iVOD / 166456

Field Value
IVOD_ID 166456
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166456
日期 2025-12-17
會議資料.會議代碼 委員會-11-4-20-13
會議資料.會議代碼:str 第11屆第4會期財政委員會第13次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 13
會議資料.種類 委員會
會議資料.委員會代碼[0] 20
會議資料.委員會代碼:str[0] 財政委員會
會議資料.標題 第11屆第4會期財政委員會第13次全體委員會議
影片種類 Clip
開始時間 2025-12-17T09:28:41+08:00
結束時間 2025-12-17T09:41:12+08:00
影片長度 00:12:31
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/a6d7659fd659acd09a21284c98bd3134a3419a5287f8f915704993c5309c567d27a1751fd121cdf95ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 吳秉叡
委員發言時間 09:28:41 - 09:41:12
會議時間 2025-12-17T09:00:00+08:00
會議名稱 立法院第11屆第4會期財政委員會第13次全體委員會議(事由:審查「海關進口稅則」5案: 本院委員徐富癸等17人、委員黃健豪等22人、委員徐富癸等16人、委員陳菁徽等16人、委員林思銘等16人分別擬具「海關進口稅則部分稅則修正草案」等5案。【後1案須經各黨團簽署不復議同意書】)
transcript.pyannote[0].speaker SPEAKER_00
transcript.pyannote[0].start 0.03096875
transcript.pyannote[0].end 1.54971875
transcript.pyannote[1].speaker SPEAKER_00
transcript.pyannote[1].start 8.56971875
transcript.pyannote[1].end 10.20659375
transcript.pyannote[2].speaker SPEAKER_00
transcript.pyannote[2].start 10.40909375
transcript.pyannote[2].end 11.42159375
transcript.pyannote[3].speaker SPEAKER_00
transcript.pyannote[3].start 15.96096875
transcript.pyannote[3].end 16.39971875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 16.39971875
transcript.pyannote[4].end 16.41659375
transcript.pyannote[5].speaker SPEAKER_00
transcript.pyannote[5].start 16.41659375
transcript.pyannote[5].end 16.46721875
transcript.pyannote[6].speaker SPEAKER_00
transcript.pyannote[6].start 16.87221875
transcript.pyannote[6].end 17.37846875
transcript.pyannote[7].speaker SPEAKER_00
transcript.pyannote[7].start 18.17159375
transcript.pyannote[7].end 21.64784375
transcript.pyannote[8].speaker SPEAKER_00
transcript.pyannote[8].start 22.05284375
transcript.pyannote[8].end 23.99346875
transcript.pyannote[9].speaker SPEAKER_00
transcript.pyannote[9].start 24.65159375
transcript.pyannote[9].end 25.39409375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 26.10284375
transcript.pyannote[10].end 42.92721875
transcript.pyannote[11].speaker SPEAKER_00
transcript.pyannote[11].start 35.60346875
transcript.pyannote[11].end 35.97471875
transcript.pyannote[12].speaker SPEAKER_00
transcript.pyannote[12].start 43.77096875
transcript.pyannote[12].end 44.09159375
transcript.pyannote[13].speaker SPEAKER_00
transcript.pyannote[13].start 44.37846875
transcript.pyannote[13].end 46.36971875
transcript.pyannote[14].speaker SPEAKER_00
transcript.pyannote[14].start 46.72409375
transcript.pyannote[14].end 48.63096875
transcript.pyannote[15].speaker SPEAKER_00
transcript.pyannote[15].start 49.25534375
transcript.pyannote[15].end 50.94284375
transcript.pyannote[16].speaker SPEAKER_00
transcript.pyannote[16].start 51.14534375
transcript.pyannote[16].end 53.23784375
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 53.49096875
transcript.pyannote[17].end 55.27971875
transcript.pyannote[18].speaker SPEAKER_00
transcript.pyannote[18].start 55.21221875
transcript.pyannote[18].end 58.41846875
transcript.pyannote[19].speaker SPEAKER_00
transcript.pyannote[19].start 58.95846875
transcript.pyannote[19].end 64.27409375
transcript.pyannote[20].speaker SPEAKER_02
transcript.pyannote[20].start 64.56096875
transcript.pyannote[20].end 84.37221875
transcript.pyannote[21].speaker SPEAKER_00
transcript.pyannote[21].start 83.54534375
transcript.pyannote[21].end 88.82721875
transcript.pyannote[22].speaker SPEAKER_02
transcript.pyannote[22].start 88.32096875
transcript.pyannote[22].end 89.02971875
transcript.pyannote[23].speaker SPEAKER_00
transcript.pyannote[23].start 89.02971875
transcript.pyannote[23].end 105.56721875
transcript.pyannote[24].speaker SPEAKER_02
transcript.pyannote[24].start 89.11409375
transcript.pyannote[24].end 90.97034375
transcript.pyannote[25].speaker SPEAKER_00
transcript.pyannote[25].start 106.24221875
