].end 9813.494
transcript.whisperx[283].text 符合員工的期待然後提升員工的滿意度和留任率當然更可能會讓老闆很滿意所以我們才問你說AI技術能夠取代人之最業的項目還有哪些部長你覺得呢
transcript.whisperx[284].start 9818.458
transcript.whisperx[284].end 9831.803
transcript.whisperx[284].text 沒思考過應該是說我們在跟因為我在我們部裡面以後其實我們也跟很多的人在做進一步的座談那他們都跟我們講到說他們現在其實確實大幅的
transcript.whisperx[285].start 9833.324
transcript.whisperx[285].end 9847.355
transcript.whisperx[285].text 在更多的使用AI的工具那蠻多在跟我們在討論的時候是當然談到訓練的問題包括一些招募的問題那也談到工具沒關係我問你是說接下來人資管理上面要面臨什麼挑戰那我問你最簡單的現在有多少比例的這個企業他們已經導入了AI的人資管理模式
transcript.whisperx[286].start 9858.91
transcript.whisperx[286].end 9875.456
transcript.whisperx[286].text 運用AI然後你有沒有做過調查和統計你有沒有了解這些數據大企業有多少人已經在使用AI在做人資的管理我們沒有直接去做這個我們確實還沒有這部分去做統計可是我們有觀察到這個現象也在發生
transcript.whisperx[287].start 9876.801
transcript.whisperx[287].end 9881.403
transcript.whisperx[287].text 但是我有一份來自於勞動部 台灣就業通的統計資料2024 AI世代求財條件大調查讓就業通的會員 你們自己的網站上的會員自行填寫回收樣本數578份 整理後有效的樣本數是533份
transcript.whisperx[288].start 9898.47
transcript.whisperx[288].end 9903.294
transcript.whisperx[288].text 有3%的企業已經使用AI作為面試的輔具工具來徵才而有34.3%的企業考慮未來要使用如果把統計範圍擴大到全台如果把這個樣本
transcript.whisperx[289].start 9913.923
transcript.whisperx[289].end 9938.899
transcript.whisperx[289].text 如果它可以算是精準的話擴及到全台的所有的企業你會發現說可能使用普及率相當相當的高現在進行是已經使用AI面試工具在徵選人才那AI的這麼的普遍化的使用還有市場的挑戰
transcript.whisperx[290].start 9940.22
transcript.whisperx[290].end 9945.063
transcript.whisperx[290].text 會很多面 那就就業市場 我要問你部長問題會是什麼委員剛剛說的那個數據其實應該是在桃園就業通上面的統計可是我自己認為實際上面的數據可能甚至比在就業通上面的數據來得更高對啦 但我要問你是這麼廣泛這麼高比例的使用那對就業市場的挑戰是什麼
transcript.whisperx[291].start 9964.033
transcript.whisperx[291].end 9980.155
transcript.whisperx[291].text 他可能會產生的問題是什麼我們現在有幾個議題正在討論第一個這會有產生員工監控的問題包括隱私權的問題那也有包括其實這裡面因為用AI的使用裡面他可能會不斷的複製跟加深某些主流的
transcript.whisperx[292].start 9980.675
transcript.whisperx[292].end 9998.486
transcript.whisperx[292].text 偏見或刻板意見的這個問題會在AI裡面發生我們這都看到你如果大量的用這樣子的AI的工具來招募的話看起來很方便或者是時間會縮短甚至減少很多你人資資源的投入可是它反而會複製了沒錯這件事情這是大家比較擔心的沒錯
transcript.whisperx[293].start 9999.286
transcript.whisperx[293].end 10022.786
transcript.whisperx[293].text AI的人質管理系統它的這個提升的效率但它的存在的這一些弊端它的模式都是由既有的資料庫的檔案訓練的AI的資料庫的數據作為評斷的標準它雖然很有效可是不要忘了這麼多的數據如果數據本身就存在著對於性別 對於年齡對於這個相當的偏見和這個喜好
transcript.whisperx[294].start 10026.889
transcript.whisperx[294].end 10041.352
transcript.whisperx[294].text 那這個東西你為他的數據本身就存在這些偏見和喜好那他養出來的他篩選的時候他就會有不公平的狀況會產生所以這些偏見喜好
transcript.whisperx[295].start 10042.173
transcript.whisperx[295].end 10063.166
transcript.whisperx[295].text 然後會排除掉你如果不在偏好的範圍內的履歷可能就會被直接淘汰掉了所以AI是訓練的可是你的Data本身存在歧視偏見然後存在特殊喜好如果你是他歧視的如果你是他偏見的如果你不是他特殊喜好的
transcript.whisperx[296].start 10063.866
transcript.whisperx[296].end 10088.433
transcript.whisperx[296].text 在這種狀況裡面 你在關鍵字匹配篩選的時候好的履歷 然後你的關鍵字不符合的時候可能就被排除在外了在這種狀況裡面呢 你知道他們的偏見最大最主要的 主流的觀點的喜好和偏見歧視會產生在哪幾個變相嗎
transcript.whisperx[297].start 10090.393
transcript.whisperx[297].end 10117.492
transcript.whisperx[297].text 就我知道是性別跟年齡沒錯性別跟年齡所以你們說要面對這個問題你們剛才回答說要訂出三個指引因應AI時代的來臨使用AI作為面試工具那對人資管理影響這麼大會有對性別的對年齡的歧視這麼嚴重那請問你們你們訂了三個指引訂了什麼指引
transcript.whisperx[298].start 10118.78
transcript.whisperx[298].end 10131.462
transcript.whisperx[298].text 來 你來回答沒關係各位報告 其中一個指引是就業歧視的部分第二指引是隱私權保護的部分什麼保護隱私權隱私權對 第三個是在勞資關係裡面在使用AI上的一個指引
transcript.whisperx[299].start 10132.793
transcript.whisperx[299].end 10157.09
transcript.whisperx[299].text 好 那跟我想 跟我想大家想的都最基本的 都是一樣的就是說啊人資部門經常處理敏感的員工的資訊收賺證 滯號 薪資 明細 銀行 賬戶如果缺乏嚴格的資料保護規範那種防範的機制可能會被濫用 而且會外流外洩如果你要使用AI 那你相對的資訊安全的程度你要克責一個企業什麼責任那
transcript.whisperx[300].start 10160.633
transcript.whisperx[300].end 10188.454
transcript.whisperx[300].text 這個在美國歐盟的法令都要求如果使用自動聘僱決策工具你要做資訊揭露你要招募企業招募勞動管理績效評估離職預測管理解僱上都衍生風險你用了這麼多的這些數據你要讓每一個被收集資訊的人當然要有知情權要有同意權然後要有告知
transcript.whisperx[301].start 10190.015
transcript.whisperx[301].end 10217.643
transcript.whisperx[301].text 取得每個人同意所以綜合這些看法我們要釐清AI的真實使用的情形對勞動者產生的影響可是還有一個不要忘了AI的監控企業在資料的收集和監測已經可能導致過度干預到員工的個人隱私造成員工心理上的不良反應但現在新型態的監測遠端控制技術
transcript.whisperx[302].start 10218.823
transcript.whisperx[302].end 10231.166
transcript.whisperx[302].text 透過接蹤員工在電腦螢幕前和鍵盤活動計算員工的投入的時間 衡量他的生產力像是StopCop還有這個TerraMindHopStopCoverControlTimeDoctor
transcript.whisperx[303].start 10239.835
transcript.whisperx[303].end 10256.716
transcript.whisperx[303].text 企業廣泛的在使用這種監控員工在螢幕使用的這種軟體系統他追蹤員工的電腦螢幕會分析被監控的員工然後以利於主管評估員工的工作效率那這些要怎麼管理
transcript.whisperx[304].start 10258.001
transcript.whisperx[304].end 10287.21
transcript.whisperx[304].text 你們想過了嗎?要怎麼?因為這部分其實就是剛剛我有說到說這裡面衍生這個數據員工監控的問題你們剛剛的三個指引沒有涉及到這一部分那我說這個部分其實就是關於這個相關的監控跟數據控制所帶來的隱私的部分所以他這個部分的切入點會比較是你們的三個指引都沒有關係到我剛剛講的這個問題他比較是跟隱私的這個部分高度相關的
transcript.whisperx[305].start 10288.09
transcript.whisperx[305].end 10295.116
transcript.whisperx[305].text 對啊 所以你們三個指引是不夠的還有這方面要怎麼處理我想我們可以來針對我們三個指引的範疇再來 第二AI的運用在勞資關係上被討論最多的重點是道德 倫理的問題尤其是將AI導入工作職場通常是組織的高層片面做決定的
transcript.whisperx[306].start 10309.907
transcript.whisperx[306].end 10328.674
transcript.whisperx[306].text 沒有在導入前跟員工討論的所以最主要的還是在勞資溝通和協商上如何成為AI導入的和必須應用的這個路徑我們在講說勞資協商可是這個AI工具就是偏偏沒有勞資協商
transcript.whisperx[307].start 10330.555
transcript.whisperx[307].end 10351.317
transcript.whisperx[307].text 它破壞了企業裡面最核心的我們普遍認為企業的經營管理是需要更多的更大量的勞資共管共同協議的可是你在AI的組織內的AI的運用相對的是弱化勞資的溝通和共識
transcript.whisperx[308].start 10352.694
transcript.whisperx[308].end 10382.107
transcript.whisperx[308].text 那這部分對於我們要往前進的勞資關係的協調溝通共識協商它是破壞的而且是走回頭路的那要怎麼因應我想確實AI的使用在勞資關係裡面尤其是在導入前後有沒有經過勞資協商的同意這是接下來在勞資關係裡面的一個很大的挑戰所以這也是為什麼我們其實有一個指引是在處理這件事情的原因
transcript.whisperx[309].start 10382.267
transcript.whisperx[309].end 10399.141
transcript.whisperx[309].text 你們的指引有處理到這個程序嗎就是處理這件事情好那我現在講說你們還有一個委託研究報告就是提到對於AI技術在勞動市場的實際應用進行研究和數據的蒐集在法制面要建立指引那其實
transcript.whisperx[310].start 10402.064
transcript.whisperx[310].end 10408.51
transcript.whisperx[310].text 就職場AI的使用目前是沒有規範那你們現在未來要定職域嗎但是呢在個人數據方面我們剛剛講要有知情權要得到每一個人的同意權然後要告知我這個都是使用AI在管理的
transcript.whisperx[311].start 10419.241
transcript.whisperx[311].end 10423.443
transcript.whisperx[311].text 那第三個現有的隱私保護措施是不足的剛剛有討論過那要不要有外部監督機制剛剛講的是說你有指引但是僅限於企業內部的監督我們需不需要引進外部的監督我們需不需要訂出法律上的處分法則沒有法則等於是指引不好的指引只有道德上的規範
transcript.whisperx[312].start 10447.512
transcript.whisperx[312].end 10470.543
transcript.whisperx[312].text 沒有處罰的罰則 指引等於形同虛設那法律配套是什麼我想我們相關的在法規面的部分我們都願意一併來盤點跟檢討啦我跟你講部長我知道啦其實我知道 你也不知道啦我也不是很知道啦那我今天的質詢是要告訴你
transcript.whisperx[313].start 10471.483
transcript.whisperx[313].end 10488.979
transcript.whisperx[313].text 這件事情很嚴重衝擊到整個企業業界內部的這個管理人資管理衝擊到勞資關係衝擊到相當相當大的勞動市場對勞動者的偏見歧視
transcript.whisperx[314].start 10490.56
transcript.whisperx[314].end 10519.311
transcript.whisperx[314].text 那其實對中高齡勞工很不利在性別上的歧視也一樣不利所以這個事情是我現在告訴你你現在開始要花更多時間投入更多資源要在法制面在執行面要真的要開始好好的思考了好 謝謝謝謝林委員也謝謝部長這個確實要快速應用接下來請王振旭委員來做選擇
transcript.whisperx[315].start 10530.346
transcript.whisperx[315].end 10532.235
transcript.whisperx[315].text 好 謝謝主席我們再請洪部長來 請部長
transcript.whisperx[316].start 10538.491
transcript.whisperx[316].end 10566.343
transcript.whisperx[316].text 歐偉好 部長好剛剛聽了這個林書文委員很期待在各方面都能夠更精進尤其未來在AI的時代如何能夠讓我們的勞動朋友在他職場的這些服務的過程裡面的確是可以跟資方有更好的關係我相信這個書文委員對您的期望非常非常的高我相信您有這個能力可以把這個事情做得更好
transcript.whisperx[317].start 10567.003
transcript.whisperx[317].end 10582.734
transcript.whisperx[317].text 那我今天就利用這個機會來跟您討論兩個問題一個就是有關於這個推動有心男性育嬰假的部分那一個就是針對這個勞工健檢跟成人健檢如何把這個資料的整合做得更為具有前瞻性
transcript.whisperx[318].start 10583.434
transcript.whisperx[318].end 10606.368
transcript.whisperx[318].text 那第一部分就是有關於這個有心彈性育嬰假其實大家都非常關心我們未來的兒童應該像國家一樣是一個非常重要的目標透過這樣的目標跟政策的執行才會讓我們的這些年輕可以替台灣有更多的生育的機會讓少子化的危機可以快速的解除
transcript.whisperx[319].start 10607.108
transcript.whisperx[319].end 10631.374
transcript.whisperx[319].text 那我們之前也知道這個勞動部推出的這個彈性育嬰假的這部分的示範結果也出來了那個時候大家也討論如何能夠更精進那那個時候你也提到說近期將會提這個方案跟配套的措施不過依照這個脫育籍就業政策催生聯盟他們在做調查以後以這個台北市為例
transcript.whisperx[320].start 10632.034
transcript.whisperx[320].end 10652.554
transcript.whisperx[320].text 在2024年托嬰中心因為長病毒停課平均家長平均要請假19天最高甚至要到28天那這個過程裡面呢他們這個在就業當中的這些家長們特休假根本就不夠請所以對於這些年輕父母來講
transcript.whisperx[321].start 10653.815
transcript.whisperx[321].end 10683.2
transcript.whisperx[321].text 如果他是雙就業或者是有這個需求的話真的會非常的辛苦因為他不得不請假那個請假要扣薪勞動目前你們也是在積極的規劃裡面所以想要請教部長就是目前目前有沒有什麼特別的進度跟未來在提案方面的一些時程那特別的是有沒有針對兩歲以下的這些小孩的受雇父母的請假需求做過相關研究
transcript.whisperx[322].start 10686.151
transcript.whisperx[322].end 10699.744
transcript.whisperx[322].text 報告委員那有關這個目前的我們相關的案子其實都已經在做盤點規劃那針對兩歲以下的小孩的這個部分來說我們大概做過一些了解那包括他有一些
transcript.whisperx[323].start 10701.866
transcript.whisperx[323].end 10719.146
transcript.whisperx[323].text 那個小孩要做預防注射然後有生病那還有一些包括保母臨時請假等等的這些情況他有一些需求那目前的需求大概用家庭照顧假或者是說大概搭配試假特別休假或者長一點的需求可能搭配育嬰留職停薪
transcript.whisperx[324].start 10719.546
transcript.whisperx[324].end 10740.984
transcript.whisperx[324].text 現在有一些短天期目前為止是30天這樣的一個相關的規定來做處理所以有基本的資料可以做參考的嗎因為我們想要提出來就是說如果針對於這個兩歲以下的這些硬價有特別需求的時候那如何能夠有更嚴謹的一個
transcript.whisperx[325].start 10742.685
transcript.whisperx[325].end 10767.055
transcript.whisperx[325].text 現況的調查讓我們知道說針對這個兩歲以下的這個小孩的受護父母他們針對於在這個過程裡面不同的性別是屬於爸爸媽媽的申請的需求呢請假時間的日數請假的原因還有很重要就是他用了哪一些的價別來透過這個需求來符合他這個請假的內容
transcript.whisperx[326].start 10767.875
transcript.whisperx[326].end 10789.315
transcript.whisperx[326].text 那這個對未來的政策規劃是會有很大的幫助所以如果能夠在這個我們很期待就是在下個會期之前能不能有相關的這個比較屬於符合這些要求的這個調查讓我們能夠做參考的話我相信對未來部理在做政策制定的時候會有更大的幫助
transcript.whisperx[327].start 10789.815
transcript.whisperx[327].end 10811.125
transcript.whisperx[327].text 那個跟完說明我們當然因為在正式研擬的過程我們其實也做了不少訪談可是確實比較是數量的統計上面的調查我們覺得我們可以再強化所以這部分的調查我會來請我們部裡面相關的這個研究單位我們來針對這個相關的調查我覺得我們把它再做一個更更完整的調查不是不只是執行的訪談這部分我們會來做
transcript.whisperx[328].start 10812.426
transcript.whisperx[328].end 10838.034
transcript.whisperx[328].text 那第二個確實現在大家使用的價別裡面目前有些會使用特休可是因為特休真的是比較有限所以很多會用市價可是市價是沒有薪資的所以這也是為什麼我們也在是希望規劃是用用育嬰留庭的方式來去做因應因為育嬰留庭是相對是比較有是有薪水的是有薪水的來自薪資的補貼的
