iVOD / 166652

Field Value
IVOD_ID 166652
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166652
日期 2025-12-24
會議資料.會議代碼 聯席會議-11-4-26,19,15-1
會議資料.會議代碼:str 第11屆第4會期社會福利及衛生環境、經濟、內政委員會第1次聯席會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 1
會議資料.種類 聯席會議
會議資料.委員會代碼[0] 26
會議資料.委員會代碼[1] 19
會議資料.委員會代碼[2] 15
會議資料.委員會代碼:str[0] 社會福利及衛生環境委員會
會議資料.委員會代碼:str[1] 經濟委員會
會議資料.委員會代碼:str[2] 內政委員會
會議資料.標題 第11屆第4會期社會福利及衛生環境、經濟、內政委員會第1次聯席會議
影片種類 Clip
開始時間 2025-12-24T11:36:50+08:00
結束時間 2025-12-24T11:45:25+08:00
影片長度 00:08:35
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8b793423fad44d60b2715fe5a8022f238f4e93bf07b6087fd81c25c0c566a88ae8a977c2421e346e5ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 鄭天財Sra Kacaw
委員發言時間 11:36:50 - 11:45:25
會議時間 2025-12-24T09:00:00+08:00
會議名稱 立法院第11屆第4會期社會福利及衛生環境、經濟、內政委員會第1次聯席會議(事由:審查 一、委員陳冠廷等20人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 二、委員許宇甄等22人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 三、委員張嘉郡等20人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 四、委員王美惠等17人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 五、委員蔡易餘等18人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 六、委員劉建國等16人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 七、委員鄭天財Sra Kacaw等18人擬具「老年農民福利津貼暫行條例第三條條文修正草案」案。 八、委員盧縣一等20人擬具「老年農民福利津貼暫行條例第三條條文修正草案」案。 九、委員徐欣瑩等18人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十、委員邱志偉等20人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十一、委員蔡其昌等18人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十二、委員呂玉玲等17人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十三、委員馬文君等18人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十四、委員徐富癸等17人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十五、委員游顥等26人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 十六、台灣民眾黨黨團擬具「老年農民福利津貼暫行條例第二條、第三條及第四條條文修正草案」案。 十七、委員邱鎮軍等17人擬具「老年農民福利津貼暫行條例第二條及第四條條文修正草案」案。 十八、委員陳超明等16人擬具「老年農民福利津貼暫行條例第二條及第四條條文修正草案」案。 十九、委員楊瓊瓔等21人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 二十、委員何欣純等16人擬具「老年農民福利津貼暫行條例第二條及第四條條文修正草案」案。 二十一、委員郭國文等16人擬具「老年農民福利津貼暫行條例第二條及第四條條文修正草案」案。 二十二、委員陳瑩等18人擬具「老年農民福利津貼暫行條例第二條及第三條條文修正草案」案。 二十三、委員陳秀寳等23人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 二十四、委員邱若華等16人擬具「老年農民福利津貼暫行條例第二條及第三條條文修正草案」案。 二十五、委員陳俊宇等35人擬具「老年農民福利津貼暫行條例第四條條文修正草案」案。 二十六、委員林俊憲等18人擬具「老年農民福利津貼暫行條例第二條及第四條條文修正草案」案...等39案 (因系統字數上限,詳見議事日程)。 【第三十八案,如經院會復議,則不予審查;第三十九案,如未經院會交付本聯席會審查或未經各黨團簽署不復議同意書,則不予審查】 【僅詢答】)
transcript.pyannote[0].speaker SPEAKER_01
transcript.pyannote[0].start 6.76409375
transcript.pyannote[0].end 10.17284375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 14.27346875
transcript.pyannote[1].end 22.05284375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 22.60971875
transcript.pyannote[2].end 28.66784375
transcript.pyannote[3].speaker SPEAKER_01
transcript.pyannote[3].start 30.00096875
transcript.pyannote[3].end 30.35534375
transcript.pyannote[4].speaker SPEAKER_01
transcript.pyannote[4].start 36.93659375
transcript.pyannote[4].end 38.18534375
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 38.82659375
transcript.pyannote[5].end 40.24409375
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 42.33659375
transcript.pyannote[6].end 42.53909375
transcript.pyannote[7].speaker SPEAKER_01
transcript.pyannote[7].start 45.13784375
transcript.pyannote[7].end 45.54284375
transcript.pyannote[8].speaker SPEAKER_01
transcript.pyannote[8].start 46.38659375
transcript.pyannote[8].end 52.56284375
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 53.59221875
transcript.pyannote[9].end 56.34284375
transcript.pyannote[10].speaker SPEAKER_01
transcript.pyannote[10].start 56.74784375
transcript.pyannote[10].end 58.18221875
transcript.pyannote[11].speaker SPEAKER_01
transcript.pyannote[11].start 58.78971875
transcript.pyannote[11].end 59.85284375
transcript.pyannote[12].speaker SPEAKER_01
transcript.pyannote[12].start 60.17346875
