iVOD / 166482

Field Value
IVOD_ID 166482
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166482
日期 2025-12-17
會議資料.會議代碼 委員會-11-4-20-13
會議資料.會議代碼:str 第11屆第4會期財政委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-12-17T11:05:47+08:00
結束時間 2025-12-17T11:15:25+08:00
影片長度 00:09:38
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a6d7659fd659acd0c323f5ce1f7c3012a3419a5287f8f915486d4848cd7fb6f3db95e054bd3dacb45ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 顏寬恒
委員發言時間 11:05:47 - 11:15:25
會議時間 2025-12-17T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第13次全體委員會議(事由:審查「海關進口稅則」5案: 本院委員徐富癸等17人、委員黃健豪等22人、委員徐富癸等16人、委員陳菁徽等16人、委員林思銘等16人分別擬具「海關進口稅則部分稅則修正草案」等5案。【後1案須經各黨團簽署不復議同意書】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 0.72284375
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.46846875
transcript.pyannote[1].end 9.21096875
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 12.14721875
transcript.pyannote[2].end 15.74159375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 16.14659375
transcript.pyannote[3].end 16.88909375
transcript.pyannote[4].speaker SPEAKER_00
transcript.pyannote[4].start 17.09159375
transcript.pyannote[4].end 19.06596875
transcript.pyannote[5].speaker SPEAKER_01
transcript.pyannote[5].start 17.27721875
transcript.pyannote[5].end 18.15471875
transcript.pyannote[6].speaker SPEAKER_01
transcript.pyannote[6].start 24.02721875
transcript.pyannote[6].end 24.63471875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 25.27596875
transcript.pyannote[7].end 26.03534375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 26.91284375
transcript.pyannote[8].end 27.58784375
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 28.60034375
transcript.pyannote[9].end 30.20346875
transcript.pyannote[10].speaker SPEAKER_00
transcript.pyannote[10].start 30.35534375
transcript.pyannote[10].end 31.21596875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 31.78971875
transcript.pyannote[11].end 33.39284375
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 34.23659375
transcript.pyannote[12].end 36.97034375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 37.44284375
transcript.pyannote[13].end 39.02909375
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 39.28221875
transcript.pyannote[14].end 40.24409375
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 40.71659375
transcript.pyannote[15].end 43.02846875
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 43.61909375
transcript.pyannote[16].end 45.99846875
transcript.pyannote[17].speaker SPEAKER_00
transcript.pyannote[17].start 46.47096875
transcript.pyannote[17].end 47.24721875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 47.39909375
transcript.pyannote[18].end 49.57596875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 50.14971875
transcript.pyannote[19].end 53.20409375
transcript.pyannote[20].speaker SPEAKER_00
transcript.pyannote[20].start 53.60909375
transcript.pyannote[20].end 56.61284375
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 56.83221875
transcript.pyannote[21].end 58.14846875
transcript.pyannote[22].speaker SPEAKER_00
transcript.pyannote[22].start 58.57034375
transcript.pyannote[22].end 60.00471875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 60.25784375
transcript.pyannote[23].end 61.72596875
transcript.pyannote[24].speaker SPEAKER_00
transcript.pyannote[24].start 62.29971875
transcript.pyannote[24].end 64.45971875
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 64.78034375
transcript.pyannote[25].end 66.13034375