transcript.whisperx[329].start 10842.056
transcript.whisperx[329].end 10868.789
transcript.whisperx[329].text 讓大家在請休的時候其實有比較多的經濟上面的支持的確我們現在還是在以日來請休這個方向來去做規劃跟研擬當然我們現在要在克服的事情是我們要怎麼降低對於很多企業他在排班上面的挑戰這件事情當然我們現在還在做各幾個幾個方案的研商所以這是重要的配套
transcript.whisperx[330].start 10869.509
transcript.whisperx[330].end 10896.221
transcript.whisperx[330].text 因為我們希望能夠讓這個勞工尤其是這個育嬰的家庭能夠有比較大的彈性的空間去兼顧但同時也是希望其實可能對於一些職場因為尤其台灣其實有蠻多的企業是中小企業他在人力上面他的這個職代其實的制度不一定都這麼完整所以這個這些相對應的配套我們是在做總體的目前在規劃之中也在跟行政院討論
transcript.whisperx[331].start 10897.782
transcript.whisperx[331].end 10918.03
transcript.whisperx[331].text 所以部長可以允諾我們在下會期之前就會有初步的這些了解的成果嗎我希望不要到下會期我希望能夠更快好就麻煩部長能夠越快越好那如果至少是兩個月左右的時間能夠看到初步成果好這是有關您第一個部分
transcript.whisperx[332].start 10918.49
transcript.whisperx[332].end 10943.892
transcript.whisperx[332].text 因為第二個部分就是其實在今天的這個結論報告裡面有一項跟我一直長期關心的就是這些健診資料不管是勞工體檢或者是成人的這些健檢如何能夠有效的去做適當的併用我們看到就是說如果之前有希望針對於僱主可以併用結合勞工健檢跟成人體檢
transcript.whisperx[333].start 10944.813
transcript.whisperx[333].end 10959.898
transcript.whisperx[333].text 的這些結合的話符合四項條件就能夠幫助至少可以讓這個健檢的過程可以更順利一方面可以幫助雇主來抵免部分的檢查費用同時也可以避免這個醫療資源重複浪費跟節省勞工的時間
transcript.whisperx[334].start 10964.339
transcript.whisperx[334].end 10985.115
transcript.whisperx[334].text 這是已經行事多年的一個一個需要能夠併用的部分那目前有沒有相關的資料知道說這個企業有多少是合併的在這邊做一併的處理那參與勞工到底有多少人是這樣做那政策執行率是多少那部長你知道這個政策已經執行多久了嗎
transcript.whisperx[335].start 10987.806
transcript.whisperx[335].end 11009.678
transcript.whisperx[335].text 跟委員報告那委員一直關心說看看我們的勞工健檢資料可不可以跟那個成人健檢資料這邊做借接那當然在法制上現在是有一個個資法限制那不然就像委員今天在簡報裡面提的目前我們是採這個鼓勵鼓勵勞工接受這個勞工健康檢查的時候鼓勵勞工就是可以將他的個資
transcript.whisperx[336].start 11011.159
transcript.whisperx[336].end 11018.836
transcript.whisperx[336].text 這個健康檢查資料上傳到衛福部這個成人健診資料那目前還是在持續推動中就是我們在透過很多管道在做宣導
transcript.whisperx[337].start 11020.596
transcript.whisperx[337].end 11045.95
transcript.whisperx[337].text 其實這個政策已經執行了將近20年了就是勞動部推動勞工健檢如果採納變成健檢資料是可以一致化的部分其實已經一段時間只是說我們很期待說如何能夠讓這個政策的執行可以更為周全而且是在符合相關的條件之下來做這方面的努力
transcript.whisperx[338].start 11046.67
transcript.whisperx[338].end 11072.148
transcript.whisperx[338].text 所以這是為什麼我們一直期待希望能夠把這兩份的資料有機會做整併的地方那衛福部其實也希望能夠請各部會主動的上傳各種不同的這些健診資料不管是教育部的或其他部會所以他們是希望透過不同的這個誘因還有這個覆蓋率的了解跟法律適用的問題來提供給各部會來做參考
transcript.whisperx[339].start 11072.728
transcript.whisperx[339].end 11100.72
transcript.whisperx[339].text 那有關於我們之前也請教過貴部有如何能夠協助這樣這個我們未來在達到健康台灣裡面很多慢性病的資料的整合做有效的運用那個時候部裡面給我們的回覆是說會提供這個去識別化的資料讓這一群將來80%的這個資料是可以匯入到未來提供我們慢性病的這些處理的一個模式
transcript.whisperx[340].start 11101.42
transcript.whisperx[340].end 11130.698
transcript.whisperx[340].text 那可是去識別化資料當作大數據的研究是很好可是你針對個別勞工有問題的時候事實上是無法銜接的這部分我們也持續來考量那最後是希望說如果貴部跟衛福部這邊針對勞工的這些健檢資料還有成員健檢資料能夠有效的診病的話我相信我們可以達到剛剛的目標那我們去了解其實勞動部所管轄的這個勞工健檢跟
transcript.whisperx[341].start 11131.438
transcript.whisperx[341].end 11154.953
transcript.whisperx[341].text 衛福部所處理的成人健檢它很多都是雷同或者是會重疊的所以我們很希望大家共同的努力把這些針對勞工的這種他的福利的部分我們可以有更好的一些方式來做更好的一個精進的措施那部長這邊不知道有沒有其他的想法可以給我們做參考
transcript.whisperx[342].start 11155.613
transcript.whisperx[342].end 11174.538
transcript.whisperx[342].text 我想因為在專案法裡面的法規我們裡面要求的檢查的項目其實主要是這個職業安全的預防所以要更衛服務這邊的資料在這邊的串接我想我們是願意更衛服務來做直接的研議
transcript.whisperx[343].start 11175.418
transcript.whisperx[343].end 11204.767
transcript.whisperx[343].text 但是這裡面可能確實也還是會涉及到一些法規上面的問題因為這些因為這些授權資料的應用其實包括他個資的使用那能不能夠用在法規上面目的外的使用這裡面可能也會有一些法規上面的議題要來做研究因為這涉及到個資我們也很難說說雖然我們手上有個資所以我想跟誰是哪一個單位跟哪一筆資料去串就怎麼串其實可能也不是這樣所以這裡面
transcript.whisperx[344].start 11205.407
transcript.whisperx[344].end 11226.334
transcript.whisperx[344].text 可能會有一些技術上面的問題必須要去克服那這部分我們願意來跟衛福部討論非常謝謝部長這樣的回覆因為我們知道健康福利資料的運用是未來針對國人的健康是有更大的幫助的那很期待能夠透過這個不同跨部會的這些研議來解決更多的問題好 謝謝
transcript.whisperx[345].start 11230.233
transcript.whisperx[345].end 11233.015
transcript.whisperx[345].text 好,謝謝黃委員、謝謝部長。接下來請郭國文委來做選擇。謝謝主席。有請紅部長跟基中醫藥局的蘇局長。來,有請兩位。
transcript.whisperx[346].start 11256.87
transcript.whisperx[346].end 11263.805
transcript.whisperx[346].text 郭文豪部長好我想就教一下部長勞工的請假規則大概多久沒有改你有沒有瞭解過
transcript.whisperx[347].start 11267.802
transcript.whisperx[347].end 11285.979
transcript.whisperx[347].text 我們其實最近在檢討112年的時候有修正過112年可能是維護的修正大部分應該是雷同部長我想這邊慎重的提醒一下因為整個社會形態的變化少子化的結果有些價別要請是不得不請
transcript.whisperx[348].start 11287.1
transcript.whisperx[348].end 11311.212
transcript.whisperx[348].text 但是職業別的差異又差別非常的大本來在去年的時候工人員要做調整事實上也沒有調整那價別上幾乎落差非常的大我就屢屢接到一些陳情跟反應別說實務上有時候請假未必請得到假或者是不一定能夠有薪水的情況底下這價別的落差非常之大我想讓部長看一個表
transcript.whisperx[349].start 11311.832
transcript.whisperx[349].end 11338.635
transcript.whisperx[349].text 要如何做一個讓一個勞工朋友能夠善盡孝道在少子化的情況底下有一些儀式雖然減少但是卻要花相對多的時間的情況底下是不是讓部長有一些調整的可能性就勞工朋友跟軍工教育的這個差異不論是婚教的話跟商教的部分除了有一個維護的增加這個六天的部分然後少數的項目就是祭父母祖父母的部分跟配偶父母的部分
transcript.whisperx[350].start 11339.255
transcript.whisperx[350].end 11351.67
transcript.whisperx[350].text 那去年十月的時候我質詢的時候居然勞動部是用這個六天的差別那可以不少於公務人員的方式也是一個調整的方式或者是做一個局部的調整也是一個思考的方向不知道部長怎麼看
transcript.whisperx[351].start 11354.913
transcript.whisperx[351].end 11373.329
transcript.whisperx[351].text 我想我針對這個議題我覺得我們是可以來做有沒有一些調整思考的研議不過確實跟公務員因為這個是相對應的薪資的部分當然是由僱主來給付那公務員的部分其實是政府給付基本上不是經常性的價別是一次性的
transcript.whisperx[352].start 11374.19
transcript.whisperx[352].end 11402.836
transcript.whisperx[352].text 然後就這個部分其實對勞工朋友來說是相當重要的確實因為他也不是經常性會請的東西可是我覺得這些相關的演繹當然我覺得我們可以綜合來考慮各種因素我們是可以來討論這件事情請部長稍微思考一下不要用之前回覆我那種方式做一個單項的比較來回覆本席我覺得這不夠有誠意好不好那請部長好好慎重思考一下那另外一個部分呢我個人部分也收到一個陳情
transcript.whisperx[353].start 11404.056
transcript.whisperx[353].end 11423.833
transcript.whisperx[353].text 那因為在勞動部對補助地方政府有關於這個身障者的一個救福人員的薪資的同時在設立這個地方政府的救福站的那個業務內容其實跟勞動部直屬的救福中心的業務內容其實相差無幾但是呢就地方政府的部分的薪水
transcript.whisperx[354].start 11424.714
transcript.whisperx[354].end 11451.741
transcript.whisperx[354].text 薪資跟獎金有所調整但是勞動部直屬的這個部分卻未盡有所調整的這個空間這個部分是不是形成一種差別待遇這個部長這個問題是不是要處理一下根本說明因為之前委員就有來關心這個所以我們其實也做了檢討所以我們其實在今年的5月1號開始其實我們就有來調整包括資源重建服務的專業人員的薪資的補助這部分已經開始調整了
transcript.whisperx[355].start 11452.861
transcript.whisperx[355].end 11480.232
transcript.whisperx[355].text 從這個月就要開始調整5月1號那速度算很快那但是我們現在因為這部分可是那個預算有既有的預算嗎其實這是來自當然是來自他的資金來自基金但是因為可能我們在薪資調整部分也不太能夠只調整某一群人他可能會跟其他的會之間聯動所以我們其他聯動的部分我們其實現在也在做相關的檢討
transcript.whisperx[356].start 11481.352
transcript.whisperx[356].end 11504.894
transcript.whisperx[356].text 我只是主要強調的是同樣的業務內容不應該有差別待遇啦因為這個薪資的調整其實是相當敏感那這禮拜六他們要跟我陳情就不用來了嘛好那接下來 委員還是可以你還是可以跟他們談一談那你就給我一點資料OK 那個部長還有一個問題我想這個問題可能是基金應用局書局長會比較清楚一點我想書局長
transcript.whisperx[357].start 11507.284
transcript.whisperx[357].end 11535.33
transcript.whisperx[357].text 署長我不知道我們這個整個基金運用群組有關於這個投入台股的ETF的這個額度相對國外來說的比重到底高或低我們目前有投資台股的ETF那因為我們內部對於投資個別的ETF有一個就是說佔這個發行額度有一定的比例性當然有一個配比嘛就風險的評估一定會有一個配比
transcript.whisperx[358].start 11535.99
transcript.whisperx[358].end 11558.139
transcript.whisperx[358].text 但是這配比的同時我想說有一點讓您知道一下就是說其實台灣的ETF其實基本上購買者越來越多做你一個基金的操盤手它不是一個好的選項但是就現實而言手續費的部分在台灣的ETF手續費用是高達0.4%到1%之間在美國的ETF大概只有0.1%以下
transcript.whisperx[359].start 11559.46
transcript.whisperx[359].end 11573.959
transcript.whisperx[359].text 那個是倍數的差別相信來回之間有十倍之多最高跟最低的部分所以這個部分是不是應該去跟相關的業者透過因為畢竟勞動基金醫院其實是大戶嘛你應該用這個方式來做一個談判的籌碼把它壓低這對一般
transcript.whisperx[360].start 11576.642
transcript.whisperx[360].end 11602.252
transcript.whisperx[360].text 非基金運用局做投資的勞工朋友來說也是一項利多有沒有可能朝向這部分來跟相關的業者來做一個討論跟委員報告過去我們也曾經就我們基金運用局有投資的ETF標的跟發行機構就投信提出說我們希望降低這個管理費的一個可能性麻煩再加強一下
transcript.whisperx[361].start 11604.933
transcript.whisperx[361].end 11627.325
transcript.whisperx[361].text 我想對基金運用局也好,或者對勞工朋友也好,都是一件好事,實在太貴了,十倍好,謝謝部長,謝謝局長接下來請葉元之委員,葉元之委員,葉元之委員不在請鍾嘉斌委員,鍾嘉斌委員,鍾嘉斌委員不在請廖偉祥委員來坐巡檔
transcript.whisperx[362].start 11636.028
transcript.whisperx[362].end 11638.849
transcript.whisperx[362].text 謝謝主席 請洪部長請部長廖委員好部長好 部長辛苦喔這個我們節假日的條例修正後有委員說放假太多 有勞工擔心放假太多會被AI取代 請問部長認同嗎認同這個觀點嗎
transcript.whisperx[363].start 11660.523
transcript.whisperx[363].end 11676.024
transcript.whisperx[363].text 我想勞動部在修法過後我們的角色就是協助這個條例但是部長請問你認同這個講法的觀點嗎我想我們就是會協助這個條例後續的執行你沒有回答我的問題你認同剛我說的委員的觀點嗎
transcript.whisperx[364].start 11678.859
transcript.whisperx[364].end 11695.555
transcript.whisperx[364].text AI的討論剛剛前面委員討論很多我覺得關於AI當然我們會有一些他就會衝擊的部分但是國家的國定假日修法通過所以你不認同他的觀點我們就會協助這個法規後續的執行尤其是怎麼樣顧到有關的權益所以部長您的意思就是不認同他的觀點嘛對不對
transcript.whisperx[365].start 11697.093
transcript.whisperx[365].end 11715.356
transcript.whisperx[365].text 我覺得這個AI有AI的討論但是國家的通過部長你說不認同也沒關係因為黃仁勳其實也不認同黃仁勳說AI不會取代人類但是不會用AI的會被用AI的取代這樣子可以吧你懂嗎你懂他講的意思對不對
transcript.whisperx[366].start 11716.357
transcript.whisperx[366].end 11739.705
transcript.whisperx[366].text 所以我想在AI裡面黃仁勳應該是教父級別所以您說不認同其實跟黃仁勳的意思是沒有問題的所以您可以直接大方的說你其實不認同這個觀點好不好部長不用護航這個觀點好部長這個我想要告訴你就是其實我想要問一下現在因應這個關稅衝擊和匯率衝擊對於勞工的這些衝擊請問有哪一些方案
transcript.whisperx[367].start 11746.372
transcript.whisperx[367].end 11774.577
transcript.whisperx[367].text 我想我們其實現在有幾個方案都在進行針對減班休息的部分那我們的雇用安定措施其實也包括適用的產業那包括啟動的條件我們現在也單純重新做了一些設定部長那個我想要因為其實我們上次有到台中考察那我想要請教一下部長知不知道有哪些方案裡面有幫助到所謂的自營作業者跟無一定雇主
transcript.whisperx[368].start 11775.277
transcript.whisperx[368].end 11790.222
transcript.whisperx[368].text 我們現在其實也在針對要來給自應作業者協助我們要提出新的方案所以原本沒有嘛對不對所以原本沒有嘛對不對我們現在這部分要提出真正的方案好 謝謝部長我跟你說我這裡就是要幫他們爭取因為上次到台中考察完之後這些人是被漏接的一群
transcript.whisperx[369].start 11791.36
transcript.whisperx[369].end 11815.655
transcript.whisperx[369].text 部長這些人是被漏接的一群所以要請您好好的把他們加入這個方案當中各種補助方案甚至幫助勞工轉型他們都很需要因為現在有很多的方案只給這些所謂的企業或是有一定雇主的人所以這部分要跟部長講一下跟部長報告也要盯緊一下請部長可以趕緊重新擬定這個方案然後提給本席辦公室一個報告可以嗎
transcript.whisperx[370].start 11816.095
transcript.whisperx[370].end 11830.989
transcript.whisperx[370].text 各位說明現在針對這部分我們也做方案在做方案的研商第二個但是確實是他開始實施的時機點會要來看關稅影響的情境的推演所以
transcript.whisperx[371].start 11831.59
transcript.whisperx[371].end 11845.037
transcript.whisperx[371].text 我跟你說我們舊方案部分我們會準備可是每一支方案什麼時候適合啟動跟上路這會來看各種不同的情境會比較適合的時候那我跟你說一件事因為其實第一線那天我想署長也在現場
