iVOD / 166650

Field Value
IVOD_ID 166650
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166650
日期 2025-12-24
會議資料.會議代碼 委員會-11-4-20-14
會議資料.會議代碼:str 第11屆第4會期財政委員會第14次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 14
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第14次全體委員會議
影片種類 Clip
開始時間 2025-12-24T11:28:26+08:00
結束時間 2025-12-24T11:40:39+08:00
影片長度 00:12:13
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/8b793423fad44d60fb392a95dfaf0c2863a8c7f6258665b2d81c25c0c566a88ae76c662ebc5f4a645ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 王世堅
委員發言時間 11:28:26 - 11:40:39
會議時間 2025-12-24T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第14次全體委員會議(事由:邀請行政院主計總處陳主計長淑姿、財政部莊部長翠雲、金融監督管理委員會彭主任委員金隆、國家發展委員會副主任委員、內政部次長、外交部次長、國防部副部長、教育部次長、法務部次長、經濟部次長、交通部次長、勞動部次長、農業部次長、衛生福利部次長、運動部次長、環境部次長、文化部次長、數位發展部次長、僑務委員會副委員長、國家科學及技術委員會副主任委員、海洋委員會副主任委員、國軍退除役官兵輔導委員會副主任委員、人事行政總處副人事長、國立故宮博物院副院長、原住民族委員會副主任委員、客家委員會副主任委員、中央選舉委員會副主任委員、核能安全委員會副主任委員、公平交易委員會副主任委員、國家通訊傳播委員會副主任委員、大陸委員會副主任委員、公共工程委員會副主任委員就「115年度中央政府總預算案至今尚未審查,近3,000億元之新興、新增計畫將無法推動,對國家整體發展之影響」進行專題報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 6.57846875
transcript.pyannote[0].end 9.43034375
transcript.pyannote[1].speaker SPEAKER_01
transcript.pyannote[1].start 10.00409375
transcript.pyannote[1].end 10.84784375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 18.67784375
transcript.pyannote[2].end 19.31909375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 19.75784375
transcript.pyannote[3].end 21.04034375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 21.76596875
transcript.pyannote[4].end 27.03096875
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 27.72284375
transcript.pyannote[5].end 30.13596875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 30.50721875
transcript.pyannote[6].end 43.34909375
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 43.41659375
transcript.pyannote[7].end 47.29784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 48.04034375
transcript.pyannote[8].end 54.13221875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 54.55409375
transcript.pyannote[9].end 55.26284375
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 55.75221875
transcript.pyannote[10].end 63.48096875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 64.52721875
transcript.pyannote[11].end 68.30721875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 68.71221875
transcript.pyannote[12].end 70.21409375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 71.34471875
transcript.pyannote[13].end 74.58471875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 75.47909375
transcript.pyannote[14].end 79.09034375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 79.71471875
transcript.pyannote[15].end 80.62596875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 81.18284375
transcript.pyannote[16].end 82.90409375
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 83.30909375
transcript.pyannote[17].end 85.18221875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 86.05971875
transcript.pyannote[18].end 90.85221875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 91.56096875
transcript.pyannote[19].end 92.77596875
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 93.87284375
transcript.pyannote[20].end 98.20971875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 98.64846875
transcript.pyannote[21].end 101.17971875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 101.36534375
transcript.pyannote[22].end 103.91346875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 104.85846875
transcript.pyannote[23].end 121.12596875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 121.86846875
