iVOD / 166406

Field Value
IVOD_ID 166406
IVOD_URL https://ivod.ly.gov.tw/Play/Clip/1M/166406
日期 2025-12-15
會議資料.會議代碼 委員會-11-4-19-16
會議資料.會議代碼:str 第11屆第4會期經濟委員會第16次全體委員會議
會議資料.屆 11
會議資料.會期 4
會議資料.會次 16
會議資料.種類 委員會
會議資料.委員會代碼[0] 19
會議資料.委員會代碼:str[0] 經濟委員會
會議資料.標題 第11屆第4會期經濟委員會第16次全體委員會議
影片種類 Clip
開始時間 2025-12-15T10:23:31+08:00
結束時間 2025-12-15T10:35:59+08:00
影片長度 00:12:28
支援功能[0] ai-transcript
video_url https://ivod-lyvod.cdn.hinet.net/vod_1/_definst_/mp4:1MClips/d486c5db5da7590604a9192f7b9921163d053df696e011f8e8e52b0719441b97951c1d5c912628115ea18f28b6918d91.mp4/playlist.m3u8
委員名稱 邱志偉
委員發言時間 10:23:31 - 10:35:59
會議時間 2025-12-15T09:00:00+08:00
會議名稱 立法院第11屆第4會期經濟委員會第16次全體委員會議(事由:邀請農業部部長及環境部首長就「2027年全面禁止廚餘養豬」進行報告,並備質詢。)
transcript.pyannote[0].speaker SPEAKER_02
transcript.pyannote[0].start 5.36346875
transcript.pyannote[0].end 7.69221875
transcript.pyannote[1].speaker SPEAKER_02
transcript.pyannote[1].start 8.38409375
transcript.pyannote[1].end 9.56534375
transcript.pyannote[2].speaker SPEAKER_01
transcript.pyannote[2].start 15.87659375
transcript.pyannote[2].end 16.33221875
transcript.pyannote[3].speaker SPEAKER_02
transcript.pyannote[3].start 16.60221875
transcript.pyannote[3].end 17.54721875
transcript.pyannote[4].speaker SPEAKER_02
transcript.pyannote[4].start 18.01971875
transcript.pyannote[4].end 23.60534375
transcript.pyannote[5].speaker SPEAKER_02
transcript.pyannote[5].start 24.70221875
transcript.pyannote[5].end 25.39409375
transcript.pyannote[6].speaker SPEAKER_02
transcript.pyannote[6].start 26.35596875
transcript.pyannote[6].end 26.92971875
transcript.pyannote[7].speaker SPEAKER_02
transcript.pyannote[7].start 28.06034375
transcript.pyannote[7].end 30.72659375
transcript.pyannote[8].speaker SPEAKER_02
transcript.pyannote[8].start 32.05971875
transcript.pyannote[8].end 33.24096875
transcript.pyannote[9].speaker SPEAKER_01
transcript.pyannote[9].start 33.54471875
transcript.pyannote[9].end 33.96659375
transcript.pyannote[10].speaker SPEAKER_02
transcript.pyannote[10].start 34.37159375
transcript.pyannote[10].end 37.76346875
transcript.pyannote[11].speaker SPEAKER_02
transcript.pyannote[11].start 38.94471875
transcript.pyannote[11].end 41.67846875
transcript.pyannote[12].speaker SPEAKER_02
transcript.pyannote[12].start 42.43784375
transcript.pyannote[12].end 44.05784375
transcript.pyannote[13].speaker SPEAKER_02
transcript.pyannote[13].start 44.36159375
transcript.pyannote[13].end 45.57659375
transcript.pyannote[14].speaker SPEAKER_02
transcript.pyannote[14].start 46.72409375
transcript.pyannote[14].end 49.77846875
transcript.pyannote[15].speaker SPEAKER_02
transcript.pyannote[15].start 50.01471875
transcript.pyannote[15].end 51.97221875
transcript.pyannote[16].speaker SPEAKER_02
transcript.pyannote[16].start 52.51221875
transcript.pyannote[16].end 54.53721875
transcript.pyannote[17].speaker SPEAKER_02
transcript.pyannote[17].start 54.99284375
transcript.pyannote[17].end 57.42284375
transcript.pyannote[18].speaker SPEAKER_02
transcript.pyannote[18].start 57.43971875
transcript.pyannote[18].end 58.65471875
transcript.pyannote[19].speaker SPEAKER_02
transcript.pyannote[19].start 59.70096875
transcript.pyannote[19].end 60.37596875
transcript.pyannote[20].speaker SPEAKER_01
transcript.pyannote[20].start 60.37596875
transcript.pyannote[20].end 60.39284375
transcript.pyannote[21].speaker SPEAKER_02
transcript.pyannote[21].start 61.25346875
transcript.pyannote[21].end 61.27034375
transcript.pyannote[22].speaker SPEAKER_01
transcript.pyannote[22].start 61.27034375
transcript.pyannote[22].end 62.19846875
transcript.pyannote[23].speaker SPEAKER_01
transcript.pyannote[23].start 63.05909375
transcript.pyannote[23].end 63.91971875
transcript.pyannote[24].speaker SPEAKER_01
transcript.pyannote[24].start 64.44284375
transcript.pyannote[24].end 69.23534375
transcript.pyannote[25].speaker SPEAKER_01
transcript.pyannote[25].start 69.99471875
transcript.pyannote[25].end 74.65221875
transcript.pyannote[26].speaker SPEAKER_02
transcript.pyannote[26].start 74.97284375
transcript.pyannote[26].end 75.36096875
transcript.pyannote[27].speaker SPEAKER_02
transcript.pyannote[27].start 75.59721875
transcript.pyannote[27].end 76.86284375
transcript.pyannote[28].speaker SPEAKER_02
transcript.pyannote[28].start 77.04846875
transcript.pyannote[28].end 80.03534375
transcript.pyannote[29].speaker SPEAKER_02
transcript.pyannote[29].start 80.72721875
transcript.pyannote[29].end 82.73534375
transcript.pyannote[30].speaker SPEAKER_02
transcript.pyannote[30].start 83.30909375
transcript.pyannote[30].end 84.30471875
transcript.pyannote[31].speaker SPEAKER_02
transcript.pyannote[31].start 84.87846875