transcript.whisperx[372].start 11846.698
transcript.whisperx[372].end 11874.773
transcript.whisperx[372].text 所以其實目前那天次長李次長講的其實在現場講的都是非常的好像說非常樂觀就是說他覺得以他目前知道現在談判的狀況應該是樂觀的所以可能不會啟動到最後一個階段包含上次我想要爭取的這個即時安心上工或是擴大這個臨時津貼工作津貼的部分可是我要跟你們報告其實第一個我剛剛講的第一件事情就是所謂自營作業者跟這個無一定雇主
transcript.whisperx[373].start 11875.513
transcript.whisperx[373].end 11885.709
transcript.whisperx[373].text 當天有一個整復師復健師他來現場他就告訴大家說他就告訴現場的所有的長官行政部門說你知道為什麼我今天可以來嗎
transcript.whisperx[374].start 11887.432
transcript.whisperx[374].end 11907.759
transcript.whisperx[374].text 然後大家不知道他說因為從4月開始啊他去他的店裡面這個做整復復健做按摩的少了七成的客人不然他以前才沒時間來他以前每天光接這些客人就就不夠時間了所以他今天有來是因為他從4月開始呢就是有七成的客人損失了
transcript.whisperx[375].start 11908.539
transcript.whisperx[375].end 11937.811
transcript.whisperx[375].text 所以其實包含這個當天還有除了他之外其他產業的包含這個自營工作者有一些人是在家裡可能是幫那種中小企業中小工廠代工的其實他們都受到了衝擊啊所以我剛剛特別講說部長請不要我覺得你的感受你現在制定政策感受可能跟第一線的有落差而且這些人其實是事實上已經被衝擊的包含有一些是直接影響可是他可能是無一定雇主或是在家裡幫忙做一些加工的
transcript.whisperx[376].start 11938.571
transcript.whisperx[376].end 11948.394
transcript.whisperx[376].text 這部分要請部長重視我這邊要特別請部長重視跟廖長說明第一個我們沒有用樂觀的態度或樂觀的心態來看待我們也沒有用樂觀的心態來看待這個相對關稅的衝擊
transcript.whisperx[377].start 11953.756
transcript.whisperx[377].end 11970.231
transcript.whisperx[377].text 可能我們也要把很嚴峻的狀況做出準備所以現在這些相關的計畫我想我們都必須部長那我想要請問一下因為這跟第一線的感受真的差蠻遠的第一線包含台中市政府勞工局的相關的處事處長也都說
transcript.whisperx[378].start 11971.632
transcript.whisperx[378].end 11988.706
transcript.whisperx[378].text 他們開始去訪談之後呢感覺第一線啊包含這種無一定僱主啊自營作業者的影響是很大的我要講的事情是你講的這些我想請問那你們演繹出來之後你的時程你要怎麼安排你要怎麼去保障他們的工作權益因為聽起來你就說一直演繹可是到底時間是什麼
transcript.whisperx[379].start 11989.727
transcript.whisperx[379].end 12009.277
transcript.whisperx[379].text 跟廖遠說明我們並不是只是一直研議第一個其實這段時間我們也一直來跟這些可能會潛在受衝擊的產業的工會持續不斷的在座談包括中部彰化好沒關係那部長我問一下具體的我們都持續的在了解大家的意見好那請問幾時安心上工這類的方案啊你們現在說會準備那我想要請問
transcript.whisperx[380].start 12011.118
transcript.whisperx[380].end 12027.04
transcript.whisperx[380].text 他整體準備到確切可以實施要多久的時間?我跟廖委員說明因為即時安心上工的這個這一支計畫他主要是提供這個就業的機會甚至是用工部門的資源來提供就業的機會
transcript.whisperx[381].start 12028.722
transcript.whisperx[381].end 12056.809
transcript.whisperx[381].text 這一支計畫推出的時間基本上會是在比方說失業的程度有開始已經發生那些對所以我要問說你現在準備要到多久可以營業那部長你回答我的問題拜託我只是告訴你說你剛剛講的這些都是一些解釋啦我只要問具體我問說要多久的時間嘛包含行政的流程程序要多久的時間現在這些因為如果你突然發生了很多人受衝擊了你要多久才可以上路我剛才所以我就跟
transcript.whisperx[382].start 12057.569
transcript.whisperx[382].end 12063.421
transcript.whisperx[382].text 我在跟廖仁說明在這個發生的過程裡面第一個他可能會先從減慢休息開始發生
transcript.whisperx[383].start 12064.724
transcript.whisperx[383].end 12088.429
transcript.whisperx[383].text 那減班休息開始發生以後如果有開始發生失業我們包括有失業協助他就業的計畫但是到我們要來創造就業機會這件事情本身這個計畫的推出會相對會比較後面但是如果你把這個推出的次序給對調的時候反而可能會製造我沒有要你對調你要多久時間可以轉
transcript.whisperx[384].start 12090.229
transcript.whisperx[384].end 12117.989
transcript.whisperx[384].text 因為他你等到那個時間點的時候你後面的程序來不會 我們在六月前我們其實就把這些相關的準備包括剛剛說的然後第二個你剛剛說的那幾個方案我剛剛前面還是有講這個自營作業者自營工作者跟這個無一定雇主你們一定要趕快把這兩個身份別納進去我看我們署長頻頻點頭我請部長可以認同就好因為署長是主管這個業務的這件事情我們在上個禮拜其實就已經來要求我們應該要針對自營作業者設計協助的方案了 對
transcript.whisperx[385].start 12119.608
transcript.whisperx[385].end 12143.914
transcript.whisperx[385].text 對 那你現在還沒有嘛 那請問多久的時間 可以給本席一個報告我們現在在進行中啊 因為他甚至還會涉及到法規的研究我們是希望六月可以出來好不好 對所以一個月好不好 一個月一個月給本席一個報告 然後也推動這個協助方案的本身我們是希望到六月下旬可以出來
transcript.whisperx[386].start 12144.674
transcript.whisperx[386].end 12163.669
transcript.whisperx[386].text 那但是什麼時候上路這個還要看關稅衝擊的情境的發生也包括談判的結局部長我跟你講不只啊因為其實包含你們所謂的這個充電再出發休息充電再出發等等其實這些方案裡面究竟有沒有把這個自營工作者放進去以及無一定僱主放進去其實這個其實應該不管什麼時間點都要放我舉個例子因為現在面對的衝擊是整個台灣的產業要轉型
transcript.whisperx[387].start 12171.24
transcript.whisperx[387].end 12194.314
transcript.whisperx[387].text 不管是關稅或是匯率產業要轉型政府應該要帶頭轉型可是產業要轉型怎麼樣勞工也要升級那這些人包含的當天現場反映的不只是整副師啊也可能有這種小廚師有一些有受影響的他們也都希望知道說那他如果現在休息時間他生意不好的時候他可以怎麼幫助自己去上課去轉型那勞動部怎麼幫助他
transcript.whisperx[388].start 12195.114
transcript.whisperx[388].end 12219.219
transcript.whisperx[388].text 所以這部分是我想要強調的部長跟委員說明如果是自行作業者如果是因為確實產業持續需要轉型那勞工的這個資能也需要持續的提升或是資能提升所以就自行作業者來說其實現在當然有包括像我們產業投資人才的計劃這部分其實是可以的我們相關的訓練也有相關的補助這部分就是就可以參與了因為其實憑良心講當天大家在問
transcript.whisperx[389].start 12219.939
transcript.whisperx[389].end 12240.507
transcript.whisperx[389].text 我們的部是沒有辦法具體回應人家的喔你現在講這些好那不然你把具體的方案給我我馬上去回答他們好不好因為當天講的所有的回應其實那些自營工作者他是完全想說跟我有什麼關係那有什麼微型創業啦我們其實現在確實也在針對關稅如果會影響到自營作業者的話的協助方案我們現在正在做研擬
transcript.whisperx[390].start 12241.227
transcript.whisperx[390].end 12262.1
transcript.whisperx[390].text 所以這樣回答我就好了我知道所以你後面這部分其實這部分其實也在做年齡一個月嘛好不好一個月可以請大家關照到這些我們相關的規劃我們在一個月的時間我們可以提出來所以部長我要講的事情是因為他現在面對的這個問題是整個台灣的產業轉型勞工也要轉型所以請把這些勞工不要漏接也把他們算進去這當然是
transcript.whisperx[391].start 12262.7
transcript.whisperx[391].end 12291.368
transcript.whisperx[391].text 最重要的政策目標另外我想要請問一下因為這個勞動基金的部分你們運用局我想要請問一下這一段時間因為匯率我想問我們基金裡面有多少是持有美債然後因為匯損產生了多少我們每個月月底都會去評估我們持有美元外幣部位的所以比例多少這次匯損多少
transcript.whisperx[392].start 12292.911
transcript.whisperx[392].end 12319.295
transcript.whisperx[392].text 不好意思報告委員我們大概都是月底才會去評價但是我要提醒月底現在五月出馬四月底啊四月底的時候多少因為我這裡看到的數據只有三月底而已我們四月底還沒有公佈但是我要跟委員報告的是說這個是一個評價的損益並不是實現的一個損益他會影響我們的我當然知道為實現損益嘛我就是想要知道為實現損益是多少
transcript.whisperx[393].start 12319.975
transcript.whisperx[393].end 12334.838
transcript.whisperx[393].text 然後我想問說面對這樣的事件你們有沒有好的這個衝擊減緩或是避險的措施然後目前到底就是到底狀況表現的怎麼樣這是我想我們所有勞工朋友都很關心的
transcript.whisperx[394].start 12336.239
transcript.whisperx[394].end 12362.945
transcript.whisperx[394].text 我們也我們持續在注意這個議題但是我們透過我們在投資配置的部分去分散我們包括不同的標的目前我們事實上已經投資的國家有70幾個國家那我們透過各種分散這個都是這種投資公報會講的這個官方的話我就是想要知道具體的數字我想要知道你持有美債的比例有多少
transcript.whisperx[395].start 12363.525
transcript.whisperx[395].end 12390.083
transcript.whisperx[395].text 你現在面臨到匯損的未實現損益是多少我想這個東西應該這樣子讓我會有點擔心我怕你們沒有實時掌握沒有辦法做即時的避險所以因為你剛剛講的我想你不管投資什麼東西他都會寫類似的話是不是如果你現在沒有辦法馬上告訴我你就說你現在沒有辦法馬上告訴我然後匯後提供給本席辦公室一份報告相關的資料可以嗎
transcript.whisperx[396].start 12391.214
transcript.whisperx[396].end 12392.395
transcript.whisperx[396].text 好 謝謝接下來請陳穎瑋來做詢問
transcript.whisperx[397].start 12422.685
transcript.whisperx[397].end 12429.689
transcript.whisperx[397].text 謝主席麻煩請治安署署長治安署署長丁署長我也好
transcript.whisperx[398].start 12433.111
transcript.whisperx[398].end 12452.527
transcript.whisperx[398].text 蘇章浩今天我們委員會就是審議預算的解凍案所以我想就針對解凍以後職安署預算使用先請教幾個問題目前這個救安基金實役的預算整體執行率大概是多少然後哪些執行率哪些計畫執行率是最差的原因是什麼
transcript.whisperx[399].start 12456.941
transcript.whisperx[399].end 12478.294
transcript.whisperx[399].text 應該是指我們那個救安基金裡面的使用到救保基金裡面的預算我們大概裡面有六支計畫那那個我手上沒有這個資料因為確實有部分的如果是指這個救保基金的裡面計畫有部分的這個救安計畫平均的話是90.1295.12是你說95.12什麼執行率執行率95.12
transcript.whisperx[400].start 12489.284
transcript.whisperx[400].end 12504.962
transcript.whisperx[400].text 你確定是那個救保現在講的這個是95.12是整個使用到救安基金裡面的預算裡面所有計畫所以沒有執行最差的
transcript.whisperx[401].start 12507.664
transcript.whisperx[401].end 12522.39
transcript.whisperx[401].text 那執行率95%你覺得很好如果委員提到說執行率比較不高的部分有一個是70點多這是有關於這個對啊我的題目很清楚我一開始就問你執行率最差的你怎麼就報喜不報憂是還是你沒有聽清楚我的問題我可以再講一次
transcript.whisperx[402].start 12529.437
transcript.whisperx[402].end 12557.731
transcript.whisperx[402].text 就目前你們救安基金10億的這個預算裡面整體執行率整體執行率大概是多少然後然後大概是哪些計畫執行率是最差的是跟委員報告整體執行率是95.12那其中執行率比較低的是70.05的部分是在有關於高風險高違規廠長的一個工作環境改善的輔導對
transcript.whisperx[403].start 12558.868
transcript.whisperx[403].end 12583.554
transcript.whisperx[403].text 好那你覺得原因是什麼跟委員報告這個部分主要是有部分是在涉及到經費的補助就是一些比較高風險的工廠或是屬於比較屬於過去說比較辛苦產業的這個3K產業的一個廠商的輔導所以會有一些經費的一個補助如果申請案不多的話可能就會涉及到經費的執行
transcript.whisperx[404].start 12585.319
transcript.whisperx[404].end 12605.789
transcript.whisperx[404].text 那你上任之後覺得要如何改善這些情形因為你是從這個副署長升任這個署長的所以你要怎麼去確保說這些預算執行之後能夠未來就是可以改善然後並且有助於提升我們的職業安全的這些水準
transcript.whisperx[405].start 12608.044
transcript.whisperx[405].end 12625.039
transcript.whisperx[405].text 確實這個既然有編這樣的經費那就是說這個經費要補助到位所以我們這個部分我們未來會了解說在事業單位申請上這個到底是我們現在程序上還是說我們真正它的需求我們沒有這個項目沒有配合上這個部分我們會來檢討
transcript.whisperx[406].start 12626.26
transcript.whisperx[406].end 12648.187
transcript.whisperx[406].text 好 那在未來就是針對這個職災預防有沒有什麼創新的這個措施跟做法跟過去可以有不一樣的思考那能夠真正解決就是前任署長他沒有辦法解決的問題例如說像我不久前才質詢的這個重大職災高居不下的這個問題還有點點點啦
transcript.whisperx[407].start 12651.44
transcript.whisperx[407].end 12674.233
transcript.whisperx[407].text 是跟委員報告其實在整個減災裡面最重要還是在這個法規跟制度的部分那我們認為說在法規部分現在整個治安法他正在做這個研修那再來這個制度面我們有去檢討說是不是除了不好意思你可能要大聲一點點因為你聲音要壓過這邊我才聽得清楚
transcript.whisperx[408].start 12675.034
transcript.whisperx[408].end 12690.988
transcript.whisperx[408].text 是 除了這個加強勞檢以外我們認為在制度上也必須要去做一些如何讓這個事業單位他自己本身可以運作他的內部的一個安慰管理機制我覺得這個是我們未來要努力的方向
transcript.whisperx[409].start 12691.598
transcript.whisperx[409].end 12718.376
transcript.whisperx[409].text 好謝謝那在過去本期曾在4月9號提到這個治安署的主管即將有很多人就不想幹了那想要提早退休或調職而且也聽說署長有自己比較偏好的子弟兵那期待署長可以提拔升官那這些主管呢是不是還會離退那你要如何穩定軍心好好的跟這些主管合作讓
transcript.whisperx[410].start 12719.597
transcript.whisperx[410].end 12749.128
transcript.whisperx[410].text 你帶領的職安署的業務能夠順利推動呢各位回報 剛剛委員提到說什麼什麼子弟兵或是說這個是在內部完全沒有聽到這樣的訊息那確實在我上任之前就有部分的主管他是因為藉領要退休這個部分我們希望是他能留下來跟我們一起合作這個部分我們會持續跟我們同仁這邊來溝通那到目前為止
transcript.whisperx[411].start 12750.029
transcript.whisperx[411].end 12772.57
transcript.whisperx[411].text 這個部分有關於人事的部分我們都還是持續內部還在考量當中我想人事的穩定其實是讓整個業務推動穩定很順利很重要的一個因素那你沒聽到的但外面卻傳的沸沸揚揚那我沒關係我是提供大家提出來討論討論那責任署過去好像
transcript.whisperx[412].start 12773.151
transcript.whisperx[412].end 12802.301
transcript.whisperx[412].text 比較偏向這個職業安全的領域那在未來你要如何兼顧這個職業衛生領域的工作確實在這個安全上過去我也有詮詢在這個我們整個減災部分還要再持續努力那當然在目前來講整個產業的發展在衛生跟健康的部分也是現在不管是國內外都是非常重視的一塊所以我們這個部分未來在整個計畫上跟執行上都要特別去強化的部分
transcript.whisperx[413].start 12803.303
transcript.whisperx[413].end 12826.536
transcript.whisperx[413].text 我想刚刚以上的问题是让你这个新上任署长可以简单的这个证件发表一下我们也留下记录作为未来检视的一个参考那现在要问一些比较严重的问题这个食品里面它会有这个PFAS的残留那劳工在这个生产的过程当中有没有可能曝露
transcript.whisperx[414].start 12829.402
transcript.whisperx[414].end 12852.293
transcript.whisperx[414].text 確實喔因為如果這個不管是剛剛委員提到的這個會使用在什麼樣的器材基本上生產都是勞工在生產所以這個部分我們在跟這個環境部這邊他的一個行動計畫裡面我們有扮演一定的角色我們在這個不管是這個整個一個健康衛生部分的一個個別個人的保護這部分