transcript.pyannote[24].end 158.97659375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 138.97971875
transcript.pyannote[25].end 141.15659375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 151.39971875
transcript.pyannote[26].end 151.60221875
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 157.23846875
transcript.pyannote[27].end 168.52784375
transcript.pyannote[28].speaker SPEAKER_01
transcript.pyannote[28].start 159.49971875
transcript.pyannote[28].end 161.82846875
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 169.37159375
transcript.pyannote[29].end 183.42846875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 183.58034375
transcript.pyannote[30].end 191.56221875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 192.32159375
transcript.pyannote[31].end 205.75409375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 206.56409375
transcript.pyannote[32].end 220.33409375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 220.92471875
transcript.pyannote[33].end 225.02534375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 225.37971875
transcript.pyannote[34].end 228.16409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 228.51846875
transcript.pyannote[35].end 231.23534375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 232.36596875
transcript.pyannote[36].end 233.09159375
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 233.86784375
transcript.pyannote[37].end 255.07971875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 256.10909375
transcript.pyannote[38].end 270.60471875
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 271.24596875
transcript.pyannote[39].end 273.03471875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 273.86159375
transcript.pyannote[40].end 277.05096875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 278.43471875
transcript.pyannote[41].end 283.83471875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 284.35784375
transcript.pyannote[42].end 284.61096875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 285.08346875
transcript.pyannote[43].end 285.82596875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 286.14659375
transcript.pyannote[44].end 286.56846875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 287.14221875
transcript.pyannote[45].end 287.64846875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 289.06596875
transcript.pyannote[46].end 294.63471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 295.41096875
transcript.pyannote[47].end 296.82846875
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 298.07721875
transcript.pyannote[48].end 308.97846875
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 309.46784375
transcript.pyannote[49].end 311.39159375
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 311.71221875
transcript.pyannote[50].end 312.20159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 312.57284375
transcript.pyannote[51].end 314.93534375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 316.11659375
transcript.pyannote[52].end 318.73221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 319.67721875
transcript.pyannote[53].end 327.77721875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 328.60409375
transcript.pyannote[54].end 335.52284375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 335.74221875
transcript.pyannote[55].end 337.07534375
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 337.53096875
transcript.pyannote[56].end 337.83471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 338.23971875
transcript.pyannote[57].end 341.19284375
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 341.95221875
transcript.pyannote[58].end 342.45846875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 343.03221875