transcript.pyannote[12].end 60.76409375
transcript.pyannote[13].speaker SPEAKER_01
transcript.pyannote[13].start 61.30409375
transcript.pyannote[13].end 63.53159375
transcript.pyannote[14].speaker SPEAKER_01
transcript.pyannote[14].start 64.10534375
transcript.pyannote[14].end 65.75909375
transcript.pyannote[15].speaker SPEAKER_01
transcript.pyannote[15].start 66.13034375
transcript.pyannote[15].end 67.86846875
transcript.pyannote[16].speaker SPEAKER_01
transcript.pyannote[16].start 68.71221875
transcript.pyannote[16].end 69.79221875
transcript.pyannote[17].speaker SPEAKER_01
transcript.pyannote[17].start 69.99471875
transcript.pyannote[17].end 74.41596875
transcript.pyannote[18].speaker SPEAKER_01
transcript.pyannote[18].start 75.12471875
transcript.pyannote[18].end 75.86721875
transcript.pyannote[19].speaker SPEAKER_01
transcript.pyannote[19].start 76.57596875
transcript.pyannote[19].end 80.49096875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 80.86221875
transcript.pyannote[20].end 81.75659375
transcript.pyannote[21].speaker SPEAKER_01
transcript.pyannote[21].start 82.26284375
transcript.pyannote[21].end 82.65096875
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 83.42721875
transcript.pyannote[22].end 86.29596875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 86.68409375
transcript.pyannote[23].end 91.27409375
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 91.59471875
transcript.pyannote[24].end 95.10471875
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 95.49284375
transcript.pyannote[25].end 96.84284375
transcript.pyannote[26].speaker SPEAKER_01
transcript.pyannote[26].start 97.14659375
transcript.pyannote[26].end 97.60221875
transcript.pyannote[27].speaker SPEAKER_01
transcript.pyannote[27].start 98.05784375
transcript.pyannote[27].end 104.80784375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 105.33096875
transcript.pyannote[28].end 106.36034375
transcript.pyannote[29].speaker SPEAKER_01
transcript.pyannote[29].start 107.25471875
transcript.pyannote[29].end 108.72284375
transcript.pyannote[30].speaker SPEAKER_01
transcript.pyannote[30].start 109.88721875
transcript.pyannote[30].end 113.14409375
transcript.pyannote[31].speaker SPEAKER_01
transcript.pyannote[31].start 113.58284375
transcript.pyannote[31].end 116.43471875
transcript.pyannote[32].speaker SPEAKER_01
transcript.pyannote[32].start 117.29534375
transcript.pyannote[32].end 118.78034375
transcript.pyannote[33].speaker SPEAKER_01
transcript.pyannote[33].start 119.25284375
transcript.pyannote[33].end 119.64096875
transcript.pyannote[34].speaker SPEAKER_01
transcript.pyannote[34].start 119.84346875
transcript.pyannote[34].end 121.73346875
transcript.pyannote[35].speaker SPEAKER_01
transcript.pyannote[35].start 122.61096875
transcript.pyannote[35].end 123.33659375
transcript.pyannote[36].speaker SPEAKER_01
transcript.pyannote[36].start 124.06221875
transcript.pyannote[36].end 126.86346875
transcript.pyannote[37].speaker SPEAKER_01
transcript.pyannote[37].start 127.75784375
transcript.pyannote[37].end 128.60159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 128.82096875
transcript.pyannote[38].end 129.79971875
transcript.pyannote[39].speaker SPEAKER_01
transcript.pyannote[39].start 130.20471875
transcript.pyannote[39].end 131.62221875
transcript.pyannote[40].speaker SPEAKER_01
transcript.pyannote[40].start 132.02721875
transcript.pyannote[40].end 133.05659375
transcript.pyannote[41].speaker SPEAKER_01
transcript.pyannote[41].start 134.06909375
transcript.pyannote[41].end 134.60909375
transcript.pyannote[42].speaker SPEAKER_01
transcript.pyannote[42].start 135.08159375
transcript.pyannote[42].end 138.49034375
transcript.pyannote[43].speaker SPEAKER_01
transcript.pyannote[43].start 139.38471875
transcript.pyannote[43].end 141.44346875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 142.08471875