transcript.whisperx[415].start 12853.168
transcript.whisperx[415].end 12880.146
transcript.whisperx[415].text 好那個待會我會再問你喔因為我想問的是說那他們的這個這些勞工的暴露風險相較於國人誰的暴露風險比較高當然是本國勞工在在做這個這樣的業務裡面風險比較高對本國勞工我也是問我說在現場的一個作為勞工好那一直到現在有沒有勞工朋友因為這樣的暴露而導致職業病就我們的資料裡面目前是沒有
transcript.whisperx[416].start 12881.277
transcript.whisperx[416].end 12895.537
transcript.whisperx[416].text 沒有不代表沒有發生是我們可能沒有做研究那在你們的這個全服務及多服務晚期物質的這個管理行動計畫裡面的分工
transcript.whisperx[417].start 12896.138
transcript.whisperx[417].end 12917.959
transcript.whisperx[417].text 我看到的只有两项就是因应国际趋势依主管业务权则强化劳工对PFAS的安全与健康预防及危害认知以及对劳工宣导安全及健康之保护对化学品危害之认知进行教育宣导请问这个部分你们做了些什么
transcript.whisperx[418].start 12923.309
transcript.whisperx[418].end 12945.084
transcript.whisperx[418].text 我們是主要是在讓現場的作為勞工知道我知道你們已經做了什麼你們做了哪些還是還沒開始整個如果是在法規部分我們那個危害標示的部分目前已經讓事業單位這邊讓勞工第一線勞工知道說這個從事這個工作是有危害的部分我們在做這段的宣導
transcript.whisperx[419].start 12946.656
transcript.whisperx[419].end 12974.174
transcript.whisperx[419].text 所以就是只有宣導就是標示目前是只有標示而已那就是你剛剛也講到就是說勞工對於這個這個PFAS的這個健康風險其實應該是很高的吧所以我想你們後續可不可以再多做一點事情可以好謝謝那我想說土壤跟這個食品以外勞工的這個暴露也只會比國人還高那
transcript.whisperx[420].start 12974.914
transcript.whisperx[420].end 12990.027
transcript.whisperx[420].text 因為他們更增加了職業的暴露那希望職安署呢不要忽視了這個問題的嚴重性應該有這個更多的精進做法包括作業環境監測相關的採樣分析方法還有容許濃度標準
transcript.whisperx[421].start 12990.808
transcript.whisperx[421].end 13019.574
transcript.whisperx[421].text 以及這個特別危害勞工的這個健檢這些都是你們治安署應該要有的這個責任跟職長說啊你認同嗎認同好那我剛剛提的這些你們大概多少時間內可以做出來這個部分因為也涉及到要跟這個研究場景研究我看我們會不會是跟我們研究所這邊再來討論一下那你可不可以先預估抓個時間因為我們不定時間大家都會拖啊是
transcript.whisperx[422].start 13022.816
transcript.whisperx[422].end 13040.53
transcript.whisperx[422].text 那委員給我們三個月時間好不好兩個月行嗎兩個月好好 謝謝那這個多福碗計畫核物的PFAS危害預防因為PFAS的作業類型很多事實上應該有很多勞工可能是暴露在這種危害物質重點是你們應該就是說
transcript.whisperx[423].start 13042.171
transcript.whisperx[423].end 13070.338
transcript.whisperx[423].text 要先掌控可能的暴露族群那例如說因為這種物質存在在比如說像我們這個生物可堆肥的餐具啦還有一些這個不沾的這些土具那滅火器啦雨衣啦家具的這些製作的這些勞工還有油漆工啊我想還有特別是那個化妝品的製造業者
transcript.whisperx[424].start 13071.358
transcript.whisperx[424].end 13087.535
transcript.whisperx[424].text 這些都是很危險的族群那署長你有沒有辦法追蹤到這些族群的這些暴露的這些族群暴露的勞工然後你追蹤到了然後又能夠怎麼樣去協助做好足夠的健康管理
transcript.whisperx[425].start 13089.349
transcript.whisperx[425].end 13106.271
transcript.whisperx[425].text 委員確實這一塊比較我們必須要再深入去研究確實這個還沒有辦法鎖定聚焦到說哪一些勞工確實是暴露在這個地方那是不是委員這邊讓我們一個時間去做研究因為其實大概我想
transcript.whisperx[426].start 13107.432
transcript.whisperx[426].end 13134.568
transcript.whisperx[426].text 署長應該也大概了解就是說有哪些品項哪些業者是就是說哪些產品他們是比較有含這個PFAS的這些有這些危害的這個物質所以我們其實是可以事先來是不是應該可以協助這些雇主來做好這個危害暴露的這個監督管理因為看起來你們實在是做得不多
transcript.whisperx[427].start 13136.94
transcript.whisperx[427].end 13162.798
transcript.whisperx[427].text 目前跟這個環境部的配合事項是比較少沒有錯對啊但是因為這就最獨的比我們這些塑膠圍籬還要可怕是好所以麻煩你們加速一下要很積極那最後就是說本席想要請你明確的回應就是身為署長未來在這個職場不法侵害還有勞動條件的檢查業務會顯著的增加那你們就有的這個組織框架能夠應付的來嗎
transcript.whisperx[428].start 13167.483
transcript.whisperx[428].end 13181.479
transcript.whisperx[428].text 現在因為我們配合整個職安法在修法那未來修法後業務會不會增加我想我們會通盤在判決修法其實有的法都已經修訂完成了所以那你是不是支持這個職安署的這個組織編制應該有所調整嗎好就是
transcript.whisperx[429].start 13189.083
transcript.whisperx[429].end 13208.733
transcript.whisperx[429].text 以目前這樣業務推動上我們目前的整個組織編制是運作還算可以但是問題是你們這個有的組別因為也應該要因應修法就早就該落日了結果還存在你也搞不清楚是哪個我們這邊會持續來研議來檢討
transcript.whisperx[430].start 13211.732
transcript.whisperx[430].end 13226.004
transcript.whisperx[430].text 好 那我想你回去就是我剛剛講的是基本常識你自己回去好好想一想那後續該做哪些調整你兩週裡面大概提出書面報告給本辦跟委員會好 謝謝好 謝謝接下來請楊委員亮來做詢問
transcript.whisperx[431].start 13247.019
transcript.whisperx[431].end 13261.983
transcript.whisperx[431].text 好謝謝主席主席請一下洪部長部長好部長好勞動力發展署假如有需要的話就自己直接上台
transcript.whisperx[432].start 13264.363
transcript.whisperx[432].end 13275.298
transcript.whisperx[432].text 部長我先問一下就是勞動部有預告修正外國人從事就業服務法的相關工作資格跟審查標準
transcript.whisperx[433].start 13276.976
transcript.whisperx[433].end 13295.721
transcript.whisperx[433].text 預計要開放6年以上的資深移工可以擔任護佐其實其他有6項工作啦齁那其實已經在4月10號就已經預告終止媒體報導啦在本月7號勞動部把公告刪除了
transcript.whisperx[434].start 13296.861
transcript.whisperx[434].end 13319.243
transcript.whisperx[434].text 發展署的意見是說關於中階技術人力部分預告期間收到不同的意見所以將與交通部、衛福部、經濟部討論後並做好風險評估配套再做規劃那本席這邊有兩個問題第一個就是你們要預告之前
transcript.whisperx[435].start 13320.575
transcript.whisperx[435].end 13332.746
transcript.whisperx[435].text 不是先應該在程序上不是先應該跟相關的部會做過溝通再行預告這個第一題第二題就是勞搭署這樣子的話會
transcript.whisperx[436].start 13340.121
transcript.whisperx[436].end 13356.5
transcript.whisperx[436].text 也會讓人家對於日後資深移工擔任副佐這件事情產生疑慮這兩個問題請部長或者是發展署今天是署長來 署長回答也可以 對
transcript.whisperx[437].start 13359.071
transcript.whisperx[437].end 13375.443
transcript.whisperx[437].text 是謝謝委員有關本案基本上我們在事前都會跟目的事業主管機關開會演商那他們會針對他們該產業缺工的情況做出評估那提供相關的資料之後我們會提送我們勞動力諮詢小組進行討論通過了之後我們才會進行法制作業這是
transcript.whisperx[438].start 13380.547
transcript.whisperx[438].end 13391.276
transcript.whisperx[438].text 應該有的SOP也都按照這個程序在進行預告之前已經做過有跟各部會協調組長你是麥克風的聲音我大聲一點開始進行預告的時候
transcript.whisperx[439].start 13396.801
transcript.whisperx[439].end 13410.318
transcript.whisperx[439].text 我想我們預告的目的也是收集各界的意見那在這個期間因為各界針對開放的這六個職類呢有一些相關的疑慮所以呢我們也招會又再請這相關目的事業主管機關再回來再開會討論了一下
transcript.whisperx[440].start 13412.521
transcript.whisperx[440].end 13435.992
transcript.whisperx[440].text 包括這個針對他們所要求的語言技能條件等等希望他們能夠再去思考是不是有一些配套要再充分一點然後再上路那該相關目的事業機關其實他們也都已經知道各界的意見所以他們表示他們可以再收回去在這個跟相關單位在做一些溝通在做一些演繹所以目前呢我們的法制作業目前是暫緩
transcript.whisperx[441].start 13436.86
transcript.whisperx[441].end 13465.627
transcript.whisperx[441].text 也就是說事前其實你們已經有做過相關的溝通是的納入外界意見以後你們再溝通持續溝通其實政策的擬定大概就是這樣子它是一個很繁瑣而且必須要不斷滾動加入新的意見然後擬定新的政策的一個過程我想也直接問署長
transcript.whisperx[442].start 13466.994
transcript.whisperx[442].end 13478.119
transcript.whisperx[442].text 就是說在80歲我們現在已經通過80歲以上長者免80量表就可以聘請外籍看護那這樣子的需求量看護的需求量大增你們大概要怎麼因應
transcript.whisperx[443].start 13487.289
transcript.whisperx[443].end 13509.717
transcript.whisperx[443].text 社福移工人力的部分是跟委員報告我想這個有幾個面向包括我們為了要確保重症不會受影響所以我們目前正在跟衛福部以及相關的這個醫學團體研究怎麼樣做出輕重症分流的這個原則那輕重症分流做出來之後呢我們可能配合的包括系統法規相關的表單
transcript.whisperx[444].start 13512.038
transcript.whisperx[444].end 13531.82
transcript.whisperx[444].text 申請的流程以及人員的配置人員的教育訓練等等的都需要做相關的配套輕重症分流署長的意思就是說以後要引進家庭看護工是必須要先經過審核大家來評比誰比較需要
transcript.whisperx[445].start 13534.366
transcript.whisperx[445].end 13560.948
transcript.whisperx[445].text 對不對 你剛才這樣子的回答資格應該是說我們為了要讓因為可能預期預期的案件量會很多你不用緊張 你慢慢講我們是覺得說預期案量可能會增加增加了以後重症者的需求應該比較迫切比起那些健康或亞健康的他們的權益可能更需要受到保障所以我們可能會做出一個分流的機制
transcript.whisperx[446].start 13562.289
transcript.whisperx[446].end 13581.517
transcript.whisperx[446].text 讓他所檢附的這個鷹背文件如果是屬於重症的那我們可能有一個加速的機制不是讓他可以簽署不是署長你現在講的就是在修法80歲以上免巴士量表的修法的時候本席就提過以後一定會有排擠的效用對那現在現在
transcript.whisperx[447].start 13583.868
transcript.whisperx[447].end 13597.265
transcript.whisperx[447].text 我們的主張沒有被立法院的多數採納所以現在就是免巴斯量表那你們現在透過行政手段變成你們審核這個比巴斯量表更有問題
transcript.whisperx[448].start 13599.167
transcript.whisperx[448].end 13627.937
transcript.whisperx[448].text 那個我跟楊詠琳說明不是審核啦但是就是說我們跟這些職業的醫學會來做討論我們先把重症的資格的人先分出來就是說你的狀況是重症的先分出來那我們讓重症的家庭他如果要聘請的話他有一個更快速的申請的方式或者是降低他的時間成本的方式比較便利的申請但坦白說要做到不會有衝擊是不不不
transcript.whisperx[449].start 13628.197
transcript.whisperx[449].end 13651.167
transcript.whisperx[449].text 不可能啦一定會有衝擊我們的做法只是希望能夠減少衝擊一些而且讓你轉介過去的外籍看護工也不見得願意來啊所以我說我們必須很誠實的說不可能對重症的家庭都沒有衝擊這是幾乎不可能的一定會有衝擊只是我們的做法是在降低一些這個衝擊應該是這樣說我並沒有
transcript.whisperx[450].start 13657.009
transcript.whisperx[450].end 13681.369
transcript.whisperx[450].text 想要為難你們的意思啦不過我只是跟你們講說你們這樣子的做法其實還是會有一定的問題產生所以我們只是提出配套降低影響可是很難完全沒有影響這我們心裡都很清楚還是必須要從引進外籍工的從來源的部分來做思考好不好
transcript.whisperx[451].start 13682.435
transcript.whisperx[451].end 13702.346
transcript.whisperx[451].text 部長我實驗的關係說我最後問一個問題就是失聯的外籍移工積欠醫療院所的費用那譬如說他因為他假如是在職在職他本來就有勞健保都有嘛那他逃逸了失聯了可是呢
transcript.whisperx[452].start 13704.417
transcript.whisperx[452].end 13733.368
transcript.whisperx[452].text 我們現在全國的醫院函請你們光是有函請你們協助處理失聯乙工積欠的醫療費用就有1600萬那這個到底怎麼處理因為他雖然失聯了可是他就醫基於人道立場不可能不幫他醫治那他的醫療費用不能從健保給付因為他沒有健保
transcript.whisperx[453].start 13734.215
transcript.whisperx[453].end 13756.381
transcript.whisperx[453].text 那欠下來的錢怎麼處理應該是跟委員說明因為確實很多醫院有來詢問我們能不能夠從救安基金來出這個錢可是我們認為這個事情要非常非常的審慎因為如果用救安基金出的話那就會變成這個合法的他是自己要出
transcript.whisperx[454].start 13757.561
transcript.whisperx[454].end 13779.567
transcript.whisperx[454].text 非法的反而是政府出那這反而會形成一個其實反向的道德風險的問題不是部長這樣子講就是說就業安定基金到底它成立的目的是什麼它也有一部分是從是從外籍公這邊這邊繳納的那
transcript.whisperx[455].start 13783.968
transcript.whisperx[455].end 13799.105
transcript.whisperx[455].text 假如說部長剛剛的論述是說有繳健保費的用不到就業安定基金,沒有繳的反而要,對不對?不是,我的意思是,因為他們之前都有繳,現在都有繳過就業安定基金
transcript.whisperx[456].start 13804.992
transcript.whisperx[456].end 13828.328
transcript.whisperx[456].text 但是我的意思是說我們不希望變成一個狀況是別人等於是合法的移工他是自己繳健保對不對他自己繳可是變成是非法的是政府來繳那這反而會有點變相這裡面的相對應的對待反而會讓一些人覺得是在鼓勵非法或者是產生逃逸
transcript.whisperx[457].start 13830.33
transcript.whisperx[457].end 13856.091
transcript.whisperx[457].text 你們回去做思考啦我不覺得這樣子的論述一定對因為政府存在的功能呢譬如說有很多人是必須要繳很多稅可是他用不到社會福利的補貼那通常社會福利補貼多數是不用繳稅的人在使用
transcript.whisperx[458].start 13856.812
transcript.whisperx[458].end 13877.688
transcript.whisperx[458].text 你懂我的意思嗎所以說有一些看法可能必須要更宏觀一點我今天並沒有這一題我今天並沒有要答案是部長你們帶我去做思考今天要我再補充一點所以我們其實現在有跟各個來源國的相關有請他們大家一起提出來怎麼樣協助這部分管理的方案目前這部分是有做
transcript.whisperx[459].start 13878.248
transcript.whisperx[459].end 13905.667
transcript.whisperx[459].text 但確實剛才我們主要講到說因為一些議員確實希望用救安基金來說的話其實確實會產生一些相對應這些爭議是這段時間我們收集到很多人的意見你們會有這個疑慮可能還有很多面向要做考慮不過部長剛剛講的那個理由我也舉繳稅跟社福來做相對應的比照讓部長待會去做思考好不好好 謝謝部長 謝謝主席
transcript.whisperx[460].start 13911.189
transcript.whisperx[460].end 13928.574
transcript.whisperx[460].text 好 謝謝本次會議詢答全部結束現在做一下決議第一 報告及詢答完畢第二 委員諮詢為其答覆或請補充介紹者請相關機關里長周列以順便答覆委員另要求期限者從其鎖定那我們現在接下來處理剛剛的報告