transcript.pyannote[26].speaker SPEAKER_00
transcript.pyannote[26].start 66.38346875
transcript.pyannote[26].end 66.50159375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 67.15971875
transcript.pyannote[27].end 68.64471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 69.23534375
transcript.pyannote[28].end 72.71159375
transcript.pyannote[29].speaker SPEAKER_00
transcript.pyannote[29].start 73.18409375
transcript.pyannote[29].end 76.20471875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 76.64346875
transcript.pyannote[30].end 80.55846875
transcript.pyannote[31].speaker SPEAKER_00
transcript.pyannote[31].start 81.06471875
transcript.pyannote[31].end 85.58721875
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 86.36346875
transcript.pyannote[32].end 87.96659375
transcript.pyannote[33].speaker SPEAKER_00
transcript.pyannote[33].start 88.57409375
transcript.pyannote[33].end 89.31659375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 89.58659375
transcript.pyannote[34].end 93.43409375
transcript.pyannote[35].speaker SPEAKER_00
transcript.pyannote[35].start 93.95721875
transcript.pyannote[35].end 96.84284375
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 97.46721875
transcript.pyannote[36].end 98.61471875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 99.00284375
transcript.pyannote[37].end 102.41159375
transcript.pyannote[38].speaker SPEAKER_01
transcript.pyannote[38].start 103.20471875
transcript.pyannote[38].end 115.67534375
transcript.pyannote[39].speaker SPEAKER_00
transcript.pyannote[39].start 109.83659375
transcript.pyannote[39].end 110.32596875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 114.49409375
transcript.pyannote[40].end 115.01721875
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 115.64159375
transcript.pyannote[41].end 120.29909375
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 120.95721875
transcript.pyannote[42].end 126.47534375
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 126.67784375
transcript.pyannote[43].end 130.10346875
transcript.pyannote[44].speaker SPEAKER_00
transcript.pyannote[44].start 130.67721875
transcript.pyannote[44].end 134.62596875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 134.79471875
transcript.pyannote[45].end 136.21221875
transcript.pyannote[46].speaker SPEAKER_00
transcript.pyannote[46].start 136.51596875
transcript.pyannote[46].end 136.95471875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 137.17409375
transcript.pyannote[47].end 141.89909375
transcript.pyannote[48].speaker SPEAKER_00
transcript.pyannote[48].start 142.30409375
transcript.pyannote[48].end 147.19784375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 147.56909375
transcript.pyannote[49].end 149.40846875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 149.69534375
transcript.pyannote[50].end 151.01159375
transcript.pyannote[51].speaker SPEAKER_00
transcript.pyannote[51].start 151.41659375
transcript.pyannote[51].end 155.56784375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 155.88846875
transcript.pyannote[52].end 157.00221875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 157.52534375
transcript.pyannote[53].end 160.95096875
transcript.pyannote[54].speaker SPEAKER_00
transcript.pyannote[54].start 161.49096875
transcript.pyannote[54].end 162.67221875
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 162.97596875
transcript.pyannote[55].end 167.43096875
transcript.pyannote[56].speaker SPEAKER_00
transcript.pyannote[56].start 168.52784375