transcript.pyannote[59].end 346.52534375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 347.20034375
transcript.pyannote[60].end 355.92471875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 357.59534375
transcript.pyannote[61].end 358.05096875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 358.60784375
transcript.pyannote[62].end 359.46846875
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 360.02534375
transcript.pyannote[63].end 360.95346875
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 361.42596875
transcript.pyannote[64].end 363.77159375
transcript.pyannote[65].speaker SPEAKER_00
transcript.pyannote[65].start 364.32846875
transcript.pyannote[65].end 366.91034375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 367.45034375
transcript.pyannote[66].end 372.86721875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 373.96409375
transcript.pyannote[67].end 377.52471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 377.91284375
transcript.pyannote[68].end 379.85346875
transcript.pyannote[69].speaker SPEAKER_00
transcript.pyannote[69].start 380.14034375
transcript.pyannote[69].end 381.35534375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 382.04721875
transcript.pyannote[70].end 382.43534375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 382.82346875
transcript.pyannote[71].end 383.53221875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 384.61221875
transcript.pyannote[72].end 389.21909375
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 390.13034375
transcript.pyannote[73].end 393.18471875
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 393.84284375
transcript.pyannote[74].end 400.55909375
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 401.16659375
transcript.pyannote[75].end 407.57909375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 408.86159375
transcript.pyannote[76].end 409.67159375
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 411.03846875
transcript.pyannote[77].end 412.43909375
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 413.09721875
transcript.pyannote[78].end 418.75034375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 420.03284375
transcript.pyannote[79].end 428.65596875
transcript.pyannote[80].speaker SPEAKER_00
transcript.pyannote[80].start 429.58409375
transcript.pyannote[80].end 432.43596875
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 432.75659375
transcript.pyannote[81].end 433.93784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 434.78159375
transcript.pyannote[82].end 436.63784375
transcript.pyannote[83].speaker SPEAKER_00
transcript.pyannote[83].start 436.94159375
transcript.pyannote[83].end 439.01721875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 439.48971875
transcript.pyannote[84].end 446.83034375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 447.47159375
transcript.pyannote[85].end 456.22971875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 456.95534375
transcript.pyannote[86].end 457.36034375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 458.27159375
transcript.pyannote[87].end 461.08971875
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 461.54534375
transcript.pyannote[88].end 465.22409375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 465.71346875
transcript.pyannote[89].end 468.46409375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 469.83096875
transcript.pyannote[90].end 470.47221875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 470.69159375
transcript.pyannote[91].end 471.68721875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 472.34534375
transcript.pyannote[92].end 476.44596875
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 477.94784375