transcript.whisperx[461].start 13934.622
transcript.whisperx[461].end 13946.666
transcript.whisperx[461].text 好不然我們現在接下來來進行討論事項既有17案請一併宣讀宣讀完之後我們就會先來處理這個剛剛的報告事項的暫停保留的部分好請宣讀
transcript.whisperx[462].start 13950.877
transcript.whisperx[462].end 13959.06
transcript.whisperx[462].text 處理或審查114年度中央政府總預算決議有關勞動部主管預算凍結報告案17案1.勞動部勞動基金運用局新增決議97案業務費預算凍結30%專案報告2.勞動部新增決議1.業務費預算凍結30%專案報告3.勞動部新增決議29第6目
transcript.whisperx[463].start 13972.224
transcript.whisperx[463].end 13978.089
transcript.whisperx[463].text 勞動條件及就業平等業務預算凍結20%專案報告4勞動部勞工保險局新增決議57業務費預算凍結30%專案報告5勞動部勞動力發展署及所屬新增決議71業務費預算凍結30%專案報告6勞動部勞動力發展署及所屬新增決議74
transcript.whisperx[464].start 13992.38
transcript.whisperx[464].end 14019.679
transcript.whisperx[464].text 勞動力發展業務預算凍結百分之二十專案報告七勞動部職業安全衛生署新增決議八四業務費預算凍結百分之三十專案報告八勞動部勞動及職業安全衛生研究所新增決議百業務費預算凍結百分之三十專案報告九勞動部決議八第三目向下辦理勞動政策集中措施及勞動部臉書等相關媒體宣導資料製作拖撥及刊登等所需業務費預算凍結六萬元書面報告
transcript.whisperx[465].start 14023.101
transcript.whisperx[465].end 14034.012
transcript.whisperx[465].text 10 勞動部決議9 第三幕 向下辦理勞動政策與重要措施及勞動部臉書等相關媒體宣導資料製作拖撥及刊登等所需業務費預算凍結5%書面報告
transcript.whisperx[466].start 14039.815
transcript.whisperx[466].end 14058.389
transcript.whisperx[466].text 十一勞動部含勞工保險局決議二第一幕向下水電費預算凍結百分之十報告十二勞動部勞動力發展署及所屬決議七第二幕勞動力發展業務預算凍結十萬元專報告十三勞動部勞動力發展署及所屬決議九第二幕向下
transcript.whisperx[467].start 14059.39
transcript.whisperx[467].end 14068.573
transcript.whisperx[467].text 補助辦理就業保險業務所需行政事務費預算凍結10萬元專案報告14勞動部勞動力發展署及所屬決議16第3目向下水電費預算凍結10%報告15勞動部勞動力發展署及所屬決議17第4目向下水電費預算凍結10%報告16勞動部職業安全衛生署決議7第3目向下媒體政策及業務宣導費預算凍結30萬書面報告17勞動部勞動
transcript.whisperx[468].start 14086.738
transcript.whisperx[468].end 14106.725
transcript.whisperx[468].text 及職業安全衛生研究所決議二地木向下水電費預算凍結10%報告報告完畢好謝謝那現在處理方才保留的這個報告事項那主案來做處理那第一案請委員表示意見
transcript.whisperx[469].start 14111.542
transcript.whisperx[469].end 14138.75
transcript.whisperx[469].text 是報告一嘛對不對對對對是有關於這個ACGA我想請問一下這個ACGA跟AIGCC的會費各是多少總數多少是這個報一嗎我沒有我桌上沒有那一本我們現在是處理早上的報告事項
transcript.whisperx[470].start 14141.202
transcript.whisperx[470].end 14152.147
transcript.whisperx[470].text 對對對報告事項有五十九案因為剛剛陳昭志委員有針對這個報告事項五十九案裡面有提出三十案就是這個嘛對不對報告事項對啊對
transcript.whisperx[471].start 14161.86
transcript.whisperx[471].end 14172.031
transcript.whisperx[471].text 沒錯啊因為你們報告事項一就是說這個基金業務之嚴考及管控嘛凍結第二幕基金運用業務向下的基金業務之嚴考及管控一萬元
transcript.whisperx[472].start 14174.009
transcript.whisperx[472].end 14192.869
transcript.whisperx[472].text 是这样嘛对不对没有错所以我刚刚在问说这个有关于因为你们的解释里面有关于要去参加这个ACGA跟这个AIGCC也就是亚洲公司治理协会跟亚洲投资人气候变迁联盟这两个会费各是多少
transcript.whisperx[473].start 14193.533
transcript.whisperx[473].end 14213.186
transcript.whisperx[473].text 是 報告委員亞洲公司治理協會的那個美金是17250然後AIGC是那個15200元所以一個是美金然後所以一個大概是60萬一個是60萬左右一個是537000這樣好 那基金這個部分這科目總共編了1200萬2000元的預算
transcript.whisperx[474].start 14222.441
transcript.whisperx[474].end 14227.747
transcript.whisperx[474].text 然後未還委員會是凍結了一萬元所以佔比其實是萬分之8.33沒有錯吧
transcript.whisperx[475].start 14232.376
transcript.whisperx[475].end 14246.166
transcript.whisperx[475].text 所以你們裡面有提到依照你們的解凍說明第4頁有關於預算解凍之影響提到本案預算是推動永續投資業務所需如未解凍將影響相關業務推動我想要請問一下這個萬分之8.33大概是1200分之1怎麼影響你們的業務推動
transcript.whisperx[476].start 14258.439
transcript.whisperx[476].end 14282.686
transcript.whisperx[476].text 報告委員我們非常尊重委員的決議所以我們還是會在這個過程我們會積極去推動但是因為預算有被凍結所以我們會比較謹慎希望可以解凍以後才能夠正式加入會議妳說解凍以後才可以正式加入嗎妳確定嗎所以妳要解凍才可以加入那我如果解凍了妳加入不了怎麼辦
transcript.whisperx[477].start 14283.593
transcript.whisperx[477].end 14288.88
transcript.whisperx[477].text 呃 不會啦 我們現在簽名用那個好 那我就問妳嘛 妳說這個案子這個案子我剛剛已經說了 凍結是一萬塊好 那我就進一步問囉
transcript.whisperx[478].start 14292.481
transcript.whisperx[478].end 14299.986
transcript.whisperx[478].text 預算書上面明明寫到是加入國際永續倡議組織會員會籍交流活動是118萬1千元所以你們在這一筆預算的時候因為剛剛算會費是大概60萬9千台幣還有53萬7千總共是114萬6千那你在這裡是寬列了118萬1千元你已經寬列了3.5萬那按照你們的解凍說明說凍結1萬元會影響業務推動的話
transcript.whisperx[479].start 14320.498
transcript.whisperx[479].end 14334.6
transcript.whisperx[479].text 那我想要請問那明年你們在編列的時候是不是不要寬裂你就完全的精準編列因為當初我們在審的時候也是已經保有彈性了所以我覺得你剛剛要跟我說這一萬元沒有解凍會影響到你們入會我覺得這個
transcript.whisperx[480].start 14335.862
transcript.whisperx[480].end 14346.368
transcript.whisperx[480].text 我補充更正一下我們這個項目不是編一千多萬我們其實是核實編列我們根據他的會員的聯費兩個會員的聯費加上一個交流活動的雜費但是這下面是可以讓你們
transcript.whisperx[481].start 14352.491
transcript.whisperx[481].end 14371.643
transcript.whisperx[481].text 我們是就我們這個項目只有118萬而已不是1000多萬我們這個項目是但是你這整個裡面好118萬剛剛也說了那你已經寬裂了嘛對不對我們是根據會費核實的編那當初在這個下面你們是不是可以調整
transcript.whisperx[482].start 14375.271
transcript.whisperx[482].end 14400.24
transcript.whisperx[482].text 調整必須跟其他科目我們這個項目其實是核實當時根據會員年費多少是確實的數目去乘以匯率然後再加上一個雜項就是其他的往來的文件等等是三萬五千並沒有多編所以其實任何三萬五千對你這裡寬列三萬五千那不是寬列那我問你這個部分你們可以調整嗎對不對
transcript.whisperx[483].start 14402.461
transcript.whisperx[483].end 14416.924
transcript.whisperx[483].text 哪邊可以調整就是這個所謂的這個科目啊下面的科目啊你這裡你說你118萬都要用在這裡嘛對不對118萬那你下面這個科目下面其他項目你是可以調整的我除了扣掉聯飛之外就只剩3萬5啊
transcript.whisperx[484].start 14418.263
transcript.whisperx[484].end 14430.447
transcript.whisperx[484].text 那其他的呢這個下面其他的還有你們上面的大廈裡面我們這個項目118萬就是匯匪跟雜項你這整個我剛說了這個科目總共編了1200萬你這是在下面的這個細項我剛講到是這個細項沒有錯我剛才講這個東西可是你這整個科目總共編了1200多萬那
transcript.whisperx[485].start 14442.791
transcript.whisperx[485].end 14469.004
transcript.whisperx[485].text 你加入這個會費是的確你剛剛講了我們剛剛算了114萬6千114萬6千那你們總共編了118萬1千所以有3.5萬那在整個1200多萬的科目裡面你其他東西也是可以調你真的會因為這1萬塊完全影響到你們可不可以加入嗎所以這部分是我想要點出來的重點不過憑良心講這個目前1萬塊現在要解凍我也是沒什麼意見謝謝委員
transcript.whisperx[486].start 14472.646
transcript.whisperx[486].end 14491.809
transcript.whisperx[486].text 我只是要告訴你說這一萬塊搞得好像是一千兩百分之一搞得好像是沒有辦法加入齁我只是要點出這個問題齁那第二 是不是第二案沒有 梁委員你不是要講 嘿阿六位行政委員已經在他的結論講出來了就是一萬元我想
transcript.whisperx[487].start 14492.91
transcript.whisperx[487].end 14509.741
transcript.whisperx[487].text 我想當初提案委員凍結一萬大概也是在給你們一個示警啦那你們你們大概反正廖偉強委員剛剛的結論也是他沒有意見所以所以我我想要告他 已經跟你說完了
transcript.whisperx[488].start 14523.847
transcript.whisperx[488].end 14546.252
transcript.whisperx[488].text 謝謝主席包括像第二案件因為金額比較高我必須做一個說明民眾黨團要提案的凍結十億那我們的條件就是勞動部要提出勞保條例修法把政府最終給負責任入法請榮秀說明一下總統府2017年召開的國家年金改革委員會當時會計年金改革方案大概有十大重點
transcript.whisperx[489].start 14547.032
transcript.whisperx[489].end 14561.045
transcript.whisperx[489].text 但是到現在為止只有實現了撥補政策那最重要的是我們等待的政府最終給付的入法還是沒有提出來那目前勞保平均每年虧損大概一千億以上那撥補是緩不及急
transcript.whisperx[490].start 14562.586
transcript.whisperx[490].end 14577.569
transcript.whisperx[490].text 而且既然勞動部跟行政院一直強調勞保不會倒政府有最終幾負責任既然如此是不是就我們不要用空口說白話如果勞動部跟行政院都認為本來就是這個態度那麼入法才會有保障
transcript.whisperx[491].start 14578.67
transcript.whisperx[491].end 14591.081
transcript.whisperx[491].text 否則如果將來換了院長換了部長又換了執政黨空口白話的成果對人民完全沒有保障所以我們是希望能夠將這個政府最終起負責任入法但很遺憾我們這次勞動部沒有提出任何資料沒有達到當初解凍的條件不過勞動部是有這個有來溝通希望能夠解凍那我們黨團也
transcript.whisperx[492].start 14600.128
transcript.whisperx[492].end 14625.278
transcript.whisperx[492].text 也是說願意釋出善意退一步我們同意解凍但前提是勞動部要接受我們剛剛提到提出來的附帶決議那個附帶決議請大家請勞動部讀一下就在年底前提出修法也就是說這個實意我們今天可以解凍但是再給勞動部多大概半年以上的時間去準備修法我想這樣應該是有誠意跟善意的這個做法
transcript.whisperx[493].start 14625.638
transcript.whisperx[493].end 14654.906
transcript.whisperx[493].text 那這個法我覺得大家都知道已經存在很大的問題了那好像就是又是房間裡的大象大家又視而不見那一直拖一直拖要拖到哪一年哪一月那是不是就遲早要去面對他那洪部長你就勇敢的去面對他嘛這個你從勞運出身這個勞團出身這個就開始來做這件事情所以我們不是不能解凍就是說把這個這個提出這個說明的這個進度把你延後到年底之前提出來可以嗎
transcript.whisperx[494].start 14656.958
transcript.whisperx[494].end 14680.911
transcript.whisperx[494].text 來請說好那個跟跟委員做說明當然我們當然都希望這個因為這個涉及到10億元我們希望10億元可以解凍但我有幾個補充第一個確實是今天政府最終責任這幾個字有沒有入法我想現在政府上面就是是政府來負擔最終責任那第二個事情是我我自己確實Longboard的角度確實是認為這個修法的
transcript.whisperx[495].start 14685.093
transcript.whisperx[495].end 14708.399
transcript.whisperx[495].text 討論我們是可以持一個比較開放的態度可是我要提醒因為這裡面涉及到可能不是只有勞動部也包括財主單位那如果要提出這樣子的一個修正的草案這也包括要經過行政院跟行政院裡面的財主單位的同意因為涉及到撥補因為撥補這件事情並不是勞動部自己就可以做的事情
transcript.whisperx[496].start 14709.139
transcript.whisperx[496].end 14724.045
transcript.whisperx[496].text 所以我想跟村委員說明的地方是坦白說我其實是我自己我勞動部的角度來說我們確實覺得這件事情是可以開放性的討論這部分是我們的態度是這樣但是我很難代替
transcript.whisperx[497].start 14725.385
transcript.whisperx[497].end 14743.968
transcript.whisperx[497].text 其他的財主單位承諾我們在什麼時候一定會提出什麼樣子的法案尤其是經過行政院通過的法案我很難代替其他單位因為這裡面確實是涉及到其他財主單位的權責因為它涉及到一些撥補法制化的問題
transcript.whisperx[498].start 14745.73
transcript.whisperx[498].end 14759.924
transcript.whisperx[498].text 這是我們在這裡面比較難我直接就答應你這件事情說什麼時候我就可以因為我的答應或者是我的承諾對於我沒有辦法代替其他的單位承諾我的問題會是在這裡
transcript.whisperx[499].start 14762.938
transcript.whisperx[499].end 14779.693
transcript.whisperx[499].text 當然你有提到這個組總署態度是一件事但是因為這個還是勞動部主管這個勞保條例還是勞動部主管那你可不可以就是嘗試把這個法寫出來就是開始去行動去做爭取那這樣組織總署他就會加進來討論
transcript.whisperx[500].start 14783.596
transcript.whisperx[500].end 14801.796
transcript.whisperx[500].text 你不用自己承擔責任今天從這裡起步那我們解凍的數字可以討論但是你有一個進度嘛不然就是又擺著再過一個幾十年嗎所以我們是在想可不可以這樣就是說因為這個文字上面是寫說今年底前要提出這個修正草案
transcript.whisperx[501].start 14802.957
transcript.whisperx[501].end 14830.285
transcript.whisperx[501].text 我自己是覺得說有沒有可能可以給我們一些時間然後我們願意來研議就是這個最終責任入法的可行性那這當然在研議可行性的過程裡面我們就會跟其他相關的這個組織單位或者是裁組單位因為也不只是組總坦白說不只是組總跟裁組單位來去做這方面的討論你也不用幫行政院擋子彈所以我剛剛講得很清楚就是你來啟動這件事情
transcript.whisperx[502].start 14830.945
transcript.whisperx[502].end 14852.132
transcript.whisperx[502].text 然後就開始有動作 有行動我們願意找相關部會來做這件事情的討論這我們願意你就把它提出來可是我的意思是說今天一個部我今天從一個部的角度我今天要提出一個方案確實很可能我們是要經過在行政院內不同的單位的同意的因為你有一直在重複這件事那這樣這樣就是說我們解凍數字可以討論啦那你這個進度
transcript.whisperx[503].start 14853.792
transcript.whisperx[503].end 14866.302
transcript.whisperx[503].text 或者由你先提出來你這個進度要跑嘛開始動嘛不然我們還是在原位嘛這樣好不好10年後20年還在原位啊我們可不可以比方3個月內我們研議這個最終責任入法的可行性
transcript.whisperx[504].start 14868.123
transcript.whisperx[504].end 14886.257
transcript.whisperx[504].text 我們在三個月內來研議這件事情那在研議的過程當然我們會跟相關的單位來去做財主單位來做討論可是我們就研議這可行性的方式好不好因為我想委員會很希望說我們這十億元其實在整個勞保基金裡面其實可以解凍我想這目標大家是一致的
transcript.whisperx[505].start 14887.538
transcript.whisperx[505].end 14911.226