transcript.pyannote[31].end 86.78534375
transcript.pyannote[32].speaker SPEAKER_02
transcript.pyannote[32].start 87.05534375
transcript.pyannote[32].end 88.15221875
transcript.pyannote[33].speaker SPEAKER_02
transcript.pyannote[33].start 88.91159375
transcript.pyannote[33].end 91.27409375
transcript.pyannote[34].speaker SPEAKER_02
transcript.pyannote[34].start 91.78034375
transcript.pyannote[34].end 93.33284375
transcript.pyannote[35].speaker SPEAKER_02
transcript.pyannote[35].start 94.31159375
transcript.pyannote[35].end 95.71221875
transcript.pyannote[36].speaker SPEAKER_02
transcript.pyannote[36].start 96.30284375
transcript.pyannote[36].end 98.80034375
transcript.pyannote[37].speaker SPEAKER_02
transcript.pyannote[37].start 98.96909375
transcript.pyannote[37].end 100.04909375
transcript.pyannote[38].speaker SPEAKER_02
transcript.pyannote[38].start 101.11221875
transcript.pyannote[38].end 102.14159375
transcript.pyannote[39].speaker SPEAKER_02
transcript.pyannote[39].start 102.76596875
transcript.pyannote[39].end 103.89659375
transcript.pyannote[40].speaker SPEAKER_02
transcript.pyannote[40].start 104.67284375
transcript.pyannote[40].end 105.21284375
transcript.pyannote[41].speaker SPEAKER_02
transcript.pyannote[41].start 105.36471875
transcript.pyannote[41].end 107.45721875
transcript.pyannote[42].speaker SPEAKER_02
transcript.pyannote[42].start 107.98034375
transcript.pyannote[42].end 108.36846875
transcript.pyannote[43].speaker SPEAKER_02
transcript.pyannote[43].start 109.17846875
transcript.pyannote[43].end 111.23721875
transcript.pyannote[44].speaker SPEAKER_02
transcript.pyannote[44].start 111.38909375
transcript.pyannote[44].end 112.55346875
transcript.pyannote[45].speaker SPEAKER_01
transcript.pyannote[45].start 111.62534375
transcript.pyannote[45].end 120.58596875
transcript.pyannote[46].speaker SPEAKER_02
transcript.pyannote[46].start 116.02971875
transcript.pyannote[46].end 116.24909375
transcript.pyannote[47].speaker SPEAKER_02
transcript.pyannote[47].start 119.77596875
transcript.pyannote[47].end 125.66534375
transcript.pyannote[48].speaker SPEAKER_02
transcript.pyannote[48].start 126.28971875
transcript.pyannote[48].end 128.63534375
transcript.pyannote[49].speaker SPEAKER_02
transcript.pyannote[49].start 129.14159375
transcript.pyannote[49].end 134.30534375
transcript.pyannote[50].speaker SPEAKER_02
transcript.pyannote[50].start 135.35159375
transcript.pyannote[50].end 135.77346875
transcript.pyannote[51].speaker SPEAKER_02
transcript.pyannote[51].start 136.27971875
transcript.pyannote[51].end 136.83659375
transcript.pyannote[52].speaker SPEAKER_02
transcript.pyannote[52].start 137.03909375
transcript.pyannote[52].end 138.42284375
transcript.pyannote[53].speaker SPEAKER_02
transcript.pyannote[53].start 140.27909375
transcript.pyannote[53].end 141.03846875
transcript.pyannote[54].speaker SPEAKER_02
transcript.pyannote[54].start 141.40971875
transcript.pyannote[54].end 146.77596875
transcript.pyannote[55].speaker SPEAKER_02
transcript.pyannote[55].start 147.88971875
transcript.pyannote[55].end 151.95659375
transcript.pyannote[56].speaker SPEAKER_02
transcript.pyannote[56].start 152.19284375
transcript.pyannote[56].end 157.44096875
transcript.pyannote[57].speaker SPEAKER_02
transcript.pyannote[57].start 158.53784375
transcript.pyannote[57].end 159.24659375
transcript.pyannote[58].speaker SPEAKER_02
transcript.pyannote[58].start 160.22534375
transcript.pyannote[58].end 174.73784375
transcript.pyannote[59].speaker SPEAKER_02
transcript.pyannote[59].start 175.32846875
transcript.pyannote[59].end 176.93159375
transcript.pyannote[60].speaker SPEAKER_00
transcript.pyannote[60].start 177.26909375
transcript.pyannote[60].end 177.43784375
transcript.pyannote[61].speaker SPEAKER_02
transcript.pyannote[61].start 178.09596875
transcript.pyannote[61].end 183.59721875
transcript.pyannote[62].speaker SPEAKER_02
transcript.pyannote[62].start 184.13721875
transcript.pyannote[62].end 188.23784375
transcript.pyannote[63].speaker SPEAKER_02
transcript.pyannote[63].start 189.06471875
transcript.pyannote[63].end 197.55284375
transcript.pyannote[64].speaker SPEAKER_02
transcript.pyannote[64].start 197.83971875
transcript.pyannote[64].end 199.42596875
transcript.pyannote[65].speaker SPEAKER_02
transcript.pyannote[65].start 199.98284375
transcript.pyannote[65].end 201.92346875
transcript.pyannote[66].speaker SPEAKER_02
transcript.pyannote[66].start 202.39596875
transcript.pyannote[66].end 204.55596875
transcript.pyannote[67].speaker SPEAKER_02
transcript.pyannote[67].start 205.43346875
transcript.pyannote[67].end 208.35284375
transcript.pyannote[68].speaker SPEAKER_02