transcript.pyannote[56].end 172.05471875
transcript.pyannote[57].speaker SPEAKER_00
transcript.pyannote[57].start 172.37534375
transcript.pyannote[57].end 179.20971875
transcript.pyannote[58].speaker SPEAKER_00
transcript.pyannote[58].start 179.66534375
transcript.pyannote[58].end 180.99846875
transcript.pyannote[59].speaker SPEAKER_00
transcript.pyannote[59].start 181.40346875
transcript.pyannote[59].end 182.93909375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 183.29346875
transcript.pyannote[60].end 190.11096875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 190.48221875
transcript.pyannote[61].end 196.81034375
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 197.80596875
transcript.pyannote[62].end 198.53159375
transcript.pyannote[63].speaker SPEAKER_01
transcript.pyannote[63].start 199.10534375
transcript.pyannote[63].end 204.33659375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 203.00346875
transcript.pyannote[64].end 205.77096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 204.69096875
transcript.pyannote[65].end 217.19534375
transcript.pyannote[66].speaker SPEAKER_00
transcript.pyannote[66].start 206.90159375
transcript.pyannote[66].end 208.97721875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 217.46534375
transcript.pyannote[67].end 218.49471875
transcript.pyannote[68].speaker SPEAKER_00
transcript.pyannote[68].start 219.22034375
transcript.pyannote[68].end 222.10596875
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 222.02159375
transcript.pyannote[69].end 224.82284375
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 222.29159375
transcript.pyannote[70].end 225.97034375
transcript.pyannote[71].speaker SPEAKER_01
transcript.pyannote[71].start 225.75096875
transcript.pyannote[71].end 225.83534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 225.97034375
transcript.pyannote[72].end 226.22346875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 226.22346875
transcript.pyannote[73].end 226.24034375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 226.29096875
transcript.pyannote[74].end 231.18471875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 231.33659375
transcript.pyannote[75].end 233.74971875
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 235.36971875
transcript.pyannote[76].end 235.85909375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 235.48784375
transcript.pyannote[77].end 237.39471875
transcript.pyannote[78].speaker SPEAKER_00
transcript.pyannote[78].start 236.53409375
transcript.pyannote[78].end 240.48284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 240.65159375
transcript.pyannote[79].end 242.38971875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 240.70221875
transcript.pyannote[80].end 241.07346875
transcript.pyannote[81].speaker SPEAKER_01
transcript.pyannote[81].start 242.06909375
transcript.pyannote[81].end 242.23784375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 242.57534375
transcript.pyannote[82].end 254.74221875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 254.20221875
transcript.pyannote[83].end 256.05846875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 255.94034375
transcript.pyannote[84].end 267.02721875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 265.72784375
transcript.pyannote[85].end 268.79909375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 269.00159375
transcript.pyannote[86].end 270.62159375
transcript.pyannote[87].speaker SPEAKER_00
transcript.pyannote[87].start 270.95909375