transcript.pyannote[93].end 478.40346875
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 479.02784375
transcript.pyannote[94].end 480.39471875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 481.44096875
transcript.pyannote[95].end 486.03096875
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 486.53721875
transcript.pyannote[96].end 488.76471875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 489.42284375
transcript.pyannote[97].end 551.01659375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 499.66596875
transcript.pyannote[98].end 499.73346875
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 549.48096875
transcript.pyannote[99].end 561.51284375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 552.02909375
transcript.pyannote[100].end 552.07971875
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 552.13034375
transcript.pyannote[101].end 552.34971875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 555.94409375
transcript.pyannote[102].end 557.76659375
transcript.pyannote[103].speaker SPEAKER_01
transcript.pyannote[103].start 557.93534375
transcript.pyannote[103].end 562.67721875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 562.67721875
transcript.pyannote[104].end 563.53784375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 562.69409375
transcript.pyannote[105].end 562.89659375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 563.99346875
transcript.pyannote[106].end 564.92159375
transcript.pyannote[107].speaker SPEAKER_00
transcript.pyannote[107].start 564.48284375
transcript.pyannote[107].end 566.91284375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 568.38096875
transcript.pyannote[108].end 570.94596875
transcript.pyannote[109].speaker SPEAKER_00
transcript.pyannote[109].start 570.94596875
transcript.pyannote[109].end 573.19034375
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 571.03034375
transcript.pyannote[110].end 574.81034375
transcript.pyannote[111].speaker SPEAKER_00
transcript.pyannote[111].start 574.45596875
transcript.pyannote[111].end 575.62034375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 575.62034375
transcript.pyannote[112].end 580.46346875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 580.68284375
transcript.pyannote[113].end 581.56034375
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 581.56034375
transcript.pyannote[114].end 584.73284375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 582.11721875
transcript.pyannote[115].end 586.08284375
transcript.pyannote[116].speaker SPEAKER_01
transcript.pyannote[116].start 584.98596875
transcript.pyannote[116].end 589.17096875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 586.47096875
transcript.pyannote[117].end 592.47846875
transcript.pyannote[118].speaker SPEAKER_01
transcript.pyannote[118].start 594.26721875
transcript.pyannote[118].end 601.87784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 599.66721875
transcript.pyannote[119].end 611.27721875
transcript.pyannote[120].speaker SPEAKER_01
transcript.pyannote[120].start 601.97909375
transcript.pyannote[120].end 602.56971875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 603.39659375
transcript.pyannote[121].end 603.85221875
transcript.pyannote[122].speaker SPEAKER_01
transcript.pyannote[122].start 605.03346875
transcript.pyannote[122].end 608.54346875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 611.95221875
transcript.pyannote[123].end 614.33159375
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 614.44971875
transcript.pyannote[124].end 629.33346875
transcript.pyannote[125].speaker SPEAKER_01
transcript.pyannote[125].start 618.56721875
transcript.pyannote[125].end 619.98471875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 620.79471875