transcript.pyannote[68].start 208.85909375
transcript.pyannote[68].end 210.63096875
transcript.pyannote[69].speaker SPEAKER_02
transcript.pyannote[69].start 211.49159375
transcript.pyannote[69].end 212.11596875
transcript.pyannote[70].speaker SPEAKER_02
transcript.pyannote[70].start 212.63909375
transcript.pyannote[70].end 214.14096875
transcript.pyannote[71].speaker SPEAKER_02
transcript.pyannote[71].start 214.30971875
transcript.pyannote[71].end 215.03534375
transcript.pyannote[72].speaker SPEAKER_01
transcript.pyannote[72].start 215.03534375
transcript.pyannote[72].end 215.15346875
transcript.pyannote[73].speaker SPEAKER_01
transcript.pyannote[73].start 216.16596875
transcript.pyannote[73].end 241.74846875
transcript.pyannote[74].speaker SPEAKER_01
transcript.pyannote[74].start 241.93409375
transcript.pyannote[74].end 242.47409375
transcript.pyannote[75].speaker SPEAKER_01
transcript.pyannote[75].start 242.74409375
transcript.pyannote[75].end 244.88721875
transcript.pyannote[76].speaker SPEAKER_01
transcript.pyannote[76].start 245.12346875
transcript.pyannote[76].end 246.25409375
transcript.pyannote[77].speaker SPEAKER_01
transcript.pyannote[77].start 246.60846875
transcript.pyannote[77].end 275.80221875
transcript.pyannote[78].speaker SPEAKER_02
transcript.pyannote[78].start 272.79846875
transcript.pyannote[78].end 272.96721875
transcript.pyannote[79].speaker SPEAKER_02
transcript.pyannote[79].start 273.52409375
transcript.pyannote[79].end 273.97971875
transcript.pyannote[80].speaker SPEAKER_01
transcript.pyannote[80].start 276.02159375
transcript.pyannote[80].end 276.96659375
transcript.pyannote[81].speaker SPEAKER_02
transcript.pyannote[81].start 276.96659375
transcript.pyannote[81].end 278.70471875
transcript.pyannote[82].speaker SPEAKER_02
transcript.pyannote[82].start 279.22784375
transcript.pyannote[82].end 282.65346875
transcript.pyannote[83].speaker SPEAKER_01
transcript.pyannote[83].start 280.76346875
transcript.pyannote[83].end 280.96596875
transcript.pyannote[84].speaker SPEAKER_00
transcript.pyannote[84].start 280.96596875
transcript.pyannote[84].end 281.03346875
transcript.pyannote[85].speaker SPEAKER_01
transcript.pyannote[85].start 281.03346875
transcript.pyannote[85].end 281.25284375
transcript.pyannote[86].speaker SPEAKER_00
transcript.pyannote[86].start 281.25284375
transcript.pyannote[86].end 281.35409375
transcript.pyannote[87].speaker SPEAKER_02
transcript.pyannote[87].start 283.54784375
transcript.pyannote[87].end 284.88096875
transcript.pyannote[88].speaker SPEAKER_02
transcript.pyannote[88].start 285.25221875
transcript.pyannote[88].end 288.74534375
transcript.pyannote[89].speaker SPEAKER_01
transcript.pyannote[89].start 288.42471875
transcript.pyannote[89].end 295.57971875
transcript.pyannote[90].speaker SPEAKER_01
transcript.pyannote[90].start 296.22096875
transcript.pyannote[90].end 297.97596875
transcript.pyannote[91].speaker SPEAKER_02
transcript.pyannote[91].start 297.97596875
transcript.pyannote[91].end 298.81971875
transcript.pyannote[92].speaker SPEAKER_01
transcript.pyannote[92].start 299.24159375
transcript.pyannote[92].end 299.25846875
transcript.pyannote[93].speaker SPEAKER_02
transcript.pyannote[93].start 299.25846875
transcript.pyannote[93].end 305.46846875
transcript.pyannote[94].speaker SPEAKER_02
transcript.pyannote[94].start 305.97471875
transcript.pyannote[94].end 314.27721875
transcript.pyannote[95].speaker SPEAKER_02
transcript.pyannote[95].start 314.81721875
transcript.pyannote[95].end 317.53409375
transcript.pyannote[96].speaker SPEAKER_02
transcript.pyannote[96].start 318.07409375
transcript.pyannote[96].end 332.08034375
transcript.pyannote[97].speaker SPEAKER_01
transcript.pyannote[97].start 326.74784375
transcript.pyannote[97].end 328.26659375
transcript.pyannote[98].speaker SPEAKER_01
transcript.pyannote[98].start 330.86534375
transcript.pyannote[98].end 331.05096875
transcript.pyannote[99].speaker SPEAKER_02
transcript.pyannote[99].start 332.28284375
transcript.pyannote[99].end 338.18909375
transcript.pyannote[100].speaker SPEAKER_01
transcript.pyannote[100].start 332.55284375
transcript.pyannote[100].end 332.67096875
transcript.pyannote[101].speaker SPEAKER_02
transcript.pyannote[101].start 339.84284375
transcript.pyannote[101].end 340.02846875
transcript.pyannote[102].speaker SPEAKER_01
transcript.pyannote[102].start 340.02846875
transcript.pyannote[102].end 363.46784375
transcript.pyannote[103].speaker SPEAKER_02
transcript.pyannote[103].start 364.75034375
transcript.pyannote[103].end 366.64034375
transcript.pyannote[104].speaker SPEAKER_01
transcript.pyannote[104].start 366.08346875