transcript.whisperx[505].text 那個部長我們在場每一個人都懂延逸是什麼意思延逸就是說今天我們大家回家招致回家什麼事都沒有了當然不是但是就是這個法要啟動你就說你要啟動你把這個法送出來但是不用你自己來扛責任你就是開始跑你就是讓他開始跑行政責任就該行政責任負責任負責任負責任負責任負責任
transcript.whisperx[506].start 14915.947
transcript.whisperx[506].end 14942.538
transcript.whisperx[506].text 他就說他的研議他要開始做了他就是要開始啦我們就是在研議這件事情所以我們在研議的過程就會找其他單位一起來討論這當然也是一種討論跟就是往入法的方向去走你就是入法入法立委也可以提修法啊你跟我說提研議那這是空白的啊是空白的啊入法我們就直接提修法就可以改啦好來來楊委員要講一下好不好各位先許一下請聽楊委員的講法
transcript.whisperx[507].start 14944.899
transcript.whisperx[507].end 14966.192
transcript.whisperx[507].text 我其實是一直對勞動部遲遲不肯提出政府最終自負責任這件事情是很有意見我相信不同黨派的委員提案版本已經很多那我是建議本委員會就是行政院不提
transcript.whisperx[508].start 14967.598
transcript.whisperx[508].end 14994.781
transcript.whisperx[508].text 我們是不是下一個會期就排審委員的提案委員自己提案嘛他自己通過啊我的已經提案一陣子了我覺得說勞保改革講了這麼多年連政府最終給負責任執政黨都不敢擔保這件事情我自己覺得非常的不可思議
transcript.whisperx[509].start 14996.242
transcript.whisperx[509].end 15014.09
transcript.whisperx[509].text 其他的欄改這個我們可以體諒可是你連讓勞工辛苦了一輩子讓他安心說我一定領得到這個我們都不做我還真的不知道怎麼替黨辯護好請林委員部長等一下
transcript.whisperx[510].start 15019.398
transcript.whisperx[510].end 15035.401
transcript.whisperx[510].text 我必須要再講這裡是講這是保險 社會保險但是呢我們知道這個社會保險的族群太大了上千萬的投保的人還包括未來的移工不要忘了過去那麼多的移工他們都有繳納保費但到第15年要領的時候我們沒有讓他停下來所以他們還沒有他們都沒領他們給他盡責任他們都還沒有拿回他們的權利耶
transcript.whisperx[511].start 15046.883
transcript.whisperx[511].end 15062.493
transcript.whisperx[511].text 他們可以回來領如果未來開放的話也可以領那我們知道這是社會保險社會保險意思是說所有的保護大家共同分擔然後集體去承接住個人這樣才叫做社會保險但是因為這個幾乎是一半的台灣國民了
transcript.whisperx[512].start 15066.576
transcript.whisperx[512].end 15093.678
transcript.whisperx[512].text 一半的台灣國民的時候你政府說社會保險不是政府的福利政策啊那都說不過去所以政府要負最終責任這是既有的但是最終的給負責任絕對不是只有政府嘛不是只有政府但是呢有人主張全部都丟給政府那主張的人就提案就修法然後就可以通過啦
transcript.whisperx[513].start 15094.551
transcript.whisperx[513].end 15111.562
transcript.whisperx[513].text 大家通過就遵照這個法律通過的去執行啊所以這是一個政治這不純粹只是一個制度制度要可長可久那政治隨時可以介入但是我要講說政府當然也有
transcript.whisperx[514].start 15112.162
transcript.whisperx[514].end 15132.332
transcript.whisperx[514].text 道德責任因為一半的國民都是投保的保護這個社會保險雖然是社會保險不是政府的錢算起來也稱不上是政府的責任但是有一半的國民在這個社會保險裡面政府要說沒有責任這是不可能的
transcript.whisperx[515].start 15133.813
transcript.whisperx[515].end 15144.422
transcript.whisperx[515].text 這絕對是不可能的但我們要把法律寫得這麼死嗎法律要寫得這麼死嗎除了法律以外事實上政治責任隨時可以問責嘛
transcript.whisperx[516].start 15146.345
transcript.whisperx[516].end 15161.394
transcript.whisperx[516].text 隨時可以問責 有時候說 不准調漲保費 也不准政府撥補不准調漲保費 這個水池的水都快乾了 也不能調整也不准撥補 現在是怎樣 不能吃草 又要碼而保然後又要領得到 現在是要在地上落下去嗎還不能減少給付
transcript.whisperx[517].start 15171.638
transcript.whisperx[517].end 15178.102
transcript.whisperx[517].text 所以這個制度合一開始研議我們講的不是今天在這裡30分鐘可以討論完的啦人家要讀這麼多年可以說幾天幾夜全國的學者一起來全國的產官學都一起來雇主勞工學界政府通通都一起來幾天幾夜都講不完
transcript.whisperx[518].start 15196.564
transcript.whisperx[518].end 15216.812
transcript.whisperx[518].text 啊今天在這裡,他就說他要開始去研議他就只能這樣子,你還要叫他做怎麼樣你要叫他修法,啊我們立法院,我們立法委員耶我們要修法,我們有意見,我們自己拿出來我們自己可以審嘛你站在民意這一邊,我們就好通過啦就是這麼簡單一個案子要討論喔,認真討論喔,再討論三天也討論不完
transcript.whisperx[519].start 15225.443
transcript.whisperx[519].end 15252.224
transcript.whisperx[519].text 好謝謝來部長要回應來那個我想在一樣在跟陳委員包括幾位委員說明我自己對這個議題我是持開放態度的我確實是覺得政府在這裡面要辦一定的政治責任可是其實就是剛剛像林委員剛才說明的其實有財主單位他們在我們跟他們討論這個過程他們提出來的顧慮也包括是林委員剛才提供的包括在講到這個事情裡面的社會保險的這個性質
transcript.whisperx[520].start 15254.025
transcript.whisperx[520].end 15277.885
transcript.whisperx[520].text 所以這個事情確實是我沒有辦法在這個當下我就代替其他的財主單位說我們就在什麼時候提出我沒有辦法在這個部分做出這樣子的承諾但是我自己或勞動部我們是很願意啟動這個討論的我們是願意啟動這個討論的這也是為什麼說希望文字是讓我們有一個研議的過程那我們的研議過程當然是要找其他單位來討論這就是剛剛
transcript.whisperx[521].start 15280.627
transcript.whisperx[521].end 15306.803
transcript.whisperx[521].text 陳昭智委員講的 啟動這個討論可是我沒有辦法在這邊承諾這件事情最大的責任是老闆啦老闆要繳最多的錢啦我知道 叫老闆來繳錢繳多一點啦問責於老闆啦你就叫老闆來繳錢啦行政院沒有版本啊那就是立法院的版本喔就是立法院的版本喔當然就立法院的版本要來討論大家還是可以討論的事情
transcript.whisperx[522].start 15307.723
transcript.whisperx[522].end 15328.952
transcript.whisperx[522].text 還是可以討論的事情可是我的意思是說如果是要行政部門提出一個代表行政院的版本這裡面涉及到確實很多在行政院不同單位之間對這件事情的看法有些人有些單位可能從政府的政治責任來看這件事情有些會從剛剛就像林委員剛才林淑芬委員剛才講到社會保險的本身的性質來看你不要以後因為我沒有聽到這邊右邊耳朵關起來了麻煩繼續
transcript.whisperx[523].start 15338.431
transcript.whisperx[523].end 15358.972
transcript.whisperx[523].text 因為確實在勞保這是一個社會保險社會保險其實等於是所有參保的人大家一起來共同分擔那所以會有財主單位他也會持這個看法來對於這個保險改革的方向部長我期許說你可以開始為勞工作因為這個事情是長年很久的事情啦但是我們也不是要你一個部長來承擔嘛所以就是說你要嘗試啟動嘛
transcript.whisperx[524].start 15362.375
transcript.whisperx[524].end 15381.012
transcript.whisperx[524].text 那因為立法院這邊一定有版本嘛那如果到時候你們自己沒有版本那立法院的版本我們就推啊對不對這當然是立法院的權益這當然是立法院的權利說相關的法案的審查可是我的意思是說就那你今天可以明確的講你要怎麼做嗎可不可以更具體一點
transcript.whisperx[525].start 15381.352
transcript.whisperx[525].end 15398.141
transcript.whisperx[525].text 我今天就是說跟成員討論說在這一個版本裡面我們是希望是可以給我們三個月的時間裡面來研議這個勞保修正的草案將最終責任入法的可行性我們是希望能不能改成用這個方式那我們會啟動相關討論這啟動當然也會找其他財主單位來去討論我們也會
transcript.whisperx[526].start 15403.123
transcript.whisperx[526].end 15424.268
transcript.whisperx[526].text 不對那個可行性我是比較有點意見啦就是說你就是這個修法就是開始要啟動了啦你現在說可行不可行那你回來跟我說啊不可行啊就結束了大家就回到原點了你那個文字我們討論一下我們等一下這個我的目的是讓你趕快啟動不是要控制你的費用我們請問這個案再稍稍保留一下我們等一下請一下我們再再要保留前讓我發言一下請說明可以可以他講完了我再講好兩位講完了換林委員
transcript.whisperx[527].start 15432.779
transcript.whisperx[527].end 15457.768
transcript.whisperx[527].text 我要求有另外一種方案這個整個勞保政府的撥補政府是誰政府是我們大家每一個納稅人可是這個社會保險責任最重的是雇主腳踢成了是雇主大家都不敢得罪雇主然後不敢漲保費要扛人民之愧叫人民來補雇主的責任
transcript.whisperx[528].start 15459.675
transcript.whisperx[528].end 15464.925
transcript.whisperx[528].text 欸 少子化 你叫人民一直來撥補你們的英文人民都有錢的你們的英文財政都健康正常的
transcript.whisperx[529].start 15467.102
transcript.whisperx[529].end 15479.528
transcript.whisperx[529].text 所以你在研議要加一個如果政府沒有撥補 漲保費 那個狀況會是怎麼樣要放進去 放風險整個社會保險 勞保制度它的風險會怎麼樣 財務估算給它算一下雇主責任才是最重要的雇主都沒責任 等著政府來幫雇主買單對不對 大家都做好人 叫政府
transcript.whisperx[530].start 15495.831
transcript.whisperx[530].end 15512.39
transcript.whisperx[530].text 沒有喔 政府是人民喔 扛人民之愧喔我剛剛又有打開 所以您淑芬委員的意見非常好部長也認真聽 都要把它寄進去那部長就是這樣 我們這個解凍是OK的但是你就是說最終要交給我們的東西是你說剛剛說什麼 你要怎麼
transcript.whisperx[531].start 15517.035
transcript.whisperx[531].end 15538.746
transcript.whisperx[531].text 給我一些進度的報告就是三個月我們會給這個相關這個修法的的研議的可行性啦這樣好不好對那可行性裡面不會可行性裡面不會只說可行或不可行啦就是說相關的這個機制會產生什麼影響對啊包括林委員提出的一些機制你總要啟動嘛我只說你要啟動嘛是是是好不好好那
transcript.whisperx[532].start 15539.466
transcript.whisperx[532].end 15556.362
transcript.whisperx[532].text 主席好啦 我們決定 但是我們等報告報告好好寫 拜託報告好好寫 誠心的寫 誠心的寫好 謝謝本案就同意動之 並通過修正後的互代決議一項要不要宣讀 請宣讀對 請宣讀
transcript.whisperx[533].start 15566.198
transcript.whisperx[533].end 15591.961
transcript.whisperx[533].text 你要給我沒唸也可以你自己唸也可以好那我想這個那個成員這邊有一個提案就我唸最後未確立撥補應常態化給付確定化政府應將最終給付責任入法實為正確最好原提案要求勞動部於三個月內研議勞工保險條例修正草案將政府最終責任入法之可行性以回應國人期待好
transcript.whisperx[534].start 15592.742
transcript.whisperx[534].end 15616.525
transcript.whisperx[534].text 可以啦OK好那我們就照照這樣的戶待局域修正後通過接下來第10案來第10案本案就解斷案有意見如果沒有意見就投意解凍好有意見來
transcript.whisperx[535].start 15618.866
transcript.whisperx[535].end 15635.264
transcript.whisperx[535].text 我這裡想要問一下因為根據預算解凍說明的第三頁有關鼓勵勞工續留職場那有提到為了鼓勵勞工續留職場勞保設有相關機制如老年給付展延年金或是年金給付年資採集無上限等等
transcript.whisperx[536].start 15635.965
transcript.whisperx[536].end 15664.36
transcript.whisperx[536].text 那勞動部也會持續宣導這個勞工保險制度相關規定請問一下勞動部要宣導有沒有設定什麼樣的量化目標如何宣導那過去也有宣導那現在宣導的成效怎麼樣有沒有所謂的宣導成果那我想每一分公帑都是人民的納稅錢剛剛有講所以要宣導我也很同意我只是想要讓也至少讓國人知道一下現在宣導的成效是什麼那我們怎麼去評估
transcript.whisperx[537].start 15665.202
transcript.whisperx[537].end 15683.848
transcript.whisperx[537].text 那另外何況這個部分是連立法院的預算中心都有寫報告裡面有說沒宣費用過度集中部分媒體那我覺得這個有疑慮既然連立法院的預算中心都有寫出這個東西所以就是要請勞動部說明一下這個宣傳的成果給國人知道請簡單扼要重點說明
transcript.whisperx[538].start 15690.711
transcript.whisperx[538].end 15713.661
transcript.whisperx[538].text 各位報告就是勞保的宣導其實我們每一年都有25場次到各縣市政府去宣導每個縣市都有那另外我們在救保或者是災保也都有各各項的研習所以我們對於勞工的比如說承辦人啊投保單位啊或無一定僱主的這些勞工我們都有定期的一些我知道你們怎麼去評估這個成效
transcript.whisperx[539].start 15714.501
transcript.whisperx[539].end 15733.569
transcript.whisperx[539].text 我們其實都有問卷調查對這個研討會的滿意度大概都有到九成滿意度都有到九成所以你說宣導的滿意度有九成對另外就是這個部分現在想要請問一下因為剛剛其實也有討論到這個基金投資運用的部分
transcript.whisperx[540].start 15734.386
transcript.whisperx[540].end 15759.271
transcript.whisperx[540].text 那剛剛有講到現在有關於匯率關稅等等的雙殺那現在我剛剛也有跟我們相關部會討論我這裡是想要再次的強調關於這個避險機制關於避險機制可能要再再去用心一下我們私下有講對不起我插一下好不好因為現在是第十案是在講這個勞動保險業務的預算
transcript.whisperx[541].start 15763.322
transcript.whisperx[541].end 15792.281
transcript.whisperx[541].text 童節節冬安這提案是亞委員你講我剛剛也尊重這是其一但是你也有我的名字聽我講完對不起你講我都沒有差因為我們是報告事項院會交給我們報告事項基本上其實是一包因為剛剛你們沒有來的時候曾昭志委員幫你們提的總共59萬就貼了30項全部要要要保留我其實也不用保留是可以直接就進戶表決
transcript.whisperx[542].start 15794.503
transcript.whisperx[542].end 15804.327
transcript.whisperx[542].text 但是後面我沒有這麼做還是希望說你們要表達意見我是給各位表達意見我們後面還有17個討論事項17案討論事項所以在報告事項裡面我是希望這樣因為我們
transcript.whisperx[543].start 15809.113
transcript.whisperx[543].end 15838.636
transcript.whisperx[543].text 的條件裡面很清楚只要提書面報告就解凍嘛除了說你覺得他的書面報告是不行所以我們是針對這個案這個案來好不好就聚焦在這個案嘛其他後面還有很多案你如果要表達我都可以可以接受我希望你的意思就是要再更精簡一點表達意見嘛對不對好OK好沒有問題喔所以我剛剛只是表達說在這個部分我剛剛質詢到的然後那個相關部門也知道了所以這個案我這邊沒有意見看其他人有沒有意見
transcript.whisperx[544].start 15839.236
transcript.whisperx[544].end 15843.82
transcript.whisperx[544].text 我想提一個跟大家同仁之間講一個程序面的問題其實這個預算對我們委員會相當不公平
transcript.whisperx[545].start 15848.36
transcript.whisperx[545].end 15869.466
transcript.whisperx[545].text 這個委員會大家很認真在這裡不曉得第一案第二案這樣逐條審完而且詳詳細細的審完結果到院會裡面所有委員會審議的結果都沒有被尊重我們通過到那裡隨時人家就翻案翻掉了然後呢又重來一遍然後又到這裡再跑一遍
transcript.whisperx[546].start 15870.305
transcript.whisperx[546].end 15895.531
transcript.whisperx[546].text 我的意思是說,我們希望各黨團都回去跟大家講委員會審議通過的,請他們都不要到院會再翻案那認為有不夠的,盡量都不要否則我們後來都委員會不用審嘛大家才過了工,過了明星,到晚上去跟院會實施都不好,我們在這裡審的委員會中心主義蕩然無存
transcript.whisperx[547].start 15898.342
transcript.whisperx[547].end 15905.773
transcript.whisperx[547].text 在這裡拜託各黨團我們不管誰執政都一樣就是說我們委員會審議要尊重
transcript.whisperx[548].start 15906.516
transcript.whisperx[548].end 15934.045
transcript.whisperx[548].text 不然就說一遍 再說一遍 再說一遍然後到院會再說一遍現在要解凍報告事項再說一遍再去改成討論事項再說一遍這樣我們一條議事 講一條議事講一條有可能在這裡要討論四遍四遍這不是委員會中心主義這真的是在浪費大家 折磨大家嘛
transcript.whisperx[549].start 15936.021