transcript.pyannote[126].end 621.08159375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 627.61221875
transcript.pyannote[127].end 628.75971875
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 629.65409375
transcript.pyannote[128].end 630.41346875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 630.71721875
transcript.pyannote[129].end 634.53096875
transcript.pyannote[130].speaker SPEAKER_00
transcript.pyannote[130].start 635.64471875
transcript.pyannote[130].end 682.20284375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 682.91159375
transcript.pyannote[131].end 701.05221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 701.32221875
transcript.pyannote[132].end 701.86221875
transcript.pyannote[133].speaker SPEAKER_01
transcript.pyannote[133].start 701.86221875
transcript.pyannote[133].end 706.78971875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 706.87409375
transcript.pyannote[134].end 718.14659375
transcript.pyannote[135].speaker SPEAKER_01
transcript.pyannote[135].start 718.14659375
transcript.pyannote[135].end 720.13784375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 718.16346875
transcript.pyannote[136].end 718.58534375
transcript.pyannote[137].speaker SPEAKER_00
transcript.pyannote[137].start 719.20971875
transcript.pyannote[137].end 726.22971875
transcript.pyannote[138].speaker SPEAKER_01
transcript.pyannote[138].start 720.22221875
transcript.pyannote[138].end 721.47096875
transcript.pyannote[139].speaker SPEAKER_01
transcript.pyannote[139].start 723.61409375
transcript.pyannote[139].end 724.84596875
transcript.pyannote[140].speaker SPEAKER_00
transcript.pyannote[140].start 728.23784375
transcript.pyannote[140].end 733.97534375
transcript.whisperx[0].start 7.124
transcript.whisperx[0].end 26.735
transcript.whisperx[0].text 謝謝主席我請財政部莊部長請莊部長委員好莊部長辛苦了我們在對於不動產的放款集中度的部分
transcript.whisperx[1].start 27.802
transcript.whisperx[1].end 45.983
transcript.whisperx[1].text 去年6月我們統計當時我們本國所有39家銀行平均對不動產放款佔它總放款的37.6%37.61%這是非常高的一個額度所以當時
transcript.whisperx[2].start 49.166
transcript.whisperx[2].end 72.893
transcript.whisperx[2].text 當時我們財委會就要求財政部也要求經管會就是要針對放款給不動產這個額度要降低當時定的目標額度是35%那結果經過了去年9月調查一次額度已有降大概降到36.71%
transcript.whisperx[3].start 75.543
transcript.whisperx[3].end 102.417
transcript.whisperx[3].text 那今年12月就是這個月又降了0.01%到36.7%那突然間上個禮拜中央銀行就放寬啦他就說這個放寬集中度就交由各銀行自己自己去監管去控管那我想請問部長就是說
transcript.whisperx[4].start 105.149
transcript.whisperx[4].end 119.159
transcript.whisperx[4].text 這跟新青安有關嗎是不是我們財政部因為要推動新青安2.0所以就跟中央銀行報告就要求應該放寬是這樣子嗎
transcript.whisperx[5].start 121.94
transcript.whisperx[5].end 122.1
transcript.whisperx[5].text 是啊 既然是這樣
transcript.whisperx[6].start 141.34
transcript.whisperx[6].end 167.116
transcript.whisperx[6].text 那對 那跟委員這個報告這個畫面上可以看出來不動產的集中度有下降但是央行這次理事會並不是說就不管這個集中度而是回到各銀行你自己要去控管而且我印象中還有每一個月必須要把這個情況報給央行好 各銀行自己控管那我今天為什麼找你上來我不是搞金管會你知道嗎因為我們公營行庫這八大行庫
transcript.whisperx[7].start 169.437
transcript.whisperx[7].end 189.648
transcript.whisperx[7].text 就是由你管的啊董事長總經理都你派的他們的政策作為你要負全責啊我光是講我們八大行庫好了從去年六月我們本來有要求之下那麼他對於不動產貸款的集中度反而增加了0.84%
transcript.whisperx[8].start 193.687
transcript.whisperx[8].end 219.587
transcript.whisperx[8].text 這個增加了五千零六億在不動產的放款喔在不動產的放款然後這個反而民營航庫民營航庫還多少聽點話民營航庫去年我們要求以後它降了0.77%八大公營航庫增加0.84%那只有民營航庫有在聽話
transcript.whisperx[9].start 221.007
transcript.whisperx[9].end 231.152
transcript.whisperx[9].text 那我並不是說新清安怎麼不好新清安利益良善如果真的訂好規則沒有例外情況的話本來是好但是
transcript.whisperx[10].start 233.939
transcript.whisperx[10].end 254.727
transcript.whisperx[10].text 我們過去的行情行就是這三步沒有限年齡也沒有限首購更沒有限他們收入所以這另外還有一個大的問題就是大量的被人頭來使用所以當然行情行2.0要去改善可是
transcript.whisperx[11].start 256.172
transcript.whisperx[11].end 276.852
transcript.whisperx[11].text 可是在改善的同時我們也必須注意對於不動產過度集中放款這個風險比方說我舉例啦這裡面公營航庫光是台營跟土營喔台營土營兩家放款給不動產的額度就高達三兆