transcript.pyannote[104].end 366.47159375
transcript.pyannote[105].speaker SPEAKER_01
transcript.pyannote[105].start 366.64034375
transcript.pyannote[105].end 368.05784375
transcript.pyannote[106].speaker SPEAKER_01
transcript.pyannote[106].start 369.39096875
transcript.pyannote[106].end 372.86721875
transcript.pyannote[107].speaker SPEAKER_02
transcript.pyannote[107].start 371.23034375
transcript.pyannote[107].end 378.03096875
transcript.pyannote[108].speaker SPEAKER_01
transcript.pyannote[108].start 373.37346875
transcript.pyannote[108].end 373.81221875
transcript.pyannote[109].speaker SPEAKER_01
transcript.pyannote[109].start 378.03096875
transcript.pyannote[109].end 378.73971875
transcript.pyannote[110].speaker SPEAKER_01
transcript.pyannote[110].start 380.46096875
transcript.pyannote[110].end 391.96971875
transcript.pyannote[111].speaker SPEAKER_02
transcript.pyannote[111].start 391.68284375
transcript.pyannote[111].end 396.77909375
transcript.pyannote[112].speaker SPEAKER_01
transcript.pyannote[112].start 395.36159375
transcript.pyannote[112].end 398.34846875
transcript.pyannote[113].speaker SPEAKER_02
transcript.pyannote[113].start 398.34846875
transcript.pyannote[113].end 403.07346875
transcript.pyannote[114].speaker SPEAKER_01
transcript.pyannote[114].start 398.39909375
transcript.pyannote[114].end 398.58471875
transcript.pyannote[115].speaker SPEAKER_02
transcript.pyannote[115].start 404.01846875
transcript.pyannote[115].end 411.05534375
transcript.pyannote[116].speaker SPEAKER_02
transcript.pyannote[116].start 411.73034375
transcript.pyannote[116].end 413.94096875
transcript.pyannote[117].speaker SPEAKER_02
transcript.pyannote[117].start 414.26159375
transcript.pyannote[117].end 420.23534375
transcript.pyannote[118].speaker SPEAKER_02
transcript.pyannote[118].start 420.64034375
transcript.pyannote[118].end 421.83846875
transcript.pyannote[119].speaker SPEAKER_02
transcript.pyannote[119].start 422.37846875
transcript.pyannote[119].end 424.69034375
transcript.pyannote[120].speaker SPEAKER_02
transcript.pyannote[120].start 424.97721875
transcript.pyannote[120].end 431.38971875
transcript.pyannote[121].speaker SPEAKER_02
transcript.pyannote[121].start 431.92971875
transcript.pyannote[121].end 434.96721875
transcript.pyannote[122].speaker SPEAKER_02
transcript.pyannote[122].start 435.76034375
transcript.pyannote[122].end 436.65471875
transcript.pyannote[123].speaker SPEAKER_02
transcript.pyannote[123].start 437.61659375
transcript.pyannote[123].end 441.36284375
transcript.pyannote[124].speaker SPEAKER_02
transcript.pyannote[124].start 442.15596875
transcript.pyannote[124].end 444.16409375
transcript.pyannote[125].speaker SPEAKER_02
transcript.pyannote[125].start 444.61971875
transcript.pyannote[125].end 448.77096875
transcript.pyannote[126].speaker SPEAKER_02
transcript.pyannote[126].start 449.31096875
transcript.pyannote[126].end 451.11659375
transcript.pyannote[127].speaker SPEAKER_01
transcript.pyannote[127].start 451.11659375
transcript.pyannote[127].end 451.13346875
transcript.pyannote[128].speaker SPEAKER_02
transcript.pyannote[128].start 451.89284375
transcript.pyannote[128].end 452.02784375
transcript.pyannote[129].speaker SPEAKER_01
transcript.pyannote[129].start 452.02784375
transcript.pyannote[129].end 453.51284375
transcript.pyannote[130].speaker SPEAKER_01
transcript.pyannote[130].start 454.39034375
transcript.pyannote[130].end 458.25471875
transcript.pyannote[131].speaker SPEAKER_01
transcript.pyannote[131].start 458.69346875
transcript.pyannote[131].end 467.97471875
transcript.pyannote[132].speaker SPEAKER_00
transcript.pyannote[132].start 458.91284375
transcript.pyannote[132].end 459.13221875
transcript.pyannote[133].speaker SPEAKER_02
transcript.pyannote[133].start 467.97471875
transcript.pyannote[133].end 468.29534375
transcript.pyannote[134].speaker SPEAKER_01
transcript.pyannote[134].start 468.29534375
transcript.pyannote[134].end 468.68346875
transcript.pyannote[135].speaker SPEAKER_02
transcript.pyannote[135].start 468.31221875
transcript.pyannote[135].end 468.66659375
transcript.pyannote[136].speaker SPEAKER_02
transcript.pyannote[136].start 468.68346875
transcript.pyannote[136].end 470.79284375
transcript.pyannote[137].speaker SPEAKER_01
transcript.pyannote[137].start 470.79284375
transcript.pyannote[137].end 471.02909375
transcript.pyannote[138].speaker SPEAKER_02
transcript.pyannote[138].start 471.02909375
transcript.pyannote[138].end 471.65346875
transcript.pyannote[139].speaker SPEAKER_02
transcript.pyannote[139].start 472.21034375
transcript.pyannote[139].end 474.58971875
transcript.pyannote[140].speaker SPEAKER_02
transcript.pyannote[140].start 474.97784375