transcript.whisperx[549].end 15959.077
transcript.whisperx[549].text 好 謝謝了 我在這邊再做一個報告因為早上是我們先處理這個院會交付給我們的這個報告事項共計59案那當然有委員提出來有針對30案還有一些意見所以我就暫行保留那報告事項裡面基本上就是只要書面報告提出來那就請各位委員來酌情是不是有意見
transcript.whisperx[550].start 15959.677
transcript.whisperx[550].end 15983.288
transcript.whisperx[550].text 但沒有意見我們就通過 有意見當然我們就看是要表決還是則起這是起義啦齁那另外我們剛剛還有在宣讀有17個案是列入在討論事項裡面那這17案可能是大家還有一些不盡周詳之處要再討論那當然還是要尊重各位我們委員會的意見嘛齁所以這是有兩個部分我來做這樣的一個處理齁所以剛剛有跟各位做這樣的一個報告
transcript.whisperx[551].start 15985.269
transcript.whisperx[551].end 16013.861
transcript.whisperx[551].text 那就看各位怎麼樣然後現在我們先針對第十案第十案是不是請教各位委員本案解凍有意見好沒有意見好謝謝那我們就同意解凍那接下來第十三案好各位就本案解凍有意見各位同仁如果沒有那我們就同意解凍那第十四案好沒有那我們就同意解凍好不好好謝謝第十五案
transcript.whisperx[552].start 16016.059
transcript.whisperx[552].end 16037.562
transcript.whisperx[552].text 如果沒有那我們就同意解凍第16案接下來第16案本案就解凍有意見沒有那我們就解凍第17案本案解凍有無意見沒有那我們就同意解凍其實水電費以外像文宣其實要認真討論啦媒體宣傳費可以認真討論
transcript.whisperx[553].start 16038.922
transcript.whisperx[553].end 16063.89
transcript.whisperx[553].text 阿水電其實是不用討論的 水電可不可以造假 可不可以灌水 可不可以挖井 不可能嘛阿那媒體會 文宣會會不會服用亂用 亂用 欸有可能啊所以要看項目嘛 這種就再講一下好 謝謝來第18案 本恩救解凍案 解凍有意見沒有 那我們就同意解凍第19案
transcript.whisperx[554].start 16064.971
transcript.whisperx[554].end 16087.391
transcript.whisperx[554].text 有一個意見好請說我針對就是外送員報酬那我有一個預算案是希望能夠落實他的薪資計算方式要透明化因為這樣子對勞工來講才有可預測性那勞動部給我的回應那看起來比較像是說好像感覺上是交給了交通部
transcript.whisperx[555].start 16087.891
transcript.whisperx[555].end 16114.366
transcript.whisperx[555].text 因為交通部最近在跟平台談論那個所謂的那個外送的費用的事情那我認為就是說因為那個費用是算是平台的盈利那跟外送員報酬的工資計算方式應該是分開的所以是不是能夠請勞動部還是積極做這件事那我還是可以解凍那我只是跟讓部長知道一下這個回應方式我並不太滿意以上
transcript.whisperx[556].start 16115.407
transcript.whisperx[556].end 16139.85
transcript.whisperx[556].text 可以解凍我先說明好請說明提到提到交通部的原因是因為現在行政院是我們把這個外送平台尤其是這個像uber或者幾個的外送平台的阻擇機關是設在交通部但是確實現在勞動部跟交通部是針對因為剛剛委員在講的其實是關於運價的透明化因為
transcript.whisperx[557].start 16141.031
transcript.whisperx[557].end 16166.261
transcript.whisperx[557].text 外送員的薪資是來自於運價所以主要是運價的透明化的部分我們確實現在是跟交通部一起在做這個事情的討論並沒有都丟給交通部但是因為你們給我的回覆是說等到那邊討論完之後然後也並沒有說要來處理這個事情運價的透明化我們是包括這幾個月一直跟交通部我們一起在討論中所以並不是等交通部自己討論而是一起對我們是一起討論的好那謝謝
transcript.whisperx[558].start 16170.143
transcript.whisperx[558].end 16178.133
transcript.whisperx[558].text 好所以19案我們還是同意解鬥嘛各位沒有意見啦對對19案來19案不好意思主席因為我們其實針對他的報告事項內容去問問題嘛對對對所以這個本木的預算編列是6161萬凍結100萬嘛大概凍結1.6%左右
transcript.whisperx[559].start 16186.883
transcript.whisperx[559].end 16193.27
transcript.whisperx[559].text 那這科目裡面的02的分支計劃編列這151,000元出國經費那依照預算說明是參加這個國際勞工及就業關係協會第14屆的歐洲大會那想要請教一下
transcript.whisperx[560].start 16201.98
transcript.whisperx[560].end 16219.32
transcript.whisperx[560].text 因為我去查了一下這個辦在英國的杜倫大學商學院主要是發表最新研究成果我是好奇想請問勞動部跟所屬的哪個單位或是勞動部有沒有委外給學校做研究讓這個委外成果去投稿並且已經被接受論文發表
transcript.whisperx[561].start 16220.322
transcript.whisperx[561].end 16238.715
transcript.whisperx[561].text 然後第二個就是因為去年也有類似的經費它是也是同一個東西在第二十屆世界年會舉辦地點是紐約但去年是它是年會去年是單也只有編八萬七千元所以這兩個預算弄下去怪怪的所以我想要了解一下是這個是有去投稿或什麼的嗎
transcript.whisperx[562].start 16241.09
transcript.whisperx[562].end 16261.087
transcript.whisperx[562].text 跟委員報告 我們並沒有在任何地方有說明到說我們要去投稿或發表沒有我們並沒有 我在提的報告上也沒有提到就是說我們會去那邊 主要我們都去聽取他們世界現在很多地方的最近的勞資關係的現況
transcript.whisperx[563].start 16262.788
transcript.whisperx[563].end 16285.377
transcript.whisperx[563].text 然後我們帶回來然後在很多政策上做很重要的參考但是因為每一次的地點不太一樣所以那個預算的編列確實因為現在的交通費用也很貴所以有時候如果地點如果太過於遙遠的話我們的費用可能就沒有辦法來吃應OK好我沒有意見好謝謝那第19案我們就同意解凍接下來第20案沒有意見那就同意解凍第21案
transcript.whisperx[564].start 16291.291
transcript.whisperx[564].end 16295.868
transcript.whisperx[564].text 好那同意解凍第二十二案同意解凍第二十四案
transcript.whisperx[565].start 16302.728
transcript.whisperx[565].end 16330.538
transcript.whisperx[565].text 二次案這邊也有一個那我儘快那針對那個性別薪資透明化的部分那勞部部的回覆那有一點點不太沒有回應到透明化比較回應的是同工同酬的檢核表因為同工同酬檢核表就算做得好的話還是有一個性別薪資沒有透明化那我要提醒一下那個是賴清德總統的就是婦女跟性別的相關的政見之一
transcript.whisperx[566].start 16331.058
transcript.whisperx[566].end 16356.58
transcript.whisperx[566].text 好那這部分希望可以加強那另外一個是關於就是針對非個案性別工作平等法裡面非個案的制度性歧視是不是能夠比照勞動檢查法就能夠由工會代表提出申請那可是你們的回覆是不行那這部分我也是希望可以因為法條中好像沒有明定那可是勞動檢查法其實工會就可以代表
transcript.whisperx[567].start 16356.84
transcript.whisperx[567].end 16380.165
transcript.whisperx[567].text 那現在講的是不是個案的而是制度性的歧視譬如說服役那這部分也是希望勞動部可以再思考那第三個是關於我要求職場的性別歧視希望納入性傾向性別認同能夠強化宣傳那這部分肯定你們說你們回覆沒有回覆得很清楚但是後來有跟我們說會找明天團體討論做法那我覺得這樣很好
transcript.whisperx[568].start 16382.325
transcript.whisperx[568].end 16400.293
transcript.whisperx[568].text 最後就是關於也是賴清德總統提出的不分性別家長參與育兒那如果都有就是臨滿六個月的話會加發那你們會回應會修法來處理那這點我表示肯定以上並沒有要凍結只是把我滿意跟覺得不夠好的地方提出來謝謝好 謝謝 陳委員
transcript.whisperx[569].start 16403.874
transcript.whisperx[569].end 16428.252
transcript.whisperx[569].text 好 關於這個解凍報告裡面提到工時的部分啦這邊是想建議部長是不是再多增加幾個部分因為這個總工時非常長期是勞動部你們自己發出來的統計可是你後來又說到說比較全日工時我是覺得你去找裡面對你們比較有利的
transcript.whisperx[570].start 16430.094
transcript.whisperx[570].end 16451.405
transcript.whisperx[570].text 寫進這個報告不是很OK但是今天早上您在外面受訪的時候您有提到說除了增加國定假日還不夠其實變相也等於說您是承認這個工時是長的只是增加假日還不夠你還有很多要繼續努力的地方可是您的解凍報告裡面只有寫說你要用彈性工時去處理
transcript.whisperx[571].start 16452.97
transcript.whisperx[571].end 16477.111
transcript.whisperx[571].text 所以你要不要把你早上零零總總發表的這麼多可以解決工時問題的事都增加進去您的報告裡面您早上接受記者訪問的時候說比如說團體協約也有助透過勞動檢查也有助最低工資等等減少勞工被迫要退休你講了很多耶但是你的解凍報告裡面沒有耶
transcript.whisperx[572].start 16478.29
transcript.whisperx[572].end 16501.785
transcript.whisperx[572].text 這個跟著說明我當然是認為我們的工時的狀況是有是有改善的空間的所以我並沒有覺得說我們現在工時現在就已經表現的很好了並不是這樣所以剛剛講說不管是現在但現在之前大家在討論國定假日的部分休假的部分那或者是團體協約或者是勞檢甚至但
transcript.whisperx[573].start 16502.885
transcript.whisperx[573].end 16524.42
transcript.whisperx[573].text 我們看到一些國家他的工時相對比較低是因為他部分工時的比例比較高所以比方說我們未來如果可以更擴大比方說中高齡或者是婦女在這個重返職場的部分可以做到更多其實在數字上面也會有一些相對起來也會再降低一些可是這些種種的做法都是我們會去做的事情
transcript.whisperx[574].start 16525.5
transcript.whisperx[574].end 16547.763
transcript.whisperx[574].text 這些所有做法都是我們會去做的事情主席是不是剛剛范委員的意見還有我的意見請部長補充到他的報告解凍報告裡面然後我們就解凍可以吧部長這邊同意就報告順便報告可能再修兩位委員的期待這樣好不好那我還是就是同意解凍那接下來第31案
transcript.whisperx[575].start 16551.038
transcript.whisperx[575].end 16555.933
transcript.whisperx[575].text 各位同仁有沒有意見沒有意見那我們就同意解凍第三個事案
transcript.whisperx[576].start 16557.108
transcript.whisperx[576].end 16581.904
transcript.whisperx[576].text 報告主席那四案是有關逃逸移工移工的問題其實今天早上在質詢的時候我前面陳委員林委員也問了非常多表示大家是很在意的可是您的報告是有五點我這邊講一下您有講到五點第一點其實您只是簡單的講移工目前的狀況第二點跟第三點
transcript.whisperx[577].start 16582.885
transcript.whisperx[577].end 16596.38
transcript.whisperx[577].text 是舊的112年就有的但沒有做好所以我們還是會說沒有辦法解決要拿出新的方法第四點其實是一個政策宣示而已您在講說
transcript.whisperx[578].start 16597.782
transcript.whisperx[578].end 16622.851
transcript.whisperx[578].text 持續推動比如說改善缺工改善移工薪資加強仲介管理可是具體你要怎麼做沒有講這個跟你們網站的內容幾乎是一模一樣第五點是我在寫提案的時候就說你們只有三家查三家然後查到有三家行蹤不明真的太少這跟一般人民的認知完全不一樣
transcript.whisperx[579].start 16624.091
transcript.whisperx[579].end 16637.945
transcript.whisperx[579].text 所以我是希望你們加強可以做查核結果你又把它列到解凍報告裡面說已經辦理三次我就是認為三次還有三家行蹤不明真的完全不符合人民的認知啊
transcript.whisperx[580].start 16642.218
transcript.whisperx[580].end 16661.592
transcript.whisperx[580].text 來 請留言我順便針對這題也補充一下第一個依照解凍說明這個112年的失聯移工是3.1萬人113年是2.5萬可是說明裡面沒有提到失聯移工的總數請問一下部長現在最新失聯移工的總數數據是多少截至3月底是多少
transcript.whisperx[581].start 16662.392
transcript.whisperx[581].end 16680.758
transcript.whisperx[581].text 那再來第二個就是補助核發查處機關團體績效獎金4000萬那未來還要規劃調整團體績效獎金之核發方式以激勵團隊查查的士氣請問一下這個是要再提高總體的獎金嗎預計提高多少何時要開始執行
transcript.whisperx[582].start 16681.843
transcript.whisperx[582].end 16702.36
transcript.whisperx[582].text 那另外我們發放團體獎金的目的是什麼看起來就是是不是因為失能讓逃跑移工越來越多制度有問題結果你就一直在補很多的錢進去然後希望大家去努力的去抓和查查所以我覺得這個部分是不是凸顯了在這部分的制度和管理失能以上請部長對面回答好來請說明
transcript.whisperx[583].start 16706.591
transcript.whisperx[583].end 16725.593
transcript.whisperx[583].text 是 謝謝委員的指教我想有關失戀義工的問題是長期也有結構面的問題累積到目前為止失戀人數大概是九萬兩千餘人我們採取了各項的措施包括從需求面跟供給面
transcript.whisperx[584].start 16726.774
transcript.whisperx[584].end 16749.606
transcript.whisperx[584].text 所以在今年這兩年我們其實也針對目前市場上所反映的缺工問題進行一些處理所以在移工的合配包括營造業跟農業的部分我們有採取一些放寬的措施就是解決一些缺工問題也避免這個市場的吸引力那在這個此外我們在管理面上也採取了一些措施
transcript.whisperx[585].start 16756.947
transcript.whisperx[585].end 16770.519
transcript.whisperx[585].text 在管理裡面我們也採取了各項措施包括各位剛所指教的這個強化外國仲介管理的這個部分那確實外國仲介管理的力道也許我們還要再強化因為基本上我們是比較是受理
transcript.whisperx[586].start 16771.179
transcript.whisperx[586].end 16784.066
transcript.whisperx[586].text 民眾的這個檢舉的部分所以可能不是主動的去查查那這個部分我想我們在機制上未來還是有這個精進的空間那現在只要是查獲它試煉比例過高的部分呢我想我們都還是會處以這所謂的聽權處分那讓這個仲介公司稍微有一下
transcript.whisperx[587].start 16791.05
transcript.whisperx[587].end 16818.792
transcript.whisperx[587].text 必須要配合相關的改進那我想我們各項的措施都一直在進行當中那此外在查器面呢我們也是配合移民署以及相關的友軍團隊進一步的去查查那查查的部分呢因為基本上他們這個失聯人數的升高所以確實有一些經費在需求上也會希望我們在基金方面可以予以支持因為他們的收容的人數也越來越高
transcript.whisperx[588].start 16819.392
transcript.whisperx[588].end 16833.334
transcript.whisperx[588].text 那我想這個是整體面的問題都是我們需要跨部會大家一起共同去面對的那現在先做這樣的說明好 李委員好啦 我講白的啦 我現在講白的啦
transcript.whisperx[589].start 16833.908
transcript.whisperx[589].end 16854.121
transcript.whisperx[589].text 因為從COVID-19到現在COVID-19的時候因為外籍移工的引進是停滯的所以從COVID-19那幾年我們對移工管理的政策是視而不見逃跑外籍移工視而不見抓到了當作沒抓到我現在要問我講白的就是要問這個
transcript.whisperx[590].start 16858.404
transcript.whisperx[590].end 16870.534
transcript.whisperx[590].text 因應國內勞動力的短缺供不應求我們對逃跑的外籍移工這個政策還是連續性的基本上的默契是這樣子對不對
transcript.whisperx[591].start 16871.656
transcript.whisperx[591].end 16899.027
transcript.whisperx[591].text 如果是這樣子的話 到將近十萬人的時候難道我們在管理政策上不用與時俱進去想你們如果真的要這樣子那未來是要變更你的管理管理制度要務實的看待 又要納管那方法會是什麼那沒有逃跑的 因為不是比較高那我們對於他們 我們的管理模式也一樣要變革
transcript.whisperx[592].start 16901.018
transcript.whisperx[592].end 16904.58
transcript.whisperx[592].text 所以我就在這裡說這個不要再說抓移工是很大的矛盾還有很大的問題才會去抓啦現在就不去抓移工啊然後也拜託移工逃跑的你也來幫我上班
transcript.whisperx[593].start 16915.03
transcript.whisperx[593].end 16939.059
transcript.whisperx[593].text 營造業 工廠 有沒有用逃跑的他缺工 老闆顧主就罵政府所以現在政府沒有人理他講的啦但越來越多也不是問題但越來越多 怎麼納管務實的納管 就是問題了嘛所以這個問題 應該是要從這裡要有新思維 要有新方法