transcript.pyannote[44].end 143.40096875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 144.09284375
transcript.pyannote[45].end 144.91971875
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 145.56096875
transcript.pyannote[46].end 145.99971875
transcript.pyannote[47].speaker SPEAKER_01
transcript.pyannote[47].start 146.33721875
transcript.pyannote[47].end 148.24409375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 148.68284375
transcript.pyannote[48].end 149.20596875
transcript.pyannote[49].speaker SPEAKER_01
transcript.pyannote[49].start 150.01596875
transcript.pyannote[49].end 151.24784375
transcript.pyannote[50].speaker SPEAKER_01
transcript.pyannote[50].start 151.66971875
transcript.pyannote[50].end 154.06596875
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 154.79159375
transcript.pyannote[51].end 157.05284375
transcript.pyannote[52].speaker SPEAKER_01
transcript.pyannote[52].start 157.35659375
transcript.pyannote[52].end 166.36784375
transcript.pyannote[53].speaker SPEAKER_01
transcript.pyannote[53].start 166.95846875
transcript.pyannote[53].end 168.91596875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 167.32971875
transcript.pyannote[54].end 174.46784375
transcript.pyannote[55].speaker SPEAKER_01
transcript.pyannote[55].start 170.26596875
transcript.pyannote[55].end 170.58659375
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 174.72096875
transcript.pyannote[56].end 184.23846875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 176.22284375
transcript.pyannote[57].end 176.62784375
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 185.18346875
transcript.pyannote[58].end 186.39846875
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 187.00596875
transcript.pyannote[59].end 191.10659375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 191.47784375
transcript.pyannote[60].end 195.24096875
transcript.pyannote[61].speaker SPEAKER_01
transcript.pyannote[61].start 195.86534375
transcript.pyannote[61].end 199.03784375
transcript.pyannote[62].speaker SPEAKER_01
transcript.pyannote[62].start 199.61159375
transcript.pyannote[62].end 207.84659375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 208.15034375
transcript.pyannote[63].end 210.05721875
transcript.pyannote[64].speaker SPEAKER_01
transcript.pyannote[64].start 210.59721875
transcript.pyannote[64].end 212.13284375
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 212.94284375
transcript.pyannote[65].end 213.85409375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 214.59659375
transcript.pyannote[66].end 222.67971875
transcript.pyannote[67].speaker SPEAKER_01
transcript.pyannote[67].start 223.55721875
transcript.pyannote[67].end 228.41721875
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 229.27784375
transcript.pyannote[68].end 231.11721875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 231.42096875
transcript.pyannote[69].end 232.92284375
transcript.pyannote[70].speaker SPEAKER_01
transcript.pyannote[70].start 234.10409375
transcript.pyannote[70].end 235.57221875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 234.18846875
transcript.pyannote[71].end 245.68034375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 238.40721875
transcript.pyannote[72].end 238.57596875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 241.44471875
transcript.pyannote[73].end 241.64721875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 246.03471875
transcript.pyannote[74].end 250.65846875
transcript.pyannote[75].speaker SPEAKER_02
transcript.pyannote[75].start 249.69659375
transcript.pyannote[75].end 250.43909375
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 250.77659375
transcript.pyannote[76].end 251.48534375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 251.77221875