transcript.pyannote[25].end 108.41909375
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 112.19909375
transcript.pyannote[26].end 118.57784375
transcript.pyannote[27].speaker SPEAKER_00
transcript.pyannote[27].start 118.32471875
transcript.pyannote[27].end 118.86471875
transcript.pyannote[28].speaker SPEAKER_00
transcript.pyannote[28].start 119.11784375
transcript.pyannote[28].end 120.88971875
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 120.99096875
transcript.pyannote[29].end 121.42971875
transcript.pyannote[30].speaker SPEAKER_00
transcript.pyannote[30].start 121.21034375
transcript.pyannote[30].end 123.77534375
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 125.90159375
transcript.pyannote[31].end 137.47784375
transcript.pyannote[32].speaker SPEAKER_00
transcript.pyannote[32].start 138.38909375
transcript.pyannote[32].end 138.91221875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 138.42284375
transcript.pyannote[33].end 140.17784375
transcript.pyannote[34].speaker SPEAKER_00
transcript.pyannote[34].start 140.17784375
transcript.pyannote[34].end 149.30721875
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 140.24534375
transcript.pyannote[35].end 140.90346875
transcript.pyannote[36].speaker SPEAKER_00
transcript.pyannote[36].start 149.71221875
transcript.pyannote[36].end 151.60221875
transcript.pyannote[37].speaker SPEAKER_00
transcript.pyannote[37].start 152.00721875
transcript.pyannote[37].end 152.78346875
transcript.pyannote[38].speaker SPEAKER_00
transcript.pyannote[38].start 153.74534375
transcript.pyannote[38].end 160.02284375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 161.87909375
transcript.pyannote[39].end 176.23971875
transcript.pyannote[40].speaker SPEAKER_00
transcript.pyannote[40].start 179.54721875
transcript.pyannote[40].end 187.39409375
transcript.pyannote[41].speaker SPEAKER_00
transcript.pyannote[41].start 188.01846875
transcript.pyannote[41].end 191.08971875
transcript.pyannote[42].speaker SPEAKER_00
transcript.pyannote[42].start 191.84909375
transcript.pyannote[42].end 194.49846875
transcript.pyannote[43].speaker SPEAKER_00
transcript.pyannote[43].start 197.24909375
transcript.pyannote[43].end 199.66221875
transcript.pyannote[44].speaker SPEAKER_01
transcript.pyannote[44].start 202.61534375
transcript.pyannote[44].end 221.63346875
transcript.pyannote[45].speaker SPEAKER_00
transcript.pyannote[45].start 220.43534375
transcript.pyannote[45].end 222.69659375
transcript.pyannote[46].speaker SPEAKER_01
transcript.pyannote[46].start 222.69659375
transcript.pyannote[46].end 225.34596875
transcript.pyannote[47].speaker SPEAKER_00
transcript.pyannote[47].start 224.18159375
transcript.pyannote[47].end 232.24784375
transcript.pyannote[48].speaker SPEAKER_01
transcript.pyannote[48].start 233.20971875
transcript.pyannote[48].end 247.23284375
transcript.pyannote[49].speaker SPEAKER_00
transcript.pyannote[49].start 246.06846875
transcript.pyannote[49].end 253.62846875
transcript.pyannote[50].speaker SPEAKER_00
transcript.pyannote[50].start 253.99971875
transcript.pyannote[50].end 260.32784375
transcript.pyannote[51].speaker SPEAKER_01
transcript.pyannote[51].start 260.32784375
transcript.pyannote[51].end 260.63159375
transcript.pyannote[52].speaker SPEAKER_00
transcript.pyannote[52].start 261.17159375
transcript.pyannote[52].end 262.80846875
transcript.pyannote[53].speaker SPEAKER_00
transcript.pyannote[53].start 263.11221875
transcript.pyannote[53].end 264.02346875
transcript.pyannote[54].speaker SPEAKER_01
transcript.pyannote[54].start 263.85471875
transcript.pyannote[54].end 269.94659375
transcript.pyannote[55].speaker SPEAKER_00
transcript.pyannote[55].start 269.87909375
transcript.pyannote[55].end 277.32096875
transcript.pyannote[56].speaker SPEAKER_01
transcript.pyannote[56].start 270.06471875
transcript.pyannote[56].end 271.63409375
transcript.pyannote[57].speaker SPEAKER_01
transcript.pyannote[57].start 273.60846875