transcript.pyannote[87].end 274.73909375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 275.44784375
transcript.pyannote[88].end 296.60909375
transcript.pyannote[89].speaker SPEAKER_00
transcript.pyannote[89].start 296.69346875
transcript.pyannote[89].end 298.26284375
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 299.32596875
transcript.pyannote[90].end 305.13096875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 300.03471875
transcript.pyannote[91].end 300.65909375
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 302.80221875
transcript.pyannote[92].end 306.68346875
transcript.pyannote[93].speaker SPEAKER_01
transcript.pyannote[93].start 307.57784375
transcript.pyannote[93].end 312.60659375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 310.75034375
transcript.pyannote[94].end 311.84721875
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 312.64034375
transcript.pyannote[95].end 322.36034375
transcript.pyannote[96].speaker SPEAKER_01
transcript.pyannote[96].start 322.74846875
transcript.pyannote[96].end 327.06846875
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 327.42284375
transcript.pyannote[97].end 329.04284375
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 329.31284375
transcript.pyannote[98].end 334.27409375
transcript.pyannote[99].speaker SPEAKER_00
transcript.pyannote[99].start 334.51034375
transcript.pyannote[99].end 338.12159375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 338.81346875
transcript.pyannote[100].end 343.08284375
transcript.pyannote[101].speaker SPEAKER_01
transcript.pyannote[101].start 343.58909375
transcript.pyannote[101].end 344.60159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 343.79159375
transcript.pyannote[102].end 346.62659375
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 347.03159375
transcript.pyannote[103].end 350.05221875
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 350.69346875
transcript.pyannote[104].end 360.51471875
transcript.pyannote[105].speaker SPEAKER_00
transcript.pyannote[105].start 360.85221875
transcript.pyannote[105].end 363.48471875
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 363.85596875
transcript.pyannote[106].end 385.10159375
transcript.pyannote[107].speaker SPEAKER_01
transcript.pyannote[107].start 386.46846875
transcript.pyannote[107].end 410.68409375
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 411.54471875
transcript.pyannote[108].end 419.93159375
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 420.23534375
transcript.pyannote[109].end 443.65784375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 444.21471875
transcript.pyannote[110].end 446.93159375
transcript.pyannote[111].speaker SPEAKER_01
transcript.pyannote[111].start 447.77534375
transcript.pyannote[111].end 450.76221875
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 451.82534375
transcript.pyannote[112].end 453.90096875
transcript.pyannote[113].speaker SPEAKER_00
transcript.pyannote[113].start 454.15409375
transcript.pyannote[113].end 465.05534375
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 465.62909375
transcript.pyannote[114].end 471.13034375
transcript.pyannote[115].speaker SPEAKER_00
transcript.pyannote[115].start 471.41721875
transcript.pyannote[115].end 472.46346875
transcript.pyannote[116].speaker SPEAKER_00
transcript.pyannote[116].start 473.05409375
transcript.pyannote[116].end 474.35346875
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 474.72471875
transcript.pyannote[117].end 477.40784375
transcript.pyannote[118].speaker SPEAKER_00