transcript.pyannote[77].end 252.16034375
transcript.pyannote[78].speaker SPEAKER_01
transcript.pyannote[78].start 253.89846875
transcript.pyannote[78].end 254.37096875
transcript.pyannote[79].speaker SPEAKER_01
transcript.pyannote[79].start 255.38346875
transcript.pyannote[79].end 258.13409375
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 259.19721875
transcript.pyannote[80].end 262.52159375
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 263.07846875
transcript.pyannote[81].end 264.59721875
transcript.pyannote[82].speaker SPEAKER_01
transcript.pyannote[82].start 265.18784375
transcript.pyannote[82].end 268.02284375
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 268.79909375
transcript.pyannote[83].end 269.50784375
transcript.pyannote[84].speaker SPEAKER_01
transcript.pyannote[84].start 270.21659375
transcript.pyannote[84].end 275.92034375
transcript.pyannote[85].speaker SPEAKER_02
transcript.pyannote[85].start 271.70159375
transcript.pyannote[85].end 273.79409375
transcript.pyannote[86].speaker SPEAKER_02
transcript.pyannote[86].start 273.96284375
transcript.pyannote[86].end 274.89096875
transcript.pyannote[87].speaker SPEAKER_01
transcript.pyannote[87].start 276.10596875
transcript.pyannote[87].end 278.77221875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 278.11409375
transcript.pyannote[88].end 281.84346875
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 281.84346875
transcript.pyannote[89].end 284.17221875
transcript.pyannote[90].speaker SPEAKER_02
transcript.pyannote[90].start 282.18096875
transcript.pyannote[90].end 288.93096875
transcript.pyannote[91].speaker SPEAKER_01
transcript.pyannote[91].start 284.72909375
transcript.pyannote[91].end 285.20159375
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 290.34846875
transcript.pyannote[92].end 290.83784375
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 290.83784375
transcript.pyannote[93].end 290.97284375
transcript.pyannote[94].speaker SPEAKER_01
transcript.pyannote[94].start 290.97284375
transcript.pyannote[94].end 292.12034375
transcript.pyannote[95].speaker SPEAKER_01
transcript.pyannote[95].start 292.67721875
transcript.pyannote[95].end 295.14096875
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 295.88346875
transcript.pyannote[96].end 299.22471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 299.81534375
transcript.pyannote[97].end 306.02534375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 306.26159375
transcript.pyannote[98].end 308.67471875
transcript.pyannote[99].speaker SPEAKER_01
transcript.pyannote[99].start 309.28221875
transcript.pyannote[99].end 310.48034375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 311.07096875
transcript.pyannote[100].end 311.86409375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 312.65721875
transcript.pyannote[101].end 315.71159375
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 316.52159375
transcript.pyannote[102].end 317.36534375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 317.66909375
transcript.pyannote[103].end 318.22596875
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 318.78284375
transcript.pyannote[104].end 320.36909375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 320.90909375
transcript.pyannote[105].end 322.22534375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 322.63034375
transcript.pyannote[106].end 324.65534375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 325.38096875
transcript.pyannote[107].end 327.10221875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 327.65909375
transcript.pyannote[108].end 329.12721875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 329.93721875
transcript.pyannote[109].end 331.00034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 331.94534375
transcript.pyannote[110].end 333.22784375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 333.37971875