transcript.pyannote[57].end 274.68846875
transcript.pyannote[58].speaker SPEAKER_01
transcript.pyannote[58].start 275.17784375
transcript.pyannote[58].end 275.51534375
transcript.pyannote[59].speaker SPEAKER_01
transcript.pyannote[59].start 276.51096875
transcript.pyannote[59].end 277.16909375
transcript.pyannote[60].speaker SPEAKER_01
transcript.pyannote[60].start 277.32096875
transcript.pyannote[60].end 283.22721875
transcript.pyannote[61].speaker SPEAKER_00
transcript.pyannote[61].start 278.02971875
transcript.pyannote[61].end 278.16471875
transcript.pyannote[62].speaker SPEAKER_00
transcript.pyannote[62].start 280.78034375
transcript.pyannote[62].end 281.65784375
transcript.pyannote[63].speaker SPEAKER_00
transcript.pyannote[63].start 283.22721875
transcript.pyannote[63].end 288.07034375
transcript.pyannote[64].speaker SPEAKER_00
transcript.pyannote[64].start 288.72846875
transcript.pyannote[64].end 298.65096875
transcript.pyannote[65].speaker SPEAKER_01
transcript.pyannote[65].start 291.93471875
transcript.pyannote[65].end 292.49159375
transcript.pyannote[66].speaker SPEAKER_01
transcript.pyannote[66].start 298.24596875
transcript.pyannote[66].end 298.27971875
transcript.pyannote[67].speaker SPEAKER_00
transcript.pyannote[67].start 298.81971875
transcript.pyannote[67].end 300.59159375
transcript.pyannote[68].speaker SPEAKER_01
transcript.pyannote[68].start 298.90409375
transcript.pyannote[68].end 299.20784375
transcript.pyannote[69].speaker SPEAKER_01
transcript.pyannote[69].start 299.56221875
transcript.pyannote[69].end 299.73096875
transcript.pyannote[70].speaker SPEAKER_00
transcript.pyannote[70].start 300.89534375
transcript.pyannote[70].end 302.92034375
transcript.pyannote[71].speaker SPEAKER_00
transcript.pyannote[71].start 304.96221875
transcript.pyannote[71].end 305.36721875
transcript.pyannote[72].speaker SPEAKER_00
transcript.pyannote[72].start 306.10971875
transcript.pyannote[72].end 308.16846875
transcript.pyannote[73].speaker SPEAKER_00
transcript.pyannote[73].start 308.65784375
transcript.pyannote[73].end 309.23159375
transcript.pyannote[74].speaker SPEAKER_00
transcript.pyannote[74].start 310.00784375
transcript.pyannote[74].end 311.00346875
transcript.pyannote[75].speaker SPEAKER_00
transcript.pyannote[75].start 311.40846875
transcript.pyannote[75].end 312.23534375
transcript.pyannote[76].speaker SPEAKER_00
transcript.pyannote[76].start 312.75846875
transcript.pyannote[76].end 313.83846875
transcript.pyannote[77].speaker SPEAKER_00
transcript.pyannote[77].start 314.39534375
transcript.pyannote[77].end 316.26846875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 317.11221875
transcript.pyannote[78].end 317.43284375
transcript.pyannote[79].speaker SPEAKER_00
transcript.pyannote[79].start 317.75346875
transcript.pyannote[79].end 319.77846875
transcript.pyannote[80].speaker SPEAKER_02
transcript.pyannote[80].start 320.06534375
transcript.pyannote[80].end 320.40284375
transcript.pyannote[81].speaker SPEAKER_00
transcript.pyannote[81].start 320.40284375
transcript.pyannote[81].end 321.44909375
transcript.pyannote[82].speaker SPEAKER_00
transcript.pyannote[82].start 322.66409375
transcript.pyannote[82].end 323.59221875
transcript.pyannote[83].speaker SPEAKER_02
transcript.pyannote[83].start 324.33471875
transcript.pyannote[83].end 341.86784375
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 342.39096875
transcript.pyannote[84].end 342.84659375
transcript.pyannote[85].speaker SPEAKER_00
transcript.pyannote[85].start 343.06596875
transcript.pyannote[85].end 346.98096875
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 347.57159375
transcript.pyannote[86].end 354.03471875
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 355.62096875
transcript.pyannote[87].end 367.04534375
transcript.pyannote[88].speaker SPEAKER_00
transcript.pyannote[88].start 366.04971875
transcript.pyannote[88].end 367.75409375