transcript.pyannote[140].end 478.35284375
transcript.pyannote[141].speaker SPEAKER_02
transcript.pyannote[141].start 478.80846875
transcript.pyannote[141].end 487.16159375
transcript.pyannote[142].speaker SPEAKER_01
transcript.pyannote[142].start 481.28909375
transcript.pyannote[142].end 481.66034375
transcript.pyannote[143].speaker SPEAKER_02
transcript.pyannote[143].start 487.95471875
transcript.pyannote[143].end 488.74784375
transcript.pyannote[144].speaker SPEAKER_02
transcript.pyannote[144].start 489.50721875
transcript.pyannote[144].end 490.40159375
transcript.pyannote[145].speaker SPEAKER_02
transcript.pyannote[145].start 490.55346875
transcript.pyannote[145].end 492.66284375
transcript.pyannote[146].speaker SPEAKER_02
transcript.pyannote[146].start 492.78096875
transcript.pyannote[146].end 493.16909375
transcript.pyannote[147].speaker SPEAKER_02
transcript.pyannote[147].start 493.55721875
transcript.pyannote[147].end 495.41346875
transcript.pyannote[148].speaker SPEAKER_02
transcript.pyannote[148].start 495.78471875
transcript.pyannote[148].end 496.07159375
transcript.pyannote[149].speaker SPEAKER_02
transcript.pyannote[149].start 496.93221875
transcript.pyannote[149].end 498.77159375
transcript.pyannote[150].speaker SPEAKER_02
transcript.pyannote[150].start 500.10471875
transcript.pyannote[150].end 504.10409375
transcript.pyannote[151].speaker SPEAKER_02
transcript.pyannote[151].start 504.54284375
transcript.pyannote[151].end 507.02346875
transcript.pyannote[152].speaker SPEAKER_01
transcript.pyannote[152].start 507.02346875
transcript.pyannote[152].end 512.05221875
transcript.pyannote[153].speaker SPEAKER_01
transcript.pyannote[153].start 512.30534375
transcript.pyannote[153].end 515.10659375
transcript.pyannote[154].speaker SPEAKER_01
transcript.pyannote[154].start 515.73096875
transcript.pyannote[154].end 517.03034375
transcript.pyannote[155].speaker SPEAKER_01
transcript.pyannote[155].start 517.38471875
transcript.pyannote[155].end 523.47659375
transcript.pyannote[156].speaker SPEAKER_01
transcript.pyannote[156].start 524.79284375
transcript.pyannote[156].end 525.33284375
transcript.pyannote[157].speaker SPEAKER_02
transcript.pyannote[157].start 526.19346875
transcript.pyannote[157].end 526.21034375
transcript.pyannote[158].speaker SPEAKER_01
transcript.pyannote[158].start 526.21034375
transcript.pyannote[158].end 526.78409375
transcript.pyannote[159].speaker SPEAKER_02
transcript.pyannote[159].start 526.78409375
transcript.pyannote[159].end 526.81784375
transcript.pyannote[160].speaker SPEAKER_02
transcript.pyannote[160].start 527.76284375
transcript.pyannote[160].end 541.90409375
transcript.pyannote[161].speaker SPEAKER_02
transcript.pyannote[161].start 543.03471875
transcript.pyannote[161].end 549.02534375
transcript.pyannote[162].speaker SPEAKER_01
transcript.pyannote[162].start 548.01284375
transcript.pyannote[162].end 548.29971875
transcript.pyannote[163].speaker SPEAKER_01
transcript.pyannote[163].start 549.02534375
transcript.pyannote[163].end 551.65784375
transcript.pyannote[164].speaker SPEAKER_02
transcript.pyannote[164].start 550.83096875
transcript.pyannote[164].end 552.13034375
transcript.pyannote[165].speaker SPEAKER_02
transcript.pyannote[165].start 552.83909375
transcript.pyannote[165].end 553.02471875
transcript.pyannote[166].speaker SPEAKER_01
transcript.pyannote[166].start 553.02471875
transcript.pyannote[166].end 554.62784375
transcript.pyannote[167].speaker SPEAKER_01
transcript.pyannote[167].start 555.72471875
transcript.pyannote[167].end 556.19721875
transcript.pyannote[168].speaker SPEAKER_01
transcript.pyannote[168].start 556.60221875
transcript.pyannote[168].end 557.80034375
transcript.pyannote[169].speaker SPEAKER_01
transcript.pyannote[169].start 557.88471875
transcript.pyannote[169].end 559.21784375
transcript.pyannote[170].speaker SPEAKER_01
transcript.pyannote[170].start 559.85909375
transcript.pyannote[170].end 561.37784375
transcript.pyannote[171].speaker SPEAKER_02
transcript.pyannote[171].start 561.37784375
transcript.pyannote[171].end 561.41159375
transcript.pyannote[172].speaker SPEAKER_01
transcript.pyannote[172].start 561.76596875
transcript.pyannote[172].end 561.96846875
transcript.pyannote[173].speaker SPEAKER_02
transcript.pyannote[173].start 561.96846875
transcript.pyannote[173].end 571.84034375
transcript.pyannote[174].speaker SPEAKER_02
transcript.pyannote[174].start 572.83596875
transcript.pyannote[174].end 574.03409375
transcript.pyannote[175].speaker SPEAKER_01
transcript.pyannote[175].start 574.03409375
transcript.pyannote[175].end 576.49784375
transcript.pyannote[176].speaker SPEAKER_01