transcript.pyannote[111].end 336.26534375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 336.29909375
transcript.pyannote[112].end 337.21034375
transcript.pyannote[113].speaker SPEAKER_01
transcript.pyannote[113].start 338.27346875
transcript.pyannote[113].end 342.15471875
transcript.pyannote[114].speaker SPEAKER_02
transcript.pyannote[114].start 341.02409375
transcript.pyannote[114].end 355.68846875
transcript.pyannote[115].speaker SPEAKER_01
transcript.pyannote[115].start 342.93096875
transcript.pyannote[115].end 343.25159375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 343.85909375
transcript.pyannote[116].end 344.66909375
transcript.pyannote[117].speaker SPEAKER_01
transcript.pyannote[117].start 351.46971875
transcript.pyannote[117].end 354.18659375
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 355.26659375
transcript.pyannote[118].end 361.20659375
transcript.pyannote[119].speaker SPEAKER_01
transcript.pyannote[119].start 362.01659375
transcript.pyannote[119].end 365.07096875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 366.33659375
transcript.pyannote[120].end 367.21409375
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 367.21409375
transcript.pyannote[121].end 376.03971875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 376.74846875
transcript.pyannote[122].end 376.76534375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 376.76534375
transcript.pyannote[123].end 377.03534375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 377.03534375
transcript.pyannote[124].end 383.85284375
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 385.42221875
transcript.pyannote[125].end 386.19846875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 387.32909375
transcript.pyannote[126].end 388.45971875
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 389.30346875
transcript.pyannote[127].end 389.50596875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 394.36596875
transcript.pyannote[128].end 394.68659375
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 395.31096875
transcript.pyannote[129].end 398.14596875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 398.53409375
transcript.pyannote[130].end 418.85159375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 419.23971875
transcript.pyannote[131].end 420.08346875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 420.45471875
transcript.pyannote[132].end 447.40409375
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 447.74159375
transcript.pyannote[133].end 463.55346875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 464.04284375
transcript.pyannote[134].end 468.59909375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 468.85221875
transcript.pyannote[135].end 476.26034375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 476.37846875
transcript.pyannote[136].end 480.54659375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 480.66471875
transcript.pyannote[137].end 481.47471875
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 481.79534375
transcript.pyannote[138].end 492.42659375
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 492.49409375
transcript.pyannote[139].end 492.51096875
transcript.pyannote[140].speaker SPEAKER_01
transcript.pyannote[140].start 492.51096875
transcript.pyannote[140].end 511.91721875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 492.83159375
transcript.pyannote[141].end 493.20284375
transcript.pyannote[142].speaker SPEAKER_02
transcript.pyannote[142].start 511.44471875
transcript.pyannote[142].end 511.64721875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 511.76534375
transcript.pyannote[143].end 511.79909375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 511.91721875
transcript.pyannote[144].end 513.45284375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 514.31346875