transcript.pyannote[89].speaker SPEAKER_02
transcript.pyannote[89].start 367.72034375
transcript.pyannote[89].end 375.75284375
transcript.pyannote[90].speaker SPEAKER_00
transcript.pyannote[90].start 374.52096875
transcript.pyannote[90].end 378.50346875
transcript.pyannote[91].speaker SPEAKER_00
transcript.pyannote[91].start 378.92534375
transcript.pyannote[91].end 379.41471875
transcript.pyannote[92].speaker SPEAKER_00
transcript.pyannote[92].start 380.05596875
transcript.pyannote[92].end 391.24409375
transcript.pyannote[93].speaker SPEAKER_00
transcript.pyannote[93].start 391.75034375
transcript.pyannote[93].end 394.01159375
transcript.pyannote[94].speaker SPEAKER_00
transcript.pyannote[94].start 394.41659375
transcript.pyannote[94].end 399.14159375
transcript.pyannote[95].speaker SPEAKER_00
transcript.pyannote[95].start 401.79096875
transcript.pyannote[95].end 404.30534375
transcript.pyannote[96].speaker SPEAKER_00
transcript.pyannote[96].start 406.93784375
transcript.pyannote[96].end 407.54534375
transcript.pyannote[97].speaker SPEAKER_02
transcript.pyannote[97].start 407.64659375
transcript.pyannote[97].end 409.04721875
transcript.pyannote[98].speaker SPEAKER_00
transcript.pyannote[98].start 409.18221875
transcript.pyannote[98].end 414.02534375
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 414.02534375
transcript.pyannote[99].end 416.97846875
transcript.pyannote[100].speaker SPEAKER_00
transcript.pyannote[100].start 416.26971875
transcript.pyannote[100].end 418.26096875
transcript.pyannote[101].speaker SPEAKER_00
transcript.pyannote[101].start 418.56471875
transcript.pyannote[101].end 421.28159375
transcript.pyannote[102].speaker SPEAKER_00
transcript.pyannote[102].start 421.78784375
transcript.pyannote[102].end 426.12471875
transcript.pyannote[103].speaker SPEAKER_00
transcript.pyannote[103].start 426.49596875
transcript.pyannote[103].end 429.04409375
transcript.pyannote[104].speaker SPEAKER_00
transcript.pyannote[104].start 429.63471875
transcript.pyannote[104].end 433.16159375
transcript.pyannote[105].speaker SPEAKER_02
transcript.pyannote[105].start 433.78596875
transcript.pyannote[105].end 440.48534375
transcript.pyannote[106].speaker SPEAKER_00
transcript.pyannote[106].start 439.91159375
transcript.pyannote[106].end 441.39659375
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 441.48096875
transcript.pyannote[107].end 444.58596875
transcript.pyannote[108].speaker SPEAKER_00
transcript.pyannote[108].start 444.60284375
transcript.pyannote[108].end 447.40409375
transcript.pyannote[109].speaker SPEAKER_02
transcript.pyannote[109].start 447.25221875
transcript.pyannote[109].end 447.60659375
transcript.pyannote[110].speaker SPEAKER_00
transcript.pyannote[110].start 447.60659375
transcript.pyannote[110].end 451.62284375
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 451.99409375
transcript.pyannote[111].end 452.26409375
transcript.pyannote[112].speaker SPEAKER_00
transcript.pyannote[112].start 452.26409375
transcript.pyannote[112].end 453.47909375
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 453.47909375
transcript.pyannote[113].end 454.81221875
transcript.pyannote[114].speaker SPEAKER_00
transcript.pyannote[114].start 455.38596875
transcript.pyannote[114].end 466.99596875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 463.92471875
transcript.pyannote[115].end 464.80221875
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 467.40096875
transcript.pyannote[116].end 481.59284375
transcript.pyannote[117].speaker SPEAKER_00
transcript.pyannote[117].start 481.72784375
transcript.pyannote[117].end 485.74409375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 485.74409375
transcript.pyannote[118].end 492.12284375
transcript.pyannote[119].speaker SPEAKER_00
transcript.pyannote[119].start 492.30846875
transcript.pyannote[119].end 496.22346875
transcript.pyannote[120].speaker SPEAKER_00
transcript.pyannote[120].start 496.83096875