transcript.pyannote[118].start 477.88034375
transcript.pyannote[118].end 485.77784375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 486.11534375
transcript.pyannote[119].end 487.09409375
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 487.36409375
transcript.pyannote[120].end 492.47721875
transcript.pyannote[121].speaker SPEAKER_01
transcript.pyannote[121].start 493.65846875
transcript.pyannote[121].end 554.59409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 531.18846875
transcript.pyannote[122].end 531.66096875
transcript.pyannote[123].speaker SPEAKER_00
transcript.pyannote[123].start 553.36221875
transcript.pyannote[123].end 556.68659375
transcript.pyannote[124].speaker SPEAKER_01
transcript.pyannote[124].start 554.94846875
transcript.pyannote[124].end 559.31909375
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 557.24346875
transcript.pyannote[125].end 562.13721875
transcript.pyannote[126].speaker SPEAKER_01
transcript.pyannote[126].start 562.50846875
transcript.pyannote[126].end 566.40659375
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 563.70659375
transcript.pyannote[127].end 566.54159375
transcript.pyannote[128].speaker SPEAKER_01
transcript.pyannote[128].start 566.50784375
transcript.pyannote[128].end 568.68471875
transcript.pyannote[129].speaker SPEAKER_00
transcript.pyannote[129].start 568.46534375
transcript.pyannote[129].end 570.01784375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 568.71846875
transcript.pyannote[130].end 568.78596875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 569.02221875
transcript.pyannote[131].end 573.84846875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 570.49034375
transcript.pyannote[132].end 572.09346875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 572.70096875
transcript.pyannote[133].end 572.80221875
transcript.pyannote[134].speaker SPEAKER_00
transcript.pyannote[134].start 573.84846875
transcript.pyannote[134].end 574.89471875
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 575.36721875
transcript.pyannote[135].end 575.90721875
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 577.03784375
transcript.pyannote[136].end 578.35409375
transcript.whisperx[0].start 8.773
transcript.whisperx[0].end 18.399
transcript.whisperx[0].text 主席各位列席官員大家早主席有請我們財政部莊部長莊部長委員好部長早部長行政院左院長他宣布不附屬財化法
transcript.whisperx[1].start 34.261
transcript.whisperx[1].end 45.428
transcript.whisperx[1].text 那真的是創了這個憲政的惡例立法院三讀通過裁判法修正行政院提附議遭到否決依照中華民國憲法第72條規定總統應於收到後10日內公佈
transcript.whisperx[2].start 50.211
transcript.whisperx[2].end 65.79
transcript.whisperx[2].text 再來依照憲法徵修條文第三條附議時如今全體立法委員二分之一以上決議為此原案行政院長應即接受該決議所以不附屬就是告訴國人執政黨就是獨裁
transcript.whisperx[3].start 67.213
transcript.whisperx[3].end 87.275
transcript.whisperx[3].text 那我想通過法律他想通過了他不想通過的法律就不附屬所以這個就不認輸了那我希望部長你能好好的勸一下我們的主委院長這個法律人要依法行政尤其是行政院長一定要依法行政那回到今天的主題
transcript.whisperx[4].start 88.818
transcript.whisperx[4].end 102.177
transcript.whisperx[4].text 我想今天審查關於啤酒業者所需要的進口麥芽及啤酒花關稅調整為免稅的部分這部分應該是我們財政部是認同的 支持
transcript.whisperx[5].start 103.457
transcript.whisperx[5].end 129.709
transcript.whisperx[5].text 跟委員報告我們經過各項分析以後不管從進口量還有有關對產業的一個注意以及對於我們國農業的影響等等我們評估以後基本上是支持的我剛剛有聽到其他委員的這個質詢所以大概都知道我想近年來我們都可以看到大陸政府大力的補助他們中國製的啤酒導致台灣製的啤酒市佔率不斷的下降
transcript.whisperx[6].start 130.709
transcript.whisperx[6].end 156.422
transcript.whisperx[6].text 那大陸的啤酒可以為什麼大陸啤酒有佔有優勢因為他們有政府補貼嘛政府補貼還有成本優勢還有品牌的一個包裝策略讓市占率上升到36%我國的本土啤酒業者這個造成很大的衝擊那其實我們現在大陸製的啤酒很多的品牌現在在台灣到處可見不管是熱炒店
transcript.whisperx[7].start 157.563
transcript.whisperx[7].end 167.101