transcript.pyannote[176].start 577.03784375
transcript.pyannote[176].end 591.97221875
transcript.pyannote[177].speaker SPEAKER_02
transcript.pyannote[177].start 591.12846875
transcript.pyannote[177].end 591.98909375
transcript.pyannote[178].speaker SPEAKER_01
transcript.pyannote[178].start 591.98909375
transcript.pyannote[178].end 592.02284375
transcript.pyannote[179].speaker SPEAKER_02
transcript.pyannote[179].start 592.02284375
transcript.pyannote[179].end 592.03971875
transcript.pyannote[180].speaker SPEAKER_01
transcript.pyannote[180].start 592.03971875
transcript.pyannote[180].end 592.19159375
transcript.pyannote[181].speaker SPEAKER_02
transcript.pyannote[181].start 592.19159375
transcript.pyannote[181].end 592.25909375
transcript.pyannote[182].speaker SPEAKER_01
transcript.pyannote[182].start 592.25909375
transcript.pyannote[182].end 593.00159375
transcript.pyannote[183].speaker SPEAKER_01
transcript.pyannote[183].start 593.28846875
transcript.pyannote[183].end 595.14471875
transcript.pyannote[184].speaker SPEAKER_02
transcript.pyannote[184].start 593.30534375
transcript.pyannote[184].end 600.52784375
transcript.pyannote[185].speaker SPEAKER_02
transcript.pyannote[185].start 601.01721875
transcript.pyannote[185].end 603.19409375
transcript.pyannote[186].speaker SPEAKER_02
transcript.pyannote[186].start 603.97034375
transcript.pyannote[186].end 608.69534375
transcript.pyannote[187].speaker SPEAKER_00
transcript.pyannote[187].start 605.84346875
transcript.pyannote[187].end 606.88971875
transcript.pyannote[188].speaker SPEAKER_02
transcript.pyannote[188].start 609.80909375
transcript.pyannote[188].end 613.35284375
transcript.pyannote[189].speaker SPEAKER_02
transcript.pyannote[189].start 614.28096875
transcript.pyannote[189].end 614.92221875
transcript.pyannote[190].speaker SPEAKER_02
transcript.pyannote[190].start 615.20909375
transcript.pyannote[190].end 618.01034375
transcript.pyannote[191].speaker SPEAKER_00
transcript.pyannote[191].start 616.13721875
transcript.pyannote[191].end 616.23846875
transcript.pyannote[192].speaker SPEAKER_01
transcript.pyannote[192].start 616.23846875
transcript.pyannote[192].end 616.28909375
transcript.pyannote[193].speaker SPEAKER_00
transcript.pyannote[193].start 616.28909375
transcript.pyannote[193].end 616.33971875
transcript.pyannote[194].speaker SPEAKER_02
transcript.pyannote[194].start 619.24221875
transcript.pyannote[194].end 621.09846875
transcript.pyannote[195].speaker SPEAKER_01
transcript.pyannote[195].start 621.09846875
transcript.pyannote[195].end 621.62159375
transcript.pyannote[196].speaker SPEAKER_02
transcript.pyannote[196].start 621.62159375
transcript.pyannote[196].end 622.02659375
transcript.pyannote[197].speaker SPEAKER_01
transcript.pyannote[197].start 622.02659375
transcript.pyannote[197].end 623.10659375
transcript.pyannote[198].speaker SPEAKER_02
transcript.pyannote[198].start 623.51159375
transcript.pyannote[198].end 623.52846875
transcript.pyannote[199].speaker SPEAKER_01
transcript.pyannote[199].start 623.52846875
transcript.pyannote[199].end 625.14846875
transcript.pyannote[200].speaker SPEAKER_01
transcript.pyannote[200].start 626.04284375
transcript.pyannote[200].end 627.29159375
transcript.pyannote[201].speaker SPEAKER_01
transcript.pyannote[201].start 627.56159375
transcript.pyannote[201].end 640.40346875
transcript.pyannote[202].speaker SPEAKER_02
transcript.pyannote[202].start 638.09159375
transcript.pyannote[202].end 638.24346875
transcript.pyannote[203].speaker SPEAKER_01
transcript.pyannote[203].start 640.65659375
transcript.pyannote[203].end 649.36409375
transcript.pyannote[204].speaker SPEAKER_02
transcript.pyannote[204].start 643.55909375
transcript.pyannote[204].end 645.43221875
transcript.pyannote[205].speaker SPEAKER_01
transcript.pyannote[205].start 649.71846875
transcript.pyannote[205].end 652.09784375
transcript.pyannote[206].speaker SPEAKER_02
transcript.pyannote[206].start 651.33846875
transcript.pyannote[206].end 651.57471875
transcript.pyannote[207].speaker SPEAKER_01
transcript.pyannote[207].start 652.87409375
transcript.pyannote[207].end 653.34659375
transcript.pyannote[208].speaker SPEAKER_02
transcript.pyannote[208].start 653.34659375
transcript.pyannote[208].end 653.38034375
transcript.pyannote[209].speaker SPEAKER_01
transcript.pyannote[209].start 653.38034375
transcript.pyannote[209].end 653.59971875
transcript.pyannote[210].speaker SPEAKER_00
transcript.pyannote[210].start 654.62909375
transcript.pyannote[210].end 690.37034375
transcript.pyannote[211].speaker SPEAKER_01
transcript.pyannote[211].start 685.61159375
transcript.pyannote[211].end 685.62846875