transcript.pyannote[120].end 502.16346875
transcript.pyannote[121].speaker SPEAKER_00
transcript.pyannote[121].start 503.19284375
transcript.pyannote[121].end 504.64409375
transcript.pyannote[122].speaker SPEAKER_00
transcript.pyannote[122].start 506.11221875
transcript.pyannote[122].end 507.85034375
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 509.18346875
transcript.pyannote[123].end 522.07596875
transcript.pyannote[124].speaker SPEAKER_00
transcript.pyannote[124].start 517.30034375
transcript.pyannote[124].end 517.78971875
transcript.pyannote[125].speaker SPEAKER_00
transcript.pyannote[125].start 522.22784375
transcript.pyannote[125].end 530.12534375
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 530.12534375
transcript.pyannote[126].end 531.45846875
transcript.pyannote[127].speaker SPEAKER_00
transcript.pyannote[127].start 531.69471875
transcript.pyannote[127].end 536.06534375
transcript.pyannote[128].speaker SPEAKER_00
transcript.pyannote[128].start 536.33534375
transcript.pyannote[128].end 543.35534375
transcript.pyannote[129].speaker SPEAKER_02
transcript.pyannote[129].start 539.77784375
transcript.pyannote[129].end 540.18284375
transcript.pyannote[130].speaker SPEAKER_02
transcript.pyannote[130].start 543.38909375
transcript.pyannote[130].end 544.84034375
transcript.pyannote[131].speaker SPEAKER_00
transcript.pyannote[131].start 545.11034375
transcript.pyannote[131].end 547.15221875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 548.18159375
transcript.pyannote[132].end 550.52721875
transcript.pyannote[133].speaker SPEAKER_00
transcript.pyannote[133].start 551.15159375
transcript.pyannote[133].end 554.42534375
transcript.pyannote[134].speaker SPEAKER_02
transcript.pyannote[134].start 554.42534375
transcript.pyannote[134].end 554.83034375
transcript.pyannote[135].speaker SPEAKER_00
transcript.pyannote[135].start 554.45909375
transcript.pyannote[135].end 554.59409375
transcript.pyannote[136].speaker SPEAKER_00
transcript.pyannote[136].start 554.79659375
transcript.pyannote[136].end 560.06159375
transcript.pyannote[137].speaker SPEAKER_02
transcript.pyannote[137].start 560.36534375
transcript.pyannote[137].end 562.69409375
transcript.pyannote[138].speaker SPEAKER_00
transcript.pyannote[138].start 562.79534375
transcript.pyannote[138].end 564.70221875
transcript.pyannote[139].speaker SPEAKER_00
transcript.pyannote[139].start 565.63034375
transcript.pyannote[139].end 569.15721875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 569.15721875
transcript.pyannote[140].end 570.81096875
transcript.pyannote[141].speaker SPEAKER_00
transcript.pyannote[141].start 570.81096875
transcript.pyannote[141].end 573.66284375
transcript.pyannote[142].speaker SPEAKER_00
transcript.pyannote[142].start 574.08471875
transcript.pyannote[142].end 576.54846875
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 576.51471875
transcript.pyannote[143].end 578.45534375
transcript.pyannote[144].speaker SPEAKER_00
transcript.pyannote[144].start 578.33721875
transcript.pyannote[144].end 582.43784375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 580.75034375
transcript.pyannote[145].end 581.88096875
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 582.37034375
transcript.pyannote[146].end 585.35721875
transcript.pyannote[147].speaker SPEAKER_00
transcript.pyannote[147].start 585.35721875
transcript.pyannote[147].end 587.04471875
transcript.pyannote[148].speaker SPEAKER_00
transcript.pyannote[148].start 587.24721875
transcript.pyannote[148].end 588.00659375
transcript.pyannote[149].speaker SPEAKER_00
transcript.pyannote[149].start 588.32721875
transcript.pyannote[149].end 594.35159375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 594.72284375
transcript.pyannote[150].end 596.27534375
transcript.pyannote[151].speaker SPEAKER_00
transcript.pyannote[151].start 595.90409375
transcript.pyannote[151].end 597.28784375
transcript.pyannote[152].speaker SPEAKER_02