transcript.whisperx[12].start 278.799
transcript.whisperx[12].end 294.313
transcript.whisperx[12].text 佔我們全國公民銀行39家銀行的兩成欸台銀跟土銀過度集中在不動產的放款這一個部分 曝險過高那 曝險這麼高
transcript.whisperx[13].start 298.677
transcript.whisperx[13].end 325.896
transcript.whisperx[13].text 風險不是只有他擔是我們全體2300萬民眾大家辛苦的血汗錢存款戶的血汗錢所以這風險度過高那我們如果部長如果你一再縱放八大供應行戶尤其台銀、土銀如果一再縱放他們去過度集中的話現在民營銀行他們也來有樣學樣
transcript.whisperx[14].start 328.649
transcript.whisperx[14].end 355.305
transcript.whisperx[14].text 有樣學樣 甚至不只民營銀行像華太銀行 台中商銀 星光銀行你看它這一年裡面 他們對不動產放款的集中度大幅的增高那民營銀行有樣學樣連外商銀行 他們也來推波助瀾 分一杯羹
transcript.whisperx[15].start 357.642
transcript.whisperx[15].end 372.295
transcript.whisperx[15].text 你看渣打銀行 匯豐銀行這兩家銀行啊他們放款不動產竟然超過50%超過50%耶 天啊那簡單講就是受到我們政府這樣子政策跟管理上這個部分的空間
transcript.whisperx[16].start 385.07
transcript.whisperx[16].end 407.007
transcript.whisperx[16].text 所以他們就受到另一種變相的鼓舞所以這個部分我希望你能夠所以我認為說我為什麼這麼在乎這一點因為新清安我剛剛講利益是良善可是實施以來我們大家看一看他對房價對房價
transcript.whisperx[17].start 411.609
transcript.whisperx[17].end 425.513
transcript.whisperx[17].text 飆漲的這個幅度他是非常正面的幫助了房價的高漲我們看一下齁在疫情這四年2016到2020裡面房價指數的漲幅5.4%那疫情這三年半房價指數
transcript.whisperx[18].start 437.066
transcript.whisperx[18].end 455.145
transcript.whisperx[18].text 漲24.9%但是新青安新青安喔上路的一年內一年就漲了12.3一年就漲12.3你看看喔過去疫情前喔前四年漲5.4新青安一年就漲12.3那
transcript.whisperx[19].start 458.345
transcript.whisperx[19].end 468.192
transcript.whisperx[19].text 房價所得比他的漲幅佔這個比例的升高從1.4到新興安的時候9.7所以啊我覺得這個太可怕了所以我要問你的第二個問題就是說部長你認為如何
transcript.whisperx[20].start 481.957
transcript.whisperx[20].end 488.647
transcript.whisperx[20].text 來避免我們台灣的房價繼續高度的成長你的看法呢
transcript.whisperx[21].start 490.045
transcript.whisperx[21].end 493.348
transcript.whisperx[21].text 先跟委員報告新青安這個貸款額度並沒有從那個不動產貸款集中度裡面去排除所以他仍然算在不動產的貸款的額度裡面那第二個部分有關新青安的部分會到明年的7月31號就告截止那這個後續有關的一些調整要不要做調整跟檢討財政部會持續邀同相關機關以及公股航庫一起來做討論
transcript.whisperx[22].start 517.208
transcript.whisperx[22].end 520.31
transcript.whisperx[22].text 那在這個親親案的執行過程當中呢我們也不斷的精進包含醫生只能帶一次親親案另外就是說對於有人頭或出租就利用這種親親案而不是做自助使用的部分其實我們也做大力的追查那其實追回的有關利息的補貼已經超過一億五千萬那追回的戶數也超過七千多件這個部分我們持續在精進那後續我們會持續的檢討來做一些調看要怎麼樣的
transcript.whisperx[23].start 547.21
transcript.whisperx[23].end 566.716
transcript.whisperx[23].text 政策面上要做怎麼樣的因應 以上的報告你說有追圍的 不當的 新興安的這個比方說人頭 比方說沒有收入這些你說有追圍7000多件我們都有 持續在做7000多件 有嗎 金額多少 追圍多少
transcript.whisperx[24].start 568.59
transcript.whisperx[24].end 579.876
transcript.whisperx[24].text 現在已經是達到八千六百件了那金額也超過一億五千萬以上一億五千萬那個利息補貼 利息補助的部分你總金額再算給我好不好 利息補貼你說是一億嘛但是我們花在新青安的利息補貼是數以數是億計啦
transcript.whisperx[25].start 594.298
transcript.whisperx[25].end 610.915
transcript.whisperx[25].text 是因為就是我們當時新西安是為了要協助沒有自住房屋的青年朋友們可以有一點自住我們協助青年朋友尤其是剛入社會或者剛創業 剛結婚這個都正確但是不要
transcript.whisperx[26].start 612.165
transcript.whisperx[26].end 633.775
transcript.whisperx[26].text 陷入被人頭跟房仲公司跟建商 他們勾結好了嗎對的不可以 因為先前你看嘛 光查到就查了8000多件啊還有高收入的他也來新清安 他不是首購的他也來新清安所以我是要 部長我今天問你這些問題 我就是希望說
transcript.whisperx[27].start 635.994
transcript.whisperx[27].end 665.02
transcript.whisperx[27].text 對於房屋對不動產放管的集中度要去降低尤其對公營航庫也就是說財政部跟公營銀行不要帶頭不要再去火上加油讓我們國內的房價一而再再而上推高你看根據這三大房價指數內政部的住宅價格指數國泰的房價指數信義的房價指數在這些指數上面
transcript.whisperx[28].start 665.72
transcript.whisperx[28].end 681.788
transcript.whisperx[28].text 那麼這個上漲的趨勢是非常明顯而且是從新清安不當的新清安開始的所以我希望新清安2.0如果要做我們就要做的徹底要幫到真正需要的青年朋友們
transcript.whisperx[29].start 683.347
transcript.whisperx[29].end 700.645
transcript.whisperx[29].text 這個收入低的青年朋友們創業的青年朋友們新婚的青年朋友需要幫助的青年朋友們這樣我們這個政策來自於我們全民對青年朋友們的利息補助這才是值得的嘛
transcript.whisperx[30].start 701.411
transcript.whisperx[30].end 716.883
transcript.whisperx[30].text 好不好 委員這意見我們一定會在制定的時候 一定會納入的是 謝謝委員好 台銀 土銀的特別 盯一盯他們啦我看他們這兩家好像都是脫薑泥嘛好像他們董事長 總經理好像都不太聽你的話不會啦 好 謝謝你認命的 我只能找你 好不好好 謝謝 謝謝 王委員
transcript.whisperx[31].start 728.552
transcript.whisperx[31].end 732.746
transcript.whisperx[31].text 接下來我們請鄭正前委員鄭正前委員鄭正前委員