transcript.pyannote[212].speaker SPEAKER_02
transcript.pyannote[212].start 685.62846875
transcript.pyannote[212].end 688.29471875
transcript.pyannote[213].speaker SPEAKER_01
transcript.pyannote[213].start 688.29471875
transcript.pyannote[213].end 688.32846875
transcript.pyannote[214].speaker SPEAKER_00
transcript.pyannote[214].start 690.85971875
transcript.pyannote[214].end 691.56846875
transcript.pyannote[215].speaker SPEAKER_00
transcript.pyannote[215].start 691.99034375
transcript.pyannote[215].end 699.92159375
transcript.pyannote[216].speaker SPEAKER_02
transcript.pyannote[216].start 700.49534375
transcript.pyannote[216].end 703.22909375
transcript.pyannote[217].speaker SPEAKER_00
transcript.pyannote[217].start 701.50784375
transcript.pyannote[217].end 708.02159375
transcript.pyannote[218].speaker SPEAKER_02
transcript.pyannote[218].start 708.07221875
transcript.pyannote[218].end 709.57409375
transcript.pyannote[219].speaker SPEAKER_02
transcript.pyannote[219].start 710.24909375
transcript.pyannote[219].end 716.81346875
transcript.pyannote[220].speaker SPEAKER_02
transcript.pyannote[220].start 717.18471875
transcript.pyannote[220].end 721.15034375
transcript.pyannote[221].speaker SPEAKER_02
transcript.pyannote[221].start 722.01096875
transcript.pyannote[221].end 723.98534375
transcript.pyannote[222].speaker SPEAKER_02
transcript.pyannote[222].start 724.33971875
transcript.pyannote[222].end 726.33096875
transcript.pyannote[223].speaker SPEAKER_02
transcript.pyannote[223].start 726.93846875
transcript.pyannote[223].end 727.69784375
transcript.pyannote[224].speaker SPEAKER_02
transcript.pyannote[224].start 728.32221875
transcript.pyannote[224].end 732.62534375
transcript.pyannote[225].speaker SPEAKER_02
transcript.pyannote[225].start 732.94596875
transcript.pyannote[225].end 736.70909375
transcript.pyannote[226].speaker SPEAKER_02
transcript.pyannote[226].start 737.45159375
transcript.pyannote[226].end 739.45971875
transcript.pyannote[227].speaker SPEAKER_02
transcript.pyannote[227].start 739.64534375
transcript.pyannote[227].end 742.64909375
transcript.pyannote[228].speaker SPEAKER_02
transcript.pyannote[228].start 742.96971875
transcript.pyannote[228].end 743.89784375
transcript.pyannote[229].speaker SPEAKER_02
transcript.pyannote[229].start 744.35346875
transcript.pyannote[229].end 744.57284375
transcript.pyannote[230].speaker SPEAKER_02
transcript.pyannote[230].start 745.09596875
transcript.pyannote[230].end 745.43346875
transcript.pyannote[231].speaker SPEAKER_00
transcript.pyannote[231].start 746.02409375
transcript.pyannote[231].end 746.85096875
transcript.whisperx[0].start 5.833
transcript.whisperx[0].end 32.432
transcript.whisperx[0].text 謝謝主席 是不是請農業部陳部長好 我們再請陳部長部長 第一個問題請教您您知道日本一年入境的人數是多少人我告訴你 4000萬台灣一年入境的人數大概多少人我告訴你 800萬
transcript.whisperx[1].start 34.494
transcript.whisperx[1].end 62.1
transcript.whisperx[1].text 所以入境日本的人數是台灣的五倍那他們也很多機場也很多港口他們所有的港口和機場針對入境旅客有沒有針對手提行李或者針對這個非洲諸位異區來源國有做過任何手提行李的安檢我所瞭解是沒有沒有嘛入境人口是五倍那我們他們為什麼沒有
transcript.whisperx[2].start 63.123
transcript.whisperx[2].end 91.068
transcript.whisperx[2].text 最主要是我們的廚餘有直接進到我們租的衛生系統日本是經過那個飼料化以後再進到裡面所以本身的這些風險會比較低你看 入境是我們五倍而且他們沒有入境的這個鎖定性的安檢所以代表他們做法 正確的我們應該日本學習上個月 我們不是組個團嗎貴部也有派同仁去環境部也派同仁去
transcript.whisperx[3].start 91.883
transcript.whisperx[3].end 108.099
transcript.whisperx[3].text 三個半小時深入討論還有跟這個相關學者把整個日本的這個處理處理的系統做了很完整的介紹為全程參與為提出很多的問題我想農業部同仁回來有沒有跟您報告有
transcript.whisperx[4].start 109.232
transcript.whisperx[4].end 137.408
transcript.whisperx[4].text 我們是不是就把日本那一套建立起來我跟你講我們現在現在就要參考日本的那個eco feed的一個辦法然後去做這個廚餘的飼料化的一個相關的規劃要有一個專責單位去推動要有一個專案小組去推動把日本那一套建立起來啊那我們就可以高枕無疑為什麼因為不可能透過廚餘產生病菌然後變成這個非洲豬瘟的這個感染第一個他們加護廚餘的減量
transcript.whisperx[5].start 140.322
transcript.whisperx[5].end 155.692
transcript.whisperx[5].text 他們自己在這個所謂在烹煮食物的時候他們就量度為初了就是說你要吃多少他們就煮多少所以很少食物的浪費另外他們有一些加護廚餘的這個處理機或者乾燥機的補助大碗嗎 烏蛙
transcript.whisperx[6].start 160.33
transcript.whisperx[6].end 187.899
transcript.whisperx[6].text 有些縣市比方說以前在南投在雲林在屏東針對家戶廚餘處理機你把它乾燥化把廚餘把它這個去水化它就變成一般廢棄物它就可以進焚化爐結果不會損害焚化爐對不對所以現在我有提案希望你們跟環境部在你們這個所謂應變小組裡面能夠編列預算就像這個經濟部有個節能措施
transcript.whisperx[7].start 189.427
transcript.whisperx[7].end 214.565
transcript.whisperx[7].text 節煙能設備的補助比如說節煙能冷氣或冰箱的補助每年度都編列10億還是20億來汰換節煙能設備來增購節煙能設備以來我們是不是可以用一定的補助來提高國人在家戶使用廚餘處理機的意願讓每個家戶的廚餘量可以減少
transcript.whisperx[8].start 216.689
transcript.whisperx[8].end 239.755
transcript.whisperx[8].text 這個部長您的看法是第一個我跟委員報告就是台灣的那個料理的習慣跟日本是不一樣的那我們現在跟環境部在共同推這種就是吃多少煮多少的這個部分就是等於我們的廚藝的減量這是非常重要的那第二個您剛才說的就是說廚藝機的部分其實在先前也曾經跟環境部做一些討論
transcript.whisperx[9].start 240.715
transcript.whisperx[9].end 262.887
transcript.whisperx[9].text 那後來我們跟一些家庭在討論的過程中就算做了這些變成堆肥以後那台灣本身不見得是堆肥喔它處理完它變一般的廢棄物喔對 那相對的在這個過程中因為我們台灣的也許等一下環境部可以補充就是我們的廚餘的我們是強調再利用