transcript.pyannote[152].start 596.91659375
transcript.pyannote[152].end 603.78471875
transcript.pyannote[153].speaker SPEAKER_02
transcript.pyannote[153].start 603.85221875
transcript.pyannote[153].end 613.53846875
transcript.pyannote[154].speaker SPEAKER_02
transcript.pyannote[154].start 613.96034375
transcript.pyannote[154].end 614.31471875
transcript.pyannote[155].speaker SPEAKER_02
transcript.pyannote[155].start 615.20909375
transcript.pyannote[155].end 615.49596875
transcript.pyannote[156].speaker SPEAKER_02
transcript.pyannote[156].start 616.01909375
transcript.pyannote[156].end 616.32284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 616.55909375
transcript.pyannote[157].end 618.61784375
transcript.pyannote[158].speaker SPEAKER_00
transcript.pyannote[158].start 618.66846875
transcript.pyannote[158].end 619.90034375
transcript.pyannote[159].speaker SPEAKER_00
transcript.pyannote[159].start 620.57534375
transcript.pyannote[159].end 621.40221875
transcript.pyannote[160].speaker SPEAKER_00
transcript.pyannote[160].start 622.04346875
transcript.pyannote[160].end 626.59971875
transcript.pyannote[161].speaker SPEAKER_00
transcript.pyannote[161].start 627.05534375
transcript.pyannote[161].end 628.47284375
transcript.pyannote[162].speaker SPEAKER_00
transcript.pyannote[162].start 629.11409375
transcript.pyannote[162].end 636.91034375
transcript.pyannote[163].speaker SPEAKER_00
transcript.pyannote[163].start 637.02846875
transcript.pyannote[163].end 638.04096875
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 638.73284375
transcript.pyannote[164].end 639.93096875
transcript.pyannote[165].speaker SPEAKER_00
transcript.pyannote[165].start 639.93096875
transcript.pyannote[165].end 644.08221875
transcript.pyannote[166].speaker SPEAKER_02
transcript.pyannote[166].start 644.28471875
transcript.pyannote[166].end 645.17909375
transcript.pyannote[167].speaker SPEAKER_02
transcript.pyannote[167].start 645.36471875
transcript.pyannote[167].end 649.61721875
transcript.pyannote[168].speaker SPEAKER_00
transcript.pyannote[168].start 649.75221875
transcript.pyannote[168].end 656.31659375
transcript.pyannote[169].speaker SPEAKER_02
transcript.pyannote[169].start 656.60346875
transcript.pyannote[169].end 661.91909375
transcript.pyannote[170].speaker SPEAKER_00
transcript.pyannote[170].start 662.12159375
transcript.pyannote[170].end 665.00721875
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 665.27721875
transcript.pyannote[171].end 669.71534375
transcript.pyannote[172].speaker SPEAKER_00
transcript.pyannote[172].start 667.99409375
transcript.pyannote[172].end 674.15346875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 671.92596875
transcript.pyannote[173].end 672.56721875
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 674.52471875
transcript.pyannote[174].end 686.28659375
transcript.pyannote[175].speaker SPEAKER_00
transcript.pyannote[175].start 684.88596875
transcript.pyannote[175].end 695.06159375
transcript.pyannote[176].speaker SPEAKER_02
transcript.pyannote[176].start 695.06159375
transcript.pyannote[176].end 696.47909375
transcript.pyannote[177].speaker SPEAKER_00
transcript.pyannote[177].start 696.47909375
transcript.pyannote[177].end 712.64534375
transcript.pyannote[178].speaker SPEAKER_02
transcript.pyannote[178].start 696.49596875
transcript.pyannote[178].end 696.51284375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 698.97659375
transcript.pyannote[179].end 699.24659375
transcript.pyannote[180].speaker SPEAKER_02
transcript.pyannote[180].start 702.84096875
transcript.pyannote[180].end 703.48221875
transcript.pyannote[181].speaker SPEAKER_01
transcript.pyannote[181].start 705.43971875
transcript.pyannote[181].end 705.69284375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 706.04721875
transcript.pyannote[182].end 706.31721875
transcript.pyannote[183].speaker SPEAKER_00
transcript.pyannote[183].start 713.08409375