transcript.whisperx[7].text 便利商店 大排檔這些各大餐廳都有供應這些進口啤酒已經嚴重的影響到我們的一個啤酒市場
transcript.whisperx[8].start 168.587
transcript.whisperx[8].end 196.554
transcript.whisperx[8].text 今年第一季這個進口啤酒就佔了71%或者以上更多都有可能那相較之下我國的啤酒市佔率從2018年的59%持續的下滑2023年跌破五成2024年持續下降到47%所以我想請這個部長你可不可以預估一下今年整年的啤酒業績它的有沒有預估值
transcript.whisperx[9].start 197.807
transcript.whisperx[9].end 217.554
transcript.whisperx[9].text 可不可以說明一下啤酒的業績這個部分應該不在財政部對啦 因為今天是台酒嘛台酒沒有來你說台酒公司是不是台酒公司沒有來董事長沒有來因為沒有辦法來我們請他們在座提供給委員這樣子對於今年整個啤酒的銷售量的部分好
transcript.whisperx[10].start 219.535
transcript.whisperx[10].end 230.048
transcript.whisperx[10].text 當然我們還是要宣導喝酒不開車喝酒一定要理性這個很重要但是我也知道說你們在7月3號的時候對中國大陸製的啤酒課徵反傾銷稅
transcript.whisperx[11].start 235.39
transcript.whisperx[11].end 264.471
transcript.whisperx[11].text 客增反傾銷稅反傾銷稅沒有錯但是不是客稅就沒事不是客稅就沒事主要就是說如何提高它我國本土產業的啤酒市佔率如何提高它的競爭力這個才是重要要從遠處來看是的委員說得很適對因為如果假設這樣子的年年衰退然後我們賣不出去的啤酒都堆在這個倉庫裡面到時候也變成更大的問題
transcript.whisperx[12].start 265.511
transcript.whisperx[12].end 270.415
transcript.whisperx[12].text 這個是不行的 行銷也要加強部長你再跟這個台酒的董事長溝通一下交流一下你們要理解去理解說我國的這個國產的啤酒遇到的這些困境如何解困如何把這些這些解決當然就是調降關稅然後我們尤其是原料的部分你們今天這兩項我們一個是麥芽跟一個是啤酒花分別佔了90
transcript.whisperx[13].start 297.332
transcript.whisperx[13].end 322.1
transcript.whisperx[13].text 90幾% 93跟86是不是7跟86 進口都是做這個都是主要啤酒釀造嘛對不對 那最大宗就是台酒嘛對 我們 啤酒是我們也是台酒的非常好的一個優質產品對 所以我想就是說這個部分要加強本土品牌的推廣然後更多的一個產業創新的資源就是要請財政部支持
transcript.whisperx[14].start 323.633
transcript.whisperx[14].end 349.028
transcript.whisperx[14].text 謝謝 謝謝委員我們也會督請這個台酒公司依照委員的一小努力對 我本來今天想要問這個菸酒公司說它對於後續的啤酒行銷推廣有什麼創新跟主導的方向可是今天沒來所以就沒辦法問了我們會請我們董事長到委員辦公室跟委員請議好 謝謝那這個主要就是說部長 那我再請教
transcript.whisperx[15].start 351.125
transcript.whisperx[15].end 373.837
transcript.whisperx[15].text 11月初初步的統計光是10月份 單月份我們的實增就4174億創下從86年以來這個單月新高28年來的單月新高主要是受惠於上市櫃股票這個部分日均成交值躍升至6267億那請教部長
transcript.whisperx[16].start 379.303
transcript.whisperx[16].end 384.752
transcript.whisperx[16].text 這個你之前有說明有說過明年確定不會超增那你可不可以說明一下現在稅收的情況
transcript.whisperx[17].start 386.477
transcript.whisperx[17].end 408.632
transcript.whisperx[17].text 今年的税收的情况全国的税收达到3兆5813亿达成全年度的预算数是94.2%到11月底的实收数那么中央的部分的税收到11月底实增数是2兆6350亿达成全年预算数的94.6%
transcript.whisperx[18].start 411.584
transcript.whisperx[18].end 437.413
transcript.whisperx[18].text 大概是到11月底的一个数字是这样那因为114年的我们的税客收入的预算数呢比去年的实征数我们有提高了947亿所以到12月底全年的实收就中央的部分是增加947亿到全年为止我们的税收全年的税收数跟预算数之间大概差距不会超过2%
transcript.whisperx[19].start 439.214
transcript.whisperx[19].end 448.042
transcript.whisperx[19].text 這個部分算差距來說另一年來說是相當的一個接近我們的預算數的對 所以說確定今年不會超生對不對應該是不會超過我們的預算數 對
transcript.whisperx[20].start 452.48
transcript.whisperx[20].end 470.308
transcript.whisperx[20].text 其實很多學者批評說政府未能夠精確掌握稅收的走勢但是大幅編列這些特別預算把特別預算常態化這是造成說我們的財政機率衰敗的一個最主要的原因
transcript.whisperx[21].start 471.508
transcript.whisperx[21].end 485.674
transcript.whisperx[21].text 那我想所以要請教部長你們未來對於說預算的一個編列特別預算的一個編列這部分你會不會跟我們行政院左院長跟他討論如何來勸他不要再這樣子把這個特別預算常態化
transcript.whisperx[22].start 493.715
transcript.whisperx[22].end 514.22
transcript.whisperx[22].text 跟委員報告特別預算跟總預算在預算法裡面它都是合法的那總預算是一般的一個施政每年度的施政的一個支出那特別預算呢是它是分年分年編列而且它是有重大的施政項目的時候可以做編列的那在於也沒有所謂的特別預算的常態化各位跟委員報告譬如說像為了加強國防還有譬如說為了防疫
transcript.whisperx[23].start 521.482
transcript.whisperx[23].end 535.586
transcript.whisperx[23].text 譬如說丹納斯颱風以及因應國際情勢的強化韌性這都是因應國家施政重大政事需要或者是防災需要的都是依照這個法律來編列而且有關債務的控管我們的債務的健全事實上是國際許認可的
transcript.whisperx[24].start 540.347
transcript.whisperx[24].end 544.328
transcript.whisperx[24].text 我們整個來說債務控管實際數到目前為止只有34.3%這在國際間是非常低的所以我們會做好我們的債務控管我們會非常重視我們的財政紀律這個部分我想跟委員做這樣的說明也沒有所謂的財政敗壞絕對沒有財政敗壞你要多多的勸一下我們的左院長一定要依法行政
transcript.whisperx[25].start 562.551
transcript.whisperx[25].end 562.571
transcript.whisperx[25].text 好 謝謝