transcript.whisperx[10].start 263.487
transcript.whisperx[10].end 282.381
transcript.whisperx[10].text 那日本的家務廚餘是直接進到焚化爐去的這兩個的那個再利用的邏輯是不一樣的部分所以沒有辦法說百分之百不照他們沒有再利用那我們再利用的這個主要的目的是什麼我想整個廚餘再利用的部分只是去化廚餘嘛 對不對
transcript.whisperx[11].start 283.598
transcript.whisperx[11].end 305.15
transcript.whisperx[11].text 你是去化廚餘嘛去化廚餘你當作一般非機物處理也是一種處理方式如果再利用利用的好的話其實它本身就是一個剩餘資源它可以真正的產生那個價值它不是為了去化而去化這樣子你要再利用啊要有科學的方式是也有安全的方式低風險的方式對就所謂Eco-feed是
transcript.whisperx[12].start 306.09
transcript.whisperx[12].end 317.258
transcript.whisperx[12].text 所以你家屋的部分没有那事业非其物的部分呢不要包括这个团散或者这个他们餐厅或者是相关的这个团体里面他们有明确的整个流程
transcript.whisperx[13].start 318.137
transcript.whisperx[13].end 337.985
transcript.whisperx[13].text 把這個收集起來然後在專用的這個特殊的這個廠商裡面去做分區分區之後做Ecofit對 這個就是我們要努力的目標不是說兩三年這幾年才有的他們已經行之二十幾年了所以他們高枕無憂他們不需要派那麼多人力在邊境做這個手提行李的檢查
transcript.whisperx[14].start 339.921
transcript.whisperx[14].end 367.242
transcript.whisperx[14].text 所以把日本這一套建立起來要多久時間我想我們現在已經開始在做規劃那我們初步是希望說我們先用一個其中的共同珍珠中心去把它做轉型變成一個只收事業廚餘或其他的食品下腳料然後變成這種eco-feed這樣的一個產品那這個部分我想我們已經在做了共同珍珠中心那你處理事業廚餘對不對
transcript.whisperx[15].start 369.571
transcript.whisperx[15].end 375.602
transcript.whisperx[15].text 還有一些食品的下繳料的部分還有一些群內的下繳料果菜公司那種你說事業屬於比方說這個夜市的小吃單算不算事業屬於
transcript.whisperx[16].start 380.489
transcript.whisperx[16].end 402.722
transcript.whisperx[16].text 我第一個部分我想後續的部分我想我們會請續產試驗所還有我們也跟台肥做溝通那台肥也很樂意進場來共同努力這個目標所以你要讓大家知道什麼叫事業處理定義是什麼要很明確這個我想環境部有非常明確的一個定義讓大家都了解那家戶處理怎麼處理事業處理怎麼處理
transcript.whisperx[17].start 404.059
transcript.whisperx[17].end 408.649
transcript.whisperx[17].text 二分法啦加五廚餘你要減量你可以用所謂的這個廚餘處理機你可以透過補助
transcript.whisperx[18].start 412.235
transcript.whisperx[18].end 440.277
transcript.whisperx[18].text 提高這個家戶的意願每一家戶按照他的這個食物的用量有不同容量的廚藝處理機把廚藝減量那事業廚藝的部分你怎麼樣把它有效的做這個集合然後這個去處理然後EcoFitEcoFit還比現在的飼料還更便宜對不對對也節省這個養豬戶的這個飼料成本
transcript.whisperx[19].start 442.636
transcript.whisperx[19].end 470.435
transcript.whisperx[19].text 這是很好的做法那我一樣說到現在好像我們已經慢了日本二十幾年那我再請教你最後一個問題整個系統建立起來大概要多久如果變成類似日本的那個ecofit我想至少要三年三年到三年的期間那如果說利用現有的共同政治中心的話應該兩年應該可以做得起來政治中心是一個過渡性的方案你最後還是要學日本那一套對
transcript.whisperx[20].start 472.336
transcript.whisperx[20].end 498.605
transcript.whisperx[20].text 日本如果他没有专利授权的话应该可以马上就可以把这个整个制度引进过来吗对他有现有的设备是可以可以做引进的你如果没有什么专利什么的不需要授权你可以专利你可以引进马上把这个制度把它建立起来你三年之内我们就不怕有什么非洲猪瘟的问题了因为变成一个安全的这个ecofit而且减少成本最重要
transcript.whisperx[21].start 500.168
transcript.whisperx[21].end 525.133
transcript.whisperx[21].text 而且我們需要每個旅客入境的時候都要有鎖立行李的安檢這也是會增加一些旅客的不便對 如果禁止廚藝養豬這個政策後續落實的時候那相關的這些邊境的壓力就會變小因為最主要就是含肉製品如果進到廚藝系統會造成一些問題所以這也是我們共同努力的目標所以這個
transcript.whisperx[22].start 527.85
transcript.whisperx[22].end 554.355
transcript.whisperx[22].text 日本的做法值得我們借鏡我已經很具體的提供了一些做法而且這些相關的程序那天是三個承辦科的科長農林水産省花很長時間做很詳細的介紹這個雖然是日文的資料我想你們一定有辦法變消化系統變成我們這個我們已經成立一個專案小組現在在做這樣的所以您說是三年三年就把日本那一套建立起來
transcript.whisperx[23].start 555.765
transcript.whisperx[23].end 571.481
transcript.whisperx[23].text 包括那個廠最主要是建廠比較慢技術的導入比較快建廠我覺得你只要有一個專業小組推動的話建廠也不是太大困難三年已經很寬裕了我希望說就按照你所說的三年就把日本那一套全部引進
transcript.whisperx[24].start 572.898
transcript.whisperx[24].end 589.83
transcript.whisperx[24].text 那我們有eco feed然後家戶廚餘也減少不過最重要的是我們也會在這段時間去了解這個因為你變成eco feed以後市場也要接受所以這樣的一個飼料配方也要讓我們的養豬戶能夠習慣跟使用
transcript.whisperx[25].start 590.33
transcript.whisperx[25].end 617.654
transcript.whisperx[25].text 我想這個也是要共同去做的這個時候就會開始去做調查對 我們現在已經在做這個部分日本也有很多養殖戶啊日本也有很多養殖戶他們可以用ecofeed可以接受代表說台灣應當也可以接受所以這個時間你們應該去做一些survey會 我們會來做像日本大概只有6%在用這個就三年時間我們就要把邊境把這個所有的這個廚藝的問題全部徹底解決透過減量 加護的減量透過世界廚藝的這個ecofeed
transcript.whisperx[26].start 619.304
transcript.whisperx[26].end 624.917
transcript.whisperx[26].text 您有把握嗎 三年時間我覺得三年應該可以做得到就跟日本完全一樣
transcript.whisperx[27].start 626.092
transcript.whisperx[27].end 653.197
transcript.whisperx[27].text 沒有 日本的沒有辦法我們可以參照日本這樣的Eco-free的部分所以我們把我們的廚藝的部分能夠再利用包括現在的生食能對不對因為我們台灣的廚藝再利用跟日本的系統是不一樣的那你贊不贊成跟環境部共同編列預算來補助每一家戶去購買這個所謂家戶的補助我覺得這個還要內部討論因為這個部分可能有不同的看法所以我們還會再跟環境部一起討論環境部要講一下環境部講一下
transcript.whisperx[28].start 654.673
transcript.whisperx[28].end 675.675
transcript.whisperx[28].text 委員你講到那個廚餘的處理機的部分那廚餘的產生源將來如果不能夠把廚餘再養豬的時候他一定會衍生成本出來但是他在這個處理的過程當中他把80%的水分把它去掉了他的垃圾需要處理的那個廚餘量就被乾燥以後減量很多他省下了處理的費用
transcript.whisperx[29].start 676.135
transcript.whisperx[29].end 698.26
transcript.whisperx[29].text 那個對他來講購買這個處理處理機就已經是划算了但現在有些家戶主動的自主性的去買處理機我們都樂觀其成那至於要不要每個家戶去補這個真的需要再評估評估什麼因為你在處理的過程當中你已經把水分乾燥你就減量了你就省下了將來處理的處理費用了
transcript.whisperx[30].start 700.675
transcript.whisperx[30].end 720.306
transcript.whisperx[30].text 對啊 那你就可以幫一般的這是我們的一個選擇啦但是要不要用政府的方式去補助這可以再評估啦你要提供一些誘因啦我覺得你要減量就是政府要像節能的這個節能家電補助也是政府編定預算去補助啊可是他沒有很大的這個動力來把這個家電變成節能的
transcript.whisperx[31].start 722.222
transcript.whisperx[31].end 742.317
transcript.whisperx[31].text 因為你換了節電加電你這當然就減少能源嘛會節電嘛那你這個給它補助之後你的垃圾就減量了你的廚藥就減量了是不是我覺得應該可以跨部會環境部跟農業部應該一起研究我希望這個應該政府要編定預算來鼓勵媒家戶能夠有自己的這個廚藥處理機謝謝好 謝謝