transcript.pyannote[183].end 715.49721875
transcript.pyannote[184].speaker SPEAKER_00
transcript.pyannote[184].start 716.25659375
transcript.pyannote[184].end 723.39471875
transcript.pyannote[185].speaker SPEAKER_00
transcript.pyannote[185].start 724.20471875
transcript.pyannote[185].end 728.42346875
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 724.32284375
transcript.pyannote[186].end 724.69409375
transcript.pyannote[187].speaker SPEAKER_02
transcript.pyannote[187].start 728.37284375
transcript.pyannote[187].end 738.61596875
transcript.pyannote[188].speaker SPEAKER_00
transcript.pyannote[188].start 739.03784375
transcript.pyannote[188].end 744.70784375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 739.78034375
transcript.pyannote[189].end 740.37096875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 740.99534375
transcript.pyannote[190].end 741.82221875
transcript.pyannote[191].speaker SPEAKER_02
transcript.pyannote[191].start 744.85971875
transcript.pyannote[191].end 747.81284375
transcript.pyannote[192].speaker SPEAKER_00
transcript.pyannote[192].start 748.21784375
transcript.pyannote[192].end 750.32721875
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 751.54221875
transcript.pyannote[193].end 752.11596875
transcript.whisperx[0].start 0.649
transcript.whisperx[0].end 23.399
transcript.whisperx[0].text 請吳秉瑞委員質詢主席麻煩請財政部莊部長請莊部長委員好莊部長本年度114年度截至目前為止11月底的稅收狀況是什麼樣子
transcript.whisperx[1].start 26.558
transcript.whisperx[1].end 53.133
transcript.whisperx[1].text 跟委員報告截至11月底的中央中央的稅收達成率是達成預算的達成率是94.6%那我們的時增數到11月為止比去年同期的時增數事實上是增加了539億那分配數是94.2嘛時增數是94.6嘛所以11月底的時候時增數還超過分配數的比例嘛
transcript.whisperx[2].start 53.63
transcript.whisperx[2].end 64.123
transcript.whisperx[2].text 所以应该如果12月没有什么意外的话应该也是会达到整个100%的这个税收的比例啊
transcript.whisperx[3].start 65.045
transcript.whisperx[3].end 82.455
transcript.whisperx[3].text 目前來說我們的估計是用過去三年的12月份它的時增數的一個平均數抓一個高跟低之間但事實上要超過會不會超過預算數我們覺得是有挑戰的所以我們認為目前來說大概達成率大概到98%到99%之間你這個算法怎麼會對呢11月底的分配數是94.2
transcript.whisperx[4].start 89.239
transcript.whisperx[4].end 98.146
transcript.whisperx[4].text 就代表原來的分配數是12月是要收5.8%嘛那你的時增數已經94.6也就是說你12月的時候是要收到5.2%所以你到11月底還超標結果你跟我講12月底你認為只會到98 99那你意思說你12月會短收很多囉
transcript.whisperx[5].start 112.57
transcript.whisperx[5].end 123.418
transcript.whisperx[5].text 我們的分配數達成率是以分配數達成率是98.3不是啦我剛剛問你到11月底11月底的分配數是94.2對不對原報告中央政府的部分達成的分配預算數的比例是98.3%在全年的預算數達成是94.6
transcript.whisperx[6].start 138.604
transcript.whisperx[6].end 151.395
transcript.whisperx[6].text 對啊你那講的是實質的收到的數目我跟你說你到11月尾底分配數是94.2%94.2%這個是數字是你們提供的嘛分配數但是你們的達成數是94.6%也就是說你們超過了0.4%表現很好啊
transcript.whisperx[7].start 161.909
transcript.whisperx[7].end 176.441
transcript.whisperx[7].text 委員我不知道我們提供的是根據這邊的統計達到分配預算數的比就分配是到11月的分配數是98.3但全年度達成率是94.6對啊就11月底你們的達成數是94.6啊我沒有說錯啊問題是你們的分配數是94.2啊那分配數94.2達成94.6
transcript.whisperx[8].start 192.026
transcript.whisperx[8].end 194.088
transcript.whisperx[8].text 還是說你們是分配數的94.6那個署長你幫幫部長回答一下吧
transcript.whisperx[9].start 202.779
transcript.whisperx[9].end 228.856
transcript.whisperx[9].text 報告委員是這樣我們先講時增數就是我們先講我們原來分配到11月底的預算數到全年的比例原來該拿到的是98.9%98.9%但我們現在時增數佔整個累計我們的預算數分配比例只有到94.2%我是在跟你先問11月底啦對我現在都是講11月底你給我們的數字是到11月底分配數是94.2%時增數是94.6%
transcript.whisperx[10].start 233.314
transcript.whisperx[10].end 260.098
transcript.whisperx[10].text 那是中央數跟全國數剛才委員您講的那個94.2是全國數94.6是中央數不是指那個預算數佔整個累積預算數的點那再問一個問題就是說因為今年你們有一個特殊的政策就是因為台灣跟美國在貿易談判所以你們那個佔繳稅款的部分你可以分期嗎還是那個應繳的稅款可以分期
transcript.whisperx[11].start 261.326
transcript.whisperx[11].end 287.6
transcript.whisperx[11].text 那個到底會影響多少你們估過嗎目前我們現在統計的數字大概600因為我們統計有點落後現在是616億左右包括專稅跟地方稅那個如果加進來是不是今年一樣114年度的總稅收也是會到達百分之百但是他會陸續會回收因為他是分期繳納我知道啦他會陸續回收我們對話其實在同一個平台上我們不要這樣我的意思是說今年
transcript.whisperx[12].start 288.806
transcript.whisperx[12].end 302.708
transcript.whisperx[12].text 如果把這個暫時讓人家先不用繳的這一部分將來可以回收部分也算進來今年的實收數事實上也是會到達百分之百嘛是不是好謝謝來我們再請部長繼續請部長部長那今年因為到現在12月中了剩下兩個禮拜這個會期法定會期結束到現在總預算還沒有付尾對不對是的
transcript.whisperx[13].start 317.796
transcript.whisperx[13].end 341.559