transcript.pyannote[145].end 516.50721875
transcript.whisperx[0].start 6.969
transcript.whisperx[0].end 28.46
transcript.whisperx[0].text 主席 各位委員 有請部長來 請陳部長委員好部長好這個有關老農津貼暫行條例事實上這個實施已經三十年了到今年正好是三十年了等一下
transcript.whisperx[1].start 36.997
transcript.whisperx[1].end 57.186
transcript.whisperx[1].text 不好意思好這個30年所以本席在去年3月13號去年3月13號就提出來要把這個暫行
transcript.whisperx[2].start 59.555
transcript.whisperx[2].end 80.996
transcript.whisperx[2].text 這兩個字既然已經實施40年了到去年是39了到今年正好是30年所以這個部分這個一定要拿掉這是第一個第二個在法制面沒有問題法制面沒有問題當初之所以加戰刑就是暫時的
transcript.whisperx[3].start 83.519
transcript.whisperx[3].end 107.998
transcript.whisperx[3].text 十十幾年就可以不要了採用暫行那現在既然已經要繼續實施了也不會停了除非廢止除非廢止所以這個在法制面沒有問題所以大家有這個共識好我們看這個原住民原住民的這個
transcript.whisperx[4].start 109.949
transcript.whisperx[4].end 138.344
transcript.whisperx[4].text 年齡的 剛才部長也做了一些回應事實上如果我們從其他的法例國民年金法年住民就是55歲然後呢公務人員退休之前撫恤法公務人員年住民年住民55歲55歲這個公立學校教職員退休之前撫恤條例
transcript.whisperx[5].start 139.457
transcript.whisperx[5].end 165.877
transcript.whisperx[5].text 原住民也是55岁之所以会这样子定就是因为原住民与非原住民的这个平均移民有真的很有确实有这个确实有这个落差了所以当然部长又会用上次回应的刚才你也回应了就说这个事实上
transcript.whisperx[6].start 167.511
transcript.whisperx[6].end 181.479
transcript.whisperx[6].text 從事農業的基本上他的餘命比較高所以因為我們在處理老農津貼所以一定要用這個族群來看這個東西我知道你有講過事實上如果仔細分析其實不是這樣我們可以另外在主條的時候再討論好我們看這個
transcript.whisperx[7].start 185.253
transcript.whisperx[7].end 213.436
transcript.whisperx[7].text 老農今天他這個基於職業屬性的一個福利基金 你們說這個不宜再針對不同族群而有不同的一個規範這個 而延民會今天的報告就說這個提案反對原住民族權利有提升者本會 就是延民會競表贊同這個部分
transcript.whisperx[8].start 215.299
transcript.whisperx[8].end 232.631
transcript.whisperx[8].text 這個我剛有講如果從我們的平均移民確實有這個落差剛才那個表是三地原住民跟平地原住民平均的一個表如果是三地原住民那個差距更大
transcript.whisperx[9].start 234.387
transcript.whisperx[9].end 261.769
transcript.whisperx[9].text 這是以全部的原住民當作統計的母數那我剛才說的如果是以從事農業領老農津貼的這個當作母數的話它是比全國的漁民還高你這樣的一個計算是因為 不是不是那個部長你要去計算的話你要先從不是從老農津貼因為老農津貼幾歲開始
transcript.whisperx[10].start 263.477
transcript.whisperx[10].end 288.647
transcript.whisperx[10].text 65岁啊对嘛是因为65岁去算的时候可以老农金农民退出租金的但是如果你从这个年轻的时候开始算农民年轻的时候你永远不知道他什么时候过往对就是所以从事农业的部分只能说从事农业的已经在领老农津贴的这个族群去算
transcript.whisperx[11].start 291.251
transcript.whisperx[11].end 315.093
transcript.whisperx[11].text 這個如果你從從農民農民整個原住民的農民跟全國的農民的平均移民你去比較的話你就不會你就會改變你的想法不然的話為什麼國民年金法會這樣子制定為什麼這個公務人員的教職員的
transcript.whisperx[12].start 317.034
transcript.whisperx[12].end 332.23
transcript.whisperx[12].text 確實是這樣 確實是如此所以這個部分就是有很多繳了之後以公務人員來講他每個月繳那個提撥儲金結果他還沒有55歲還沒有65歲他就離開了
transcript.whisperx[13].start 338.382
transcript.whisperx[13].end 363.598
transcript.whisperx[13].text 所以才會去降低才會有這樣的一個規劃我不了解其他的其他的那些條文裡面55歲的部分的立法的原因不過以農業部來講我們還是用從事農業的這個族群去計算所以是當然所以他的餘命是比較高的所以要以從事農業然後要以所有的族群非原住民從事農業他幾歲開始
transcript.whisperx[14].start 366.36
transcript.whisperx[14].end 383.268
transcript.whisperx[14].text 然後到整個 對啊我們我們就是這樣因為從事農業你有領老農 表示你有加農保然後有領老農津貼的部分他的餘命就是82點多歲嘛好 這個部分這個園民會一直想要說明要說明嗎好 好 請來 副組長
transcript.whisperx[15].start 396.302
transcript.whisperx[15].end 417.378
transcript.whisperx[15].text 這個其實也是衛福部在112年提出的那個說法就是因為針對這個那個老農津貼的部分行政院跟都有邀請各部會來討論過了那我們剛剛部長所講的部分是從112年的那個報告來看的話
transcript.whisperx[16].start 418.439
transcript.whisperx[16].end 447.176
transcript.whisperx[16].text 那個衛福部的原住民勤領那個老農津貼的部分是82.9歲然後剛剛部長意思就是說那個是高於那個非原民的勤領的部分其實從報告上來看衛福部講的是他是82原住民勤領的平均年齡82.9歲是高於全體國人的
transcript.whisperx[17].start 447.836
transcript.whisperx[17].end 463.312
transcript.whisperx[17].text 平均余命也就是他并不是跟非原名的老农来去做比较如果我们用那个老农来比较的话65岁以下的那个原名的秦岭的平均余命跟
transcript.whisperx[18].start 464.133
transcript.whisperx[18].end 479.437
transcript.whisperx[18].text 跟非原民的老農來比較的話其實原民的老農是平均餘命是低於3.3歲那如果我們是就所有的農保的那個投保人數來算的話那那個
transcript.whisperx[19].start 482.399
transcript.whisperx[19].end 503.817
transcript.whisperx[19].text 原民的老農的那個平均原命是跟非原民的差到5.5歲這是111年的一個數據好 再把這個書面的資料再提供給我好不好這個部分我們希望能夠做非常明確的一個處理
transcript.whisperx[20].start 505.526
transcript.whisperx[20].end 515.986
transcript.whisperx[20].text 好 因為時間的關係因為我還要去財政委員會去質詢就到這邊好 謝謝 謝謝政委 謝謝部長好 接下來請丁學忠委來做詢問