transcript.whisperx[594].start 16940.545
transcript.whisperx[594].end 16968.257
transcript.whisperx[594].text 好 請陳委員主席我是建議因為剛剛他們也認為他們自己寫的不夠好是不是我們就擇期等他們提供更具體的方法能說服我們委員因為這個議題幾乎是每一個人都很在意很多人在質詢的 謝謝所以妳是建議我是建議擇期啊對 我是建議擇期因為剛剛官員們也認為真的他們寫的不夠好啊他沒有新方法
transcript.whisperx[595].start 16969.216
transcript.whisperx[595].end 16987.586
transcript.whisperx[595].text 部長要再說明是不是?我們今天還是想爭取這個案子能夠解凍但是今天在逃跑移工的問題上面坦白說我自己認為過去有一些管理的作為跟管制的做法其實那個才是因
transcript.whisperx[596].start 16989.227
transcript.whisperx[596].end 17017.7
transcript.whisperx[596].text 那逃跑是或者是逃逸是最後的果所以這裡面確實是涉及到整個我們移工管理制度其實從過去可能是十幾萬二十幾萬到現在已經八九十萬其實在數量的尺度上面都出現一個高度的不同的時候我是同意在這個數量尺度不同的狀況下面我們在移工管理的做法是需要有一些變革而且這變革是可以預見可能未來
transcript.whisperx[597].start 17018.88
transcript.whisperx[597].end 17046.014
transcript.whisperx[597].text 甚至移工的數量在我們少子化跟高齡化的狀況之下未來移工的數量可能再多包括像舊武法46條修過以後是有可能還增加的所以在不同的數量尺度上面會有不同的作為我是同意的可是我還是想針對這還是想要爭取這一案的解凍因為這個部分的制度面的變革說實話它並不是一件簡單的事情大家應該可以理解這幾乎是30年來這是30年來的制度的累積
transcript.whisperx[598].start 17047.735
transcript.whisperx[598].end 17070.821
transcript.whisperx[598].text 所以我們是想爭取這個案子的部分但是我們會來想辦法因為面對要面對這件事因為未來的移工在台灣的數量真的可能還會再繼續增加我們過去的管理的方法我們必須很誠實的面對它是有一些結構性而且某些時空當下我們是設立了這個制度可是未來是不是要調整這個我們要很誠實的面對這個問題我是用這個態度在處理這個問題的
transcript.whisperx[599].start 17072.921
transcript.whisperx[599].end 17088.416
transcript.whisperx[599].text 所以我想新商人以後他也壓力也很大因為我們不斷不斷的都是在討論這個問題甚至我們也希望能夠引進或者是參考別的國家相對應的做法這部分我們都一直在研議中所以可是我們還是希望這個案是不是能夠先讓我們能夠解凍
transcript.whisperx[600].start 17090.331
transcript.whisperx[600].end 17116.22
transcript.whisperx[600].text 主席我發表一下意見我想大家對失業勞工他們帶來對社會的問題真的是非常期待有更好的方式來解決不過針對這一案基本上凍結的數目也不是那麼多所以陳委員這邊可不可以再考量看看如果說在積極的作為上面可以再請勞動部這邊
transcript.whisperx[601].start 17117.62
transcript.whisperx[601].end 17128.586
transcript.whisperx[601].text 有補充說明的話那是不是就能夠讓他依照我們所期待的能夠讓他可以順利的解凍 以上好 網委這麼建立看總委員
transcript.whisperx[602].start 17131.331
transcript.whisperx[602].end 17149.252
transcript.whisperx[602].text 不好意思主席因為他剛講的內容跟他的報告落差真的蠻大的落差很大喔那我們就這樣做一個處理好不好現在休息5分鐘謝謝你們溝通一下這樣好不好因為已經10點半到現在了也讓大家去OK 抱歉趁機會
transcript.whisperx[603].start 17154.303
transcript.whisperx[603].end 17179.563
transcript.whisperx[603].text 還是你要寫一個不太熟悉的?因為你這個...我先講一下,這一組是一個很大的活動它實在是一個非常強大的活動這部份是一個非常強大的活動我們這邊,雖然是兩組的活動但是整個是三條的活動所以我...所以主張一直拚這組的活動所以我沒有進入過一個決定坦白說,剛剛我跟我們講,剛剛我是...大廚部的主持人所以這組是廚師當中的主持人
transcript.whisperx[604].start 17456.633
transcript.whisperx[604].end 17475.1
transcript.whisperx[604].text 好 休息時間到我們針對三十一案嘛 對不起 三十四案來 請說來我們剛剛溝通我們剛剛溝通完畢所以洪部長覺得這是一個三十年的
transcript.whisperx[605].start 17476.67
transcript.whisperx[605].end 17486.862
transcript.whisperx[605].text 老舊的科舊嘛是一時之間他沒有累積下來的所以他一時半刻是沒有辦法想出什麼具體方法但他會補充報告
transcript.whisperx[606].start 17489.332
transcript.whisperx[606].end 17508.383
transcript.whisperx[606].text 補充在這個報告裡陳委員並不是說一時半刻無法想出什麼方法我們其實現在正在研議其實我覺得確實我們這個報告是可以寫得更好第一個比方說我們現在也在強化我們在轉換上面的功能因為很多的移工他是在轉換的過程裡面他可能在等待新的雇主的時候
transcript.whisperx[607].start 17508.863
transcript.whisperx[607].end 17536.608
transcript.whisperx[607].text 他在這裡面他會出現逃跑或失聯的狀況所以我們也在強化我們在轉換中心裡面的功能其實這一兩年經驗的累積目前我們也累積出一些不錯的經驗這裡面是可以盡量的去減少在轉換過程裡面的這個移工的逃跑的問題可是確實我們我剛才看一下我們報告裡面其實沒有提到這些地方這是我們可以再補強的部分所以我們願意把一些該補強部分補強進去可是還是希望爭取今天能夠解凍好
transcript.whisperx[608].start 17537.228
transcript.whisperx[608].end 17549.678
transcript.whisperx[608].text 所以他們會補充資料然後解凍對就同意解凍然後請他們把報告修正後再呈給委員好不好好謝謝好謝謝那事實上我們就同意解凍第35萬來請六人好我這裡有個問題我想要請問一下這個TTQS教育訓練的講師怎麼選的然後你們是怎麼產生的
transcript.whisperx[609].start 17566.82
transcript.whisperx[609].end 17572.345
transcript.whisperx[609].text 來請快說明有嗎可以說明嗎沒辦法說明
transcript.whisperx[610].start 17598.226
transcript.whisperx[610].end 17599.086
transcript.whisperx[610].text 來 請書長說明我也要請同仁說明一下
transcript.whisperx[611].start 17631.327
transcript.whisperx[611].end 17653.929
transcript.whisperx[611].text TTKS教育訓練講師已經有將近7年我們沒有我們過去領選的方式是會有一個那個專業人員的一個那個考試的一個訓練只是我們已經都大概將近7至少7年以上我們沒有再開這樣子的訓練我們最近一次針對TTKS三類專業人員就是還有一個平和委員跟輔導顧問的那個領選是在最近一次在去年
transcript.whisperx[612].start 17655.001
transcript.whisperx[612].end 17683.55
transcript.whisperx[612].text 辦理的所以因為我為什麼這樣問因為我去上網去查了一下你們這個訓練的講師有多位是沒有學經歷連畢業學校都沒有就一個名字掛在那裡所以如果是業師是不是應該也把相關的經歷寫上去所以我才問說但你們這個到底怎麼產出的我們會擔心你這個是怎麼領選的你是隨便覺得說你可以當講師就來嗎這是我覺得看到我的擔憂
transcript.whisperx[613].start 17684.91
transcript.whisperx[613].end 17711.008
transcript.whisperx[613].text 所以這部分可以解釋一下嗎?有這部分其實那個針對TTQS的那個教育訓練講師其實他都會有一些業界的經驗只是我們在網站上的資訊可能在資訊完整結論的部分我們會再盡快有多位是沒有學經歷連畢業學校都沒有就一個名字關啊對我們會盡快補上好那是要補上之後再解凍嗎?還是我們就是再一個禮拜補上
transcript.whisperx[614].start 17715.848
transcript.whisperx[614].end 17734.235
transcript.whisperx[614].text 好那如果沒有你們一個禮拜內會把它補上好不好然後也把這個你們到底怎麼產生這個TTQS講師的相關資料提供給本席辦公室好那我們就是先同意解凍嘛然後他一個星期內要把相關的資料補送給廖委員好那就同意解凍第三項
transcript.whisperx[615].start 17741.621
transcript.whisperx[615].end 17764.703
transcript.whisperx[615].text 这部分我想要请教一下部长说明一下这个大专青年的预聘计划产业新兼兵计划113年共培训了我看到资料是38936那投资青年就业方案113年说培训了224,008个人那这几个计划是有重复吗这些人有重复吗还是重复计算还是分开的
transcript.whisperx[616].start 17765.786
transcript.whisperx[616].end 17775.41
transcript.whisperx[616].text 報告委員基本上第一個提到的大大人體小人體的計劃培訓是26萬然後這個後面的這個大專青年預聘38000跟後面的所稱的這個職前訓練49000這個都是分開的都是各自的嗎都是各自的計劃然後對象也不同所以他們裡面的人是沒有重複的沒有我們合計總計三支計劃應該是35萬人
transcript.whisperx[617].start 17789.275
transcript.whisperx[617].end 17805.459
transcript.whisperx[617].text OK那我再提一下因為以審計部的查核意見各年度平均訓後一年是八成但是各領域的班別就業率是大概是71%到95%不等所以而且這個111年的結訓的就業學員他工作內容或就業的行業
transcript.whisperx[618].start 17809.84
transcript.whisperx[618].end 17836.166
transcript.whisperx[618].text 職業別跟訓練職類有關聯的大概只有7成70.38%那我這邊要提醒這部分你們應該要再加強改進看是不是也要回去研議一下把這個改進的措施提供給本席辦公室那這裡我今天可以先解凍我把這些數字告訴你們好可以了好那我們就同意解凍相關資料再補充給廖委員好37案我們就這樣同意解凍38案
transcript.whisperx[619].start 17842.213
transcript.whisperx[619].end 17859.578
transcript.whisperx[619].text 好 38案應該可以來 對不起就本案解凍有意見如果沒有我們就同意解凍好 謝謝40案來 各位就本案解凍有意見如果沒有我們就同意解凍41案各位針對本案解凍有意見沒有那我們就同意解凍42案
transcript.whisperx[620].start 17872.006
transcript.whisperx[620].end 17898.895
transcript.whisperx[620].text 來各位沒有好那我們就本案同意解凍第43案沒有謝謝來本案解凍就同意解凍第45案好沒有好那我們就同意解凍第47案沒有就同意解凍51案好那我們就同意解凍52案
transcript.whisperx[621].start 17901.087
transcript.whisperx[621].end 17903.789
transcript.whisperx[621].text 好那我們就同意解凍54案同意那我們就本案同意解凍55案講一下來講一下好請講我先請教一下就是每年的重大職災平均大概幾件
transcript.whisperx[622].start 17924.135
transcript.whisperx[622].end 17936.663
transcript.whisperx[622].text 歷年來?重大實災,如果有死亡人數,去年已經降到287人叫前一年檢討13個人歷年?對,在前一年是300個人過去是大概300,現在已經慢慢降到200多人了那你們這一案的歷年的預算編列大概落在多少?
transcript.whisperx[623].start 17962.425
transcript.whisperx[623].end 17978.804
transcript.whisperx[623].text 跟委員報告他這個是因為災保法過後過去是災保法之前有編到一千兩百萬那最近這幾年是逐步從六百萬降到四百萬但是問題是你們從來像今年也是去年也是沒有達標今年沒有達標
transcript.whisperx[624].start 17981.445
transcript.whisperx[624].end 17999.527
transcript.whisperx[624].text 就是你要降低你的預算編列降低表示你的這個重大重大職災有下降你才可以減少這個預算的編列嗎可是可是你們設定的目標也沒有減少到你們沒有達標而且再來就是說你去年到今年你才減少13個而已啊
transcript.whisperx[625].start 18000.385
transcript.whisperx[625].end 18013.055
transcript.whisperx[625].text 可以為您報告這個費用主要是用在未加保勞工的一個未住金那現在災保法過後基本上僱用一個人都全部要加保所以他是會用到這個災保基金那邊去
transcript.whisperx[626].start 18014.361
transcript.whisperx[626].end 18037.282
transcript.whisperx[626].text 那在但是過去在歷年來就是說你們都沒有就是說重大重大職災發生的時候你們其實就已經有先調查過了才會列入重大職災的死亡嗎那那你他們在申請這個慰問金的時候就申請的時候你們還要再調查一次
transcript.whisperx[627].start 18039.478
transcript.whisperx[627].end 18053.99
transcript.whisperx[627].text 沒有不用申請基本上現在我們在地方政府都有這個主動的一個專業的服務人員去主動來協助他不是用他申請我們直接就會去協助他了所以這個就有問題啊就是說他主動去協助啊有落實嗎
transcript.whisperx[628].start 18056.59
transcript.whisperx[628].end 18082.65
transcript.whisperx[628].text 我都聽你在說 你有跟沒有 你點頭就是有我們曾經那個中間搞了好久被刁難的好意思講我剛才說了 你們不在吵啊目前 跟委員報告 基本上我們只要掌握到這次重大職災的話都會有專人去服務他是 是這樣子 那你今年執行了多少了
transcript.whisperx[629].start 18084.139
transcript.whisperx[629].end 18100.26
transcript.whisperx[629].text 沒有啊 現在是五月嘛 你們現在大概有處理了幾件去年是26人 那今年我們這邊數據是不是適合再提供給委員對 現在手上沒有資料
transcript.whisperx[630].start 18101.257
transcript.whisperx[630].end 18117.668
transcript.whisperx[630].text 好所以去年也就是只有26個26件事沒有投保的沒有遺漏任何的那因為我我想我提出這個案子我想主要只是只是提醒你們因為這個就是說
transcript.whisperx[631].start 18119.409
transcript.whisperx[631].end 18134.458
transcript.whisperx[631].text 本來就是說一發生好你們調查完認定完其實有些就可以直接主動去發放了那也是希望你們可以落實然後不是說還要在那裡中間刁難東刁難西的好然後再來這個
transcript.whisperx[632].start 18141.209
transcript.whisperx[632].end 18164.781
transcript.whisperx[632].text 這個這個慰問金的發放他是從金額訂定是從民國九十一年開始一直到現在也過了二十幾年了然後這二十幾年當中整個不管你們預算也有增加然後物價也有調漲所以這個部分你們也應該要滾動去滾動式的去檢討他的慰問金的這個金額是否應該要調高是謝謝文官這部分那我們確實是確實已經在檢討
transcript.whisperx[633].start 18166.542
transcript.whisperx[633].end 18179.507
transcript.whisperx[633].text 最近都要簽辦的要適度的調高是好那這個部分我就同意解凍好同意解凍相關的補充報告再呈給陳委員好55案就同意解凍56案好那我們就同意解凍報告事項處理完畢接下來我們現在來審查討論事項第一案請委員有意見沒有那我們就同意解凍討論事項第二案
transcript.whisperx[634].start 18196.499
transcript.whisperx[634].end 18224.97
transcript.whisperx[634].text 有意見如果沒有意義那我們就同意解凍討論事項第三案沒有同意解凍第四案有意義如果沒有就同意解凍第五案有意義沒有就同意解凍第六案有意義沒有意義就同意解凍第七案有意義
transcript.whisperx[635].start 18226.704
transcript.whisperx[635].end 18256.059
transcript.whisperx[635].text 那我們就同意解凍第8案有異議沒有就同意解凍第9案有異議沒有好那我們就同意解凍第10案有異議沒有那我們就同意解凍第11案有異議沒有沒有就同意解凍第12案有異議沒有好那我們就同意解凍第13案有異議沒有同意解凍第14案有異議沒有沒有我們就同意解凍第15案有異議沒有那我們就同意解凍第16案有異議
transcript.whisperx[636].start 18257.25
transcript.whisperx[636].end 18286.344
transcript.whisperx[636].text 沒有就同意解凍第第17案有異議那我們就同意解凍有點不太習慣好謝謝好好現在做以下決定及決議114年度中央政府總預算決議有關勞動部主管預算凍結案計76案含報告事項59案及討論事項17案以上76案均處理完畢那均同意動之
transcript.whisperx[637].start 18287.36
transcript.whisperx[637].end 18297.305
transcript.whisperx[637].text 並提報院會該修正報告給個別人一定要提供好謝謝那本次會議到此結束現在散會好謝謝大家
transcript.whisperx[638].start 18317.57
transcript.whisperx[638].end 18317.811
transcript.whisperx[638].text 謝謝大家。