transcript.whisperx[13].text 那總預算還沒有付也就是沒有審查那沒有審查會造成什麼影響到目前沒有審查會讓我們的在施政上會有一些摯愛為什麼因為明年度的稅出預算都會受到限制那第一個不能超過114年的實際執行數那有一些新興計畫也沒有辦法執行
transcript.whisperx[14].start 342.432
transcript.whisperx[14].end 353.729
transcript.whisperx[14].text 好 那我現在問一個問題剛剛前一個委員關鍵那個統籌分配稅款統籌分配稅款雖然是照公司分配但是是不是也納入我們收入的全部
transcript.whisperx[15].start 356.237
transcript.whisperx[15].end 376.493
transcript.whisperx[15].text 統籌分配稅款在中央政府部分因為我們在編列中央政府稅客收入的時候就把中央統籌分配稅款就切出去了並沒有在我們的稅客收入裡面所以不用進入本院審查就沒有在因為就按照那個財化法裡面的稅收的比例去把它劃到地方的稅客收入裡面去那現在我已經我自己也亂掉了你財化法現在這麼多的版本
transcript.whisperx[16].start 378.991
transcript.whisperx[16].end 399.185
transcript.whisperx[16].text 有之前的版本修正了第一版修正了第二版那現在第三版行政院說他現在不附屬嘛對不對所以不附屬照憲法的規定暫時還沒有生效率所以就是如以前一版而言那個統籌分配稅款現在你估計可以分給地方政府的金額有多少明年啊估計數這當然是估計數了
transcript.whisperx[17].start 408.819
transcript.whisperx[17].end 433.019
transcript.whisperx[17].text 以8840億8840億所以如果就是說我們這邊預算不省這8840億也是會撥下去的對 它就進入地方的稅客收入裡面去但是因為你那個最新就是在生肖前最後一個版本它對於那個統籌分配稅款的來源它有一些來源別的這個更改譬如說你的營業稅的部分是多少比例分給地方跟你以前比起來差別多少
transcript.whisperx[18].start 434.174
transcript.whisperx[18].end 452.672
transcript.whisperx[18].text 它是扣掉這個基增成本以及統一發票獎金以後全部都給地方那以前是給多少以前是40%那現在等於他們會多拿50%幾嘛對不對因為你的基增跟這個統一發票的成本也沒有多少嘛那個大概會佔幾%大概1.5%
transcript.whisperx[19].start 455.661
transcript.whisperx[19].end 473.335
transcript.whisperx[19].text 那所以就是他們會拿到等於會拿到58.5%地方政府會多拿到58.5%的這個營業稅那這一部分的營業稅的總金額大概會占多少跟委員報告我們以114年度中央政府我們的營業稅的編列的稅率是3830億但是我們在115年根據新的財化法的話我們只有296億的營業稅的稅可收入
transcript.whisperx[20].start 481.909
transcript.whisperx[20].end 507.695
transcript.whisperx[20].text 地方政府會等於是你估計會增加多少他在這個部分的金額比去年比今年115年比114年就增加了3534億好那現在假設我們預算沒有審查因為我看起來是不會審的那沒有審查這3000這增加了3000多億跟連以前那3000多億總共8000多億一樣是撥給地方政府就是統籌分配稅款的這部分
transcript.whisperx[21].start 509.449
transcript.whisperx[21].end 530.028
transcript.whisperx[21].text 中央統籌分配稅款在今年115年明年是達到了8874億那這個部分已經進入地方政府的稅客收入裡面去 劃歸去了對 但是由中央徵收只是我們徵收完之後是要撥給地方政府這個沒有經過我們的這個年度中央的總預算啦
transcript.whisperx[22].start 530.208
transcript.whisperx[22].end 545.664
transcript.whisperx[22].text 沒有在裡面如果這樣少了這些的話中央的總預算你們估計會少多少就是稅客收入的部分營業稅這50幾%也撥給地方之後光這一部分中央的稅會少多少3038億也就是說114年度中央的稅收
transcript.whisperx[23].start 551.209
transcript.whisperx[23].end 564.468
transcript.whisperx[23].text 可以算中央的本來是兩兆七千多億光課稅的部分那少了這三千多億中央就馬上少了兩兆四千多億就成為兩兆四千八百零七億所以你今年的這個預算收入
transcript.whisperx[24].start 565.877
transcript.whisperx[24].end 594.154
transcript.whisperx[24].text 雖然沒有審查但送到本院來的已經照這樣子編列了是不是目前的總預算是這樣編列的那所以你今年明年度的這個稅科收入這個編列的總數跟今年度是差多少就是差3038億所以你是估計明年都沒有成長跟今年比起來明年都沒有成長沒有啊你看中央統籌分配稅款不是啦我是說這3000多億這部分就已經先劃掉不要再算的話剩下的部分中央的稅收有沒有增加
transcript.whisperx[25].start 594.83
transcript.whisperx[25].end 617.837
transcript.whisperx[25].text 是有增加的增加在哪一部分加在稅目裡面包含所得稅是有增加7%增加的還有就是遺證稅我們略微編有增加其他像遺證稅還有都減少的只有所得稅有增加7%所以
transcript.whisperx[26].start 620.683
transcript.whisperx[26].end 637.742
transcript.whisperx[26].text 也就是說今年度114年度的中央的稅客收入跟明年度現在送到立法院來還沒有審查的這個115年度的會計年度的這個中央稅客收入差距是多少差短少了多少錢
transcript.whisperx[27].start 639.063
transcript.whisperx[27].end 658.099
transcript.whisperx[27].text 10增數跟預估數因為你115年就還沒有增啊你怎麼會知道10增數那就差到了差不多也是3000多億啊 超過3000億啊3000多億問題是中央哪一部分的支出可以可以受升啊不然這3000多億是不是都要舉債啊對 所以我們115年度總預算編列的舉債數2992億你的稅出又縮減了哪一些部分
transcript.whisperx[28].start 665.978
transcript.whisperx[28].end 673.997
transcript.whisperx[28].text 稅出的部分 當然是由主計總署這邊來做指引我知道喔 當然今天不在所以我請妳一併回答 妳知道嗎主要是說少 減少了哪一些部分
transcript.whisperx[29].start 674.908
transcript.whisperx[29].end 694.973
transcript.whisperx[29].text 中央的部分的施政其實有很多都是有重要那我們其實以財政部來說也是有縮減我們的稅出的部分因為有一些計畫完成我們就沒有在做編排所以照理來講錢多這麼多你應該事權要分配啊那地方政府多做哪一些事中央政府哪一些事少做所以我們的錢可以減少這部分是不是應該爬梳離親啊當然是 是的
transcript.whisperx[30].start 696.853
transcript.whisperx[30].end 722.469
transcript.whisperx[30].text 所以你們最近工作很多雖然沒有省預算這部分的工作好像省起來了但是其他要整理的事情很多我跟你說地方政府的尤其是地方議會的議員跟我反映他們現在在地方他們認為他們預算都省假的因為到底他們會拿到多少錢什麼東西他們都不清楚所以好像在開玩笑一樣有的甚至還說那我就只要是先編然後不能來的我就先舉借
transcript.whisperx[31].start 724.364
transcript.whisperx[31].end 748.747
transcript.whisperx[31].text 等等 弄成一團糟啦從上到下全部都一團糟啦這也就是說在財化法修正的時候完全沒有討論事權而只是討論到錢要怎麼樣劃出去但事權沒有並同討論所以造成這樣的一個現象好 謝謝喔那妳工作人員多加油喔 謝謝不要說沒有預算了那就不用做事光領薪水啦這不行的 這個跟國際民生都有關係好 謝謝吳秉瑞委員接下來請